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Abstract

Dynamics of Coulomb Correlations in Semiconductors in High Magnetic Fields
by

Neil Alan Fromer

Doctor of Philosophy in Physics

University of Califbrnia, Berkeley

Daniel S. Chemla; Chair

Current theories have been successful ip explaining many nonlinear optical experiments in
undoped semicondﬁctors. However, the;é theor_ieé require a ground state which is assumed
to be uncorrelated. Strongly correlated systems of current interest, such as a two dimen-
sional electron gas in a high magnetic field, cannot be explained in this manner because the
cor;‘ela.tié'ns in the ground state and the low energy collective excitations cause a breakdown
of the conventional techﬁiques.

We‘perform‘ ultrafast time-resolved four-wave mixing on n-modulation doped
quantum wells, which contain a quasi-two dimensional electron gas, in a large magnetic
field, when only a single Landau ievél is excited and also when two levels are excited to-
g‘éther. - We find evidence for memory effects and as strong coupling between the Landau

levels induced by the electron gas.

We compare our results with simulations based on a new microscopic approach



capable of treating the collective effects and corrélations of the doped electrons, and find
a good qualitative agreement. By looking at the individual contributions to the model,
we determine that the unusual correlation effects seen in the experiments are caused by
the scattering of photo—excited electron-hole pairs with the electron gés, leading to new
. excited states which are not present in undoped semiconductors, and\a.lsb by exciton—

exciton interactions mediated by the long-lived collective excitations of the electron gas,

inter-Landau level magnetoplasmons.
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Chapter 1

Introduction

1.1 Overview and previous work

Effects of Coulomb correlation manifest themselves in almost all transport and op-
tical properties of semiconductors [39]. They dominate in particular the physics of electron—
hole pairs photo-excited near the fundamental optical band gap [22]. However, correlations
in the ground state are often not considered, although that state is strongly correlated
[62]. This is because the corresponding excitations are high ’energy and can adjust é,lmost
instantaneously to the dynamicé of the low energy, near-bandgap carriers. Thus photc;—
excited electrgn—hole pairs beha,ve as particles with mufual interaétions, without affecting
the ground sta,te‘ which, except for providing the band structure and dielectric screening,
can be conside.refi as rigid {109]. Then the only Coulomb ;orrelations that need to be
considered are dynamically generated by the optical exqitatiqn. Such correlation effects
in photo—excited undoped semiconductors have been extensively investigated over the past

decade (for a review, see Ref. [22]). However, the dynamics of systems with low energy ex-



citations able to interact with photo—excited electron—hole pairs remains almost completely
unexplored. Several interesting systems fall into this category, for example high tempera-
ture superconductors and fractional quantum Hall eI:I‘éct systems. This is also the case in
modulation doped quantum wells, where a two dimensional electron gas exists in the sample
and can react to ﬁhotons and photo—excited carriers. Clearly the dynamics of this system
raises véry fundamental issues, and this is the motivation for the work presented here.

In the past twenty—five years, the technological applications of the optical proper-
ties of semiconductor systems have become increasingly important in their own right. The
physics of excitons in quantum wells allows for the fabrication of many important devices,
such as semiconductor diode lasers and related optoelectronic gadgets, with rﬁyriad appli-
cations in communications and consumer products [24]. i‘hese devices rely on the Coulomb
interaction between the excited carriers to influence the optical response, and as we send
information more quickly and efficiently, it is important.to understand the behavior of these
systems on shorter time and length scales.

Undexstal;ding the properties of semmiconductor systems far from equilibrium and
the role of many-body and Coulomb correlation effects on the femtosecond and nanometer
scale is a particularly éha.llenging préblem, siﬁce the time intervals of interest are often
shorter than the interaction times and oscillation periods of the elementary excitations.
Examples of well-established pictures that -need be revised in this regime include the clas-
sical pictur(; of point-like particles experiencing instantaneous collisions [118, 22], and the
Boltzmann and thermal bath pictures of relaxation anfi dephasing [22, 40]. Even the notion

of weakly interacting “quasiparticles”, a cornerstone of condensed matter physics, must be
kly g “q



revisited when describing the ultrafast nonlinear optical response [22].

In wave mixing experiments, coherent laser photons with different wavevectors
interact with the sample, emitting a signal photon into a background free direction. The
interaction process requires overall coherence, so that the behavior of the siénal in time is a
direct measurement of the phase coherence of the excited system. For this reason, ultrafast

- wave mixing experiments are ideally suited for exploring quantum coherence and correlation
effects in semiconductor nanostructures {22, 21, 105]. The time dependent interactions and
correlations among the photo—excited carriers can dominate the four—-wave mixing signal
[21, 22]. Importantly, the time dependent Hartree-Fock treatment of such interactions
predicts an exponential rise and decay of the four-wave mixing signal, which.is asymmetric
as a function of time delay (see Ch. 2.5.1 for a detailed description of this theory). However,
strong deviations from this profile have l}een observed experimentally [22, 21] and are due
to the Coulomb correlations beyond the mean-field Hartree-Fock level.

The sensitivity of the ultrafast nonlinear spectra to these Coulomb correlations

' may be traced microscopically to the coupling between the two—particle density matrix,

which describes the optical polarization and carrier populations, and the many—partigie
correlation functions (;higher density matrices) {73, 21, 7]. The Hartree-Fock approximation
treats the; two—particle interactions by fa,ct.orizing the many-particle correlatio_ﬁ functions

(40]. However,. during time scales shorter than the characteristic times associated with

the interaction processeé (e_.g. the time between successive quasipai;ticle collisions, or the
oscillation period equal to the inverse q1qla,sipa.rticle excitation frequency), these correlations

lead to a wave mixing signal that displays a different temporal profile as compared to



that generated by the Hartree-Fock interactions [22, 21].‘ Such a correlation-induced time
dependence can in fact dominate the signal when the photo—excited carriers interact with
long-lived collective excitations, or when only a few quasiparticles are excited under low
photo-excitation conditions {7, 88, 22, 21].

To theoretically describe the above non—equilibrium many-body effects in the time
and frequency dependence of the "FWM signal one must use a controlled truncation scheme
of the infinite hierarchy of coupled equations for the different correlation functions. "In
undoped semiconductors, the ground state has an empty conduction band and a full va-
lence band, and the correlations between the photo—excited and ground state electrons can
be neglected. A widely used theoretical approach in this case is the dynamics—controlled
truncation scheme, or DCTS [8, 9, 7]. In this theory, the response of the semiconductor
is expanded in terms of the number of photo—excited electron—hole pairs, and éoﬁs'istently
truncated. This can be accomplished because of the correspondence betﬁveen the number
of electron-hole pairs in the system and the sequence of photon absorption and emission.
In this way it is possible to systematically include all correlations which contribute to a
specified order in the applied field. However, if carriers are present in the system before the
excitation, this correspondence breaks down, and the DCTS fails [9]. This is the case in
our modulation doped quantum well system, where a two dimensional electron gas exists
in the ground state. A theory based on a canonical transformation and time dependent
coherent states has recently been introduced [85, 82, 83, 87, 94, 108, 88}, and used to study
the cése where the interactions with the electron Fermi sea dominate the coherent nonlinear

response.



In {i:‘he absence of long-lived collective excitations, a many—particle system such as
a Fermi sea can react to the photo-excited carriers almost adiabatically, i.e. during time
scales much shorter than the pulse duration. In this case, the Fermi sea behaves to first -
approximation as a thermal bath, and its interactiogs with the photo—excited carriers can be
treated within the dephasing and relaxation time approximations. However, this is not the
case when the time it takes the many-body system to readjust to the intrusion of the photo— .
excited carriers is comparable to or longer Ithan the measurement times [94). Dissipation
has not occurred during the time séales_ of interest, and non-Markovian memory effects
dominate the measured nonlinear optical dynamics [22, 40, 118]. Such memory effects come
from the interactions between the photo-excited carriers and the elementary excitations of
the many-body system (e.g. plasmons, phonons, magnons, etc). To describe such effects
“one must account for the time evolution of the coupled photo—expited carrier/many-body
system.

In Fermi sea systems, the direct exciton—exciton interactions, which dominate the
nonlinear response in undoped semiconductors, are screened. Thus the nonlihea.r response is
determined by the Fermi sea excitations. For resonant photo-excitation, inelastic electron—
electron scattering processes dominate the optical dynamics [50, 117]. For low temperatures,
the dephasing times increase by a few picoseconds, in agreement with Fermi liquid theory
[46]. For below resonance excitation, the dissipation processes are suppressed and coherent
effects dominate. A novel dynamics of the system is then observed, due to many-body
correlations of the photo-excited holes with the excitations of the Fermi sea [18, 83].

With strong magnetic fields, the Coulomb interaction effects are strongly enhanced



due to the suppression of the kinetic energy (magnetic confinement) {43, 115]. Impor-
tantly, the dispersionless single—particle eﬁergy spectrum dra.ma,tica.lly suppresses the in-
elastic electron-electron scattering that otherwise plagues the ultrafast dynamics of Fermi
sea systems {11}. The correlations between the two dimensional electron gas excitations and
“the photo-excited carriers then lead to new dynamical features in the nonlinear optical spec-
tra even for resonant photo—excitation conditions. Such effects are most interesting in the
quantum Hall effect regime [95, 113], where long lived collective excitations dominate the
spectrum of the electron gas [45, 65, 66]. In this thesis we describe the results of wave mixing
experiments which Weré designed to study the dynamics of the interactions between photo—
excited carriers and the collective excitations of the tvs{_p dimensional electron gas in a strong
magnetic field, and we apply the theoretical approach of Refs. 85, 82, 83, 87, 94, 108, 88j

to interpret the results.

1.2 Outline of this thesis

In the next chapter, we present the theoretical background necessary to under-
stand the experiments, including the energy'level strlicture of GaAs heterostructures both
with and without an applied magnetic field, an overview of four-wave mixing theory in
atomic systems and undoped semiconductors, and the elementary excitations of the two
dimensional electron gas system. In chapter 3, we give the details of the experimental ap-.
paratus. Chapter 4 details the linear absorption spectra of both undoped and modulation
doped quantum wells, as a function of applied magnetic field. In chapter 5, we describe

‘nonlinear experiments performed on the modulation doped quantum wells, designed to



probe the intra-Landau level excitations of the electron gas. Experiments which probe the
inter-Landau level excitations of the electron gas are presented in chapter 6, and a theo-
retical framework developed to explain these resulfs is presented in chapter 7. Finally, we

summarize the results and discuss the future research possibilities in chapter 8.



Chapter 2

Background

2.1 "~ Introduction

This chapter provides a general background for understanding the main results
of this work. We begin By reviewing the band structure of GaAs heterostructures, and
discussing the effects of the magnetic field on electrons and holes in 2D systems. We will
then describe some of the standard theories of four—-wave mixing, first in atomic systems,
and then in semiconductor samples, foilowed by a discussion on the breakdown of these
theories in doped semiconductors. We will end fhe chapter with some information on two

dimensional electron gas systems in a magnetic field.

2.2 GaAs structures

GaAs and GaAs/AlGaAs structures can be grown with remarkable purity and

precise control using molecular beam epitaxy (MBE), leading to sharp resonances and long



lifetimes for transitions. This gives us an excellent venue for studying the ultrafast correla-
tions of the many-~body semiconductor system.
The band structure of bulk GaAs near the I'point is well described by the effective
mass approximation. There are 2 vdegenerate s-like conduction bands, and 6 p-like valence
bands. The low temperature bandgap is E4 = 1.519 eV. The total angtﬂer momentum is
a good quantum number, so we can label the bands by |J,m;). The lowest lying valeece
bands, |1/2,+1/2), called the split-off bands, are separated from the other valence bands by
the spin—orbit coupling. The large splitting between these bands end the other valence bands
(= 0.34 eV at low ‘temperatu.re) allows us to neglect the split—off bands altogether. T_he—
J = 3/2 bands e.re called the heavy hole (bh, m; = £3/2) and hght hole (1b, my = +1/2)
.bands. They a.re degenerate at k = 0, but they have different curva.fure, and therefore
- different energies away from the zone center. The.conduetion i)andsv have S =1/2, ﬁs =
:1:1/2. The effective masses-are m}, = 0.5mg, m};, =.0.082m0, and m; = 0.0665m¢g, where
1y is the bare electron mass.

An additional bonus for the febrication of GaAs based structures is that while
the bandgap for AlAs is much higher than that of GaAs, the lattice constants for the two
compounds are nearly identical. That means the,t alternating layers of GaAs and AlGaAs
can be grown on top of one another with very little strain induced at the interfaces. By
sandwiching a layer of GaAs between two layers of AlGaAs, we can create a quantum well
(QW), or ; finite potential well, in the growth direction. Electrons and holes excited in
the GaAs layer behave like a quasi-two dimensional system. This confinement has a large .

effect on the system.
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2.2.1 GaAs quantum wells

The electronic states of the QW are modified from that of bulk GaAs by the
confinement potential. Inside the 2D plane, the confinement potential lifts the hh-1h degen-
eracy at k =0, so that the hh~conduction band transition is at a lower energy than the lh
tra.nsitioﬁ. Also, the motion in the growth direction is quantized by the box potential into a
series of subbands. Below each afe a series of sharp features corresponding to the excitonié
bound states. The Coulomb interaction between electrons and holes can be characterized
by the 3D Rydberg energy R = me*/2¢3 and the Bohr radius ag = € /meé. The energy

levels of the 2D excitonic states are obtained by solving the relative motion Schrédinger

equation for a 2D electron-hole pair:

[p—2 - i:l $a(r) = Eada(r), (2.1)

2m  €r
where 7 is the electron-hole separation, p is the relative momentum, and m is the reduced

mass 1/m = 1/m, + 1/my. The energy levels E, are given by

E.=E, - (a_—li/_z)T (2.2)
and the wavefunction for the ldwest exciton state (1s) is
ey =(2) j—oe-%/ao (23)
in real space and
o=

in k-space. The wavefunction of the 2D exciton is more compact than in 3D, and the

binding energy is four times higher.
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The discussion above is based on the idealization that a QW structure is a perfect
2D system. In fact, this is not the case [14]. The band gap of Al,Ga;_,As is larger than
that of GaAs, but not infinitely high. This implies that in the z—direction, the electron and
hole wavefunctions are not entirely confined within the QW, but r@ther they penetrate into
the barrier regions. Also, the ‘QW itself has a finite thickness in the 2—direction. We shall
continue treating the QW system as purely 2D, which means we ignore these effects. As
we shall see in the next section and in the (;_()ming chapters, these deviations from the ideal

2D system allow-us to observe some interesting results.

2.2.2 Quantum wells in a magnetic field

The addition of a magnetic field will dramatically change the eiectronic properties
of the system. If the field is applied dlong the growth direction (which we will call the z
direction), it will effectively confine the motion of the electrons and holes withjn the 2D
QW plane. Classically, a charged particle in a magnetic field will undergo a circular orbit
in the zy-plane. Quantum mechanically, the motion is described by the relative motion

Schrodinger equation for a 2D electron hole pair in a perpendicular field,

[271% (p + 2B x r)2 + Lh (p - ZBx r)‘2 - f_i:] $a(t) = Batalr),  (25)

2c 2m 0

where we have assumed zero center of mass motion, and omitted the bandgap energy and
the Zeeman energy.
The electron-hole relative motion is determined by an effective interaction, after

expanding Eq. (2.5),

e? e’ B%r?
Vesi(r) = —— +

- 2.6
€r  8mc? (26)
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For B # 0 all solutions to Eq. (2.5) are bound, since Ve (r) is an infinite poténtial in the
limit r — oo. |

The magnetic field effects can be characterized by the cyclotron energy w, =
eB/mc and the magnetic length {2 = c/eB (we have set i = 1). If there were no Coulomb
interaction between the electrons and holes, the solutions to Eq. (2.5) would be a series of
highly degenerate Landau levels. The energy levels of that system increase linearly with
the magnetic field, and are given by EL%"ev = E, = w,(n + 1/2). The Landau level

wavefunctions are

2l nt_ \7 Il /20e)? [ (1) (2 /2 i
(an(r) = lclml!(z,’r)l/2 ((n+ Im|)|) (r/2lc) € ¢ Ln (7’ /Zlc)e ’ (27)

where Ls,?) (&) are generalized Laguerre polynomials. The degeneracy of each level is given
by D = (2wl?)~1. Notice that this wavefunction does not depend on the band parameters,
such as the effective mass. We will return to this point at the end of the section.

We can compare the relative importance of the magnetic field potential and the
‘Coulomb potential by looking at the dimensionless parameter A = (ao/ lc)? = we/2R. For
A < 1 the Coulomb term dominates, and for A 3> 1 the magnetic field dominates. In GaAs,
the cross-over field (for which A = 1) is approximately 3.5 Tesla.

When A « 1, the magnetic field acts as a perturbation to the excitonic states. In

this case, the energy levels of the exciton system vary quadratically with the applied field,
I
Ea (B) ~ Ea + W(Ta)B . (2.8)

When X > 1, the Coulomb interaction can be thought of as a perturbation on the Landau
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level structure. In this regimé;

Ea(B) ~ B — \/2n 2 Egreter, (2.9)

¢
where EL9ndo% jncreases linearly with B and the Coulomb correction increases liﬁe B2, 50
that for large B, we asymptotically zipproach the bare energies of the Landau levels. For
intermediate v@lues of A\, Eq. (2.5) must be solved numerically.

When the magnetic field is turned on, the states ¢,(r) are no longer pure states of
the system. We can expand these wavefunctions on the basis of Landau level wavefunctions
¢nm(r) given in Eq. (2.7), the solutions to the system in the absence of Coulomb interaction.
Here, n is the Landau level number, a,nd m is the azimuthal quantum number. For the

optically active s—like excitons (m = 0), the expansion coefficients satisfy [112]

r
o

Z(En‘sn,n' - Vn,n’)¢a(n’) = Ea¢a(n) (2'10)

where E, = A(2n — 1) is the Landau level energy, and for (n < n'),

>

N V2T(n —n+1/2)T(n — 1/2) . (1—nn'-nt1/2,1/2 '
Van = (?) T —n+ )0 2 (wiinsala %51) (2.11)

The function 3F; is a hypergeometric function [67]. All energies and lengths are measured
in units of R and aq. This descriptiop of magnetoexcitons in terms of two-level transitions
at energies E, coupled by a Coulomb potential V;, ,+ will prove quite useful in understanding
the nonlinear optical response of the samples measured in our work.

In a very high magnetié field, the particles are confined to a single degenerate
Landau level, ;avith (2D) wavefunctions given by Eq. (2.7). As mentioned. above, these
wavef\mctions are independent of the band parameters, and therefore at high magnetic

ﬁeld, the electron and hole wavefunctioﬁs are identical. This electron—~hole symmetry greatly
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simplifies the interactions between the particles at high field. For instance, in the case of
complete symmetry, there should be no interactions between the photo—éxcited carriers [57).
Also, there should be no resonant Raman scattering from inter-Landau level excitations of
a two dimensional electron gas in the symﬁletric case [92, 31]. However, several details of
real-world samples lea,d to an asymmetry between electrons and holes even in this case. As
mentioned in the previous section, the QW is not a perfect 2D system, and the wa,vef;nctions
penetrate into the barriers, leading to asymmetry. The strong coupling of the different
valence band spin states in a magnetic field, discussed in the next section, also leads to
differences between the electron and hole states at high magnetic field. In Ch. 7 we will
discuss the effects of this electron-hole asymmetry on the four-wave mixing results presented

in this work.

2.2.3 Valence band states

The above description of the QW eigenstates in a magnetic field gives a good qual-

itative understanding of the system, but it is inadequate for a quantitative understanding.
The reason for this lies in the neglect of the spin and orbital angular momentum of the
valence and conduction band states. This is important not only to explain the Zeeman
splitting of the conduction band states, but also because of the mixing of the nearly degen-
erate hh and lh valence bands. Also, the confinement at:the interfaces of the QW structures
changes the band mixing and modifies the linear absorption spectra. Many authors have
treated these topics in detail [2, 4, 15, 19, 28, 67, 110; 111, 121, 122]. We will present a
framework for such ca.lcula,tipns here.

For the s-like conduction band states, the interaction between the electron spin



15

and the magnetic field does not significantly modify the picture. The Zeeman Hamiltonian
.is H Zeeman = g 1t B§ - B where g* is the electron g—factor in the matéria.l. In tﬁe conduction
* band we can separate the wave function v(r,0,) = ¢(r){(s,), and the Zeeman splitting can
be sui)ep—imposed over the Landau lgvel structure.v

However, the valence band structure is more complicated. There is a doubly
ldegenerat.e pair of p-like bands at the I'-point in the bulk material. Luttinger [64] wrote
a Hamiltonian, with the full symmetry of the hh and lh bands and exact to second order
in k and first order in the magnetic field, which provides an accurate description of the
" dispersion of the valence band for energies significantly smaller than the split—off energy

( 0.34 eV). The Luttinger Hamiltonian is

H = Hy+Hy, . (2.12)
_ .M oo, M2 [0 1) 0 (2_1'2)2 ('2_1 2) 2]
H = —5 k2 [(Jx 3J>kz+ By =3 ) B+ (-3 K
202 ({ky ke s e} + (b ke} (0, Je} + (he, Ky} ) (2.13)
Hpn = Py(BzJz+ ByJy+ B,J;) + Bs(BoJ3 + ByJ: + B,J3) o (214)

where H}, is the kinetic term, H,, is the magnetic term, and {J,, Jy} = 1 / Q(Ja Jp+ JpJs) are -
symmetrized products of operators. Thé parameters § and v exactly describe ‘the effective

masses and magnetic field dispersion of the valence band. For bulk ma;terial in the absence
of a magnetic field, the Hamiltonian can be diagonalized to give the exact eigenvalues and
veigenvectors of the valence band. For a zinc-blende semiconductor such as GaAs, the energy

levels are

1 (11 _
Be L (L s [ S0R B R ). (@19
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Often, the simplifying assumption that the band structure is isotropic within the plane,
called the axial approximation, is made. This is accomplished by setting o = <3 in the
above equations. We can then find solutions at .ﬁnite magnetic fields. The wavefunctions
in the valence band will be a combination of the different hh and lh subbands, with a
different Landau level associated with each spin subband [122]. The eigenvectors take on
the four-component spinor fqrm (F3/2,0-2: Fij2,n-1, F-1/2,n) F-3/2,n+1)- The first subscript
is the z-component of the angular momentum m J, and the second is the harmonic oscillator
index which describes the nature of the _La.ndau level associated with that my state. The
spatial part of F' is the 2D harmonic oscillator function in the zy-plane. The solutiog of this
system is a tedious numerical calculation, which musf. be carried out for the specific samples
used. The effects of this coupling on the optical properties of semiconductor samples will be
discussed in Ch. 4. We do not have detailed calculations for ouf samples, and therefore in
ti;e most of the future discussions we will continue to limit ourselves to the simple two-band

model, which will be suitable to qualitatively interpret our results.

2.3 Four—wave mixing

2.3.1 Four—wave mixing measurements

The experiments discussed in this work are two—pulse degenerate four-wave mixing
(FWM) experiments, in which two pulsés from a single modelocked laser, with central
frequency w and wavevectors ky and kK, (called pulse 1 and 2, respectively) are focused
on the sample sepal_'até‘d by a time delay At . A FWM signal is then emitted in both the

2];;2 — El and 21;:'1 - Eg directions. If the two pulses are equal in intensity, then both directions
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At

Figure 2.1: FWM emission.

will show the same signal, but with an opposite sign convention for At . For our work we
consider the signal in the 2]22 - 1;:1 direction, for which At is considered positive when pulse
1 arrives first. The basic configuration is shown in Fig. 2.1.

There are several measurements that can be made on a FWM signal. The simplest
is to measure the total energy of the signal as a function of the time delay At . This is called
time-integrated FWM (TI-FWM). In spectrally-resolved FWM (SR-FWM), we measure
the intensity of the FWM signal as a function of both frequency and At , by sending the
signal into a spectrometer. It is also possible to measure the signal intensity in the time
domain. In time-resolved FWM (TR-FWM), the temporal resolution is achieved by doing a
cross—correlation of the signal with a short reference pulse. The setup for making TI-FWM
and SR-FWM measurements will be described in chapter 3. Techniques have also been
developed to characterize a weak signal such as FWM in both amplitude and phase [29, 55],

but since we have not performed such measurements, they will not be detailed here.
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2.3.2 Maxwell-Liouville equations

In all measurements, we are detecting the electric field of the light emitted in the
direction 2k — k1 . To calculate this field, the coupled equations for light propagation,
Maxwell’s equations, and for the behavior of the sample, governed by the Hamiltonian,
need to be solved together. For most nonlinear optics experiments, including ours, the light
field contains a large number of photons, and can therefore be treated classically.

The wave equation for the electric field, derived from Maxwell’s equations, de-

scribes the propagation of the light through the sample:

& 47 9% -

~ 1
V X V X E(T',t) + E(’f', t) = —C—QwP(T, t), (216)

2 ot2
where P(r,t) is the polarization created inside the sample, which must be calculated

quantum-mechanically. A common technique is to use the density matrix formalism, in

which the expectation values of operators are calculated from the density matrix, p(t):

P(r,t) = Tr[P(rt)p(t)] (2.17)

oolt) = % [H(E(,0),p00)]. (219

In general, equations (2.16), (2.17) and (2.18) need to be solved self-consistently
for E(r,t) and P(r,t) throughout the sample. Throughout our work, we have made the
assumption that the sample is optically thin, which simplifies these equations by allowing
us to ignore the spatial dependence of the polarization and the electric field along the
propagation direction of the sample. We can calculate ﬁ(t) from the input electric field on
the sample surface, and then calculate the electric field emitted from ]3(t) The problem is

thus reduced to the calculation of equations (2.17) and (2.18) for the polarization.
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The following sections will discuss the calculation of the density matrix elements,
and the FWM signal, for various systems. We can split the equation of motion for p(¢) into
two parts:

L 0 oy O , 0
Zﬁ&ﬂ = 1fl5zpcoh a ’Lﬁ—ézpscau‘ (219)

The coherent part of the solution is derived from the Heisenberg equations of motion, and
this is what we will concern ourselves with solving in the rest of the section. First we will

briefly analyze the scattering term.

2.3.3 Dephasing and non—Markovian relaxation

A semiconductor is described by a Schrodinger equation which is local in time, i.e.
it depends only on the current state of the system and not the past history. If we could
solve it using the full Hamiltonian for the system, our equations of motion would also be
local in time. However, a semiconductor is such a complex many-body system that this
cannot be achieved. It is common to divide the full problem into a system that is analyzed
in detail, and a thermal “reservoir” containing all the other degrees of freedom. For the
semiconductor, the system is often the interband electronic transitions and the photons,
and the reservoir contains the phonons, and other carriers in the sample. Imagine that at
time t' the system excites a degree of freedom of the reservoir, which then evolves according
to its own energy. At a later time ¢, the reservoir interacts again with the system. This
will introduce into the evolution of the system a memory kernel, or an interaction which

depends on the past behavior of the system, making the equations of motion non-local in
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time. For the evolution of the polarization in the sample, this can be expressed as
g ¢
in—p(t) = / AT (t — t)p(¥), (2.20)

where we have introduced the memory kernel I'(¢ — ¢') which characterizes how long the
system remembers its past. In the relaxation time approximation (also called the Markovian
regime), the system is assumed to have an infinitely fast memory, I'(t —t') = y§(¢t —t'). The
relaxation can be described by a single dephasing time T3 = 1/v. It is also worth noting
that a memory kernel in the time domain corresponds to an energy dependent scattering
rate (or linewidth) in the frequency domain. By taking the Fourier transform of Eq. 2.20,
we find thwp(w) = I'w)p(w).

A detailed calculation of FWM and dephasing in the non-Markovian regime, when
the relaxation time approximation is not valid, requires sophisticated theoretical methods,
beyond the scope of this work [53, 52, 38, 96]. A comprehensive review of the current
theory of scattering at the earliest stages of relaxation can be found in Ref. [39]. Recently,
- a theory which connects this regime to the microscopic theory of Coulomb correlations in
semiconductors in the coherent regime (discussed later in this chapter) has been presented

[98].

2.4 Multilevel atomic systems

2.4.1 Two—level system

Before attempting to solve for the coherent part of Eq. (2.19) for a complicated

many-body system such as a semiconductor, it is helpful to consider a model system. The
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ideal system for thinking about FWM is an ensemble of non—interacting two-level systems,
which is the idealization of a dilute gas of atoms with a single transition nearly resonant

with the laser frequency. The Hamiltonian for this system is
Hio = Eoclico + Eeclee — pB(t)che — u* B* (t)clce (2.21)

where c(‘; creates a particle in the ground state and c[ in the excited state. E(t) is the

electric field, and 4 is the dipole moment.

The density matrix elements are the expectation values of the two—particle oper-
ators, p; ;(t) = (c}ci), where %, j = 0, e are the level indices. The Liouville equation (2.18)
can be written for each component of p(t), within the relaxation time approximation. This

results in the optical Bloch equations [3]:

. 0 , —_ ih

zhgt-pee = Im{u*E*(t)peo} — Epee (2.22)

L 0 . _— ih

2ﬁapoo = —iIm{u"E*(t)pec} — 1—1(900 —1) (2.23)
1

L 0 ih

zh&lgeo = Apeo — HE(t)(po0 — pee) — _2pe0- _ (2.24)

Here A = E, — Ey, Ty is the population relaxation time and T, = 1/ is the dephasing
time. The nonlinearity in the polarization (pe) comes from terms o< E(t)(po0 — pee), related
to the fact that the excitations obey the Pauli exclusion principle. This is called the Pauli
Blocking (PB) nonlinearity, and it is present in all material systems containing fermions.
We can solve these equations perturbatively in powers of the electric field. We
would like to solve for the third order response in the 2%y — El direction when the applied
electric field is E(t) = & (t)eiFr7=wt) 4 E(t)eik™=wt) where £ (t) and () describe the

shape of the laser pulse envelope and are slowly varying when compared to the optical
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period. In the short pulse limit, £ () = E16(t + At) and &2(t) = E24(¢), we can solve for

the FWM signal analytically. The third order response in the 2k, — ki direction is given by
—ilul*E2E* ’ ) . .
PR} = —i"—'ﬁg—?——l@(At)e“%m)“@(t)e—l(%—mt (2.25)

The signal is emitted only after both pulses have arrived at the sample, and only if At > 0.
The SR-FWM signal, given by |P(®) (w)|? where P®)(w) is the Fourier transform of P®)(t),

is a Lorentzian with a linewidth given by T,. The TI-FWM signal is given by

o0 1 1 _
|[PC) (¢, At)|2dt = n—6|m8I22I1@(At)ﬂe e, (2.26)

+
Sei(at) = [
The dephasing time can be directly extracted from either the decay time of the TR-FWM or
TI-FWM or the linewidth of the SR-FWM, and the same time constant Ty determines the
width of the linear absorption spectrum, so for a homogeneously broadened two-level system
there is no new information contained in the FWM measurements. In an inhomogeneously
broadened system, the linear absorption linewidth is the inhomogeneous linewidth. In this
case, the FWM signal is emitted as a photon echo, which appears At after the second pulse.
The homogeneous linewidth can be determined from the TI-FWM signal, which decays in

this case with a time constant of T5/4[3].

2.4.2 Three—level system

An example which will be a useful comparison to some of our measurements is a
three-level system, or an atom with 2 closely spaced transitions. The Hamiltonian for this
system is

Hyyy = EOCECO ik EACLCA + EBC;;CB

—  paE@)cheo — phE*(t)chea — ppE(t)cheo — wpE* (t)chep. (2.27)



23

When the laser pulse is tuned directly in resonance with one transition, with only a small
excitation of the other, we should recover the two-level system results. However, since the
two transitions share a common ground state, they are coupled together, and if we excite
both levels with our laser pulse, then the system can either be excited into state |A) or |B),
but not both. This coupling will be reflected as beats in the FWM signal, with a period
related to the energy difference between the two levels.

We can again write equations for the elements of the density matrix (which is now

a 3x3 matrix). For example, the equation for p,o(t) is now given by (h = 1)

i%f’ao(t) =(Qa —174)Pa0(t) — aE(t)(poo(t) — paa(t)) + wBE(t)pas(t). (2.28)

A similar equation must be written for py(t) as well. The transition energies are Q; =
E; — Ey, j = A, B. These equations can again be solved analytically in the case of delta

function excitation. The resulting third order polarization is given by

PO(t) = -2BIB{O() [|ualfe (a0t 4 |up[2e (e -i15)t]

X O(At) [|ualPe@atimat |y g 2ei@s+im)al] (2.29)

In this example it is also enlightening to solve the system numerically for Gaussian
pulses, to demonstrate the effect of the laser wavelength on the signal. Figure 2.2 shows
the results of these calculations in the frequency domain, when the laser is tuned to excite
both transitions equally, and when it only excites only the upper transition, to |B). In
the former case, the signal is emitted at the energy of both transitions, and there are large
beats as a function of time delay, with a period 7 = 27/(Qp — 24). The latter case shows

the results for the two-level atom, a single exponential decay from |B) with no beats and
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Figure 2.2: Calculated SR-FWM signal from an ensemble of three-level atoms. The exciting
laser pulse spectrum and linear absorption are shown as projections on the back screen. The
laser pulses are Gaussian with a FWHM of 120 fs, the spacing between transitions is 20
meV, and the dephasing time for both transitions is 75 = 0.5 ps. (a) The signal when both
levels are excited equally. (b) The signal when only the level |B) is excited.



no signal from the other transition. We emphasize this result, that without a signal from

several transitions, there should be no beats in At .

2.5 Coulomb correlations in semiconductors

Of course, semiconductors aren’t non—intera,ctin‘g atomic ensembles, but rather
a highly complex many-body system. If we neglect the Coulomb interactions between
electrons and holes, we can treat each state in k-space as a separate two level system. Or,
in a magnetic field, we can assume a each Landau level is a different state, and if we excite
only the lowest and next highest levels, this can be treated as a three-level system.

Optical experiments in semiconductors have been explained using multi-level sys-
tem models (see, eg., [72] and [104]). However, the Coulomb interaction has drastic effects
even on the linear optical properties of the semiconductor. Ignoring these interactions, or
including them in an ad hoc manner, is a poor way to explain the nonlinear results.

To account for the interactions between photo-excited electrons and holes, we need

to start from the Hamiltonian for the electron-hole subsystem of the semiconductor [40]:

Hiypy = Z [ecké;r(ék + evkiALLka]
k

1
2

+

> Vo [elyqbli—qbioti + Rl ohfu_ohiohic — 2L, pl_qhiwéi]
k£k!

> [HeE@ELRT + pi B ()R] (2.30)
k

The first line of this equation gives the single particle energies of the electrons and holes. é;rc

creates an electron with wavevector k, and h;‘( creates a hole. €. and €, give the disper-

sion of the conduction and valence bands respectively. The second line of equation (2.30)
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describes the Coulomb interaction between electrons (first term), between holes (second
term), and between electrons and holes (third term). Vg is the unscreened Coulomb po-
tential in k-space. The last line describes the interaction between the semiconductor and
the applied electric field. The dipole moment fi., can be taken to be independent of the
wavevector k. We consider the band dispersions to be parabolic, and given by the effective
mass approximation (h = 1):

2 k2
d =Eyg4 ——. 2.31
omr ok = B0t o (241)

€k = Eco +

The bandgap (E.o — Ey,) contains the Coulomb interaction of the full valence band.

The polarization is given by
P=> p (B =3 u(h_ié). (2.32)
k k

If we write the Heisenberg equation of motion for the operator By, we find that in addi-
tion to being driven by other two—particle correlations (polarizations and electron or hole
populations), the Coulomb interaction couples the two—particle correlations to four-particle
correlations (products of four operators). To solve our equation, we must solve equations
of motion for these four—particle correlations. These are in turn driven by six—particle cor-
relations, and so on in an infinite hierarchy. In order to solve the system, we must make

some approximations which truncate this hierarchy and give a closed set of equations.

2.5.1 The semiconductor Bloch equations

The most common method for dealing with this problem has been to factorize

the four-particle correlations into products of two—particle correlations, and then make the
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random phase approximation (RPA), which neglects the terms which oscillate rapidly due to
large momentum differences. The RPA is also called the time dependent Hartree-Fock (HF)
approximation. This leads to a closed set of equations for the two—particle density matrix
elements (1 x, N4k, and Py), which can be rewritten in a form similar to Egs. (2.22)-(2.24).
These are the well known semiconductor Bloch equations (SBE)[99, 60], given here within

the relaxation time approximation:

13}

i = (eck + €ni — 17 Pc — Y, Vi—qPq — v E(t) [1 — e s — nip i
q#k
+ Z Vi—q [Pq(nek + nr k) — Pok(7e,q + 1hq)] (2.33)
q#k
P ) 1 .
=njic = —2Im{ Pt (poB@) + ) VieaPq| ¢ — (i) (G=eh). (234)
ot b Ty

The SBE are a two-particle mean—field theory. The equations account for the
exciton structure, but do not treat exciton—exciton interactions. We will call this RPA level
Coulomb nonlinearity the bare Coulomb interaction (BCI). The density matrix elements
in Egs. (2.33) and (2.34) are driven by both the electric field of the laser and a term
due to the polarization from all other k-states. Mean—field theories, such as the BCS
theory of superconductivity [103], have been used to explain many aspects of coﬁ/densed
matter physics. The SBE have been quite successful in explaining many experiments in
semiconductors, such as the AC stark effect [99, 100], TR-FWM effects [120], and photon
echoes from continuum states [35, 59].

One very important effect of the Coulomb interaction is the existence of a FWM
signal for At < 0, seen in experiments on GaAs quantum wells [54, 119]. The prediction

of rise time of T»/4 is a general result of the SBE, independent of the excitation or the



28

material, assuming the system is homogeneously broadened. For an inhomogeneous system
there is a weaker signal for At < 0 [44].

It is possible to transform the SBE from k-space into the exciton basis (following
Ref. [21]). We find there is a non-local Coulomb coupling between the excitons at the BCI
level. A useful model can be extracted by averaging over the lowest lying exciton states,
and generating an equation of motion for a single average polarization, P. The average
polarization model (APM) was first introduced to clarify the RPA theory for FWM, since
it captured the essential physics while simplifying the equations to keep the interpretation
transparent [119].. In addition to the averaging, we will make the assumption that we are
in the coherent regime, and that the length of the Bloch vector is constant, or n = |P|%.

We then have only a single equation to solve perturbatively:

0

Thd _P@P
ot

P(t) = (2 —iv)P(t) — uE(2) [1 - +VP@)|P(t)% (2.35)

Here, P, is a saturation parameter and V is an effective Coulomb coupling parameter. It
is straightforward to generalize Eq. (2.35) to include several levels [21], for example the
different hole states. The APM has been useful in explaining a number of experiments at the
RPA level [119, 120, 102]. However, for a quantitatively accurate simulation of experiments,
it is necessary to use the full numerical solutions of the SBE, including all band structure
and selection rules.

We can also apply the RPA factorization technique when we have a magnetic
field applied to the sample. We start by e);panding the magnetoexciton states in terms of

the Landau levels, as in Section 2.2.2, and generate a set of equations for P, and n,, the
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polarization and excited population of Landau level n respectively [112]:

.0
im P = (En =§ Z Vn)nlnn,) P, — (1 -2n,) (,uch(t) + Z Vn,n,P,,,> (2.36)

n n
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i = 2Um {Pn (ucuE ®) + ; Vn,n,Pn,> } . (2.37)

The Coulomb interaction V;, »/ couples different Landau levels together, and is given in Eq.
(2.11). Egs. (2.36) and (2.37) have been solved numerically for up to 1000 Landau levels
[112, 102]. An APM can be generated from this system as well, by keeping only the few
Landau levels which are directly excited. However, due to the long range nature of the
Coulomb interaction, it is necessary to include many levels in order to achieve any level of

accuracy in these calculations.

2.5.2 The Dynamics controlled truncation scheme

Over the past several years, numerous experimental effects have been measured
which require a theoretical description beyond the RPA, such as the contribution of biex-
citons to the nonlinear optical response [10, 63, 48]. The correct interpretation of these
experiments requires a formalism in which the Coulomb interaction is accounted for consis-
tently, and to arbitrary order. One such formalism which naturally extends the SBE is the
dynamics controlled truncation scheme (DCTS) [8].

Calculating the optical response starts, as before, with the many-body Hamilto-
nian, Eq. (2.30), and the equation of motion for the polarization. However, unlike in the
RPA treatment, the four—particle correlations are not factorized. The results of the DCTS
theory are several mathematical theorems which show that certain higher correlations con-

tribute to higher order in the electric field, and can thus be neglected for a calculation of
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the optical response to a given order [8, 5, 116]. This can be accomplished because of the
correspondence between the number of electron—hole pairs in the system and the sequence of
photon absorption and emission. The theory systematically includes all correlations which
contribute to a specified order. In the limit of third order processes (X(?’Ltruncat;ion), and
within the coherent limit, there is only one four—particle correlation function which must
be taken into account, the biexciton creation operator B [116, 97]. The effects of additional
four—particle correlations, such as the exciton density, and correlations which contribute to
fifth order in the electric field, have been investigated as well [13, 17].

The necessary four-particle correlation, Beh¢'h = (eheé'h'y—(eh)(&'h')+ (eh')(é'h),
gives the biexcitonic structure, both the b;)und and unbound states. By subtracting the
factorized components, we let B characterize the deviation from the RPA theory [97]. The
DCTS equations will then contain several driving terms: (1) the PB nonlinearity present
even in atomic systems, (2) the BCI Coulomb interaction of the RPA theory, and (3) a
new source term which describes the coupling between excitons and the full spectrum of
two—exciton states. This final driving term is beyond the RPA, and has a dramatic effect
on the FWM signal.

To understand the effect of this correlation, we can update the APM to include
higher order correlations, based on the DCTS microscopic theory [97, 49]. For the case of
co—circularly polarized laser pulses (which cannot excite a bound biexciton), the new APM

equation of motion for the polarization is [49]

[P®)I?
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Figure 2.3: TI-FWM calculated from the average polarization model, showing the differ-
ent time dependence of the Pauli blocking (PB), mean—field (BCI), and exciton—-exciton
correlations (XXC). From Kner et al. [48].

where the function B is an effective four—particle correlation function describing the contin-

uum of unbound biexciton states, and satisfying the equation

i%B(t) = (20 — i) B(t) + P(t)% (2.39)

Unlike the PB nonlinearity which exists only for At > 0, or even the BCI nonlin-
earity for which the rise time is half the decay time, new source term due to exciton—exciton
correlations (XXC) grows in a non-exponential fashion, and for At < 0 can dominate the
signal, as shown in Fig. 2.3. These equations can easily be generalized to include the four
Zeeman split hh and 1h transitions in a magnetic field [30]. The updated APM has also been
used to explain the effects of the bound biexciton on the pump/probe spectrum of ZnSe
QWs and microcavities [74, 75]. The functional form of the model is directly related to
the full microscopic theory, which makes it qualitatively different from a simple multi-level
scheme.

Several different formalisms have been developed which are able to account for
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- —— Theory
---- Experiment

TI-FWM Signal [arb. units]

Delay [ps]
Figure 2.4: Theoretical and experimental TI-FWM signals from bulk GaAs at 10T, for

colinear polarized excitation and densities n = 1.5 x 10%cm™3,1.5 x 10®cm~3, and 5 x
10%cm~3(x10) (bottom to top). From Schifer et al. [98].

higher order correlations, and many are in fact equivalent to the DCTS [87, 73, 68, 79].
Recently, a theory has been presented which bridges the gap between the DCTS and theories
based on Greens functions which explain the build—up of screening effects [98]. Within this
theory it is possible to simulate with remarkable accuracy the results of FWM in bulk GaAs

in a high magnetic field, as seen in Fig. 2.4.

2.5.3 Limits of the DCTS

The DCTS is successful because in many semiconductor systems, there is a corre-
spondence between the number of electron-hole pairs in the system and the absorption of

photons. In semiconductor systems where this scheme is applicable, we have been able to
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explain the experimental results with incredible accuracy. However, if this correspondence
breaks down, the DCTS fails. This is the case, for instance, in modulation doped quantum
wells (MDQWs), where a high mobility two dimensional electron gas (2DEG) exists in the
sample before excitation, and can react to photons and photo-excited carriers. In the com-
ing chapters, we will investigate some of the unusual results of FWM in these materials,
and present a new theoretical approach which is capable of describing the dephasing and

correlation effects of a 2DEG.

2.6 The two dimensional electron gas

The presence of a Fermi sea of electrons drastically changes the optical properties
of a quantum well. In an undoped semiconductor, the correlations in the ground state are
often not considered, because they are high energy and can adjust almost instantaneously
to the dynamics of the near-bandgap carriers. Thus the ground state, except for providing
the band structure and dielectric screening, can be considered rigid. In a doped system,
the presence of electrons in the conduction band implies low energy excitations which can
alter the dynamics of the photo—excited electron-hole pairs.

The 2DEG causes several differences from the undoped case, such as the restriction
of phase space available for excitation or scattering of conduction electrons, due to the Pauli
exclusion principle. The presence of electrous in the conduction band changes the optics,
since a photo-excited electron cannot be placed in a state which already contains a doped
electron. This forces a relationship between the optical properties of the sample and the

filling factor, or the number of filled Landau levels, defined as v = N,/D = 2ni?N, « 1/B.
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We will detail the dependence of the linear absorption on v in chapter 4.

More striking are the Coulomb correlation effects, even in the ground state, caused
by the 2DEG. The electron—electron interaction causes a renormalization of the band ener-
gies, and also of the electron—hole Coulomb interaction. The many-body states introduced
by coupling to the low energy excitations of the Fermi sea will also affect the optical proper-
ties. The shake-up of the electron gas in response to the photo—excitation of an electron-hole
pair creates the Fermi edge singularity (FES), a strong enhancement of the absorption at
the band edge, similar to that seen in the X-ray spectra of metals [77]. Instead of forming a
one electron—one hole coupled system (an exciton), the excitation creates a many electron-
one hole collective state. The linear optics the FES have been studied both experimentally
[101, 61] and theoretically (see ref. [81] and the references therein). Understanding the
nonlinear optical response of the FES requires a treatment which goes beyond the DCTS
to account for the presence of the Fermi sea [85, 106, 94, 88]. It is this technique which we
will use to interpret our work on doped samples in a large magnetic field.

The high-mobility 2DEG in a magnetic field is a strongly correlated system, and
these correlations lead to unusual experimental behavior, such as the quantum Hall effect.
Transport and linear optical experiments have been successfully used to study some of the
unique properties of this system [95, 113, 51, 36, 1]. While the intra- and inter-Landau
level excitation spectrum has been predicted [33, 45, 66], only a few experiments in electron
tunneling or Raman scattering [27, 92, 91] have successfully accessed this information. We
will be interested in how these excitations affect the dynamics of the photo—excited system.

At high field, when the Landau levels are well separated from one another, it costs
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nes -

Figure 2.5: Magnetorotons. (a) The calculated dispersion curves for intra-Landau level
excitations at fractional filling. From Girvin et al. [33]. (b) Cartoon of the development of
a magnetoroton excitation from the phase of single electron orbits.

an energy ~ w, to create an inter-Landau level excitation. But there is another energy scale
for the electron gas: the Coulomb interaction potential is ~ €?/l.. For fields of B ~ 10T,
this energy is less than the cyclotron energy, and we can assume that there are intra-Landau
level excitations, which exist entirely within a single Landau level. It has been shown [33]
that the same theory used by Feynman to explain the excitations of liquid Helium can also
be used to explain the intra-Landau level excitations of the two dimensional electron gas
in a large field. The dispersion curve for these excitations, shown in Fig. 2.5(a), exhibits a
minimum at a characteristic energy, in parallel with the roton mode in superfluid helium. In

the quantum Hall community, these objects are called magnetorotons, and can be thought



36

(@)

Conduction Band levels
Ground 1 MP excited
state state

| I |
7 7

W

(b)

“A=E—-h0) . . pfrg it
[ -

ot e
| - o

H:J[

f*‘ il -
§< ’ ¢ n‘q:‘-

Figure 2.6: Magnetoplasmons with completely full Landau levels. (a) Cartoon showing
the excitation of a magnetoplasmon. (b) The dispersion curve of an inter-Landau level
excitation at filling factor » = 1. From Kallin and Halperin [45].

of as an excitation in which the electron density remains essentially constant, but there
is a circular modulation built up from the phase of the single electron orbits, as shown
schematically in the bottom panel of Fig. 2.5.

The inter-Landau level excitations are called magnetoplasmons, and are most eas-
ily understood when we have a completely full Landau level, as shown in Fig. 2.6. Promoting
an electron from a full Landau level to the next highest empty level costs energy w.. How-
ever, the removal of an electron leaves behind a hole in first level, which can interact with
the promoted electron, similar to a magnetoexciton. This interaction must be taken into
account to understand the structure of the excitation. The dispersion curve calculated for

a full Landau level (v = 1) to first order in the Coulomb interaction energy €2/l is shown
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Figure 2.7: Magnetoplasmons with a partially full Landau level. (a) The excitation of a
magnetoplasmon from a partially full Landau Level. (b) The dispersion curves of inter—
Landau level excitations at partial filling. From Macdonald et al. [66].

in Fig. 2.6(b). This curve can also be obtained through a mean-field approximation.

The theory of intra-Landau level excitations discussed above has been extended to
the calculation of the magnetoplasmon dispersion at partial filling [66], as shown in Fig. 2.7.
Within the mean-field theory, any filling factor less than 1 should give the same dispersion
curve as nu=1. If we think of the full level case as the creation of an electron-hole pair,
similar to a magnetoexciton, than in a partially full level a magnetoplasmon is like an
electron-hole pair accompanied by a shake-up of the electron gas. Note that for all filling
factors, the excitation energy at long wavelength approaches the cyclotron energy. This is
Kohn’s theorem, a direct consequence of the translational invariance of the system in the

x-y plane.
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2.7 Conclusion

In this chapter, we reviewed the electronic structure of GaAs QW samples, and
the effects of an applied magnetic field. We described FWM in atomic systems, and also
how the Coulomb interaction changes the picture. We introduced the DCTS theory, which
can explain FWM in undoped semiconductors quite well, and also explained why it breaks
down in doped semiconductor samples. We also reviewed some of the correlations in a

2DEG, which will prove important in trying to understand our experiments in modulation

doped QW samples.
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Chapter 3

Experimental Setup

3.1 Introduction

This chapter provides a practical description of the two-pulse degenerate FWM
experiments studied in this work. The geometry of such an experiment and the differ-
ent measurements which were performed on the FWM signal, time integrated (TI) and
spectrally resolved (SR) FWM, were described in the previous chapter.

We will begin with a description of the semiconductor samples used in the ex-
periments, and the techniques used to process the samples for transmission measurements.
Next we will describe the laser system and the layout of the optical table, including the
magneto—optic cryostat used to apply the magnetic field and keep the sample at low tem-
perature. We will then detail the process of aligning the experiment and detecting the
FWM signal. We will end the chapter with descriptions of some additional measurements

and calculations used to characterize the samples and evaluate the FWM measurements.
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3.2 Samples

Several different semiconductor samples were used in the experiments described in
this work. All the samples were GaAs/AlGaAs quantum wells (QWs) grown by molecular
beam epitaxy (MBE). The modulation doped QWs (MDQWs) used for the 2 dimensional
electron gas experiments were grown by the group of Professor Art Gossard at UC Santa
Barbara. The undoped QW samples used for comparison were grown at Sandia National
Lab. In all cases, the same overall sample design was used, the difference lying only in the
thickness and dopant concentration of the active regions. The sample structures are shown
in Fig. 3.1. To start off, MBE GaAs is deposited onto the wafer, as thick as necessary to
ensure the growth of clean epitaxial layers on top of the substrate. This is followed by a
0.5um layer of Aly3Gag.7As, which will serve as a stop etch layer to ease in the substrate
removal during processing. Also, the layer separates the active region from the surface so
that band-bending effects are avoided. The active layers of the sample are grown next,
followed by another layer of AlGaAs to protect the sample from surface effects. The top
layer grown on the sample is a thin cap layer of GaAs, grown to prevent the oxidation of
the AlGaAs layer.

The active regions of all the samples were several alternating layers of Alg3Gag.7As
and GaAs. The MDQWs are grown by adding donor dopants, in this case silicon, to
the central 120Aof the AlGaAs layers. The concentration of electrons in the wells at low
temperatures is a complicated function of the density of silicon dopants added, the distance
between the silicon layer and the GaAs QW, and the ratio of aluminum to gallium in

the barrier region. The electron density can be estimated by semi-classical solutions of
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Figure 3.1: Structure of the MBE grown samples. (a) The general sample structure for all
samples used. Also pictured are the active regions of (b) the MDQWs, and (c¢) the undoped
QWs. The number of periods in the active region of the QWs n = 30 or 10.

Poisson’s equation, but in practice the silicon dopant density and the barrier thickness
must be adjusted by trial and error in order to fix the electron concentration. Several
different MDQW samples were used in experiments. Two samples consisted of 30 periods
of QWs with densities of 2.5 and 4.9 x10'! electrons/cm? in each well, while one consisted
of 10 periods with a density of 2.1 x 10'! electrons/cm?. The undoped QW samples were 10
period structures, consisting of 100AAlGaAs barriers and 140AGaAs wells. The properties
of all the samples discussed in this work are presented in Table 4.1.

The samples must be processed before they can be used in transmission measure-

ments, since the thick GaAs substrate on which the sample is grown absorbs the incident
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laser light. To prepare the sample for transmission measurements, it was first anti-reflection
coated, by depositing a A\/4 thick layer of ScoO3, which has the correct index of refraction to
minimize reflections off of GaAs surfaces (measured at 1.86), onto the polished surface of the
wafer. A 2mm x 2mm piece was then cleaved from the wafer and glued, coated side down,
to a sapphire window using UV cured epoxy (Norland optical adhesive 61). Sapphire was
used because of its high thermal conductivity. The windows were 11mm in diameter and 1
mm thick, c-axis cut to avoid birefringence, but with a 1° wedge to avoid interference from
multiple reflections off the sapphire surfaces. The GaAs substrate was then sanded to a
thickness of 100 pum, after which the remainder of the substrate was removed by a selective
chemical etch, which dissolves GaAs greater than 10 times faster than Alg3Gag7As [56].
We used a jet etcher (Model 550D Single vertical Jet Electropolisher) to speed the etching
process. After the stop etch layer was reached, the etched surface became very smooth. The
etched surface was then anti-reflection coated as well, after which the sample was ready for

transmission measurements.

3.3 The laser system

The laser used in these experiments was a Kerr-lens modelocked Ti:Sapphire laser,
built from the NJA-2 kit, manufactured by Clark MXR. The laser produced output pulses
with a temporal length (FWHM) between 90 and 400 fs, with an output power between
200 and 400 mW. The pulse repetition rate in this configuration, determined by the laser
cavity length, was 100 MHz.

The laser was generally characterized by two measurements: the laser pulse spec-
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Figure 3.2: Typical laser spectrum and autocorrelation. AvAt = 0.45, where Av and At
are the FWHM values of the electric field intensity in the frequency and the time domain
respectively. AvAt = 0.4413 for transform limited pulses.

trum and the autocorrelation (AC). The laser pulse spectrum was measured by sending a
laser beam into a spectrometer (discussed in section 3.6). The AC was taken using the same
two pulses used in the FWM measurements (beams 1 and 2 in Fig. 3.4), focused into a
0.5mm thick beta-barium borate (BBO) crystal. The BBO crystal was specially designed
for second harmonic generation (SHG) of the 800 nm laser light. The two pulses were not
colinear, so that the second harmonic generation at 400 nm propagated in a background
free direction. The AC signal was detected with a Hamamatsu 931A photo-multiplier tube
(PMT), and sent to a SR830 lock—in amplifier. The two beams were differentially chopped
using a HMS double chopper, and the lock-in was referenced at the difference frequency. A
typical laser pulse spectrum and AC measurement are shown in Fig. 3.2. The pulses were
nearly Gaussian in profile, and within 10% of the transform limit. In some configurations,

there was some structure in the wings of the laser spectrum, but the temporal behavior of
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Figure 3.3: FROG measurement of the laser, giving both the phase and amplitude of the
electric field pulse, in both frequency (left) and time (right). Courtesy of M. V. Marquezini

the pulses remained well behaved, and the experimental results were not affected by these
abnormalities.

The laser was also characterized by frequency resolved optical gating (FROG)[26,
114]. For our measurements, the optical gate was the same BBO crystal used for second
harmonic generation in the AC measurements. With this technique, both the amplitude
and the phase of the electric field pulse can be determined. Fig. 3.3 shows the results of
such a laser characterization. The pulse shape was well fit to a Gaussian, and the phase

was essentially constant between the 2% points of the laser spectrum[71].
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Figure 3.4: Layout of the optical table.

3.4 The experimental layout

The standard layout for FWM and pump/probe measurements is shown in Fig.

3.4. The output from the laser was divided into two equal intensity beams by a beamsplitter.

The two beams were made to travel nearly equal length paths along the table, and then

sent into the cryostat, described in detail in the next section, unless they are diverted into

the AC setup shown in the inset to Fig. 3.4 by placing a mirror on a removable magnetic

mount in the beam path. The mechanical stage in the path of beam 2 allowed us to adjust
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the arrival time of beam 2 at the sample relative to the arrival of beam 1. The stage is a
Klinger stepper motor, with 0.1um step size, which allows time delay steps of 0.667 fs. The
two beams were aligned parallel, approximately 1 cm apart and 14 cm above the table. The
parallelism is confirmed by adjusting the separation between the beams at two points, one
near the steering mirrors and the other several meters away.

Two mirrors aligned as a periscope were used to raise the beam to a height of
30 cm, to be sent through the cryostat windows. The beams were then sent through a
zero-order \/4 plate, which enabled us to change the polarization of the incident light from
linear to circular, with a degree of polarization better than 99.9%. After the wave plate,
the beams were focused into the cryostat using a two inch diameter, 200 mm focal length
lens. The angle between the beams, or ky and 1_9:2, was 2°.

To align the beams for a FWM measurement, they were first aligned parallel as
carefully as possible. The time delay zero was found next by finding the AC signal. The
zero delay given by the AC did not correspond exactly to the zero delay at the sample,
because the AC was not taken at the same position, but they were never more than 100 fs
different. The exact FWM zero delay could be determined by measuring the signal in both
the 21_9‘2 — El and 21_51 — Eg directions. These measurements should be symmetric around
zero time delay. The next step to find the FWM signal is to get good spatial overlap at the
sample. In practice, this was most easily accomplished by measuring and maximizing the
pump/probe signal. It can also be done by imaging the sample surface with a CCD camera
and looking for the interference of the two beams. However, because of the small aperture

of the magnet windows, this was often difficult to see. Once the beams were spatially and
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temporally well aligned, the FWM signal would be visible on either side of the transmitted
beams with an infrared viewer. It is necessary to block the much stronger fundamental
beams directly after the cryostat to see the weaker FWM signal in this way.

After the cryostat, all three beams (with wavevectors El, Ez, and the FWM signal
21_52 — El) were re-collimated with an identical 200mm focal length lens, sent through another
A/4 plate to restore linear polarization, and returned to a height of 14 cm by another set
of periscope mirrors. The FWM signal was then sent directly through two irises which
serve to align the beam into the detection setup. For pump/probe or linear absorption

measurements, one of the fundamental beams would be aligned through the irises instead.

3.5 The magnet

The samples were measured inside a magneto-optic cryostat, which was designed
and built by Oxford Instruments, Inc. The magnet itself was a superconducting split—coil
magnet which operates between 0 and 12 Tesla, and is uniform to better than 0.25% within
a 10mm diameter volume in the center of the coils. A cross section of the magnet is shown
in Fig. 3.5. A variable temperature sample cell created a sample space in the uniform area
of the magnetic field, with optical access both along the magnet axis and perpendicular to
the field direction.

The samples were fixed to a flat metal sample holder with teflon tape. The sample
holder was then mounted onto a 112cm sample arm, which was inserted into the sample
cell. Once thermal equilibrium was reached, the sample position was stable to within 5pm.

A capillary tube connected the sample space to a helium reservoir. By opening a
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Figure 3.5: Magnet cross-section. The angular aperture is 25.5°.
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needle valve in the capillary tube and pumping on the sample space, it was possible to fill the
bottom of the sample cell with superfluid He4 at a temperature of 1.7K. The temperature
of the sample was measured with a carbon—glass resistor mounted onto the sample holder.

There was also a temperature sensor and a resistive heater mounted at the base
of the sample cell. By regulating the flow of helium into the sample cell and controlling
the voltage applied to the heater automatically, the sample temperature could be controlled
with a feedback loop. In practice, the flow of helium was kept constant, and a stable sample .
temperature could be reached simply by changing the power dissipated in the heater. We
used an Edwards RV12 rotary vane pump with a displacement of 7 cfm to pump on the
sample cell, which brought the sample to a temperature of 1.7K with a pressure of 5 torr

in the sample cell.

3.6 Four—wave mixing measurements

In a FWM experiment, the FWM process, in which 2 light pulses arrive at the
sample and cause the emission of a FWM pulse, is actually repeated at the repetition rate
of the laser (~every 10 ns), and the total power of the FWM signal is measured. In TI-
FWM measurements, the entire signal was sent directly into a PMT, and the total power
was measured as a function of the time delay, At. We used a RCA-C31034A PMT with
a GaAs photocathode, in a Products for Research housing. For typical measurements,
the PMT was biased at -1000V, and the FWM signal reduced by a factor of 300 before
being sent into the PMT. To improve the signal to noise, the input beams, Ky and ks, were

differentially chopped with a HMS light chopper, and the PMT output was converted to a
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voltage using a trans-impedance preamplifier, and then measured with the SR830 lock-in
amplifier, referenced to the HMS chopper frequency. The signal was then measured as the
time delay of pulse 2 was varied.

In SR-FWM measurements, the power of the FWM emission was measured as
a function of the emission wavelength, at a given time delay. The spectral resolution was
provided by an Acton Research Corporation 750mm spectrometer (Spectra Pro 750). When
possible, the signal was detected by an optical multichannel analyzer (OMA). A CCD array
(Princeton Instruments) measured the spectrally resolved signal, which was sent to the
OMA (Princeton Instruments controller ST-130), which was connected to the computer
via an ISA serial connection. There were three gratings installed in the spectrometer:
150 gr/mm, 600 gr/mm, and 1200 gr/mm. The most commonly used grating was the 600
gr/mm, which gave a dispersion on the CCD array of 0.054 nm/pixel. The spectrometer was
calibrated using an Oriel argon calibration lamp. A background signal due to scattering and
luminescence is subtracted by measuring the spectrum with each beam blocked individually,
and subtracting these spectra from thé SR-FWM signal. If this background signal was too
large, the subtraction wduld not work well. In these cases, the spectrometer was used as
a monochromator, and the signal at each wavelength was measured as a function of time
delay separately using a PMT at the output slit and the lock-in amplifier. This method
drastically reduced the background noise, since the lock—in would only record signal chopped
at the reference frequency of the light chopper. However, measurements made this way took

much longer to complete.
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3.7 Data collection software

The lock—in amplifier and the Klinger stepper-motor driver were both connected
to a PC with GPIB connections. The OMA was connected to the same PC using a serial
ISA card, and the spectrometer was connected through the RS-232 serial port. In this way,
the various electronics could all be controlled remotely by a single computer. The data was
collected using three different programs written in Visual Basic.

The program which controlled the OMA had the OMA take one spectrum, down-
loaded it to the PC and displayed it on the screen. One scan could be read and saved as a
scan of the dark current in the CCD array, and it was then subtracted from all future scans.
The program was also capable of collecting an array of scans as a function of the stepper
motor position. In this way it was possible to measure the SR-FWM signal as a function
of both wavelength and At.

The other two programs were used to read data from the lock—in amplifier. The
first would scan the stepper motor position, waiting at each value for a specified amount of
time before reading the value measured by the lock-in. The other would scan the grating
position of the spectrometer, waiting at each wavelength position for a specified amount of
time before reading the value measured by the lock—in. This program could also be used to
scan both the grating and the time delay, generating an array of data vs. both wavelength

and At, as in the OMA program.
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3.8 Sample characterization measurements

It was necessary to measure the linear absorption of each QW sample, to character-
ize sample quality, and to help the analysis of the nonlinear measurements. The absorption
of the sample was measured by transmission using an incandescent light bulb as a source.
The light was focused through a pinhole, and the outgoing light was then collimated with
another lens, and polarized using a Glan-Thompson polarizer. The light was then focused
onto the sample in the cryostat using the FWM setup, and the transmitted light was sent
into the spectrometer. The light spectrum was taken both with and without the sample in

place, and the absorption coefficient was calculated using Beer’s law,

a(w) = Tlnlo(w)

(3.1)

where L is the sample thickness, I;(w) is the transmission sample measured through the
sample, and Iy(w) is the spectrum measured without the sample.

Because the pinhole is not a perfect point source, the spot size of the focused beam
on the sample is larger than the laser spot. Therefore the inhomogeneity of the sample due
to well width fluctuations and strain will result in a larger linewidth measurement for the
absorption spectra taken in this manner.

Linear absorption measurements were also taken using the laser pulses themselves,
after the FWM signal was aligned in the detection setup, by sending the probe beam, instead
of the FWM signal, into the spectrometer. This allowed us to adjust the excitation to meet
specific criteria while doing the FWM measurements. However, the energy range for which
the absorption spectrum could be measured was smaller than when the light bulb was used.

Also, fluctuations in the laser central frequency and structure in the wings of the laser
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pulse spectrum created background and additional structure in the calculated absorption
spectrum «(w), which needed to be corrected manually. This was usually done by direct
comparison with the light bulb absorption spectra. The linear absorption spectra for our

samples are presented and discussed in detail in Ch. 4.

3.9 Spot size measurements

In order to estimate the number of carriers created by the laser pulses during
the experiments, it is necessary to measure the size of the laser spot when focused on the
sample. Since the measurements were performed inside the magnet cryostat, the spot size
measurement could not be made directly at the sample position. Instead the beams were
steered alongside the magnet, along an identical length path to the actual experiment, and
focused using the same lens. An amount of glass equal to the thickness of the windows
of the cryostat was placed between the lens and the focal plane, to reproduce the FWM
measurement conditions as accurately as possible.

The spot size measurements were performed by passing a knife edge through the
focused beam and recording the intensity of the light transmitted past the knife edge. The
knife edge, typically a razor blade, was mounted on a linear translation stage along the
beam direction and on a Klinger stage, so the data could be collected automatically. The
power as a function of knife edge position was then fitted to an error function, to extract
the beam waist wy assuming a Gaussian (TEM0) beam profile. The fits were in general
quite good. By adjusting the linear translation stage along the beam direction, we could

calculate the beam waist as a function of the lens position.
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A typical measurement of the beam waist was 26pm. This value is a lower bound
for the spot size, since we can’t be sure whether the sample was exactly at the focus of the

laser spot inside the cryostat.

3.10 Excitation density calculations

Once the spot size and a(w) are known, we could calculate the density of carriers
excited by the laser during the experiment. The derivation of the carrier density formula is

given here. The total power absorbed per unit area in the sample is
/de(w) (1 - e“aL) W /cm? (3.2)

where I(w) is the laser intensity, and L is the sample thickness. The average number of

carriers created by one pulse, in each individual QW, per unit area in the QW plane, is

N = NLWf /dw% (1 - e‘aL) cm ™2 (3.3)

where Ny is the number of periods in th QW structure, and f is the laser repetition rate.
However, The laser intensity is not uniform in the radial direction (in the plane).
We will approximate the intensity I(w) by averaging the intensity for r < wg. For a Gaussian

beam, the average intensity over that disc is

_ 0.865Pp
2

N w,
=1 / * onrdrl(r) = W /cm? (3.4)
mw}i Jo

W
where Pr is the total power in the beam, as measured by a power meter (Newport model
815 with attenuator). We can pull the average intensity out front, and normalize the Laser

pulse spectrum L(w) so that [dwL(w) = 1. This gives the total carrier density formula

0.865P; L(w) o
= 1—e @ ’ 3.5
ul mwi3 Nw f /dw hw ( ¢ ) o (3:5)




The integral was calculated numerically from the absorption spectra and the measured laser
pulse.

In some experiments described here, it was desirable to know the number of carriers
excited only into a specific level. In this case, the integral in Eq. (3.5) was only performed
over a small frequency window containing only that level.

’fhis calculation only gives an upper bound for the carrier density. The spot size
is a lower bound, as discussed above, the quantum efficiency of the system is assumed to be
100%, the absorption is not corrected to account for bleaching or reflection, and the power
measured is higher than the power incident on the sample due to the optical components

between the sample and the position the measurement was made.
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Chaptef 4

Linear Absorption Measurements

4.1 Introduction

In order to understand the nonlinear optical response of our samples, it is im-
portant to characterize the sample as completely as possible. In this chapter, we discuss
the results of linear absorption measurements, which will help us to understand the optical
response of the samples, and will therefore give a good framework for understanding the

results of the nonlinear optical measurements presented in the coming chapters.

4.2 Linear absorption in semiconductor structures

The dipole allowed optical transitions from the four hh and 1h bands to the conduc-
tion band in GaAs QWs are shown schematically in Fig. 4.1. The transitions are induced by
circularly polarized photons (0%), which are pure spin states, and correspond to a selection

rule of Amy; = +1.
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Figure 4.1: Selection rules for optical transitions across the bandgap.

The addition of a magnetic field lifts the degeneracy between the spin up and
spin down conduction band states, as well as splitting the conduction band into a series
of degenerate Landau levels. As discussed in Chapter 2.2.3, the dependence of the va-
lence band structure on the magnetic field is complex, due to strong band mixing. Recall
that the eigenvectors for the valence band states take on the four-component spinor form
(F3/2,n—2:F1j2n—1, F-1/2,n, F-3/2,n41), Where the first subscript is the z-component of the
angular momentum m, and the second is the harmonic oscillator index which describes the
nature of the Landau level associated with that m state. The selection rules require, as
above, that Amj = £1. In addition, the photon can only couple states that have the same
harmonic oscillator character n. For excitations into the lowest conduction band Landau
levels, n = 0, The lowest energy transitions are shown in Fig. 4.2. All of the valence band
states shown in this figure have the character of heavy holes at B = 0. These transitions

were calculated to be the lowest in energy for GaAs QWs in high field [122]. As Fig. 4.2
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Figure 4.2: Selection rules for optical transitions in a magnetic field. Transitions can only
be made to the lowest electron level, with harmonic oscillator index 0, from a valence band
state with the same n = 0 character, and must also satisfy the change in angular momentum
Amjy = +1.

shows, there are several transitions to both of the lowest electron Landau levels excited
by o~ polarized light, and only one transition excited by o*. Because of this difference,
we have performed our nonlinear experiments using o% polarized light, to simplify the
interpretation.

We have measured the FWM signal from numerous samples, both undoped QWs
and MDQWs. I will discuss the results from several of these samples in the coming chapters.
Some experiments were performed on other samples, not included in this work, to confirm
our results. The doping levels and mobilities of the samples discussed here are given in
Table 4.1. Here we present the linear absorption spectra from our undoped QW sample,
sample D, and the spectra from one of our doped samples, sample A, to demonstrate the

general features for the MDQW samples.



Sample A |B |C |D
Periods 30 |30 |10 | 10
Density (x10Tem™2) 2.6 | 4.9 | 2.1 | undoped
Mobility ( x10%*cm?/Vs) 8.8 |74]9.7|NA.
Field for onset of LLO absorption (T) | 5.2 | 9.8 | 4.3 | N.A.

Table 4.1: Properties for the samples measured in this work.
4.3 Absorption in undoped quantum wells

The absorption spectra presented here were measured using o polarized light from
a light bulb as a broadband illumination source, as described in Ch. 3. The low temperature
spectra for sample D at a series of magnetic fields are shown in Fig. 4.3. The spectra for
B = 0T shows the heavy and light hole excitons, and the step-function like continuum of
unbound exciton states. As expected, when the field is increased, the spectrum splits into a
series of Landau levels. The valence band states complicate the picture somewhat, leading
to a manifold of transitions for each Landau level. As mentioned above, using o+ polarized
light helps to simplify this somewhat, although there are still pronounced heavy and light
hole transitions to the lowest electron Landau level. Figure 4.4 shows the evolution of
the energies and linewidths of the main (hh) transitions for the lowest Landau level (LLO)
and the next highest level (LL1). The Landau level energy spacing increases linearly with
magnetic field, as expected from the discussions in Ch. 2.2.2. The fluctuations in linewidth
are relatively minor.

Absorption measurements were also taken with the laser pulse, in order to directly
compare the absorption spectra with the FWM measurements taken at the same spot on
the sample, in an attempt to avoid the sample inhomogeneity due to well width fluctua-

tions and variations in strain. The LL energies are not significantly different in the laser
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Figure 4.3: Absorption spectra of sample D in a magnetic field.

measurements, and the linewidths are only slightly narrower. The linewidths in the absorp-

tion spectra should correspond to decay times of the FWM measurements. The decay as a

function of time delay for a homogeneously broadened system is T5/2 = h/(2v) =~ 0.4ps for

a typical linewidth measurement.
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Figure 4.4: Peak energy and linewidth vs. magnetic field for sample D, for both the lowest
(LLO) and next highest (LL1) Landau levels.

4.4 Absorption in modulation doped quantum wells

Even without the Coulomb interaction, the presence of the conduction band elec-
trons changes the linear optics of the QW. The extra electrons fill the bottom of the con-
duction band, so additional electrons cannot be added to the system unless their energy
is greater than the Fermi level. When the magnetic field is turned on, the electrons fill
the lowest Landau levels. As the field increases, the degeneracy of each Landau level also
increases. The filling factor is defined as v = N, /D = 27l2N, < 1/B. At some field, all the
electrons can fit into the lowest Landau level, with all the others empty (v = 1). It is only
once we reach this point that we should be able to see absorption into the lowest Landau
level. The effect of the increasing magnetic field on the filling factor is shown in the cartoon

in Fig. 4.5.
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Density of states and Fermi energy

Magnetic Field

Figure 4.5: Filling factor dependence on magnetic field. As the field increases, we can fit
more of the doped electrons in each Landau level, with fewer Landau levels completely occu-
pied. Only in the final panel can we see the lowest Landau level in absorption measurements.

In addition to these phase space filling effects, the Coulomb correlation between
the photo-excited electron-hole pairs and the Fermi sea leads to an enhancement of the
band edge absorption, the so-called Fermi edge singularity (FES) at zero magnetic field.
This enhancement can be seen in Fig. 4.6, which shows the low temperature absorption of
both an undoped QW sample and a MDQW. The FES in MDQW absorption spectra has
been studied in depth elsewhere [61, 81], and is not the subject of this work.

Figure 4.7 shows the linear absorption spectra of sample A, a MDQW, for many
different magnetic fields. There are several differences between the doped and undoped
sample absorption. In addition to the formation of the FES, we find that the presence
of the doped carriers in the conduction band renormalizes the band energies and effective
masses. This changes the cyclotron energy, and therefore the Landau level splitting at a

given field. Also, as discussed above, the absorption into lower Landau levels only occurs
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Figure 4.6: Absorption spectra of samples A and D at zero magnetic field. The solid line
is the doped sample (A) showing a Fermi edge singularity from both the hh and 1h valence
band states, and the dashed line is the undoped QW (D), showing hh and lh excitonic
transitions.

for sufficiently high fields, or low filling factors. Looking at Fig. 4.7, we can see the onset
of absorption into the lowest Landau level, LLO, between B = 5T and B = 6T. Figure 4.8
looks at the peak height and area of LLO as a function of the field. By extrapolating the
LLO peak height or area down to zero, we can confirm the doped carrier density. For sample
A, the peak height and area reach zero at B ~ 5.2T, which confirms our electron density
to be n =~ 2.6 x 10! cm~2.

Another difference appears in the linewidths of the Landau level peaks. Figure
4.9 shows the peak energy and linewidths of the lowest 2 Landau levels of sample A. While
the linewidth of LLO is approximately constant, the linewidth of LL1 increases significantly
once LLO starts to appear in the spectrum. This is an important point to notice: when the

LLO transition has finite oscillator strength, the LL1 peak is broadened significantly. Also,
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Figure 4.7: Absorption spectra of sample A in a magnetic field.

the LL1 peak seems to have a shoulder at higher energy. Although the broad peak disguises
it, this shoulder is likely due to the lh LL1 transition, just as the small bump just above
LLO comes from the lh LLO transition. In fact, the peak is quite well fit by two Lorentzian
lines with comparable linewidths and a splitting roughly equal to the hh-lh splitting seen

in LLO. The hh LLO peaks are comparable in width to the undoped sample value, and are

fairly well fit by a single Lorentzian line.
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Figure 4.8: LLO absorption peak height and area in a magnetic field, for sample A. Blue
triangles are the peak area, black squares the peak height. Both extrapolate to zero at
~ 5.2T, giving a measurement of the density of doped electrons of 2.6 x 10! cm™2,

(a) P /™ ]

/ S
—a—LL0 & o] |10 / &

—a |11 & A L1
1560 e

1550 /\/

Energy (meV)
».
~N
>\
Linewidth-FWHM (meV)

1540 T T T T T ~ 0

Figure 4.9: Peak energy and linewidth vs. magnetic field for sample A, for both the lowest
(LLO) and next highest (LL1) Landau levels. Notice the sharp increase in the LL1 linewidth
once LLO starts to appear in the absorption spectrum.



66

" polarized
- - - ¢ polarized

\
I

Absorption (al)

1
i
1
I
1
|
!
1
l' ;
' |

f T T T : |
1540 1550 1560 1570
Energy (meV)

Figure 4.10: Absorption spectra for sample A at B = 10T, both o (solid) and o~ (dashed)
polarized.

It is important to see how the absorption spectra is different for o~ polarized light.
Figure 4.10 shows the absorption spectra at B = 10T for both the o+ and o~ polarizations.
The o~ spectrum is more complicated, with a double peaked lowest energy transition, and
an additional light hole peak a bit higher in energy. These additional peaks make analysis
of the FWM signal more complicated, since the lowest peak is actually several transitions
to different spin states of the conduction band (see Fig. 4.2).

A similar analysis to that above was performed on samples B and C. The absorp-
tion spectra as a function of magnetic field show the same qualitative features as described
here. Transport measurements were also performed on all the doped samples to characterize

the growth, and measured values for the electron mobilities are given in Table 4.1.
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4.5 Conclusion

We have seen how the presence of the electron gas changes many of the linear
optical properties. The excitons are no longer part of the linear absorption, but instead
we find a strong FES at zero field. Also, at high field, the 2DEG in the lowest Landau
level causes the higher transitions to broaden significantly. We shall see the effects of this

behavior in the nonlinear optical response of the MDQW samples in Chs. 6 and 7.
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Chapter 5

Intra—Landau level excitations

5.1 Introduction

In this chapter we investigate the dephasing of the interband polarization in a single
Landau level (LL) which is partially filled by the 2DEG. We observe very strong variation of
the interband dephasing time, T5, as a function of the filling factor, as well as direct evidence
of memory effects in the dynamics [32]. In a strong magnetic field, such that the 2DEG
occupies only the lowest Landau level (LLO0), there are no interactions between the photo-
excited pairs, unless there is an asymmetry between electron and hole wavefunctions [57].
The concept of electron-hole symmetry was introduced in Ch. 2.2.2, and will be discussed
in more detail in Ch. 7. When LLO is partially filled, the dephasing originates mainly from
the scattering of the photo-excited carriers with the intra-LL collective excitations of the
strongly correlated 2DEG (33, 41, 91]. We present a model based on magnetorotons that
accounts for most of the observed effects.

We will present the experimental results first, and then discuss the interpretation.
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Figure 5.1: Absorption spectra and laser excitation of sample A. The light gray curves are
the laser pulses, and the dark gray are the absorption spectra. The laser is tuned in this
experiment to excite only into the highest partially occupied LL, i.e. to the Fermi energy.

We performed these experiments on samples A and B, which have carrier densities of 2.6
and 4.9 x10"cm™2 (see Table 4.1). Following the quantum Hall effect convention, we
calculate the filling factor using the spin split LLs, so that the LLO peak starts to appear
at v = 2. We used spectrally narrow 7 = 400 fs laser pulses to resonantly excite only
one LL in strong magnetic fields. The excitation intensity was kept low enough for the
density of photo-generated e~/ pairs, n.p, to remain small compared to the doping density
of electrons, typically n., < n/10. In these experiments the pulses were tuned to excite
electrons only into the highest partially occupied LL, which contains the Fermi energy, Ef.

The excitation is detailed in Fig. 5.1, which shows the absorption spectra of sample A, and
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Figure 5.2: TI-FWM signal measured in sample A for B = 4.5 T— 11.5 T.

the overlap with the exciting laser pulses. We measured both TI-FWM and SR-FWM for

the two samples.

5.2 Time integrated four—wave mixing

Typical measurements of the TI-FWM signal, Spr(At), in sample A are shown in

Fig. 5.2, for B = 4.5 T— 11.5 T. For 5.5 T< B < 6.5 T the St;(At) profile is a single
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exponential with an unusually long decay time, especially when we are close to the filling
factor v = 2. For B > 7.5 T the profile is more complicated, showing non-exponential
behavior for short time delays. By extracting an overall decay time we can get a direct
measure of the interband polarization dephasing time T5,. This analysis of the experimental
data to get the decay times is equivalent to the Markovian approximation (see Ch. 2.3.3),
in which the memory kernel (I'(t — t')) is replaced by a delta function (I'6(t — ¢')). The
results are displayed in the upper panel of Fig. 5.3 for sample A and in the lower panel
for sample B. It is striking to note the very large jump of T, each time the system passes
through even filling factors and in particular at v = 2. Since these features are reproducible
as a function of v for samples with different densities, we can assert that this is an effect of
the cold 2DEG. Notice that as we approach filling factor v = 2 from below (higher field),
the oscillator strength of the LLO transition goes to zero, so that while the decay time gets
very long, the signal becomes too weak to measure. Because of this, we cannot be measure
the maximum value of 7% in this case. Similarly, for filling factors below v = 2 (lower field),
Ty becomes very short, but we are unable to accurately measure this since the decay time
becomes shorter than the ~ 400fs pulse duration. In fact, the jump in dephasing time may

be larger than what we have presented here.

5.3 Spectrally resolved four—wave mixing

The non—-exponential behavior of the TI-FWM signal at high field is characterized
by a change of slope that occurs in sample A at At ~ 4.2 ps— 2.5 ps as B~ 7.5 T— 11.5

T. This change of slope indicates memory effects in the polarization dynamics, which are
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Figure 5.3: TI-FWM decay times versus magnetic field for samples A and B. The decay times
were calculated by fitting the TI-FWM signal (shown in Fig. 5.2) to a single exponential

decay curve.

also seen in the frequency domain. Figure 5.4 displays the SR-FWM signal, Ssr(At,w),

(a) at fixed At =0 for B=5.5T— 11.5 T, and (b) at fixed B =11 T for At =0 — 6 ps.

Clearly the Sgg(w) profile changes from a Lorentzian with a constant width, I'" o T{l, to

an asymmetric one that would correspond to a frequency dependent linewidth, I'(w). This

occurs in sample A for B > 7.5 T at At =0, or for At < 3 ps for B = 11T. Such a profile

indicates a polarization relaxation term « I'(w)P(w). As discussed in Ch. 2.3.3, a frequency

dependent scattering rate I'(w) is a result of non-Markovian dynamics, or dephasing with
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Figure 5.4: SR-FWM signal in sample A, (a) at fixed At = 0 for B = 5.5 T— 11.5 T,
and (b) at B =11 T for At = 0 — 6 ps. The thick, unshaded lines in (a) show the linear
absorption spectra, a(w, B), for B = 6.5, 8.5 and 10.5 T. (corresponding to the purple
SR-FWM curves). Notice the asymmetric shape of the FWM peaks at higher field or at
shorter At , and the redshift of the peaks in those cases.
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a memory kernel, which gives a scattering term « [I'(¢t — ¢/)P(¢')dt’ in the time domain.
We note also that if the Ssp(w) spectra are asymmetric, they are redshifted from the a(w),
while if they are Lorentzian they almost coincide with the a(w) peaks. We will discuss this

spectral shift at the end of the next section.

5.4 Interpretation

We would like to know what interactions cause these effects. The memory kernel
within the lowest LL can be presented as I'(t — t/) = (2v~! — 1)k(¢t — #'), where the factor
(20~ — 1), expected on general physical grounds, is proportional to N,, the number of
empty states available for scattering within the LL containing Er. It has the form N; o
(2(N 4+ 1) — v)/v in the Nth LL (factor of 2 for the spin).

As discussed in Ch. 2.6, there is an energy scale which for higher magnetic field
is less than the cyclotron energy. The Coulomb correlation energy, ~ €2/l where [ is the
magnetic length. It is these low energy excitations of the electron gas within LLO that
scatter with the photo-excited electron-hole pairs at high field.

In addition to scattering with the intra-LL collective excitations, there are several
other relaxation processes which contribute to the dephasing at weaker fields, e.g., phonon
and impurity scattering, Auger-like processes, etc. These background processes lead to
Markovian dephasing, x(t) — 4(t), with Ty, = [NsF(B)]™!, where F(B) depends only
weakly on B (mainly via inhomogeneous LL broadening). We have plotted N; ! in Fig. 5.5,
compared to the experimental T points.

We hayve fit these curves to the experimental data by setting the maximum points
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Figure 5.5: N; ! versus magnetic field for samples A and B (in red), plotted over the

experimental decay times for the TI-FWM signal (in black). For low fields, the agreement
is quite good, but there are strong deviations at higher field.

equal to one another. As mentioned above, we are unsure exactly how high the maximum
T, is, or how low the minimum value is. Nevertheless, the agreement is striking in terms
of the location and magnitude of the steps. However, there are significant differences in
the B-dependence of T» for strong field. In particular, the change in behavior occurs for
sample A at B > 7.5 T, where we begin to see the non-exponential behavior in Fig. 5.2,
or the asymmetry in Fig. 5.4. Also, above this field, the dephasing rate begins to differ

considerably from N, 1.
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We attribute this observed transition from Markovian to non-Markovian behavior
to a suppression of the inter-LL scattering relative to the dynamical response of the collec-
tive excitations of the 2DEG. At large magnetic fields, where the cyclotron energy, hw,, is
large compared to other characteristic energies of the system, relaxation is dominated by
intra-LL processes. Scattering by collective excitations involves the matrix elements of the

dynamically screened interaction, U;(t, t'), which in the lowest LL have the form:
<(t # dq 2272, 9 <y 4 .
Uij (tv t ) = (-271,—)26 ¢ Vg Xq (tat )cij (Q) ) (‘)1)

where x5 (t,t') = (pq(t')p-q(t)) is the density-density correlation function projected onto
the lowest LL [34, 41], and pq4(t) is the corresponding density operator. Also, v, is the
unscreened Coulomb interaction, [, = (h/eB)'/? is the magnetic length, and c;;(g) (with
1,5 — e, h) models the asymmetry in the electron-electron and electron-hole interaction
matrix elements, which originates from the difference between electron and hole LL wave-
functions. Because of the breakdown of the perturbation theory due to LL degeneracy in
2D systems at high fields, it is incorrect to evaluate the strength of such scattering processes
(or the interaction strength U5 (t,t')) within the standard RPA theory of Ref. [39]. Instead,
one should account for the true excitations of the interacting 2DEG. Several models can be
found in the literature, and we base our discussion on the magnetoroton model (introduced
in Ch. 2.6), which is the one best suited for our filling factors. The most salient features
are, however, general and model independent. The scattering rates for the density matrix
elements, i.e. interband polarization and occupation numbers, can then be calculated using
the general non-—equilibrium formalism given in Ref. [39]. The magnetoroton dephasing

mechanism is somewhat similar to that of acoustic phonon scattering. In our experimen-
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tal conditions to a very good approximation, the intra—LL collective excitations are not
affected by the small density of photo—generated carriers, so one can use the equilibrium

density correlation function [34], and

aﬁi' r Var T
a—’ sm“_zZ/ dt'Gi(t — t')G3 (¢ —t)
([ &t =) = Ug(t — )]s (") og; (t )—(<<—>>)), (5.2)

where G:/ “(t) is the retarded/advanced Green function, pfj = pij, and pi>j = 6;j — pij- If
all Uj; are equal, i.e. cij(g) = 1, then the polarization scattering term vanishes[57]. This
corresponds to identical electron and hole wavefunctions in the lowest LL. In practice, there
is always some asymmetry between electrons and holes, due to, e.g., differing band offsets
and masses, lateral confinement and disorder, as discussed in Ch. 2.2.2. Using the results

of Ref. [34], Eq. (5.1) takes the form

mn dq _2p2
vO=-52] G il

x5q[(Ny + 1)e™at + Nye~wat], (5.3)

where Ny is the Bose distribution function for magnetorotons of energy wgy, and 34 is the
static structure factor of the 2DEG in the lowest LL. This contains the information about
the dispersion relation of the 2DEG excitations, such as magnetorotons, in the lowest LL
[34]. By studying Eq. (5.2), we see that the w dependence of I'(w) is determined by the
Fourier transform of U<(t), which is governed by the ¢ dependence of 5,. In the lowest LL
8¢ = (2v71 = 1)3, where 5, ~ (ql)* for gl < 1, ~ exp(—q?1?/2) for gl > 1, and 3, displays a
peak for ¢l ~ 1[34] that leads to the magnetoroton excitations. The corresponding resonance

in I'(w) near the magnetoroton energy leads to non-Markovian behavior with a characteristic
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response time of approximately the inverse of this energy. The latter is estimated from the
gap at the magnetoroton dispersion minimum, A ~ 0.1(e?/el) for our range of v[33, 34],
which for B =10 T is =~ 1.5 meV.

The experimental results strongly support our interpretation, since they imply a
reaction time 7, ~ 2.5 ps— 4 ps for the 2DEG collective excitations. We note that this
corresponds to an energy =~ 1 meV— 2 meV. Clearly, a much more involved theoretical
treatment is needed to identify the details of the interaction processes in this regime.

The non-Markovian behavior of 2DEG excitations is well documented at zero
field, where the ultrafast nonlinear response of a Fermi sea of electrons is determined by the
continuum of electron—hole pairs excited by the Coulomb potential of the photo-induced
carriers. The small characteristic energy of these excitations gives rise to a non-adiabatic
Fermi sea response leading to a non-exponential polarization decay (absent in the Hartree-
Fock approximation) [85, 94]. We also see here (in Fig. 5.4) similar effects in the B and
At-dependent shifts of the SR-FWM signal. For large field, e.g., B = 10.5 T, Ssg(w)
is redshifted from the a(w) resonance due to a lowering of the 2DEG energy by the at-
tractive potential of a photo—excited hole, a process similar to that known for the Fermi
edge singularity [89, 90, 84]. This dynamical redshift comes from the real part of the
magnetoroton-induced self energy. Since the latter is also proportional to N, the redshift
is absent for nearly filled lowest LL, i.e., at v ~ 2 or B =~ 5.5 T (in sample A); the reason

is that a 2DEG in an incompressible state cannot readjust to screen the hole potential.
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5.5 Conclusion

In this chapter we investigated the quantum coherence of photo-excited electron-
hole pairs within the lowest LL in MDQW samples the quantum Hall regime. We observed a
clear transition from Markovian to non-Markovian behavior with increasing magnetic field.
In the former case, the dephasing was dominated by inter-LL relaxation of the photo-
excited carriers, and the B-dependence of the dephasing time followed that of the number
of available scattering states, exhibiting peaks at even Landau level filling factors. At high
magnetic field, the FWM signal showed strong evidence of memory effects. We proposed a
model based on scattering of the photo-excited electrons with magnetoroton excitations in
the lowest Landau level that qualitatively accounts for the main features of the experimental
observations.

It is natural to ask how the 2DEG will alter the optical response of the MDQW
samples when we tune the laser to excite carriers into the next highest LL, either in addition

to or instead of the lowest LL. We will discuss these effects in the next chapter.
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Chapter 6

Inter—Landau level excitations

6.1 Introduction

In this chapter, we present an investigation of the dynamics of the 2DEG inter-LL
excitations. We observe strong, time dependent Coulomb coupling between the LLs induced
by the 2DEG, enhancing the LLO signal. The latter shows unusual behavior as a function
of time delay, which cannot be understood in terms of the RPA. These results are compared
directly with measurements on undoped quantum wells (QWs). We will study these results
as a function of several experimental parameters, and also set the stage for an in depth
theoretical analysis, which will be presented in Ch. 7.

These experiments were performed on sample C, a multiple period modulation
doped quantum well (MDQW) whose active region consists of 10 periods of a 12 nm GaAs
well and a 42 nm Al 3Gag 7As barrier, the central 12 nm doped with Si. The carrier density
isn =2.1x 10" cm™2 (see Table 4.1). Again, for most of the measurements in this study,

the total number of carriers excited by the laser was kept below 2 x 10!° cm™2, or n/10.
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We will discuss the dependence of our results on the excitation power later in the chapter.
Comparison measurements were made on sample D, an undoped QW structure with similar
well and barrier sizes. We used two criteria for these comparisons, by tuning the laser (i)
to excite the same number of electron-hole pairs into each LL with a given laser pulse (The
carrier density calculation is described in Ch. 3.10), or (ii) to produce the same FWM signal
in the nonlinear susceptibility approximation, S o [P®)|2 = |x(®)|21}, where P®) is the third
order polarization, and I3 the laser intensity. In our resonance conditions the third order
susceptibility is assumed (based on single frequency calculations of the polarization) to be
proportional to the square of the absorption coefficient, x(® ~ (x(1)? =~ Im[x(V]? ~ o?(w)
[31]. The effects reported here were observed for comparisons using both criteria. We
performed SR-FWM experiments, with a laser pulse duration of 100 < 7 < 200 fs. The
laser was tuned to excite varying proportions of the lowest LL (LLO) and the next highest

LL (LL1), and the beams were ¢ circularly polarized.

6.2 SR-FWM: Transfer of signal strength

Typical SR-FWM signals, Sqp(At,w), for samples C and D are shown in Fig. 6.1,
with the laser tuned to excite both LLO and LL1 equally (laser and sample absorption spec-
tra are projected on the back panels). Several unusual features are immediately apparent
in the signal from the doped sample, Sg(g’ed(At,w), Fig. 6.1(a). The most striking is that
despite an equal excitation of both LLs, the MDQW shows a LLO signal which is 35 times
larger than the LL1 signal. Measurement of the undoped QW, Sg%doPed(At,w), Fig. 6.1(b),

shows almost equal emission from both LL’s, in proportion to the excitation. Comparing
q prop
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Figure 6.1: Spectrally resolved FWM signal at B = 8T for excitation of an equal number
of electron-hole pairs into both LLO and LL1, for (a) sample C, a MDQW, and (b) sample
D, an undoped QW. The back screens show the laser and sample absorption spectra.
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these figures to the results for a three-level atomic system, discussed in Ch. 2.4.2 and shown
in the upper panel of Fig. 2.2, we see that the spectral distribution of the signal from sam-
ple D approximately follows the simple three-level atom picture, but the signal from the
MDQW, sample C, is drastically different.

The picture only becomes more intriguing when we tune the laser frequency to
excite mostly into LL1, with only the tail of the laser pulse exciting LL0. Figure 6.2 shows
Sgr(At =0, w), the FWM spectra for At = 0, for both samples under these excitation
conditions. It is clear that the signal from LLO is greatly enhanced relative to LL1 in the
MDQW. In the undoped sample, there is almost no signal from LLO, as expected from the
excitation (60:1 excitation of LL1 over LLO0, shown in the inset), while in the doped sample
the LLO signal is comparable to the LL1 signal. We can get an estimate for how large this
enhanced LLO signal is by comparing the relative emission of the two LLs with the excited

carriers in each level. We define the relative emission ratio R as

LLO
R= ST_L/_M (6.1)
SelLNpra
LLO(LL1) . . . . .
where Sy, is the maximum signal emitted from LLO (LL1), and N Lro(LL1) is the

number of photo-excited pairs in LLO (LL1). If the emission is in direct proportion to
the excitation, as we expect from the FWM theory of Ch. 2, then we should find R = 1.
R > 1 means that the LLO signal is larger than expected from the excitation, while R < 1
means the LLO signal is smaller than expected. For the signals shown in Fig. 6.2, we
find that for the undoped sample R*"Ped — 1.3 close to the expected R = 1, while for
the MDQW sample R%P¢¢ = 17.5, a huge enhancement compared to the undoped signal.

Since the calculated excitation densities are estimates, the value of R is more of a guideline
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Figure 6.2: SR-FWM signal at B=8T, At = 0 ps from both sample C (solid) and D
(dashed). The inset shows the excitation density spectrum, giving a ratio of 60:1 excitation
of LL1 over LLO. The energy scales are different for the two samples, with the lower energy

scale for the sample C.

than a precise measure of the enhancement. However, a difference of more than an order

of magnitude is an unambiguous demonstration of the effects of the 2DEG on the FWM

signal.

6.3 SR-FWM signal vs. time delay

6.3.1 Enhanced negative time delay signal

In addition to the transfer of oscillator strength to LLO, Sg‘;fed(At, w) also shows a

very unique dependence on At , seen most easily when the laser excites only LL1. According

to the RPA theory for FWM in semiconductors, the rise time of the At < 0 signal should
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Figure 6.3: FWM vs. time delay At for the MDQWs, sample C, at B = 8T. The black
curve is the signal from LLO and the red curve is from LL1. The laser is tuned to excite LL1
(60:1 over LLO), and the signals have been normalized for clarity. The decay time for both
curves is = 0.25ps. The rise time for the LL1 signal is 0.13 ps, as expected from mean-field
theory, while for LLO it is 0.27 ps.

be 1/2 thg decay time for At > 0 (see Ch. 2.5.1), and this is the measured result for the
undoped QW sample. This is also the measured result for the signal from LL1 in the
MDQW, but surprisingly the signal from LLO is almost symmetric as a function of At ,
with comparable signals for At < 0 and At > 0. Figure 6.3 shows the dependence of Sgp
on At for two values of w, corresponding to the maximum signal from LL0O and LL1, for
sample C. Such a large signal for At < 0 can only be a result of correlation effects beyond
the RPA [49]. However, the effect is only seen in the signal from LLO, and only in the doped
sample, which implies that in this case the correlations are induced by the presence of the

2DEG in the doped sample. This will be discussed below, and in great detail in Ch. 7.
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6.3.2 Beats in the FWM signal

Let us return to the case where the laser excites LLO and LL1 equally. Although we
saw emission almost entirely from LLO (see Fig. 6.1), the signal has very pronounced beats
as a function of At , with a period given by the inverse of the energy difference between
LLO and LL1. Such strong beating in At from only a single emission energy is a clear signal
of non-Markovian dynamics. Comparing this to the signal from the undoped QW, we see
that Sg?zd‘)p °d(At,w) also shows beats, but from both emission peaks, as expected from the
RPA theory of Ch. 2.5.1. This is made clearer in Fig. 6.4, which shows the dependence
of the Sgp on At at the emission maxima of LL0O and LL1 for both samples. In addition,
the beats in the signal from sample C are only pronounced for At > 0, and for negative
time delay they are almost completely suppressed. In the undoped sample, the beats are

stronger for negative time delay.

6.4 Summary

The results described above demonstrate the unusual experimental features exhib-
ited by a QW sample containing a 2DEG in a magnetic field. The undoped QW sample,
sample D, closely follows the expectations based on the RPA theory of Ch. 2.5.1. We see
emission from LLs which are directly excited by the laser pulse, and quantum beating as
a function of time delay, with a beat period given by Theqt = h/AEL where AEpy is the
energy difference between the LLs which emit the signal. The negative time delay signal
decays roughly twice as fast as the positive delay signal, which is also an expected result

of the mean—field theory. However, the signal measured from the MDQW sample, sample
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Figure 6.4: FWM vs. time delay for (a) sample C and (b) sample D at B = 8T, from the
LLO and LL1 maxima. The black curves are the signals from LLO, and the red curves are
from LL1. The laser is tuned to excite both levels (LLO and LL1) equally.

C, shows a large enhancement of the LLO signal relative to the LL1 emission. When the
laser is tuned to excite both levels equally, the LLO signal dominates the LL1 signal, and
when LL1 is excited 60 times more than LLO0, the signals from the two levels are roughly
equal. This corresponds to an enhancement of the LL1 signal which is more than an order
of magnitude greater than the “normal” results of the undoped sample. When both levels
are excited, we see strong beats from the LLO signal, with the same period Tyeq: = h/AELL,
even though there is only emission from one level. When we excite LL1 preferentially, there

is a strong enhancement of the LLO signal for At < 0, so that it is as strong as the signal
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for At > 0, with no beating. All of these effects are unexplained within the RPA theory,
and are not seen in the undoped QW sample. We can conclude that these unusual effects
are due to the interaction of the photo-excited electron—hole pairs with the 2DEG present
in the MDQW samples.

Since we are exciting several LLs in these experiments, we expect that the inter—
LL excitations of the 2DEG are important for understanding these results. These are the
magnetoplasmons, discussed in Ch. 2.6. The magnetoplasmon (MP) energy is close to the
inter-LL magnetoexciton energy, so we must account for the almost resonant creation and
destruction of the MP excitations non-perturbatively. In particular, it is possible for a
photo-excited LL1 electron to scatter into LLO while exciting the 2DEG. The scattering
to this new state provides additional dephasing for the LL1 photo-excited carriers, which
will effect the FWM signal. Since this scattering process is nearly resonant, it is also
possible that during the time evolution of the excited system, some of the excitation energy
is temporarily stored in the MP excitation, leading to memory effects in the FWM signal.
This process, which is analogous to coherent antiStokes Raman scattering except with
MPs instead of phonons [58], is examined in more detail in the next chapter, when we
investigate the 2DEG system theoretically. There we will show that we must include these
nearly resonant exciton-2DEG interactions in order to understand the unusual effects in
the optical response of the MDQW which we are describing here. For the remainder of this
chapter, we will discuss some of the properties of the experimental effects, as we adjust

various experimental knobs.
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6.5 Properties of the MDQW signal

In this section, we will examine the dependence of the FWM signal from the
MDQW, sample C, on the magnetic field, the excitation power, and the pulse duration.
These experiments will help us to understand the nature of the correlation effects we have

described above for the MDQW sample in a large magnetic field.

6.5.1 Magnetic field dependence

By changing the magnetic field, we confirmed that the beat frequency seen in the
signal from LL0O when we excite both levels changes with the cyclotron energy, and is very
close to the LL spacing. This is shown in Fig. 6.5, which shows Sgolfed(At ) at the LLO
energy for B = 6,8, and 10T when we excite both LLO and LL1 equally. The inset shows
a good agreement between the inverse beat period (in meV) and the LL spacing at several
magnetic fields. Looking at the behavior of the signal from LLO when we excite only into
LL1, we see that the enhanced LLO signal is only present for magnetic fields large enough
that LLO is partly empty (filling factor v < 2 in the quantum Hall notation). Figure 6.6
shows Sg%’ed vs. At at the LLO energy for B = 4,6,8, and 10T when we excite directly to
LL1 only. For B > 4T, we see similar curves (including the large signal for At < 0), but
for B = 4T (v > 2) there is only a much weaker signal from LLO, and it does not have the
symmetric time delay profile we see for the higher fields. We can infer that the enhancement

of the LLO signal only exists at magnetic fields for which there is available space in LLO

before the excitation.
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Figure 6.5: FWM emission from LLO vs. time delay for sample C as a function of magnetic
field, when the laser is tuned to excite both levels (LLO and LL1) equally. The FWM curves
are offset for clarity. The inset shows the comparison between the LL spacing measured in
the absorption spectrum (in red) and the inverse of the beat period Tpeq: seen in the LLO
FWM signal vs. At (in black).

6.5.2 Intensity dependence

We have also measured Sep®d(At,w) and SEH°P*Y(At,w) as a function of the
incident power, varying the photo-carrier density in the range n/10 — n, where n is the
number of doped carriers in the MDQW (for sample C this is 2.1 x 10! carriers/cm?, see
Table 4.1), both when the laser preferentially excites LL1 (60:1 excitation ratio, as above),
and when we excite both levels together.

When we excite only LL1 with the laser at low excitation power, we see the large

“off-resonant” signal from LL0, which has a large negative time delay signal (nearly sym-
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Figure 6.6: FWM emission from LL0 vs. time delay for sample C as a function of magnetic
field, when the laser is tuned to excite only LL1 directly. For B = 4T (v = 2.18), there is no
off-resonant signal from LLO0, but for higher fields (once there is available space in LLO), we
see the strong off-resonant signal with the nearly symmetric time delay dependence. Note:
log scale.

metric as a function of At ). The evolution of this signal as the excitation power is increased
is shown in Fig. 6.7. The LLO emission begins to develop weak beats as a function of At
with a very pronounced minimum at A¢ = 0 . The beats can also be seen more clearly
in the black curve in Fig. 6.10(b). Notice that there is no real decrease in the signal for
negative time delay.

When we tune the laser to excite both LLO and LL1, the LLO signal exhibits
pronounced beats in At at low power, but only for At > 0. As the power is increased, a
large minimum at At = 0 which is absent at low power begins to emerge. Figure 6.8 shows
a comparison of the LLO FWM emission at low power (excitation density =~ n/10) and at

high power (= n) for this laser position.
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Figure 6.7: FWM emission from LLO vs. time delay for sample C as a function of excitation
density, at B = 10T, with only LL1 directly excited by the laser. The FWM curves are
offset for clarity. As the excitation density is increased from =~ n/10 — n, where n is the

number of doped carriers in the MDQW, we see the development of beats in the signal,
with a pronounced minimum at At =0 .

In addition to these beats, the unusual transfer of oscillator strength from LL1 to
LLO seen in sample C is affected by the increase in power. To see this we calculate the
relative emission ratio R, introduced above, for both samples as a function of the exciting
laser power. We find that increasing the overall excitation power causes R%P¢? to decrease
towards unity, for either laser excitation. This effect is more pronounced at lower fields.
This can be understood since as the field is decreased, LLO is closer to being completely full
before excitation, so carriers can not be photo-excited or scatter into LLO as efficiently. In
fact, for the higher intensity measurements at B = 6T , we were attempting to excite more
carriers into LLO than there was available space in the level, so that for these measurements

we cannot be sure what the excitation density ratio should be, and R%P¢? is not a useful
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Figure 6.8: FWM emission from LLO0 vs. time delay for sample C as a function of excitation
density, at B = 8T, when both LL0O and LL1 are directly excited by the laser. The FWM
curves are normalized for comparison. As the excitation density is increased from =~ n/10 —
n, we see the development of a pronounced minimum at At =0 .

measure of the effects. The changes in R%P¢? ys. excitation power for B = 8,10T are
shown by the black squares in Fig. 6.9. We have also measured the power dependence of
Rundoped from sample D, and found, surprisingly, the opposite effect, that high excitation
density increases the relative size of the LLO signal. This is also shown in Fig. 6.9. While
the difference between the RPed and R¥"doPed ig still large (approximately a factor of 3)
at our highest measured power (excitation density ~ n), it has decreased from the order of
magnitude enhancement seen at low power.

These changes as a function of increasing excitation density are such that the
doped and undoped samples begin to look more similar in their nonlinear optical response.
This is illustrated in Fig. 6.10, which shows the signal from both samples C and D at

both the low and high excitation powers. While the two samples look quite different at
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Figure 6.9: Relative FWM emission R vs. excitation density for samples C and D, with
only LL1 directly excited by the laser (60:1), (a) at B = 10T and (b) at B = 8T. The black
squares are for sample C (the MDQW sample), and the red triangles are for sample D (the
undoped QW). As the excitation density is increased from =~ n/10 — n, we see a decrease
in R for sample C, and an increase for sample D

low density, the curves start to appear more similar at the higher density. This can be
understood qualitatively, since as the density of photo-excited carriers approaches that of
the electron gas, the mean-field exciton—-exciton interactions (discussed in the semiconductor
Bloch equations of Ch. 2.5.1) begin to dominate over the signal due to exciton-2DEG
correlations. However, the At = 0 dip in LLO for the doped case is always larger than any

beat seen in undoped sample, and at least for the excitation densities we have measured,
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Figure 6.10: FWM vs. time delay for at B = 8T, from the LL0O and LL1 maxima. The
black curves are the signals from LLO0, and the red curves are from LL1. The laser is tuned
to excite LL1 preferentially (60:1). The panels show the signals (a) from sample C at low
density (=~ n/10), (b) from sample C at high density (=~ n), (c) from sample D at low
density, and (d) from sample D at high density. There is a qualitative similarity between
(b) and (d) at high density, despite the large differences in (a) and (c).

the negative time delay signal for the undoped QW sample is always less than the positive
delay signal, while the negative time delay signal in the doped sample seems to remain as

large as the positive time delay signal.

6.5.3 pulse duration dependence

By leaving the laser tuned directly to LL1, but varying the width of the exciting

laser pulse in energy, we determined that the “off-resonant” signal from LLO in that case
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Figure 6.11: FWM emission from LLO vs. time delay for sample C as a function of laser pulse
width, when the laser is tuned to excite only LL1 directly. For an excitation of 100:1 into
LL1, there is no signal from LLO, but for excitation of 50:1, we see a very strong signal from
LLO. The inset shows the relative FWM emission R as a function of the relative excitation
of LLO. These measurements were performed at an intermediate excitation density, and
therefore exhibit the beating described in the previous section. Note: log scale.

requires a small direct excitation of the level. When the pulse was narrowed so that only
1/100 of the carriers are excited into LLO (rather than the 1/60 in the data discussed
above), the LLO signal dropped by nearly a factor of 30. This is shown in Fig. 6.11, which
shows the LLO signal from sample C for several different laser pulse widths, corresponding
to excitations between 40:1 and 100:1 preferential excitation of LL1. As the figure makes
clear, the strength of the off resonant signal dropped off suddenly as we made the pulse
narrower and excited less and less of the lowest level. We can conclude that while the

2DEG strongly enhances the signal from LLO relative to LL1, this enhancement can only
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be observed when there is a small direct excitation of LLO as well.

6.6 Conclusion

In this chapter we described a series of FWM measuremehts, on both dbped and
undoped QW samples at high magnetic fields, in which the second lowest LL, LL1, was ex-
cited, either alone or along with LLO. While the undoped QW sample results were consistent
with the mean—field theory of Ch. 2.5.1 or Ref. [112], there are a number of unusual features
in the measurements on the MDQW sample. We observe a large transfer of signal strength
from LLO to LL1, and unusual features in the spéctra as-a function of the time delay. When
LL1 and LLO are excited eqﬁélly, we see large beats in the signal from LLO although there
is no signal coming from}LLl.. When LL1 is excited preferentially, we see al large signal from
LLO for both positive and nega.tive time delay, which is valmost.symmetric about At =0.
These results require that LLO is not completely ‘\‘full of doped electrons before excitation
(v < 2), and that at least a small part of the laser pulse excites LLO. As the overall laser
intensity is increased to excite more electron-hole pairs, beats with a pronounced minimum
at At = 0 appear in the éiénal from LLO, and as the mean-—field interactions between photo—
excited carriers begin to dominaté over the signal due to exciton—2DEG correlations, the
doped and undoped signals begin to look more alike. As discussed above, we expect t..hat
these effects are due to correlatiOné between the photo—excited carriers and the inter-LL
excitations of the 2DEG, magnetoplasmons. In the next chapter we will describe in de-
tail a theoretical forﬁialism which includes the exciton—magnetoplasmon interactions, and

* which in the undoped case can be shown to include the DCTS theory of Ch. 2.5.2. We
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will also present some model calculations based on this theory which qualitatively fit our

experiments.
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Chapter 7

Theory of FWM in doped

Semiconductors

7.1 Introduction

In the previous chapter we described mé,ny unusual results seen in the FWM signal
from a MDQ'stample, which contains a strongly correlatea 2DEG in the ground state. By
comparing tﬁese effects with the éignal from an undbped QW, we were able to determine
that they are due to the correlations between the photé—excited carriers and the <2DEG
excited states. We would like to develop a theoretical model which is capable of treating
these ;exciton—2DEG interactions. |

As discussed in Ch. 2.5, time dependent interactions and Goulomb correlations
domiinate the FWM response of semiconductors. These correlations result in non-Markovian

" dynamics which describe the propagation in time of long-lived collective excitation. To
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describe these many-body effects in the FWM signal, we must truncate the infinite hierarchy
of coupled equations for the correlation functions. For undoped semiconductors, we have
seen in Ch. 2.5.2 that the dynamics controlled truncation scheme (DCTS) accomplishes this
truncation through an expansion in terms of the optical fields [8] However, as discussed
there, the correspondence between the number of carriers in the system and the absorption _
of a photon breaks down if there are carriers doped into the system [9], ‘as in our MDQW
samples. Therefore, the DCTS cannot be applied to our system.

In this chapter we present an overview of a new theory based on the time dependent
coherent state formalism of Refs. [82, 83, 85, 87, 88, 94, 108], which can be shown to
include the DCTS theory, but which is also capable of déscribing a system with a strongly
correlated ground state, such as our MDQW samples. A detailed derivation of the theory
will be presented in the Appendices, and can also be found in Ref. [86]." Here we will simply

“discuss the new physics which must be accounted for, and which makes the use of the
DCTS impossible, in our experiments. We will present a simplified “Average Polarization
: Model’f (as in Ch. 2.5) based on the full theory, which we can compare qualitatively with

the experimental results of the previous chapter.

7.2 Setup

We are interested in developing a comprehensive approach to the problem of the

nonlinear optical response of a semiconductor QW containing a 2DEG in a large magnetic

field. This syst‘em is described by the Hamiltonian [40] (A = 1),

H;;t(t) _H- ée(t)ff* - pE* ()X, (7.1)
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Here, H is the “bare” semiconductor Hamiltonian [40, 107, 23, 123],

H= Z;Qc(n+1/2)eknekn+Z[E o+ Q2+ 1/2)]Ay hwn + Vee + Vi +Ven, (7.2)
n n.k

E'g is the bandgap, Vee, Ven, and Vp;, are the electron—electron , electron—hole, z_md hole~
hole interactions respectively (among the photo-excited carriers and with- the 2DEG as
well), £ (t) is the electric field of the applied laser pulse, and p is the interband tra.nsit'ion
maftrix element. The magnetic field splits the conduction and valence bands into electron
(e) and hole (h) Landau Levels, e-LLn and h-LLn. éLn is the creation operator of the
.LLn conduction band electron, n = 0,1,---, with cyclotron energy 2, and hkn is the
creation operator of ‘the LLn valence band hole, with cyclotron energy Q7. Many novel
_broperties of the 2DEG in a magnetic field originate from the fact that the carrier energies

are independent of the momentum k. The optical transition operator X1 is given by
Xt= Z el bty = VXL | (7.3)
n.k n '

In the above equation we introduced the creation operator X} of the LLn magnetoexciton

state | X,) = X}|0), where |0) is the ground state [107] and

(7.4)

“1‘__
n

Here N, = N(1 —bun),. and N = L?/2xi? is the LL degeneracy, I, is the magnetic length, L is
the syétem size, a;nd" vy, describes the filling of LLﬁ. We will use thé .shorthand notation X
to designate a general magnetoexciton. The magnetic fields of interest for our experiments
correspond to a partial filling of the lowest LL, i.e., the LLn are empty (v, = 0) for n > 0,

while 0 < 1y < 1 (we neglect the spin in this discussion).
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As in the theoretical approaches of Refs. [80, 79, 9, 7], we note the one to one corre-
spondence between photon absorption/emission processes and e-h pair creation/destruction.
However, since there is a 2DEG present prior to excitation, whenv following the effects of
the applied fields it is more convenient to count the number of valence band holes in a
given state. We will use the shorthand notation 0—h, 1—h, 2-h ... to label these states. As
- shown schematically in Fig. 7.1, states with three or more holes do not contribute to the
third-order nonlinear polarization [73]. This cartoon demonstrates the time evolution of
the semiconductor state [t) which results in coherent FWM emission. We can expand the
state |z/)) in these terms,

[¥) = [o) + 1) + [42). (7.5)

The intermediate 0-h, 1-h, and 2-h states evolve in time according to the Schridinger
equatfon for the total Hamiltonian, Eq. (7.1), and they are couplgd together by the absorp-
tion/emission of a photon (|tg) is coupled to |¢15 by photon emiésion, [1/)1) is coupled to
|h0) by photon absorption and to [t2) by photon emission, and [¢2) is coupled to |¢/1) by
the absorption of a photon)_; ’

The X states are not eigenstétes of our semiconciuctor system Eq. (7.2), and during
their time evblution they can interact with the 2DEG and create 2DEG‘ excitations. As we
mentioned in Ch. 6.4, for our experimental conditions, the dominant 2DEG excitations are

the collective modes due to the coherent promotion of an electron from LLO to a higher LL,

or inter-LL magnetoplasmons (MP) [45, 65;.66]. Such MP eigenstates have the form [66]

[Mq) = 3~ pro (e, q néicnrl0), (7.6)

knn'

where |0) is the ground state and the amplitudes p,,/(q) are related to the LLn' — LLn
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Figure 7.1: Cartoons of FWM processes in which the intermediate states are (a) 1-A and

0-h states, and (b) 1-h and 2-h states. In both cases, for a signal in the 2ky —ky direction,

the excitation is done by a ks photon, and the de-excitation is done by either a ki or a

ks photon (See Ch. 2.3). Since the FWM process is coherent, we must begin and end in

' the ground state, |0), but the intermediate 0-h state in (a) need not be |0) for the doped
sample. S o

contribution to the’ density operator [66]. For the magnetio fields of interest here, and for
photo—excita,tion of only LLO0-and LLI, the me,in COntri_bntion to the opticel spectra comes
from the LLO — LL1 MPs (referred to from now on as the MP states), whose energy is
close to the LLO — LL1 energy and Qc [45 65, 66] Theﬁ other MP excitations, and the
mcoherent partlcle—hole -2DEG excrtatrons _ana.logous to tho'se in an ordinary Fermi liquid,
have energres well ahove Qg é,nd thelr contrlbutlon is therefore supr)ressed

To help understand the drfferences between the MDQW system and an undoped
semieonduct_or, we w_rﬂ drscuss thequa.ht_a,tlve s_truct_ure of the 'Hll_bert s»p_ace of the system.
From noyy:on-we will denote a"general excited eo'nﬁéhretion of the electron gashy éDEG"f.
i‘he ohotofe}rcitations of the undoped systern, or of ithe MDQerth the 2DEG at rest',:

consist of 1'¢—'h‘, 2e-h, ...Lle~h peir states 'ere_a,ted in the d'ifferent LLs. Similarly, the Hilbert
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spa.ce.of the 2DEG (with no photo—exci_ted carriets) contains -l—MP, 2—MP,..,n—MP,... states.
~For the magnetlc ﬁelds of interest in our experlments the ground state |0) has all the e—th
- -and h- LLn empty, except the e-LLO Wthh contams the 2DEG at rest. However, the totalv 7
.'_Hllber_t space,v’}{zlberttot, -eonta_,ms__rna,ny_ ‘other Q—h. states Wthh can be photo—exc1ted via
v _noni_iﬁea;:'iop;i¢a1 pteeessee essisteci' by inelestic: Cenlomb scattering; Also, QW states tha.t
. cannot be eptically eXCited i.n'the abeenee of X f2IjEG interectiens (due to'optica.‘l eelection
rulee). do 'COntr.ibutev to ?{izb'ertt‘ot, e-.g. st'a.tes '\:avi'thv'a' MP and e a.nd-' fi not in LL"s with the
| same 1nd1ces An example is the four—partlcle exmta.tlon {1 MP + 1—LLO—e + 1—LL1 h}
As dlscussed below such a state can result from the scattermg of a LLl-e- h pair Wlth the
7 2D_EGv and pla,y_s:'an important _role b the opti_(':a;lvfprop_erties of the MDQW. :
| It 1s Werth’ notmgherethat, beeatu_se ofthe anlombfi_nt'era,(:tion, the prednet
ot independent e-h palr eié'enetate_s a.nd MP eiéen:stetes: is not an eigenstate of the tqtal; :
o system, and moreover such preduct states 'tio not',fefm a cornplete basis set for our Hilbert
space ’i‘o the ﬁrst a.pprox1mat10n. one can draw e.n analogy between the trea.tment of the .
X- .MP eﬁ'ects of 1ntetest here and the tre,ns1ent X p.honon 1nteract10n effects stndled 1n
:undqped_ eem;conciuctors» -[118,1 '95 7] : However,-_nowvv-vwefcan see an 1mp0rt_ant leﬁ'erenc_e:..:'ln
the :nndoped eystem', ‘the | electromcoperators : ehmmntef, Wit_h'_t’he: p_honon epere,ters’, »ana_:ene.
.vca'ni._'s.epa.rv_e.te out the eleetton::—_phonen_ int:ereetiens_ fromthe X -_X.- inter:e:c.tien eﬁ'ectsAlso,
.the i_re:spo_n.se -ef the:__gronnci :st_ate, Wthh has a.n empty eenduction band and a t‘ull velenee .
'hanti_,. to vthe phote—e;éeited- cer:riersj can be neg_ieeted. One ca,n therefere "e;épa,ha .the ste,te:.:'
I'(/)) in ter_ms-;of a. basxs Wthh consiete' vv(f)f a prefdlu(::t of the phonen'wavefunctibns- .t'i-mes' the

' e—h pair wavefunctions. [7, 107, 23] ‘In ec_‘)ntr'as_t 'to a phonon, a MP is made of 'eleetrons -
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(see Eq. (7.6)) and thus the MP operator does not commute with electronic operators, so
we cannot simply separate out the different interaction processes as in the undoped system.
Also, unlike for phonons, MPs do not strictly obey Bose statistics, so one must consider
both X-MP and MP-MP Pauli blocking effects. Furthermore, the ground state 2DEG
‘electrons are strongly correlated and can respond unadiabatically to the presence of the
photo-excited carriers. Issues such as these make it impossible ~‘to use a set of simple basis
states for describing the nonlinear optical response of the strongly correlated 2DEG system,

which greatly complicates the calculation.

7.3 Time evolution of the photo—excited system-

In' this section wé consider the time evolution of the photo—excited system, where
we a.rév pa.rticula.ﬂy interested in the contributions to the semiconductor photo—excited state
due to Coulomb interactions. -

Let. us examine in detail the i—h states. The evolution of the photp—excited X
state, | X, ), is determined by the action of the semiconductor Hamiltonian on that state.

By subtracting out the contributions from all the X states, the state H|X,) can be written —

in the general form

H|Xp) = QnlXn) = D Vain|Xw) +Ya), “ (7.7)
n'#n ’ )
where
Qn = (Xl H| X,) (7.8)

is the LLn exciton energy,

Viin = —(Xo |H| Xn) = Vi | (7.9)
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describes the Coulomb—induced coupling of the different LL excitons [112] (see Eq. (2.11)),
and |Y,) = ¥;}|0), where the operator
Vo=[Xn,Hl - WXn+ Y Vi Xw, _ | (7.10)
n'#n

describes the interactions between the LLn exciton .a,nd the rest of the carriers present in
the system. Without the last term, |Yy), Eq. (7.7) is equivalent to the theory of Ref. [112]
used to model the undoped QW system (see Ch. 2.2.2 and Ch. 2.5.1). One can see by using
the above three equations that |Y,) is orthogonal to all the magnetoexciton states |Xy),
(YolXm) =0, n,m = 0,1,---, and fhus corresponds to a 2DEG* state, a state with an
excited electron gas configuration. i

-. The states |Y,) describe new {le—h—i-lMP} four—particle excitations which deserve
some explé.nation. Let us illustrate their meaning and origin by an example that is important
in comparison with our;ex'periments: the case where only LLO and LL1 are significantly
excited. Let us consider the LL1 exciton.i The LLi‘electron can scatter down to LLO by
emitting a MP. Since the MP energy is close to the e-LL0 — e-LL1 energy spacing, the
above interaction process is nearly resonant. It therefore provides an efficient decay channel
of the LL1 exciton to a {I-MP + 1-LL0-e + 1-LL1-h} four-particle excitation, which we
will call a Y excitation. This is shown schematically in Fig. 7.2. In the case of a LLOA
exﬁiton, the hole can scatter while emitting a MP. However, such an interaction process,
which also results in a {1-MP + 1-LLO-e + 1-LL1-h} four-particle excitation, is non-
resonant. Therefore, the decay of the LLO X is suppressed as compared to that of the LL‘l
X.

The scattering described above is a new interaction process between the photo-
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LL1

Lo V7t VRl

Figure 7.2: Cartoons of the states [X;) and |Y;).-On the left, we.excite the state |X;) with a
photon. On the right, we show the creation of a |Y;) excitation, in which the LL1 e scatters
into LLO while creating a MP excitation. This state is nearly resonant with the | X;) state,
1 ~ Qo + Qpr ~ 4, and therefore this interaction process can be greatly enhanced.

'.:_ex.cited X states and the 2DEG, which provides é,_ddi'giona,i depha,smgof t;ixr system. As we
will see bélow, this’deph:asing is also non—Markovia;n, ie. thev:va‘ot:ésseé..' are not in:stanté,—
. neous, produCiﬁg a memory -kernél in the time domain, of an théfé _is_an.éﬁérgy dependence-

“to t_he dep_hasing Tate in the frequency d&m_ain,(r_ecall the.disc'u_SSio'n i_vr.l'vCh..2.3.3). Note that »

. Wnﬂ’.: <Yn|Yn') = (Xn |H |Y,) describes the progability'afqplitﬁde -fbf such aﬁ X % scat-

.:.trering gverit, and 1s nonzel."o_ e\;en if n #»n’, By aééou_nting ‘fof -t‘hisv SCatt_erili:g:in our ‘pheory,
we already__préseﬁt a.quali.'ta.tiv.e_rdiffere.ﬁce between th.e MDQW éystéfn a.nd an uﬁ_dé_ped .
QW system. VIn the case of .uﬁdoped séiﬁiéoﬁauctoré studi_ea' m Refs. {9, 7], ‘the operator
b iq Eq: (7_.1.0) v_can B_e' deco_¥np0§éd mtotwo 'vpa,br.ts: ogé _i.é_:._i.ndeb-énde%lt 'ofv'.the' phbhon

variables and describés X-X Coulomb intei*actions,‘whileﬁ thé".(:)th_er describes the phonon
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creation/ annihilation processes due to the electron-phonon interaction. Such a distin_ction
is possible due to the fact that -ohonons -a,_re {bosons that v'_comvmute with allvelectro'niic'.vari-'
' abk_’s' :This:decomposltion cant_hen be used to separate_ out vthve X -X Coulomb lnteractlon
from the electron—phono'n sca:'t‘té.vring contrlbutions to the c_leohasing:of the X state. 'In::fact,
_the former_contribution corresponds to the_correlation function Z of Refs. [9 7],. urhich
mainly contnbutes to the snt—wave rmxmg spectra [17 6] However unlike for phonons,-
- the. MP exc1tat10ns of the 2DEG are made of electrons hke the X As a result, it is no:
longer possible to sep_arate the MP _c-r_eation/:annihilation contribution to ¥y, from vthe vX -X
'interaction processes.- | |

We can perform a srmllar analy81s on 2 h states, which should be 51m11ar to the-
undoped system [107 80, 79] Startmg from the photo—excrted 2- X state | XnXm), we a.llow-'

the »X to‘ interact wlt_h each other as :well as _wrth the ZDEG, as descrlbe_d by the equatlon- _

HIX Xm> (Q +ﬂ )lX_n; -3 vmlmlx Xm/>- Z Vitn| X Xm)

miEm 'n.’;én

+|XnYm> + |XmYn> + IBn'm), (7-11.)'

obtamed by usmg Eq (7 10) to calculate the state [H XX 15 ]IO) The first term in Eq '
: (7 11) is the energy of the two non—mteractmg X whlle the followmg two- terms come from

' ’the Coulomb mduced LL couplmg of Ref [112] The second llne is easy to 1nterpret Slm1la.r '

" to |XnX ) the states |XnYm) XTYT |O)‘d‘escnbe.a_ann.'and- a Ym exc1ta.t1on'that do not o

inte_ract 'w1tl_1 each ,other. Flnally., the last term in 'E_q.:-(_7.1-1')_,
Bam) = [0, RE)0) = (B, X1, X400, (112)
comes from X-X :-‘lvnt'eractions [48, 49, 47,80, "30, '17,"6,. _10_7]-. ThlS interacting two-_exciton :

state is a linear comblnation'_of two e-h pairs: with different center of mass momenta, with
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the 2I?EG in its ground state. It is therefore orthogonal to all the 2DEG* states, such
as .|XnYm), and describes the biexciton bound, X5, and scatteripg, X X, states. It is this
| stat.:e which is responsibl_e for the large non—Markovi%m FWM sigﬁal which comé_s from X-X '
inferactions beyond the;'mean—ﬁeld, random phase a.pﬁroxima,_tioh (RPA), seen‘forj example
in bulk GaAs in a high mag'.f;et;ic_ field [48, 49, 30], or in ZnSe QW samples {17]. In Ref.
[107] it was found that the X -X ‘correlations described by this state l’e@ci to a new tlme
dependence as coﬁpafed to t:h.e RPA theory only when the dephasing of the X-X vintera-.ctingi ._
3 :.sta,tes is sufﬁ(;iently weak, or ‘when bound biexcif.ons are present. We do ﬁot eiﬁécf'these'
vco.nditions to occur in the case iof our i\/IDQW sarﬁples. Thus, for simplicity in oﬁr quel
we will treat the X-X interactions at the Ri’A levei, and neglect ﬁigher VCOI.‘rela.ti(_)l;lS.

Finally; Qe turn to th_é 0-h état:e, whicﬁ' has a qontr_ibution proﬁor’_cioﬁdl to :It'he
ground state |0), and alsoa {0-h/2DEG*} contribution, which 1s second order in the applied
N laser ﬁeld.: This second pa,rt incl_udé's fhe time evolution of the MP state excitea'\{ia g;secdﬁdQ
v 0:1'der process analogous to the .Qn'e'that léads to the inelastic Raman's-cattering.éi_gnal [92] ..
..V_{’e now introduce the state =

| Mpm) =_X,;|Ym). o o (7.13)
- Recallvi:i.lg_ that [Yem) ..is.?n -X—MP-.vé_x_cvita.tion'and _)A(n'an'r;ihilat_es an X , we éeg.fcha.t thé K
-state |Mnm) is a MP state The creéti’on of sncﬁ a MP»st'ai.te 1s deSéribed schematlcally -
: 1n Fig. 73 This process (::on_trib_ute's t‘é b_{)th the .n(.)'nvl.in:ear response and to the _inéla;étib
Raman scattéfiﬁg _spectfa,_ but 1s only 'obsé‘f-v,a.ble _dﬁe '_fo ‘the e_—ﬂ a,s-ymmeti‘jf in all lreal
i sYstemS [92, 20], and the ;;ela;);a,’c.i.fﬁn_;.)f tilé l.ilé)mentﬁm éonserva,tion and MP de(.:é,j./‘ inducéd _

by impurities and disorder (see for example [70]). V We note again that without deviations -
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.- Figure 7.3: The. creatlon of a magnetoplasmon exmtamon In the ﬁrst panel we excxte the
“state [ X1). In the second panel, the LL1 e scatters to LLO whlle emlttmg a-MP. In the final
" panel, the e~k pair recombies, lea.vmg only’ a MP excitation. This process is equlva.lent to
-a'Stokes Raman scattering process, and it can be: reversed to’ descrlbe MP destruction. '

from the ideal case of e-h symmetry, as discussed in Ch. 2.2.2, these contributions would

- be absentvfron.; the opticei respcrm'seT
74 Nonhnear I.)dlarizéti:()i:n' a'nd :va\ferag'e ijolarizétiofl rﬁodel
' Withiq the divpiple a.pprox1mat10n, the c_jpt'icel reépenée is deteriﬁjlir.let.i_ by the vpela,f- '
v':iéation of the pheto—e)vcciited 's'ys'{;em, | |
| __P(’t)k u<¢|X|¢ uZ \/_ NaPalt), o (1)
. ':iiw'here |1,b) .1s the tlme depeﬁdent semlconductor wa,vefunctlon tha,tvevolx-/es from t.he.ground

.-sta.te |0) accordmg to the Schrodmger equatlon for the total Ha.m1lton1an, Eq. (7. 1) In the

last term of Eq (7 14) we have expressed P(t) in terms of the a.verage va.lues Pn( ) of the
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magneto_exciton _operators,‘
Pa(t) = (1 Xaly). | ~(1.15)

Using the standard techniques’of nonlinear optics, we will expan& A\the polariéation in powers
of the electric field (up to third order), P(t) = PW(t) + PB)(t). We-can t‘hen sqlve pertur-
ba.fively, first for the linear i)olarization, then for the third order FWM polé.rization. Frqm
here, we will call the linear polarization PL(t) = 10 (t), and the nonlinear pol:;rization
P,(t) = ,€3) (t). To solve for P,f’ (®) and P,(t), we must understand the time evolution of
the state [¢), which contains 0-h, 1-h and 2—h.contributions to third Qrder in the applied
field.

Foll@wing the formalism of Refs. [82, 83, 85, 87, 88, 94, 108], we describe the
evolution of the state |¢) in terms of its non-interacting and correlated coiltributi-ons.
Starting with the states ]Xnv), ]Yn'), | Bam), and |My,,), we can define additional basis states,
using the recursive, or Lanczos, method [42, 76], to describe the dephasing and correlations
between the photo—excited states. Similar to Eq. (7.7) that introduced.the states |Ya), we
use the Lanczos method to obtain a new basis state by a.ctiﬁg with the Hamiltonia.ﬁ H on
the previous state, and then orthogonalizing the result with respect to the" existing basis
states [42]. By choosing aj suitable place to btrl_mcate thé series of basis states created in
this method, we can génerate a closed set of equations to describe the FWM signal in our
MDQW system. The fﬁll deri\'/a,t‘ion of the nonlinear pola.riza.tién P,(t) using this method
is given in Appendix A.

In order t(g connect.: with our eXperimeﬁta,l results, it is useful at this point, as in

Chs. 2.5.1 and 2.5.2, to introduce an average polarization model (APM), which will quali-
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tatively account for the physics of our MDQW system, while simplifying the equations to
make the iﬁtemretation transparent. To begin, we note that an ideal 2DEG under a strong
magnetic field displays electron-hole symmetry since thé electron and hole wavefunctions
become identical (see Ch. 2.2.2 for a discussion about the causes of electron-hole asym-
metry in real QW systems). We will start from the symmetric limit, which is analyzed in
Appendix B, and only add the asymmetry effects that lead to new dynamics absent in the
ideal system. We will also truncate our basis set at |Y'), and introduce a phenomenological
dephasing rate for the Y excitations. Finally, we will consider only the two LLs excited in
~ the experiments, LLO and LL1, which will leave us with only a small set of coupled equa-
tions, depending on only a few parameters and simple enough to be integrated numerically
on a PC. This will allow us t(v)/describe the dynamics due to the main physical processes in a
straightforward way. We note that the qualitative features of the dynamics are robust and
do not depend sensitively on our gssumptions about the different interaction pérameters.

In Appendix B we show that in the electron—hole symmetric limit

~ ~

Vi=-Y=Y. (7.16)

This symmetry relation implies that |Yp) and |Y7) describe the same state |Y), with a single
energy (2. In Abpendix C we use this symmetfy relation to derive a number of simplifications
for our model. For example, we find that there is only one MP state M) needed to describe
the MP correlation effects, with a single effective MP energy $2js.

Taking all of these approximq,tions together, and neglecting some additional source
terms that do not add new information about the system and are comparatively small, we

can write a closed set of equations which must be solved to simulate our FWM experiment.



113

The coupled first order polarization equations are:

Z'%P()L(‘t) = (R — iTo)PE(t) — Vor PL(t) — PL(t) — uEt)VNo (7.17)
"}%Pf (®) = (@ —iT)PL(E) - VP (t) + PL(t) — pE(t) VM (7.18)
i—g;f’L(t) = @-in)PE@) + W (PE(t) - PE())- (7.19)

These equations describe the first order responée of the sample to the electric field pulse
of the laser, £(t). The linear polarization PZ(t) oscillates in time like a harmonic oscilla-
tof, with frequency §1,, damped by a phonon induced dephasing rate I',, and driven by
the electric ﬁéld of the excit;ing .la.ser. These are the first and last terms, respecti.vel'y, in
Egs. (7.17) ’and‘(7.18). The parameter Vo1 = Vj describes the LL coupling of Ref. [112],
explained in the undoped case in Chs. 2.2.2 and 2.5.1. We expéct that the screening caused
by the doped electrons in the 2DEG should lowef the valug of this coupling pa.ramleter for
the MDQW cé.se. The function PL(t) describes the dephasing of the linear polarization
PL(t) through the X « Y scattering process described in the previous section. It also
behaves like a driven harmonic oscillator, but evolves in time according to its qwri energy
Q ~ Qo + Qp ~ Qy, and a dephasing rate y which accounts approximately for all of the
Astates into which |Y) can scatter. The coupling parameter W =(Y|Y) = (X |H|Y) gives
the probability a,mplitude\(_)'f. the X ¢ Y scattering process which drives PL(2).

It is important to nc;te that the dephasing of the optical polarization obtained
within this model‘is non—Markovi;m. Tﬁis can be cleé,rly»seen at the linear polarization

level. We can solve Egs. (7.17)-(7.19) analytically by Fourier transform:
Ve

[~ Q)] PE @) + Vit (@) P () = ~pE(@)NY, (7.:20)
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where n,n’ = 0,1 and n # n’. The exciton energy ,(w) and the LL coupling V,,,(w) now

include frequency—dependent self-energy corrections due to the X—2DEG scattering,

w

n = dén —= — — L'y, . ‘
() = + g — il (7.21)
and
w
V,mr(w) = Vnn’ + m (7.22)

The frequency-dependence of the above magnetoexciton energies and coupling constants is
a manifestation of the non—Ma,rkovia,n behavior of the system. This arises because pé.rt of
the optical excitation is temporarily stored in the shake-up excitations described by PL(t).
This effect is exacerbated ﬁrhen we consider higher orders in the applied field.

The polarization PL(w) = P (w) + P£(w) can be fit to the linear absorption data
for our sample, in order to fix the parameters Vp;, W, I'y,, and 7.

At second order in the electric field, we must coﬁsider the influence of 2-h and
correlated 0-h states. We approximate the X-X interactions at the mean—field RPA level, in
v;/hich we factorize the biexciton correlation function (seé Ch. 2.5.1). Within the electron—
hole symmetric limit of Eq. (7.16), there is only one second order equation necessary for

our model, the equation for the magnetoplasmon correlation function M(t),

.0

i M) = (Qar — ime) M(E) + War P (8) [PE() — B (9)] (7.23)

This correlation function describes the time evolution of the MP state, and the scattering

during the two photon process that excites the 2DEG. The driving term of Eq. (7.23) is

similar to a coherent density, o |P|?, and describes the creation of a MP excitation from

the photo—excitéd X states as presented above in Fig. 7.3. The time dependence of M(%),
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| which is found froﬁl the integration of this equatién, will lead to é,dditionél non—Markovian
effects in the dynarhics. of the nonlinear polarization. Recall that the MP induced FWM
signal, like the MP-Raman scattering signal, requires a deviation from the ideal symmetfic
limit (see Section 7.3)" The parameter Wy = (M|M), which gives the —strength of the
MP correlation contribution to the FWM .sign"a.l, is also a measure of the electron-hole

asymmetry in the system.
Fiﬁally we can write the equations of motion for the third—order nonlinear polar-

ization which gives the FWM signal:

2 Pt) = (@ — o) Po(t) ~ Vor () — P()

+' 2u€E(t)

T PR @) + VXX (P - R (0) PEORE)

- PEOPEPL (0 + M0 (0) (PHE) - PHO), (7.24)

describes the LLO nonlinear polarizatioﬁ Py(t). Let us discuss the meaning of thé source
terms in this equation before presenting the other third-order equations.

The first line of Eq.._(7;2_4) contaixis, as in the linear case of Eq. (7.17), the energy
and damping for 'the‘os.cillation of the LLO polarization, as well as the coupling between
the LLs, Vo1 Pi(2), and the P(t) term which describes the additional dephasing from the
‘X > Y scattering. This dephasing is enhanced in the nonlinear regime, due to the time
depexidence of the photo—excitations, as we will discuss below.

The second line of Eq. (7.24) gives the driving terms for Py(t) which are similar

' tq the undoped RPA level model of Ch. 2.5.1. The ﬁrst term is the familiar Pauli blockixig

no_nlinearity'(PB), which exists even in atomic systems (see Ch. 2.4), and comes from the

fact that the excitations obey the Pauli exclusion principle. It is proportional to the coherent
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density |PL(t)|?, and can be thought of as the scattering of a laser photon with the coherent
density of photo—excited carriers. The second term ‘is the nonlinearity due to the RPA X-
X interactions. Similar to the Pauli blocking term above, we can describe this term as
the scattering of the photo—excited polarization with the coherent density of photo—excited
carriers. The parameter VXX which describes the strength of the ‘X-X nonlinearity, is
shown in Appendix C to have a simple relationship with Vy;. As in Ch. 2.5, we refer to this
nonlinearity as the bare Coulomb interaction (BCI). While these effects are found in the
RPA model of FWM in undoped semiconductors, the additional dephasing and screening
from the 2DEG will lead to a qualitative difference in th FWM spectrum.

The third line of Eq. (7.24) describes effects which are entirely absent in the
undoped case, and come from the 2DEG excitations. The first term, which we call the
Shake-up term, describes the shake-up of the 2DEG during the exciton recombination that
leads to the coherent emission. In particular, the situation where the photo—excitation of
two X is followed by the recombination of one tﬁem assisted by the shake-up qf a MP
excitation. The above process leaves the system in the {1-h/2DEG*} state lYm),.which
is then annihilated by the optical field. The last term in Eq. (7.24), which describes the
MP correlations (MPC), comes from photo—excitation and time evolution of the MP state,
described by M(t). This source term describes processes such as the following, shown
schematically in Fig. 7.4. A photo-excited X decays into a Y, or { X-MP} excitation. The
e—h pair in this state recombines leading to the coherent emission, which leaves the system

in the MP state |M). This MP propagates in time and then interacts with the second photo-

excited X into a new X state, which is subsequently annihilated by the optical field. It is
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Figure 7.4: Magnetoplasmon correlation (MPC) contribution to the FWM signal. - The
first three panels describe the Stokes Raman scattering process for the creation of a MP
excitation, as in Fig. 7.3. The reverse, antiStokes Raman process which returns the system
to the ground state, is shown in the final three panels. Not the similarity of this process to
coherent antiStokes Raman scattering with phonons.

interesting to note the similarity of this process to f_;he familiar one of coherent a.nt.',iStokeS
Raman scattéring (58] that, howeve;, involves phonons.. This process wvillvcontribute the
the FWM signal with a,. new time _def)éndence which comes from the equation of motion for
M(t).

The equation of; mbtipn'for Pi(t) contains similar source terms,

- ) | o : ZﬁPl (t) = (Qu —il)PL(t) — Vlﬁpd(t) + P(t)

ot
2 jﬂpﬂwm VXX (PE(t) - B () PEOPE®)

( - _ +
1 . S SN
- (A (t)P%(t)PL (t) +2P{ )Py (1)P™ (1)) (7.25)

and is of course coupled to Py(t ) by the LL couplmg Vor- Note that the MPC terms.
only contribute in the Py(t) equatlon, due to the symmetry. r_el_a,tlon Eq.r(7.;16) and its

consequences, as described in 'A_ppendix B.:

Both Py(t) and. P, (t) are cdupled to P(t), w_hich-describés the dephasing of the
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nonlinear polarization due to the X < Y scattering, as discussed above for the linear
polarization. This serves to reinforce the _dephasihg induced by this scattering', as well as
» intre.du(':e time dependent corrections to the coupling. The full equation of motion for P(t)

'cdntains many driving terms which come from the interactions among the 2DEG* excited

states. However, all of these terms, prepertiOnal'tb pPL (t), are damped by.an additional

dephasing width v; and thus lead to a br_Oad incoherent contribution to the FWM spectrum.
We will rieglect all of these terms, and keep— only t_he_so:uree.te'rms- ‘which are not as strongly

vdar_vn‘ped_v. The equation _ef mh’_tion-for P(t) is_.-

5P (0) = @ =P+ WAL - A®)

+W ( ;! PlL(t)POL(t) (b )— ?—\II;'Pf{(t)-pf'(t) ‘plei(.t). 5 N%Po,,(tt-) PE() pg*.(t-)). : 20

- The ﬁrst hne of thlS equatlon grves the energy and dephasmg of P(t), and the coupling to "

' the nonhnear polanzatmns P,(t ) as in the lmear case. Smce P(t ( ) descnbes the dephasmg of
the'polarization', the._soﬁrce terms.'of Eq. (7.'2'6) de'scrihe the excrtatmn—mduced dephasing,

: or the tlme depehderrt chang_es tQi.'the dephasirrg 'd:uet_e' the eXCitattqn .ef a,dditienal-c_arriers.
i::"I“he;:seeend:::line.cah' be th'o:ug.ht.: of as descrihih:é, te}»lowe_st er(ier 1n the opticaliﬁeld, -the
vexeitattoﬁ'—ihdhiced' c_o_r:rectionitq the :s'catterihg.:.amplitude w .that“is proportional to the
_C(V)'herent‘dehsityi..;' This effeetrrrely glves ‘a'tirh'e ;tlepehderree to the couphng paranieter W
corhtng »fr'orr-:i. 'the: presenee ef th'e ‘vpho'to;excite.d. i'(:ar'ri-ersj :Kee-ping 'avdditi'Onal source. terrhs

in Eq (7 26) will add a broad 1ncoherent background 81gnal and as long as we treat the

dephasmg of the Y states by a phenomenologlcal parameter 'y there is no reason to 1ncludev

In the next section we present the numerical solutions to these equatiens,' resulting
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in the FWM signal. We analyze the effects of the individual terms in Egs. (7.24) - (7.26), and
show that this average polarization model is able to qualitatively explain our experiments

for the correct choice of parameters.

7.5 Simulations

Here we will solve the model equations presented in the last section, and compare
the results to the experimental data from the previous chapter.

We start by assuming a laser excitation of the form £(t) = eiEZ'Fﬁp(t) + eiEl'Fé'p(t +
At), where £,(t) is the Gaussian envelope of the pulses emitted by the laser. We then solve
the equations above as a function of time ¢ and time delay At, keeping only the terms
leading to a nonlinear signal in the 2122 - El direction. We perform a Fourier transform of
the nonlinear polarization to get P(At,w). The FWM signal measured in our experiments
is then Ssr(At,w) o« |P(At,w)|%.

As mentioned in the previous section, by fitting the calculated linear polarization
spectrum to the linear absorption measurements taken to characterize our sample, we can
fix the parameters Vp;, W, and the dephasing parameters I',, and -, to within +£50%. This
is shown in Fig. 7.5, which compares the calculated absorption a(w) « Im{xM(w)} =
Im{PL(w)/E(w)} with our measured absorption spectra for sample C at B = 8T. The fit
is quite good overall, giving the correct ratio of peak heights and widths. Recall that the
valence band structure of the sample leads to additional peaks in the spectrum, which we
do not include in our model. This gives the small peak just above the LLO energy, and the

shoulder on the high energy side of the LL1 peak in the absorption spectrum from sample
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Figure 7.5: Simulation of the linear absorption spectrum. We fit the linear polarization
calculated from the model (red curve) to the sample C absorption spectrum (black curve).

This fit is for Vo1 = 0.3 meV, W = 4.5 meV?, and vy = 6.2 meV. The fit is quite good in
terms of the ratio of oscillator strength and peak width.

C. Varying the parameters within the fitting range (+£50%) yields is no significant change
to the calculated FWM signal. Essentially, this leaves us with two free parameters in the
calculation of the nonlinear polarization, the strength of the MPC term, Wy, and the MP
energy 2.

The simulated FWM signal with the optimal choice of parameters, ST%! (At, w) is

presented in Fig. 7.6, along with the experimental results S’gfged(At, w), for the case where
we excite the two LLs equally. As the figure clearly shows, the simulations are able to
recreate both the transfer of signal strength to LLO and the pronounced beats coming from
only the single level. The beat period in the simulation is given by the inverse of the LL

energy difference, as in the experiment.

When we move the laser to excite only into LL1, we can also recreate the transfer
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Figure 7.6: Simulation of the FWM signal for excitation of both LLs equally. (a) The signal
from sample C for B = 8T, when we excite an equal number of e-h pairs into both LLO and
LL1 (same as Fig. 6.1(a)). (b) The simulated signal ST3%!(At,w) for the same conditions
as (a). The laser pulse and absorption spectra are projected on the back screen.
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Figure 7.7: Simulation of the FWM signal at At = 0 for the preferential excitation of LL1.
The black line shows the signal from sample C for B = 8T, at At = 0, when we excite
LL1 preferentially (60:1 excitation of LL1:LLO, same as Fig. 6.2), and the simulation for

the same excitation is shown in the red line. The enhancement of the LLO signal in the
simulations is given by R™°4¢! = 13.8, within 20% of the experimental value.

of signal strength, as shown in Fig. 7.7. Again the signal from LLO is greatly enhanced
relative to LL1, just as in the experiment. Recall that for the experiments we calculated
the relative emission ratio R, which gives an estimate for the amount of LLO enhancement
relative to the excitation density (see Eq. (6.1)). For the MDQW sample and this excitation
condition, we found R%P¢¢ = 17.5, where R = 1 corresponds to a “normal” response. For
the simulations we find R™%! = 13.8, which is within 20% of the experimental value.

The model is able to describe the time dependence of this signal as well. Recall
that for excitation of LL1, the LLO signal had a very large At < 0 signal, so that the signal
was almost symmetric as a function of time delay. In Fig. 7.8 we show Sg”ﬁdel(At ) at the
LLO and LL1 emission energies, compared to the experimental results. While we do not

quite see a symmetric signal, the At < 0 signal is much larger from LLO than from LL1, as
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Figure 7.8: Simulation of the FWM signal as a function of At for the preferential excitation
of LL1. The experimental results are shown in (a), for sample C for B = 8T, when we excite
LL1 preferentially (60:1 excitation of LL1:LLO0, same as Fig. 6.3), at the LL0 emission energy
(black curve) and the LL1 emission energy (red curve). The simulated data is shown in
(b) for the same conditions. The signals have been normalized for clarity. Notice the large
negative delay signal from the LLO signal.
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in the experiment. We believe that by including the center of mass scattering of the MPs
in Eq. (7.23) and in +, the signal could be made symmetric. However, this requires a more
detailed calculation of the full theory in Appendix A, which is beyond the scope of this
work.

Overall, our average polarization model can capture the main experimental results
quite well. Let us analyze the different elements of the model, to see where the effects come
from. To do this, it is easiest to look at the signal when we excite entirely into LL1. In Fig.
7.9, we show ST8%!(At ) at the two LL emission energies, for each of the individual source
terms which appear in Eqgs. (7.24)-(7.25). In the upper panel, we see that the signal from
LL1 is determined by the PB nonlinearity for positive times, with a very small negative
time signal given by the Shake-up term. The BCI source term is very weak in this case,
as we expect due to the screening of the Coulomb interaction by the 2DEG. The MPC
contribution, which comes from the magnetoplasmon propagation as described in Fig. 7.4,
is entirely absent from LL1, as discussed in the previous section. However, looking at the
lower panel, we find that the MPC source term completely dominates the others in the
signal from LLO, giving a large negative time delay signal, and an overall signal which
is comparable in size to the LL1 signal, as we see in the experiment. The BCI and PB
contributions are both more than an order of magnitude lower than the MPC contribution,
and the Shake—up term is even weaker. We have kept the latter term in the model to
demonstrate some of the additional ways that the 2DEG can influence the FWM signal,
but in fact the term is quite weak in our model, and provides a time dependence similar to

the BCI term. However, it is clear that the magnetoplasmon correlation term is essential
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Figure 7.9: FWM vs. At calculated from the model, showing each source term. The
upper panel (a) shows the signal from LL1, and the lower panel (b) shows the signal
from LL0, showing the contribution of the Pauli blocking (PB), bare Coulomb interaction
(BCI), mean field 2DEG shake up interaction (Shake up), and magnetoplasmon correla-
tion (MPC) source terms to the total signal. We see that the LL1 signal is dominated by
the PB contribution, while the LLO0 signal is entirely determined by the MPC source term.
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Figure 7.10: FWM vs. At calculated from the model, with and without W. The fist panel
(a) shows the signal vs. At from LL1 (red) and LLO (black) when W = 0 and there are no
effects from the 2DEG. The second panel (b) shows the signal when W = 4.5 meV? and all
the 2DEG interaction source terms are active. While the existence of the X < Y scattering

channel decreases the LLO signal slightly, it has a huge effect on the LL1 signal, reducing it
by more than an order of magnitude.

to model the optical dynamics of the 2DEG system.

In the case where we excite into both levels equally, we expect there to be strong
PB in both LL1 and LLO. The much stronger signal from LLO in this case comes from the
X Y scattering process described by P(t) and with amplitude W. This can be seen in in
Fig. 7.10, which shows the change in the strength of the FWM signal from each LL, as we
turn on the coupling parameter W. The coupling induced by W has a drastic effect on the
LL1 signal, reducing it by almost two orders of magnitude. The LLO signal is also reduced,

but only by about a factor of 2, resulting in a much larger signal from LLO relative to LLI.



127
7.6 Conclusion

In this cilapfer we have outlined some of f.he theoretical challenges which must be
faced to uhdgrstaqd the role of the correlated 2DEG in the optical response of our MDQW
samples. We discussed the existence of new tyi)es of excited states, such as the fdug—particie
state Y, with which the magnetoexcitons can interact, and the magnétoplasmon states which -
can be excited in Raman—like processes. We deVefbped a generalized average 'pdlarizatioﬁ-
modél (as in Ch. 2.5) based on the microscopic theory including theseinteractioné (see
Appendix A), and solved the model to simulate our experimental results. We have seen that

| the magnetoplasmon correlations and the X ¢ Y scattéring are necessary to explain t_he )
enhanped signal frombLLO, and the large ﬁegative time delay signal seen in 1éhe efxperjir_ﬁent‘s.

The model was based on several approximations, described here and .in Apps.
B and C,. w}.1ich‘ signiﬁcantly reduced the size of the calculation fequired to simulate our
results. Work is continuing ﬁo go. beyond these ap;)roxirﬁations, by kéeping more bagis
states defined ﬁsing til’e Lanczos method, for example to treat 2—MP\“sca,ttering’ and center
of mass ﬁlotion difectly. However, our model is able to qualitatively deécribe the linusual

_ éxperimenta.l results.
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Chapter 8

Conclusion

8.1 Summary

We performed ultrafast two—pulse degenerate four—-wave mixing on modulation
doped GaAs quantum wells in high magnetic fields. The preseﬁce of a correlated two di-
mensional electron gas in thé sample, capable of ir;teracting with the phot0~excited electron
hole pairs, drastically a.ﬁ'ected the dynamics of fhe excited system. We interpreted this data
using a theory which takes the electron gas in the ground state and its excitations into ac-
count, and develop a model which reproduces the most salient experimental results.
Measurements in which bthe laser was narrowed and tuned to excite only into the
lowest partially empty Landau lével showed a decay time which varied by an order of
‘ magnitude as a function of the filling factor of the electron gas, with a transition from
Markovian to non-Markovian behavior with increasing magnetic field, due to the influence
of the intra-Landau level electron gas excitatfons. In the former case, the dephasing of the

signal was dominated by other relaxation processes (e.g. phonons or Auger effects), and the -
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» dephasing time followed that of the number of available scattering states, exhibiting peaks
a1; full Landau levels. At high magnetic field, the FWM signal éhowed strong evidence of
memory effects, including an aé&mmetric four-wave mixing lineshape and a spectral shift,
which couid be understood in terms of scaytering between the photo—excited carriers and
the magnetoroton excitations of the electron gas witﬁin the lowest Landau level.

‘Four-wave mixing measurements in which the laser was tuned to excite carriers
into both the lowest and next highest Landau levels (LLO and LL1 respectively), or only into
the upper level, gave insight into the correlations between the photo-excited carriers and
the inter-Landau level excitations of the electron gas. We compared these measurements
’direc-tly with similar measurements in undoped quantum wells, w-hith are well described

| by the mean—ﬁeld; RPA level theory (see Ch. 2.5.1). in the doped sample, we observe a

large transfer of signal strength from LLO to LL1, and unusual features m the speptra as

a function of the time delay. When both levels are excited, we see only signal fl‘O#l LLO,

but with véry large beats as a function of time delay. Whgn we excite only into LL1, we

see a strong signal from LLO for both positive and negative time delay, which is almost
symmetric around At = 0. We found that these results require that LLO is not completely
full of doped electrons before excitation (v < 2), and that a.t. least a smé.ll part of the laser

- pulse excites LLO. As the overall laser intensity was increased:to exci_te more electron-hole -

pairs, beats appeared in the signal from LLO, and as the mean-field interactions between

the photo—excited carriers began to dominate over the ‘s,ignva,l.due to exciton—electron gas
correlations, the doped and undoped signals began approach one another.

By including in our theory, in addition the exciton-exciton interactions present in



130

undoped semiconductors, the iptera,ction between the photo—-excited carriers and the inter-
Landau level magnetoplasmon excitations of the electron gas, we were able to interpret these
results, and qualitatively simulate the effects of these interaction effects. Processes such as
(1) the scattering of a photo—excited electron-hole pair into a nearly resonant four—particle
state consisting of an electron-hole pair and a magnetoplasmon and (2) time dependent
inter-Landau level carrier scattering mediated by magnetoplasmons, similar to coherent
antiStokes Raman scattering, were shown to lead to the transfer of signal strength to LLO

" and the unusual time dependence of the signal.

8.2 Future work

This research’ demonstrates the power of ultrafast spectroscopy to explox:é inter-
esting and open questions in many-body physics, and opens the door to several possibilities
for future exploration.

Having started down the road to understanding the dynamics of the excitations of
the two dimensional electron gas in a high magnetic field, the next logical step is to measure
the dyhainics of the quasiparticle excitations of the f‘ract‘ional quantum Hall system. This
requires lower temperatures, such as in a He3 cryostat or a dilution refrigerator, and also
higher mobility samples. To significantly improve on the mobility we must grow high—quality
single hetérojunction samples (capable of mobilities well over 10% ¢cm?/Vs).

Another interesting issue which we have not addressed is the interactions between

the different hole states. While our interpretation is able to qualitatively explain the data,

we are prevented from a quantitative analysis until the presence of additional valence band
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states can be taken into account. Also, experiments performed with other polarization states
can access ééveral different hole states at once, as shown in the linear absorption vspectra in
Ch. 4. These additional valence'baﬁd states can have an effect on the interactions as well.

In addition to‘t’he cha;ge excitations of the electron gas, there are spin excitations,
which can have very long lii;etimes. The spin dynamics of this system, particularly near
integer filling factors, is a topic qf some interest. For example, at filling factor v =1 (the
so—called “qua.ntuxﬁ Hall ferromagnet”) t;he lowest lying charged excitation is a Si(yrmion, or
spin texture [25, 93]. In the interacting syétem, it becom;:s energetically favorable to spread
a single flipped spin over several electrons, leading to.a spatial spin pattern, or texture.
Skyrmions have beeﬁ observed using several techniques (1, 12, 78, 69], but the dynamics of

the system have never been investigated.
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Appendix A

1
/

Derivation of the theory

A.1 Introduction -

In this appendix v&e present. the full derivation of the theory outlined in Ch. 7. The
theory is based on a canonical transformation and time dependent coherent states, as in
Refs. [82, 83, 85, 87, 88, 94, 108], to describe the coherent dynamics of a system containing
a strongly correlated ground state with long lived low energy excitations. “

In Section A.2 we set up the general problem and discuss the nature of the states
that contribute to the optical spectra for the filling factors of interest. In Section A.3 we
study the time evolution of a general two-band strongly correlated S)Ifstem,, without any
assumptions about its nature. We introduce a decomposition/‘of the photo—exg:ited many-—
body states that allows us to separate out the contributions to the time evolved states
whi,cﬁ are due “tQ the interaction and correlation effects. In Section A.4 we use the above
' decon;;position in order to obtain the equation of motion for the third-order nonlinear

polarization of a general strongly correlated system. We separate out the contributions
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that are analogous to those in a multi-level system, and identify the new time dependent
contributions that arise from the interactions and the correlations. In Section A.5 we discuss
the different dephasing contributions and introduce a basis of many-body states, derived

using a Lanczos-like recursive method [42].

A.2 Problem setup

We are interested in developing a comprehensive approach to the problem of the
nonlinear optical response of a semiconductor QW containing a 2DEG in a large magnetic

field. This system is described by the Hamiltonian [40] (& = 1),
Hiot(t) = H — €)Xt — p&* (1) X. (A.1)
Here, H is the “bare” semjconductor‘Hamiltonian [40, 107, 23, 123],

H= 2; Q(n + 1/2)ef éxn + Zk[Ey +Q2n + 1/2IAL, A i + Vee + Vi + Ven, (A.2)
n, n, '

E, is the bandgap, Ve, Vep, and Vip are 'the elect}fon~eiectron- , électron—hole, and hole-
hole interactions respectively (among the photo—excited. carriers and with the 2DEG as
well), £(t) is the applied opti(;al field, and p is the interbénd transition matrix element.
The magnetic field splits the conduction and valence bands into electron (e) and hole (h)
Landau Levels, e-LLn and h-LLn. »éLn is the creation operator of the LLn conduction
band electron, n = 0,1, -- , with cyclotron energy 2%, and iLL’n is the creation operator of
the LLn valence band hole, with cyclotron energy . 'i‘he optical transition operator X' t

is given by

n

Xt=3%"¢ A, =3 VNX]. (A.3)
n.k » .
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In the above equation we introduced the creation operator Xi of the LLn magnetoexciton

state |X,,) = X}]0), where |0) is the ground state [107] and

IS 1 % 7
X} = Vi DA (A4)
k

Here N, = N(1 — v,), and N = L?/ 27;13 is the LL degener@cy, l. is the magnetic length,
L is the system size, and vy = & T4c(0]é] ,éi/0) describes the filling of LLn. We will use
the shorthand notatioﬁ X to designate a general magnetoexciton. The magnetic fields of
interest for our experiments correspond to a partial filling of the lowest LL, i.e., the LLn
are empty (v, = 0) for n > 0, while 0 < 19 < 1 (we neglect the spin in this discussion).
The'magneto'exciton operators of Eq. (A.4) do not obey the comﬁmta.tion rela-
tionship of point boson operators, reflecting the fact that they are composite objects built

out of fermions. Instead, they satisfy the commutation relation

[Xn, X1] = bnm (1 - Alév") , (A.5)

which expresses the underlying Fermi statistics. Here the number operator

AK’n = Z (ilt_k,nil-—k,n +‘é;[¢,nék,vn) — Nv, (AG)
k .

describes the fluctuations of the LLn carrier number due to Pauli blocking, or phase space
filling effects.
Within the dipole approximation, the optical response is determined by the polar-

ization of the photo—excited system,
P(t) = u(@|X|y) = u ) VNuPalt), (A7)
n

where |t) is the semiconductor wavefunction that evolves from the ground state |0) accord-

ing to. the Schrédinger equation for the total Hamiltonian Hie(t). In the last term of Eq.
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(A.7) we have expressed P(t) in terms of the average values P,(t) of the magnetoexciton

Aopera.tors,
Pu(t) = ($|Xnl). - (A8

As in the theoretical approaches of Refs. [80, 79, 9, 7], we note the one to one correspondence
between photon absorption/ emissioﬂ processes and e-h pair creation/ destruction. However,
since there is a 2DEG present prior to é};citation, when fqllowing the effects of the applied
fields.it is more convenient to count the number of valence band holes in a given state. We
will use the shorthand notation 0-h, 1-h, 2-h ... to label these sta;es. We can decompose

the time evolved state |¢) in this manner, yielding

) = |sho) + ltha) + Ip2), _ (A.9)

" where [:), i = 0,1,2, describes the contribution of the i-h states. Substituting the above
decomposition in the Schrédinger equation with the Hamiltonian Hy.(t), we obtain up to

‘.third—'order in the optical field

-2 o) — Hidn) = —4E" () X14n), (A10)
2 n) — Hign) = ~uE(0)X o) — " X1, (A11)
2 1a) — Hi) = ~uEOX ), (A12)

with the initial condition that |t);(—00)) = 8;0[0). The physics of the above equatioﬁs is
clearly displ_ayéd: o) is coupled to |¢1) by the de;truction of one e-h pair, ]1/)1) is coupled
: tt? [t2) by the destruction of one e~k pair and to |tp) by the creation of one e—h pair, and
[42) is coupled to |1;) by the creation of oneA e—h pair.

During their time evolution, the X states interact with the 9DEG and create
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2DEG excitations. For our experimental conditions, the dominant 2DEG excitations are
the collective modes due to the coherent promotion of an electron from LLO to a higher LL,

or inter-LL magnetoplasmons (MP) [45, 65, 66}. Such MP eigenstates have the form [66]

IMg) = 3" prw (@) g néicrl0), (A.13)

knn'

where |0) is the ground state and the amplitudes ppn(q) are related to the LLn' — LLn
contribution to the density operator [66]. For the magnetic fields of interest here, and for
photo-excitation of only LL0 and LL1, the main contribution to the optical spectra comes
from the LLO — LL1 MPs (referred to from now on as the MP states), whose energy is
qlose to the LLO — LL1 energy and Q¢ [45, 65, 66]. The other MP excitations, and the
incoherent particle-hole 2DEG excitations analogous to those in an ordinary Fermi liquid,

have energies well above Q¢ and their contribution is therefore suppressed.

A.3 Time dependent interaction effects

In this section we consider the time evolutibn of the photo—excited system, where
we are particularly interested in the contributions to |¢)) due to Coulomb interactions.
For that we can separate out the non—interacting contributions to the photo—excited state
Eq. (A.9), and identify the contributions to the 0-h, 1-h, and 2-h states due to Coulomb

correlation. Therefore we decompose |ig), |#1) and |i2) according to:
[0} = (0[)[0) + [§™) , 186™) = — D Pr* Xalth) + l90), (A.14)
i n
where (0l¢i) = (0ldho) =0,

1) = > PE|Xa) + ), (A.15)
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N,

‘where (X,|¢:) =0, and

1 | : : . ; Ay - -
o) = 53 Pu Pl XnXor) + 105™) , [95%) = 3 Py Xillhn) + [eba), (A.16)

nn'
where the state | X, X/) = X} A,‘:,|0) describes two non-interacting magnetoexcitons. We

have introduced the LLn exciton amplitude
P(t) = (Xalth) = (0| Xnly), (A.17)

which, to first order. in the optical field reduces to the LLn linear polarization. In the
above equa’gions, the first parts reduce to the usual independent—level system contributions,
whereas [0, o), |1), it and |¢P2) account for the Coulomb interaction among the
X and with the 9DEG, which we will analyze in detail below. The ;tates [pint), |int), and
[41) also allow us to separate, in the equations of motion Egs. (A.IQ), (A.11), and (A.12),
the source terms proportional to the optical field from the source terms proportional the .
polarizations PL(t), which lead to different time dependencies.

Clearly, the correlation eﬁ&ts in the third-order nonlinear polarization are con-
tained in the states |tp), |11), and |1ﬁ2) Here we will analyze the dynamics of these states
and determinq their equatioﬁs of motion. In order to obtain the third-order polarization,
we only need to study the time evolution -of |¢) up to s,ecoﬁd order in thé optical field.

| It is easiest to start with the 1-h time evolved state. In Eq. (A.15‘), the first term is
the LLn linear polarizatioﬁ contribution which is proportional to the LLn magnetoexciton
-state | Xy,); with the amplitude PL(t). The second term in Eq. (A.15) is the {1-h/2DEG*}
_contributioﬁ originating from the X—2DEG scattering \during the time evolution of the

photo-excited magnetoexcitons. Such interactions can be described by considering the
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action of the Hamiltonian H on the magnetoexciton states |X,). By subtracting all of the

exciton contributions, the state H|X,) can be expressed in the general form

H|X ) nIXn) - Z Vn'nIXn') + IY ), (A.18)
n'#n
where
Qn = (Xn| H|X,) — (A.19)

is the LLn exciton energy,

Vi = —(Xw [H|Xp) = Vi : (A.20)

describes the Coulomb-induced coupling of the different LL excitons [112] (see Eq. (2.11)),

and |Y,) = Y;}|0), where the operator

Vo= [Xn, H - QXn + ) Vaw X, (A.21)
n'#n

describes the interactions between the LLn exciton and the rest of the carriers present in
the system. One can see by using the above three equations that |Yy) is orthogonal to all
the magnetoexciton states |Xy;), (Yn|Xm) =0, n,m =0,1,---, and thus corresponds to a
2DEG* state, a state with an excited electron gas configuration. The states |Y,) describe the
{le-h+1MP} four—particle Y excitations with which the X states can scatter, as discussed
in Ch. 7.3.

We can now describe the time evolution of the 1-k photo—excited state |4 ), which
we Have split into the excitonic and corréla.ted parts, PL(t) and |¢,) respectively. The
equation of motion for PL(t) can be derived by truncating Eq. (A.11) at first order in the

electric field, projecting onto the state (X,|, and applying Eq. (A.18):

z—PL(t)— nPE(t) = 3 VawPL(t) + PE(t) — pE(t)NE/2. (A.22)
n'#n
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The correlation function
P (t) = (Yaltr) = (Yal$r) . (A23)

describgs the :dephasing of P,f’ (t) due to the X—2DEG scattering, and is discussed further
in Section A5

Substituting the decomposition Eq. (A.15) into the Séhrédinger equation Eq.
(A.11) and using Egs. (A.22) and (A.18) we obtain the equation of motion of ﬁhe {1-

h/2DEG*} contribution |¢; ),

2 1) — Hh) = ;[P,f(tm - PE@®) L] 10) = D [PE@IYa) - PE®IX)] - (A24)
The operator PL()Y;} — PL(t)X} will also appear below, and describes the interaction—
assisted photo—excité.tion of the system.

We can perform a simila‘r.a.nalysis on the time evolved 2-h staté with the de-
composition Eq. (A.16), where the first term on the right hand side is proportional to the
non-interacting two 'magnetoexciton states | X, Xp) = X,",Xl,lﬂ), siﬁilm to the undoped
system [107, 80, 79]. This contribution describes the time evolutioﬁ qf thé two magnetoexci-

tons photo—excited by the optical field in the absence of .a.ny interactions. 'However, the two

-excitons interact with each other as well as with the 2DEG, as described by the equation

H|XpXm) = (U + )| XoXm) = Y ViemlXnXm) = Y Vern| X Xom)
v N m'#Em n'#n
HXnYm) + | XmYn) + |Bnm),  (A.25)
~ obtained By using Eq. (A.21) to calculate the state [H, X} X} ]|0). The first term in Eq.
(A.25) is the energy 61' the two non-interacting X, while the following two terms come

from the Coulomb-induced LL coupling. The second line is easy to interpret. Similar to
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|XnXm), the states | X, Y;) = X1Y,1|0) describe an X, and a Yy, excitation that do not

interact with each other. Finally, the last term in Eq. (A.25),
|Bam) = [¥, X1110) = [(#, X}], X} ]l0), (A.26)

comes from X-X interactions (48, 49, 47, 80, 30, 17, 6, 107]. This interacting two—exciton
state is a linear combination of two e-h pairs with different center of mass momenta, with
the 2DEG in its ground state. It is therefore orthogonal to all the 2DEG* states, such as
| XnYm), and describes the biexciton bound, X3, and scattering, X X, states.

In Eq. (A.16), the X-X and X-2DEG interactions contribute to the time evolution
of the photo—excited 2-h state through [$it), which we further decompose into: (a) the
contribution of a non-interacting LLn magnetoexciton with the state |1;), and (b) the
contribution |12) due to the interactions Between all the different pairs of 1-h states. This
last term comes from both X-X interactions (as found in the undoped system), and X
interactions with the {1-h/2DEG*} states only present in the doped system (such as the
four-particle Y excitations), and therefore degcribes the correlated contribuﬁion to the 2-h
state.

To obtain the equations of motion, we note that the time evolved 2-h state |t2)

contributes to the optic;'a.l dynamics at second order in the applied field. By taking the time
derivative of Eq. (A.16) and using Eqs. (A.12), (A.25), (A.21), (A.22), and (A.24), we find
that the correlated contribution to the 2-k state is determined by

2 12) — HI) = § 3 PHOPE®IBun) + 3 [PEOYS — PEORL] 190, (A20)

nm

: Recalling that |B,,,), Eq. (A.26), is the interacting two—exciton state, we see that the first

term on the right hand side of the above equation describes the X-X interaction effects
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similar to the undoped case [48, 49, 47, 80, 30, 17, 6, 107]. The second term describes the
séat;:ering of .the photo~excited LLn magnetoexciton with the carriers in the {1-h/2DEG*}
state [¢1).

Finally, we turn to the 0-h state. In Eq. (A.14), we have split this into the con-
tribution of the ground state |0), with amplitude (0[)) = (O|h), and the {0-h/2DEG*}
contributio‘n |ty This 2DEG* contribution is second order in the electric field as well,
generated by the two—photon process of excitation and de—excitatic;h of the system by the
optical field, accompanied by the scattering of the photo—excited e—h pair with the 2DEG.
The above state 1s further deéomposed into two parts. The first part, — >, P (t)Xn_Iil;l),
describes the de-excitation after .time t of an LLn magnetoexciton without scattering with
the rest of the carriers in the {1-h/2DEG*} photo-excited state |¢/1). The latter inter-
vactions, as well as the time evolution of the MP state excited via .a second—order process
_analogous to the one that leads to the inelastic Raman scattering signal [92], are described
by the second part, |¢g).

‘We can introduce the state
|Mnm) =\Xn|Ym>- (A.28)

Recalling that |Vy,) is an X-MP excitation and .f(_n annihilates an X, we see that; the sta.fe
[Mpm) is a MP .state. The creation of such a MP étaﬁe is described schepiatically in Ch. 7.3
(see Fig. 7.3). |

As stated above, the corrélated part of |yg) contributes to second order in the

electric field. By substituting Eq. (A.14) into Eq. (A.10) and using Egs. (A.21),. (A.22),

and (A.24), we obtain the equation of motion for the correlated 0-h contribution (H|0) = 0
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_defines the ground state energy as the reference point):

2 o) ~ Hdo) = 3 P (0 PE ()| Mam)

nm
+3 [PE &)Y — BE () %] 191) — >R (OB 010), (A.29)
n
where the last term in Eq. (A.29) simply ensures the orthogonality (OI'(/;O) = 0, and we
neglect any ﬂuctuatioﬁs in the number of LLn electrons in the ground state (AN,,]O) =0
for the magnetic fields of interest).

The second term on the right hand side describes the scattering of the LLn mag-
netoexciton with thé carriers in the {1-h/ 2DEG*} state |¢;) during the de-excitation at
time ¢t. The first term in Eq. (A.29) describes the photo-excitation of a MP state via the
second—-order process where an LLm exciton is photo—excited and scatters with the 2DEG
into the four—particle excitation |Y;;), and then the optical field de-excites a LLn exciton

with amplitude PZ(t), as depicted in Fig. 7.3.

A.4 Nonlinear Polarization equation of motion

We are now ready to derive the equation of motion of the nonlinear polarization
P,(t). Although the equations can be used to describe any nonlinear optics experiment, we
will focus on the FWM case which is of primary interest here when we discuss the physical
meaning of the different terms.

By taking the time derivative of Eq. (A.8) and using the definition of the operator

Y, in Eq. (A.21) and the commutator Eq. (A.5), we obtain that

.8 £(t) . .
gy Pa(t) = WPalt) + 3 VawPu(®) = =2 [No = WIARA)] + GiTaly). (A30)

n'#£n
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Let us analyze the first term on the righi; hand side, which describes the Pauli blocking

effects. Using the decomposition Eq. (A.15) of |¢,) and the properties
ANLI0) =0, AN, Xm) = 20nm|Xn), (A.31)
deduced from Egs. (A.6) and (A.4), we obt;xjn to second order in the optical field
(BIAN ) = ($1|AN 1) = 2P () Py (8) + 7in (). (A.32)

The first term, 2P,*(t) Py (t), is the familiar coherent exciton density (séé, Eq. (2.35)), while

) ﬁn(t) = ("/_’IIAan"/—;l) ' ' (A'33)

is the incoherent density. Recalling the definition of AN,,, Eq. (A‘.'G), we see that 7i,, describes
the average number of photo-excited LLn carriers in the {1-h/2DEG*} state |¢;).

The second term in Eq. (A.30) describes -the ‘optical signal generated by the in- \
‘teré/ctions between X, and the ﬁhoto—ex,cited or 2DEG carriers. Using the expansion qu
(A.9) ‘we obtain

(W1Pal#) = (WolFabn) + WalPaliz) +O(E%). (434

We can separate out the correlated contributions to the interacti;)n—induced signal

described by thev above expectation value. We start by substituting the decompositions Eqgs.

(A.14)-(A.16) into Eq. (A.34) and rearranging the terms:

(WI%al0) = (BI0YOITaln) + 3 PE () (XunlPultte) + (HolFalihr) + (il Puliha)  (A.35)
+ 3 PEO) @] P, R Il) + 3 PE(E) (Fol¥al Xm)

. 1 - o ot ot in TSt O O
+ 2 Pi(t)Pa (2) [§<¢1|YnX;,X;,|0> = (il XL Y X 10)]

n'm'’
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We can simplify the second term on the right hand side of the above equation by

using the definition of |B,,), Eq. (A.26),

D Pt XmlYalt2) = D P (6)(Yal Xmltho) + Y P (8)(Bumlth2) (A.36)
m m . m
= Zprﬁ*(t)(YnIXm"‘/@) + Z (Bnlen' m’)Prﬁ*(t)Pﬁ(t)Prﬁ' (t)
m mn'm'
+ Z P,ﬁ* (t)<Bnm|"Z'2)-
m
The second and third terms in Eq. (A.36) describe the mean-field (second term) and higher
order (third term) X-X correlations. We have also used the fact that (Bnm|f(:n,h/;1) =0
due to the orthogonality between X and any excited 2DEG states. The first term on the
right hand side of Eq. (A.36) and the rest of the first line of Eq. (A.35) together make up

the correlation function P, (), the correlated contribution to the dephasing of the nonlinear

polarization,

Pa(t) = ($ol0)(Yaltn) + Y P (8) (YaXml92) + (ol Vulthr) + (1 [Yal2). (A.37)
m
Note that, by linearizing the above equation, we recover the correlation function P,f(t),
Eq. (A.23), which describes the dephasing of the X Vamplitude PL(t). Similarly, Eq. (A.37) ‘
describe the dephasing of the polarization P,(t), due to the X, — Y, scattering of the
recombining e-h pair with the 2DEG during the coherent emission process.
Next we simplify the gxpression (10| ¥| Xm), by substituting the definition of Y,

from Eq. (A.21):
("/;0|Yn|Xm) = ("Z’lenHle) - ("ZO!(H + Qn)anXm> + Z Vnn’("zoljfn’lxm)- (A-38)

Recalling the commutator Eq. (A.5), we know that Xp|Xm) = X, X} |0) « |0), and since

(¥0]|0) = 0, the last two terms in the above equation vanish, and we are left with only the
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first term. After substituting Eq. (A.18), we obtain

~

("Z‘OanHIXm) = (1/;0'Xn9mlxm> ". Z Vi ("Z’Oanle’) + (1,50|Xn]Ym)- (A-39) '

m'#m

Again; the first two terms vanish from our orthogonality condition (1]0) = 0, and recalling

the definition of the MP state |Mym), Eq. (A.28), we find
("/_’OI}}n‘Xm) = <'¢;0|Mnm)~ (A.40)
We can also rewrite the last line of Eq."(A.35). We start by substituting Eq. (A.21)
for ¥, and using the orthogonality (i/?;leX,:, X:n,|0) =0, to obtain
| XL XT10) = (| X H | X Xow) — (1| HXW X, X1, 10). (A.41)
Using Eq. (A.25) to describe the action of the Hamiltonian on the two—exciton state, the
definition of the MP state, Eq. (A.28), the above orthogonality relation, and some simple
algebra, we find
@1V XL RT10) = @1l Rn, XL Yor) + @1 R | M) (A2
+.(7L1|[Xm Xjn'”Yn'> + ("leXInlann’)
—( @1 H[ X, X} )| X ) — (1| HX (X, X110
Replacing the commutators by Eq. (A.5), and using Eqs. (A.18), (A.31), and the orthogo-

nality (1] Xm) = 0, we obtain

TV v ) 2800t , — St — R s
(Bl X1 X1 10) = 22520 Yo) — S (ARG Vo) — 1

("I;IIANn!Yn’) (A-43)
‘*'("/jllxrtuanm') + <"_/;1lX:n'|Mnn’)-
Similar to Eq. (A.40), we also find the relation

(1| XLV X],10) = (i} XL | M) (A.44)
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Putting together Eqs. (A.43) and (A.44), we can rewrite the last line of Eq. (A.35) as

. 1 - ~ ~t - a4 o~ oA
> PL)PL(t) [§<¢1|YnX,L 110y - («pllx;,YnXI,.,lO)] (A.45)
n'm’

.

- ]—;-nPnL(t) RO [ — ARG (V).

Finally, by using Eqs. (A.40), (A.45), and (A.37) in Eq. (A.35), we find:

AR % > (Bun| X Xe)PE () PP (8) + 3 PE() ([T, ZL1E1)

mn'm/’

+ 7 PEO PO [frm — AR 1Y)
+ D Pr(O)(Bamlth2) + Y, P (£)(%0| Mam) + Pa(t). (A.46)

The first term in Eq. (A.46) describes the familiar mean-field, Hartree-Fock (HF)
X-X interactions of Ch. 2.5.1, which can also be thought of as interactions between the
polariz"atioﬁ PZL(t) and the coherent density ~ |PE(t)[? [112]. Recalling the decomposition
Eq. (A.15) of the phofo—excited 1-h state and the definition of the incoherent density
Eq. (A.33), the second term can be thought of as a polarization-incoherent photo—excited

density interaction, which is descril;\éd by the correlation function
Nam = (@1|[Va, X1]191). ‘ (A47)

.. The second line of Eq. (A.46) describes the shake—up of the 2DEG during the exci-
ton recombination that leads to the coherent emission. In particular, the bhothcitation
of two non-interacting X is followed by the recombination of one them assisted by the
shake-up of a MP excitation. The above process leaves the system in the {1-h/2DEG*}

_state |Yy,), which is then annihilated by ‘the optical field. -
The last line of Eq. (A.46) describes the correlation effects of the system. The

last term, P(t) describes the dephasing of the system as discussed above. The first two
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terms describe the correlated second—order processes where the excitation of one e—h pair
is followed by either the excitation or the de-excitation of a second ek pair. Similar to the

undoped case [80, 107], we define the amplitude of the correlated 2-h photo—excited state

Bum (t) = (Bnm "‘/;2> ) (A'48)

which describes the biexciton and X—X scattering correlations. Similarly, the amplitude of

the correlated 0-h photo—-excited state,
Mam(t) = (ManO)a (A.49)

describes the MP effects and the X—{1-h/2DEG*} scattering dt-lring the two photon process |
that excites the 2DEG. The contribution to Eq. (A.46) due to the MP photo—e:‘(ciﬁ_;a,tion
comes from a process similar to coherent antiStokes Raman scattering with phonons, shown
schematically in Fig. 7.4, in which: (i) A photo-excited X decays into a Y, or {X-MP}
excitation. (ii) The e-h pair in this state recombines leading to the coherent emission,
which leaves the system in the MP state |My). (iii) This MP propagates in time and
then interacts with the second photo—excited X into a new X state, which is subsequently
annihilated by the optical ﬁeld.
| We can now write the equation of motion for the third-order polarization:

.9 > 5 oo BEQ) (oo phin 4 (]
7"“‘Pn(t) = QnPn(t) - Vnn’Pn’(t) + Pn(t) + 2Pn (t)Pn (t) + nn(t)
ot ok . VN; [ ]

41 Y (Bt XX ) PEOPE (P () + X PE () Bam(t)

mn'm’

2 PEO) Y PEOYind [Sm — AR] 192)" + 32 PHEOMin(t) + 3 PHE N (4.50)

The last term oﬁ the first line describes the Pauli blocking (PB), where in the doped case

the density also has the incoherent contribution 7i,(t), Eq. (A.33). The next line shows
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the interaction terms similar to the undoped case [48, 49, 47, 80, 30, 17, 6, 107], describing
the X-X interactions at the HF level (first term), and correlations beyond the HF (second
term). The terms on the third line, along with the dephasing term P,(t) on the first line,
describe the contributions of the 2DEG* correlations and dephasing processes as discussed
above.

We now turn to the problem of solving for fhe 0-h and 2-h correlation functions
which enter into the above expression, Mym, and Bny,, and understanding the P,(t) contri-

bution to the dephasing of the system.

A.5 Dephasing and correlation processes

So far we have derived expressions for the 3rd order response of a general 2-band
correlated system without any approximations about its nature. To connect with our exper-
iments we need to introduce a basis which describes the correlation effects a.nd.dep'hasing
of our system. This will require some simplifying assumptions and approximations about
the states of our 2DEG system. The set of basis states will allow us to write the equa-
tions of motion for the correlation functions Bum(t), Mnm(t), and P,(t) that determine the
correlation—indiiced FWM signal.

We will start with PL(t), Eq. (A.23), which describes the dephasing of the linear
polarization PL(t). The interaction effects in the equation of motion of PL(t) are described
by the state H|Y;). This state is a linea; combination of the 1-h states into which Y;, can
scatter, and we need a basis set that describes the most important contributions to the

optical spectra. We must choose a basis from the {1-h/2DEG*} states that is made out of
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electrons, rather than separe.te the electronic from ﬁhe MP states as in the phonon case. A
brute force calculation of the nonline‘a.; response of the 2DEG using such an approach must
_ deal with a lé,rge number of basis states. To circumvent sucb difficulties we will use here an
orthonormal basis set constructed by using the recursive, or Lanczos method [42, 76). Such
Lanczos Bases have been successfully used to calculate Green functions for tight bin&ing and
Hubbard Hamiltonians [42], or for describing_continuum resonances in the absorption spec-
. trum of semiconductor superlattices [37]. Their advantage is their efficiency, both in speed
and in storage space, in problems where brute force matrix diagonalization is impractical.
.This basis construction will also allow us to derive the generalized average polarization
model presented in the text, that captures the dominant correlation and eollective time
‘dependent effects.

. Similar to Eq. (A.18) that introduced the states |Y;,),; we use the recursive method
to obtain a new besis state, by acting with the Hamiltonian H on,the previous state,
and then orthogonalizing the result with respect to the existinf basis states [42]. Suchvvan
orthogonalization procedure led us to the choicé of the parameters 2, and Vy,, defined in

Egs. (A.19) and (A.20). A new orthogonal state |Z,) = Z}|0) is now constructed from the

relation
H|Yn) = Qn|¥a) + ) Warn|Xw) +120), (A.51)
n' ’
where
= _ (Yu|H|Y:)
Q= o A.52
TAA) (4.52)

is the a,vera,ge energy of the four-particle excitation [Yy), and

Wn’n = (Xn"HlYn> o . (A.53)
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gives the probability amplitude that Y, scatters into X,. We have also introduced the
operator
Zn = Yo, H = QuZp = ) Wop X (A.54)
. w
Using Eqgs. (A.51), (A.52), and (A.53), as well as the orthogonality (X,/|Y,) = 0, one can see
.that the state |Z,) is orthogonal to all the statés |Xn), m=0,1,---, and to |Y;). Therefore,
it is a linear combination of all the 2DEG* states into which |Ya) can scatter.
By using Eq. (A.18) and the orthogonality (X,/|Y,) = 0 we obtain the useful

relation

Wiin = (Yo |Va) = Wi, (A.55)

Note that (Y;/|Y,) # 0, and we may also have that (¥y/|Z,) # 0 for n' A;é n. If this is
the case we also need to orthogonalize the independent states |Y/), and then subtract a
linear cémbina.tion of the latter from |Z,) in Eq. (A.51), so that all the Z and Y states are
orthogonal: However, -as we shall see in Appendix B, for the 2DEG system in the limit of
electron-hole symmetry |Y;,) is the same state for all n when only LLO and LL1 contribute,
and thus the above procedure is not needed.

By multiplying Eq. (A.24) by (Y,| and using Eqgs. (A.51), (A.52), and (A.53), we
obtain the eqﬁation of motion for PL(t):

igt—l_’,f(t) = 0 PL(D) + 3 Waw PE() + ZE(2). (A.56)

We introduced the correlation function ZL(t) = (Z,|¢1) that describes the dephasing of
PL(t) and screening effects. To calculate ZZ, we should continue the above recursive pro-
cedure by writing the state H|Z,). The hierarchy of these basis states can be truncated

when convergence is reached, after generating a number of states equal to the dimension of
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a ﬂnite system, or by using the time dependent variational principle in the spirit of large N
mean-field theories [16].

Using the recursive method we can also construct a basis for the 2-h and 0-h
states, which we use to calculate the correlation fuhctions Bpm and Myy,. The equation of

motion for Bp,, depends on the state H 1Brm),

_ B,.|H|B.
H|Boi) = 08| Bun) + |Bum), - 95, = Lol Bom), (A57)
(Bnm|Bnm) ‘
where QB  is the average energy of the interacting 2-X state, and the state |Byy), where

(Bnm|Bnm) = 0, is a linear combination of all the 2-X states into which |Bpy,) can scatter.
Using Eqgs. (A.57) and (A.27), and noting that, since the state {Bpm| has the 2DEG is in
its g'round‘ state, (Bnlel,lz/jl) = 0, we take the time derivative of Eq. (A.26) and find the
equation _of motion |

2 B — 0B = 3 3 (Bl Bt ) PEOPE () + 3 PHEN Bl F311) + B,
o ) (A.58)
where we i;ltroduced the correlation function By, = (Bnm|$2). One should note here the
similaritjr between Eq. (A.58) and Eq. (2.39), from Ithe a.ver;auge pola.rizéﬁtion model discussed
in Ch. 2.5.2 that has been successful in describing the X—-X correlations and biexciton effects
in undoped semiconductors [21, 107]. In fact, the Lanczos method prc;vides the derivation of
that model as well. Eq. (A.58) describes the time evéﬂution of the “intermediate” interacting
2-X ‘state |Bnm), which is created by the X-X interactions (first term on the right hand
side of Eq. (A.58), same as in the undoped case) and the X—{1-h/2DEG*} interactions

(second term on the right hand side of Eq. (A.58)). The last term in Eq. (A.58) describes

" the dephasing of Bnm.



168

Just as B,,, describes the 2- correlated state, the correlation function My,
describes the time evolution of the “intermediate” photo—excited MP state |M,,,). Using

the Lanczos method we obtain that

(Myn | H|Mpm)

My M) (A.59)

H|{Mpp) = QM | My + | Mom), QM =

where QM is the average MP energy, and the state |Mnm), with (Mpm|Mam) = 0,_ describes
the dephasing of Mum, mainly due to the MP decay into incoherent particle-hole excitations
or electron—phonon scattering. Noting that the MP collective excitations are long lived for
small momenta, we describe such dephasing here by introducing the energy width yu.

Projecting the state (My,,| on Eq. (A.29) and using Eq. (A.59), we find

’%Mnm = (Y, = iva)Mum + Y (Mo | My ) PE*(£) P (t)
+ Z nml [ (t)Yn/ — L*(t)Xn:] ]¢1) (A.GO)

The remaining step is the calculation of the correlation function P;, Eq. (A.37),
which describes the dephasing of P, as well as correlation effects that cannot be factor-
ized. The equation of motion is tedious but straightforward to derive, similar to the above

equations of motion:

i35 Pa(®) = BuPa(t) = Zn = bW 5 | = PE O WalARalin) = Vs M) (881

m

+zwnmpm<t)+zjv%aﬁ(txm (b — AR V) PE (PR 0)

+ 3 (Moo Moy ) P (8) P (8) P (1)
Z (t (‘/’ll l:[Yer:fx] - ZWnn’[Xn' Xm]] I"/’l)
= 32 PLOGllFa, R} + 5 T PAOPE O 17al B

mm’
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+ Nimﬁ,ﬁ* () PL(t)(Ynl ANmld) — 3 BE*(£) PL ()¢ M| R 145)

mn’

— 3" P ()PL () Muym|Yaldh1) + Y PE* () PR (t) (Y ¥ X |4h1)

mm/ mm/

+ 30 P (0)Bum — Y Pr(t) M + 3 [PE() (Wl Pl Yim) — P ($)(0][Prm, Prlleh2)]

.

where we have introduced the co;'relation function
Zo = (Yl0NZnltr) + Y PR () Zn| Xmltha) + (ol Znlthr) + (b11Znleha). (A.62)
m

The first line on the right hand side of Eq. (A.61) describes Pauli blocking effects; while
the first term on the second line describes the scattering of the Y fo.ur—particle excitation
into X states. This term is the only one that contfibutes to the linearized Eq. (A.56). The
next two terms may be thought of as describing, to lowest order in the optical field, the
excitation-induced corrections to the above scatterihg amplitude W,,,s that are proportional
to the coherent density. The fourth line describes analogous corrections proportional to the
incoherent density. The last line of Eq. (A.61) describes the effects of the time evolution of
the intermediate MP and X-X interacting states. Z,(t) describes the dephasing of Py (t)
and, to first ordér in the. optical ﬁeld, coincides with ZL(t) in Eq. (A56) Its equation of
motion has a form analogous to that of P,(t), and may be obtained after expressing the
states H|Z,) with thé recursive method. Fina;.lly, the remaining terms on the right hand
side of Eq (A.6.1) describe, to the lowést order in the optical field, the excitation-induced

" dephasing of P,(t).

s
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Appendix B

Symmetry arguments

In this appendix we derive some useful expressions fof the operators Y, most
notably the symmetry relation Eq. (7.16) for the two LL model in the symmétric limit. -
These properties are determined by the commutator [X,,, H;n:], where the Hamiltonian
Hint = Vee + Vpp, + Ve, describes the Coulomb interactions. In the particle-hole symmetric

limit we have that
Hins = 5 [ dede’ o(e — ¢') [0 @)(e) - 9 e1600)] [ (00e") - BB, (B)

where 9f(r) is the electron creation operatdr, ¥t(r) is the hole creation operator, and (r)
is the Coulomb plotentia.l. To desc;ribe the magnetic field effects, we choose to work in
the Landau gauge A = (0, Bz,0). The eigenstates of the kinetic energy operator are then
characterized by the y—component of the momentum, k. The electron, 9k,, and hole, iy,

eigenstates of the kinetic energy operator in this gauge are [45, 107]

ik
Yalr) = %«pn(x — ), Genlr) = P (), (B.2)
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where o = (k,n), zi = ~kI2 is the x coordinate qf the cyclotron orbit center, I, = \/W
is the magnetic length, ¥, (z — xk) are the eigenstates of the one-dimensional harmonic
oscillator with frequency equal to the cyclotron freqtiéncy, and L is the system Size. By
expanding the electron and hole creation operators in the Landau basis we transform the

Hamiltonian Eq. (B.1) in the familiar form

1 .
R § : ee T st t
Hipy = [va1a2,a3a4eaaealeazem + vaxaz asamh‘ h’al ha? oy
aeaa3ng

i he 5
valag a3a4h’as al 602 h‘a4 - valaz,a3a4 a3ha1 ha2ea4’ (B‘3)

where the Coulomb interaction matrix elements vo‘1 az,0sas (With 4,5 = e, h) are given by

vglaz,a3a4 =/W’U¢I alag(q) 0304( q)’ (B‘4)

where v, = 2me?/q and

Firas(@) = [ @0, @6 Vnu(e) (@) = [ arfu @ @) (B3)

Following Ref. [65] we obtain that

‘Fglaz (Q) = Pning (q)fklkz (Q), ’ (B-ﬁ)
where
fklkz (q) = e_iqz(kl+k2)12/26k1,k2+qy = fltzku(._Q) = f—kl,—kz(’"q) (B'7)
and, for m > n,»'we have that
(gy +ig) )™ e (PPN _g222/a
mnla) = S [ B R e (TR e (83)

where L™ is the generalized Laguerre polynomial. ¢, (q) for m < n can be obtained by
using the property

¢mn(q) = Pnm(—q)- | - (B9)
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Using Eq. (B.2) we obtain from Eq. (B.5)
Fli02(2) = Py -0 (@) = 0nam (D 1 (@ = onam (Dfirin(@), (B0
where we denote —a = (—k,n). Using the symmetry property

oY = vlt (B.11)

Qj 2,304 Qzag,0 a2
we obtain that
~t A eh 4 5 7 o
[h'—aea’ lnt] = Z [valag,aaa eoq eazh—aeaa - va1a2,—a—o'z3 eal e‘12’1""('!3661
Q10203
hh I S A 5 _ aeh 7 1‘ 7 Z 5
+v—a—a3,alazha1 hazh—aaea vaas,alazh a1 _0603] Uaaz,—a —a h'—alea2' (B'lz)
) o

Using the symmetry properties Eq. (B.11) and

eh ee hh __ €€
Vajaz,—a—as = Vajag,a3ar V—a—ag,a10; = VYaza,—az—ay? (B'13)

obtained from Egs. (B.4) and (B.10), we obtain after some algebra that

[h—aeaaH‘int] = - E vaag,alah—alea2
a)C2

+ Y [t e (i far = Al ayhay )hoaber — (@ 62 @)]. . (B.14)

ajaza’

After summing over k, the left hand side of Eq. (B.14) becomes the commutator

[X'n, H;,] that determines the operator Y;.. Using the property

D Frka (@) frrk(—Q) = Sty (B.15)
P :

and noting that, due to the parity properties of ¢, (q) under the transformation q = —q,

we have that

[ 4a0(@0an (@0, (@) =m0 [ d10(@) [onms (@, (.16
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we transform the first term on the right hand side of Eq. (B.14) into the form ¥,/ V2, X,./,

where
Vo = [ oo vyl @ (B.17)
nn (2,“,)2 q

The above expression gives the Coulomb-induced LL coupling in the undoped case [112].

Using the above relations we obtain that

[Xn, Hint] = - ZV,?ann'v
n' :

+ E (éLléaz - hf—azh‘—al) Z ["’fﬁaz,knk’n’h—knék’n’ - vgelaz,kn'klnh—kﬂ’ék,n]' (B.’18)

aiaz v kk'n/

Note‘ that the last term in the above equation vanishes for n' = n.

Let us now restrict to the first two LL’s, which domina_t.e the optical speétra, for
the magnetic fields and excitation conditions of interest. Recalling Eq. (7.10) we see that
the operator Y;, is determined by the last term on the rigﬁt hand side of the above equation.
The only contribution to this term comes from n' # n, and therefore n'=1 if n=0, or n'=0
| if n=1. Noting that, except for a minus sign,’thé right hand side of Eq. (B.18) is then the
same for n = Oand n=1, we (l)btainhthe property ¥; = —Yy = Y, Eq. (7.16). The explicit
expressions for the four-particle excitation (Y| can be obta,ined from qu (B.18) by acting
on the ground staté (0]. Noting that there are no holes or LL1 electrons in the grode state,

lwe obtain from Eq. (B.18) that

OI[X1, Hinel = = 3 Vi (Xuw|
. n’
S k08l — Uy s S osod B.19
+ Z (0] Uplp'n’ k1k'0€p0€p'n' L—k1€k'0 — Uplptn’ kOk'1 €poCp/n/ l—KkOCK'1]- (B.19)
pp'kk'n/

Y is then obtained by subtracting the X contributions (see Eq. (7.10)). As can be seen from

this equation, the four-particle excitation Y consists of an e-h pair plus a 2DEG excitation.
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Appendix C

Derivation of the genéralized

‘average polarization model

In this a,ppendix we will discuss the simpliﬁcatipné of the equations of motion
derived above which allow us to write the average polarization model presented in the text
and used to simulate our experiments. In Section C.1 we we will derive several useful
relations, based on the symmetry relation ¥; = —Yy = ¥, Eq. (7.16), and our truncation of
the Lanczos basis described in Appendix A. In Section C.2 we will discuss the simplification
of the X—X interaction source terms described by (Bpm|tp2). Finally, in Section C.3, we
discuss some additional approximations, and put everything together to arrive at the model

equations presented in Ch. 7.4.
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C.1 Some useful relations

Starting from our symmetry argument, we immediately find that

. (vH]Y)
Q= =0 = Sprnd, (C.1)
is the energy of the state |Y'), and

Wan = (anHlYnl) = (YnlYn’)a Wow=Wi=-Wnp=-Wiyp=W>0 (CQ)

simplifies to a single parameter which describes the scattering between X and Y states. An- -

other immediate consequence of Eq..(7.16) is that PL(t) = (Vi|¢h) = —(Yo|th1) = —PE(t) =

PL(t) for the dephasing of the linear polarization, and similarly for P (t),

Pi(t) = (olO)(Vilr)+ ) Pfﬁ*(t)(}_’lxml%) + (PolY11¢1) + (P1[Y1]ee2)
= —(wolONY |9p1) ~ Zprﬁ*(t)(YXsz) - (%If’lle) - (1] Y1¢h2)

= —B(t)=P(t). . (C3)

In‘addition, we notice from the discussion at the end of Appendix B that the Y
excitation is an e—h pair in different LLs plus a 2DEG excitation. Since we are including
only the lowest two levels in the model, we have either {1-LLO-e + 1-LL1-h + IMP}, or
{1-LL1-e + I;LLO*h + 1IMP}. The f{rst case has an energy ~ €, nearly resonant with

"LL1, while the second has an energy ~ §; + §s, not resona.nt.at a;ll. W;: t'lgerefore neglect
the second state and approximate Y ‘as the ﬁ;st state only, which leads to s;me additional
simplifications, such.‘as

AN,L|Y) = 26,1|Y) (C4)
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for the action of the number operator, and

|Mp1) = 6n0|M) = ~|Mpno), |M)=Xo|Y) (C.5)

for the MP states |My,,,). The energy Q ~ Qg + Qpr ~ Q; as well, as a consequence of this
approximation.
In order to obtain a closed set of equations for our model, in addition to limiting
-the number of LLs in the calculations, we must also limit the number of basis states involved.
In Appendix A.5, we introduced the Lanczos orthogonalization method, in which we can
generate a series of basis states to describe the state |¢;), X — ¥ — Z = ---. Let
us examine the correlation function PZ(t), whose dephasing is described by ZZ(t) in Eq.
(A.56). Using the orthogonality relations (X,|H|Z) = 0 and (X,,|Y) = (Y|Z) = 0, we see
that the equation of motion of ZL(t) (and all higher correlation functions) does not couple
directly to PL(t). The coupling between Z%(t) and PL(t) due to the Y — Z scattering gives
the Coulomb-induced dephasing of PL(t), as well as screening effects. For simplicity here
we characterize the dephasing by-a phenomenological rate v, in analogy with the average
polarization treatment of the X-X scattering processes in the undoped case, Ref. [21], or the
treatment of electron—phonon scattering Refs. {7, 9] (in the latter work the CM momentum

was included). This approximation corresponds to neglecting the basis states |Z) or higher.

Then, using Eq. (A.55) we find

ZM)
(2)12)

' L L
=20y + 20174 By, ()

This is a rather big approximation, which becomes more accurate as 7 increases. We are

truncatixig the Lanczos basis at the state |Y), and treating the error this causes with a
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phenomenological dephaSing rate v. However, this simplification will allow us to estimate
the incoherent contributions to the nonlinear polarization. For example, substituting Eq.

(C.6) into Egs. (A.33) and (A.47) we obtain

At) = <Y|(§ﬁf)!y> PL(t)éjL*(t) 95, PL(t)ng*m ©)
and B
Ni(t) = I ZllY) PEOPEE) _ ey PEOPEE) _ e (g

(Ylyy w w
Using Eqgs. (7.16) and (A.21) and the orthogonality (YXOI‘XlY) = 0 we obtain the mean-

field interaction between the X, and the Y excitations, VXY,

(YIPIX,Y)  (YXi|(H - — Q)| X, Y)

O g ’ (©2)
v Y Xl(H - 0 - 20) oY)
VXY = -0 ) 0/120° 1 <.

Long-lived MP states were observed in f'he inelastic Raman scattering spectra [92];
we thus expect that the time evolution of MP intermediate states, described by the single
correlation function M(t), plays an important role. Such Statés contributg to the nonlinear
optical spectfa only due j;o the election-hole asymmetry, and disorde:r [92, 20,"70]; ‘Eq.
(C.5) shows that there is now only a single correlation function necessary to describe the
MP time dependence, M(t) = Mio(t) = —My(t), with an energy QM = 6n,0Qp. The
driving terms in the equation of motion, Eq. (A.60, are determined by the matrix elements
Wu = (M|M), which is a measure of the eléctron-hole asymmetry of the system, and
(M|YY) = War(Qu+Q0—), obtained from Egs. (A.21), (7.16), (A.28), the orthogonalitiés

(0JM) =0 and (Ml)zllY) ~ 0, and neglecting the contribution of the |Z).
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C.2 Exciton-exciton interactions in the APM

In this Appéndix we discuss the ihciusion of the X —-X interactions in our model.
Such effects have been studied for undoped QW’s in a magnetic field for LLO excitation
[107, 23, 123]. For simplicity we treat here the X-X interacfions at the mean-field, Hartree—
Fock (HF) level.

Recalling the definition Eq. (A.26) of the interacting state (Bpy,/| we obtain from
Eq. (B.18)

: 1 - o 2 o
Bkl = e X S iy srcnlOhogmeyhmdsn
pp'n’ k

ee P 5 i P ee 7 5 7 5
—'Upnlplml’klklo<Olh_pn/eplmlh_kleklo - 'Upm'p’n',kok’l(Olh—pm'ep’n’h—koek’l

+HVpip/m? kOK'1 (Olﬁ—pn'ép/m' ’Al—koék'i] , (C.10)
where the nonzero contribution to the above state comes from n' # m/. The HF X-X
interactions are described by the overlap of the above state (B, with the two-exciton
state | X, X;n). The latter state consists of two electrons in LLs n and m, and two holes also '
in LLs n and m. Noting that, as can be seen from the above expression, the state (Bj,,’ has
at least one electron and hole in different LL’s, we see that the only nonzero contribution
to the the HF X-X interaction comes from m # n, and therefore m = 0,n = 1, or
m = 1,n = 0. The HF X-X interaction contribution to the nonlinear polarization equation

of motion thus takes the form

S Y (Buwl XX PR PE()PE () = L VAXPEOPF@PE®)  (C11)

mm'n/ n’

where

VEY = (Buw|X1Xo) = (X} |Ynl X1 Xo). (C.12)
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To obtain the last relation we used the orthogonality (Yy|X./|X1Xo) = 0. From Eq. (7.16)
we see that

VX = VXX, (C.13)

We now obtain an explicit expression for V,XX by substituting Eq. (A.21) for Y, into Eq.

(C.12):

Vi = (XnXal HX]| Xo) — (X | H X0 X1 Xo) — (X Xn| X1 Xo) + Vit { X X | X1 Xo)-
| (C.14)

where n’ # n and thus n' = 1,n = 0 or n' = 0,n = 1. Noting that (X,X,|X1Xo) = 0,

(XnXp| = (X1Xo| since the X operators commute with each other, using Eq. (A.18) to

obtain the states (X,|H and H|Xj), and Eq. (A.21) to express the commutator [H, X{’]
and using the orthogonality between the state |Y) and the X states we obtain after some

algebra that

VarX = Vo1 (X Xa| X0 Xo) + (Xanlﬁ”Xo) — Vio{Xn Xoll X1 X1)

Vit (Xo X 1| X1 Xo) + Vi (XoX1]X1Xo) (C.15)

where n' # n. As discussed above, (XmXm|Bi#) = 0, and therefore (Xn Xn V|1 X0) =
(XnXn|B1o) = 0. Using the relations (XoX1|X1Xo) = 1, (XnXn|XnXn) =0 forn # n/,

and

| o oty ot o 2
{XnXn|XnXn) = (Xnl|[Xn, X[ Xn) + (Xn| X1 Xn| Xn) = 2 - 5, (C.16)
. n

we finally obtain that -

2Vnn’ ]

VEX = N, n' #n. (Ca7)
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The above relations relate the X—X interaction parameters to the Coulomb-induced LL

coupling strength Vy;.

C.3 Additional approximations for the APM

The simplifications outlined in the previous sections will lead to a closed set of
‘only a few equations, which still describe the dominant physical processes responsible for
our experimental results, as explained in Ch. 7.4. Here we will outline how the equations
in Appendix A become the model equations of Ch. 7.4.

We will start with the linear polarization equations, Eqs. (A.22) and (A.56). By
replacing ZL(t) with —iyPL(t), and using the symmetry relation to replace PL(t) with
+PL(t) and W, with £W, we find the model egua.tions Egs. (7.17) - (7.19).

For the second order equations, by neglecting X—X interactions we have only one
equation of motion, for M(t). There ;xre three source terms in Eq. (A.60), after applying
the simplification of Eq. (C.6). Two of tﬁese terms aré proportional to the incoherent linear
correlation function P%(t), which is characterized by the dephasing parameter v, which is
large, and therefore these source terms provide a weak incoherent background contribution
to the FWM signal. We will neglect these terms, leading to Eq. (7.23).

Similarly, the source terms in Eq. (A.50) which are proportional to the incoherent
~ densities, fin(t) and Nnm(t) can be neglected, since they will make only minor quantita-
tive changes to the calculated FWM signal without adding any new understanding, and
they obscure the new physics from the other contributipns. By applying Eq. (C.6) to Eq.

(A.50), simplifying using the symmetry relations, and neglecting the incoherent density
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contributions, we arrive at Egs. (7.24) and (7.25).

Finally, to simplify ];Tq. (A.61), we will again use the logic that all the incoherent
source terms add only a weak incoherent background. In this case, we will consider only
the sourcé terms which correspond .to an excitation-induced correction to the X ¢ Y
scattering amplitude W. The othér source terms are were either proportioanl to PL(t) and
" thus broadened by an additional factor of v, or terms with a similar time dependence to
those included but reflecting the electron-hole asymmetry of the system. We z;re then only

left with the source terms found in Eq. (7.26).
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