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Hybrid Simulation Theory for Continuous Beams
Paul L. Drazin1; Sanjay Govindjee2; and Khalid M. Mosalam, M.ASCE3

Abstract: Hybrid simulation is an experimental technique involving the integration of a physical system and a computational system with
the use of actuators and sensors. This method has a long history in the experimental community and has been used for nearly 40 years.
However, there is a distinct lack of theoretical research on the performance of this method. Hybrid simulation experiments are performed with
the implicit assumption of an accurate result as long as sensor and actuator errors are minimized. However, no theoretical results confirm this
intuition nor is it understood how minimal the error should be and what the essential controlling factors are. To address this deficit in
knowledge, this study considers the problem as one of tracking the trajectory of a dynamical system in a suitably defined configuration
space. To make progress, the study strictly considers a theoretical hybrid system. This allows for precise definitions of errors during hybrid
simulation. As a model system, the study looks at an elastic beam as well as a viscoelastic beam. In both cases, systems with a continuous
distribution of mass are considered as occur in real physical systems. Errors in the system are then tracked during harmonic excitation using
space-time L2-norms defined over the system’s configuration space. A parametric study is then presented of how magnitude and phase errors
in the control system relate to the performance of hybrid simulation. It is seen that there are sharp sensitivities to control system errors.
Further, the existence of unacceptably high errors whenever the excitations exceed the system’s fundamental frequency is shown to be present
in hybrid simulation. DOI: 10.1061/(ASCE)EM.1943-7889.0000909. © 2015 American Society of Civil Engineers.

Author keywords: Hybrid simulation; Real-time hybrid simulation; Elastic beam theory; Error analysis; Experimental error; Viscoelastic
beam.

Introduction

Hybrid simulation is an experimental methodology in which part of
a system is tested physically and the remaining part of the system is
modeled computationally. The two types of substructures are then
interfaced. This allows for only part of the system to be constructed
and tested in order for the whole system to be studied. The meth-
odology allows for an economical means for the testing of large
systems subjected to dynamical loads (Takanashi et al. 1974;
Mahin and William 1980; Mosalam et al. 1998). This is clearly
useful for systems that are typically too large or expensive to be
fully tested and for those that contain subsystems whose nonlinear-
ities possess no known models. Hybrid simulation may be catego-
rized into two broad types: real-time hybrid simulation and
pseudodynamic testing or simply hybrid simulation (Schellenberg
2008). The former uses a laboratory system to drive the experiment
in a real-time setting, typically with the use of a shaking table and
other actuators that provide true dynamic loads. The latter uses a
step-by-step imposition of the load where the physical system
moves quasi-statically and the mass and viscous damping charac-
teristics of the system are modeled numerically. Hybrid simulation
has been mainly used as a testing method in structural mechanics,

especially for earthquake response testing (Takanashi and
Nakashima 1987). However, hybrid simulation is not exclusive
to earthquake engineering and is widely applicable to situations
where it is impractical to build a complete physical system for test-
ing (Bursi et al. 2011).

In order to perform hybrid testing one must of course have
knowledge of the governing equations for the part of the system
to be modeled in the computer (Mosalam and Günay 2014). With
this basic information, a simulation methodology must be chosen
and the computer interfaced to the physical part of the system via a
collection of sensors and actuators. It is noted that the sensors in the
physical part of the system provide information to the computa-
tional part of the system regarding their current state and the ac-
tuators manipulate the physical part based on the current state
of the computational part. At its essence hybrid simulation involves
the splitting of a system into two parts with the assumption that the
interfacing methodology allows one to accurately replicate the re-
sponse of the system should one have decided to physically test it
in its entirety.

Most of the work on hybrid simulation has been devoted to the
actual execution of experiments; as this is a large task in and of
itself, little theoretical work has been performed to verify the results
that these experiments produce. The main errors associated with
hybrid simulation include time integration errors, control errors,
interface splitting errors, and random signal errors, which can fur-
ther be classified as either systematic or random errors. There has
been some study on these errors, but in many cases, the errors stud-
ied were due to the entire experimental setup, numerical integra-
tion, or random errors, rather than the errors directly associated
with the mismatch inherently created at the hybrid interface by
the use of sensors and actuators (Shing and Mahin 1987;
Voormeeren et al. 2010). This paper, on the other hand, focuses
solely on the theoretical performance of real-time hybrid simulation
as an experimental method, ignoring all of the numerical and random
errors, as this leads to a best case scenario for a hybrid experiment.
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This approach eliminates the errors associated with time integration
methods and signal noise and focuses only on the errors that are gen-
erated by systematic interface mismatch errors, which is an element
that is always present in hybrid simulations. In this way one is able to
focus on the essential error associated with a system possessing a
split interface and to understand the inherent error associated with
imperfect interface splitting without the added clutter associated with
time stepping error, etc. The net result then provides a true estimate
of the best possible error targets for a hybrid system.

To make the analysis concrete, this paper will focus on a har-
monically driven beam. This system has been chosen for its relative
simplicity and the ability to analyze the solution in an analytical
form. Both the elastic as well as the viscoelastic cases will be ex-
amined. Further, this work always considers the case of distributed
mass as occurs in the real physical objects. By studying the prob-
lem from a strictly theoretical viewpoint, one can fully control the
situation and precisely define what one means by truth. This allows
one to precisely identify a lower bound below which one cannot
improve a hybrid simulation via, say, improvements in time inte-
gration methods. Although the setup is rather simple, the results are
felt to have general applicability. In what follows, the general theo-
retical setting of hybrid simulation is first described, then the elastic
beam is considered within this setting, followed by the viscoelastic
beam. This is followed by a study of the behavior of hybrid sim-
ulation for these two systems and finally a set of concluding ob-
servations and comments is presented.

General Theory of Hybrid Simulation

Reference System

Consider a mechanical system with domain D as seen in Fig. 1(a).
In this section, the system in question is kept as general as possible
to allow for further generalizations. The motion of the system is
characterized by the displacement

uðx; tÞ for x ∈ D ð1Þ
For comparison to the hybrid system, one can imagine it as sep-

arated into two or more substructures. For simplicity, this paper
focuses only on two substructures for the hybrid system, a phys-
icalsubstructure (p-side) and a computationalsubstructure (C-side)
as shown in Fig. 1(b), where Unconvertable OLE object of type
P ∪ I ∪ C ¼ D removed and ∂P ∩ ∂C ¼ I . This allows for the
displacement to be separated into two parts

uðx; tÞ ¼
�
upðx; tÞ if x ∈ P

ucðx; tÞ if x ∈ C
ð2Þ

This characterization represents the true response to which a hy-
brid system simulation should be compared. The precise expression

for uðx; tÞ is found by determining the function that satisfies the
governing equations of motion on D and the imposed boundary
conditions on ∂D.

Hybrid System

The response of a hybrid system can be defined in a similar fashion.
Using the same boundary defined in Fig. 1(b), the hybrid system is
separated into two substructures. In order to differentiate the refer-
ence system from the hybrid system a superposed hat (̂ ) is used to
indicate a quantity in the hybrid system. Thus, the displacement for
the hybrid system is given as

ûðx; tÞ ¼
�
ûpðx; tÞ if x ∈ P

ûcðx; tÞ if x ∈ C
ð3Þ

In a hybrid system ûp and ûc are determined from the solutionof
the governing equations of motion for P and C subjected to the
boundary conditions on ∂P and ∂C. The boundary conditions
on ∂D ∩ ∂P and ∂D ∩ ∂C naturally match those of the reference
system. However, in the hybrid system one must additionally deal
with boundary conditions on the two interface sides of Ip and Ic,
where Ip ¼ I ∩ ∂P and Ic ¼ I ∩ ∂C. The conditions on Ip and
Ic are provided by the sensor and actuator system. Here they are
modeled by boundary functions gð·Þp and gð·Þc as shown in Fig. 2. The
number of boundary functions needed is determined by the hybrid
system so that the system is mathematically determinate. Since the
boundary functions take on the role of boundary conditions, for
every boundary function on the P-side, there is a corresponding
boundary function on the C-side. The boundary functions take into
consideration the imperfection of the dynamics of the hybrid sys-
tem, such as time-delay between the two sides, as well as magni-
tude tracking errors in the motion and traction as needed by the
system at hand. In the analysis, the correspondence between related
boundary functions is formulated by the relation

D½ûc�jIc
¼ ED½ûp�jIp

ð4Þ

where D½·� = operator that generates the necessary boundary func-
tions at the interface from the displacements ûð·Þ and E = error
operator that applies different error parameters to the different
boundary functions created by D½·�. Later in this paper, a simple
magnitude and phase error model is employed for errors E. This
allows one to study the effects of a wide variety of systematic
hybrid system errors. These types of errors are chosen due to their
direct correlation to experimental systems (Shing and Mahin 1987;
Ahmadizadeh et al. 2008).

(a) (b)

Fig. 1. (a) A general system with domain D and displacement uðx; tÞ;
(b) a general system with imposed separation into two substructures for
comparison to the hybrid system; P ∪ I ∪ C ¼ D and ∂P ∩ ∂C ¼ I

Fig. 2. The hybrid system separated into the physical, P, and compu-
tational, C, substructures with boundary functions gð·Þp and gð·Þc
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L2 Space and Hybrid Simulation Error

With the above notation in hand, consider now how one can under-
stand hybrid simulation from a geometric point of view. First note
that the space of L2 functions over Ω is defined as (Johnson 2009)

L2ðΩÞ ¼
n
v∶v is defined on Ω and

Z
D
v2dx < ∞

o
ð5Þ

where Ω is a bounded domain in R3. Using this definition one has

u ∈ L2ðDÞ ð6Þ

The restriction of u onto C is denoted as

uc ∈ L2ðCÞ ð7Þ

and similarly for the restriction of u onto P:

up ∈ L2ðPÞ ð8Þ

The same applies for the ·̂ quantities. One notes that

L2ðDÞ ¼ L2ðCÞ × L2ðPÞ ð9Þ

In L2ðCÞ, the displacements uc and ûc trace out trajectories with
time. These two trajectories differ from each other since they are for
two different systems. The same is true for the trajectories of up
and ûp in L2ðPÞ. By considering the trajectories in L2ðCÞ and
L2ðPÞ as components of order pairs in L2ðDÞ at each moment
in time, one can combine trajectories from L2ðCÞ and L2ðPÞ into
trajectories in L2ðDÞ, one for the reference system and one for the
hybrid system. A simple illustration of this situation is shown in
Fig. 3. The difference between the two trajectories in L2ðDÞ gives
a basis for error analysis. Given a true solution u and a hybrid sol-
ution û, one can measure error using a space-time L2-norm in the
form of Eq. (10) (Johnson 2009)

kek ¼
�Z

T

0

Z
D
juðx; tÞ − ûðx; tÞj2dxdt

�
1=2

ð10Þ

where T = period of the harmonic excitation on the system and D =
complete domain of the system. This allows for a measurement of
the absolute error between the reference system and the hybrid sys-
tem over the domain of the mechanical system and over the period
of the harmonic excitation.

Application to the Elastic Beam

The foregoing setup is now applied to a continuous beam, where
one has access to exact analytical solutions for an intact reference
system and for a hybrid (decomposed) system defined over P
and C.

Reference System

The reference system is an elastic, homogeneous beam pinned on
both ends with a harmonic moment applied to one end. A diagram
of the mechanical system is shown in Fig. 4. In this case the dis-
placement can be decomposed as shown in (11):

w ¼ wðx; tÞez ð11Þ
where ez = unit vector in the z-direction as indicated in Fig. 4. In
what follows, the vector form is ignored, and only wðx; tÞ is con-
sidered. The partial differential equation that governs the motion of
the mechanical system is given by the dynamic form of the classical
Bernoulli–Euler equation:

ρẅ ¼ −EIw;xxxx ð12Þ
where ρ = linear mass density, E = elastic modulus, I = second
moment of area of the beam, and comma notation indicates differ-
entiation. The applied moment, M, is described by

MðtÞ ¼ M̄ expðiωtÞ ð13Þ
where M̄ = magnitude of the applied moment and ω = frequency of
the applied moment. The well-known solution to this system is
given by

wðx; tÞ ¼
� −M̄ sinðβxÞ
2EIβ2 sinðβlÞ þ

M̄ sinhðβxÞ
2EIβ2 sinhðβlÞ

�
expðiωtÞ ð14Þ

where l = beam span and the parameter β is determined from

β4 ¼ ρ
EI

ω2 ð15Þ

Hybrid System

The pinned–pinned beam is now represented by a hybrid system
using a specific separation. The hybrid system is shown in Fig. 5,
where the P-side is the left side, without the applied moment, and
the C-side is the right side, with the applied moment. The separation
of the hybrid system occurs at x ¼ l1, thus, in this system, the dis-
placement is given by

ŵðx; tÞ ¼
�
ŵpðx; tÞ if 0 ≤ x < l1

ŵcðx; tÞ if l1 < x ≤ l
ð16Þ

Fig. 3. A schematic illustration of a possible L2ðDÞ space with trajec-
tories for the reference and hybrid systems from time t ¼ t1 to t ¼ t2
showing the difference between the two trajectories

Fig. 4. The system of an elastic pinned–pinned beam with applied
moment MðtÞ
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Separation of variables is applied to the system, giving
ŵpðx; tÞ ¼ X̂pðxÞT̂pðtÞ and ŵcðx; tÞ ¼ X̂cðxÞT̂cðtÞ, where both
must independently satisfy Eq. (12). This leads to the following
equations:

X̂pðxÞ ¼ b̂1 cosðβ̂pxÞ þ b̂2 sinðβ̂pxÞ þ b̂3 coshðβ̂pxÞ
þ b̂4 sinhðβ̂pxÞ ð17aÞ

X̂cðxÞ ¼ b̂5 cosðβ̂cxÞ þ b̂6 sinðβ̂cxÞ þ b̂7 coshðβ̂cxÞ
þ b̂8 sinhðβ̂cxÞ ð17bÞ

T̂pðtÞ ¼ T̂cðtÞ ¼ expðiωtÞ ð17cÞ
where b̂1–b̂8 = constants. Since ŵp and ŵc must both independently
satisfy (12), the following relation also holds:

β̂4
p ¼ β̂4

c ¼
ρ
EI

ω2 ð18Þ

Using Eq. (18) in conjunction with Eq. (15), it is noted that
β ¼ β̂p ¼ β̂c. To determine b̂1–b̂4, one needs four boundary condi-
tions on P. As is typical, one can take two from the left side and two
from the right side of the domain of P. Following the convention
defined previously, gð·Þp will denote the boundary functions on
Ip, which in the present case is simply the point x ¼ l1. The
same applies for b̂5–b̂8 on C where the boundary functions on
Ic will be denoted by gð·Þc . As an example, Fig. 5 shows
boundary functions gðuÞp and gðuÞc for transverse displacements and
gðθÞp and gðθÞc for rotations. Thus, the boundary conditions at x ¼
l1 become

ŵpðl1; tÞ ¼ gðuÞp ðtÞ ¼ ḡðuÞp expðiωtÞ ð19aÞ

ŵcðl1; tÞ ¼ gðuÞc ðtÞ ¼ ḡðuÞc expðiωtÞ ð19bÞ

ŵp;xðl1; tÞ ¼ gðθÞp ðtÞ ¼ ḡðθÞp expðiωtÞ ð19cÞ

ŵc;xðl1; tÞ ¼ gðθÞc ðtÞ ¼ ḡðθÞc expðiωtÞ ð19dÞ
Note that ḡð·Þp and ḡð·Þc are so far unspecified. Intuitively they are

related to each other but a discussion of this interrelation is deferred
to the discussion of a model for the interface errors.

Solving for b̂1–b̂8, while employing the requisite boundary
conditions at x ¼ 0, x ¼ l, Ip, and Ic, gives

ŵpðx; tÞ ¼
ḡðuÞp D2ðβl1;βxÞ − ḡðθÞp

β D3ðβl1;βxÞ
D2ðβl1;βl1Þ

expðiωtÞ ð20Þ

ŵcðx; tÞ ¼
�

M̄
2EIβ2

fA1ðβl2ÞB1½βðx − l1Þ�

− B1ðβl2ÞA1½βðx − l1Þ�g − ḡðuÞc D2½βl2;βðx − lÞ�

þ ḡðθÞc

β
D3½βðx − lÞ;βl2�

�
expðiωtÞ

D2ðβl2;βl2Þ
ð21Þ

where

A1ðxÞ ¼ sinðxÞ − sinhðxÞ ð22aÞ

B1ðxÞ ¼ coshðxÞ − cosðxÞ ð22bÞ

D2ðx; yÞ ¼ coshðxÞ sinðyÞ − cosðxÞ sinhðyÞ ð22cÞ

D3ðx; yÞ ¼ sinhðxÞ sinðyÞ − sinðxÞ sinhðyÞ ð22dÞ

Nondimensionalization and Determination of
ḡ�·�
p and ḡ�·�

c

To further the analysis, one needs to determine the as-yet unspeci-
fied boundary functions. In this regard, it is advantageous to non-
dimensionalize the equations as well as to express the reference
solution in the same format as the hybrid solution. For the latter
point, an examination of Eqs. (14) and (22) shows that one can
write the reference solution as

wðx; tÞ ¼ M̄D3ðβx; βlÞ
2EIβ2P1ðβlÞ

expðiωtÞ ð23Þ

where

P1ðxÞ ¼ sinðxÞ sinhðxÞ ð24Þ

In order to nondimensionalize Eqs. (20), (21), and (23), one can
introduce the following nondimensional quantities:

η ¼ w
l
; η̂p ¼ ŵp

l
; η̂c ¼

ŵc

l
; y ¼ x

l
ð25aÞ

μ ¼ M̄l
EI

ð25bÞ

ω1 ¼
ffiffiffiffiffiffi
EI
ρ

s
π2

l2
; Ω ¼ ω

ω1

; τ ¼ ω1t ð25cÞ

κ ¼ βl ¼ π
ffiffiffiffi
Ω

p
ð25dÞ

GðuÞ
p ¼ ḡðuÞp

l
; GðuÞ

c ¼ ḡðuÞc

l
; GðθÞ

p ¼ ḡðθÞp ; GðθÞ
c ¼ ḡðθÞc

ð25eÞ

L1 ¼
l1
l
; L2 ¼ 1 − L1 ð25fÞ

where ω1 = lowest resonant frequency of the pinned–pinned beam
(Tongue 2002). Thus, Eqs. (20), (21), and (23) become

ηðy; τÞ ¼ μD3ðκy;κÞ
2κ2P1ðκÞ

expðiΩτÞ ð26Þ

Fig. 5. The hybrid system of an elastic pinned–pinned beam with ap-
plied moment, MðtÞ, and boundary functions gðuÞp ðtÞ, gðuÞc ðtÞ, gðθÞp ðtÞ,
and gðθÞc ðtÞ, l1 þ l2 ¼ l
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η̂pðy; τÞ ¼
GðuÞ

p D2ðκL1; κyÞ − GðθÞ
p

κ D3ðκL1;κyÞ
D2ðκL1;κL1Þ

expðiΩτÞ ð27Þ

η̂cðy; τÞ ¼
�

μ
2κ2

fA1ðκL2ÞB1½κðy−L1Þ�−B1ðκL2ÞA1½κðy−L1Þ�g

−GðuÞ
c D2½κL2;κðy− 1Þ� þGðθÞ

c

κ
D3½κðy− 1Þ;κL2�

�

×
expðiΩτÞ

D2ðκL2;κL2Þ
ð28Þ

For the rest of this section, unless stated otherwise, all new var-
iables or quantities are assumed to be dimensionless.

To complete the system of equations, Gð·Þ
p and Gð·Þ

c need to be

determined. The conditions to determine Gð·Þ
P and Gð·Þ

c come from
the characteristics of the sensor and actuator control system. As a
simple model, one can assume that the hybrid system produces
a magnitude and phase error in the corresponding displacements,
rotations, bending moments, and shear forces across the interface
of the hybrid system. Using the notation introduced in (4), D½·� is
written as

D½·� ¼

2
6666666664

·
∂ ·
∂y
∂2 ·
∂y2
∂3 ·
∂y3

3
7777777775

ð29Þ

E is expressed as a 4 × 4 matrix with ð1þ εð·ÞÞ expðiΩdð·ÞÞ on
the diagonal and zeros everywhere else. Here, εð·Þ is the magnitude
of the tracking errors for the displacement, rotation, bending mo-
ment, and shear force at the interface and dð·Þ is the tracking error
time delay of the displacement, rotation, bending moment, and
shear force. εð·Þ and dð·Þ model the interface error in the hybrid sys-
tem at I . Using this model gives

η̂cðL1; τÞ ¼ η̂pðL1; τÞð1þ εuÞ expðiΩduÞ ð30aÞ

η̂c;yðL1; τÞ ¼ η̂p;yðL1; τÞð1þ εθÞ expðiΩdθÞ ð30bÞ

η̂c;yyðL1; τÞ ¼ η̂p;yyðL1; τÞð1þ εMÞ expðiΩdMÞ ð30cÞ

η̂c;yyyðL1; τÞ ¼ η̂p;yyyðL1; τÞð1þ εVÞ expðiΩdVÞ ð30dÞ

The objective of Eq. (30) is to relate η̂c and η̂p by their ratios, as
defined as ð1þ εuÞ expðiΩduÞ, similarly for their spatial deriva-
tives. In this way, one can say that error is transferred from the
physical side to the computational side if ð1þ εð·ÞÞ > 1 and vice
versa if ð1þ εð·ÞÞ < 1. The same can be said of dð·Þ, depending
on the sign of dð·Þ. Eq. (30) together with Eqs. (27) and (28)
can be used to analytically solve forGð·Þ

p andGð·Þ
c and thus complete

the solution; (Drazin 2013). Note that this error model can be made
more sophisticated but suffices to understand a number of features
of hybrid systems.

Application to the Viscoelastic Beam

The same pinned–pinned beam model used previously is adopted
for the viscoelastic case. For this purpose it is useful to introduce
the complex elastic modulus

E� ¼ E 0 þ iE 0 0 ð31Þ
where E 0 = storage modulus, E 0 0 = loss modulus, and i ¼ ffiffiffiffiffiffi−1p

=
imaginary unit (Ferry 1970). To be concrete, the standard three-
parameter Maxwell model for a linear viscoelastic solid will be em-
ployed (the so-called standard linear solid) (Tschoegl 1989). In this
case,

E 0 ¼ E∞ þ ω2t2r
1þ ω2t2r

ðE0 − E∞Þ ð32aÞ

E 0 0 ¼ ωtr
1þ ω2t2r

ðE0 − E∞Þ ð32bÞ

where E0 = instantaneous modulus and E∞ = equilibrium modulus.
The relaxation time, tr, is given by

tr ¼
1

ω1ζ
ð33Þ

The parameter ζ is the nondimensional damping frequency,
which determines the location of the damping peak in the frequency
domain. Since E� is complex, it can be expressed in polar form by

E� ¼ jE�j expðiδÞ ð34aÞ

jE�j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E 02 þ E 0 02

p
ð34bÞ

δ ¼ tan−1
�
E 0 0

E 0

�
ð34cÞ

Using this form of the complex elastic modulus, Eq. (15)
becomes

ρω2 ¼ jE�jI expðiδÞβ4 ð35Þ

Since ω, jE�j, I, and ρ are real values, β must be complex.
Solving for β results in

β ¼
ffiffiffiffiffiffiffiffiffiffi
ρ

jE�jI
4

r ffiffiffi
ω

p
exp

�−iδ
4

�
ð36Þ

The solution for the reference system now reads

wðx; tÞ ¼
�−M̄ expð−iδÞ sinðβxÞ

2jE�jIβ2 sinðβlÞ

þ M̄ expð−iδÞ sinhðβxÞ
2jE�jIβ2 sinhðβlÞ

�
expðiωtÞ ð37Þ

The nondimensionalization of Eq. (37) and the application of
the functions defined by Eqs. (22) and (24) lead to the same relation
given by (26), where all values have the same definitions as before
except

κ ¼ βl ¼ π
ffiffiffiffi
Ω

p
exp

�−iδ
4

�
ð38aÞ

and

μ ¼ M̄l expð−iδÞ
jE�jI ð38bÞ

Likewise, Eqs. (27) and (28) hold for the viscoelastic pinned–
pinned hybrid beam case, using the new definitions of κ and μ.
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Analysis of the Hybrid Systems

Having analytic expressions for the response of the reference sys-
tems and the hybrid systems, it is possible to examine the intrinsic
errors associated with hybrid simulation using the interface model.
Error in hybrid simulation for a given loading and a given set of εð·Þ
and dð·Þ will be defined using the nondimensionalized response
functions as

eðy; τÞ ¼ ηðy; τÞ − η̂ðy; τÞ ð39Þ
For analysis purposes it is useful to examine the L2-norm of this

quantity which is defined by

kepk2 ¼
Z

T

0

Z
L1

0

fR½ηðy; τÞ − η̂pðy; τÞ�g2dydτ ð40aÞ

keck2 ¼
Z

T

0

Z
1

L1

fR½ηðy; τÞ − η̂cðy; τÞ�g2dydτ ð40bÞ

kek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kepk2 þ keck2

q
ð40cÞ

where T = nondimensional period of the applied bending moment,
meaning that it changes with Ω, and Rð·Þ is the real part of ð•Þ. The
functions ηðy; τÞ, η̂pðy; τÞ, and η̂cðy; τÞ are from Eqs. (26), (27),
and (28), respectively. Owing to the complexity of developing an
analytic form for these norms, the integrals appearing in the norm
expression are numerically evaluated with a high-order adaptive
quadrature rule to at least an absolute error of 10−10 and at least
a relative error of 10−6.

Analysis of the Elastic Beam

First, Eqs. (27) and (28) are compared to Eq. (26) to verify that the
equations do in fact describe the correct system. Note that if all
εð·Þ ¼ 0 and dð·Þ ¼ 0, then the hybrid system should reduce to
the reference system. Fig. 6(a) shows ηðy; 0Þ and η̂ðy; 0Þ for one
set of parameters and the difference eðy; 0Þ. Note that eðy; 0Þ is
zero to machine precision and thus, to the accuracy to which
one can evaluate the expressions, they are identical. For all of
the following figures, all error parameters are assumed to be 0
unless noted otherwise in the figure and μ is taken as 3.75 × 10−3.

To show the effects of a displacement error, a 10% error is intro-
duced into the displacement by setting εu ¼ 0.1. This value of εu
was chosen since it represents a relatively large error, and it is use-
ful to see how this large error influences the system error. Later in
the analysis, the effect of varying εu will be examined. Fig. 6(b)
shows a discontinuity between the two sides of the interface in
the hybrid system and that a noticeable amount of error has been
introduced into the entire domain of the hybrid system due to the
10% displacement error at the interface; the large difference in scale
of the vertical axes of the error plots in Figs. 6(a) and 6(b) should
be noted.

Effect of Varying Frequency
For specific choices of the parameters εð·Þ, dð·Þ, and L1, Ω is initially
swept from 10−2 to 102 to give a comprehensive look at the effect
of the excitation frequency on the hybrid system. Note, that all
εð·Þ have similar effects on the error, and thus only εu is discussed,
with any differences explicitly stated for the other εð·Þ. The same
holds for dð·Þ. In Fig. 7(a), which has εu ¼ 0.1, the error grows
extremely large near the resonant frequencies of the system,
i.e., Ω ¼ 1; 4; 9; : : : ; which is to be expected as the displacement
becomes unbounded at these frequencies. Since almost all types of
excitation contain a broad spectrum of frequencies, this leads one
to conclude that for the hybrid system to give usable results, all
frequencies in the excitation must be less than the first resonant
frequency, or Ω ¼ 1. Because of this, in what follows the analysis
will focus on excitation frequencies that are below the first resonant
frequency (Ω < 1). An important feature of the hybrid system
response is the appearance of parasitic resonant spikes not associ-
ated with the actual resonant frequencies of the reference system.
Fig. 7(b) shows one such spike just to the left of Ω ¼ 1. These para-
sitic spikes are more noticeable for different values of the system
parameters. The parasitic spikes oscillate around the resonant
frequencies as L1 changes from zero to one. The amplitude of these
oscillations in the frequency domain are directly related to the val-
ues of εð·Þ. It is also helpful to plot the error norm normalized by
kηk to give a sense of the relative magnitude of the error. For the
same parameters as considered in Fig. 7, this is shown in Fig. 8.
Comparing Figs. 7(a) and 8(a), one notes that the dropoff in error
with increasing frequency disappears. This is because kηk is
inversely proportional to

ffiffiffiffi
Ω

p
. Although the error spikes seem sim-

ilar in these two cases, an examination of the zoomed-in normalized

(a) (b)

Fig. 6. (a) Comparison of the reference elastic pinned–pinned beam to the hybrid elastic pinned-pinned beam with zero interface errors; (b) compar-
ison of the reference elastic pinned–pinned beam to the hybrid elastic pinned–pinned beam when εu ¼ 0.1; note μ ¼ 3.75 × 10−3
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error in Fig. 8(b), cf. Fig. 7(b), shows that the hybrid system some-
what tracks the reference system at Ω ¼ 1 but that it clearly pos-
sesses a true parasitic resonance just below Ω ¼ 1.

Considering now the effect of time delay errors, Fig. 9(a) shows
the case of du ¼ 0.1; the normalized error is now seen to grow for
increasing frequencies below Ω ¼ 1. This is in contrast to what is
seen in Fig. 8(a), where the normalized error held constant with
increasing frequency until it approached the first resonant fre-
quency. Further, with the presence of multiple error sources, the
behavior is modestly additive. Consider for example nonzero εu
and du as shown in Fig. 9(b). In this instance the normalized error,
prior to Ω ¼ 1, behaves exactly as in Fig. 8(a). This indicates that
with multiple nonzero error parameters, the error in the hybrid sys-
tem will be controlled by the largest individual error for equivalent
values of the error parameters.

Effect of Varying εu: Magnitude of Tracking Error
The effect of varying εu is studied to determine its direct effect on
the hybrid system error. As an example, in Fig. 10(a), the effect of
varying εu at Ω ¼ 0.8 is shown. The domain of εu extends from
−0.5 to 0.5, since it is highly unlikely that an experimental setup
will have tracking errors outside of this domain. It can be seen that
as εu increases in magnitude, the rate of normalized error change

decreases. Thus, the only areas of large change in the error come
from locations near εu ¼ 0. This indicates that there is noticeable
error in the hybrid system, even for small εu, and trying to reduce
the value of εu does not have a large effect on the system error
unless εu can be brought quite close to zero. Note that varying
εθ, εM, and εV produces similar results to those in Fig. 10(a).

Effect of Varying du: Phase of Tracking Error
The effect of varying du is analyzed to determine its direct effect on
the error in the hybrid system. Since the effects of du are periodic,
du only goes from 0 to 2π=Ω. For Ω, a value of 0.8 is chosen for
illustrative purposes. As shown in Fig. 10(b), the normalized error
grows from zero, peaks when du is half of the period, and then falls
when du is equal to a period. Note that varying dθ, dM, and dV
produces similar results to Fig. 10(b).

Analysis of the Viscoelastic Beam

As viscoelasticity introduces damping it provides a somewhat more
realistic model system. As an initial check of the basic relations,
Eqs. (27) and (28) with εð·Þ ¼ dð·Þ ¼ 0 are compared to the equation
for the solution to the reference viscoelastic beam, Eq. (26).
This comparison is shown in Fig. 11. For succinctness, only the

(a) (b)

Fig. 7. Error norms: (a) a frequency sweep of the elastic pinned-pinned beam with εu ¼ 0.1 on a log-log plot; (b) z zoomed-in plot showing the
parasitic spike just to the left of Ω ¼ 1

(a) (b)

Fig. 8. Normalized error norms: (a) a frequency sweep of the elastic pinned–pinned beam with εu ¼ 0.1 on a log-log plot; (b) a zoomed-in plot
showing the parasitic spike just to the left of Ω ¼ 1
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real part of the solution is shown. As it can be seen, only round-off
error is present between the hybrid and reference systems. It should
be noted that the applied frequency chosen was Ω ¼ 4, which is
a resonant frequency of the elastic system, meaning that the dis-
placement is unbounded in the equivalent elastic case. However,
in Fig. 11, the displacement is bounded due to viscoelastic damp-
ing. Note that ζ ¼ 2 implies that the damping peak is located
at a frequency of 2. If ζ was chosen to be farther from the applied
frequency, the effects of the damping would be significantly
less.

Effect of Varying Frequency
As with the elastic beam, a sweep of the frequency is performed
from Ω ¼ 10−2 to Ω ¼ 102 for various values of ζ with μ0 ¼
M̄l=E0I ¼ 3.75 × 10−3 and μ∞ ¼ M̄l=E∞I ¼ 2μ0. It is noted that
the effects of all magnitude errors εð·Þ are nearly identical and thus
only εu is considered. This is the same for all time delay errors dð·Þ.
Consider first the effect of a magnitude error εu as shown in
Fig. 12(a). One notes that, depending on the value of ζ, the error
is bounded to differing degrees at all of the resonances of the elastic
case. In what follows, focus will be paid to frequencies less than
10 (Ω < 10). Similar to the elastic beam case, there are parasitic

resonant spikes near the resonant frequencies, but only when the
drive frequency is far from the damping frequency; one of these
parasitic spikes is shown in Fig. 12(b), but only for the ζ > 50
curves. In the other two curves, any possible parasitic spikes are
mollified by the viscoelastic damping. When present, these para-
sitic spikes oscillate around the resonant frequency peaks as L1

grows from zero to one and the amplitude of these oscillations
are related to the value of εð·Þ just as in the elastic case. As before,
normalized error plots are helpful for interpreting the results as
shown in Fig. 13. The general interpretations from the elastic case
are seen also to hold here with the caveat that the placement of
damping peaks near (elastic) resonances will reduce errors. If
one instead introduces phase error, du (Fig. 14), one observes
behavior similar to the elastic case, again with the same caveat.
When the applied frequency is near the damping frequency, the
error is reduced around the resonant frequencies. When the applied
frequency is far from the damping frequency, the error curves re-
semble those for the elastic case. Also, similar to the elastic case
below Ω ¼ 1, the error behaves the same as in Figs. 8(a) and 9(a).

In order to determine how the error parameters interact in the
viscoelastic case, two error parameters are applied to the hybrid
system. Fig. 14(b) has εu ¼ 0.1 and du ¼ 0.1. Below Ω ¼ 1, the

(a) (b)

Fig. 9. (a) A frequency sweep of the elastic pinned–pinned beam with du ¼ 0.1 on a log-log plot; (b) a frequency sweep of the elastic pinned–pinned
beam with εu ¼ 0.1 and du ¼ 0.1 on a log-log plot

(a) (b)

Fig. 10. (a) The effect of varying εu for the elastic beam with no other imposed error on a linear-log plot; (b) the effect of varying du for the elastic
beam with no other imposed error on a linear-log plot
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normalized error is seen to be consistent with Fig. 13(a) and not
with Fig. 14(a). This indicates that the larger error of the individual
error parameters controls the error of the system with multiple non-
zero error parameters, which is consistent with the elastic beam
case. Further inspection of Figs. 13(a) and 14 reveals a sharp drop
in the error to the left of Ω ¼ 10. This drop in error occurs when
sinðκL1Þ ¼ 0. In fact for nonzero εu, εM, du, and dM, error drops
occur whenever sinðκL1Þ ¼ 0. For nonzero εθ, εV , dθ, and dV , such
error drops occur whenever cosðκL1Þ ¼ 0. These observations also
hold for the elastic case but are largely irrelevant there since in the
elastic case one should never exceed Ω ¼ 1.

Effect of Varying εu: Magnitude of Tracking Error
To understand the effect of varying εu in the viscoelastic case, con-
sider the fixed frequencyΩ ¼ 0.8 at multiple values for ζ within the
range of −0.5 to 0.5. As shown in Fig. 15(a), the shapes of the error
curves are identical to those in Fig. 10(a). However, the curve for
ζ ¼ 1 is ever so slightly below the rest of the curves because the
damping frequency is close to the excitation frequency. Also, as in
the elastic case, the error changes rapidly for small εu and levels off

(a) (b)

Fig. 12. Error norms: (a) a frequency sweep of the viscoelastic pinned–pinned beam with εu ¼ 0.1 on a log-log plot for various values of ζ; (b) a
zoomed-in plot of the parasitic resonant spike to the left of Ω ¼ 1

Fig. 11. Comparison of the reference viscoelastic pinned–pinned
beam to the hybrid viscoelastic pinned–pinned beam with no imposed
error

(a) (b)

Fig. 13.Normalized error norms: (a) A frequency sweep of the viscoelastic pinned–pinned beam with εu ¼ 0.1 on a log-log plot for various values of
ζ; (b) a zoomed-in plot of the parasitic resonant spike to the left of Ω ¼ 1
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as εu grows in magnitude. The effect of varying εθ, εM, and εV are
similar and thus are not shown.

Effect of Varying du: Phase of Tracking Error
The effect of varying du in the viscoelastic case is shown in
Fig. 15(b). As noted earlier, the effects of du are periodic over
the range 0–2π=Ω. As a concrete example, Fig. 15(b) shows the
case of Ω ¼ 0.8. When the applied frequency is far from the damp-
ing frequency, the curves behave similarly to those of the elastic
case, cf. Fig. 10(b). However, when the damping frequency is
closer to the applied frequency, the error, although remaining es-
sentially the same, develops a slight asymmetry relative to the
center of the range as seen with the curves for ζ ¼ 1 and ζ ¼ 5.
Varying dθ, dM, and dV produces similar results.

Note that in the viscoelastic case, when the applied frequency is
far from the damping frequency, the error curves behave in the
same manner as the elastic case. This is to be expected, because
away from the damping frequency, the viscoelastic equations ap-
proach the elastic ones. Finally, note that almost all conclusions
gained from the elastic case are repeated for the viscoelastic case,
except for special treatment of the parameter ζ.

Conclusion

The analysis in this paper demonstrates the theoretical performance
of hybrid simulation for an elastic and a viscoelastic beam for the
special case where the only errors that are present are those asso-
ciated with the interface mismatch (systematic errors) of the hybrid
system. A harmonic excitation was applied and only the steady-
state solution was studied. This ignores any transient response that
may occur in experimental implementations of hybrid simulation.
The results show that the resonant frequencies have an outsized
impact on the error of the simulation system. Thus, in order for
real-time hybrid simulation to be effective as a simulation tech-
nique, one must be aware of the forcing frequencies, and keep them
below the first resonant frequency for the elastic case or possibly
near the damping frequency in the viscoelastic case. The error due
to εð·Þ grows quickly around εð·Þ ¼ 0 and reaches a large error value
for small εð·Þ values. Thus, it is somewhat impractical to reduce the
εð·Þ parameters in order to reduce the error in the system, because
unless one could make the εð·Þ values quite small, the system error
does not significantly change. All of the results stated in the analy-
sis section have also been corroborated with hybrid formulations

(a) (b)

Fig. 14. (a) A frequency sweep of the viscoelastic pinned-pinned beam with du ¼ 0.1 on a log-log plot with varying ζ; (b) a frequency sweep of the
viscoelastic pinned–pinned beam with εu ¼ 0.1 and du ¼ 0.1 on a log-log plot with varying ζ

(a) (b)

Fig. 15. (a) The effect of varying εu for the viscoelastic beam with no other imposed error on a linear-log plot; (b) the effect of varying du for the
viscoelastic beam with no other imposed error on a linear-log plot
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for an elastic and a viscoelastic axially loaded bar (Drazin 2013) as
well as for a classical elastic Kirchhoff–Love plate (Bakhaty et al.
2014). This indicates that there are universal errors that occur in
hybrid simulation, even for simple one-dimensional and two-
dimensional problems. Awareness of the causes of these errors
can allow for real-time hybrid simulations to be conducted in a
way that reduces or even prevents these errors.

In this paper it was assumed that εð·Þ and dð·Þ are constants.
However, this is not always the case; they may in fact be functions
of the frequency, such that at higher frequencies the time-delay
or magnitude error may increase. To include this effect, one could
introduce models of the form

dð·Þ ¼
d0

½1þ expðΩ0 − ΩÞ�2 ð41Þ

where d0 = maximum time delay and Ω0 = frequency of maximum
growth rate (Bakhaty et al. 2014). Similar equations can be applied
to εð·Þ. Such models modify the details of the error responses; how-
ever, the trends remain fundamentally the same.

This paper considered a single homogeneous linear material that
could be modeled by Eq. (12). This is not always the case for an
experimental setup of hybrid simulation. For example, many hybrid
simulation setups are for many bars and beams at the same time,
each interacting with the whole system; (Mosalam and Günay
2014; Günay and Mosalam 2014). In such cases analytic response
solutions are likely to not be available but one does not expect the
observed general trends to be altered.

The error measure that has been focused on was the L2-norm
of the displacement error but that only shows one part of error
in the system. The error in the rotation, shear force, and bending
moment can also be studied with the use of Sobolev-seminorms on
the displacement field (Johnson 2009). Understanding the error in
these quantities is as important as understanding the error in the
displacement because in some situations these quantities can be
of equal or even greater importance to the structural and mechanical
behavior of a system than the displacement (Elkhoraibi and
Mosalam 2007).
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