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P H Y S I C S

Distinguishability and “which pathway” information 
in multidimensional interferometric spectroscopy 
with a single entangled photon-pair
Shahaf Asban* and Shaul Mukamel*

Correlated photons inspire abundance of metrology-related platforms, which benefit from quantum (anti-) 
correlations and outperform their classical counterparts. While these mainly focus on entanglement, the role 
of photon exchange phase and degree of distinguishability has not been widely used in quantum applications. 
Using an interferometric setup, we theoretically show that, when a two-photon wave function is coupled to 
matter, it is encoded with “which pathway?” information even at low-degree of entanglement. An interferometric 
protocol, which enables phase-sensitive discrimination between microscopic interaction histories (pathways), 
is developed. We find that quantum light interferometry facilitates utterly different set of time delay variables, 
which are unbound by uncertainty to the inverse bandwidth of the wave packet. We illustrate our findings on 
an exciton model system and demonstrate how to probe intraband dephasing in the time domain without tem-
porally resolved detection. The unusual scaling of multiphoton coincidence signals with the applied pump inten-
sity is discussed.

INTRODUCTION
Interferometry introduces myriad of novel platforms to spectrosco-
py, aiming at revealing quantum information encoded in the wave 
function of multiple photons (1–6). One intriguing aspect of many-
body quantum dynamics is the exchange statistics of indistinguish-
able particles, whereby the wave function acquires a phase upon the 
exchange of two particles. This affects their dynamics and is detect-
able via unique interference patterns in the correlations of two 
(or more) particles. Coincidence counting of photons (7), current 
correlations of electrons (8), and fractional charges (quantum Hall 
quasi-particles) (9, 10) are notable examples. In quantum electro-
dynamics, light-matter coupling can be represented as the sum of 
all possible interaction histories (pathways). These pathways differ 
by the temporal order of events; thus, multiphoton nonlinear pro-
cesses are potentially imprinted with their relative phases. Although 
the exchange phase of photons is fixed and solely determined by 
their bosonic nature, it can be effectively manipulated using a 
well-established interferometric setup for a pair of entangled 
photons (11).

Here, we develop an exchange phase cycling scheme that scans 
through different values of such a phase. We then demonstrate the 
capacity of the multiphoton wave function to encode and decipher 
matter information inaccessible otherwise. Matter information gain 
is physically manifested in a reduced number of light-matter con-
figurations, the ability to switch between them, and a new set of time 
delay variables with unique characteristics. We study the multidi-
mensional spectral information generated by coupling an entangled 
photon pair to matter, via combination of interferometers, as depicted 
in Fig. 1. Our scheme includes two interferometric stages: state prepa-
ration interferometer, followed by a “reading” setup for the quantum 
state encoded by light-matter information exchange. This results in 
several notable differences in comparison to the familiar semiclassical 

nonlinear optics. (i) While semiclassical techniques scan time delays 
between pulses, quantum interferometric setups introduce new type 
of time delay variables that are not conjugate to the wave packet 
bandwidth. (ii) Interferometric wave mixing (WM) of quantum 
light generates matter pathways unavailable classically due to the 
simultaneous detection of multiple photon propagation paths gen-
erated at different times (3). (iii) It allows the separation of pathways 
into groups while delivering phase-sensitive read of each process, 
unmatched by classical light. (iv) Coincidence detection obeys unique 
scaling relations between the applied intensity Ip, the light-sample 
coupling, and the detected signal. This allows to avoid damaging 
disturbance to the sample and eliminates unwanted signal contri-
butions (background). (v) Coincidence counting singles out the 
two-photon subspace from the total signal, therefore, restricting the 
number of possible microscopic pathways. Consequently, two-photon 
signals are sensitive to collective excitations (harmonic and anhar-
monic), in contrast to single-photon counting that are generated by 
matter anharmonicities (12–14).

We propose an exchange phase cycling protocol that projects the 
information encoded in the multidimensional signals onto lower-
dimension data, thereby revealing phase-dependent matter correlation 
functions. The interferometric time delays can probe the dephasing 
dynamics of the sample, without resorting to time-resolved detec-
tion. The latter is determined by the interferometer optical path dif-
ference and is not conjugate to the frequency measurement, paving 
the way to a high joint time-frequency resolution, beyond the 
Fourier limitation.

RESULTS
The setup
The interferometric spectroscopy setup depicted in Fig. 1 includes 
preparation and detection stages. Both play an essential role in ac-
quisition of the nonlinear signal generated by the sample, through 
their control parameters. In the preparation process, a modified 
Michelson interferometer creates a photon pair with tunable degree 
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of distinguishability, using the exchange phase engineering described 
below. At the detection stage, Hong-Ou-Mandel (HOM) interfer-
ence is sensitive to the post-coupling degree of distinguishability. 
Symmetric, antisymmetric, and asymmetric optical pathways, each 
carrying valuable matter information corresponding to different 
light-matter coupling histories, enable temporal reconstruction. 
The control parameters available using this setup are summarized 
at the end of this section.

Preparation
Following (11), a pump beam is directed into a modified Michelson 
interferometer using a dichroic mirror, as shown in Fig. 1B. The 
beam passes through a BBO (-barium borate) crystal, which gen-
erates a pair of orthogonally (linearly) polarized entangled photons 
denoted as signal and idler. The pair is fully characterized by the 
joint spectral amplitude (JSA) (a, b). In our calculations, we 
have used a JSA given by (a, b) = Ap(a + b)φ(a, b), where ​​​
A​ p​​(ω ) = exp  ​[​​ ​− ​(ω − ​ω​ p​​)​​ 2​ _ 

​σ​p​ 2 ​
 ​​ ]​​​​ is a symmetric pump Gaussian envelope 

with bandwidth p, centered around the pump frequency p (15). The 
phase-matching factor ​φ(​ω​ a​​, ​ω​ b​​ ) = sinc [ (​ω​ a​​ − ​​ω  ̄​​ a​​ ) ​T​ a​​ + (​ω​ b​​ − ​​ω  ̄​​ b​​ ) ​T​ b​​]​ 
breaks the frequency exchange symmetry. Here, ​​​ω ̄ ​​ a/b​​​ are the signal 
and idler central frequencies, and ​​T​ a/b​​  =  L(​v​a/b​ −1 ​ − ​v​p​ −1​)​, where L is 
the nonlinear crystal length and v is the inverse group velocity at the 
relevant central frequency ​(​​ω ̄ ​​ a/b​​, ​ω​ p​​)​. The JSA can exhibit strong ex-
change asymmetry, imprinting the horizontal and the vertical po-
larization quantum channels with distinct spectral signatures. On 
one arm, the pump is separated using a dichroic mirror (DM), and its 
optical path is adjusted equal to the signal and idler (piezo crystal PZT). 
On the other arm, the polarizations are swapped by passing twice 
through a ​​λ ⁄ 4​​ plate. In the second passing through the BBO crystal, 
because of the exchanged polarizations, the spectral profile is flipped 
from (a, b) to (b, a) with a relative phase denoted as . The 

transmitted part of the beam from the DM is finally given by the 
-symmetrized amplitude, resulting in the two-photon wave function

	​ ∣ ​ Ψ​ θ​​ 〉 =  ∫ d ​ω​ a​​ d ​ω​ b​​ ​Φ​ θ​​(​ω​ a​​, ​ω​ b​​ ) ​a​​ †​(​ω​ a​​ ) ​b​​ †​(​ω​ b​​ ) ∣ vac〉​	 (1a)

	​​ Φ​ θ​​(​ω​ a​​, ​ω​ b​​ ) = ​ 1 ─ 
​√ 
_

 2 ​
 ​ [ ϕ(​ω​ a​​, ​ω​ b​​ ) + ​e​​ iθ​ ϕ(​ω​ b​​, ​ω​ a​​ ) ]​	 (1b)

where ∣vac⟩ is the noninteracting vacuum. Broadband pumping of 
a type II parametric down converter is known to generate photon 
pairs with strong spectral distinguishing information (see section 
S1) (11, 16). We shall show that the asymmetric part of the JSA to 
(a, b) exchange plays a substantial role in recovering the real part 
of the matter correlation function for microscopic matter processes 
that are symmetric to exchange. Figure 2A depicts the nonsymme-
trized JSA in frequency domain. Figure 2 (B to D) then present 
​θ  = ​ π _ 2 ​, 0​, and  used in the cycling protocols presented below. The 
JSA was computed with p = 4 eV for a 4-mm nonlinear crystal with 
Ta = 6.1 fs and Tb = 230 fs. For each value of , Fig. 2 (A to D) also 
presents the Schmidt decomposition in a bar plot of the respective 
panels. The latter can be interpreted as the probability for the arrival 
of the nth mode; it provides a measure for the dimensionality of 
the two-photon Hilbert space and the degree of entanglement (15). 
Fewer participating modes conform to lower degree of entangle-
ment, while many modes to high degree of entanglement (see Eq. 13 
in Materials and Methods). For example, a single mode yields a 
separable pair, for which measurement of one does not affect the 
(pure) state of the other. Evidently, the values scanned in Fig. 2 
show a relatively low number of participating modes, hence low 
degree of entanglement. Note that, for  = , Schmidt modes 
appear in pairs, as reported in (15, 17).

Fig. 1. Multidimensional interferometric spectroscopy setup. (A) Entangled photons with continuously variable exchange phase  described by U interact with a 
sample. The pair is separated by a polarization beam splitter (PBS), combined into a Hong-Ou-Mandel (HOM) interferometer, and measured in coincidence following the 
detection protocol UD. The HOM setup introduces a relative temporal shift to the photonic pathways, obtained by shifting the BS position ​T  = ​ L _ c ​​. (B) The  symmetrization 
denoted by U is obtained using a modified Michelson interferometer setup. The exchange phase  grants a varying control over the photon pair degree of distinguishability. 
(C) Two detection protocols: (I) ​​U​D​ I ​​ denotes the total photon counting signal (generating a 1/0 event registry), and (II) ​​U​D​ II ​​ denotes the frequency-resolved counting 
(generating frequency-dependent 1/0 list). M1, mirror 1; M2, mirror 2.
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Detection and coupling
The coincidence signal is obtained by a two-photon expectation 
value at the detection plane. Since a detection event involves an 
annihilation of a photon by the detector, we begin our analysis from 
the detection stage. We then describe the light-matter interaction 
stage using the joint photon-sample density operator. Interferometric 
setups can be described by a linear transformation of the field modes 
between the detection and interaction stages (3). Two coincidence 
detection protocols are considered as depicted in Fig. 1. The corre-
sponding coincidence observables ​​U​D​ I ​​ and ​​U​D​ II ​​ reflect two-photon 
populations in their respective (time frequency) domain. Both setups 
contain several independent control parameters that manipulate 
the excitation and detection mechanisms. Detection-related control 
parameters include the HOM relative delay T, and, when resolved 
​(​U​D​ I ​)​, the detected frequencies (a, b). The excitation-related con-
trol parameters are the exchange phase , pump bandwidth p, pump 
central frequency p, and the pair central frequencies ​(​​ω ̄ ​​ a​​, ​​ω ̄ ​​ b​​)​. The 
first three parameters (, p, p) can be scanned continuously in a 
single setup. The entangled pair central frequencies ​(​​ω ̄ ​​ a​​, ​​ω ̄ ​​ b​​)​ are ad-
ditional control parameters, which require a special extended phase-
matching preparation (18).
Total coincidence signal –​​U​D​ I ​​
The total coincidence count is described by a photon annihilation 
of two modes at the two detectors. When the signal is not resolved 
temporally, the annihilation time is integrated over and the corre-
sponding observable is given by the operator

	​​​   O​​ I​​(​t​ a​​, ​t​ b​​ ) = ​E​a,R​ † ​ (​r​ a​​, ​t​ a​​ ) ​E​b,R​ † ​ (​r​ b​​, ​t​ b​​ ) ​E​ b,L​​(​r​ b​​, ​t​ b​​ ) ​E​ a,L​​(​r​ a​​, ​t​ a​​)​	 (2)

Here, ER and EL are electric field superoperators, corresponding to 
Hilbert space operators, that act from the right ER ≡ E and left 

EL ≡ E of the density operator. The Hilbert space polarization-

dependent field operator is given by ​​E​ σ​​(r, t ) = ​∑ k​ ​​ ​√ 
_

 ​2πk _ ​Ω​ Q​​ ​ ​ ​​   𝛜​​ σ​​(k) ​a​ k,σ​​(t ) ​e​​ ik·r​​, 

where ​​​   ϵ​​ σ​​(k)​ is the -polarization vector, Q is the quantization vol-
ume (c = 1), and ​​a​ k,σ​​(​a​k,σ​ † ​ )​ are annihilation (creation) operators 
obeying the bosonic commutation relations ​[​a​ k,σ​​, ​a​k′,σ′​ 

† ​  ] = ​δ​ σ,σ′​​ ​δ​ k,k′​​​. 
​​​  O​​ I​​​ represents the photon detection as annihilation of two modes 
from the left and right of the density operator, projecting the 
two-photon subspace in the measurement. The coincidence signal 
is obtained by taking the expectation value of Eq. 2 in the interac-
tion picture

	​​ C [ ​Λ​ I​​ ] = ∫ ​dt​ a​​ ​dt​ b​​ 〈T​̂  ​O​ I​​​(​t​ a​​, ​t​ b​​ ) exp ​{​​ − ​ i ─ ħ ​ ​ ∫ 
​t​ 0​​

​ t​​ ​dsH​ int,−​​(s ) ​}​​〉​​	 (3)

where I = {p, p, , T} represents the set of control parameters 
available in this measurement protocol. ​⟨​̂  O​⟩≡  tr { ​  O​ ​ρ​ 0​​}​ denotes the 
trace with respect to the initial state of the joint density operator 
0 = (t0), and 𝒯 is the time-ordering superoperator. The light-matter 
coupling is described by the interaction superoperator correspond-
ing to the commutator of the Hilbert space interaction Hamiltonian 
and the density operator, Hint, − ≡ [Hint, ]. We adopt the the mul-
tipolar interaction Hamiltonian in the rotating wave approximation 
(RWA) Hint = E† · V + H. c., where V is the dipole-lowering operator. 
Within the RWA, emission (absorption) of a photon is associated 
with energy decrease (increase) of the sample. The total coincidence 
counting signal 𝒞I is obtained by integration over photon arrival 
times, unresolved due to the absence of temporal gating.
The frequency-resolved coincidence counting –​​U​D​ II ​​
The frequency-resolved signal is obtained by a double annihilation 
of photons and is defined by the corresponding frequency-domain 
superoperators. These are related to time-domain counterparts 
using Fourier transform ​​E​ σ​​(r, t ) = ∫ ​dω _ 2π ​ ​e​​ iωt​ ​E​ σ​​(r, ω)​. Similarly, the 
observable ​​​  O​​ II​​​ is given by

	​​​   O​​ II​​(​ω​ a​​, ​ω​ b​​ ) = ​E​a,R​ † ​ (​r​ a​​, ​ω​ a​​ ) ​E​b,R​ † ​ (​r​ b​​, ​ω​ b​​ ) ​E​ b,L​​(​r​ b​​, ​ω​ b​​ ) ​E​ a,L​​ t(​r​ a​​, ​ω​ a​​)​	(4)

and the coincidence signal is obtained by the respective expec-
tation value

	​​ � [ ​Λ​ II​​ ] = 〈� ​​   O​​ II​​(​ω​ a​​, ​ω​ b​​ ) exp ​{​​− ​ i ─ ħ ​ ​ ∫ 
​t​ 0​​

​ 
t
​​ ​dsH​ int,−​​(s ) ​}​​〉​​	 (5)

Here, II = {a, b, p, p, , T,} are the corresponding control 
parameters.

When implementing Eqs. 3 and 5, it is crucial to note that the 
light-matter coupling takes place at different stages of the inter-
ferometer. Consequently, they are defined in different basis sets and 
require the linear transformation, as described below.
Interferometric photon basis-transformation
Because of the HOM interferometer, the optical modes involved in 
the light-matter coupling and the detected modes are given in dif-
ferent basis sets. The transformation (Jordan-Schwinger map) can 
be represented using an SU(2) rotation in the frequency domain 
(19–23), resulting in the input-output relation

	​​​​   �​​ T​​  = ​ (​​​  t​  ​ire​​ iωT​​  
​ire​​ −iωT​

​ 
t
  ​​)​​​​	 (6)

Fig. 2. Joint spectral amplitude. The JSA in Eq. 1b is presented for selection of  
values used on the exciton model system. (A) The nonsymmetrized amplitude 
two-photon amplitude in frequency domain, with Schmidt number  = 1.01. 
Symmetrized amplitude using (B) ​θ  = ​  π _ 2​​ with ​​κ​ ​ π _ 2​​​  =  1.06​, (C)  = 0 with 0 = 1.58, 
and (D) antisymmetric  =  with  = 2.87. Each bar plots signifies the Schmidt 
decomposition resulting from the corresponding amplitude.
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used in the derivation of the signal. Here, t and r are the transmission 
and reflection coefficients obeying ∣t∣2 + ∣r∣2 = 1, and T is the rela-
tive time delay. For the 50:50 beam-splitter (BS) considered here, 
​t  =  r  = ​ 1 ⁄​√ 

_
 2 ​​​. The field in vector notation is given by E(r, ) = 

(Ea(r, ), Eb(r, ))T. Under the HOM rotation, the detected field 
is given by ​E ​∣​​​ detection​​(r, ω ) = ​​  ℛ​​ T​​ E∣​ interaction​​(r, ω)​. In the following, 
we express all field operators in the interaction domain basis 
E∣interaction ≡ E(r, ), which requires the inverse rotation of the ob-
servable in Eq. 2 (see the Supplementary Materials for detailed der-
ivation) (3).

Application to an exciton model system
We consider the three-level model system depicted in Fig. 3A with 
energy manifolds (g, e, f) corresponding to the ground, singly, and 
doubly excited states, respectively. To resemble four WM (4-WM), 
we expand Eqs. 3 and 5 to fourth-order light-matter coupling Hint. 
In Fig. 3B, we show two groups of light-matter pathways: two-photon 
resonance (TPR) represented by diagram D1 and Raman processes 
(RP) (diagrams D2 and D3). The TPR pathways begin with a 
two-photon absorption event ∣{g}⟩ → ∣{e}⟩ → ∣{f}⟩, while 
RPs solely represent ∣{g}⟩ ↔ ∣{e}⟩ transitions and do not involve 

the f manifold. The diagrams describe the light-matter interaction 
on a closed-time (Keldysh) contour in which the ket (bra) evolve for-
ward (backward) in time (24, 25). The sample is taken to be initially 
in the ground-state (−∞) = ∣g1⟩⟨g1∣. Each inward (outward) arrow 
denotes interaction-induced excitation (de-excitation) of the sample, 
and the final state of the sample is stated at the top of each diagram. 
Note that reflection (interchanging the bra-ket arrows) of all Di re-
sults in complex conjugation. We assume an initially uncorrelated 
field-matter density operator (−∞) = φ(−∞) ⊗ (−∞), where 
φ(−∞) = ∣⟩⟨∣ is the two-photon initial pure state.

Below, we present the signals obtained using the two coincidence-
counting detection protocols presented in Fig. 1, ​​U​D​ I/II​​. The proba-
bility of observing each pathway (Di) varies with the number of 
detected photons and is therefore sensitive to the final state of the 
sample, in contrast to signals obtained with a classical source. When 
single photons are detected, all processes contribute regardless to 
the number of generated photons (26, 27).

Total coincidence
The celebrated HOM dip is a minimum in the total coincidence count 
of photon pairs, obtained upon changing the degree of their distin-
guishability by varying their relative path delay T (28). The signal 
attains its minimal value for T = 0 and vanishes altogether when the 
pair is completely indistinguishable. The ​​U​D​ I ​​ detection protocol 
manifests a HOM interference of the pair, posterior to the interac-
tion with the sample. Matter energy fluctuations shape the interfer-
ence pattern of the applied field and then recorded as the signal.

The coincidence signal eq. S7 is derived using diagrams D1, D2, 
and D3 for general pulse parameters and the corresponding symme-
trization procedure (initial state) in section S1. Simplified expressions 
are obtained for a narrowband pump pulse with frequency-degenerate 
entangled pair, fixing ​​ω​ a​​  = ​ ω​ b​​  = ​ ​ω​ p​​⁄ 2​​. This is possible by adopting 
phase-matching condition φ(a, b), which is maximal for identical 
central frequencies ​​​ω ̄ ​​ a​​  = ​​ ω ̄ ​​ b​​​ of the entangled pair. We assume a 
narrowband pump of bandwidth (full width at half maximum) ​​
Δλ ⁄ ​λ​ p​​  ≤ ​ 10​​ −2​​​, where p is the central frequency of the pump. The cen-
tral frequency is scanned in the 0.1- to 3-eV regime attainable by 
pulse duration p ≈ 0.1 to 10 ps for a transform-limited Gaussian 
pulse. Combined with the degenerate phase-matching factor, the 
signal is maximal for ​​ω​ a​​  = ​ ω​ b​​  = ​ ​ω​ p​​⁄ 2​​. Under these conditions, it is 
possible to isolate the contribution of diagram D3 and probe the 
intraband dephasing in real time. This measurement requires no 
time-resolved detection and is exclusively based on the HOM rela-
tive delay, which is not conjugate to any frequency variable. The 
total coincidence signal (eq. S7) then reduces to

	 ​​
C [ ​Λ​ I​​]

​ 
​= C​[​​ ​ω​ p​​, ​ 

​σ​ p​​
 ─ ​ω​ p​​ ​  ≪  1, θ  =  0, T​]​​​

​   
​
​ 

​∝ ℜ𝔢tr​{​​​VG​​ †​​(​​ ​ 
​ω​ p​​

 ─ 2 ​​ )​​ ​V​​ †​ [ 1 − iG(T ) ] VG​(​​ ​ 
​ω​ p​​

 ─ 2 ​​ )​​ ​V​​ †​ ​ρ​ μ​​(− ∞)​}​​​
​​

(7)

where we have used the fully symmetric initial state for the field 
( = 0), selectively isolating D3. Here, ​G(t ) = − iθ(t ) ​e​​ −​iH​ μ​​t​​ is the 
Green function of the sample and its Fourier transform ​G(ω ) = ​
1 ⁄ (ω − ​H​ μ​​ + iγ)​​, introducing a phenomenological dephasing rate  (ħ = 
1). It is convenient to interpret Eq. 7 using the density matrix: the 
sample optically pumped to an excited state population and then 

Fig. 3. Exciton model system and coupling pathways. (A) Three-level model 
system composed of ground ∣{g}⟩, single ∣{e}⟩, and doubly excited ∣{f}⟩ manifolds. 
The red arrows pointing interchangeably up and down correspond to Raman path-
ways. The purple arrows arranged in two consecutive absorption followed by two 
emissions correspond to TPRs. (B) Diagrammatic representation of the contributing 
microscopic light-matter processes. Straight arrows represent an interaction corre-
sponding to both fields. Curved arrows represent the detection (annihilation) process. 
Diagram D1 involves double excitations (reaching the f manifold) and referred to as 
TPR. D2 and D3 describe single excitations (e manifold) and denoted RP. The two 
distinct subgroups of processes are depicted in (A).
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de-excited back to the ground manifold, where the observable 
1 − iG(T) is measured (see eq. S9 for the sum-over-states expression). 
The time domain Green’s function is evaluated at the ∣{g}⟩ mani-
fold, revealing its temporal dynamics at time T. Scanning p and 
performing the Fourier transform of the signal with respect to the 
pair {p, T}, we obtain the two-dimensional (2D) signal depicted in 
Fig. 4A from Eq. 7. Note that T and p are nonconjugate variables 
and can be jointly resolved to arbitrary accuracy. The spectral-
temporal information in Fig. 4A can be reduced to a single dimen-
sion (time or frequency) in multiple ways. One way to achieve that 
is by tracing uniformly p, keeping the HOM delay T

	​​ C​ T​​  =  ∫ ​ 
d ​ω​ p​​

 ─ 2π  ​ C [ ​Λ​ I​​]​	 (8)

as depicted in Fig. 4B. The exponential decay envelope of the 
intraband dephasing is clearly visible along the variation of T. Two 
dephasing rates are illustrated g = 1 meV and 2 meV, as well as the 
fast decay of eg. The temporal resolution of the intraband dephasing 
is determined solely by the HOM delay (T) step size. The signal 
peaks notably when ​​​ω​ p​​⁄ 2​​ is resonant with the interband transitions 
eigj within the frequency scanning range. This can be rationalized 
by the sum-over-states expression of Eq. 14.

To extract spectral information, it is convenient to look at cross sections 
of a given time delay. We find maximal contrast in the spectral features for 
almost vanishing delays T = 0+. We denote this cross section

	​​​ C​ ∣​​  ≡  C​[​​ ​ω​ p​​, ​ 
​σ​ p​​

 ─ ​ω​ p​​ ​  ≪  1, θ  =  0, T  = ​ 0​​ +​​] ​​​​	 (9)

in Fig. 4 (C and D). Figure 4C depicts the spectrum obtained for g = 
1 meV (4 ps) and more rapid interband dephasing eg = 10 meV 
(0.4 ps) in logarithmic scale. Figure 4B presents the same for equal 
interband and intraband dephasing eg = g = 1 meV (4 ps). The 
lineshapes are broadened because of the properties of the sample. 
We thus infer that rapid eg decay is a limiting factor in the spectral 
resolution of the interband transitions in this detection scheme.

Frequency-resolved coincidence
A natural extension of the total coincidence counting is provided by 
frequency-resolved photon detection (protocol ​​U​D​ II ​​ in Fig. 1). This 
adds two control parameters to the above signal, resulting in the 
following set of control parameters II = {a, b, , T, p, p}. 
Expansion of Eq. 5 to fourth order in Hint introduces an additional 
phase factor exp {i} associated with the HOM delayed path trajec-
tories, where  = (a − b)T (see section S3 for detailed derivation). 
There are many ways to display the resulting high-dimensional sig-
nal. We use the shorthand notation 𝒞() ≡ 𝒞[II], where  can be 
fixed for any pair of frequencies (a, b) using the delay variable 
T. It is convenient to introduce the auxiliary functions correspond-
ing to the real ​​ℛ​ i​​ ≡  ℜ𝔢 { ​Ξ​ i​​}​ and imaginary ​​ℐ​ i​​  ≡  ℑ𝔪 { ​Ξ​ i​​}​ parts of 
the respective pathway contributions. Here, i = {TPR, RP} and Ξi 
encapsulate all microscopic processes that contribute to each path-
way (see section S3 for the full expressions). The choice (, ) = 
(0, ) gives

	​​ C​ 0​​(π ) = ​ℐ​ TPR​​(​ω​ a​​, ​ω​ b​​ ) + ​ℐ​ RP​​(​ω​ a​​, ​ω​ b​​)​	 (10)

where both groups of pathway are observed, as shown in Fig. 5A. In 
our calculations, we have used an entangled pair generated by a 
broadband pump with p = 0.9 eV (≈1-fs pulse). The central fre-
quency p is scanned in the range of 2 to 5 eV, and all dephasing 
rates are identical ij = 5 meV. To quantify the degree of entangle-
ment generated by the two-photon source, we compute the Schmidt 
number  ≡ [∑np2(n∣)]−1 (see Materials and Methods). The 
Schmidt number for the above parameters is 0 ≈ 2.7, using non-
linear crystal of length L = 0.4 mm. Figure 5A depicts all contributing 
pathways, where we observe distinct TPR features located along the 
diagonal lines in which a + b = fig1 such that a/b = ejg1 b/a = 
fiej. The RP pathways are observed along the lines corresponding 
to the transitions eigj. Similar results are obtained with doubled 
bandwidth (p) corresponding to 0 ≈ 1.7. The coincidence signal 
vanishes for (, ) = (0,0) as expected for indistinguishable photons. 
For presentation purposes, all images in Fig. 5 are displayed by 
sweeping and summing the pump central frequency p. In movies S1 

Fig. 4. Coincidence counting of the exciton system. (A) The total coincidence-counting 2D signal (​​U​D​ I ​​ detection protocol) with respect to the HOM delay T and the 
pump central frequency ​​​ω​ p​​⁄ 2​​ obtained from Eq. 7. The signal is obtained by a narrowband frequency–degenerate photon pair, corresponding to the intraband dephasing 
rate g = 1 meV (4 ps). (B) Illustration of Eq. 8: The total coincidence-counting signal as a function of the HOM delay for two chosen dephasing rates g = 1 meV and 2g 
and the respective exponential envelopes integrated over the pump frequency. The interband spectrum obtained from Eq. 9 is displayed for two interband transition 
rates in (C) eg = 10 meV and (D) eg = 1 meV.
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and S2 (see Materials and Methods for more information), this pro-
tocol is shown to maintain the desired spectral information.

Exchange-phase cycling
Pathway selectivity can help in studying the molecular dynamics in 
greater detail. Frequency-resolved detection ​(​U​D​ II ​)​ depicted in Fig. 1 
achieves just that: isolating the real and imaginary part of various 
diagrams exclusively.

We propose exchange-phase cycling protocols, whereby several 
signals obtained with different control parameters are combined to 
selectively probe desired pathways. These exploit the Michelson 
and the HOM interferometers to manipulate the effective exchange 
phases before and after the interaction, respectively (, ). The 
Michelson interferometer (Fig. 1B) imprints any permutation of the 
initial photon pair with a relative phase factor. The HOM detection 
interferometer introduces path-related phase factor to the detected 
photons. Certain combinations of (, ) are useful for reconstruct-
ing the real and imaginary parts of the signals individually (see sec-
tion S3 for derivation and final expressions). It is useful to examine 
the Fourier transform of the coincidence signal 𝒟 = ∫ dT e−iT𝒞() 
(presenting 2D spectral map along the lines  = a − b). Combina-
tions of 𝒞() and 𝒟 allow the phase-sensitive reconstruction of the 
TPR and RP processes.

There are multiple choices of linearly dependent cycling proto-
cols to achieve path selectivity. Here, we display one cycling proto-
col resulting in the 2D spectra presented in Fig. 5 (A to E). The 
information displayed in Fig. 5 (B-E) depict the cycling protocol 
below corresponding to the real ℛi and imaginary ℐi parts of the 
respective contribution

	​​ ℐ​ TPR​​(​ω​ a​​, ​ω​ b​​ ) = ​C​ π​​(π)​	 (11a)

	​​
​ℛ​ TPR​​(​ω​ a​​, ​ω​ b​​)

​ 
= ​D​ ​π _ 2 ​​​ − ​D​ ‐​π _ 2 ​​​ − ​C​ ​π _ 2 ​​​(0 ) + ​C​ −​π _ 2 ​​​(0)

​    
​
​ 

​+ ​C​ ​π _ 2 ​​​​(​​ ​ π ─ 2 ​​)​​ − ​C​ −​π _ 2 ​​​​(​​ ​ π ─ 2 ​​)​​​
 ​​	  (11b)

	​​ ℐ​ RP​​(​ω​ a​​, ​ω​ b​​ ) = ​D​ ​π _ 2 ​​​(0 ) + ​C​ −​π _ 2 ​​​(0)​	 (11c)

	​​ ℛ​ RP​​(​ω​ a​​, ​ω​ b​​ ) = ​C​ ​π _ 2 ​​​(0 ) − ​C​ ​π _ 2 ​​​(0)​	 (11d)

In the following calculations, we have used an entangled pair 
generated by a pump with varying bandwidth: from a narrowband 
p = 1.8 meV corresponding to ≈1-ps pulse to broadband p = 0.9 eV 
using a ≈1-fs pulse. The central frequency p is scanned in the 2- to 
5-eV regime, and all dephasing rates are identical ij = 5 meV. The 
real part of the response is strongly dependent on the degree of 
asymmetry of the initial state wave function. The asymmetric part 
of the JSA becomes more pronounced in the broadband regime and 
is negligible for a narrowband pulse (11, 29). The signals corre-
sponding to the protocols in Eqs. 11a to 11d were calculated using 
an ultrafast pump with p = 0.9 eV and are depicted in Fig. 5 (B to E), 
respectively. The Schmidt number  (Eq. 13) for the above param-
eters and a L = 0.4 mm varies between 1 and 5 (depending on ). 
Figure 5 (B and C) presents the TPR pathways, where we observe 
dispersive features (30) located along the diagonal lines in which a + 
b = fig1 such that a/b = ejg1 and b/a = fiej. Note that the transition 
f3e1 = e1g1 = 2 eV is not resolved in ℐTPR, yet it appears in ℛTPR; this 

Fig. 5. Frequency resolution of the exciton signal and exchange-phase cycling. (A) 2D spectra obtained from Eq. 10 using ultrafast pump with p = 0.9 meV and 
scanning p in the range of 2 to 5 eV on logarithmic scale. The exchange-phase cycling protocol shows each of the components selectively. The imaginary (B) and real 
(C) part of the TPR pathway given by the cycling protocols in Eqs. 11a and 11b, respectively. The dashed diagonal lines follow the doubly excited transition a + b = fig1. 
The imaginary (D) and real (E) part of the RP pathway following the cycling protocols in Eqs. 11c and 11d. The dashed lines denote transitions between the first excited 
and ground manifolds eigj.
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stems from the antisymmetric nature of the JSA (a, b), which 
vanishes when a = b. While ℐTPR is symmetric to the exchange, 
ℛTPR is antisymmetric and thus fully resolved. Nonetheless, different 
choices of cycling protocols may resolve this transition (see Fig. 5A 
and section S5 for such example). Figure 5 (D and E) depicts the RP 
pathway, scanning the single exciton manifold from which all tran-
sitions eigj are visible. Last, one can verify that the information in 
Fig. 5A displays a combination of Fig. 5 (B and D), excluding the 
degenerate transitions in which a = b.

Comparison with ordinary WM
Nonlinear spectroscopic signals are usually described semiclassically 
using a sequence of temporally separated bright classical pulses 
(containing many photons) that trigger matter dynamics and gen-
erate a single photon (14). This photon is modulated by m light-matter 
interactions, resulting in an m + 1 order correlation function. Non-
linear m + 1 WM is given by the expectation value of the integrated 
change of the electric field intensity ​I  =  ∫ dt ​⟨ℐ⟩ ̇ ​​  (31). The intensity 
is a single-photon quantity, related to the electric field operator ℐ = 
E†E. Quantum sources can achieve superior signal-to-noise ratio 
scaling with the number of photons. This superior scaling is referred 
to as the Heisenberg limit in quantum metrology (32–36), enabling 
reduced radiation exposure for comparable measurement certainty. 
Particularly, the offer to improve the resolution of fragile samples, 
limited by radiation dose constraints (37). One way to benefit from the 
quantum properties of the electromagnetic field is via direct coupling 
of quantum light to the sample (e.g., entangled photons and squeezed 
states). Sample stimuli using quantum sources have shown to yield 
remarkable control over population dynamics and pathway selection 
(26, 38, 39). Alternatively, as done here, one can probe quantum 
effects of the emitted radiation directly via multiple photon counting 
[e.g., antibunching (40) and superesolved imaging (41–44)].

Multiple photon detection yields higher-order WM signals, de-
noted (n + m)-WM in analogy to the semiclassical (m + 1)-WM. It 
involves the application of m fields and the detection of n-generated 
photons that give rise to n + m order correlation function. While 
(m + 1)-WM depend on several pathways, (n + m)-WM contain fewer 
terms and may not be written in the form of amplitude square. In 
our setup, coincidence counting eliminates the single-photon dia-
gram depicted in Fig. 6 denoted S, since only one photon is populated 
in the final state. This yields substantial change compared to single-
photon (intensity) signal. Semiclassical nonlinear WM signals are 
generated from nonlinearities in matter (12, 13). Thus, collective 
excitations in the f manifold with energies ϵfkg = ϵeig + ϵekg vanish. 
This stems from the fact that the last light-matter interaction in D1 
(Fig. 3) propagates forward in time (applied to the ket), while, with 
S in Fig. 6, backward in time (applied to the bra). Therefore, for 
small dephasing rates, the forward and backward resonances inherit 
opposite relative sign, verified using the Sokhotski-Plemelj theorem 
​​​lim​ γ→0​​ ​1 ⁄ ω ± iγ​  =  ∓ iπδ(ω ) + pp​(​​ ​ 1 _ ω​​)​​​​, where pp denotes the principle 
part. Because of the elimination of S, the coincidence signal here is 
sensitive to collective excitations in TPR processes.

(n + m)-WM also gives rise to different scaling with the pulse 
intensity. For example, double excitation signals induced by entangled 
pairs are known to scale linearly (rather than quadratically) with the 
pump intensity ∝Ip (45–47). This permits the study of doubly excited 
manifold with smaller probability of ground-state bleaching, thus 
potentially reduce sample damage. While single-photon detection 
events scale linearly with the pump intensity ∝Ip, the two-photon 

signal scales quadratically ​∝ ​I​p​ 2 ​​. This allows using lower intensities 
per desired detection gain, improving signal-to-noise ratio (48–50). 
This principle can be extended to n photon population detection in 
a straightforward manner.

DISCUSSION
The measurement of a specific number of photons using coincidence 
detection narrows down the observed dynamical pathways of the 
observed process. Pathways that the sample ends up in a certain final 
state are sorted out. In contrast, WM signals obtained with classical 
light probe a coherence and are not sensitive to the final state of the 
sample. Specifically, two-photon coincidence of a pair, which is 
weakly coupled to a sample, generates a unique (2 + 2) WM that 
probes a limited number of pathways. Similar to 4-WM, the signal 
considered here depends on a four-point dipole correlation function 
of matter. The difference is that the elaborate detection does not 
single out one field, as in semiclassical 4-WM signals, but two fields 
are detected. We can thus view the process as a generalized 4-WM.  
To avoid confusion, we simply refer to it as (2 + 2) WM, which 
specifies the number of applied and detected fields.

Our first detection scheme records the total photon coincidence 
count without any spectral and temporal resolutions. The two-natural 
control parameters of the setup depicted in Fig. 1 are the HOM de-
lay T and the central frequency of the pair-generating pump p. A 
remarkable effect occurs with the application of a degenerate photon 
pair [extended phase-matching condition (51, 52)] with a symmetric 
narrowband JSA ( = 0), such that both photons are sharply distrib-
uted around half the pump frequency ​​​ω​ p​​ _ 2 ​​. The TPR pathways are 
then eliminated, and only a single RP pathway (D3; Fig. 3) survives. 
The following dynamics is then observed: (i) The density matrix of 
the sample is excited and then de-excited back to the initial band ∣{g}⟩. 
(ii) The Green function of the system at time T is measured. Since T 
is controlled with high precision, the intraband dephasing dynamics 
can be reconstructed in real time as shown in Fig. 4 (A to D). This 
allows to characterize the system’s coupling to its environment. Small 
T expansion can reveal moments of the sample Hamiltonian ⟨Hn⟩ 
and is given in section S2. This provides a compelling direction for 

Fig. 6. TPR process missing in the coincidence signal. (A) A single-photon TPR 
process labeled S, which involve double excitations (f manifold). The joint field 
matter is specified after each interaction event on the diagram. The highlighted 
(orange) line corresponds to the backward propagator responsible for the elimina-
tion of the (harmonic) collective excitations in single-photon nonlinear signals. 
(B) Schematic representation of the process.
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future study aligned with the efforts invested in studying decoherence 
and energy leaks in quantum technologies.

Our second detection protocol involves frequency-resolve co-
incidence counting. By cycling values of T and the entangled pair 
exchange phase , we can separate the TPR and RP pathways. 
Pathway-selection protocols typically generate destructive interfer-
ence to suppress certain populations (26) or induce distinct scaling 
of each process with the intensity (38). Here, pathways are selected 
by projecting the high-dimensional signal to process-specific data, 
without reducing the event probability of other processes. Moreover, 
by combining signals with different  and T(a − b) (phase cycling), 
we can obtain the phase of four-point matter correlation function, as 
shown in Fig. 5 (B to E). Temporal reconstruction is then possible 
using a simple Fourier transform. The cycling protocols related to 
the real part of the correlator require an asymmetric JSA with respect 
to exchange, inherited from the ultrafast pump. This suggests that 
obtaining temporal behavior of the correlators necessitates an ultra-
short generating pump, which is compatible with temporal reso-
lution, although this is a frequency domain measurement. An 
ultrashort pump generates a spontaneous photon pair that carries 
an identity-revealing spectral information (16). The resulting dis-
tinguishability renders a “which pathway?” information available. 
The relation between the JSA asymmetry and the temporal resolu-
tion upper-bound warrants a further study, since the temporal and 
spectral control parameters are not conjugate quantities. These 
effects are more pronounced at low entanglement values and steered 
by the variable effective exchange phase.

In addition to the above merits, matter-induced field nonlinear-
ities may also improve the frequency resolution (35, 36). Correlation-
based detection techniques (e.g., coincidence) can reveal such 
electromagnetic field nonlinearities. These correlations have signa-
tures in matter-induced photon-photon coupling (53), free-electrons 
coupling (54), and thus carry matter information that is imprinted 
in the postinteraction counting statistics. Characterization of the 
reading process that can access this information is one of the central 
goals of interferometric spectroscopy.

MATERIALS AND METHODS
Schmidt number calculation
The Schmidt number is a measure of photon entanglement that 
depends on the single photon density matrix. It is based on the 
Schmidt decomposition of the JSA (15)

	​​ Φ​ θ​​(​ω​ a​​, ​ω​ b​​ ) = ​∑ 
n
​ ​​ ​√ 
_

 p(n∣θ) ​ ​ψ​ n​​(​ω​ a​​ ) ​ϕ​ n​​(​ω​ b​​)​	 (12)

Here, {n, n} are an eigenfunctions of the single-photon reduced 
density matrix and p(n∣) are their weights. To obtain this repre-
sentation, we solve p(n∣)n() = ∫ d′ K1(, ′)n(′) and 
p(n∣)n() = ∫ dk′ K2(, ′)n(′). These kernels are found from 
the reductions ​​K​ 1​​(ω, ω′) = ∫ dω′′ ​Φ​ θ​​(ω, ω′′) ​Φ​θ​ * ​(ω′, ω′′)​, tracing the 
second frequency variable, and ​​K​ 2​​(ω, ω′) = ∫ dω′′ ​Φ​ θ​​(ω′′, ω ) ​Φ​θ​ * ​(ω′′, ω′)​. 
They can be interpreted as single-photon correlation functions. The 
Schmidt decomposition computed by a diagnolization of the dis-
cretized single-photon reduced density matrix, following the proce-
dure in (15). Here, p(n∣) can be interpreted as the nth mode 
probability using -symmetrized JSA. It provides a measure for the 
effective two-photon Hilbert space. To obtain the Schmidt spectrum 
and characterize the degree of entanglement, we discretize the 

kernels and numerically solve the integral eigenvalue equations. We 
have used a 900 by 900 grid for the discretized kernel and calculated 
separately for each . The Schmidt number (also known as the par-
ticipation ratio) is obtained by

	​​ κ​ θ​​  ≡ ​   1 ─ 
​∑ n​ ​​ ​p​​ 2​(n∣θ)

 ​​	 (13)

it is a measure of the number of relevant Schmidt modes.

Intraband dephasing signal computation
Equation 7 reveals the intraband dephasing in the time domain by 
scanning the HOM relative delay T. We express the correlation 
functions using the dipole-lowering operator V = ∑i > j ij ∣j⟩⟨i∣ and 
its complex conjugate, where (i, j) label energy eigenstates of the 
exciton system corresponding to ∣gi⟩, ∣ei⟩, and ∣fi⟩. The expectation 
value in Eq. 7 requires Green’s function of the sample in frequency 
domain G() = ( − H + i)−1, where H is the Hamiltonian of the 
sample. With these definitions, we obtain the coincidence counting 
for our model system

​​C​[​​​Λ​ I​​​]​​∝ ℜ𝔢 ​ ∑ 
e,e′g′

​​​ ​  1 ─  
​​ω​ p​​ _ 2 ​ − ​ω​ e′g′​​ − i ​γ​ e′g′​​

 ​ ​   1 ─  
​​ω​ p​​ _ 2 ​ − ​ω​ eg​​ + i ​γ​ eg​​

 ​  〈g′∣​[​​1 − iG​(​​T​)​​​]​​∣g′〉​​

(14)

used in the calculations presented in Fig. 4. The short-lived excited 
states of the first excited manifold serve as a prefactor to the relax-
ation process of the ground-state manifold. The calculation of Eq. 14 
in Fig. 4 was carried out on a discretized grid by scanning 104 fre-
quency and 103 points corresponding to p and T, respectively.

2D spectra calculations
The results for the frequency-resolved coincidence section were ob-
tained by direct implementation of eqs. S22 to S25 in section S4. 
The JSA was discretized within the shown interval in Fig. 5 in a 200 × 
200 × 200 × 200 corresponding to a, b, p, and T for the imple-
mentation of the numerical integration. The signal shown in Fig. 5 
is obtained by integration over p. Movies S1 and S2 demonstrate 
the spectra as a function of {a, b}, scanning p as a function of 
time (V1) and also integrating as a function of time (V1). The 
desired dispersive features are expressed also by summing p, 
justifying the 2D presentation in Fig. 5. An ultrashort pump induces 
large exchange asymmetry in addition to its broad frequency 
range coverage.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abj4566

View/request a protocol for this paper from Bio-protocol.
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