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Abstract

It has been well established that experts and novices focus on
different aspects of problems, with novices focusing more on
surface features rather than on deep principled features of a
problem. What is less clear are the mechanisms that underlie
these differences in construal of problem representation. The
current study, which uses an ‘old/new’ recognition procedure,
examines expert and novice representation of arithmetic
equations in which the deep relational properties (i.e., princi-
ples of commutativity and associativity) were well known to
both groups. Results indicate that both novices and experts
encode both surface and principled features in the same serial
manner, with surface features preceding principled features
for both. At the same time, only for novices and not for ex-
perts, surface features compete with deep features, thus re-
quiring additional resources to inhibit this attentional compe-
tition.

I ntroduction

Mental representation is a central component of several fun-
damental cognitive processes, including categorization, rea-
soning, decision making, and problem solving. For example,
the way an entity is categorized depends on the content of an
organism’s mental representation regarding this entity and
the similarity of this representation to a composite repre-
sentation stored in memory (Estes, 1994; Nosofsky, 1988).
In addition, the way people reason from propositions and
what they infer from these propositions depends on the
manner in which these propositions are mentally represented
(Byrne, 1989; Johnson-Laird & Byrne, 1991; Johnson-Laird,
Legrenzi, Girotto, Legrenzi, & Caverni, 1999). Findly, the
content of a mental representation determines the ap-
proaches and strategies people use when they attempt to
solve problems (Kaplan & Simon, 1990; Larkin & Simon,
1987; Newell & Simon, 1972). Of course, the content of
mental representation may depend on knowledge of the con-
ceptual and relational structure of the domain, and transfor-
mational procedures and algorithms (Anderson, 1982; 1990;
Case & Okamoto, 1996; Gelman & Meck, 1986, 1992; Hie-
bert & Lefevre, 1986; Rittle-Johnson & Alibali, 1999). For
example, the problem " Bill has eight marbles and Jill has
six times more" would be represented as "8 x 6 = 7', only if

the person has knowledge of and can abstract basic multipli-
cation algorithms.

As noted above, there is a distinction between the content
of a mental representation (or what is represented) and the
process of construing this content (or what is attended to,
encoded, and stored). The process of construing mental rep-
resentations remains largely unknown, and is the focus of
this paper. However, there are several important regularities
that have been established with respect to the content of
mental representation that are important for the study of the
process of construing of mental representation.

In Part 1 of this paper (Yarlas & Sloutsky, 2000) and
elsewhere (Yarlas & Sloutsky, 1999), we describe a large
body of literature indicating that in problem solving, rea-
soning, learning and transfer, and problem categorization,
novices and experts construe representations that differ in
their content. In particular, novices tend to focus on surface
features of the problem, whereas experts tend to focus on
deep relational features (e.g., Chase & Simon, 1973; Chi,
Feltovich, & Glaser, 1981; Gentner & Toupin, 1986; Kotov-
sky & Gentner, 1996; Larkin, 1983; Simon & Simon, 1978;
Yarlas & Sloutsky, 1999). These effects have been demon-
strated across a variety of knowledge-rich and knowledge-
lean domains.

However, in spite of these well-established expert-novice
differences, it remains unclear what accounts for these dif-
ferences. Do differences occur because experts have knowl-
edge of deep relational properties and novices do not? Do
they occur because novices are less intelligent or younger
than experts are, and they cannot grasp deep relational prop-
erties? Do experts and novices differ in processes underlying
the construal of a problem representation? Or do differences
stem from a combination of these factors?

In Part 1 of this paper (Yarlas & Sloutsky, 2000), we fo-
cused on expert-novice differences in the content of mental
representations. It was demonstrated that when tasks are
sufficiently simple and deep relational properties are well
known, neither differences in knowledge, intelligence, nor
development can fully account for the observed differences
between novices and experts. In a series of experiments de-
signed to distinguish among these possibilities, tasks were
constructed that included principles of arithmetic familiar to
novices, and surface features that were completely superflu-
ous with respect to deep relational features. In particular,



they asked participants varying in age and degree of exper-
tise to sort mathematical equations that could have common
surface elements (e.g., commonality of numbers or the same
number of constituent addends in the equation) or common
deep mathematical principles (e.g., commutativity or asso-
ciativity). Results indicated that only mathematics experts
consistently focused on principles, whereas novices, re-
gardless of age and intelligence, focused mostly on surface
features. However, elimination of surface features led to
substantial increase in focusing on principles. Interestingly,
the reintroduction of surface features reduced participants
focus on principles to their original low levels. These and
other manipulations allowed us to argue that differences
between novices and experts stem from differences in proc-
underlying the construal of a problem representation.
However, if novices have knowledge of the principles in
guestion yet till fail to represent them, then several ques-
tions arise about processes underlying problem representa-
tions in novices and experts. Do novices initially encode
both deep and surface features, but later discard the deep
relational properties, or do they simply fail to encode the
deep relational properties? And what are the processing
mechanisms underlying problem representations in experts:
do experts encode and discard surface features, or do they
ignore these features from the very beginning?

To answer these questions, we used an ‘old/new’ recogni-
tion paradigm in the current experiment. This paradigm af-
fords the creation of a set of foils, such that patterns of hits
and false alarms point to which aspects of problems have
been encoded and committed to memory and which aspects
have been left out. In the study phase, participants were pre-
sented with a set of arithmetic equations. These equations all
utilized a principled property, either associativity or com-
mutativity. The former states that for addition, subtraction,
and multiplication, constituent parts can be decomposed and
recombined in different ways (e.g.,a+ b=[a—c + c] + b).
The latter states that the order of elements is irrelevant for
addition and multiplication (eg., a+ b+ c=b+ ct+ a). In
addition, these equations al used consistent levels of two
surface elements: all equations used numbers ranging be-
tween 1 and 9, and all used either 5 or 6 numbers in the
equation. In the recognition phase of the experiment, in ad-
dition to ‘old’ items, four combinations of ‘new’ equations
were presented as foils. Half of these foils, which we refer to
as ‘feature +' foils, maintained the same levels of surface
features as used in the learning phase (i.e., numbers ranging
between 1 and 9, and either 5 or 6 numbers in the equation),
while the other half of the foils, which we refer to as ‘feature
-’ fails, violated these categories (i.e., numbers greater than
9, and either 4 or 7 numbers in the equation). Also, half of
the foils, which we refer to as ‘principle +' foils, maintained
the use of one of the two principled properties, while the
other half, which we refer to as ‘principle -’ foils, did not
use any principled properties in the equation. The two levels
of the two kinds of properties (feature being either + or -,
and principles being either + or -) were fully-crossed, thus
creating four combinations of foils: feature + /principle +
(F+/P+), feature + /principle - (F+/P-), feature -/principle +
(F-/P+), and feature -/principle - (F-/P-). For example, for
the equation 5 + 3+ 6 = 3 + 6 + 5 in the study phase, the

following foils were presented in the recognition phase: (1)
5+3+6=3+6+5(0ld),(27+4+2=4+2+7
(F+/P+),(3)5+3+6=3+4+7(F+/P-), (49 11+9=9+
11 (F-/P+),and (5) 14 + 7 =9 + 12 (F-/P-).

The goal of this paper is to elucidate processes underlying
problem representations in novices and experts. In this arti-
cle, we consider and test a number of possible processing
models for both novices and experts, which are summarized
in Table 1.

Table 1: Summary of considered processing models

Novice Model 1 | Encode only surface features with no
encoding of deep structural features
Encode both surface and deep struc-
tural features; attentional competition
between surface and structural fea-
tures, with surface features winning
Encode only deep structural features
with no encoding of surface features
Encode both deep structural and sur-
face features; attentional competition
between structural and surface fea-
tures, with structural features winning
Encode both deep structural and sur-
face features; no attentional competi-
tion

Novice Model 2

Expert Model 1

Expert Model 2

Expert Model 3

For this task, if novices encode only surface features and
not relational features, they should rapidly respond "Old"
when surface features are present and they should rapidly
respond "New" when surface features are absent (Novice
model 1). Similarly, if experts encode only principles and
not surface features, they should rapidly respond "Old"
when principles are present and they should rapidly respond
"New" when principles are absent. If either group encodes
both principles and features, they should exhibit more com-
plex patterns of responses (Expert model 1).

There is preliminary evidence (Yarlas & Sloutsky, 1999)
that novices do encode both surface and deep features, but
discard the latter in the course of attentional competition
(Novice model 2). However, while processing mechanisms
underlying problem representations in novices require fur-
ther clarifications, these mechanisms in experts remain un-
clear. One possibility isthat experts start construing problem
representations from deep rather than from surface (Expert
model 2). An aternative possibility is that experts construe
representations in a manner similar to that of novices, except
that there is no attentional competition in experts (Expert
model 3). Of course, it is also possible that experts construe
representations in a parallel manner, in which case their re-
sponse latencies should exhibit small or no differences
acrossthefails.

The alternative response patterns derived from the models
summarized in Table 1 are presented in Table 2. These pre-
dictions are based on the following two assumptions: (1)
both experts and novices process properties of problemsin a
serial manner and (2) each additional step in processing
leads to increase in latencies. Both assumptions were previ-
oudly corroborated using this task with novices (Yarlas &



Table 2; Patterns of responses and latencies predicted by alternative models for novices and experts

Foil Types and Patterns of Responses

Models of responses Old targets F+/P+ F+/P- F-/P+ F-/P-
Novices Model 1 (Response type) OLD OoLD OLD NEW NEW
Novices Model 1 (Latency) Fast Fast Fast Fast Fast
Novices Model 2 (Response type) OoLD OoLD NEW NEW NEW
Novices Model 2 (Latency) Slow Slow Very Slow Fast Fast
Experts Model 1 (Response type) OLD OoLD NEW OoLD NEW
Experts Model 1 (Latency) Fast Fast Fast Fast Fast
Experts Model 2 (Response type) OLD OoLD NEW NEW NEW
Experts Model 2 (Latency) Slow Slow Fast Slow Fast
Experts Model 3 (Response type) OLD OoLD NEW NEW NEW
Experts Model 3 (Latency) Slow Slow Slow Fast Fast

Sloutsky, 1999). Because of these assumptions, the parallel
processing model is absent from Table 1; however we do not
discount the possibility of parallel processing in experts.
Note that predictions presented in Table 2 are qualitative, in
that they do not specify accuracy or latency across the con-
ditions, but rather point to (a) patterns of recognition re-
sponses and (b) directions of differencesin latencies.

Note that the tables have two critical components. First, in
novices, responses to F+/P- foils afford either corroboration
or elimination of Model 1 for novices (see Table 1), whereas
in experts, responses to F-/P+ foils afford corroboration or
elimination of Model 1 for experts (see Table 1). Second,
within experts and novices, patterns of differences in laten-
cies afford the selection of the more plausible model as well
as the description of specific processing components. Spe-
cificaly, latencies in experts responses to F+/P- items will
allow for discriminating between Model 2 and Model 3 for
experts. In short, patterns presented in the table should allow
us to distinguish between processing models in novices and
experts presented in Table 1.

Method

Participants

Two samples, representing novices and experts, were used
in this study. The novice group included twenty-three un-
dergraduates in an introductory psychology course at the
Ohio State University who participated for partial course
credit. This sample had an average age of 19.2 years (SD =
0.9 years), with 12 women and 11 men. The expert group
included twelve graduate students in the Mathematics De-
partment at the same university who participated for a pay-
ment of twenty dollars. This sample had an average age of
27.6 years (SD = 5.8 years), with 3 women and 9 men.

Materials and Procedure

The materials and procedures used in this study were
identical for participants in both the novice and expert sam-
ples. All participants were run individually with stimuli pre-
sented by a personal computer using SuperLab software
(Cedrus Corporation, 1999).

The experiment consisted of three phases: the study phase,
the distraction phase, and the recognition phase. In the study

phase, participants were presented with thirty arithmetic
equations, which they had been instructed to memorize. All
thirty equations used addition, used numbers ranging from 1
to 9, contained either 5 or 6 numbers, and

used either the associative or commutative principle (half for
each). Each equation was centered and presented in dark
type on a white screen for ten seconds, with a two-second
interval between each, during which only the white back-
ground was seen. The order of equations was randomized
across participants.

A distraction phase followed the study phase for the pur-
pose of clearing participants short-term memory. For the
distraction task, participants were presented with ninety let-
ters, for which they had been instructed to indicate whether
the letter was a vowel or a consonant. This phase took ap-
proximately three minutes.

Following the distraction phase was the recognition phase.
Participants were told that they would be presented with a
number of arithmetic equations, some of which had been
presented to them earlier and some of which had not been
presented earlier, and that they were to decide whether each
equation was ‘old’ or ‘new’. There were a total of sixty
equations presented in the recognition phase. The order of
equations presented in this phase was randomized across
participants. There were five categories of foils, with twelve
exemplars for each category. Recall that these foils included:
(1) Old targets that had been presented earlier in the learning
phase, (2) F+/P+ equations, which used similar surface fea-
tures and used either the commutativity or associativity prin-
ciple asin the origina equations, (3) F+/P- equations, which
used similar surface features as the origina equations but
did not use either the commutativity or associativity princi-
ple, (4) F-/P+ equations, which used surface features differ-
ent from those used in the original equations but used either
the commutativity or associativity principle, and (4) F-/P-
equations, which used surface features different from those
used in the original equations and did not use either the
commutativity or associativity principle.

Results and Discussion

In this section, we will first discuss the accuracy of recog-
nition and latencies of responses for novices, and then for
experts. For each group, we will first examine overall accu-



racy of response to the foils (i.e., correct acceptance of Old
targets and correct rejection of al foils). We will then com-
pare participants "Old" responses and latencies across the
foil types. Note that for al foils except F+/P+, we compared
latencies for correct responses only. Because we expected a
large number of false alarms for F+/P+ fails, for these fails,
latencies for both correct and incorrect responses were used
in the analyses.

Novices exhibited high overall accuracy for most of the
foils, correctly accepting Old targets and correctly rejecting
F-/P+, F-/P-, and F+/P- foils. They mostly false alarmed,
however, on F+/P+ foils. The latter finding is expected be-
cause F+/P+ foils were categorically indistinguishable from
Old targets, since both surface features and principled fea-
tures present in Old targets were also present in F+/P+ foils.
More specifically, results indicate that accuracy rates (i.e.,
hits for Old Targets and correct rejections for the other foils)
for F+/P- (M = 0.69, SD = 0.35), F-/P- (M = 0.93, D =
0.20), F-/P+ (M = 0.97, SD = 0.16), and Old targets (M =
0.84, SD = 0.15) were significantly higher than chance (all
ts(22) > 9.4, ps<.001), whereas for F+/P+ (M = 0.36, SD =
0.26) accuracy was significantly lower than chance, t(22) = -
6.4, p <. 001. These results indicate that these participants
took the task seriously and were providing rather accurate
responses.

Percentages of "Old" responses and latencies for novices
are presented in Figure 1. A one-way repeated measures
ANOVA points to significant differences among foils for
novices (F (4, 88) = 53.9, MSE = 542.7, p < .0001. Paired-
samples t-tests indicated the following the following direc-
tion in the proportion of "Old" responses. Old targets >
F+/P+ > F+/P- > F-/P+ = F-/P-, all t5(22) > 3, all Bonferroni
adjusted ps < .05 for differences.

Novices latencies to different foils are also presented in
Figure 1. These measures were also subjected to a one-way
repeated measures ANOVA. The analysis indicates signifi-
cant differences among the fails, F (4, 76) = 15.48, p < .001.
Planned comparisons revealed that F+/P- latencies were
significantly higher than those for Old targets, t(20) = 3.4, p
< .005, whereas latencies of F-/P- and F-/P+ foils were sig-
nificantly lower than those of the Old targets, ts(21) > 3.5,
ps< .005.

These data alow usto rule out Model 1 presented in Table 1
-- novices did not base their responses solely on the presence
or absence of surface features. When surface features were
absent (F-/P- and F-/P+ foils) participants produced fast and
accurate "New" responses; however, when surface features
were present, novices did not always produce "Old" an-
swers. Rather, novices responses were mediated by the
presence or absence of principled features. In particular,
when both surface and principled features were present (Old
targets and F+/P+ foils) novices generally responded "Old".
These responses were slower than those for F-/P- and F-/P+
foils. Finally, when surface features were present but princi-
ples were absent (F+/P- foils), participants in general accu-
rately rejected these foils, but latencies for these correct re-
jections were significantly higher than latencies for Old tar-
gets. These findings support the notion of the attentional
competition between the two types of features (see Table 1,
Novice model 2), pointing to a relative difficulty for partici-

pants to inhibit the salient surface feature and reject the fail.
Of course, these data raise an interesting question of whether
or not experts would also exhibit attentional competition
between deep relational and surface features.
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Figure 1. Proportion of novices' “Old” responses and
response times (in milliseconds) across foil typesin the
recognition phase.

Similarly to novices, experts exhibited high overall accu-
racy for most of the foils, correctly accepting Old targets
and correctly rejecting F-/P+, F-/P-, and F+/P- foils. They
too mostly false alarmed, however, on F+/P+ foils. More
specifically, accuracy rates (i.e., hits for Old Targets and
correct rejections for the other foils) for F+/P- (M = 0.96,



D = 0.06), F-/P- (M = 1.00, SD = 0.00), F-/P+ (M = 0.98,
D = 0.04), and Old targets (M = 0.90, SD = 0.05) were
significantly higher than chance (all ts(11) > 58, ps<.001),
whereas for F+/P+ (M = 0.15, SD = 0.09) accuracy was sig-
nificantly lower than chance, t(11) = - 5.1, p <. 001. These
results indicate that experts also took the task seriously and
provided rather accurate responses.

Percentages of "Old" responses and latencies for experts
are presented in Figure 2. A one-way repeated measures
ANOVA points to significant differences among foils for
experts (F (4, 44) = 768.5, MSE = 34.2, p < .0001. Paired-
samples t-tests indicated the following the following direc-
tion in the proportion of "Old" responses. Old targets =
F+/P+ > F+/P- = F-/P+ = F-/P-, all ts(22) > 23, all Bonfer-
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Figure 2. Proportion of experts’ “Old” responses and
response times (in milliseconds) across foil typesin the
recognition phase.

Experts latencies to different foils are also presented in
Figure 2. These measures were also subjected to a one-way
repeated measures ANOVA. The analysis indicates signifi-
cant differences among the fails, F (4, 44) = 18.60, p < .001.
Planned comparison reveded that, in contrast to novices,
F+/P- latencies for experts were not significantly different
from those for Old targets, t(11) = 0.2, p = .85, but that la-
tencies for F-/P- and F-/P+ foils were again significantly
lower than those of the Old targets, ts(11) > 4, ps< .005.

The analysis of hits and false alarms alows us to elimi-
nate Model 1 of expert responses presented in Table 1. In-
deed, according to this model, experts should have re-
sponded "New' when principles were absent, and respond
"Old" when principles were present. However, the F-/P+
foils amost invariable generated "New" responses, thus
eliminating Model 1. Similarly, the analysis of latencies
affords the elimination of Model 2. Recall that according to
this model, experts should have more rapidly answered
"New" when the principle was absent than when the feature
was absent. However, the observed findings are consistent
with Model 3 and not with Model 2, given that F-P+ foils
were rejected faster than F+P- foils. Therefore, results of the
experiment support Model 2 for novices and Model 3 for
experts.

These findings point to important processing similarities
and differences in experts and novices. First, both experts
and novices exhibited serial processing. In addition, when
construing problem representations, both experts and nov-
ices encode features first. At the same time, only novices
experience competition between salient surface features and
less salient deep principles. For the majority of novices, well
known deep principles end up winning the competition;
however, the competition takes time and effort. At the same
time, experts represent both deep and surface features of the
problem and do not experience such attentional competition.
Recall that the experiment employed a very simple recogni-
tion task. In more resource demanding tasks, such as catego-
rization, reasoning, or problem solving, deep relational fea-
tures in novices may lose attentional competition to salient
surface features. This loss would manifest itself in novices
tendency to focus on surface feature, while ignoring deep
relational features (Chase & Simon, 1973; Chi, Feltovich, &
Glaser, 1981; Gentner & Toupin, 1986; Kotovsky & Gent-
ner, 1996; Larkin, 1983; Simon & Simon, 1978; Yarlas &
Sloutsky, 1999).

The results have severa potential implications. First, they
lead to a better understanding of expertise, indicating that
expert-novice differences persist even with most simple
tasks (it is reasonable to expect that more complex tasks
would result in more dramatic expert-novice differences).
Second, the results have important educational implications,
suggesting that salient surface features may deter rather than
promote learning.

Conclusion

The reported findings indicate that even when a task is
very simple, experts and novices construct problem repre-
sentations differently. While both experts and novices en-
code deep as well as surface features of the problem, only



for novices and not for experts, surface features compete
with deep features, thus requiring additional resources to
inhibit this attentional competition. These findings may or
may not hold for less familiar deep principles or more com-
plicated tasks. However, these results allow us to conclude
that even when atask is very simple and deep principles are
well known, experts and novices differ in processes under-
lying the construal of problem representations.
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