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Query-Driven Visualization of Time-Varying

Adaptive Mesh Refinement Data

Luke J. Gosink, Student Member, IEEE, John C. Anderson, Student Member, IEEE,

E. Wes Bethel, Member, IEEE, and Kenneth I. Joy, Member, IEEE

Abstract—The visualization and analysis of AMR-based simulations is integral to the process of obtaining new insight in scientific
research. We present a new method for performing query-driven visualization and analysis on AMR data, with specific emphasis
on time-varying AMR data. Our work introduces a new method that directly addresses the dynamic spatial and temporal properties
of AMR grids which challenge many existing visualization techniques. Further, we present the first implementation of query-driven
visualization on the GPU that uses a GPU-based indexing structure to both answer queries and efficiently utilize GPU memory. We
apply our method to two different science domains to demonstrate its broad applicability.

Index Terms—AMR, Query-Driven Visualization, Multitemporal Visualization

1 INTRODUCTION

Computational simulation has become an essential and powerful tool
impacting a diverse group of scientific disciplines such as engineer-
ing, biology, and medicine. Detailed simulations that model time-
dependent, continuous physical phenomena, along with analysis and
visualization tools that address the temporal aspects of these simu-
lations, are essential to generate new understanding and insight into
many domain-specific problems. Approaches for visualizing time-
varying data are generally based on either temporally sequential, or
temporally concurrent analysis methods. In the former, renderings are
first generated from individual timesteps by using traditional visual-
ization approaches (e.g. isosurface extraction or volume rendering)
and then viewed sequentially as an animation. In contrast, tempo-
rally concurrent visualization methods (i.e. multitemporal visualiza-
tions) present the important features from multiple timesteps in a sin-
gle, meaningful image.

In scientific simulations, the immense size and sheer complexity
of data generated from highly-detailed numerical methods has pop-
ularized the use of adaptive mesh refinement (AMR) strategies. In
numerical simulations, AMR-based techniques adaptively refine the
domain space of a simulation both spatially and temporally into a hi-
erarchy of nested, sequentially refined grids. Though these strategies
are computationally efficient and provide significant storage benefits,
the dynamic aspects of the grid hierarchies pose significant challenges
for visualization methods. Specifically, each timestep in a simulation
contains a unique grid hierarchy, consisting of multiple levels of cell
refinement. When considering a fixed spatial location in the compu-
tational domain at two or more timesteps, the disparity of cell refine-
ment that occurs between the grid hierarchies at this location prevents
the simultaneous evaluation of data necessary for many visualization
algorithms.

In this work, we address the challenges of using a query-driven
visualization (QDV) approach to visualize time-varying AMR data.
QDV methods allow users to process ad-hoc queries over large-scale
datasets and visualize the spatial regions where data satisfies the
queries. QDV methods are well-suited for analyzing and visualizing
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datasets that are both large and highly complex [26].
In our work we present a two-step method for compositing and syn-

chronizing AMR data from a series of timesteps. We first generate a
composite template from the AMR grid hierarchies of these timesteps;
the composite template preserves the highest level of refinement from
each grid hierarchy. We then synchronize each timestep’s grid hier-
archy to the composite template. This approach enables our method
to process queries on a common AMR grid hierarchy. Additionally,
with all timesteps synchronized to a common AMR template, we can
move the work of query processing to the GPU which greatly acceler-
ates the performance of QDV analysis. On the GPU side, we integrate
our new method with a GPU-based query engine, called the Bin-Hash
index [10].

The central contributions of this work are:

• We develop a new approach for the visualization of time-varying
AMR data. The core of this visualization method is based
upon a synchronization strategy that addresses the inconsisten-
cies in spatial refinement encountered when analyzing two or
more timesteps of an AMR simulation.

• We present the first extension of QDV methods to AMR data;
previous QDV work focused upon regular uniform grids.

• We demonstrate the first GPU-based QDV approach that utilizes
a GPU-based indexing strategy to accelerate query processing,
efficiently utilize GPU memory, and accelerate QDV methods.

In the next section, we discuss work germane to our efforts. This is
followed in Section 3 by an overview of AMR grid fundamentals, our
composite template construction and timestep synchronization pro-
cess, and an introduction to the Bin-Hash index. Finally, we present
the results of our method from both a qualitative and quantitative anal-
ysis perspective.

2 PREVIOUS WORK

To provide a new method for analyzing and visualizing time-varying
adaptive mesh refinement data, our work builds upon three separate
fields: AMR visualization, query-driven visualization (QDV), and
time-dependent visualization methods.

2.1 Visualization of Adaptive Mesh Refinement Data

Adaptive mesh refinement (AMR) strategies are based on the obser-
vation that localized complexity in physical phenomena – i.e. the rate
of change observed in physical quantities within small regions in the
domain – often varies substantially over space and time. Utilizing
this observation, AMR strategies proceed by simulating these physical
phenomena adaptively. Rather than utilizing a costly uniform grid of
high density for the entire domain space, AMR techniques begin with
a relatively course (and thus cheaper) grid hierarchy and adaptively



refine grids in this hierarchy only in regions of the domain requiring
higher levels of accuracy.

Importantly, this adaptive refinement occurs not just spatially, but
temporally as well. As the simulation evolves, grid cells are subjected
to a regridding algorithm with a frequency directly related to their level
of refinement. Thus grid cells of high refinement – indicating regions
of complex or important behavior – are analyzed and tested for regrid-
ding much more frequently than grid cells of lower refinement. This
spatial and temporal adaptive refining of the domain space results in
a hierarchy of nested, sequentially refined grids that is comparatively
cheaper to construct and to store than a high-density uniform grid.

Though AMR was first presented in 1984 [5], and then extended in
1989 [6], the challenges of mapping common visualization techniques
to AMR’s spatially dynamic grid structure were not addressed until
much later. One of the earliest examples of AMR visualization was
given by Max [20] in his cell-sorting method for volume rendering.
Norman et al. [21] convert AMR hierarchies into finite-element hexa-
hedral cells with cell centered data, thus enabling the use of standard
visualization tools.

More recent work focuses upon directly operating on AMR data.
Work by Ma [19] describes a parallel rendering approach for AMR
data and presents two contrasting visualization approaches. Weber et
al. [27, 29] present software and hardware-accelerated methods based
on cell projection that facilitate direct volume rendering of AMR data.
In their work, they render an AMR hierarchy by starting with its coars-
est representation. The image is then refined by subsequently inte-
grating the results obtained from renderings of finer grids. Weber et
al. [28] also present crack-free isosurface extraction methods for AMR
data. Park et al. [23] present a hierarchical multi-resolution splatting
technique for AMR data that utilizes kd-trees and octrees. Their novel
approach provides interactive performance for modest sized data.

Kähler and Hege [14] present a hardware-accelerated volume-
rendering approach to visualize AMR data. Their work, based on 3D
textures, directly utilizes the hierarchical grid structure of the AMR
data to rapidly render high-resolution datasets – including AMR data
consisting of over nine levels of refinement. Kähler et al. also present
a novel strategy for remotely visualizing AMR data at intermediate
time steps [15]. Their method utilizes so-called “keyframe” timesteps
to generate intermediate grid hierarchies. Data for these grid structures
is then acquired through interpolation strategies (via Hermite or linear
methods) by using the existing data in the keyframe timesteps.

Kähler et al. have more recently extended their earlier work by
presenting a GPU-assisted raycasting strategy for accelerating the vi-
sualization of AMR data [16]. This work utilizes a GPU-resident kd-
tree to provide a view-consistent ordering of data, and accelerate the
task of volume rendering. They contrast their method’s results with
a hardware accelerated slice-based volume rendering approach. Their
method generates superior images to the slice-based approach, with no
observable artifacts.

2.2 Query-Driven Visualization

Query-Driven Visualization (QDV) is an important and effective way
to combine database and visualization technologies. QDV strategies
are based on the observation that smaller subsets of data are usually
the genesis of insight or breakthroughs to new trends [3, 11]. In QDV,
users begin analysis by forming definitions for data that are “impor-
tant” to them. This characterization consists of constructing range
constraints for variables of interest. As an example, a user analyzing a
combustion dataset may set constraints over specific variables such as:
(1100 < temperature < 1800) AND (pressure < 780). QDV methods
use these range constraints to filter data records passed to visualization
and analysis software. This query filtration process ensures that visu-
alization and analytical resources are utilized exclusively on data that
is meaningful to the user.

Stockinger et al. [25] were first to present the notion of coupling
visualization with high performance query technology. Their work
demonstrates that the computational complexity of visualization pro-
cessing can be constrained to the number of items returned by a query.
Their approach introduces a software system (DEX) that utilizes a

compressed bitmap index technology called FastBit [32,33] to rapidly
identify records of interest.

Gosink et al. [9] extend the utility of QDV methods by using cor-
relation fields to explore variable interactions within the domain space
of query-regions. Their work focuses on characterizing flame-front
regions in combustion simulations.

Bethel et al. apply QDV principles to network traffic analysis [7].
They use compressed bitmap indices to visualize and characterize over
2.5 billion records of network connection data. Stockinger et al. [24]
extend the QDV approach for traffic analysis by presenting a family
of new parallel algorithms that generate queryable two-dimensional
conditional histograms. These conditional histograms are used for de-
tecting and characterizing distributed scans.

2.3 Multitemporal Visualization

Though researchers have proposed various methods to track time-
varying features across multiple timesteps in sequential fashion (i.e.
animations), less attention has been paid to the direct visualization
of 4D data. In direct visualization of 4D data, or multitemporal vi-
sualization, important features from selected timesteps are conveyed
in a single meaningful visualization. Projecting four-dimensional in-
formation meaningfully onto a two-dimmensional image is difficult
to do without “overwhelming” the visualization with too much infor-
mation. Finding ways to extend traditional, three-dimensional visual-
ization methods to four dimensions is one intuitive way to approach
visualizing time-varying data.

Hansen et al. [12,13] use 3D scalar fields as elevation maps in 4D. In
these works, 4D lighting, shading, and plane-tracing (i.e. 4D ray trac-
ing) are used to visualize higher dimensional data. Bajaj et al. [2] ex-
tend object splatting techniques to present a generalized hyper-volume
splatting approach. Their method presents a multi-resolution algo-
rithm for providing insightful visualizations of scalar fields in any di-
mension; the focus of their work, however, is not explicit temporal
feature tracking. Bhaniramka et al. [8] extend and generalize march-
ing methods to higher dimensions, specifically generating 4D isosur-
faces which can be sliced to enable the study of time-evolving fea-
tures. Woodring et al. [31] also extend slicing techniques for the direct
rendering of 4D space-time volumes (as apposed to the 4D isosurfaces
generated by Bhaniramka’s work). Their hyper-projection method dis-
plays unique spatiotemporal features. Woodring and Shen [30] present
a way to directly volume render time-varying data in a single mul-
titemporal image. In their work, they orthographically project four-
dimensional data (i.e. volume data accumulated over time) onto a three
dimensional image plane. They use traditional rendering methods over
the image plane, using opacity values that are spatially and temporally
based, to realize multitemporal images.

Extending AMR and QDV Work

To date, no techniques exist that facilitate the rendering of time-
varying AMR data in a multitemporal fashion. We address this impor-
tant issue in this work by combining GPU-based QDV methods with
a new approach for temporally synchronizing the time-varying data
from a series of AMR timesteps. The results of our method allow for
the interactive visualization of multivariate, spatiotemporal AMR data.
We also extend previous QDV work in two aspects: we present the first
application of QDV techniques on AMR data, and we also present the
first GPU-based QDV approach that utilizes a GPU-based indexing
strategy to accelerate query processing, efficiently utilize GPU mem-
ory, and accelerate QDV methods.

3 METHOD

Query-driven analysis and multitemporal visualization of AMR data
is hindered by the temporally dynamic properties of AMR simula-
tions. Specifically, when considering a fixed spatial location in the
computational domain at two or more points in time, observe that
this region may be “covered” by vastly different levels of grid cell
refinement. For query-driven visualization, this disparity in refine-
ment prevents the evaluation of multitemporal queries. Similarly, co-
herent multitemporal renderings of AMR data from any visualization



approach – extracting and simultaneously rendering isosurfaces from
multiple timesteps, or volume rendering with time-dependent transfer
functions – also requires addressing these temporal-based disparities
of spatial refinement.

Our new method addresses these challenges by synchronizing all
AMR data, for a select subset of timesteps, through the aid of a gen-
erated composite template. The synchronization process performed
on each of these timesteps facilitates query-driven analysis and multi-
temporal visualization in two aspects: temporally sequential visualiza-
tions, where features from these timesteps are analyzed in sequential
frames as a movie, and temporally concurrent visualizations where a
single multitemporal image conveys the important features from all
synchronized timesteps.

It is important to note that we base our method on the AMR grid
hierarchy outlined by Berger and Colella [5, 6]. We outline this hier-
archy and its properties next. For more details regarding AMR-based
simulations, we refer the reader to [1, 5, 6].

3.1 AMR Grid Structure

Adaptive mesh refinement (AMR) implementations are traditionally
based on a nested hierarchy of successively refined axis-aligned grids.
These grids are identified using the notation Gl,k where l indicates the
level of cell refinement for the grid, and k is the unique number for the
grid given this refinement level [6]. When referring to a continuous
set of grids at a single level of refinement, the notation Gl,k→k+n is
used. Increased resolution between grids of refinement level l and
l + 1 is determined by a refinement ratio “r” that specifies how many
grid cells of level l+1 fit into a single grid cell of level l (considering
a single axis-direction).

∆xl+1 = 1
r ∆xl , ∆yl+1 = 1

r ∆yl , ∆zl+1 = 1
r ∆zl (1)

Note that the refinement ratio may change between successive grid
levels. For example, the refinement ratio may be two between levels l
and l+1, and four between levels l+1 and l+2. Though not required,
refinement ratios are usually based on powers of two [4]. This conven-
tion seems to reflect a good balance between coding simplicity and an
effective realization of the benefits of refinement.

An additional property required of all grids is the notion of proper
nesting. This nesting property is strictly defined in the sense that grid
cells of refinement level l are prohibited from abutting any grid cell
other those of refinement level l, l+1, or l−1. A simple 2D example
demonstrating an AMR hierarchy is illustrated in Figure 1.

At the start of a simulation, t = 0, the initial AMR grid hierarchy
contains a single grid composed of cells of the coarsest level of re-
finement. Before the simulation begins, the grid cells of this initial
hierarchy are refined based upon a convergence/stability criteria spec-
ified by the user. This refinement criteria, utilized both at the start and
during the simulation process, may be based on the behavior of flow
features (e.g. vorticity or density gradients) [1], or on factors that are
more complex [6]. This initial refinement process is iterative – testing
and refining are repeated until for all grid cells at all levels of refine-
ment either the convergence criteria is met or the highest allowed level
of refinement is reached (maximum refinement levels are user set).

Fig. 1: This image depicts an AMR grid hierarchy consisting of four grids and three levels

of refinement: G0,0, G1,0→1, and G2,0. Grid cells are refined with a refinement ratio of r=2

and are properly nested: grid cells at level 2 do not abut grid cells at level 0.

Given this refinement procedure, note that regions can be covered
by multiple grids: e.g. a spatial location covered by G2,a, will also
be covered by some G1,b as well as G0,c. With each refinement level
possessing a different set of data for the specific region, a visualization
method can take one of several approaches to utilize this data [18]:

• Treat all the grids (and their values) independently;

• Combine the data together in some way that is physically mean-
ingful and use the result for visualization; or

• Use the data value(s) from the finest grid available and ignore
data value(s) from coarser grids.

In our method we adopt the last approach to acquire data values
from AMR grid hierarchies; by using the finest resolution source avail-
able at any given location in the domain, we are sure to be using the
more accurate and detailed information produced by the computational
model.

3.1.1 Advancing Grid Cells in Time

As the simulation advances beyond t = 0, grids are evaluated and re-
gridded independently based upon their refinement level in a process
referred to as time-stepping: Gl,0→n are evaluated and regridded in-
dependently of Gl+1,0→m etc. The frequency of these regriddings is
directed by the refinement ratio such that r defines both the spatial and
temporal refinement properties that guide AMR-based simulations:

∆t l+1 =
1

r
∆t l (2)

The time-steping algorithm can be thought of as a recursive approach
where grids are advanced in time according to their level of refine-
ment [1]. To advance level l, l0 ≤ l ≤ lmax the following steps are
performed:

1. Advance grid cells at level l in time by one timestep. Calculate
data values for these grid cells at this new time. Additionally,
assess all grid cells at this new time for the need of additional
refinement (through the convergence criteria). For all cells that
require further refinement, generate new grid cells at refinement
level l+1 in these cell locations.

2. Advance grid cells at level l+1 r times using Equation 2 to deter-
mine the length of the timestep. At each of the r timesteps, calcu-
late data values for these grid cells. Additionally, if l+1 < lmax,
assess all grid cells for the need of additional refinement (through
the convergence criteria). For all cells that require further refine-
ment, generate new grid cells at refinement level l + 2 in these
cell locations.

3. Synchronize data back up to grid cells at level l.

The synchronization of data in the last step involves several steps
that effectively serve to propagate accuracy back to the lower refined
grid levels. In this way the accuracy of the data at lower levels of
refinement is corrected/adjusted with higher resolution data.

3.2 Composition and Synchronization of AMR Grids

In order to perform query-driven visualization on two (or more) AMR
timesteps, e.g. timestep 0 and timestep n, we require that every data
record associated with a spatial grid cell at timestep 0 must have a
corresponding spatial grid cell of equivalent refinement at timestep
n. We achieve this required consistency of refinement through a two
step preprocess: the construction of a composite template, followed
by the utilization of this template to direct the further refinement and
synchronization of all timesteps used to create the composite template.

3.2.1 Composite Template Construction

The first stage of the template construction preprocess begins with a
refinement-level ordered compositing of all AMR grid cells from the
subset of selected timesteps. Beginning with refinement level lmax,
all AMR grid cells of refinement level equal to lmax from all selected
timesteps are added to a composite template. Next, all AMR grid



Fig. 2: This figure depicts the sequential process used to composite AMR grid hierarchies from two selected timesteps. The process begins by filling the composite template with all grid

cells of highest resolution from both timesteps. With each subsequent pass, grid cells of the next level of lesser refinement from both timesteps are added to the template - conditioned

on the basis that a previous, higher-refined grid cell has not already been placed at that position. Finally, the addition of lowest refined cells are made.

cells of refinement level equal to lmax−1 from all selected timesteps
are added to the template if and only if a previous higher resolution
grid cell has not already been placed in the same space. This process
continues until grid cells of refinement level 0 are conditionally added.
This process is illustrated in Figure 2.

This refinement-level ordered compositing guarantees two funda-
mental properties in the final composite template:

• The template maintains the greatest refinement from each
timestep utilized in its construction – the template thus preserves
the high fidelity data created by the numerical simulation.

• The composite template provides a basis for resolving grid-
discontinuity between all timesteps employed in its construction.
Specifically, every grid cell from any AMR grid hierarchy used
to construct the composite template can be mapped to a grid cell
of equivalent refinement, or a group of nested grid cells of greater
refinement, in the final composite template.

3.2.2 Grid Synchronization

The composite template provides the grid hierarchy necessary for
performing query-driven analysis and multitemporal visualization of
AMR data. The variable information contained in each timestep’s grid
hierarchy must now be synchronized with this template. The second
fundamental property of the composite template formulates this syn-
chronization process.

Grid cells (from all grid hierarchies used to generate the composite
template) that map to regions of greater refinement in the composite
template are synchronized through a regridding process. This regrid-
ding is performed by iteratively dividing the grid cell in question into
a nested group of increasingly refined grid cells. This iterative refine-
ment proceeds until the created grid cells are identical in refinement
and hierarchical ordering to the group of nested grid cells in the com-
posite template. To complete the synchronization process, the cell cen-
tered value of the original grid cell is propagated to the centers of the
newly created grid cells. This process is illustrated in Figure 3. With
each timestep’s grid hierarchy synchronized, temporal and multitem-
poral query-driven visualization (QDV) of AMR data is now possible.

3.3 Query-Driven Visualization of Temporal AMR Data

The goal of query-driven analysis is to provide scientists with interac-
tive and resource-efficient methods for visually exploring large mul-
tidimensional data. To meet these needs, it is important to process
user’s queries, and render the results generated from these queries, as
fast as possible. We meet these needs by employing a GPU-based
query indexing structure, called the Bin-Hash index [10]. By utiliz-
ing a GPU-based query engine, the entire QDV process may be im-
plemented on the GPU; thus QDV performance as a whole directly
benefits from the GPU’s parallel processing power. In our implemen-
tation, the CPU serves as a host to the GPU, only streaming the min-
imal data necessary to perform full-resolution queries (Section 3.3.2).
All query evaluations (and rendering) are performed on the GPU by
executing kernels written in NVIDIA’s data-parallel programming lan-
guage CUDA [22]. QDV in literature typically evaluates scalar data.
However, the Bin-Hash index can also be adapted to evaluate vector
data, as well as evaluate an arbitrary number of timesteps or variables.

The integration of the Bin-Hash index into QDV is similar in many
ways to previous integrations that utilized a CPU-based index [26].

Both strategies consist of index building, index searching, record pro-
cessing, and finally rendering. The difference between our work and
previous work is that we query and render adaptively refined spa-
tiotemporal data. This requires, in addition to the use of the compos-
ite template and synchronized grid hierarchies (Section 3.2), mapping
query results to direct the rendering of grid cells during the rendering
stage. We discuss Bin-Hash index building, searching, and rendering
next.

3.3.1 Bin-Hash Index Construction

The strategy of the Bin-Hash method is based upon the observation
that query performance can be accelerated through the utilization of
multi-resolution information. Supporting this approach requires two
levels of informational representation for the AMR data records: full-
resolution (the 32-bit base data) and low-resolution information (8-bit
encoded data).

The Bin-hash index construction algorithm takes as input the full-
resolution AMR data from a single timestep and generates both an
encoded and spatially compacted version of this input. The index con-
struction algorithm performs this operation in two stages. In the first
stage, it utilizes a binning strategy to generate a binned (ı.e. encoded)
version of the data. In the second stage it utilizes a combination of
data partitioning with a technique referred to as spatial hashing [17]
to compactly represent the full-resolution data contained in each bin
previously created.

The first stage in the index construction process begins by ex-
amining and binning – independently – the data from each selected
timestep’s hierarchy. For example, given a set of bin boundaries on a
variable A, such as (b0, b1, . . . , bn), each bin is defined to be the inter-
val (b0 ≤ A < b1), (b1 ≤ A < b2), and so on. Bin-Hash binning always
utilizes 256 bins, where each bin contains approximately the same
number of records. The encoded version of the dataset, referred to as
low-resoution data, is created by replacing each 32-bit full-resolution
data value with its associated 8-bit bin number (0-255).

Fig. 3: This figure depicts the sequential process used to synchronize the grid hierarchy of

a given timestep with a composite template. At each level of synchronization, grid cells

conditionally refine themselves by one additional level according to whether or not they are

synchronized with the composite template. In this example, synchronization is complete

for the grid hierarchy in the second level of synchronization.



(a)

(b)

(c)

Fig. 4: These images depict the three transfer functions we employ in our work. In (a)

and (b) the colors correspond to levels of AMR grid refinement for the respective Argon

Bubble and Hurricane datasets: green colors indicates grid cells of highest refinement, and

gray colors indicates grid cells of coarser refinement. In (c) the colors are used to con-

vey summary statistic information in multitemporal visualizations: blue colors indicates

regions where few queries have selected a cell during QDV analysis, and yellow colors

indicates regions where the most queries have selected the cell.

The second stage in the process of index construction requires the
partitioning and spatial compaction of the original full-resolution data.
To perform this, records are first partitioned according to their bin
numbers. Next, these subsets of data are spatially compacted through
a technique called perfect spatial hashing [17]. Perfect spatial hashing
takes all the full resolution data associated with the records of a given
bin, and stores it separately as two small tables: a hash and offset table.
This operation is performed for all 256 bins. Once the second stage is
completed, the total full-resolution dataset is now represented as 256
pairs of hash and offset tables. The total storage overhead for the in-
dices is approximately 1.5 - 2.0 times the size of the original AMR
data. This partitioning of the data is essential to the search process as
the next section details.

3.3.2 Bin-Hash Index Searching

Before query processing begins, low-resolution (i.e. encoded) data for
all selected timesteps is first uploaded onto the GPU. Resolving a
query then consists of two stages, both performed on the GPU. In the
first stage the GPU-resident low-resolution data is evaluated in a low-
resolution query. In certain cases this low-resolution information is in-
sufficient and full-resolution data must be utilized. In the second stage,
up to 2 pairs of hash and offset tables are streamed to the GPU to assist
in the evaluation of a full-resolution query. The results of this two-
stage index searching approach is a single bit-vector – a boolean array,
with one entry per AMR data record, that indicates which records (i.e.
grid cells) have passed and failed the query.

In the first stage of the index searching algorithm we first determine
the boundaries of the query. Consider an example. Given a user’s
range constraints on a given variable and timestep, such as “pressure
> 100”, we determine the bin(s) (Section 3.3.1) that these constraints
fall into. In this example, assume that the value “100” for pressure
is contained in the value range captured by bin 17. Bin 17 is then
defined to be a “boundary bin” for the query. Next, the search process
evaluates a low-resolution query by accessing the low-resolution data
on the GPU. These low-resolution data records are then characterized
as passing (the given record’s value is greater than 17), failing (the
given record’s value is less than 17), or in need of higher resolution
data (the given record’s value is equal to 17).

In the second stage of the index searching algorithm all low-
resoution records that could not be resolved in the low-resolution
query in stage one, undergo a second full-resolution query. In this
full-resolution query, the hash and offset tables corresponding to the
boundary bin(s) of the query are streamed to the GPU from the CPU.
This data transfer constitutes a trivial impact on PCI-E bandwidth [10],

as a maximum of 2
256 the size of the original dataset is being trans-

fered (at most two boundary bins may exist per variable in a query
out of the possible 256 bins). Each record whose value corresponds
to a boundary bin utilizes the hash and offset tables of this bin, via a
perfect spatial hash, to access its original full-resolution value. Once
this data has been retrieved, a full-resolution query is performed and
all records can be classified as passing or failing the query. In the case
of multi-dimensional queries, the bit-vectors solutions generated from
simple queries are logically combined to form the solutions for the
more complicated queries.

3.3.3 Mapping AMR-Based Bit-Vectors to Three-Space

The rendering algorithm of our method consists of a single stage that
transforms the bit-vector solution of a given query into the renderable
coordinates of dynamically-sized hexahedral cells in three-space. For
uniform datasets, bit-vectors are rendered by mapping each record’s
unique index to a three-space position (through modular indexing),
and rendering a constant sized hexahedral cell at this location. How-
ever, these rendering techniques won’t work on query solutions gen-
erated from AMR data. AMR grids have dynamic cell sizes, and with
arbitrary cell counts per dimension, modular indexing will not work.

Our approach to solving this problem is to generate a single record-
ID list for each composite template that stores the spatial location and
level of refinement of each grid cell in the template’s hierarchy. The
ordering of this list coincides with the ordering of the records being
queried by the Bin-Hash method. Thus, the rendering stage in our im-
plementation first accesses the bit-vector solution of the user’s query.
For each record that passes the query, the algorithm uses the record’s
index value to lookup the spatial location and level of refinement of
that record. The appropriately sized hexahedral cell parameters are
then written to a buffer in the GPU’s global memory. The render-
ing algorithm additionally uses the cell’s refinement level, and a color
lookup table, to determine the color to render each grid cell; grid cells
of a common refinement level share a common color. The memory is
then mapped as a Vertex Buffer Object and rendered to the screen.

4 VISUALIZATION APPLICATIONS AND ANALYSIS

We apply our new query-driven visualization (QDV) method to two
datasets. We demonstrate our method’s ability to generate multitem-
poral visualizations from time-varying AMR data, by visualizing sum-
mary statistic information generated from a single query that has been
evaluated over multiple timesteps. In our analysis the term, “synchro-
nized AMR data”, refers to AMR data that has been synchronized with
a composite template, “non-synchronized AMR data” refers to AMR
data that has not been synchronized with a composite template.

All tests were performed on a desktop machine running the Win-
dows XP operating system with SP2. All GPU kernels were run utiliz-
ing NVIDIA’s CUDA software: drivers version 1.6.2, SDK version 1.1
and toolkit version 1.1. We additionally used the following hardware:

• Motherboard: EVGA 680i - 1066MHz FSB; 16X PCI-Express

• Processor: Intel QX6700 - 2.66GHz; 2 x 128KB L1; 2 x 4MB L2

• Co-processor (Graphics Card): NVIDIA 8800GTX - 768MB GDDR3

4.1 Dataset 1: Argon Bubble with Shock Wave

This dataset models a simulated shock wave passing through an argon
bubble surrounded by atmospheric gases (i.e. air). One of the impor-
tant characteristics of this dataset is the dispersion of the argon gas
over time. There are over 1000 simulated timesteps in this dataset
where the physical property we analyze is gas density; i.e. mass of gas
per unit volume (ranging in values from 1.3 to 5.1). We analyze 18
AMR timesteps from these 1000: the grid hierarchies associated with
times 100, 150, . . ., and 950. Each timestep’s (synchronized) hierarchy
consists of three refinement levels and a total of 14 million cells.

Multitemporal Visualization

The left column of images in Figures 5(a) through 5(c) depict two-
dimensional slices of selected AMR grid hierarchies; these are the
grid hierarchies we use to construct our composite template. The
right column of images shows cells from these hierarchies that have
been rendered through a process of query-driven analysis; all rendered
grid cells in images from this column are selected by querying density
for values (density ≥ 1.5). In both columns, colors depict levels of
grid refinement and are based on the transfer function shown in Fig-
ure 4(a). Specifically, gray regions indicate grid cells of coarsest re-
finement in the Argon Bubble simulation; and green regions indicate
areas of greatest refinement. Compositing the AMR grids from the 18
timesteps results in the composite template shown in Figure 5(d).



(a) Timestep 100

(b) Timestep 200

(c) Timestep 900

(d) Composite template

Fig. 5: This figure depicts selected images from the Argon dataset. In this dataset there are

three grid hierarchy levels, shown in these images as colored gray (coarsest), blue (medium

resolution), and green (fine resolution). The left column of images, (a) - (c), show two-

dimensional slices through the AMR grid hierarchies of select timesteps from the Argon

Bubble dataset. The image in figure (d) depicts the composite template constructed from

all (18) grid hierarchies we use in our analysis. The right column of images show the cells

selected from query-analysis for the individual timesteps; in these images regions where

gas density is greater than 1.5 are rendered.

We utilize this composite template to generate a multitemporal vi-
sualization from summary statistics gathered from queries that select
regions of high gas density. We begin by querying the synchronized
AMR data of the first timestep (Timestep 100) for all cells with density
values (density ≥ 1.5) – note that this query characterizes regions of
higher gas density in the Argon simulation. The results of this query
are stored in an array; thus cells that have passed the query incre-
ment the current value corresponding to their position by one. We then
query the next timestep’s synchronized AMR data (Timestep 150) with
the same query; results of this query too are added to the array. This
process is repeated for all 18 timesteps; each query indicating in the
array those cells that have passed its query. The final results of the
array contain summary statistics that indicate how higher-levels of gas
density are distributed over space with respect to time.

We visualize these summary statistics in Figure 6. This figure is col-
ored according to the transfer function shown in Figure 4(c). Cells that
contain low gas density over the entire length of the simulation (i.e. no
query from any timestep indicated the cell passed our query for high
density) are shown in blue; in contrast, cells that contain higher gas
density for the entire length of the simulation (i.e. every query over
the timesteps indicated the cell passed our query for density) are indi-
cated in yellow. From this multitemporal visualization we can see how
higher-levels of gas density are distributed over space with respect to
time. This type of visualization allows scientists to assess how effec-
tive various types of shock-waves are at dispersing chemical gases.

4.2 Dataset 2: Hurricane Isabel

This multivariate dataset simulates a hurricane event over 48
timesteps. This dataset represents a common class of uniform
resolution data consisting of a uniform grid of hexahedral cells
(500x500x100). Such time dependent datasets can be costly to store
and analyze. To ameliorate these costs, we recast this uniform data in a
multi-resolution framework to ease storage and visualization demands.
We recast the data by adaptively coarsening the flattened grid – in re-
gions where detail is not required – into a multi-resolution grid frame-

Fig. 6: This multitemporal image depicts summary statistic information gathered from

queries processed over 18 select timesteps from the Argon Bubble dataset. In this image,

yellow regions indicate areas where high gas density predominantly resides over the course

of the Argon Bubble simulation. Light blue regions show areas where only a few timesteps

indicate the presence of high gas density; these regions denote where argon is dispersing.

work that abides by the properties of an AMR hierarchy. We define
“important” regions in this process – that is, regions where coarsening
should not take place – as areas where observed physical properties
vary greatly. Those regions where observed physical properties do not
vary are subjected to coarsening.

The results of this adaptive coarsening are a series of multi-
resolution, time-dependent datasets that follow the structural proper-
ties of an AMR grid hierarchy. After coarsening, each timestep (which
did contain 25 million cells) contains 5 levels of refinement consisting
of 8.6 million cells. Thus the criteria for adaptive coarsening results
in a storage savings of about 65%, while still preserving the important
features contained in this dataset. We apply our method for generating
multitemporal visualizations to these datasets; we generate a compos-
ite template from all timesteps, and then synchronize the timesteps
with this template. One of the important characteristics in this dataset
is the low-pressure regions that depict the location of the hurricane
event; all queries for pressure in this section are in Pascal units. With
our new multitemporal visualization method, we effectively character-
ize these regions.

Multitemporal Visualization

Figure 8 depicts select non-synchronized (top row) and synchronized
(bottom row) hurricane timesteps. The top row illustrates the indi-
vidual grid hierarchies generated from our adaptive coarsening ap-
proach; the bottom row depicts the same grid hierarchies after syn-
chronization with a composite template. The cells rendered in these
images (both top and bottom rows) have passed a double-constraint
query for pressure that selects cells from a given timestep which ei-
ther contain low pressure OR high pressure: (−200 ≤ pressure ≤ 20)
OR (500 ≤ pressure ≤ 1000). Note that we also show, to assist in
interpreting the data in Figure 8’s images, the regions of isolated low
pressure (Figure 7(a)) and isolated high pressure (Figure 7(b)) .

The regions in Figure 8, as well as those in Figure 7(a) and Fig-
ure 7(b), are colored according to the transfer function in Figure 4(b);
green regions indicates grid cells of highest refinement, and gray re-
gions indicate grid cells of coarsest refinement. In both rows of images
in Figure 8 observe that the low pressure regions, which characterize
the important hurricane event, are preserved at high levels of relative
cell refinement. In contrast, regions of high pressure, which character-
ize areas where little observable variation in physical properties occur,
are predominately coarsened by our adaptive coarsening method. In
the bottom row of images in Figure 8, which show results for querying
timesteps of composited and synchronized AMR grids, the path of the

(a) Cells selected from a query

selecting regions of low pressure:

(−200 ≤ pressure ≤ 20)

(b) Cells selected from a query se-

lecting regions of high pressure:

(500 ≤ pressure ≤ 1000)

Fig. 7: This figure depicts grid cells in the Hurricane dataset that contain relatively low (a)

and high pressure (b).



(a) Timestep 10 (b) Timestep 25 (c) Timestep 35 (d) Timestep 45

Fig. 8: This series of images, selected from 48 timesteps, compares query results from non-sychronized (top row), and sychronized (bottom row) AMR grids of the Hurricane Isabel

dataset. The query used on each timestep is consists of two parts; we query for regions of low pressure (−200 ≤ pressure ≤ 20) OR regions of high pressure (500 ≤ pressure ≤ 1000).

To assist in interpreting these images, the individual regions generated from these low and high pressure queries are shown in Figures 7(a) and 7(b).

hurricane is preserved at high levels of refinement in the composite
template construction process as indicated by the green path.

We utilize this composite template to generate a multitemporal vi-
sualization based on summary statistics from queries – processed over
each of the 48 timesteps – that select regions of low pressure. This
process is analogous to the one performed in Section 4.1 for the Ar-
gon Bubble dataset. We begin by querying the synchronized AMR
data of the first timestep (Timestep 1) for all cells with pressure val-
ues in the range of (−200 ≤ pressure ≤ 20) – note that this query
characterizes regions of hurricane activity in the simulation. The re-
sults of this query are stored in a array. This process is repeated for
all 48 timesteps; each query indicating in the array, those cells that
have passed its query. The final results of the array contain summary
statistics that indicate how the hurricane event, as characterized by our
low-pressure query, evolves spatiotemporally.

We visualize these summary statistics in Figure 9. This figure is col-
ored according to the transfer function shown in Figure 4(c). From this
multitemporal visualization we can see how cells that predominantly
contain low pressure over time – as indicated by regions of yellow –
define the path of the hurricane.

Performance

There are two factors that contribute to the response time of a QDV
application: the time it takes to process a query (Section 3.3.2), and
the time it takes to render the query’s solution (Section 3.3.3). To the
user, these two times appear as a unified sum that we define as “query-
driven response time”. We analyze the performance of our work by
presenting our query-driven response times in terms of the number of
queries processed and rendered in a single second. We additionally
show this metric in terms of its two principle components: the time it
takes to answer a query and the time to render the query’s results.

Each timestep from the coarsened, synchronized Hurricane dataset
(for the variable pressure) consists of 8.6 million cells. We evalu-
ate our method’s performance by independently analyzing two query

Fig. 9: This multitemporal image depicts summary statistic information gathered from

queries processed over 48 timesteps from the Hurricane dataset. In this image, yellow

regions indicate where low pressure predominantly exists across the 48 timesteps.

characteristics important to QDV. We analyze QDV performance with
respect to increasingly complex queries (i.e. the number of timesteps
evaluated by the query), and QDV performance with respect to de-
creasingly selective queries (i.e. the percentage of cells that passed the
query). The former query characteristic impacts the time it takes to
process a query; the more timesteps in a query, the more time it takes
to process the query. The latter impacts the time it takes to render the
results of the query; queries with low selectivity select more cells that
must be processed and rendered to the screen.

We begin our tests by querying a single timestep with queries that
select 1%, 10%, and 20% of the cells as hits. As mentioned, we record
for each of these queries the time it takes to answer a query, render the
result of the query, as well as the total number queries processed and
rendered in a single second. We then consider an additional timestep
in our queries, and repeat the same sequence of tests. We repeat this
process until a total of five timesteps are simultaneously evaluated by
all queries. The results of these tests are shown in Table 1.

The values shown in Table 1 indicate that performance for our QDV
method is predominantly determined by the selectivity and not the
complexity of a given query. Thus, users who analyze numerous vari-
ables or numerous timesteps in their queries, so long as the selectivity
of these queries is high, will experience excellent performance with
our method. Users whose queries are not very selective (i.e. select a
large number of cells to render), even if they are only analyzing one
variable, will experience slower performance. Note that even at the
lowest level of performance (five timesteps at 20% selectivity in Ta-
ble 1), our method is still operating above performance levels consid-
ered interactive (typically, any implementation that functions in excess
of 6 Hz is considered interactive), and is providing excellent perfor-
mance for QDV functionality.

5 CONCLUSION AND FUTURE WORK

We have presented a new method for performing query-driven visual-
ization of time-varying AMR data. With our new analysis and visual-
ization approach, we are able to construct multitemporal visualizations
that convey in a single image how queries characterizing important in-
teractions or properties evolve over time. We have demonstrated the
extensible utility of our method by applying it to two different science

Timesteps Queried
1% selectivity 10% selectivity 20% selectivity

(ms / ms / qps) (ms / ms / qps) (ms / ms / qps)

1 (8.6 million cells) 1.9 / 40.1 / 23.3 1.9 / 59.1 / 16.1 1.9 / 74.0 / 13.0

2 (17.2 million cells) 3.1 / 41.7 / 22.0 4.0 / 59.4 / 15.5 4.0 / 74.8 / 12.5

3 (25.8 million cells) 5.0 / 41.9 / 20.9 5.86 / 60.1 / 14.8 6.0 / 75.9 / 12.0

4 (34.4 million cells) 7.0 / 42.0 / 19.9 7.0 / 61.8 / 14.3 8.0 / 76.9 / 11.6

5 (43 million cells) 8.1 / 43.8 / 18.9 10.4 / 60.5 / 14.0 12.6 / 77.2 / 11.0

Table 1: This table depicts, for an increasing number of timesteps and records queried,

performance times taken during the analysis of the Hurricane dataset (Section 4.2). The

results are given according to three ranges for query selectivity: queries where 1%, 10%,

and 20% of the available records are selected by the query. The first value in any given col-

umn and row entry is the time to answer the query, the second number is the time to render

the query’s solution; both of these values are given in milliseconds. The final number is

the total number of queries processed and rendered per second; this measurement depicts

the total performance experienced by the end user and incapsulates the two previous times.



domains, and showing how more traditional “flattened” time-varying
datasets may be recast as AMR and evaluated by our approach.

One potential limitation of our new method is the possibility that
a large number of compositing steps could result in a composite tem-
plate that becomes a representation of the entire domain at the finest
level of refinement. One observation to make in this worst-case sce-
nario is that a fully refined composite template is not the expensive
factor with respect to storage concerns. The concerns for storage arise
from the synchronization of AMR timesteps with this template.

One approach we are pursuing to address this worst-case scenario
is to develop methods that optimally select the timesteps synchronized
in our analysis process, e.g., select the timesteps that minimize stor-
age costs while maximizing information obtained. Such optimal se-
lections need to be based upon the statistics of the AMR simulation
itself: the temporal and spatial distribution pattern of high-refinement
cell counts, the rate at which these regions grow and diminish, etc.
A second strategy we are pursuing is to utilize multiple composite
templates, where each template is based upon a unique time interval.
Timesteps are then synchronized to their local template; synchronizing
timesteps to a small and local temporal range should reduce storage de-
mands. Queries are evaluated over these individual templates, and the
results are then combined using a template synchronization protocol.
Both these strategies form the basis of our future work.

Another potential limitation for this work comes from memory con-
straints, imposed by the GPU, that limit the amount of AMR data able
to be processed by our method. Our current work is focused on devel-
oping an application, based on the Bin-Hash index, that utilizes a grid
of GPUs that will alleviate this limitation. In this application, large
datasets will be partitioned and analyzed in parallel across the GPU
grid, and independent solutions will be composited for final viewing.
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