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Heat transport in spin chains with weak spin-phonon coupling
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The heat transport in a system of S = 1/2 large-J Heisenberg spin chains, describing Sr2CuO3

and SrCuO2 cuprates, is studied theoretically at T�J by considering interactions of the bosonized
spin excitations with optical phonons and defects. Treating rigorously the multi-boson processes, we
derive a microscopic spin-phonon scattering rate, which adheres to an intuitive picture of phonons
acting as thermally populated defects for the fast spin bosons. The mean-free path of the lat-
ter exhibits a distinctive T -dependence reflecting a critical nature of spin chains and gives a close
description of experiments. We invoke a naturalness criterion of realistically small spin-phonon in-
teraction, by which our approach stands out from previous considerations that require large coupling
constants to explain the data and thus imply a spin-Peierls transition, absent in real materials.

PACS numbers: 75.10.Jm, 75.50.Ee, 75.40.Gb, 72.20.Pa

The one-dimensional (1D) spin chains are among the
first strongly-interacting quantum many-body systems
ever studied [1, 2] and they remain a fertile ground for
new ideas [3] and for developments of advanced theoret-
ical and numerical [4, 5] methods. A number of physi-
cal realizations of spin-chain materials [6–10] has allowed
for an unprecedentedly comprehensive comparisons be-
tween theory, numerical approaches, and experimental
data [11–13]. Current theoretical challenges for these
systems include their dynamical, non-equilibrium, and
transport properties [14–20]. The transport phenomena
are particularly challenging as the couplings to phonons
and impurities, perturbations that are extrinsic to the
often integrable spin systems, become crucial [21–26].

In this Letter, we address the problem of heat trans-
port in 1D spin-chain systems by considering coupling
of spins to optical phonons and impurities and having
in mind a systematic experimental thermal conductivity
study in the high-quality single-crystalline large-J spin-
chain cuprates, Sr2CuO3 and SrCuO2, that has been re-
cently conducted [27–30]. Several attempts to develop
a suitable formalism to describe this phenomenon have
been made in the past [24–26]. However, these ap-
proaches either relied on unrealistic choices of parame-
ters [24, 26] or offered only qualitative insights [24, 25].

Below we attempt to bridge the gap between experi-
ment and theory. We argue that the heat conductivity by
spin excitations can be quantitatively described within
the bosonization framework with the large-momentum
scattering by optical phonons or impurities. For weak
impurities, scattering grows stronger at lower temper-
ature, a feature intimately related to a critical char-
acter of the S = 1/2 Heisenberg chains [26]. Taking
into account multi-spin-boson processes, it follows nat-
urally from our microscopic calculations that scattering
by phonons bears a close similarity to that by weak im-

purities, only the phonons are thermally populated and
thus control heat transport at high T . This is also in
accord with a physical picture of phonons playing the
role of impurities for the fast spin excitations. Within
this picture, the transport relaxation time is the same as
spin-boson scattering time and the corresponding mean-
free path fits excellently the available experimental data.
Further systematic extensions of our theory to include
multi-phonon scattering that can influence thermal con-
ductivity at higher temperature are briefly discussed.

Finally, we emphasize an important physical constraint
on the strength of spin-phonon coupling of magnetoelas-
tic nature [31, 32], which is weak in the materials of in-
terest. While an estimate of this coupling can be made
microscopically, a simple phenomenological evidence for
this criterion is the absence of the spin-Peierls transition
in real compounds down to very low temperatures. Our
theory easily satisfies the proposed constraint, setting it-
self apart from the previous approaches [24, 26]. We thus
provide a microscopic, internally consistent description of
thermal transport and scattering in 1D spin chains, which
satisfies naturalness criteria by having weak spin-phonon
coupling and conforming to an analogy between phonon
and impurity scatterings.
Spin-phonon coupling Hamiltonian.—The nearest-

neighbor Hamiltonian of an S = 1/2 Heisenberg chain
magnetoelastically coupled to phonons is

H =
∑
〈ij〉

J (ri − rj)Si · Sj , (1)

where 〈ij〉 denote nearest-neighbor lattice sites. A stan-
dard Jordan-Wigner transformation with the subsequent
bosonization [11] and the lowest-order expansion in lat-
tice displacements brings it to the following form

H =
∑
k

εkb
†
kbk +Hs−ph , (2)
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FIG. 1: (Color online) Schematics of the spectra of bosonic
excitations in a large-J , S = 1/2 Heisenberg spin chain (dis-
persive branch εk = v|k| and a continuum at Q = π) and of
the dispersionless optical phonon branch ω0 (horizontal line).

where b
(†)
k are spin-boson operators of the excitation with

εk=v|k| sketched in Fig. 1, velocity is v=πJa/2, k is the
1D momentum, and a is the lattice spacing. Hamiltonian
Hs−ph describes a large-momentum, q≈Q = π/a, spin-
boson scattering by phonons

Hs−ph =
2λ

πa2

∫
dxUx(x) cos

(
Φ̂(x) +Qx

)
, (3)

where λ = a∂J/∂x, x is the direction along the chains,
the lattice displacement field U(x) is associated with the
optical and zone boundary phonons, and the spin-boson
field Φ̂(x) =

√
π
∑
k e

ikx(b†k + b−k)/
√
L|k|, in which L is

the linear size of the chain and we used Luttinger-liquid
parameter K= 1/2 for the Heisenberg case [33]. Small-
momentum scattering is deliberately ignored, as the cor-
responding vertex carries small in-plane momentum of
the phonon and leads to negligible scattering effects [26].

We note that boson-boson scattering cannot dissipate
the heat current [21, 22] and thus is neglected.

Self-energy and relaxation rate.—Assuming the spin-
phonon coupling to be small, a conjecture discussed be-
low in detail [32], one can consider only the second-order
spin-boson self-energy in Fig. 2(a) given by

Σk(τ) = − 2λ2

πa4|k|

∫
dx eikxD(τ, x)

〈
e−iΦ̂(0,0)eiΦ̂(τ,x)

〉
,(4)

where D(τ, x) = 〈Ux(0, 0)Ux(τ, x)〉 is the phonon propa-
gator and the second-quantization of lattice displacement
field is standard [35]. We exploit the large values of J
compared to a typical phonon energy scale (in cuprates
J/ΘD∼10), which allows us to neglect dispersion of the
phonon branches near the π-point in Fig. 1. Then, the
lattice-displacement correlator is fully local in space [33]
and separates into a sum over phonon branches ` that
have non-zero projections of their polarizations, ξxq`, on
the chain axis x. Considering for simplicity only one
longitudinal phonon with the energy ω0, see Fig. 1, and
reserving the right to add more phonon branches later,
we obtain D(τ, x) = aδ(x)Fτ (ω0)/2mω0 with

Fτ (ω0) = n0e
ω0τ + (n0 + 1)e−ω0τ , (5)

(a) (b)

FIG. 2: (Color online) Multi-boson diagrams contributing
to the scattering rate of spin bosons on (a) phonons and (b)
weak impurities. Shaded ellipses represent a set of diagrams
involving arbitrary number of spin bosons in the intermediate
state. Solid and wavy lines are the Green’s functions of spin
bosons and phonons, respectively.

where n0 =1/(eω0/T −1) is the phonon distribution func-
tion, m is the mass of the unit cell, and ~=kB=1.

For the bosonic field correlator in the spin-phonon self-
energy (4) in Fig. 2(a), we note an immediate similar-
ity to the second-order T -matrix for the weak impurity
scattering in Fig. 2(b), which also generates a large-
momentum transfer [26]. The correlator can be evaluated
at x→0 and T�J [26, 33] and leads to

〈
e−iΦ̂(0,0)eiΦ̂(τ,0)

〉
≈ πT

J | sin(πTτ)| . (6)

Then the self-energy at Matsubara frequency ωn is

Σk(ωn) = −g2
sp ·

2TJ

a|k|

∫ β

0

dτ
eiωnτ − 1

| sin(πTτ)| Fτ (ω0), (7)

where we introduced a naturally appearing dimensionless
spin-phonon coupling constant gsp = λ/(aJ

√
2mω0) [31,

32]. For the spin-boson scattering rate we need the imag-
inary part of the self-energy that is analytically continued
to real frequencies. The transformations allowing to per-
form integration in (7) exactly are delegated to [33]. Here
we simply list the answer

ImΣk(ω) = −g2
sp

2J

a|k|
(

2n0 + 1
)(

1− f+ − f−
)
, (8)

where f± = 1/(eω±ω0 + 1). The fermionic distributions
can be seen as a result of a re-fermionization of bosons
via a multiple-boson scattering. The result (8) can be
expanded in ω/T , yielding

ImΣk(ω) ≈ −g2
sp

2Jω

a|k|T ·
1

sinh (ω0/T )
, (9)

which holds exceptionally well for all ω . T of interest.
Generally, the single-particle scattering rate (9) should
differ from the transport relaxation rate, but for the
impurity-like scattering the two become the same.
Mean-free path.—Then, the on-shell approximation,

ω = εk, in (9) yields the inverse spin-boson mean-free
path, 1/`=1/vτ , due to spin-phonon scattering(

`sp
a

)−1

= g2
sp

2J

T
· 1

sinh (ω0/T )
. (10)
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This result is k-independent and thus can be compared
directly to the transport mean-free path extracted from
thermal conductivity data [27, 29]. We note that the
1/T prefactor in (10) is strongly reminiscent of the re-
sult for the scattering on weak impurities [26, 36, 37]:

(`imp/a)
−1

=nimp (δJ/J)
2

(J/T ), where nimp is the con-
centration of such impurities and δJ is the strength of im-
purity potential. Clearly, this scattering gets stronger at
lowering T , down to the Kane-Fisher scale, TKF∝δJ2/J ,
below which weak impurity becomes a strong scatterer,
similar to a chain break [38]. This behavior is a con-
sequence of a critical character of spin chains [26, 39].
Since phonons should be seen as weak impurities by the
fast spin excitations, it is natural that the spin-phonon
scattering yields the same 1/T prefactor in (10).

While the other thermal factor in (10), 1/ sinh(ω0/T ),
does not coincide with the phonon population n0, both
have the same high- and low-T asymptotes. For T �
ω0, the mean-free path (10) exhibits activated behavior,
`sp∼eω0/T , similar to findings of other works [24, 25].

In addition to the considered scattering mechanisms,
the low-T spin thermal conductivity in real materials is
limited by strong defects that act like chain breaks [27,
28, 30]. The corresponding mean-free path is an average
length of a defect-free chain segment, 1/`b = nb, where
nb is the concentration of these defects.
Comparison with experiments.—Figure 3 shows the T -

dependence of the mean-free path of 1D spin excitations
in Sr2CuO3 and SrCuO2 [27, 29]. The data are extracted
from the thermal conductivity measurements via a ki-
netic relation, `(T ) = κ(T )/vCV (T ), using theoretical
values [40] for the specific heat of spin chains CV (T )
[∝ T at T � J ]. Because of high purity, the mean-free
path exceeds 103a at low T , with the difference between
two compounds due to residual concentrations of defects.
The two sets of data become quantitatively very close at
higher T , implying that a similar scattering is dominating
propagation of heat in both materials [29].

Figure 3 shows our successful fits of the data by com-
bining spin-phonon (10) and strong-impurity scatterings,
`−1 = `−1

sp +`−1
b , via Matthiessen’s rule [27]. We note that

the low-T part of the data, T .40 K, has a large uncer-
tainty due to subtraction of the phonon part of thermal
conductivity, see [27, 29], and can be fit with an equal
success by a combination of weak and strong impurities,
`−1 ≈ `−1

imp + `−1
b . Since it is a secondary issue for our

study, the simplest account of this regime by strong im-
purities suffices. To fit the spin-boson mean-free path
above 40 K, we assume that the spin-bosons are scattered
by two phonon modes with ω0,1 =300 K and ω0,2 =740 K.
Of the two, the first roughly corresponds to the longitu-
dinal zone-boundary phonon and the second to the high-
energy stretching mode [41, 42], both likely having the
strongest coupling to spin chains. In (10) we used the
value of J = 2600 K [43] and the spin-phonon coupling
constants are g1,sp =0.020(1) and g2,sp =0.10(1) with the

0 100 200 300 400

T, K

10

100

1000

SrCuO2

Sr2CuO3

nb=2.5.10-4, g1=0.0202, g2=0.101

nb=7.3.10-4, g1=0.0201, g2=0.104

ω1 = 300 K 
ω2 = 740 K 
J = 2600 K

`/
a

FIG. 3: (Color online) Mean-free path of spin excitations
in Sr2CuO3 and SrCuO2 [27–29] (symbols). Lines are theory
fits, see text. Concentrations of strong impurities, nb, phonon
energies, ω0,i, and spin-phonon coupling constants, gi,sp, are
as indicated in the graph.

difference between parameters for Sr2CuO3 and SrCuO2

occurring in the third significant figure.

Bounds on spin-phonon coupling.—We now discuss
physical bounds on the spin-phonon coupling constant
gsp = λ/(Ja

√
2mω0). As discussed in [31, 32], the con-

stant is a product of two parameters, one characteriz-
ing the change of J by atomic displacement, γ = λ/J =
a(∂J/∂x)/J , and the other is an amplitude of zero-
point atomic motion relative to a lattice constant [35],
α=~/

√
2ma2ω0, where ~ is made explicit and m is the re-

duced mass associated with the phonon mode ω0. Param-
eter α is small, while γ can be large [31, 42] because the
superexchange is sensitive to the interatomic distance.
For to cuprates, one can estimate α≈0.01. The superex-
change parameter has a larger uncertainty, with indirect
studies giving a range of γ=3−14 [42, 44] and a consid-
eration of a wider class of materials suggesting an upper
limit of γ≤ 20 [31]. Thus, the microscopic upper bound
on the spin-phonon coupling constant in 1D cuprates can
be put at gmax

sp ≈0.2, justifying the weak-coupling treat-
ment of the spin-boson scattering on phonons in (4).

A less restrictive, but a purely phenomenological crite-
rion limiting the strength of the spin-phonon coupling is
the absence of the spin-Peierls transition in 1D cuprates
down to about 5 K (≈0.002J), where the 3D Néel order-
ing can be argued to preempt other transitions. Using

TsP≈Je−1/g2sp , this can be translated to the upper limit
on the spin-phonon coupling gmax

sp ≈0.35.

We now offer a critique of the previous considerations
of thermal transport in 1D spin chains. In particular, in
experimental works [27, 29, 43], the spin-phonon mean-
free path is repeatedly fit by the form `−1

sp =ATe−ω
∗/T

with ω∗≈200 K, inspired by the phonon-mediated Umk-
lapp scenario [24]. First, most of the data in Figure 3
should be outside the quantitative accuracy range of this
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expression, which is limited to T . ω∗/3 ≈ 70 K as the
exponent is only a low-T limit of the phonon distribution
function. More importantly, translating the values of A
used in [27, 29, 43] to the dimensionless coupling constant
via A= g2

sp/Ja gives gsp ≈ 1, which is exceedingly large
for the perturbative treatment to hold and lies way out-
side the allowed range. This strong coupling also implies
spin-Peierls transition at TsP ∼ J , while no such transi-
tion is observed. Likewise, our previous study, which con-
sidered small-momentum scattering on acoustic phonon
branches [26], required anomalously strong spin-phonon
interaction. Thus, there is a serious “naturalness” prob-
lem with previous theoretical considerations.

In the present work, the dimensionless spin-phonon
coupling constants are well within the range of the micro-
scopic expectations for cuprates, gsp = 0.02−0.1, imply-
ing extremely low spin-Peierls transition temperatures.
While the offered analysis of the physical bounds is not a
proof of the validity of our theory, it is certainly a strong
argument against the validity of the previous approaches,
which require unphysically large spin-phonon coupling.

Multi-phonon scattering.—We note that for T & ω0

the spin-boson mean-free path in (10) saturates at

(`sp/a)
−1≈ g2

sp2J/ω0. While this is not unphysical, one
can still expect that the other, T -dependent terms may
become important for T &ω0. Corrections of order T/J
are neglected in our derivation, see [33], since T/J is
small in the relevant temperature range. Another possi-
ble source of the T -dependence is the multi-phonon scat-
tering. Superficially, the two-phonon scattering processes
have to be negligible because of the smallness of the spin-
phonon coupling discussed above. However, there are
factors that can compensate this smallness. First, the
two-phonon scattering is less restrictive as the transverse
phonons can also contribute. Second, in the non-Bravais
lattices, the two-phonon processes are also amplified by
the number of atoms in a unit cell, Na. That is, for
the single-phonon processes, the number of longitudinal
phonons that couple to spins via (3) is Na, of which we
have chosen only two for our fits in Fig. 3. On the other
hand, when a spin-boson scattering is due to emission or
absorption of two phonons, the number of possible pro-
cesses can be as large as O(N2

a ). A näıve and certainly
overly optimistic estimate of their number assuming inde-
pendent polarization and branch index for each phonon
involved in the scattering yields (3Na)2. In cuprates [41],
the total number of phonon modes is large, so that this
combinatorial factor can be substantial.

A somewhat tedious, but straightforward algebra [33]
yields the following result for the two-phonon scattering(

`sp,2
a

)−1

= g2
sp,2

J

T
· cosh (ω0/T )

sinh2 (ω0/T )
, (11)

where g2
sp,2 ∝ C2g

4
sp. When compared to (10), the re-

sult in (11) contains an extra factor g2
sp ∼ 0.01, and a

`/
a

0 100 200 300 400

T, K

10

100

1000

SrCuO2

with T-dependence in g’s

nb=2.5.10-4, g1=0.0195, g2=0.067

ω1 = 300 K 
ω2 = 650 K 
J = 2600 K

FIG. 4: (Color online) Same as in Fig. 3. Solid line includes
T -dependence in the spin-phonon coupling, see text.

large combinatorial factor C2. Clearly, at T � ω0, the
two-phonon mean-free path follows the same behavior as
(10), thus simply renormalizing single-phonon scattering.
However, at T & ω0, it carries an extra power of T/ω0:

(`sp,2/a)
−1 ≈ g2

sp,2JT/ω
2
0 , thus amounting to an expan-

sion in T/ω0,i, which can be argued to follow naturally
from the multi-phonon scattering processes.

Without going into non-generic microscopic consider-
ations, one can suggest a simple ansatz to account for
the T/ω0,i-expansion with the T -dependence of the spin-
phonon coupling in the form gsp,i(T ) = gsp,i (1+rin0,i),
where n0,i = 1/(eω0,i/T −1) as before. This form meets
both the low-T and the high-T behavior of the two-
phonon mean-free path discussed above. A fit of the
SrCuO2 data using this ansatz with ri = 1 is provided
in Fig. 4. The bare spin-phonon coupling constants gi,sp
are even smaller than in Fig. 3 especially for the higher-
energy mode. The result with the bare gi,sp’s is pro-
vided for comparison. Although this figure is an illus-
tration showing that our theory allows for systematic
extensions by including multi-phonon processes, it also
demonstrates a potential role of the latter in the T &ω0

regime and thus contributes to the general description of
the heat transport in spin-chain materials.
Conclusions.—We have provided a consistent micro-

scopic theory for thermal transport and scattering in 1D
spin chains, which stands out from previous attempts at
such a theory by having weak spin-phonon coupling and
conforming to the analogy of the phonon scattering to
that on impurities. We have successfully fit the available
experimental data and discussed possible extensions of
our theory for higher-T .
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Vietkine, and A. Revcolevschi, Phys. Rev. B 62, R6108
(2000).

[44] M. Takigawa, O. A. Starykh, A. W. Sandvik, and R. R.
P. Singh, Phys. Rev. B 56, 13681 (1997).



6

Heat transport in spin chains with weak spin-phonon coupling:
Supplemental Material

A. L. Chernyshev1 and A. V. Rozhkov2,3

1Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
2Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141700 Russia

3Institute for Theoretical and Applied Electrodynamics,

Russian Academy of Sciences, Moscow, 125412 Russia

(Dated: September 9, 2015)

SPIN-BOSON SCATTERING ON PHONONS

Bosonization and coupling to phonons

Bosonization of the Jordan-Wigner fermion operators
for the S = 1/2 chain proceeds via introduction of the
bosonic fields Φ and Θ for the right- and left-moving
fermion operators [1] according to

ψR =
1√
2πa

ei
√
π(Φ+Θ), (S1)

ψL =
1√
2πa

ei
√
π(−Φ+Θ). (S2)

The bilinear combination of the fermionic operators
ψ†RψL can be expressed as follows

ψ†RψL =
1

2πa
e−i
√

4πΦ =
1

2πa
e−i
√

2πΦ̃, (S3)

where the rescaled bosonic field Φ̃ = (1/
√
K)Φ =

√
2Φ.

The Tomonaga-Luttinger parameter K = 1/2 corre-
sponds to the Heisenberg limit of the model.

Coupling to phonon field that leads to the large-
momentum scattering can be written as

Hs−ph =
λ

πa2

∫
dxUx(x)e

√
2πΦ̃(x)−iπx/a + h.c., (S4)

where λ = a∂J/∂x and Ux(x) is the x-component of
the lattice displacement field U for the optical and zone
boundary phonons.

Spin-boson self-energy

Since we are interested in the scattering involving
momenta close to the 1D zone boundary momentum
Q = π/a, one can assume that the corresponding phonon
has zero velocity. Then we can write the spin-boson self-
energy as

Σk(τ) = − 2λ2

πa4|k|

∫
dxeikx 〈Ux(0, 0)Ux(τ, x)〉 (S5)

×
〈
e−i
√

2πΦ̃(0,0)ei
√

2πΦ̃(τ,x)
〉
.

Phonon correlation function

Using standard quantization of the displacement field,
phonon correlation function in (S5) is

〈Ux(0, 0)Ux(τ,R)〉 =
1

N

∑
P`

e−iPR

2mω0`
(ξxP`)

2 (S6)

×
(〈
a†P`(0)aP`(τ)

〉
+
〈
a−P`(0)a†−P`(τ)

〉)
.

Assuming, for simplicity, that the dynamical force matrix
at a given momenta can be diagonalized so that one of the
polarizations (longitudinal) is along the chain and two
remaining ones are perpendicular, then all of the relevant
polarizations yield (ξxP`)

2 = 1 and the summation in (S6)
will be over Na independent longitudinal phonon modes
with individual frequencies ω0,`, where Na is the number
of atoms per unit cell.

Consider coupling to an individual phonon mode with
the energy ω0. For this case we derive

〈Ux(0, 0)Ux(τ,R)〉 =
V0δ(R)

2mω0
(S7)

×
[
n0e

ω0τ + (n0 + 1)e−ω0τ
]
,

with n0 =
1

eω0/T − 1
, (S8)

where V0 is the volume of the unit cell, n0 is the phonon
occupation number, and we assumed that τ > 0. Since
we need to evaluate the phonon propagator on a single
chain, one can write V0δ(R)=aδ(x), which leads to

〈Ux(0, 0)Ux(τ, x)〉 (S9)

=
aδ(x)

2mω0

[
n0e

ω0τ + (n0 + 1)e−ω0τ
]
.

Obviously, for the case of Na phonon modes, one needs
to reinstate the summation over them.

Spin-boson correlation function

We now turn to the spin-boson part. We have previ-
ously obtained the spin-boson correlation function in [2].
Here we provide a more rigorous derivation of it. First,〈
e−i
√

2πΦ̃(0,0)ei
√

2πΦ̃(τ,0)
〉

= e
−π

〈
[Φ̃(0,0)−Φ̃(τ,0)]

2
〉
. (S10)
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Thus, we are to calculate g(τ) defined by

g(τ) = −
〈[

Φ̃(0, 0)− Φ̃(τ, 0)
]2〉

(S11)

= 2
〈

Φ̃(0, 0)Φ̃(τ, 0)
〉
− 2

〈
Φ̃(0, 0)Φ̃(0, 0)

〉
.

Therefore, we have

g(τ) =
2T

L

∑
ωn

(
eiωnτ − 1

)∑
k 6=0

v

ω2
n + v2k2

, (S12)

with ωn = 2πTn, n = integer.

Discarding the vanishing ωn = 0 term in (S12), we have
the following identity for any ωn 6=0

g(τ) =
2T

L

∑
ωn 6=0

(
eiωnτ − 1

)∑
k 6=0

v

ω2
n + v2k2

(S13)

= 2T
∑
ωn 6=0

∫ +∞

−∞

vdk

2π

(
eiωnτ − 1

)
ω2
n + v2k2

e−πa|k|/2.

Here the exponent e−πa|k|/2 is used to set an ultraviolet
cutoff. Next, we rewrite g(τ) as

g(τ) =
T

π

∫ +∞

−∞

dy

1 + y2

∑
ωn 6=0

eiωnτ − 1

|ωn|
e−y|ωn|/J , (S14)

where y is the dimensionless integration variable and we
used v = πJa/2. The summation over ωn can be per-
formed with the help of an identity

∑
ωn>0

eωn(iτ−y/J)

ωn
= − 1

2πT
ln
(

1− e2πT (iτ−y/J)
)
. (S15)

As a result we obtain

g(τ) =
1

2π2

∫
dy

1 + y2
ln

[ (
1− e−2πTy/J

)2
1 + e−4πTy/J − 2e−2πTy/J cos(2πTτ)

]
≈ 1

2π2

∫
dy

1 + y2
ln

[
sy2

sy2 + 4 sin2(πTτ)

]
, (S16)

where s = (2πT/J)2 � 1. The remaining integral can be
found in [3], which gives

g(τ) =
1

π
ln

√
s

2| sin(πTτ)|+√s . (S17)

Exponentiating g(τ), we arrive to the following expres-
sion for the spin-boson correlator in (S5)〈

e−i
√

2πΦ̃(0,0)ei
√

2πΦ̃(τ,0)
〉

(S18)

=
2πT

2J | sin(πTτ)|+ 2πT
≈ πT

J | sin(πTτ)| ,

where in the last expression we neglected contributions
of order O(T/J).

Evaluation of the self-energy

Using the phonon propagator (S9) and the spin-boson
correlation function (S18) obtained above and transform-
ing the spin-boson self-energy Σk(τ) in (S5) to the Mat-
subara frequency domain yields Σk(ωn) given by

Σk(ωn) = −
(

λ2

2ma2ω0

)(
2T

Ja|k|

)
(S19)

×
∫ β

0

dτ
eiωnτ − 1

| sin(πTτ)|
[
n0e

ω0τ + (n0 + 1)e−ω0τ
]
.

Therefore, we need to evaluate the following integral

Iε(ωn) =

∫ β

0

dτ
eiωnτ − 1

sin(πTτ)
eετ , (S20)

for ε = ±ω0. Here we used that τ > 0.
Consider Eq. (S20) for ε = ω0. Defining the complex

variable z = ei2πTτ , we transform Iω0
into an integral

along the unit circle in the z-plane. This contour, how-
ever, is not closed, since the circle is cut at z = 1 by a
branch-cut running along the real axis from zero to +∞.
Completing the unit circle to the contour C, see Fig. 5,
one can verify that

Iω0 + Irω0
=

1

πT

∫
C
dz

1− zn
1− z z−iϕ0−1/2 = 0 , (S21)

C z

1

FIG. 5: (Color online) Contour C for the evaluation of Iω0 .
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where ϕ0 = ω0/2πT , and Irω0
contains two segments of

the contour C along the real axis.
Thus, Iω0

reduces to the integral of the real variable

Iω0
= − 1

πT
(1 + eω0/T )

∫ 1

0

dx
1− xn
1− x x−iϕ0−1/2. (S22)

Method I

The integral in (S22) can be evaluated using [4], giving

Iω0
= −1 + eω0/T

πT

[
ψ

(
n− iϕ0 +

1

2

)
(S23)

−ψ
(
−iϕ0 +

1

2

)]
,

where ψ(w) is the digamma function.
Ultimately, we need the real-frequency propagator. To

obtain it, let us perform the substitution iωn → ω + i0,
or, equivalently, n → ω/i2πT + 0. In the real-frequency
domain the following holds

Iω0
= −1 + eω0/T

πT

[
ψ

(
ω

i2πT
+

ω0

i2πT
+

1

2

)
(S24)

−ψ
(

ω0

i2πT
+

1

2

)]
.

Imaginary part of Iω0
can be expressed in terms of ele-

mentary functions, since

Imψ

(
iy +

1

2

)
=
π

2
tanh(πy). (S25)

The latter equality can be derived with the help of the
reflection formula for the digamma function ψ(1 − x) −
ψ(x) = π cot(πx), in which one has to substitute x =
1/2− iy. Consequently,

Im I±ω0
=

1 + e±ω0/T

2T

[
tanh

(
ω ± ω0

2T

)
(S26)

∓ tanh
( ω0

2T

)]
.

Method II

A substitution x = e−2z transforms Iω0
in (S22) to

Iω0 =
(1 + eω0/T )

πT

∫ ∞
0

dz
e−2nz − 1

sinh z
e2iϕ0z . (S27)

Since we are, ultimately, interested in the imaginary part
of Σk(ω), it is the imaginary part of Iω0 that we are
concerned about. This is also a point at which an ana-
lytical continuation can be made via iωn → ω + i0, or,

C
z

⇡

2⇡

FIG. 6: (Color online) Contour C for Iω0 in (S28).

equivalently, n → −iω/2πT . Introducing the variable
ϕ = ω/2πT and extending the limit to −∞ we get

Im Iω0 =
(1 + eω0/T )

πT
(S28)

×
∫ ∞
−∞

dz
sin(ϕz) cos((2ϕ0 + ϕ)z)

sinh z
.

The resulting integral can be found in [5] or evaluated by
using integration in a complex plane with the help of a
standard trick utilizing the contour in Fig. 6. Both yield
identical results, coinciding with Eq. (S26). The quantity
Im I−ω0

can be obtained from the latter result by simple
substitution ω0 → −ω0.

Scattering rate

The imaginary part of the self-energy in (S19) is pro-
portional to a combination of Im I±ω0 with the phonon
distribution functions that correspond to the phonon ab-
sorption or emission processes

F (ω, ω0) = n0Im Iω0 + (n0 + 1)Im I−ω0 , (S29)

where n0 is defined in Eq. (S8). The expression for
F (ω, ω0) can be rewritten as a combination of the phonon
and effectively fermionic distribution functions

F (ω, ω0) =
1

T
(1 + 2n0)(1− f+ − f−) , (S30)

with f± =
1

eω±ω0 + 1
. (S31)

All of that finally yields the imaginary part of the (re-
tarded) self-energy

Im Σret
k (ω) = −g2

sp

2J

a|k| (1 + 2n0)(1− f+ − f−) , (S32)

where the dimensionless spin-phonon coupling constant
gsp =λ/(aJ

√
2mω0) is introduced.

We would like to point out that the only approxima-
tion that has been made in the derivation of our answer
in (S32) from the Matsubara self-energy in (S5) is the
omission of the O(T/J) terms in Eq. (S18).
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At ω < T one can approximate the imaginary part of
the self-energy in (S32) as

Im Σret
k (ω) ≈ −g2

sp

2Jω

a|k|T ·
1

sinh (ω0/T )
. (S33)

Finally, the scattering rate of spin-bosons on phonons
is obtained by taking Im Σret

k (ω) on the mass surface,
ω = v|k|,

Γ1ph
k = −Im Σret

k (v|k|) = g2
sp

πJ2

T
· 1

sinh (ω0/T )
, (S34)

where v = πJa/2 was used as above.
This single-phonon scattering rate vanishes exponen-

tially as a function of temperature for T < ω0 and satu-
rates at a constant value for T > ω0.

TWO-PHONON SCATTERING

Here we extend the formalism developed above to the
interaction of spin-boson with two phonons. In the limit
of purely Einstein phonons this procedure is straightfor-
ward. We model the two-phonon coupling as

H2ph =
λ2ph

a2

∑
α=x,y,z

∫
dxU2

α

(
ψ†LψRe

−iπx/a + h.c.
)
, (S35)

where λ2ph = a2 ∂
2J

∂r2
x

. (S36)

Needless to say, this Hamiltonian represents a greatly
simplified version of the general situation as the coupling
constant λ2ph is independent of both the branch index
` and polarization ξ` of a phonon. The square of the
phonon field, which enters this Hamiltonian, equals to

U2
α(x) =

a

L

∑
q,`,q′,`′

ei(q+q
′)x

2mω0
ξαq`ξ

α
q′`′(a

†
q` + a−q`) (S37)

×(a†q′`′ + a−q′`′).

According to the Wick’s theorem, the corresponding
propagator can be expressed as a product of two single-
phonon propagators〈

U2
α(0, 0)U2

β(x, τ)
〉

= 2 〈Uα(0, 0)Uα(x, τ)〉2 δαβ .(S38)

The propagator itself is given by Eq. (S9). The singular-
ity of the form [aδ(x)]2 in (S38) can be resolved through
the usual prescription: [aδ(x)]2 = aδ(x). Consequently〈

U2
α(0, 0)U2

β(x, τ)
〉

(S39)

=
aδ(x)

2m2ω2
0

[
n0e

ω0τ + (n0 + 1)e−ω0τ
]2
δαβ .

We note that for a multi-atomic unit cell the latter ex-
pression has to be multiplied by N2

a . In other words, the

multi-atomic unit cell enhances the contribution of the
multi-phonon scattering.

Applying the same technical approach used in the
single-phonon calculation above to the two-phonon case
is quite straightforward. The self-energy is

Σ2ph
k (ω) = − (λ2ph)2

πa6|k|
3a

2m2ω2
0

πT

J
(S40)

×
[
n2

0I2ω0
+ 2n0(n0 + 1)I0 + (n0 + 1)2I−2ω0

]
,

where I±2ω0,0 are defined according to Eq. (S20). Then,
one can obtain the scattering rate from this expression

Γ2ph ∝ (λ2ph)2v

Jm2a5ω2
0

cosh(ω0/2T )

T sinh2(ω0/T )
. (S41)

Using v=πaJ/2 and introducing dimensionless spin-two-
phonon coupling constant, g2

sp,2 =(λ2ph/J)2/(2ma2ω0)2,
we simplify the last expression to

Γ2ph ∝ g2
sp,2

J2

T
· cosh(ω0/2T )

sinh2(ω0/T )
. (S42)

One can relate the two-phonon to the one-phonon cou-
pling constant, g2

sp,2∝C2g
4
sp, where C2 is a large combi-

natorial factor due to multiple phonon modes that can
be involved in the scattering. At T <ω0, the two-phonon
scattering rate yields the same exponential behavior as
(S34). However, at T >ω0, it carries an extra power of
T/ω0

Γ2ph ∝ g2
sp,2

J2T

ω2
0

, (S43)

thus giving a natural expansion in T/ω0 in the multi-
phonon scattering of spin-bosons.
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