
UC Irvine
ICS Technical Reports

Title
Improving parallel program performance using critical path analysis

Permalink
https://escholarship.org/uc/item/3pm7683d

Authors
Kwan, Andrew W.
Bic, Lubomir
Gajski, Daniel D.

Publication Date
1989

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3pm7683d
https://escholarship.org
http://www.cdlib.org/

Improving Parallel Program Performance
~ Using Critical Path Analysi~

Andrew W Kwan, Lubomir Bic, and Daniel D. Gajski
c -::--

Department of Inf 01TI1ation and Computer Science
University of California Irvine

Irvine, California 92717

Technical Report #89-05
January 1989

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Improving Parallel Program Performance
Using Critical Path Analysis

Andrew W Kwan, Lubomir Bic, and Daniel D. Gajski

Deparunent of Inf onnation and Computer Science
University of California Irvine

Irvine, California 92717

abstract

A programming tool that performs analysis of critical paths for parallel

programs has been developed. This tool detennines the critical path for the program

as scheduled onto a parallel computer with P processing elements, the critical path

for the program expressed as a data flow graph (when maximal parallelism can be

expressed), and the minimum number of processing elements <PopV needed to obtain

maximum program speedup. Experiments were performed using several versions of a

Gaussian elimination program to examine how speedup varied with changes in

granularity and critical path length. These experiments showed that when the

available number of processing elements P < Popt. increasing granularity improved

program speedup more than reducing (the data flow graph's) critical path length,

whereas when P ~ Popt• increasing granularity degraded program speedup while

reducing critical path length improved program speedup.

. 1

1. Introduction

Improving Parallel Program Performance
Using Critical Path Analysis

Andrew W Kwan, Lubomir Bic, and Daniel D. Gajski

Department of Information and Computer Science
University of California Irvine

Irvine, California 92717

There is currently much research in programming parallel computers. Many parallel programming

environments utilize an approach where the programmer writes the program as a set of tasks with clearly

defined communication and synchronization (e.g., MUPPET [MKL87], POK.ER [SnS86], and Polylith

[PRG87]). However, to improve parallel program performance most programmers utilize a "trial and error"

method on parameters under programmer control (e.g., granularity, scheduling, etc.). For instance, a

programmer might first measure a program's performance using a profiler, analyze the information provided

by the profiler, and then alter the program's granularity (either in the coarser or finer direction) depending on

the amount of communications overhead. The programmer would then execute the program again, an~ if

the desired performance was not yet realized, another attempt at improvement would be tried. Alternatively,

the programmer could develop another algorithm.

This situation can be improved in a number of ways. First, the programmer should have tools that

provide parallel program performance information. These tools should be able to provide, at the very least,

some of the more routine analyses that a programmer would need to have done. Second, the programmer

must rely upon intuition to make changes to improve performance. Parallel programming is a very

intuitive craft, and less intuitive programmers will have more difficulty improving programs. Guidelines

for program improvement would help to reduce the intuition needed and make parallel programming easier.

We have developed a programming tool that performs critical path analysis of parallel programs. This

tool determines the critical path for the program as scheduled onto a parallel computer with P processing

elements, the critical path for the program expressed as a data flow graph (when maximal parallelism can be

expressed), and the minimum number of processing clc 2nts Wopu needed to obtain maximum program

speedup. When P=Popt, the length of the critical path of Lhe scheduled program is less than or equal to that

of the data flow graph, and the scheduled program will execute as quickly as possible. The maximum

speedup of the parallel program lies between Popt-1 and Popt. and the method of detennining Popt is an

empirical method for determining the maximum speedup predicted by Amdahl's law. The knowledge of the

maximum possible speedup is useful to the programmer, as it tells the programmer the best performance

that can be expected of the program, and provides a yardstick by which the current perfonnance can be

measured agamst

Experiments were perf onned using several versions of a Gaussian elimination program to examine

how speedup varied with changes in granularity and critical path length. The results of these experiments

showed that when the available number of processing elements P < Popt' increasing granularity improved

program speedup more than reducing (the data flow graph's) critical path length, whereas when P ~ Popt'

increasing granularity degraded program speedup while reducing critical path length improved program

speedup. These results are used to provide guidelines for parallel program performance improvement

2. Critical Path Analysis

Dynamic data flow analysis techniques can be used to analyze and improve parallel program

performance. In static data flow analysis, the program source code is analyzed to provide information about

the program without having to execute it. In dynamic data flow analysis, the results of program execution

are combined with the information from static data flow analysis to provide information on program

performance.

In this section, we define two critical paths for parallel program analysis: the data flow graph critical

path, and the scheduled program critical path. When a program is represented as a data flow graph, the

critical path through the graph represents the quickest possible program execution when the maximum

2

possible parallelism is available. A scheduler t.akes the data flow graph and assigns its tasks and

communications to a computer with a fixed number of processing elements and fixed communication

mechanisms. This scheduled program also has a critical path, which tells how quickly the program actually

executes. Comparison of the two critical paths can yield information useful for improvement of parallel

program perf orrnance.

2.1 Program Graphs and Critical Paths

A parallel program can be written as a set of tasks, where each task is composed of a set of

instructions to be executed in a sequential manner on an assigned processing element Each task has clearly

defined input and output parameters. Tasks cannot commence execution until all input parameters are

available, thereby serving as the synchronization mechanism. Output parameters are sent out by the task

after task completion. By executing the program, information about the execution time of each task and the

time required to read or write each input or output parameter can be found (on a message passing computer,

this corresponds to transmission time, whereas on a shared memory computer this corresponds to memory

access time).

A data flow graph can be constructed from this information, and provides a representation of the

program. Each node of the graph corresponds to a task, and the weight of a node is assigned the execution

time for the task. Each edge leaving a node corresponds to an output parameter of a source node, each edge

entering a node corresponds to an input parameter of the destination node. The weight of the edge is the

time required to transmit or access the parameter. This data flow graph will be a directed, acyclic graph.

This data flow graph can be thought of as an abstraction of the program, and we can define an abstract

computer to execute program. In this abstract computer, there is one processing element available for each

task. Each edge of the data flow graph has a corresponding communications channel between processing

elements. When thought of in this manner, the data flow graph illustrates the maximum parallelism that

can be found in the program. If such an abstract computer existed, the program could execute at the

3

quickest possible speed. However, since each edge is utilized, the data flow graph also has the maximum

communications overhead possible for program execution.

A path from some node i to another node j in a graph is a collection of nodes and edges that start at

node i and end at node j. The data flow graph critical path is defined to be the longest path through the data

flow graph, that is, is a path through the graph that has the largest sum of node weights and edge weights.

The length of the data flow graph critical path is defined to be the sum of the weights of the nodes and edge

in the data flow graph critical path. This critical path corresponds to the execution time of the program

when maximum parallelism is possible. However, the critical path also contains a cost for

communications.

The data flow graph computational critical path is defined as the path through the graph with the

largest sum of node weights only. This is useful because communications cost is not considered. Usually,

programmers want to maximize computation and minimize overhead. The computational critical path

shows the computation-intensive path through the program. By comparing the computational critical path

with the critical path, the programmer can get a feel for the impact of the communication costs for the

program.

A scheduler assigns tasks to processing elements for execution. In essence, the scheduler transforms

the data flow graph (a representation for an abstract computer) into a scheduled program (a representation for

a real computer). The scheduled program itself can also be represented as a directed, acyclic graph. The

scheduled program graph has the same nodes and edges as the data flow graph, but there are edges added to

provide sequencing among tasks assigned to the same processing element. These new sequencing edges

each have a weight of zero, and can be considered equivalent to an input parameter, as a task cannot

commence execution until all input parameters are available and the previous task assigned to the

processing element (i.e., the source node of the sequencing edge) has completed execution.

Communications between two tasks has no cost when both tasks are assigned to the same r, ··ocessing

element, since the tasks can communicate with each other through local memory (otherwise there is a cost

4

associated). This results in a change of weight (to zero) for some communication edges. We similarly

define a critical path and computational critical path for the scheduled program graph. Comparison of the

critical palh and the computational critical path of the ·scheduled program graph can also be used to analyze

communication costs.

The scheduled program graph is a compromise between Lhe data flow graph, the capabilities of the real

computer, and a sequential computer. The data flow graph expresses the maximum parallelism of the .

parallel program, but also expresses the maximum communications overhead. The re.al parallel computer

has a limit on the number of tasks that it can execute simultaneously, but can reduce communication costs

by assigning tasks to the same processing element (allowing tasks assigned to the same processing element

to communicate through local memory). The sequential computer cannot provide for any parallelism since

it can only execute one task at a time, but has no communications overhead since all tasks execute on the

same processor and can communicate through memory. By comparing the critical paths of the scheduled

program graph and the data flow graph, we can gauge the performance of the scheduled program against that

of the ideal performance.

In general, this comparison assumes that computation, and not communication, dominates program

performance. As previously stated, the data flow graph expresses maximum parallelism and maximum

communication cost, where.as the scheduled program graph expresses intermediate parallelism and

intermediate communication cost. If communication costs were dominant, substantial reductions between

scheduled program graph and data flow graph critical path length are possible since communication costs

can be reduced by scheduling, and the tasks performed in each critical path may have very little

correspondence. When computation costs are dominant, there will be some correspondence between tasks on

the critical paths, and there is a basis for comparison. This assumption can be valid for many programs.

For the Gaussian elimination program considered in Lhis paper, communication costs are relatively uniform

for each task and path of the data flow graph, and computation time for each task is greater than the

communication time. The computational critical path provides a check on communication costs - if there

5

is little resemblance between the critical path and the computational critical path (for either the scheduled

program graph or the data flow graph), then communication, and not computation, is driving program

perfonnance.

2.2 The HYPERTOOL Method

A parallel programming aid called HYPERTOOL [WuG88] has been previously developed by our

research group. HYPERTOOL relieves the programmer of scheduling, communication and synchronization

insertion, and mapping of tasks onto processing elements. Using HYPERTOOL, a programmer develops

an algorithm and expresses it (using a subset of the C programming language) as a set of serial and parallel

procedures called by a main program. Each procedure perfonns some task, and has clearly defined input and

output parameters. The main program consists of procedure calls.

The program can be executed, tested, and debugged on a sequential computer. The program is then

analyzed by HYPERTOOL. HYPERTOOL utilizes dynamic data flow analysis to construct a data flow

graph of the program. HYPERTOOL's scheduler then automatically (statically) schedules the tasks ohto

processing elements, inserts the appropriate communication and synchronization primitives, and maps the

processing elements onto a hypercube. The program is then executed on a hypercube simulator. I The

output of the simulator provides an event trace and statistics on processing element utilization and

communications.

Using HYPERTOOL, program development has taken much less time compared to manual coding of

programs. Comparison of execution time of programs developed using HYPERTOOL versus manually

coded programs have demonstrated up to 300% improvement Furthermore, there has been no observed

degradation.

The critical path analysis tool interfaces with HYPERTOOL. It utilizes the data flow graph produced

during HYPERTOOL's analysis to determine critical path and computational critical path of the data flow

graph. These paths are found by performing a breadth-first search on the graph, finding the longest path to

6

each node as the graph is traversed, and retaining the longest path.2 The tool then converts the data flow

graph representation into a timed Petri net. The programmer can then view the Petri net, and watch an

animated execution of the Petri net.3

After HYPERTOOL's scheduler produces the scheduled program graph and schedules the program, the

critical path analysis tool determines the scheduled program graph's critical path and computational critical

path. The tool then compares the length of the data flow graph's critical path against that of the scheduled

program's. Based upon the results of the comparison, the tool searches for a the minimum number of

processing elements needed to produce a scheduled program whose critical path length is less than that of

the data flow graph.

2.3 Amdahl's Law

Amdahl's Law [Gus88] provides a theoretical limit to parallel program performance based upon the

amount of sequential code that exists in the program. The equation for the parallel program speedup S can

be written as

T~
S(P) =

Tpar(P)

where P is the number of processing elements used, T seq is the execution time of the sequential program,

and T parcP) is the execution time of the parallel program on a computer with P processing elements.

Let x be the fractional amount of code that can be executed in parallel in the sequential program. The

amount of sequential code is 1-x. We then get

x
T (P) = T ~ (1 - x + -)

par p

p
S(P) =

l + x (P - 1)

7

Let the efficiency E, a measure of average utilization of the processing elements, be expressed as

£=
S(P)

p

Figure 1 provides a plot of E versus x for various values of P. It shows that small amounts of parallel code

can limit perfonnance greatly, and especially so when large numbers of processing elements are used. On

the other hand, it also shows that small improvements in the amount of parallel code can yield major

performance improvements.

Amdahl's Law can provide useful insight into why parallel program performance may be poor.

However, in practice there are some problems. First, it is usually difficult to measure the amount of

sequential and parallel code in a program. To measure this, a programmer would have to time each

instruction of the program, then classify each instruction as either serial or parallel, and then add up the

total time spent by insuuctions in either classification. Second, a programmer typically has a fixed number

of processing elements available, and so will be stuck with a particular efficiency curve from Amdahl's

Law. Amdahl's Law does not provide any insight into how to improve the program. It only says that the

programmer must reduce the amount of serial code.

2.4 Determining the maximum possible speedup

Comparison of the critical path of the scheduled program with the critical path of the data flow graph

can provide a method for determining maximum possible speedup. With the exception of communication

costs, the data flow graph critical path length is the quickest possible speed that the program can execute.

On the other hand, consider a program that is scheduled onto a real computer (with P processing elements).

If the critical path of the scheduled program graph is longer than that of the data flow graph, then the

computer did not have enough processing elements available to avoid lengthening the scheduled program

graph's critical path, i.e., there was not enough parallelism available on the real computer. If the scheduled

8

program's critical path length is less than or equal to the data flow graph's critical path length, then there is

enough parallelism available on the real computer, and the program can execute as quickly as possible. To

make maximum use of the real computer, one would want to know for what value of P can the program be

scheduled such that the scheduled program graph's critical path length is less than the data flow graph's

(i.e., for what minimum number of processing elements will the data flow graph's critical path constrain

program execution). Let Popt denote this minimum number of processing elements.

Popt can be found as follows. We establish a lower and upper bound on Popt. select a number of

processing elements P' halfway between the lower and upper bound, and schedule the program onto a

computer with P' processing elements. We analyze this newly scheduled program to find its critical p~th

length, and compare it to the data flow graph's critical path length. If it is less, then we set P' to be the

new upper bound, and save the value of P' as current value for P opt· If it is more, then we set P' to be the

new lower bound. We then iterate the process continually until the lower and upper bounds converge (this

method is similar to the strategy used in binary search). The last value stored as the current value for Popt

will be the desired value.

The upper bound initially is set to be the maximum breadth (for some depth) of the data flow graph.

This represents the maximum number of tasks that would execute simultaneously, and thus the maximum

number of processing elements that would realistically be needed for maximum parallelism. The lower

bound is initially set to be the sum of the weights of all the nodes (of the data flow graph) minus the

critical path length of the data flow graph, divided by the length of the data flow graph, plus one. This is a

conservative estimate, but will always be lower than any possible value of Popt·

Popt represents the minimum number of PEs necessary to achieve maximum program speedup. In

reality, the maximum speedup is some real number between Popt and Popt - 1. But the maximum speedup

was predicted by Amdahl's Law, based upon the amount of parallel code in the program and the number of

processing elements available. So, the method of determining Popt is really an empirical method for

9

finding the value predicted by Amdahl's Law, without having to calculate the amount of parallel code in the

program.

3. Improving Program Speedup Using Popt

Experiments were perfonned to detennine methods of improving program speedup. The program

utilized was one that performed Gaussian elimination using partial pivoting.4 This program was selected

because of its structure: it has more than one type of procedure; it has to perfonn several steps in sequence,

and therefore has a critical path; and it has a somewhat regular task structure, but the structure does not scale

with the the number of processors (it only scales with the data size). In other words, it is an application

typical for a multiple-instruction stream, multiple data stream computer.

The original program takes N equations with N unknowns and organizes the data into an N by N+ 1

matrix, and then reduces that matrix into an upper triangular matrix. It does so by performing two basic

steps on each column (except the last), starting with the first column and ending with the Nth column. In

the "FindMax" step, column k of the matrix (where 1~ is searched for the maximum value contained

in rows k through N. This step is finds the pivot value, which is used to reduce the column. In the next

step, "UpdateMtx," each column k through N is updated based on the value found in the FindMax step for

column k. Figure 2 illustrates the data flow graph for the program on an 4 by 4 matrix. Nodes labelled Fk

perform the FindMax task for the kth column of the matrix. Nodes labelled Uj perform the task of updating

column j of the matrix ~j~. based upon the results of the particular Fk that the Uj is dependent upon.

Edges indicate a data dependency between ncxfes (edges leading from one node to several other ncxfes do not

indicate that the several nodes receive identical data). Figure 3 illustrates the scheduling (by Hypertool) of

the data flow graph of Figure 2 onto 2 processing elements.

The Gaussian elimination program was modified to reduce its critical path length and to increase its

granularity. The original program and its modified versions were executed (using the same data set) over

10

several numbers of processing elements, and I.heir speeds compared.

The original program, "g", assigned one column of data to each UpdateMtx task. In program "ng"

(new Q.aussian elimination), certain UpdateMtx tasks and FindMax tasks were merged into a new task UF

to remove communication of a data item and eliminate some redundant work. The overall effect was to

reduce the critical pal.h length of the data flow graph. Figure 4 shows the new data flow graph. In program

"g-ig2" (Q.aussian elimination - increased granularity to 2 columns), some UpdateMtx tasks (from the

original program) were merged to update two columns (vice one), eliminating some redundant work.

Additionally, the scheduler was able to recognize the additional input and output parameters required for the

larger grained update tasks, and schedule I.hem so that overall message passing was lowered. However, the

critical path was lengthened by the increased granularity. The data flow graph for "g-ig2" is shown in

Figure 5. In program "g-ig4" (Q.aussian elimination - increased granularity to i columns), some update

tasks were merged to update four columns. More redundant work and communications were eliminated over

that of "g-ig2", but the critical path was lengthened more, too.

Figures 6 and 7 show the data obtained for 8 and 16 equation problems, respectively. The data listed

include the sequential execution time (T seq). the parallel execution time (T par). the speedup (S), the

efficiency (E), the average processing element utilization (u), and the number of (message-passing)

communication instructions executed. In Figures 8 and 9, the speedup of "ng", "g-ig2", and "g-ig4"

relative to that of "g" (relative speedup is calculated as the execution speed of "g" on P processing elements

divided by the execution speed of the other program on P processing elements) is plotted over numbers of

processing elements for the 8 and 16 equation problems, respectively.

Previous critical path analysis had shown that the value for Popt was 4 PEs for the 8 equations

problem, and 6 for the 16 equation problem. The data show a clear trend: when the number of processing

elements used (P) was greater than or equal to Popt. increasing program granularity reduced program

perfonnance. This would be due to the lengthening of the critical path caused by the increased granularity,

11

essentially reducing the amount of parallel code, and therefore reducing speedup, even though some

communications and redundant work were eliminaLed. However, reducing the critical path length increased

perf onnance.

When Pis less than Popt, the result is almost opposite. Although reducing the critical path length

increased program speedup, increasing granularity increased program speedup even more (this effect is more

noticeable in Figure 9 than in Figure 8). Also interestingly, the data indicate that when Pis much less

than Popt• the effect of increased granularity becomes even greater, but when Pis slightly less than Popt•

best program speedup is achieved by increasing granularity only slightly. Granularity that is too large is

indicated by reduced program speedup and efficiency (as indicated by the data in Figure 9 for "g-ig4" running

on 4 PEs). These numbers are difficult to determine in practice (as previously mentioned when discussing

Amdahl's Law), but efficiency is found to correlate well with average processing element utilil.ation (u),

which is the average of each processing element's actual running time divided by the overall program

execution time. Average processor utili7.ation can be found relatively easily, so granularity that is too large

is indicated by low average processor utili7.ation (when P < P0 pt).

Figures 2 and 3 can help illustrate the reasons for these trends. The scheduled program critical path (in

Figure 3) is slightly longer than that of the data flow graph (in Figure 2), because there were not enough

processing elements available. If an additional processing element was available, this problem would be

alleviated. For the original program, with larger data sizes and inadequate processing elements, UpdateMtx

tasks that were not in the data flow graph critical path will be a part of the scheduled program critical path.

When modifications are made to reduce the data flow graph critical path, scheduled program performance

improves slightly, but the main problem is the lack of processing elements. When modifications are made

to increase granularity, the UpdateMtx tasks that impacted the scheduled program critical path are coalesced

and become smaller, impacting the scheduled program critical path less. This effect becomes greater as the

lack"of processing elements becomes greater. However, when the available number of processing elements

is large enough so that the data flow graph and scheduled program critical paths are essentially the same, the

12

only way to improve program performance is to reduce the critical path. Increasing granularity also

increased the critical path length, and only served to degrade performance.

4. Programming Guidelines for Improving Parallel Program Speedup

The experimental results suggest some guidelines that can be used to improve parallel program

speedup. These guidelines can be utilized for programs that have a critical path length independent of the

number of processing elements used to execute the program, and a computer with a fixed number of

processing elements P has been chosen to execute the program on. [Gus88] indicates that there are a

classes of problems whose amount of parallel code (and therefore, critical path length) will and will not vary

with the number of processing elements used. These guidelines are:

P < Popt:

P ~ Popt:

5. Summary and Future Research

high u:
low u:

increase granularity
decrease granularity

decrease critical path length

We have developed a tool that performs critical path analysis for parallel programs. These programs

are written as a set of procedures (with clearly defined input and output parameters) and procedure calls.

This method of writing parallel programs is widespread. For example, MUPPET [:rv1KL87], POKER

[SnS86], and Polylith [PRG87] programs use this method of programming, in addition to HYPERTOOL.

The tool has been applied to various versions of a Gaussian elimination program, and guidelines for

perfonnance improvement have been empirically derived. Although Gaussian elimination is just one

example, many types of programs for .MIMD computers exhibit the same characteristics as the example

Gaussian elimination program. These characteristics include an amount of parallel program code dependent

on data size and independent of the number of processors used, the presence of a critical path that does not

vary with the number of processors used, more than one type of task used, and program computations

13

dominant over communications.

Present computing capacity precluded running larger data sizes and simulating larger computers. We

expect to be able to do so in the future. Additionally, we will continue to search for other programs and

program classes to test the applicability of these guidelines. We will also continue with the development

of more and better tools for visualization and performance analysis.

Acknowledgement

This work has been supported, in part, by the National Science Foundation (grant CCR-8700738).

Notes
[l]

[2]

[3]

[4]

The simulator utilized is the SIMON simulator [Fuj83], which was modified to simulate a
hypercube by the University of Illinois Urbana-Champaign.

A more efficient, but more complex method to find the longest path would utilize heaps and
Dijkstra's shortest path algorithm [Tar83]. This method of finding the longest path works because
the data flow graph is a directed, acyclic graph. One merely constructs a new graph with the same
nodes and edges as the data flow graph, and assigns edge weights based upon the communication
cost of the corresponding parameter and the execution time of the source and/or destination tasks.
The edge weights are then negated, and the shortest path algorithm used.

Petri net simulation and animation tools utilized were those included in the P-NUT system [Raz87] .

The source code for the Gaussian elimination program is available in [WuG88].

14

References
[Fuj83]

[Gus88]

[MKL87]

[PRG87]

[Raz87]

[SnS86]

[Tar83]

[WuG88]

[WuG88a]

R.M. Fujimoto. SIMON: A Simulator of Multicomputer Networks. Report UCB/USD
83/140, University of California Berkeley, 1983.

J. F. Gustafson. Reevaluating Amdahl's law. Communications of the ACM, Vol. 31, No. 5
(May 1988), pages 532-533.

H. MUhlenbein, 0. Kraemer, F. Limburger, M. Mevenkamp, and S. Streitz. Design and
Rationale/or MUPPET: A Programming Environment/or Message Based Multiprocessors.
Proceedings of the First International Conference on Supercomputing. Lecture Notes in
Computer Science 297. Springer-Verlag, Berlin, 1988.

J. Purtilo, D. A. Reed, and D. C. Grunwald. Environments/or Prototyping Parallel
Algorithms. Proceedings of the 1987 International Conference on Parallel Processing. The
Pennsylvania State University Press, University Park, PA, 1987.

R.R. Razouk. A Guided Tour of P-NUT (Release 2.2). Technical Report 86-25, Deparunent
of Information and Computer Science, University of California Irvine, Irvine, CA, January
1987.

L. Snyder and D. Socha. POKER on the Cosmic Cube: The First Retargetable Parallel
Programming Language and Environment. Proceedings of the 1986 International Conference
on Parallel Processing. IEEE Computer Society Press, Washington, D.D., 1986.

R. E. Tarjan. Data Structures and Network Algorithms. SIAM, Philadelphia, PA, 1983.

M. Y. Wu and D. D. Gajski. A Programming Aid/or Hypercube Architectures. Journal of
Supercomputing, Vol. 2, No. 3 (1988).

M. Y. Wu and D. D. Gajski. Computer-Aided Programming/or Multiprocessor Systems.
Technical Report 88-19, Department of Information and Computer Science, University of
California Irvine, Irvine, CA, June 1988.

15

i

I
I
I

.;

1.0

0.8
N=4

w 0.6
....
~
c
~
~

~
c... 0.4 ~

0.2

0.2 0.4 0.6 0.8 1.0

fractional amount of parallel code x

Figure 1

.1.11a.:t.cataa
cr.:t.t.:t.ca1

.Figure 2

,,/

I

I
I

c;rnoda
node

name

weiqht

II indicatea on
critical path

Scheduled program graph for

"g" (4 equation problem,

2 processing elements).

Figure 3

i.ndicate
8

critical

(4 equation P.roblezn) .

name

weight

indicate a on
critical path

Data flow graph for "g-ig2" (4 equation problem) .

Figure 5

Data Summary: 8 equation problem

g ng g-ig2 g-ig4

P=2 PEs Tseq (µsec) 19,499 18,383 17,909 17,797

Tpar (µsec) 9' 6 42 9,088 8' 92 6 8' 9 67

s 2.02 2.02 2.01 1. 98

E 1. 01 1. 01 1. 00 0.992

u 0.918 0.936 0.936 0.919

comm 63 70 72 63

P=3 Tseq (µsec) 19,291 18,383 17,909 17,797

Tpar (µsec) 6' 912 6, 65 9 6,740 7,511

s 2.79 2.76 2.66 2.37

E 0.930 0.920 0.886 0.790

u 0.859 0.876 0.838 0.742

comm 87 107 89 81

P=4 Tseq (µsec) 19,499 18,383 17,909 17,797

Tpar (µsec) 6,406 5,667 6,822 7,525

s 3.04 3.24 2.63 2.37

E 0.761 0. 811 0.656 0.591

u 0. 724 0.779 0.627 0.565

comm 127 117 101 101

P=6 Tseq (µsec) 19, 2 91 18,383 17,909 17,797

Tpar (µsec) 6,310 5,738 6,836 7,553

s 3.06 3.20 2.62 2·. 36

E 0.510 0.534 0.437 0.393

u 0.492 0.525 0.421 0.378

comm 147 147 111 109

P=8 Tseq (µsec) 19,499 18,383 17,909 17,797

Tpar (µsec) 6,588 5,808 6,836 7,553

s 2.96 3.17 2.62 2.36

E 0.370 0.396 0.327 0.295

u 0.360 0.392 0.317 0.283

comm 157 157 111 109

Figure 6

Data Summary: 16 equation problem

g ng g-ig2 g-ig4

P=2 PEs Tseq (µsec) 114,607 1 : , 315 105,185 100,797

Tpar (µsec) 55, 611 54,571 51,923 50,069

s 2.06 2.04 2.03 2.01

E 1. 03 1. 02 1. 01 1. 01
u 0.980 0.974 0.980 0.979

comm 206 197 197 202

P=4 Tseq (µsec) 115, 495 111, 315 105,185 100,797

Tpar (µsec) 30, 996 29,099 27,638 30,845

s 3.73 3.84 3.81 3.27

E 0.931 0.959 0.951 0.817

u 0.901 0.932 0.928 0.798
comm 341 330 255 225

P=S Tseq (µsec) 114, 607 111,207 105,185 100,797

Tpar (µsec) 25,239 23,903 26,078 30., 8 8 7

s 4.54 4.65 4.03 3. 2 6

£ 0.908 0.930 0.807 0.653

u 0.879 0.905 0. 789 0.644
comm 347 338 283 257

P=6 Tseq (µsec) 114, 607 111,207 105,185 100,797

Tpar (µsec) 23,372 20,684 26,236 30,905

s 4.90 5.38 4.01 3.26

E 0.817 0.896 0.668 0.544

u 0.794 0.875 0.656 0.534
381 373 313 277

P=S Tseq (µsec) 115, 495 111,315 105,185 100,797

Tpar (µsec) 24,558 21,084 26,414 30,929

s 4.70 5.28 3.98 3.26

E 0.589 0.660 0.498 0.407

u 0.578 0.652 0.491 0.401
comm 483 467 341 285

P=12 Tseq (µsec) 114, 607 111, 207 105,185 100,797

Tpar (µsec) 24,076 21,396 26,428 30,929

s 4.76 5.20 3.98 3 .26

E 0.397 0.433 0.332 0 .272

u 0.393 0.432 0.327 0.267

comm 545 545 351 285

P=16. Tseq (µsec) 114, 607 111,207 105,185 100,797

Tpar (µsec) 24,272 21,592 26,428 30,929

s 4. 72 5.15 3.98 3.26

E 0.295 0.322 0.249 0.204

u 0.294 0.322 0.246 0.200

comm 573 573 351 285

Figure 7

1. 2

1.1
c.
= 'O
QJ
QJ
c.
l;ll 1.0 number of PEs
QJ
> ·--~
~
"""

0.9

0.8

0.7

Relative speedup of modified programs for 8 equations.

Figure 8

1.2

1.1
ng

Q.,
:=

"O
~
~
Q.,
tll 1.0 number of PEs
~
;... ·-....
~

~ ...
0.9

0.8

0.7 Po pt

Relative speedup of modified programs for 16 equations.

Figure 9

