UC Irvine

SSOE Research Symposium Dean's Awards

Title

UCI CANSAT

Permalink

https://escholarship.org/uc/item/3pn6h26w

Authors

Ngo, Dustin Castro, Oscar Fernandez, Camila et al.

Publication Date

2022-03-01

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

Email: cansatuci@gmail.com

(UCI CANSAT

Website: https://sites.google.com/a/uci.edu/cansat/

DESIGN

CanSat System

Pavload System

Tether Material

Acknowledgements

Special thanks to Dr. Roger Rangel and Northrup Grumman for making this project possible

Launch & Ascent Phase: The CanSat is mission ready inside the rocket. It is launched to an altitude of 670 - 725 meters for the Deployment Phase to proceed.

Deployment Phase: The rocket separates via ejection charges causing the Cansat and nose cone to fall out. Here, telemetry begins and the Cansat descends at 15 m/s.

1. At an altitude of 400 meters, a larger parachute is deployed to reduce the Cansat's descent rate to 5 m/s

At 300 meters, the Cansat releases a tethered payload to a distance of 10 meter for 20 secs. Sald payload will record via a video camera oriented in the South direction at 45° downwards.

Landing Phase: CanSat and all internal components must land

MISSION SUMMARY

OBJECTIVE TREE

TEAM

PCB DESIGN

CIRCUIT OVERVIEW

SOFTWARE **METHODOLOGY**

