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FINITE-TIME BLOWUP FOR THE INVISCID PRIMITIVE EQUATIONS OF

OCEANIC AND ATMOSPHERIC DYNAMICS

CHONGSHENG CAO, SLIM IBRAHIM, KENJI NAKANISHI, AND EDRISS S. TITI

Abstract. In an earlier work we have shown the global (for all initial data and all time) well-posedness of

strong solutions to the three-dimensional viscous primitive equations of large scale oceanic and atmospheric
dynamics. In this paper we show that for certain class of initial data the corresponding smooth solutions

of the inviscid (non-viscous) primitive equations, if they exist, they blow up in finite time. Specifically,

we consider the three-dimensional inviscid primitive equations in a three-dimensional infinite horizontal
channel, subject to periodic boundary conditions in the horizontal directions, and with no-normal flow

boundary conditions on the solid, top and bottom, boundaries. For certain class of initial data we

reduce this system into the two-dimensional system of primitive equations in an infinite horizontal strip
with the same type of boundary conditions; and then show that for specific sub-class of initial data the

corresponding smooth solutions of the reduced inviscid two-dimensional system develop singularities in

finite time.

MSC Subject Classifications: 35Q35, 65M70, 86-08,86A10.
Keywords: Blowup, Primitive equations, hydrostatic balance, Boussinesq equations, Euler equations,

Navier–Stokes equations.

1. Introduction

The three-dimensional primitive equations for large scale oceanic and atmospheric dynamics are given
by the system of partial differential equations:

ut + uux + vuy + wuz + px −Rv = νH∆Hu+ ν3uzz, (1)

vt + uvx + vvy + wvz + py +Ru = νH∆Hv + ν3vzz, (2)

pz + T = 0, (3)

Tt + uTx + vTy + wTz = Q+ κH∆HT + κ3Tzz, (4)

ux + vy + wz = 0, (5)

which are supplemented with the initial value (u0, v0, T0), and satisfy the relevant geophysical boundary
conditions (see, e.g., [22, 26, 28]. Here ∆H = ∂xx + ∂yy denotes the horizontal Laplacian operator. The
global well-posedness (for all time and for all initial data) of strong solutions to the above three-dimensional
system, subject to the relevant geophysical boundary conditions, has been proven first in [10] with full
viscosity (i.e. νH > 0 and ν3 > 0) and full diffusion (i.e. κH > 0 and κ3 > 0), (see also, [19] for the case
of Dirichlet boundary conditions). This result has been improved recently in [11, 7] for the case of full
viscosity (i.e. νH > 0 and ν3 > 0) and only partial anisotropic vertical diffusion (i.e. κH = 0 and κ3 > 0)
which stands for the vertical eddy heat diffusivity turbulence mixing coefficient; see also [8] for the case
when νH > 0, ν3 > 0, κH > 0 and κ3 = 0, and [9] for the case when νH > 0, κH > 0 and ν3 = 0, κ3 = 0
(see, e.g., [16], [17], for the geophysical justification). In the above results, the Coriolis forcing term, with
rotation parameter R, did not play any role in proving the global regularity. This is contrary to the cases
of the three-dimensional fast rotating Euler, Navier–Stokes and Boussinesq equations by [2, 3, 4, 5] where
the authors take full advantage of the absence of resonances between the fast rotation and the nonlinear
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advection. This absence of resonances at the limit of fast rotation leads to strong dispersion and averaging
mechanism (at the limit of fast rotation for large values R depending on the size of the initial data) that
weakens the nonlinear effects and hence allows for establishing the global regularity result in the viscous
Navier-Stokes case, and prolongs the life-space of the solution in the Euler case (see also [12, 15] and
references therein; in addition, see [1] for simple examples demonstrating the above mechanism).

In geophysical situations it is observed that the viscosity coefficients are very small, and that in fact
ν3 � νH � 1. Motivated by this observation and the above discussion it will become interesting to
know of whether the inviscid (non-viscous) primitive equations are globally regular or that they develop
singularity (blow up) in finite time. Since the rotation term did not play any role in establishing the global
regularity in the viscous cases (cf. [10, 11]) one might as well ask the above question without the rotation
term (i.e., consider the case with R = 0). Therefore, we will consider in this paper the inviscid primitive
equations without the Coriolis rotation term, and we will show that for certain class of smooth initial
data if their corresponding smooth solutions exist then they will develop a singularity (blowup) in finite
time. For results concerning the short time existence and uniqueness of the inviscid primitive equations
see, for example, [6, 18, 23, 27] and references therein. Notably, it is unknown of whether the rotation term
in the inviscid primitive equations, in particular for large values of R, plays a stabilizing mechanism by
preventing the formation of singularity as in the case of Burgers equations [1, 21], or by extending the life
of span of the solution and postponing the blowup as in the case of the three-dimensional Euler equations
[2, 3, 4, 5, 12, 15]; this is a subject of ongoing and future research.

In order to establish our result we will assume that we are given a smooth solution to the inviscid
primitive equation. In section 2 we will derive a reduced equation that this smooth solution will satisfy. In
section 3 we will follow [13] (see also [24]) to show that for certain class of initial data the corresponding
solutions to this reduced equation blow up in finite time. In section 4 we provide a family of initial data
whose corresponding smooth solutions to the inviscid primitive equations blow up in finite time. It is
worth mentioning that similar approach has been introduced in [14] to show the blowup for the Prandtl
equation of the boundary layer in the upper half-space.

2. Derivation of a reduced equation

In this section we will assume that we are given a conveniently smooth solution to the inviscid primitive
equations. We will derive a reduced equation that this solution must satisfy by requiring that the solution
fulfills certain symmetry conditions. Eventually, in section 3, we will show that for certain class of initial
data the corresponding solutions of this reduced equation develop singularity in finite time.

First, let us consider the inviscid primitive equations without the Coriolis force:

ut + uux + vuy + wuz + px = 0, (6)

vt + uvx + vvy + wvz + py = 0, (7)

pz + T = 0, (8)

Tt + uTx + vTy + wTz = κH∆HT + κ3Tzz, (9)

ux + vy + wz = 0, (10)

in the horizontal channel Ω = {(x, y, z) : 0 ≤ z ≤ H, (x, y) ∈ R2}; subject to the boundary conditions:
no-normal flow and no heat flux in the vertical direction at the physical solid (top z = H and bottom
z = 0) boundaries, and periodic boundary conditions, say with period L, in horizontal directions. Observe
that when the initial temperature T (x, y, z, 0) = T0, is constant, then it is easy to see that any smooth
solution to system (6)–(10), subject the above boundary conditions, must satisfy T (x, y, z, t) ≡ T0 = const.
Consequently, for any smooth solution with T (x, y, z, 0) = T0 = const the velocity field satisfies the
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following system:

ut + uux + vuy + wuz + px = 0, (11)

vt + uvx + vvy + wvz + py = 0, (12)

pz = −T0, (13)

ux + vy + wz = 0 . (14)

Since our goal is to establish the blowup for certain class of smooth solutions and initial data, we will further
simplify matters and restrict ourselves to smooth solution to the above system that are independent of the
y−variable and that the y−component of initial velocity vector filed v0 = 0. Once again it is clear that
any smooth unique solution to the above system with these properties will satisfy v(x, z, t) ≡ 0, and that
u,w are functions of the spatial variables (x, z) and of the time t only. Consequently, we restrict ourselves
further and only consider solutions that satisfy the following two-dimensional sub-system:

ut + uux + wuz + px = 0, (15)

pz = −T0, (16)

ux + wz = 0, (17)

in the two-dimensional channel

M = {(x, z) : 0 ≤ z ≤ H ,x ∈ R},
subject to the no-normal flow on the vertical direction, and periodic boundary conditions in horizontal
x−direction, namely,

w|z=H = w|z=0 = 0, (18)

and

u(x+ L, z, t) = u(x, z, t); p(x+ L, z, t) = p(x, z, t); w(x+ L, z, t) = w(x, z, t). (19)

Observe that the space of periodic functions with respect to x with the following symmetry

u(x, z, t) = −u(−x, z, t); p(x, z, t) = p(−x, z, t); w(x, z, t) = w(−x, z, t), (20)

is invariant under the solution operator of system (15)–(17) subject to the boundary condition (18) and
(19). Therefore, from now on we will restrict our discussion to the solutions of system (15)–(19) that
satisfy the symmetry condition (20).

Let us denote by

φ(x, t) =
1

H

∫ H

0

φ(x, z, t) dz. (21)

From equation (17) and the boundary condition (18), we have

0 = w(x,H, t)− w(x, 0, t) =

∫ H

0

wz(x, z, t) dz = −
∫ H

0

ux(x, z, t) dz. (22)

Thus,

ux(x, t) = 0. (23)

By differentiating equation (15), with respect to x, we obtain

∂ux
∂t

+ (uux)x + wxuz + wuzx + pxx = 0. (24)

Equation (16) implies that p(x, z, t) = −T0z + ps(x, t). By averaging (24) with respect to the z variable
over [0, H] and using (23), we obtain

(uux)x + wxuz + wuxz + (ps)xx = 0. (25)
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Notice that (18) implies

wx(x,H, t) = wx(x, 0, t) = 0. (26)

Thanks to (17) and (26), integrating by parts gives

wxuz + wuxz = −wxzu− wzux
= uxxu+ (ux)2 = (uux)x.

As a result, (25) can be reduced to

2(uux)x + (ps)xx = 0. (27)

Thus,

2uux + (ps)x = C(t), (28)

for some function C(t). Since (ps)x and uux are odd functions, with respect to the variable x (see condition
(20)), then

uux(0, t) = (ps)x(0, t) = 0.

Therefore,

C(t) = 2uux(0, t) + (ps)x(0, t) = 0, (29)

and consequently,

(ps)x = −2uux. (30)

Substituting (30) into system (15)–(17) we obtain the closed system

∂u

∂t
+ uux + wuz − 2uux = 0, (31)

ux + wz = 0, (32)

subject to the boundary conditions (18)-(20). In particular, by differentiating with respect to x we have

∂ux
∂t

+ (uux)x + wxuz + wuxz − 2(uux)x = 0. (33)

Let us consider the restriction of the evolution of equation (33) on the line x = 0. Since u(x, z, t) is an
odd-function, and w(x, z, t) is an even-function, with respect to the variable x we have:

u(0, z, t) = 0;wx(0, z, t) = 0 .

This together with (33) imply

utx(0, z, t) + (ux(0, z, t))2 + w(0, z, t)uxz(0, z, t)− 2(ux(0, z, t))2 = 0. (34)

Recalling that wz(0, z, t) = −ux(0, z, t), and denoting by W (z, t) = w(0, z, t), we obtain

Wtz − (Wz)
2 +WWzz +

2

H

∫ H

0

(Wz)
2 dz = 0, (35)

with the boundary conditions:

W (0, t) = W (H, t) = 0. (36)

This is a closed equation that we will investigate in section 3.
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3. Self-similar blowup of the reduced equation

In this section we will investigate the blowup of the nonlinear integro-differential boundary value problem
(35)-(36). The analytical and numerical investigation of this type of equations have been the subject matter
of the papers [24, 25]; see also [20] for additional new results. The presentation below follows [13] (see
also [24] section 4, and references therein), where the same problem, arising in a different fluid dynamical
context, has been investigated. For the sake of completeness we provide below the full details.

Noting that equation (35) is invariant for the scaling

W (z, t) 7→ λW (z, λt),

therefore, we look for a self-similar solution in the form

W (z, t) =
ϕ(z)

1− t
, withϕ(0) = ϕ(H) = 0.

This solution starts from the initial profile W (z, 0) = ϕ(z), and blows up at time t = 1 at every z ∈ (0, H),
for which ϕ(z) 6= 0. Therefore, the idea is to construct a nontrivial initial profile ϕ(z). Using the above
ansatz and substituting in (35) we obtain the following reduced nonlinear nonlocal boundary value problem:

ϕ′ − (ϕ′)2 + ϕϕ′′ +
2

H

∫ H

0

(ϕ′(z))2dz = 0, ϕ(0) = ϕ(H) = 0 , (37)

that we need to show that it has a nontrivial, i.e. nonconstant, solution ϕ.
Let m > 0 be a given free parameter, we consider instead of (37) the nonlinear boundary value problem

ϕ′ − (ϕ′)2 + ϕϕ′′ +m2 = 0, ϕ(0) = ϕ(H) = 0. (38)

We observe that in case the boundary value problem (38) has a solution, which we denote by ϕm, then ϕm
is nontrivial, i.e. nonconstant, because m > 0. Moreover, integrating equation (38) over 0 < z < H yields

m2 =
2

H

∫ H

0

(ϕ′m(z))2dz.

Consequently, ϕm is also a nontrivial solution to the original nonlocal boundary value problem (37).
Therefore, we will focus now on showing that problem (38) has a nontrivial solution for every m > 0 given.

First we look for a positive solution ϕ to the boundary value problem (38). Denoting by ψ := ϕ′,
then any local smooth solution to the second order ordinary differential equation given in (38) can be
parameterized by an integral curve (ϕ(z), ψ(z)), in the phase portrait space (ϕ,ψ). Suppose that we
can parameterize, say locally, the integral curve in terms of ψ instead of z, i.e., that we can invert the
relationship between ψ and z and express z as function ψ. Then equation (38) becomes

1

ϕ

dϕ

dψ
=

ψ

ψ2 − ψ −m2
=

ψ

(ψ − ψ+)(ψ − ψ−)
,

where ψ± are the singular points

ψ+(m) :=
√
m2 + 1/4 + 1/2 > 0, ψ−(m) := −

√
m2 + 1/4 + 1/2 < 0.

Integrating the above equation we obtain general integral curves in the phase portrait for (ϕ,ψ)

ϕ = C|ψ − ψ+|
ψ+

ψ+−ψ− |ψ − ψ−|
−ψ−

ψ+−ψ− , (39)

with an integration constant C. Since we are interested in positive solutions ϕ we take C > 0. In order
for this curve to be a solution to the boundary value problem (38), and that it can be parameterized in
terms of z ∈ [0, H], one has to require that for each C > 0 the above curve yields a solution satisfying

(ϕ,ψ)(z = 0) = (0, ψ+), (ϕ,ψ)(z = H) = (0, ψ−). (40)
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Injecting (39) into (38) yields

dψ

dz
=
−1

C
|ψ − ψ+|

−ψ−
ψ+−ψ− |ψ − ψ−|

ψ+
ψ+−ψ− , (41)

which shows that ψ is a decreasing function and hence the inversion between the variables z and ψ is valid
over the interval ψ− ≤ ψ ≤ ψ+. In particular, for every ψ ∈ [ψ−, ψ+] and by virtue of (41) and (40) we
have

z(ψ) =

∫ ψ

ψ+

dz

dψ
dψ =

∫ ψ

ψ+

ϕ

ψ + ψ2 −m2
dψ = −C

∫ ψ

ψ+

|ψ − ψ+|
ψ−

ψ+−ψ− |ψ − ψ−|
−ψ+

ψ+−ψ− dψ . (42)

Moreover, from the other boundary condition in (40) the length of interval is determined by

H = z(ψ−) =

∫ ψ−

ψ+

dz

dψ
dψ =

∫ ψ−

ψ+

ϕ

ψ + ψ2 −m2
dψ

= C

∫ ψ+

ψ−

|ψ − ψ+|
ψ−

ψ+−ψ− |ψ − ψ−|
−ψ+

ψ+−ψ− dψ

=
C

ψ+ − ψ−
B

(
ψ+

ψ+ − ψ−
,
−ψ−

ψ+ − ψ−

)
=

C

2
√
m2 + 1/4

B

(
1

2
+

1

4
√
m2 + 1/4

,
1

2
− 1

4
√
m2 + 1/4

)
,

(43)

where B(·, ·) is the Beta function.
Hence with the given H > 0, for each m > 0 there is a unique C > 0, depending on H and m, such

that (43) holds.
From all the above we concluded that there is a solution ϕ of (38) satisfying

ϕ(0) = 0 = ϕ(H), ϕ > 0 on 0 < z < H, and
2

H

∫ H

0

(ϕ′(z))2dz = m2.

This in turn also shows that ϕ is a nontrivial solution to the nonlinear nonlocal boundary value problem
(37).

From (41), (40) and the above discussion one also concludes that

ϕzz(0) = 0 = ϕzz(H). (44)

Furthermore, the symmetry of equation (38) implies that −ϕ(H − z) is a negative solution to (38).
In conclusion, we have obtained a one-parameter family of blowup solutions of (35)-(36), which blow

up at every z ∈ (0, H), as t→ 1−.

Remark 1. If we choose the constant C in (43) such that z(ψ−) = H
2 , then condition (44) holds at z = H

2

instead of z = H. This in turn will allow us to glue the positive solution defined on the interval [0, H2 ],

and which is also satisfying (40) z = H
2 instead of z = H, with its negative counterpart at z = H

2 . Hence,
this idea will allow us construct sign-changing blowup solutions. In fact, this is the type of solutions that
are constructed in [13] and [24]. Of course one can repeat the above and get profiles that change signs as
many times as one wants.

4. Blowup of the smooth solutions to the primitive equations

In this section we will demonstrate our main result and show that for certain class of initial data the
corresponding smooth solutions to the primitive equations (15)-(17), subject to the boundary conditions
(18)-(20), blow up in finite time. First, let us prove the following proposition concerning the uniqueness
of solutions to equation (35)-(36).
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Proposition 1. Let W1,W2 be two solutions of (35)-(36) which are in L2((0, T );H2), with W1(z, 0) =

W2(z, 0). Then W1(z, t) = W2(z, t), for all t ∈ [0, T ). In particular, W (z, t) = ϕ(z)
1−t is the only solution of

(35)-(36) in the space L2((0, T );H2), for all T ∈ [0, 1), with initial data ϕ(z), where ϕ(z) is any nontrivial
solution of the boundary value problem (37) that was established in section 3.

Proof. Let V = W1 −W2, and W̃ = 1
2 (W1 +W2). Then (35)-(36) imply:

Vtz − 2W̃zVz + V W̃zz + W̃Vzz +
4

H

∫ H

0

W̃zVz dz = 0, (45)

with the boundary conditions:

V (0, t) = V (H, t) = 0. (46)

Multiplying (45), integrating with respect to z over [0, H], integrating by parts and using the boundary
conditions (36) and (46) gives:

1

2

d

dt

∫ H

0

V 2(z, t)dz =
5

2

∫ H

0

W̃z(Vz)
2dz −

∫ H

0

W̃zzV Vzdz .

Thus, by Hölder inequality we obtain

d

dt
‖Vz(t)‖2L2(0,H) ≤ 5‖W̃z‖L∞(0,H)‖Vz(t)‖2L2(0,H) + 2‖W̃‖H2(0,H)‖V (t)‖L∞(0,H)‖Vz(t)‖L2(0,H) .

By virtue of the one-dimensional Sobolev imbedding theorem, and thanks to the boundary conditions (46)
one can apply the Poincaré inequality, to obtain:

d

dt
‖Vz(t)‖2L2(0,H) ≤ c‖W̃‖H2(0,H)‖Vz(t)‖2L2(0,H) .

Applying Gronwall’s inequality we then conclude that ‖Vz(·, t))‖L2(0,H) = 0, for all t ∈ [0, T ). Again,
thanks to (46) we apply Poincaré inequality to conclude the uniqueness part of the statement of the
proposition. The second part of the statement is an immediate corollary of the first part.

�

Theorem 2. Let ϕ(z) be any nontrivial solution of the boundary value problem (37), and let k be any
positive integer. Suppose that (u(x, z, t), w(x, z, t)) is a smooth solution of (15)-(17), subject to the boundary
conditions (18)-(20), with initial value

u0(x, z) =
−L
2πk

sin(
2πk

L
x)ϕ′(z) and w0(x, z) = cos(

2πk

L
x)ϕ(z) .

Then this solution blows up in finite time.

Proof. Based on the derivation in section 2 the function w(0, z, t) satisfies (35)-(36), with initial value
w(0, z, 0) = ϕ(z). Therefore, by Proposition 1 one concludes that for as long as the solution w(x, z, t)

exists and is smooth must satisfies w(0, z, t) = ϕ(z)
1−t . Consequently, w(x, z, t) must lose regularity at

sometime in the interval t ∈ [0, 1].
�

Based on the derivation introduced in section 2 and Theorem 2, above, one concludes that since the
reduced system (15)-(17) blows up in finite time then also the original full three-dimensional primitive
equations system (6)–(10), subject to the relevant boundary conditions, blows up in finite time for certain
class of initial data.
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