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Abstract

Generalized Gradient Flows for Density Prediction, Control and Learning

by

Kenneth Caluya

The need to predict, estimate and control density functions arise across engi-

neering applications such as controlling biological and robotic swarms, vehicle

guidance-control in uncertain dynamic environments, forecasting and demand re-

sponse of loads in power systems, and active shaping of chemical concentrations in

process control. Notwithstanding this recurring theme in practical applications,

there does not exist a systems-control theory of densities. The perspective of this

work is to close this gap by developing the theory and algorithms for prediction

and control of densities subject to trajectory-level stochastic nonlinear dynamics.

We present theory and algorithms that leverage an emerging geometric interpre-

tation of the equations of density propagation and steering. The governing partial

differential equations for density propagation can be viewed as gradient flow of

certain Lyapunov functionals with respect to the Wasserstein metric arising from

the theory of optimal transport. This metric induces a Riemannian-like geometric

structure on the infnite dimensional manifold of joint probability density functions

(PDFs) supported on the state space. We leverage this geometric structure to de-

sign weighted scattered point cloud-based gradient descent algorithms via recur-

sive evaluation of infinite dimensional proximal operators on the manifold of joint

state PDFs. The resulting numerical algorithms avoid function approximation or

spatial discretization, and enjoy fast computational speed due to certain conic

xiv



contraction property that we establish. We provide several numerical examples

to elucidate our algorithms.

We show that the Wasserstein proximal recursions can also be leveraged to solve

the minimum energy finite horizon density steering, also known as the Schrödinger

Bridge Problem (SBP), which allows density regulation via feedback synthesis.

This is a problem of minimum effort steering of a given joint state PDF to another

over a finite time horizon, subject to a controlled stochastic differential evolution of

the state vector. The same theory also arises in the study of mean-field dynamics

of neural networks. We leverage the same theory to study second-order algorithms

to prove their consistency and global convergence.

xv



Notation

N Set of Natural Numbers

R Set of Real Numbers

Rn Euclidean Space

〈·, ·〉 Euclidean inner product

〈A,B〉 Frobenius inner product between matrices

∇ Gradient Operator

∇· Gradient Operator

∆ Laplacian operator

Hess(·), Hessian

δ(x− y) Dirac delta located at y

P2 (Rn), all joint PDFs supported on Rn with finite second moments

N (µ,Σ) Gaussian PDF with mean µ and covariance matrix Σ

Eρ [·] Expectation operator w.r.t. the PDF ρ

log(·) Element-wise log
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Chapter 1

Introduction

In this dissertation we develop theory and algorithms for density prediction, den-

sity control, and machine learning. The need to predict and control density func-

tions arises from varying engineering applications such as the control of biological

and robotic swarms, vehicle guidance-control in uncertain dynamic environments,

forecasting and demand response of loads in power systems, and active shaping of

chemical concentrations in process control. In recent years, the study of density

functions has also been used to understand the global convergence and perfor-

mance of neural networks. Despite this recurring theme in practical applications,

there does not exist a unified framework for systems-control of densities. The goal

of this work is to close this gap and develop theories and algorithms for density

prediction, control, and machine learning.

The goal of this chapter is to collect some notation, tools and heuristic arguments

that will be used repeatedly throughout. In this work, the term “density function”

can represent the uncertainty of the state of a single dynamical system modeled
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by a stochastic differential equation

dxt = f(xt, t)dt+ g(xt, t)dwt, x0 = ξ0, (1.1)

where wt ∈ X is a standard Wiener process, the initial condition ξ0 ∼ ρ0 is

subject to a known initial probability density function (PDF) ρ0, and the vector

fields f : X × R+ 7→ X , g : X × R+ 7→ Y are the drift and diffusion coefficients,

respectively with X ,Y ⊆ Rn. Under mild assumptions on these coefficients, for

instance that f and g are Lipschitz, then the PDF ρ(x, t) defined by

P(xt ∈ Ω) =
∫

Ω
ρ(x, t) dx (1.2)

exists for any measurable set Ω. Here, P(xt ∈ Ω) denotes the probability of a

state vector being in the set Ω at a fixed time t. Moreover, this density function

satisfies an evolution equation given by

∂ρ

∂t
= −∇ · (ρf) + 1

2

n∑
i,j=1

∂2

∂xi∂xj
(ρgg>)i,j. (1.3)

This second order Partial Differential Equation (PDE) is known as the Fokker-

Planck Equation or Kolmogorov’s Forward equation (FPK) [186]. A derivation of

this equation is provided in Appendix A.1 for the convenience of the reader.

A density function may also well represent the state of a collection of systems

modeled by an interacting particle system given by

dxit = f(xit, ρn(·, t), t)dt+ g(xit, ρn(·, t), t)dwi, xi0 = ξi0, (1.4)

ρn(·, t) = 1
n

n∑
k=1

δxit(·), (1.5)
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where i = 1, . . . , n, and ρn(·, t) is the population density function (PDF) of the

state of the n particle system. The population density function gives the total

fraction of particles or the frequency of particles in a desired volume Ω of the

state space. Here, we emphasize that xit are all defined on the same state space

X and f , g are the same for each particle. The arguments of f and g are a state

variable, a probability measure and time. To be more precise, the equations for

each xit are evaluated at the particle’s own state xit and their nonlocal interaction

with other particles denoted by xjt , is captured by ρn(·, t). The individual Wiener

processes w1
t ,w

2
t , . . . ,w

n
t are also assumed to be independent of each other and

the initial conditions are assumed to be ξi0 ∼ ρ0.

This setup is a natural model for many scientific and engineering applications

involving coupled multi-agent interaction such as crowd movement [69], opinion

dynamics [8, 90], population biology [45, 208] and communication systems. Un-

derstanding the “mean field limit” of these particles, (i.e., when the number of

particles n− →∞) is an important tool in the analysis of the n particle system as

well as the individual particles. It is well-known that given an interacting particle

system (1.4) with independent identically distributed (i.i.d.) initial states and

that the vector fields f and g are sufficiently smooth, the limiting dynamics of

the population density function are described by the Mckean-Vlasov or nonlinear

Fokker-Planck Equation (MVFPK) given by

∂ρ

∂t
= −∇ · (ρf(x, ρ)) + 1

2

n∑
i,j=1

∂2

∂xi∂xj
(ρg(x, ρ)g>(x, ρ))i,j. (1.6)

where ρ(·, t) is a suitable mean field limiting measure of ρn(·, t). The associated

3



Mckean-Vlasov SDE is given by

dx = f(x, ρt, t) dt+ g(x, ρt, t) dwt. (1.7)

Notice that the vector fields in this equation depend on the distribution of the

solution itself which is a typical characteristic of Mckean-Vlasov SDEs. Deriving

this limit rigorously involves weak convergence arguments from measure theory,

but an outline of the proof is given in Appendix A.13.

Remark 1. We remark that in either definition of density function, we can ab-

breviate either probability density function or population density function as PDF

and will use it interchangeably depending on context all throughout this work.

The goal of this dissertation is to seek a unified framework using an emerging

geometric viewpoint to develop foundational theory, algorithms and scalable al-

gorithms for

1. predicting the trajectory flow of ρ(·, t) generated by (1.3) or (1.6) in a fast

and tractable manner

2. shaping and regulating the flow ρ(·, t) generated by (1.3) or (1.6) subject to

initial and terminal time PDF constraints as well as state space constraints,

and

3. studying the global convergence of neural networks and quantifying their

performance by studying the dynamics of the density ρ(·, t) of a population

of neurons in the mean-field limit

Although these problems are seemingly different questions, it turns out they are

intimately linked via metric gradient flows. The core idea is to view the gov-

erning evolution equations (1.3) and (1.6) as gradient flows of certain Lyapunov
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functionals w.r.t the Wasserstein metric arising from the theory of Optimal Trans-

port [215]. There has been a burgeoning interest in the connections of optimal

transport theory to density prediction, control, and learning but it is not clear

whether this new viewpoint offers any practical benefits. In the upcoming sub-

sections, we will expound more on the theory of gradient flows and uncover its

connections with each of the three subproblems.

1.1 Introduction: Gradient Flows

In this section, we review the geometric notion of gradient flows. To conceptualize

the main idea, we make an analogy between gradient flow in Euclidean space and

gradient flow in the space of probability measures. The collected results below

are only intended for a simple review of a rapidly evolving subject, but the main

ideas are stated. We refer to the works [6, 215] for more detailed accounts of this

topic.

We first review the metric viewpoint of gradient descent in finite dimension. Con-

sider the continuous time gradient flow given by the initial value problem

dx
dt = −∇ϕ(x), x(t = 0) = x0. (1.8)

where x,x0 ∈ Rn and ϕ is a continuously differentiable function. Recall that the

fixed points of this dynamical system are just the stationary points of the function

ϕ since they must satisfy ∇ϕ = 0. When ϕ is convex, we have a unique fixed

point x∗ where ϕ achieves its minima. An interesting feature of this dynamical

system is revealed by writing its discretization in time. Let h be a small time step
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and consider its (backward) Euler discretization

xk = xk−1 − h∇ϕ(xk). (1.9)

Rearranging yields

xk − xk−1

h
+∇ϕ(xk) = 0⇒ ∇

(
‖x− xk−1‖2

2
2h + ϕ(x)

)
x=xk

= 0 (1.10)

⇒ xk = arg min
x∈Rn

{
‖x− xk−1‖2

2
2h + ϕ(x)

}
. (1.11)

This mapping from xk−1 7→ xk given by

prox‖·‖2
hϕ (xk−1) := arg min

x∈Rn

{
‖x− xk−1‖2

2
2h + ϕ(x)

}
(1.12)

is called the “proximal operator” [176] of hϕ w.r.t the standard Euclidean metric

‖·‖2. This recursion generates a sequence of vectors {xk}∞k=1 which converges

pointwise to the solution of (1.8) in the sense that

xk → x(t = kh) as h→ 0. (1.13)

Notice that ϕ also serves as a Lyapunov function since

d
dtϕ = −〈∇ϕ−,∇ϕ〉 = −‖ϕ‖2

2 ≤ 0. (1.14)

In other words, the value of the function ϕ decreases along the flow x(t) generated

by this ODE and as t→∞ we get x(t)→ x∗ (see figure (1.1) for an illustration).

Recasting in this form allows interpreting equation (1.8) as the steepest descent

of the function ϕ measured w.r.t the Euclidean Distance ‖·‖2
2. We want to extend

this idea of steepest descent to dynamical systems in the space of measures.
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TABLE I: Comparison between the natural (finite dimensional) gradient descent for the deterministic HNN and the measure-
valued (infinite dimensional) gradient descent for the stochastic HNN. The graphical illustrations in the first row show that the
finite dimensional gradient flow for the deterministic HNN evolves on M, and is a gradient descent of f w.r.t. the distance
dG. On the other hand, the infinite dimensional gradient flow for the stochastic HNN evolves on P2(M), and is a gradient
descent of F w.r.t. the distance WG. Notice that for stochastic HNN, the sample paths of the SDE (39) in M, induce a flow
of PDFs in P2(M).
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Figure 1.1: This figure depicts gradient flow inM (left) and in P2(M) (right).
Here, we takeM = Rn and G = I but the idea works for any compact manifold
M with metric tensor G. We see the function decreases along the flow generated
by the sequence of proximal evaluations. In finite dimensions, the flow reaches a
fixed point given by the point where ϕ achieves its minima. Similarly, the flow in
infinite dimensions approaches a fixed point given by the function that minimizes
Φ which turns out to be given by the Gibbs distribution (1.29)

In the infinite dimensional setting, we are interested in computing ρ(·, t) generated

by either (1.3) or (1.6) using gradient descent on the manifold of all PDFs with

finite second moments denoted as

P2(Rn) :=
{
ρ : Rn 7→ R+

∣∣∣∣ ∫ ρ dx = 1,
∫
‖x‖2ρ dx <∞

}
. (1.15)

In other words, we want to design a proximal operator

proxd(·)
hΦ (ρk−1) := arg inf

ρ∈P2(Rn)

1
2d

2(ρ, ρk−1) + hΦ(ρ), (1.16)

where h > 0 is a time step and appropriately chosen distance metric d(·, ·) defined

on P2(Rn) and functional Φ : P2(Rn) 7→ R≥0. In the seminal work of Jordan,

Kinderlehrer and Otto (JKO) [125], it was shown that if the Ito Stochastic Dif-
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ferential Equation (1.1) is in “JKO Canonical Form” given by

dx = −∇U(x) dt+
√

2β−1 dw, (1.17)

that is to say, the vector field f = −∇U is the gradient of a smooth potential

function U and g =
√

2β−1I is a scalar multiple of the identity matrix with β > 0.

Then the associated Fokker-Planck equation

∂ρ

∂t
= ∇ · (ρ∇U) + β−1∆ρ, β > 0, U : Rn 7→ R≥0, (1.18)

is gradient descent of the free energy functional

Φ(ρ) :=
∫
Uρ dx+ β−1

∫
ρ log ρ dx (1.19)

where the distance metric d(·, ·) is taken to be the 2-Wasserstein metric given by

W2(π1, π2) :=
(

inf
dπ∈Π(π1,π2)

∫
X×Y
‖ x− y ‖2

2 dπ (x,y)
) 1

2

. (1.20)

Notice that this metric is the solution of an optimization problem in itself. Here,

dπ1(x) = ρ1(x)dx and dπ2(y) = ρ2(y)dy are two probability measures supported

respectively on X ,Y ⊆ Rn. The Wasserstein Metric denoted asW (π1, π2) (equiva-

lently,W (ρ1, ρ2) whenever π1, π2 are absolutely continuous so that the PDFs ρ1, ρ2

exist) arises in the theory of optimal mass transport [210]. Π (π1, π2) denotes the

collection of all probability measures on the product space X × Y having finite

second moments, with marginals π1 and π2, respectively. Its square, W 2(π1, π2)

equals [21] the minimum amount of work required to transport π1 to π2 (or equiv-

alently, ρ1 to ρ2). It is well-known [210] that W (π1, π2) defines a metric on the

manifold P2(Rn).
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We consider the JKO scheme which is given by the discrete time sequence defined

recursively by the sequence of optimizations

ρk = arg min
ρ∈P2(Rn)

1
2W

2
2 (ρ, ρk−1) + hΦ(ρ). (1.21)

The sequence of minimizers {ρk}∞k=1 are well-defined (i.e., the optimization (1.21)

has a solution each every step k) and we can define a piecewise, continuous time

interpolation on the interval t ∈ [hk, h(k + 1)) given by

ρht := ρk, for t ∈ [hk, h(k + 1)), (1.22)

to approximate the solution ρ(·, t) of (1.18). The following theorem summarizes

the main result in [125]:

Theorem 1 (JKO 1998). Let ρ0 ∈ P2(Rn) be well-defined. Then, as h → 0,

ρht ⇀ ρt in L1(Rn) where ρt satisfies the initial value problem

∂ρ

∂t
= ∇ · (ρ∇U) + β−1∆ρ, ρ(x, t = 0) = ρ0. (1.23)

This theorem states that the iterative scheme (1.21) converges to the solution

of the Fokker-Planck Equation in the weak L1 sense. Furthermore, observe that

(1.18) can be rewritten as

∂ρ

∂t
= ∇ · (ρ∇U) + β−1∆ρ

= ∇ · (ρ∇(U + β−1 log ρ))

= ∇ ·
(
ρ∇δΦ

δρ

)
. (1.24)

It was shown by Otto in [174] that by formally interpreting P2(Rn) as a (infinite
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dimensional) Riemannian Manifold and using the dynamical formulation of the

Wasserstein metric W2 as the Riemannian geodesic distance then the induced

gradient operator is given by

∇W2 := ∇ ·
(
ρ∇ δ

δρ

)
. (1.25)

Therefore, we may formally write (1.24) as

∂ρ

∂t
= ∇W2Φ(ρ). (1.26)

In our context, (1.26) is the infinite dimensional analogue of (1.8). In addition,

the Free Energy functional Φ(·) serves as a Lyapunov functional by computing

d
dtΦ(ρ) =

∫ ∂ρ

∂t
(U + β−1 log ρ+ β−1) dx

=
∫
∇ · (∇(U + β−1 log ρ)ρ)(U + β−1 log ρ+ β−1) dx

= −
∫
‖∇(U + β−1 log ρ)‖2

2ρ dx ≤ 0 (1.27)

along a solution trajectory ρ(·, t). Here, we used (1.18) in the first line and the

integration by parts formula

∫
u(∇ · v) dx = −

∫
〈∇u, v〉 dx (1.28)

to go from the second to the last line. Moreover, equality is achieved at the
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stationary density obtained by computing

0 ≡ d
dtΦ ≡ −

∫
‖∇(U + β−1 log ρ)‖2

2ρ dx

⇒ ∇(U + β−1 log ρ) ≡ 0

⇒ U + β−1 log ρ ≡ 0

⇒ ρ∞ = 1
Z

exp(−βU), Z =
∫

exp(−βU) dx, (1.29)

where ρ∞ is the well-known Gibbs distribution and Z is a normalizing constant

known as the partition function.

In the presence of nonlocal interaction given by an interaction potential, one may

consider the sample path dynamics with PDF dependent drift given by Mckean-

Vlasov SDE

dx = −∇U(x)−∇ (V ∗ ρ(x)) dt+
√

2β−1dw, (1.30)

where U is as before, the interaction potential V is symmetric, V (−x) = V (x) for

all x ∈ Rn and ∗ denotes the convolution operator in Rn. Then, the associated

MVFPK equation is given by

∂ρ

∂t
= ∇ · (ρ∇U +∇(V ∗ ρ)) + β−1∆ρ. (1.31)

This PDE is a gradient flow of the generalized Free Energy functional [211]

F (ρ) :=
∫
Uρ dx+ β−1

∫
ρ log ρ dx+

∫ ∫
V (x− y)ρ(x)ρ(y) dx dy. (1.32)

As before, the proximal operator with the distance metric d ≡ W2 but now Φ ≡ F

where F is given by (1.32) approximates the flow (1.31).

11



In the upcoming, subsections we describe some of the outstanding challenges in

prediction, control, and learning, and how the theory of gradient flow and its

generalizations provides a new perspective in tackling these challenges.

1.2 Contributions of this Work

1.2.1 Density Prediction

The problem of density or belief propagation, i.e., the problem of computing the

transient joint PDF ρ(x, t) that solves a PDE of the form (1.3) or (1.6) is motivated

by two types of problems. The first is dispersion analysis, where one is interested

in predicting or analyzing the uncertainty evolution over time, e.g., in meteorolog-

ical forecasting [83], spacecraft entry-descent-landing [94, 95], orientation density

evolution for liquid crystals in chemical physics [111,126,164], and in motion plan-

ning [105,177,178]. In these applications, the quantity of interest is the joint PDF

ρ(·, t) and its statistics (e.g., transient moments and marginal PDFs). The second

type of applications require ρ(·, t) as an intermediate step toward finding other

quantities of interest. For example, in nonlinear filtering [50, 77], the joint PDF

ρ(·, t) serves as the prior in calculating the posterior (i.e., conditional state) PDF.

In probabilistic model validation [96–98] and controller verification [103], comput-

ing ρ(x, t) helps in quantifying the density-level prediction-observation mismatch.

Rather than developing algorithms on a case-by-case basis, these applications re-

quire fast computation of ρ(·, t) in a scalable and unified manner.

Given its widespread applications, density prediction has received sustained atten-

tion from the scientific computing community, but there remain several technical
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challenges to achieve scalable computation. The dynamics of realistic systems are

often nonlinear and evolve in high-dimensional state space. This means that we

need algorithms that avoid spatial discretization or meshing of the state space be-

cause the predominant solution approaches like spatial discretization and function

approximation or interpolation suffer from the “curse of dimensionality” [20]. The

purpose of this work is to pursue the variational viewpoint that we discussed for

computing ρ(·, t) without generating any discretization and/or meshing the state

space. The idea is to seek a representation of ρ(x, t) as a linear combination of

Dirac distributions

ρ(x, t) ≈
N∑
i=1

%i(t)δ(x− xi(t)), (1.33)

where the each points xi(t) ∈ X are independently evolved according to the SDE

(1.17)

dxit = −∇U(xit) dt+
√

2β−1 dwi
t. (1.34)

The coefficients %i(t) are called the particle weights and are obtained by solving a

particle version of the JKO scheme (1.21). These coefficients represent the amount

of mass carried by ith particle located at xi(t) at time t, and N is the total number

of particles. We refer to these types of solutions as particle solutions, and the

Dirac delta distributions introduced above are called the particles. These types

of schemes have several advantages compared to traditional methods like finite-

differences and finite-element methods. Particle schemes are concentrated in the

region of the state space in which we are interested thereby optimizing memory

storage. They are also beneficial for problems with complicated geometries or

problems with changing boundaries due to the dynamic nature of the particles.
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In Chapter 2, we propose a novel computational framework that solves for the

particle weights. We show that by introducing entropic regularization and taking

the dual of the particle version of the objective (1.21) leads to a cone-preserving

fixed point recursion that is proved to be contractive in an appropriate metric.

A block co-ordinate iteration scheme is proposed to solve the resulting nonlinear

recursions with guaranteed convergence. This approach enables remarkably fast

computation for non-parametric transient joint PDF propagation.

At the same time, the JKO scheme in its original form has limited scope. Many

stochastic systems of interest do not admit state dynamics that are in JKO canon-

ical form. Even the linear-Gaussian setup ubiquitous in systems-control theory

dxt = Axt dt+
√

2B dwt, x0 ∼ N (µ0,Σ0), (1.35)

where the drift coefficient is a Hurwitz linear vector field, and the diffusion coef-

ficient is a constant non-square real matrix seems to fall outside the scope of the

JKO scheme. In many engineering applications, one also usually encounters SDE’s

where the drift vector fields have both a dissipative and conservative structure.

For example, stochastic systems like Kramers’ equation

dqt = pt dt (1.36)

dpt = −∇V (qt) dt− γ∇F (pt) dt+
√

2γβ−1 dwt (1.37)

arising from Newton’s law in classical mechanics often have this structure. Moti-

vated by the JKO scheme, the authors of [81,117], have established approximation

schemes for Kramer’s equation. The proposed proximal algorithm in Chapter 2

can be used to address problems of this type. The main challenge in the construc-

tion of such a variational scheme for Kramer’s equation is finding the appropriate
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cost function in the distance metric and a suitable free energy functional. This

difficulty arises from the fact that Kramer’s equation is not uniformly diffusive in

the entire state space. Diffusion is only present in the velocity variables, not in the

position variables and this has to be accounted for in the distance functional. This

means that techniques in [125] cannot be applied directly although the schemes

are the same form as (1.21)

1.2.2 Density Control

Building on our work in Chapter 2, we develop theory and numerical solvers for

the density control problem i.e., the problem of steering the density ρ(·, t) subject

to trajectory level dynamics while minimizing the control effort with two-point

density constraints. The density control problem arises in modeling and control

of the collective dynamics of an ensemble of physical populations. They arise in

the study of self-organization and behaviors in organisms such as social insects.

This work in biological systems has inspired numerous studies in the collective be-

havior of artificial systems like robotic swarms, [15] which have been increasingly

garnered attention from large scale applications like environmental exploration,

reconnaissance and surveillance and disaster response. Depending on the mission,

it is critical to find the control laws that shape the behavior of the swarm in

response to possibly unknown changes in the environment. In addition, density

control also arises in the study of ensembles of neurons [163], shaping the bulk

magnetization distribution for NMR spectroscopy [146] and density of highway

traffic [63]. In all these applications, the population distribution is actively con-

trolled over time while preserving the physical mass. The conservation of mass

allows us to reformulate the problem as steering a single system with probabilistic
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uncertainty in its initial and terminal state modeled via prescribed initial and

terminal joint state probability instead of steering a large number of systems with

identical dynamics.

Mathematically, this can be set up as non-standard stochastic optimal control

problem of the form

inf
u∈U

E
{∫ 1

0

1
2‖u(x, t)‖2

2 dt
}
, (1.38a)

subject to dx = f(x, t) dt+B(t)u(x, t) dt+
√

2εB(t) dw(t), (1.38b)

x(t = 0) ∼ ρ0(x), x(t = 1) ∼ ρ1(x), (1.38c)

where x ∈ Rn, and the set U comprises of all finite energy inputs, as before. Given

f(x, t), B(t) and ε, our objective is to steer the joint state PDF ρ(x, t) from a

prescribed initial PDF ρ0 at t = 0 to another prescribed terminal PDF ρ1 at t = 1

while minimizing the expected control effort.

Define the diffusion tensor D(t) := B(t)B(t)>. Problem (1.38) can be formally

recast into a “fluid dynamics” version [21] given by:

inf
(ρ,u)

1
2

∫ 1

0

∫
Rn
‖u(x, t)‖2

2 ρ(x, t) dx dt (1.39a)

subject to ∂ρ

∂t
+∇ · (ρ (f +B(t)u)) = ε1>(D(t)�Hess (ρ)) 1, (1.39b)

ρ(x, 0) = ρ0(x), ρ(x, 1) = ρ1(x), (1.39c)

where the infimum is taken over all pairs (ρ,u) ∈ P2(Rn)× U satisfying (1.39b)-

(1.39c). We note that (3.15b) is the controlled FPK PDE which governs the flow

of the joint PDF associated with the SDE (1.38b). In 1931-32, Erwin Schrödinger

published two papers [191,192] for the case f ≡ 0 and B ≡ I which we refer to as
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the classical Schrödinger Bridge Problem (SBP). Hereafter, we refer to (1.39a) as

the generalized Schrödinger Bridge Problem (SBP). Recently, the classical SBP

has been extended [60] to the case when the prior dynamics is a linear time-varying

(LTV) system, i.e.,

dx(t) = A(t)x(t) dt+B(t)u(x, t) dt+
√

2εB(t) dw(t), (1.40)

where the system matrices A(t) ∈ Rn×n,B(t) ∈ Rn×m, m ≤ n, and the pair

(A(t),B(t)) is assumed to be controllable for all t. We refer the readers to [60, Sec.

4] for the details.

In Chapter 3, we recap the basics of the SBP and use this as foundation to solve the

SBP with generic nonlinear prior dynamics. The idea is to deduce the necessary

conditions of optimality to obtain the optimal state feedback policy in terms of the

solution of a certain Hamilton-Jacobi-Bellman (HJB) partial differential equation

(PDE) that has a one-way coupling with the optimally PDF given by a controlled

FPK equation. We show that we can transform this nonlinear system into a

system of boundary-coupled linear PDE using a Hopf-Cole transformation which

we refer to as the Schrödinger System whose solutions recover the optimal state

feedback and the optimally controlled joint state PDF. To numerically solve the

Schrödinger System, we will utilize the Wasserstein proximal recursions described

in Chapter 2. We will apply the prior nonlinear dynamics given in (1.38b) to two

different cases: gradient drift, and mixed conservative-dissipative drift.

In Chapter 4, we extend these results to generalized SBP with hard deterministic

state constraints. This containment can be achieved by reflecting the sample

paths from the ε-inner boundary layer of ∂X for ε small enough at all times. We

show that this restriction results in Neumann Boundary conditions in (1.39a). In
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applications, state constraints may encode safety requirements such as obstacle

avoidance. We show how the same algorithms from Chapter 2 can be leveraged

to tackle these challenges.

In Chapter 5, we derive theoretical results for generic SBP’s subject to multi-input

state feedback linearizable dynamics. We show that it is possible to exploit the

structural nonlinearities to derive a Schrödinger System via adding an artificial

diffusion coefficient. We show that the diffeomorphism induced by the feedback

linearizable structure can be used to transform into a problem with simplified state

space dynamics. This is at the cost of a modified Lagrangian cost function. We

envision that the theoretical developments in this work will help design algorithms

that solve the feedback density steering over a large class of nonlinear dynamical

systems.

1.3 Machine Learning

In Chapter 6, we study the global convergence of neural networks from the per-

spective of gradient flows. In recent years, neural networks have become a staple

for engineering applications, but despite their empirical success, there remains a

critical gap in understanding their performance and convergence guarantees. The

purpose of this study is to shed some light and explain the empirical success by

exploring the dynamics in the space of distributions supported over the parameter

space. In particular, one can view shallow neural networks as interacting particle

systems that admit a mean-field limit. Under certain assumptions, their training

dynamics can be viewed as gradient flows with global convergence guarantees.

In the case of fully connected networks, universal approximation results such
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as [16, 74] explain this empirical success. They demonstrate that a large enough

network can approximate any continuous function on a compact set. The focus

of this work is the dynamical version of the universal approximation theorem

wherein we study whether local search algorithms such as stochastic gradient

descent (SGD) can find global solutions. Recent works [65, 158, 188, 194] have

addressed this question for two-layer networks, showing convergence to global so-

lutions by studying the dynamics in the space of distributions over parameters

that is given by some nonlinear PDE with gradient flow structure w.r.t. Wasser-

stein metric. This work seeks to extend these results to second-order momentum

methods such as Heavy Ball and Nesterov’s methods. A description of the problem

setting is presented first, followed by a summary of the results.

The basic problem of machine learning can be described as follows. We are given

data {(yi,xi)}ni=1 which are identically distributed from a distribution D. The

data xi ∈ X is a feature vector (one can think of it as a descriptor of an image)

and yi ∈ Y is a response or label (we can think of this as the object described

by the image). The goal of the learning problem is to find a function ŷ : X 7→ Y

that models the dependency of yi on xi. In most cases, the function ŷ(x;θ) is

parameterized by the vector θ which makes learning this function equivalent to

finding the parameters such that our predictor ŷ is accurate when measured with

respect to a certain loss or metric.

In this work, we consider the simplest case of a single hidden layer where the

predictor is of the form

ŷ(x,θ) = 1
N

N∑
i=1

σ∗(x,θ), (1.41)

where N is the number of neurons (also referred to as the width the network).
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For the sake of convenience, we take X = Rd and Y = R (See Figure (1.2)). In

the two-layer case, we set

σ∗(x,θi) = aiσ(〈x, bi〉), (1.42)

with θi = (ai, bi) ∈ R × Rd and bi, ai are the the weights of the first and second

layer, respectively, and σ : R 7→ R is an activation function. Here, we also

collectively denote θ = (θ1,θ2, . . . ,θn) ∈ R(d+1)N . Notice that this neural network

is written as an average of activation functions parameterized by θi and the factor

1/N is introduced for convenience. Although, this is an unusual way to describe

the output of the network, this is a favorable setting to do mean field analysis i.e.,

taking the width N →∞.

For the sake of exposition, we consider the case of quadratic loss

RN(θ) = ED{(y − ŷ)2}

= ED


(
y − 1

N

N∑
i=1

σ∗(x,θi)
)2 , (1.43)

but this analysis applies to more general loss functions. The goal of the learning

problem is to make this expected loss as small as possible given a choice of the pa-

rameter θ. In other words, the learning problem can be set up as the optimization

problem

min
θ∈R(d+1)N

RN(θ). (1.44)

In practice, we don’t have access to the distribution D so we approximate using
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the samples which gives

ED


(
y − 1

N

N∑
i=1

σ∗(x,θi)
)2 ≈

L∑
k=1


(
y − 1

N

N∑
i=1

σ∗(xk,θi)
)2 . (1.45)
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Figure 1.2: A neural network with N = 4 number of neurons in the hidden layer
and d = 3 in the input layer.

Despite many advances in learning, a fundamental theory for explaining its ef-

fectiveness (and possible limitations) are only beginning to emerge. We bring to

light some of the major difficulties:

1. Non-Convexity: The dependence on the input weights bi’s is non-linear

because of the activation function. This typically leads to non-convexity.

2. Overparameterization: The number N of hidden units is very large and

exceeds the number of observations. This leads to a very high dimensional

optimization problem since θ ∈ R(d+1)N .

Overparametrization of neural networks does not typically result in a degradation

of the network’s performance. In light of this, mean-field analysis is a viable strat-
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egy for analysing optimization dynamics; see [5,7,17]. This overparameterization

actually enables us to obtain some theoretical results for width N →∞.

In practice, Stochastic Gradient Descent (SGD) remains one of the most effective

algorithms for machine learning. The basic idea behind SGD is to obtain the

current iterate by updating the previous iterate in the direction of the gradient. In

mathematical terms, we can think of the parameters of each neurons as “particles”

evolving according to the recursion

θik = θik−1 − ηN∇θiRN(θik−1) (1.46)

for i = 1, 2, . . . , N and η is a stepsize. Notice that the scaling N does not affect

the objective and we put it there for convenience. We run this recursion until we

get reasonably close to a minimum. As η → 0, this algorithm converges to the

ODE

dθit
dt = −N∇RN(θt), (1.47)

which is called gradient flow. One other interesting variant of SGD is Noisy SGD

(also referrred to as the Langevin Algorithm in the literature) where in each step

we add a Gaussian Noise wk−1 ∼ N (0, Iη) giving

θik = θik−1 − ηN∇RN(θik−1) +
√

2ηβ−1wi
k−1. (1.48)

Similarly, when the time step η → 0, we also have a continuous time analogue

given by the Ito Stochastic Differential Equation (SDE)

dθit = −N∇RN(θt)dt+
√

2β−1dwt. (1.49)
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Here β−1 is called the inverse temperature, and we will see this parameter play a

big role in our analysis. Throughout this work, we focus on noisy SGD because

of its nice regularization properties that are useful for the analysis. We will prove

results where we take β−1 → 0 to obtain some qualitative results about SGD

which is our main problem of interest. At this point, we can use the theory of

gradient flows and optimal transport to collect the relevant results. We refocus

our attention to the learning problem. We can start by expanding the quadratic

risk (1.43)

RN(θ) = ED{(y − ŷ)2}

= ED{y2 − yŷ2 + ŷ2}

= ED{y2}︸ ︷︷ ︸
R]

+ 1
N

N∑
i=1

ED{−yσ∗(x,θi)}︸ ︷︷ ︸
:=V (θi)

+ 1
N2

N∑
i=1

N∑
j=1

ED{σ∗(x,θi)σ∗(x, θ̃
j)}︸ ︷︷ ︸

:=U(θi ,̃θ
j
)

:= R] + 1
N

N∑
i=1

V (θi) + 1
N2

N∑
i=1

N∑
j=1

U(θi, θ̃j). (1.50)

For large N , it makes sense to view (1.50) as an empirical average in the parameter

space so we have

R(ρ) := R] +
∫
V (θ)ρ(θ)dθ +

∫ ∫
U(θ, θ̃)ρ(θ)ρ(θ̃)dθdθ̃ (1.51)

for some density ρ ∈ P2(R(d+1)). To aid our analysis, it is useful to consider the

regularized version

Rλ(ρ) = R(ρ) + λ
∫
g(θ)ρ(θ) dθ, (1.52)

where g(θ) = ‖θ‖2
2 and λ > 0 is some regularization parameter. In general, we

can take any g(θ) ≥ ‖θ‖2
2. It was shown in [158] that for some constant C that
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depends only on U , we have

∣∣∣∣ inf
θ∈R(d+1)N

RN,λ(θ) − inf
ρ∈P2(R(d+1))

Rλ(ρ)
∣∣∣∣ ≤ K

N
, (1.53)

where

RN,λ(θ) = RN(θ) + λ

N

N∑
i=1

g(θi). (1.54)

So instead of optimizing a non-convex problem over parameter space we lift the

problem to a problem with a strongly convex objective (since U is positive semi-

definite) over P2(Rd+1) which is an infinite dimensional manifold. Recall, that we

are trying to solve the optimization problem (1.44) with quadratic regularization

and we update each particle via the continuous time noisy SGD dynamics given

by

dθit = −N∇θiRN,λ(θt)dt+
√

2β−1dwt, (1.55)

where i = 1, 2, . . . , N . Since we want to take N →∞ it is intractable to consider

the dynamics of each particle so instead we consider the collective dynamics. We

can formalize this idea by consider the population density function

ρt(·) := lim
N→∞

1
N

N∑
i=1

δθit(·), (1.56)

which evolves according to

∂ρt
∂t

= ∇ ·
(
∇δRλ

δρ
ρt

)
+ β−1∆ρt (1.57)

= ∇ ·
(
∇δΦλ

δρ

)
= ∇W2Φλ(ρ), (1.58)

24



where the free energy Φ is the the sum of the terms

Φλ(ρ) = Rλ(ρ) + β−1S(ρ), S(ρ) =
∫
ρ log ρ. (1.59)

Moreover, this PDE is gradient flow of w.r.t the Wasseretein metric of the func-

tional Rλ plus some entropic regularization term. Because of this geometric struc-

ture, all solution trajectories ρt of (1.58) with some initial condition ρ0 will con-

verge to a unique stationary solution ρ∞ which is also the unique minimizer of Rλ

which is given by the fixed-point Gibbs density

ρ∞(θ) = 1
Z

exp (−βΦλ (ρ∞(θ).)) (1.60)

Notice that this is different from the Gibbs distribution in the linear Fokker-Planck

equation because we have an implicit equation, i.e., ρ∞ shows up on both sides of

(1.60).

In Chapter 6, we extend these results to optimization algorithms with second-

order dynamics like the Heavy Ball Method [185] given by

dθit = rit dt, (1.61)

drit = −N∇θit
RN,λ(θt)− γrit +

√
2γβ−1 dwi

t. (1.62)

We study the distribution dynamics for a two-layer neural network and derive the

distribution evolution given by a nonlinear Kinetic Fokker-Planck equation

∂ρ

∂t
= −〈r,∇θρ〉+∇r ·

(
ρ
(
γr + λθ +∇θΦ′([ρ]θ)

))
+ γβ−1∆rρ, (1.63)

where ρ is now supported over the parameter space and velocity space and [ρ]θ
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denotes the θ marginal PDF of the ρ. Unlike gradient dynamics, we do not

have the luxury of using Wasserstein gradient flow to demonstrate convergence.

The main results of this work are to characterize the convergence of the global

minimum and establish its existence and uniqueness. The approach we take in

this work will involve previous methods from the SGD case combined with tools

from the study of the (linear) Kinetic Fokker-Planck equation. Our goal is to

extend this work beyond second-order algorithms to a larger class of algorithms.

Finally, in Chapter 7 we state the conclusions of this work as well as future di-

rections of research. Hereafter, we present the journal publications, conference

publications and pre-prints that have resulted from this work:

Journal Papers

• K.F. Caluya, and A. Halder. Gradient Flow Algorithms for Density Prop-

agation in Stochastic Systems. IEEE Transactions on Automatic Control

• A. Halder, K.F. Caluya, B. Travacca, and S.J. Moura. Hopfield Neural

Network Flow: A Geometric Viewpoint. IEEE Transactions on Neural Net-

works and Learning Systems

• K.F. Caluya, and A. Halder. Wasserstein Proximal Algorithms for the

Schrödinger Bridge Problem: Density Control with Nonlinear Drift. IEEE

Transactions on Automatic Control

• A, Halder, K.F. Caluya, P. Ojaghi, X. Geng. Stochastic Uncertainty Prop-

agation in Power System Dynamics using Measured-value Proximal Recur-

sions. IEEE Transactions on Power Systems arXiv:2108.13405
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Conference Papers

• K.F. Caluya, and A. Halder. Proximal Recursion for Solving the Fokker-

Planck Equation. American Control Conference, Philadelphia, 2019.

• K.F. Caluya, and A. Halder. Finite Horizon Density Steering for Multi-

input State Feedback Linearizable Systems. American Control Conference,

Denver, 2020.

• K.F. Caluya, and A. Halder. Reflected Schrödinger Bridge: Density Con-

trol with Path Constraints American Control Conference, New Orleans,

2021.

• S Haddad, K.F. Caluya, A Halder, B Singh. Prediction and Optimal Feed-

back Steering of Probability Density Functions for Safe Automated Driving

American Control Conference, New Orleans, 2021.

Preprints

• W.Krichene, K.F. Caluya, and A. Halder. Global Convergence of Second-

order Dynamics in Two-layer Neural Networks. arXiv:2007.06852

• K.F. Caluya, and A. Halder. Finite Horizon Density Control for Static

State Feedback Linearizable Systems. arXiv:1904.02272
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Chapter 2

Gradient Flow Algorithms for

Density Propagation in

Stochastic Systems

2.1 Introduction

Consider the continuous-time dynamics of the state vector x(t) ∈ Rn governed by

an Itô stochastic differential equation (SDE)

dx = f (x, t) dt + g(x, t) dw, x(t = 0) = x0, (2.1)

where the joint probability density function (PDF) for the initial condition x0 is

a known function ρ0; we use the notation x0 ∼ ρ0. The process noise w(t) ∈ Rm

is Wiener and satisfy E [dwidwj] = δijdt for all i, j = 1, . . . , n, where δij = 1 for

i = j, and zero otherwise. Then, the flow of the joint PDF ρ(x, t) for the state
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vector x(t) (i.e., x ∼ ρ) is governed by the partial differential equation (PDE)

initial value problem:

∂ρ

∂t
= −∇ · (ρf) + 1

2

n∑
i,j=1

∂2

∂xi∂xj
(ρgg>)ij, (2.2a)

ρ(x, t = 0) = ρ0(x) (given). (2.2b)

The second order transport PDE (2.2a) is known as the Fokker-Planck or Kol-

mogorov’s forward equation [186]. Hereafter, we will refer it as the Fokker-Planck-

Kolmogorov (FPK) PDE.

In this paper, we consider the problem of density or belief propagation, i.e., the

problem of computing the transient joint PDF ρ(x, t) that solves a PDE ini-

tial value problem of the form (2.2). From an application standpoint, the need

for computing ρ(x, t) can be motivated by two types of problems. The first is

dispersion analysis, where one is interested in predicting or analyzing the un-

certainty evolution over time, e.g., in meteorological forecasting [83], spacecraft

entry-descent-landing [94, 95], orientation density evolution for liquid crystals in

chemical physics [111, 126, 164], and in motion planning [105, 177, 178]. In these

applications, the quantity of interest is the joint PDF ρ(x, t) and its statistics

(e.g., transient moments and marginal PDFs). The second type of applications

require ρ(x, t) as an intermediate step toward computing other quantities of in-

terest. For example, in nonlinear filtering [50,77], the joint PDF ρ(x, t) serves as

the prior in computing the posterior (i.e., conditional state) PDF. In probabilistic

model validation [96–98] and controller verification [103], computing ρ(x, t) helps

in quantifying the density-level prediction-observation mismatch. All these appli-

cations require fast computation of ρ(x, t) in a scalable and unified manner, as

opposed to developing algorithms in a case-by-case basis.
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Given its widespread applications, problem (2.2) has received sustained atten-

tion from the scientific computing community where the predominant solution

approaches have been spatial discretization and function approximation – both of

which, in general, suffer from the “curse of dimensionality" [20]. The purpose of

this paper is to pursue a systems-theoretic variational viewpoint for computing

ρ(x, t) that breaks away from the “solve PDE as a PDE" philosophy, and instead

solves (2.2) as a gradient descent on the manifold of joint PDFs. This emerging

geometric viewpoint for uncertainty propagation and filtering has been reported

in our recent work [100,101], but it remained unclear whether this viewpoint can

offer computational benefit over the standard PDE solvers. It is not at all obvious

whether and how an infinite-dimensional gradient descent can numerically obviate

function approximation or spatial discretization. The contribution of this paper

is to demonstrate that not only this is possible, but also that the same enables

fast computation.

To conceptualize the main idea, we appeal to the metric viewpoint of gradient

descent, where a continuous-time gradient flow is realized by small time-step re-

cursions of a proximal operator with respect to (w.r.t.) a suitable metric. For

example, consider the finite dimensional gradient flow

dx
dt = −∇ϕ (x) , x(0) = x0, (2.3)

where x,x0 ∈ Rn, and the continuously differentiable function ϕ : Rn → R≥0.

The flow x(t) generated by (2.3) can be realized via variational recursion

xk = arg min
x∈Rn

1
2 ‖ x− xk−1 ‖2

2 +h ϕ(x) + o(h), k ∈ N, (2.4)

in the sense that as the step-size h ↓ 0, we have xk → x(t = kh), i.e., the sequence
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{xk} converges pointwise to the flow x(t). This can be verified by rewriting the

Euler discretization of (2.3), given by

xk − xk−1 = −h∇ϕ(xk−1),

as

xk = arg min
x∈Rn

1
2 ‖ x− (xk−1 − h∇ϕ(xk−1)) ‖2

2

= arg min
x∈Rn

1
2 ‖ x− xk−1 ‖2

2 + 〈x− xk−1, h∇ϕ(xk−1)〉

+ hϕ(xk−1), (2.5)

where we used the fact that adding and omitting constant terms do not change the

arg min. From (2.5), one can arrive at (2.4) by invoking first order approximation

of ϕ(x) at x = xk. In (2.4), the mapping xk−1 7→ xk given by

prox‖·‖2
hϕ (xk−1) := arg min

x∈Rn

1
2 ‖ x− xk−1 ‖2

2 +h ϕ(x), (2.6)

is called the “proximal operator" [176, p. 142] of hϕ w.r.t. the standard Euclidean

metric ‖ · ‖2. Notice that ϕ(·) serves as a Lyapunov function since the quantity

d
dtϕ = 〈∇ϕ,−∇ϕ〉 = − ‖ ∇ϕ ‖2

2 (2.7)

equals 0 at the stationary point of (2.3), and < 0 otherwise.

In the infinite dimensional setting, we are interested in computing the flow gener-

ated by (2.2) via gradient descent on the manifold of joint PDFs with finite second
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Figure 2.1: The gradient descent on the manifold of PDFs can be described by
successive evaluation of proximal operators to recursively update PDFs from time
t = (k − 1)h to t = kh for k ∈ N, and time-step h > 0.
(raw) moments, denoted as∗

D2 := {ρ : Rn 7→ R | ρ ≥ 0,
∫
Rn
ρ = 1, Eρ[x>x] <∞}.

Specifically, let d(·, ·) be a distance metric on the manifold D2, and let the func-

tional Φ : D2 7→ R≥0. Then, for some chosen step-size h > 0, the infinite dimen-

sional proximal operator of hΦ w.r.t. the distance metric d(·, ·), given by

proxd(·)
hΦ (%k−1) := arg inf

%∈D2

1
2d (%, %k−1)2 + h Φ(%), (2.8)

can be used to define a proximal recursion (Fig. 2.1):

%k = proxd(·)
hΦ (%k−1), k ∈ N, %0(x) := ρ0(x). (2.9)

Just as the proximal recursion (2.4) approximates the finite dimensional flow (2.3),

similarly it is possible to design d(·, ·) and Φ(·) in (2.8) as function of the drift
∗We denote the expectation operator w.r.t. the measure ρ(x)dx as Eρ [·].
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f and diffusion g in (2.2a) such that the proximal recursion (2.9) approximates

the infinite dimensional flow (2.2). This idea was first proposed in [125], showing

that when f is a gradient vector field and g is a scalar multiple of identity matrix,

then the distance d(·, ·) can be taken as the Wasserstein-2 metric [210] with Φ(·)

as the free energy functional. In particular, the solution of (2.9) was shown to

converge to the flow of (2.2), i.e., %k(x) → ρ(x, t = kh) in strong L1(Rn) sense,

as h ↓ 0. The resulting variational recursion (2.9) has since been known as the

Jordan-Kinderlehrer-Otto (JKO) scheme [6], and we will refer to the FPK operator

(2.2a) with such assumptions on f and g to be in “JKO canonical form". Similar

gradient descent schemes have been derived for many other PDEs; see e.g., [190]

for a recent survey.

The remaining of this paper is organized as follows. Section 2.2 explains the JKO

canonical form and the corresponding free energy functional Φ(·). Our algorithms

and convergence results are presented in Section 2.3, followed by numerical simu-

lation results in Section 2.4. Section 2.5 provides various extensions of the basic

algorithm showing how the framework proposed here can be applied to systems

not in JKO canonical form. Section 2.6 concludes the paper.

We remark here that a preliminary version [42] of this work appeared in the 2019

American Control Conference. This paper significantly expands [42] by incorpo-

rating additional results for the so-called McKean-Vlasov flow (Sections 2.2.2 and

2.4.3), and by providing various extensions of the basic algorithm (Section 2.5).

Preliminaries

We next collect definitions and some properties of the 2-Wasserstein metric and

the Kullback-Leibler divergence, which will be useful in the development below.
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Definition 1. (2-Wasserstein metric) The 2-Wasserstein metric between two

probability measures dπ1(x) := ρ1(x)dx and dπ2(y) := ρ2(y)dy, supported respec-

tively on X ,Y ⊆ Rn, is denoted as W (π1, π2) (equivalently, W (ρ1, ρ2) whenever

the measures π1, π2 are absolutely continuous so that the respective PDFs ρ1, ρ2

exist); it is defined as

W (π1, π2) :=
(

inf
dπ∈Π(π1,π2)

∫
X×Y

s(x;y) dπ (x,y)
) 1

2

, (2.10)

where s(x;y) :=‖ x−y ‖2
2 is the squared Euclidean distance in Rn, and Π (π1, π2)

denotes the collection of all joint probability measures on X × Y having finite

second moments, with marginals π1 and π2, respectively.

The existence and uniqueness of the minimizer in (2.10) is guaranteed. It is well-

known [210, Ch. 7] that W (π1, π2) defines a metric on the manifold D2. This

means that W (π1, π2) ≥ 0 with equality if and only if π1 = π2, the symmetry:

W (π1, π2) = W (π2, π1), and that W (π1, π2) satisfies the triangle inequality. Its

square, W 2(π1, π2) equals [21] the minimum amount of work required to transport

π1 to π2 (or equivalently, ρ1 to ρ2), and vice versa. For any PDF ν, the function

ρ 7→ W 2(ρ, ν) is convex on D2, i.e., for any ρ1, ρ2 ∈ D2, and 0 ≤ τ ≤ 1, we have

W 2(ν, (1− τ)ρ1 + τρ2) ≤ (1− τ)W 2(ν, ρ1) + τW 2(ν, ρ2). (2.11)

Definition 2. (Kullback-Leibler divergence) The Kullback-Leibler divergence,

also known as relative entropy, between two probability measures dπ1(x) := ρ1(x)dx
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and dπ2(y) := ρ2(y)dy, denoted as DKL(π1||π2), is defined as

DKL(π1||π2) =
∫ (

dπ1

dπ2

)
log

(
dπ1

dπ2

)
dπ2

=
∫
Rn
ρ1(x) log ρ1(x)

ρ2(x)dx, (2.12)

where dπ1
dπ2

denotes the Radon-Nikodym derivative. Henceforth, we use the nota-

tional equivalence DKL(π1||π2) ≡ DKL(ρ1||ρ2).

From Jensen’s inequality, DKL(ρ1||ρ2) ≥ 0; however, DKL is not a metric since it

is neither symmetric, nor does it satisfy the triangle inequality. The Kullback-

Leibler divergence (2.12) is jointly convex in ρ1 and ρ2.

2.2 JKO Canonical Form

The JKO canonical form refers to a continuous-time stochastic dynamics where

the drift vector field is the gradient of a potential function. The potential can be

state dependent, or can depend on both the state x(t) and its joint PDF ρ(x, t).

In the former case, the associated flow of the joint state PDF is governed by a

FPK PDE of the form (2.2a) whereas in the latter case, the same is governed by

the McKean-Vlasov integro-PDE. For both cases, the proposed gradient flow algo-

rithms (Section 2.3) will be able to compute the transient state PDFs ρ(x, t). We

next describe these canonical forms; generalization of our framework to systems

not in JKO canonical form will be given in Sections 2.4 and 2.5.
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2.2.1 FPK Gradient Flow

Consider the Itô SDE

dx = −∇ψ (x) dt +
√

2β−1 dw, x(0) = x0, (2.13)

where the the drift potential ψ : Rn 7→ (0,∞), the diffusion coefficient β > 0, and

the initial condition x0 ∼ ρ0(x). For the sample path x(t) dynamics given by the

SDE (2.13), the flow of the joint PDF ρ (x, t) is governed by the FPK PDE initial

value problem

∂ρ

∂t
= ∇ · (ρ∇ψ) + β−1∆ρ, ρ(x, 0) = ρ0(x). (2.14)

It is easy to verify that the unique stationary solution of (2.14) is the Gibbs

PDF ρ∞(x) = κ exp (−βψ(x)), where the normalizing constant κ is known as the

partition function.

A Lyapunov functional associated with (2.14) is the free energy

F (ρ) := Eρ
[
ψ + β−1 log ρ

]
= β−1DKL (ρ ‖ exp (−βψ(x))) ≥ 0, (2.15)

that decays [125] along the solution trajectory of (2.14). This follows from re-

writing (2.14) as

∂ρ

∂t
= ∇ · (ρ∇ζ) , where ζ := β−1 (1 + log ρ) + ψ, (2.16)
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and consequently

d
dtF = −Eρ

[
‖ ∇ζ ‖2

2

]
, (2.17)

which is < 0 for the transient solution ρ(x, t), and = 0 at the stationary so-

lution ρ∞(x) = κ exp(−βψ(x)). In our context, (2.17) is an analogue of (2.7).

Notice that the free energy (2.15) can be seen as the sum of the potential en-

ergy
∫
Rn ψ(x)ρ dx and the internal energy β−1 ∫

Rn ρ log ρ dx. If ψ ≡ 0, the PDE

(2.14) reduces to the heat equation, which by (2.15), can then be interpreted as

an entropy maximizing flow.

The seminal result of [125] was that the transient solution of (2.14) can be com-

puted via the proximal recursion (2.9) with the distance metric d ≡ W (i.e., the

2-Wasserstein metric in (2.10)) and the functional Φ ≡ F (i.e., the free energy

(2.15)). Just as (2.3) and (2.4) form a gradient flow-proximal recursion pair, like-

wise (2.14) and (2.9) form the same with the stated choices of d and Φ. From

(2.10), notice that the distance metric W itself is defined as the solution of an

optimization problem, hence it is not apparent how to numerically implement the

recursion (2.9) in a scalable manner.

2.2.2 McKean-Vlasov Gradient Flow

In addition to the drift and diffusion, if one has non-local interaction, then the

corresponding PDF evolution equation becomes the McKean-Vlasov integro-PDE

∂ρ

∂t
= ∇ · (ρ∇ (ψ + ρ ∗ φ)) + β−1∆ρ, ρ(x, 0) = ρ0(x), (2.18)
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where ∗ denotes the convolution in Rn, the interaction potential φ : Rn 7→ (0,∞)

and is symmetric, i.e., φ(−v) = φ(v) for v ∈ Rn. The associated sample path

x(t) dynamics has PDF-dependent drift:

dx = − (∇ψ (x) +∇ (ρ ∗ φ)) dt+
√

2β−1 dw, x(0) = x0. (2.19)

As an example, when φ(v) := 1
2 ‖ v ‖

2, then ∇(ρ ∗ φ)(x) = x − Eρ[x]. Clearly,

(2.18) reduces to (2.14) in the absence of interaction (φ ≡ 0). The McKean-Vlasov

equation serves as a model for coupled multi-agent interaction in applications such

as crowd movement [69], opinion dynamics [8,90], population biology [45,208] and

communication systems.

A Lyapunov functional for (2.18) can be obtained [211] by generalizing the free

energy (2.15) as

F (ρ) := Eρ
[
ψ + β−1 log ρ + ρ ∗ φ

]
, (2.20)

which is a sum of the potential energy (as before), the internal energy (as before),

and the interaction energy 1
2
∫
R2n φ(x−y)ρ(x)ρ(y)dxdy. In this case, (2.17) holds

with

ζ := β−1 (1 + log ρ) + ψ + ρ ∗ φ, (2.21)

which is often referred to as the entropy dissipation functional [46]. As before,

the proximal recursion (2.9) with d ≡ W and Φ ≡ F (now F given by (2.20)),

approximates the flow (2.18).
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2.3 Framework

We now describe our computational framework to solve the proximal recursion

%k = proxWhF (·)(%k−1) (2.22a)

= arg inf
%∈D2

1
2W

2(%k−1, %) + h F (%), k ∈ N, (2.22b)

with %0 ≡ ρ0(x) (the initial joint PDF) for some small step-size h. For maximal

clarity, we develop the framework with the free energy F (·) as in (2.15), i.e., for

FPK gradient flow. In Section 2.4.C, we will show how the same can be generalized

when F (·) is of the form (2.20). As per the convexity properties mentioned in

Section 3.1.2, problem (2.22) involves (recursively) minimizing sum of two convex

functionals, and hence is a convex problem for each k ∈ N.

We discretize time as t = 0, h, 2h, . . ., and develop an algorithm to solve (2.22)

without making any spatial discretization. Specifically, we would like to perform

the recursion (2.22) on weighted scattered point cloud {xik, %ik}Ni=1 of cardinality

N at tk = kh, k ∈ N, where the location of the ith point xik ∈ Rn denotes its

state-space coordinate, and the corresponding weight %ik ∈ R≥0 denotes the value

of the joint PDF evaluated at that point at time tk. Such weighted point cloud

representation of (2.22) results in the following problem:

%k = arg min
%

{
min

M∈Π(%k−1,%)

1
2〈Ck,M〉+ h 〈ψk−1

+β−1 log%,%〉
}
, k ∈ N, (2.23)
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where the drift potential vector ψk−1 ∈ RN is given by

ψk−1(i) := ψ
(
xik−1

)
, i = 1, . . . , N. (2.24)

Here, the probability vectors %,%k−1 ∈ SN−1, the probability simplex in RN .

Furthermore, for each k ∈ N, the matrix Ck ∈ RN×N is given by

Ck(i, j) := s(xik;x
j
k−1) =‖ xik − x

j
k−1 ‖2

2, i, j = 1, . . . , N, (2.25)

and Π(%k−1,%) stands for the set of all matrices M ∈ RN×N such that

M ≥ 0, M1 = %k−1, M>1 = %. (2.26)

Notice that the inner minimization in (2.23) is a standard linear programming

problem if it were to be solved for a given % ∈ SN−1, as in the Monge-Kantorovich

optimal mass transport [210]. However, the outer minimization in (2.23) precludes

a direct numerical approach.

To circumvent the aforesaid issues, following [130], we first regularize and then du-

alize (2.23). Specifically, adding an entropic regularization H(M) := 〈M , logM〉

in (2.23) yields

%k = arg min
%

{
min

M∈Π(%k−1,%)

1
2〈Ck,M〉+ εH(M)

+h 〈ψk−1 + β−1 log%,%〉
}
, (2.27)

where ε > 0 is a regularization parameter. The entropic regularization is stan-

dard in optimal mass transport literature [22, 73] and leads to efficient Sinkhorn

iteration for the inner minimization. Here we point out that there has been par-
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allel work [53, 59] on the connection between optimal mass transport and the

so called Schrödinger bridge problem which is a dynamic version of this type of

regularization.

In our context, the entropic regularization “algebrizes" the inner minimization in

the sense if λ0,λ1 ∈ RN are Lagrange multipliers associated with the equality

constraints in (2.26), then the optimal coupling matrix M opt := [mopt(i, j)]Ni,j=1

in (2.27) has the Sinkhorn form

mopt(i, j) = exp (λ0(i)h/ε) exp (−Ck(i, j)/(2ε))

exp (λ1(j)h/ε) . (2.28)

Since the objective in (2.27) is proper convex and lower semi-continuous in %, the

strong duality holds, and we consider the Lagrange dual of (2.27) given by:

(
λopt

0 ,λopt
1

)
= arg max
λ0,λ1∈RN

{
〈λ0,%k−1〉 − F ?(−λ1)

− ε
h

(
exp(λ>0 h/ε) exp(−Ck/2ε) exp(λ1h/ε)

)}
, (2.29)

where

F ?(·) := sup
ϑ
{〈·, ϑ〉 − F (ϑ)} (2.30)

is the Legendre-Fenchel conjugate of the free energy F in (2.15). Next, we derive

the first order optimality conditions for (2.29) resulting in the proximal updates,

and then provide an algorithm to solve the same.
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2.3.1 Proximal Recursions

Given the vectors %k−1,ψk−1, the matrix Ck, and the positive scalars β, h, ε in

(2.29), let

y := exp(λ0h/ε), z := exp(λ1h/ε), (2.31)

Γk := exp(−Ck/2ε), ξk−1 := exp(−βψk−1 − 1). (2.32)

The following result establishes a system of nonlinear equations for computing

λopt
0 ,λopt

1 in (2.29), and consequently %k in (2.27).

Theorem 1. The vectors λopt
0 ,λopt

1 in (2.29) can be found by solving for y, z ∈ RN

from the following system of equations:

y � (Γkz) = ρk−1, (2.33a)

z �
(
Γk
>y
)

= ξk−1 � z−
βε
h , (2.33b)

and then inverting the maps (2.31). Let (yopt, zopt) be the solution of (2.33). The

vector %k in (2.27), i.e., the proximal update (Fig. 2.1) can then be obtained as

%k = zopt �
(
Γk
>yopt

)
. (2.34)

Proof. From (2.15), the “discrete free energy" is

F (%) = 〈ψ + β−1 log%,%〉.

42



Its Legendre-Fenchel conjugate, by (2.30), is given by

F ?(λ) = sup
%
{λ>%−ψ>%− β−1%> log%}. (2.35)

Setting the gradient of the objective function in (2.35) w.r.t. % to zero, and solving

for % yields

%max = exp(β(λ−ψ)− 1). (2.36)

Substituting (2.36) back into (2.35), results

F ?(λ) = β−11> exp(β(λ−ψ)− 1). (2.37)

Fixing λ1, and taking the gradient of the objective in (2.29) w.r.t. λ0, gives

(2.33a). Likewise, fixing λ0, and taking the gradient of the objective in (2.29)

w.r.t. λ1 gives

∇λ1F
?(−λ1) = z �

(
Γk
>y
)
. (2.38)

Using (2.37) to simplify the left-hand-side of (2.38) results in (2.33b). To derive

(2.34), notice that combining the last equality constraint in (2.26) with (2.28),

(2.31) and (2.32) gives

%k = (M opt)>1 =
N∑
j=1

mopt(j, i) = z(i)
N∑
j=1

Γk(j, i)y(j),

which is equal to z � Γ>k y, as claimed. �

In the following (Section 2.3.2), we propose an algorithm to solve (2.33) and (2.34),
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and then outline the overall implementation of our computational framework. The

convergence results for the proposed algorithm are given in Section 2.3.3.

2.3.2 Algorithm

Proximal algorithm

We now propose a block co-ordinate iteration scheme to solve (2.33). The proposed

procedure, which we call ProxRecur, and detail in Algortihm 1, takes %k−1 as

input and returns the proximal update %k as output for k ∈ N. In addition to

the data %k−1,ψk−1,Ck, β, h, ε, N , the Algorithm 1 requires two parameters as

user input: numerical tolerance δ, and maximum number of iterations L. The

computation in Algorithm 1, as presented, involves making an initial guess for the

vector z and then updating y and z until convergence. The iteration over index

` ≤ L is performed while keeping the physical time “frozen".

We next outline the overall algorithmic setup to implement the proximal recursion

over probability weighted scattered data.

Overall algorithm

Samples from the known initial joint PDF ρ0 are generated as point cloud {xi0, %i0}Ni=1.

Then for k ∈ N, the point clouds {xik, %ik}Ni=1 are updated as shown in Fig. 2.2.

Specifically, the state vectors are updated via Euler-Maruyama scheme applied to

the underlying SDE (2.13) or (2.19). Explicitly, the Euler-Maruyama update for
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Algorithm 1 Proximal recursion to compute %k from %k−1

1: procedure ProxRecur(%k−1, ψk−1, Ck, β, h, ε, N , δ, L)
2: Γk ← exp(−Ck/2ε)
3: ξ ← exp(−βψk−1 − 1)
4: z0 ← randN×1 . initialize
5: z ←

[
z0,0N×(L−1)

]
6: y ←

[
%k−1 � (Γkz0) ,0N×(L−1)

]
7: ` = 1 . iteration index
8: while ` ≤ L do
9: z(:, `+ 1)←

(
ξk−1 �

(
Γ>k y(:, `)

)) 1
1+βε/h

10: y(:, `+ 1)← %k−1 � (Γkz(:, `+ 1))
11: if ‖ y(:, `+ 1)− y(:, `) ‖< δ & ‖ z(:, `+ 1)− z(:, `) ‖< δ then .

error within tolerance
12: break
13: else
14: `← `+ 1
15: end if
16: end while
17: return %k ← z(:, `)�

(
Γ>k y(:, `)

)
. proximal update

18: end procedure
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Figure 2.2: Schematic of the proposed algorithmic setup for propagating the joint
state PDF as probability weighted scattered point cloud {xik, %ik}Ni=1. The location
of the points {xik}Ni=1 are updated via Euler-Maruyama scheme; the corresponding
probability weights are updated via Algorithm 1. The dashed arrow shown above
is present only when the state dynamics is density dependent, as in (2.19).

(2.19) is

xik = xik−1 − h∇
(
ψ(xik−1) + ω(xik−1)

)
+
√

2β−1
(
wi
k −wi

k−1

)
, (2.39)

where ω(·) :=
∫
φ(· − y)ρ(y)dy, and wi

k := wi(t = kh), k ∈ N. The same for

(2.13) is obtained by setting φ ≡ ω ≡ 0 in (2.39).

The corresponding probability weights {%ik}Ni=1 are updated via Algorithm 1. No-
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Figure 2.3: Comparison of the analytical and proximal solutions of the FPK
PDE for (2.45) with time step h = 10−3, and with parameters a = 1, β = 1,
ε = 5 × 10−2. Shown above are the time evolution of the (left) PDFs, (middle)
means, and (right) variances.

tice that computing Ck requires both {xik−1}Ni=1 and {xik}Ni=1, and that Ck needs

to be passed as input to Algorithm 1. Thus, the execution of Euler-Maruyama

scheme precedes that of Algorithm 1.

Remark 2. Our choice of the (explicit) Euler-Maruyama scheme for updating

the location of the points in state space was motivated by its simplicity and ease

of implementation. Since the diffusion coefficient of (2.13) or (2.19) is con-

stant, the Euler-Maruyama scheme is guaranteed to converge strongly to the true

solution of the corresponding SDE provided the drift coefficient is globally Lip-

schitz; see e.g., [133, Ch. 10.2]. If the drift coefficient −∇ψ in (2.13), or

− (∇ψ +∇ (ρ ∗ φ)) in (2.19), is non-globally Lipschitz with superlinear growth,

then the Euler-Maruyama scheme is known [119] to diverge in mean-squared er-

ror sense. In such cases, one could replace the explicit Euler-Maruyama scheme

with the “tamed" Euler-Maruyama scheme [120], or with the partially implicit

Euler scheme [118], or with the split-step backward Euler scheme [112].
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2.3.3 Convergence

Next, we will prove the convergence properties for Algorithm 1. To this end, the

Definition 3 and Proposition 2 given below will be useful in establishing Theorem

3 that follows.

Definition 3. (Thompson metric) Consider z, z̃ ∈ K, where K is a non-

empty open convex cone. Further, suppose that K is a normal cone, i.e., there

exists constant α such that ‖ z ‖≤ α ‖ z̃ ‖ for z ≤ z̃. Thompson [207] proved

that K is a complete metric space w.r.t. the so-called Thompson metric given by

dT (z, z̃) := max{log γ(z/z̃), log γ(z̃/z)},

where γ(z/z̃) := inf{c > 0 | z ≤ cz̃}. In particular, if K ≡ RN
>0 (positive orthant

of RN), then

dT (z, z̃) = log max
{

max
i=1,...,N

(
zi
z̃i

)
, max
i=1,...,N

(
z̃i
zi

)}
. (2.40)

Proposition 2. [149, Proposition 3.2], [167] Let K be an open, normal, convex

cone, and let p : K 7→ K be an order preserving homogeneous map of degree r ≥ 0,

i.e., p(cz) = crp(z) for any c > 0 and z ∈ K. Then, for all z, z̃ ∈ K, we have

dT (p(z),p(z̃)) ≤ rdT (z, z̃) .

In particular, if r ∈ [0, 1), then the map p(·) is strictly contractive in the Thomp-

son metric dT, and admits unique fixed point in K.

Using (2.40) and Proposition 2, we establish the convergence result below.

Theorem 3. Consider the notations in (2.31)-(2.32), and those in Algorithm 1.
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The iteration

z(:, `+ 1) =
(
ξk−1 �

(
Γ>k y(:, `)

)) 1
1+βε/h

=
(
ξk−1 �

(
Γ>k %k−1 � (Γkz(:, `))

)) 1
1+βε/h (2.41)

for ` = 1, 2, . . ., is strictly contractive in the Thompson metric (2.40) on RN
>0, and

admits unique fixed point zopt ∈ RN
>0.

Proof. Rewriting (2.41) as

z(:, `+ 1) =
((
ξk−1 �

(
Γ>k %k−1

))
� (Γkz(:, `))

) 1
1+βε/h ,

and letting η ≡ ηk,k+1 := ξk−1�
(
Γ>k %k−1

)
, we notice that iteration (2.41) can be

expressed as a cone preserving composite map θ := θ1 ◦ θ2 ◦ θ3, where θ : RN
>0 7→

RN
>0, given by

z(:, `+ 1) = θ (z(:, `)) = θ1 ◦ θ2 ◦ θ3 (z(:, `)) , (2.42)

and θ1(z) := z
1

1+βε/h , θ2(z) := η � z, θ3 := Γkz. Our strategy is to prove that

the composite map θ is contractive on RN
>0 w.r.t. the metric dT.

From (2.25) and (2.32), Ck(i, j) ∈ [0,∞) which implies Γk(i, j) ∈ (0, 1]; therefore,

Γk is a positive linear map for each k = 1, 2, . . .. Thus, by (linear) Perron-

Frobenius theorem, the map θ3 is contractive on RN
>0 w.r.t. dT. The map θ2

is an isometry by Definition 3. As for the map θ1, notice that the quantity

r := 1/(1 + βε/h) ∈ (0, 1) since βε/h > 0. Therefore, the map θ1(z) := zr

(element-wise exponentiation) is monotone (order preserving) and homogeneous

of degree r ∈ (0, 1) on RN
>0. By Proposition 2, the map θ1(z) is strictly contractive.
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Thus, the composition

θ = θ1︸︷︷︸
strictly contractive

◦ θ2︸︷︷︸
isometry

◦ θ3︸︷︷︸
contractive

is strictly contractive w.r.t. dT, and (by Banach contraction mapping theorem)

admits unique fixed point zopt in RN
>0. �

Corollary 4. The Algorithm 1 converges to unique fixed point (yopt, zopt) ∈ RN
>0×

RN
>0.

Proof. Since y(:, `+ 1) = %k−1� (Γkz(:, `+ 1)), the z iterates converge to unique

fixed point zopt ∈ RN
>0 (by Theorem 3), and the linear maps Γk are contractive

(by Perron-Frebenius theory, as before), consequently the y iterates also converge

to unique fixed point yopt ∈ RN
>0. Hence the statement. �

2.4 Numerical Results

We now illustrate the computational framework proposed in Section 2.3 via nu-

merical examples. Our examples involve systems already in JKO canonical form

(Section 2.2), as well as those which can be transformed to such form by non-

obvious change of coordinates.

2.4.1 Linear Gaussian Systems

For an Itô SDE of the form

dx = Ax dt+B dw, (2.43)
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it is well known that if x0 := x(t = 0) ∼ N (µ0,Σ0), then the transient joint

PDFs ρ(x, t) = N (µ(t),Σ(t)) where the vector-matrix pair (µ(t),Σ(t)) evolve

according to the ODEs

µ̇(t) = Aµ, µ(0) = µ0, (2.44a)

Σ̇(t) = AΣ(t) +AΣ(t)> +BB>, Σ(0) = Σ0. (2.44b)

We benchmark the numerical results produced by the proposed proximal algo-

rithm vis-à-vis the solutions of (2.44). We consider the following two sub-cases of

(2.43).

Ornstein-Uhlenbeck Process

We consider the univariate system

dx = −ax dt+
√

2β−1dw, a, β > 0, (2.45)

which is in JKO form (2.13) with ψ(x) = 1
2ax

2. We generate N = 400 samples

from the initial PDF ρ0 = N (µ0, σ
2
0) with µ0 = 5 and σ2

0 = 4 × 10−2, and apply

the proposed proximal recursion for (2.45) with time step h = 10−3, and with

parameters a = 1, β = 1, ε = 5 × 10−2. For implementing Algorithm 1, we set

the tolerance δ = 10−3, and the maximum number of iterations L = 100. Fig. 2.3

shows that the PDF point clouds generated by the proximal recursion match with

the analytical PDFs N
(
µ0 exp(−at), (σ2

0 − 1
aβ

) exp(−2at) + 1
aβ

)
, and the mean-

variance trajectories (computed from the numerical integration of the weighted

scattered point cloud data) match with the corresponding analytical solutions.
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Multivariate LTI

We next consider the multivariate case (2.43) where the pair (A,B) is assumed

to be controllable, and the matrix A is Hurwitz (not necessarily symmetric). Un-

der these assumptions, the stationary PDF is N (0,Σ∞) where Σ∞ is the unique

stationary solution of (2.44b) that is guaranteed to be symmetric positive defi-

nite. However, it is not apparent whether (2.43) can be expressed in the form

(2.13), since for non-symmetric A, there does not exist constant symmetric posi-

tive definite matrix Ψ such that Ax = −∇x>Ψx, i.e., the drift vector field does

not admit a natural potential. Thus, implementing the JKO scheme for (2.43) is

non-trivial in general.

In our recent work [100], two successive time-varying co-ordinate transformations

were proposed which can bring (2.43) in the form (2.13), thus making it amenable

to the JKO scheme. We apply these change-of-coordinates to (2.43) with

A =

−10 5

−30 0

 , B =

 2

2.5

 ,

which satisfy the stated assumptions for the pair (A,B), and implement the pro-

posed proximal recursion on this transformed co-ordinates with N = 400 samples

generated from the initial PDF ρ0 = N (µ0,Σ0), where µ0 = (4, 4)> and Σ0 = 4I2.

As before, we set δ = 10−3, L = 100, h = 10−3, β = 1, ε = 5 × 10−2. Once the

proximal updates are done, we transform back the probability weighted scattered

point cloud to the original state space co-ordinates via change-of-measure for-

mula associated with the known co-ordinate transforms [100, Section III.B]. Fig.

2.4 shows the resulting point clouds superimposed with the contour plots for the

analytical solutions N (µ(t),Σ(t)) given by (2.44). Figs. 2.5 and 2.6 compare
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the respective mean and covariance evolution. We point out that the change of

co-ordinates in [100] requires implementing the JKO scheme in a time-varying

rotating frame (defined via exponential of certain time varying skew-symmetric

matrix) that depends on the stationary covariance Σ∞. As a consequence, the

stationary covariance resulting from the proximal recursion oscillates about the

true stationary value.

-1 8

0

2

4

6

8

x2

0.002

0.
00

2

0.
00

4

0.004

0.
00

4

0.006

0.006

0.
00

8

0.
01

0

0.012

0.014

0.
01

6

t = 0.0

-3 4

�5

0

5

0
.0

0
2

0
.0

0
2

0
.0

0
2

0
.0

0
2

0
.0

0
3

0
.0

0
3

0
.0

0
5

0
.0

0
5

0.
00

6

0
.0

0
6

0
.0

0
7

0
.0

0
9

0
.0

1
1

0.
01

2

0.013

t = 0.5

-4 5

�5

0

5

0
.0

0
2

0
.0

0
2

0
.0

0
4

0
.0

0
4

0
.0

0
6

0
.0

0
8

0
.0

1
00
.0

1
2

t = 1.0

-4 3
x1

�5

0

5

x2 0
.0

0
2

0.
00

3

0.003

0.
00

3

0
.0

0
5

0
.0

0
5

0
.0

0
6

0
.0

0
7

0.
00

9

0
.0

1
1

0
.0

1
2

0
.0

1
3

t = 2.0

-3 3
x1

�5

0

5

10

0.
00

2

0.002

0
.0

0
3

0.003

0.
00

3
0
.0

0
5

0
.0

0
6 0.

00
7

0.009

0.
01

1

0
.0

1
20.013

t = 3.0

-3 4
x1

�5

0

5
0.

00
2

0.
00

2

0
.0

0
4

0
.0

0
4

0
.0

0
6

0.
00

8

0.
01

0

0
.0

1
2

t = 4.0

5 10 15 20 25

⇢analytical ⇢proximal

Figure 2.4: Comparison of the analytical (contour plots) and proximal (weighted
scattered point cloud) joint PDFs of the FPK PDE for (2.43) with time step
h = 10−3, and with parameters β = 1, ε = 5× 10−2. Simulation details are given
in Section 2.4.1. The color (red = high, blue = low) denotes the joint PDF value
obtained via proximal recursion at a point at that time (see colorbar).
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(dashed) and proximal (solid) computation of the joint PDFs for (2.43) with time
step h = 10−3, and with parameters β = 1, ε = 5 × 10−2. Simulation details are
given in Section 2.4.1.

2.4.2 Nonlinear Non-Gaussian System

Next we consider a planar nonlinear system of the form (2.13) with ψ(x1, x2) =
1
4(1 +x4

1) + 1
2(x2

2−x2
1) (see Fig. 2.7). As mentioned in Section 2.2, the stationary

PDF is ρ∞(x) = κ exp (−βψ(x)), which for our choice of ψ, is bimodal. In this

case, the transient PDFs have no known analytical solution but can be computed

using the proposed proximal recursion. For doing so, we generateN = 400 samples

from the initial PDF ρ0 = N (µ0,Σ0) with µ0 = (2, 2)> and Σ0 = 4I2, and set

δ = 10−3, L = 100, h = 10−3, β = 1, ε = 5×10−2, as before. The resulting weighted

point clouds are shown in Fig. 2.8; it can be seen that as time progresses, the
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with time step h = 10−3, and with parameters β = 1, ε = 5 × 10−2. Simulation
details are given in Section 2.4.1.

joint PDFs computed via the proximal recursion, tend to the known stationary

solution ρ∞ (contour plots in the right bottom sub-figure in Fig. 2.8).

Fig. 2.9 shows the computational times for the proposed proximal recursions ap-

plied to the above nonlinear non-Gaussian system. Since the proposed algorithm

involves sub-iterations (“while loop" in Algorithm 1 over index ` ≤ L) while keep-

ing the physical time “frozen", the convergence reported in Section 2.3.3 must be

achieved at “sub-physical time step" level, i.e., must incur smaller than h (here,

h = 10−3 s) computational time. Indeed, Fig. 2.9 shows that each proximal up-

date takes approx. 10−6 s, or 10−3h computational time, which demonstrates the

efficacy of the proposed framework.
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Figure 2.7: The drift potential ψ(x1, x2) = 1
4(1 + x4

1) + 1
2(x2

2 − x2
1) used in the

numerical example given in Section 2.4.2.
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2.4.2. The color (red = high, blue = low) denotes the joint PDF value obtained
via proximal recursion at a point at that time (see colorbar). In the bottom right
plot, the contour lines correspond to the analytical solution for the stationary
PDF ρ∞.
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Figure 2.9: The computational times for proximal updates for the simulation in
Section 2.4.2. Here, the physical time-step h = 10−3 s, and k ∈ N.
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Figure 2.10: Comparison of the analytical and proximal solutions of the
McKean-Vlasov flow for (2.46) with time step h = 10−3, ρ0 = N (5, 9), and with
parameters a = b = 1, β = 1, ε = 5 × 10−2. Shown above are the time evolution
of the transient (left) PDFs, (middle) means, and (right) variances.

2.4.3 Non-local Interactions

We now consider a numerical example demonstrating our gradient flow framework

for computing the transient PDFs generated by the McKean-Vlasov integro-PDE

(2.18) associated with the density-dependent sample path dynamics (2.19). If both

the potentials ψ and φ are convex functions, then (2.18) admits unique stationary

density ρ∞(x) (see e.g., [46], [154, Section 5.2]). To keep the exposition simple,

we consider the univariate case ψ(x) = 1
2ax

2, φ(x) = 1
2bx

2, a, b > 0. Performing

the integration appearing in the convolution allows us to rewrite (2.19) as the

mean-reverting process:

dx = − ((a+ b)x− bµ(t)) dt +
√

2β−1 dw, x(0) = x0, (2.46)

where µ(t) is the mean of the transient PDF ρ(x, t). Assuming x0 ∼ N (µ0, σ
2
0),

and applying expectation operator to both sides of (2.46) yields µ(t) = µ0 exp(−at).

Consequently, the transient PDF for (2.46) at time t is ρ(x, t) = N (µ(t), σ2(t)),
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with

µ(t) = µ0 exp(−at), (2.47a)

σ2(t) =
(
σ2

0 −
1

(a+ b)β

)
exp (−2(a+ b)t) + 1

(a+ b)β . (2.47b)

Clearly, the stationary PDF is ρ∞(x) = N (0, 1/(a+ b)β).

To benchmark our algorithm with the analytical solution (2.47), we implement

the proximal recursion for (2.46) with free energy (2.20). Following [23, Section 4],

we replace the non-convex bilinear term
∫
Rn×Rn φ(x−y)%(x)%(y)dxdy in (2.22b),

with the linear term
∫
Rn φ(x − y)%(x)%k−1(y)dxdy, k ∈ N, resulting in a semi-

implicit variant of (2.22), given by

%k = arg inf
%∈D2

1
2W

2(%k−1, %) + h F (%k−1, %), k ∈ N, (2.48)

with %0 ≡ ρ0(x) (the initial PDF). The proof for the fact that such a semi-

implicit scheme guarantees %k(x) → ρ(x, t = kh) for h ↓ 0, where ρ(x, t) is the

flow generated by (2.18), can be found in [138, Section 12.3]. Notice that for

the FPK gradient flow, the “discrete free energy" in (2.23) was F (%) = 〈ψk−1 +

β−1 log%,%〉. The scheme (2.48) allows us to write a similar expression in the

McKean-Vlasov gradient flow case, as F (%) = 〈ψk−1 +Dk−1%k−1 + β−1 log%,%〉,

where the symmetric matrix Dk−1 is given by

Dk−1(i, j) = φ
(
xik−1 − x

j
k−1

)
, i, j = 1, . . . , N, k ∈ N.

For the particular choice φ(x) = 1
2bx

2, notice that Dk−1 is a (scaled) Euclidean

distance matrix on the Euler-Maruyama update. In this case, the associated
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Euler-Maruyama scheme (2.39) is

xik = xik−1 − h
(
axik−1 + b

(
xik−1 − 1>%k−1

))
+

√
2β−1

(
wi
k −wi

k−1

)
, k ∈ N, i = 1, . . . , N, (2.49)

i.e., the dashed arrow in Fig. 2.2 becomes active. Fig. 2.10 shows that the

weighted scattered point cloud solutions for (2.46) with a = b = 1, computed

through our proximal algorithm match with the analytical solutionsN (µ(t), σ2(t))

given by (2.47). For Fig. 2.10, the parameter values used in our simulation are

h = 10−3, β = 1, ε = 5× 10−2, µ0 = 5, σ2
0 = 9, N = 400, δ = 10−3, L = 100.

2.5 Extensions

In Section 2.4.1, we have already seen that systems not in JKO canonical form

may be transformed to the same via suitable change-of-coordinates, thus making

density propagation for such systems amenable via our framework. In this Section,

we provide two extensions along these lines. First, we consider a case of state-

dependent diffusion; thereafter, we consider a system with mixed conservative-

dissipative drift. In both cases, we use specific examples (instead of general re-

marks) to help illustrate the extensions of the basic framework. These examples

point out the broad scope of the algorithms proposed herein.
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2.5.1 Multiplicative Noise

We consider the Itô SDE for the Cox-Ingersoll-Ross (CIR) model [72], given by

dx = a(θ − x) dt + b
√
x dw, 2a > b2 > 0, θ > 0. (2.50)

Due to multiplicative noise, (2.50) is not in JKO canonical form (2.13). If the

initial PDF ρ0 is Dirac delta at x0, then the FPK PDE for (2.50) admits closed

form solution:

ρ(x, t) =


c exp(−(u+ v))

(
v

u

)q/2
Iq (2
√
uv) , x > 0,

0, otherwise,
(2.51)

where Iq(·) is the modified Bessel function of order q, and

q := 2aθ
b2 − 1, c := 2a

b2 (1− exp(−at)) , (2.52a)

u := cx0 exp(−at), v := cx. (2.52b)

The transient solutions (2.51) are non-central chi-squared PDFs. The stationary

solution is a Gamma PDF ρ∞(x) ∝ xq exp (−2ax/b2), x > 0. We will benchmark

our proximal algorithm against (2.51).

In order to transcribe (2.50) in the JKO canonical form, we employ the Lamperti

transform [153, 162], where the idea is to find a change of variable y = ς(x) such

that the SDE for new variable y has unity diffusion coefficient. From Itô’s lemma,

it follows that the requisite transformation for (2.50) is y = ς(x) := 2
b

√
x, and the
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Figure 2.11: Comparison of the analytical and proximal transient PDFs of the
FPK PDE for (2.50) with time step h = 10−3, and with parameters a = 3, b = 2,
θ = 2, x0 = 5, ε = 5× 10−2. To approximate the analytical PDFs resulting from
ρ0(x) = δ(x − 5), the proximal recursions were performed with the initial PDF
N (5, 10−4).

resulting SDE in y becomes

dy =
{(2aθ

b2 −
1
2

)
1
y
− a

2y
}

dt + dw. (2.53)

Clearly, (2.53) is in the JKO canonical form (2.13) with β = 2, and

ψ(y) = ay2/4− (q + 1/2) log y. (2.54)

So the proposed proximal algorithm (Algorithm 1) can be applied to (2.53), and

at each time t, the resulting PDF ρY (y, t) can be transformed back to the PDF
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ρX(x, t) via the change-of-measure formula for the push-forward map x = ς−1(y) =

by2/4. Fig. 2.11 shows the comparison of the analytical and proximal transient

PDFs for (2.50) resulting from ρ0 = δ(x− 5) with a = 3, b = 2, θ = 2, h = 10−3,

ε = 5× 10−2, N = 400, δ = 10−3, and L = 100.

2.5.2 Mixed Conservative-Dissipative Drift

In many engineering applications, one encounters Itô SDEs where the drift vector

fields have both dissipative (gradient) and conservative (Hamiltonian) compo-

nents. For example, stochastic systems arising from Newton’s law in mechanics

often have mixed conservative-dissipative structure. Our intent here is to illus-

trate that such SDEs are amenable to the proposed proximal recursion framework.

As an example, we will work out the details for a perturbed two-body problem in

celestial mechanics similar to the one treated in [205].

We consider the relative motion of a satellite in geocentric orbit, given by the

second order Langevin equation

q̈ = − µq

‖ q ‖3
2
− γq̇ + fpert(q)

+
√

2β−1γ × stochastic forcing, (2.55)

where q := (x, y, z)> ∈ R3 is the relative position vector for the satellite, µ is

a constant (product of the Gavitational constant and the mass of Earth), −γq̇

models linear drag†, fpert(q) models (deterministic) perturbative force due to the

oblateness of Earth, and the stochastic forcing is due to solar radiation pressure,
TMore generally, for nonlinear drag of the form −γ∇q̇Ṽ (q̇), the term −γp in (2.59) will be-

come −γ∇Ṽ (p). This will entail modifying the functional F̂ in (2.61) as Eρ
[
Ṽ (p) + β−1 log ρ

]
.

The linear drag illustrated here corresponds to the special case Ṽ (p) ≡‖ p ‖2
2 /2.
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free-molecular aerodynamic forcing etc. Using the shorthands for sines and cosines

as cτ := cos τ , sτ := sin τ , and recalling the relations among spherical coordinates

(r, θ, φ) and cartesian coordinates (x, y, z), given by r =
√
x2 + y2 + z2, cφ = x/r,

sφ =
√

1− (cφ)2, cθ = z/r, sθ =
√

1− (cθ)2, we can write fpert(q) in spherical

coordinates as [205, eqn. (12)-(13)]


fr

fθ

fφ


pert

=


k

2r4

(
3(sθ)2 − 1

)
− k
r5 sθ cθ

0

 , k := 3J2R
2
Eµ = constant, (2.56)

and the same in cartesian coordinates as

fpert(q) =


fx

fy

fz


pert

=


sθ cφ cθ cφ −sφ

sθ sφ cθ sφ cφ

cθ −sθ 0




fr

fθ

fφ


pert

. (2.57)

In (2.56), the Earth oblateness coefficient J2 = 1.082× 10−3, the radius of Earth

RE = 6.3781 × 106 m, and the Earth standard Gravitational parameter µ =

3.9859×1014 m3/s2. Modeling the stochastic forcing in (2.55) as standard Gaussian
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white noise (as in [205]), (2.55) can then be expressed as an Itô SDE in R6:



dx

dy

dz

dvx

dvy

dvz



=



vx

vy

vz

−µx
r3 + (fx)pert − γvx

−µy
r3 + (fy)pert − γvy

−µz
r3 + (fz)pert − γvz



dt+
√

2β−1γ



0

0

0

dw1

dw2

dw3



, (2.58)

or more succinctly,

dq

dp

 =

 p

−∇V (q)− γp

 dt +
√

2β−1γ

 03×1

dw3×1

 , (2.59)

where p := (vx, vy, vz)> ∈ R3 is the velocity vector, and

V (q) := Vgravitational(q) + Vpert(q), (2.60a)

∇qVgravitational(q) = µq

‖ q ‖3
2
, −∇qVpert(q) =


fx

fy

fz


pert

. (2.60b)

Introducing a “Hamiltonian-like function" H(q,p) :=‖ p ‖2
2 /2 + V (q), one can

verify that the stationary PDF for (2.59) is ρ∞ ∝ exp(−βH(q,p)), and that

the “total free energy" F (ρ) := Eρ [H + β−1 log ρ] serves as Lyapunov functional
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for the associated FPK PDE, i.e., dF
dt < 0. However, the proximal recursion

(2.22b) does not apply as is, instead needs to be modified to account the joint

conservative-dissipative effect as

%k = arg inf
%∈D2

1
2Ŵ

2
h (%k−1, %) + hγ F̂ (%), k ∈ N. (2.61)

We implement a recursion from [81, Scheme 2b] where

F̂ (%) := Eρ
[1
2 ‖ p ‖

2
2 + β−1 log ρ

]
, (2.62)

and Ŵ 2
h (%k−1, %) is the optimal mass transport cost (as in squared 2-Wasserstein

metric (2.10)) with modified cost function (modified integrand in (2.10)), i.e.,

Ŵ 2
h (ρ1, ρ2) := inf

dπ∈Π(π1,π2)

∫
X×Y

ŝh (q,p; q̃, p̃) dπ (q,p, q̃, p̃) , (2.63)

where (q,p)> and (q̃, p̃)> are two realizations of the state vector governed by

(2.59)-(2.60); the integrand in (2.63) is

ŝh (q,p; q̃, p̃) := ‖ p̃− p+ h∇V (q) ‖2
2

+ 12
∥∥∥∥∥ q̃ − qh − p̃+ p

2

∥∥∥∥∥
2

2
. (2.64)

That the proximal recursion (2.61) with the above choices of functionals F̂ and

Ŵh guarantees %k(q,p, h)→ ρ(q,p, t = kh) for k ∈ N as h ↓ 0, where ρ(q,p, t) is

the joint PDF generated by the FPK flow for (2.59) at time t, was proved in [81].

Our proximal algorithm in Section 2.3.2 applies by simply modifying (2.24)-(2.25)
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as

ψk−1(i) := 1
2(pik−1)>pik−1, i = 1, . . . , N, (2.65)

Ck(i, j) := ŝh(qik,pik; q
j
k−1,p

j
k−1), i, j = 1, . . . , N, (2.66)

respectively. Notice that ŝh in (2.64) (and consequently, Ŵh in (2.63)) is not a

metric (in particular, non-symmetric). Thus, the matrices Ck in (2.66) for k ∈ N

are not symmetric.

To apply the proposed framework, we first non-dimensionalize the variables q (m),

p (m/s), t (s), w (
√
s) in (2.59) as

q′ = q/R, p′ = p/(R/T ), t′ = t/T, w′ = w/
√
T , (2.67)

where R := 4.2164× 107 m is the radius of the nominal geostationary orbit, and

T = 86164 s is its period. In (2.67), the primed variables are non-dimensionalized.

Using (2.67) and Itô’s lemma on (2.59), the non-dimensional SDE in (q′,p′)> ∈ R6

becomes

dq′ = p′ dt′, (2.68a)

dp′ =
{
− Tµ

R3
q′

‖ q′ ‖3
2

+ T 2

R
fpert(Rq′)− γTp′

}
dt′

+ T 3/2

R

√
2β−1γ dw′. (2.68b)

To avoid numerical conditioning issues, we will apply our algorithm for recursion

(2.61) associated with the non-dimensional SDE (2.68), and then transform the

PDF in (q′,p′)> to the same in original variables (q,p)> via change-of-measure for-

mula. Such a computational pipeline, i.e., density propagation in non-dimensional
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SDE and then transforming the density back in dimensional variables, is standard

in celestial mechanics due to different orders of magnitude in different state vari-

ables (see e.g., [205, Sec. III.B]).
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Figure 2.12: Univariate marginal PDFs at t = 0.005 s for (2.59)-(2.60) computed
from the joint PDF at that time obtained via the proposed proximal algorithm
for recursion (2.61) with time step h = 10−5, and with parameters β = 1 m2/s2,
γ = 1 s−1, ε = 5× 10−2, δ = 10−3, L = 100, and N = 400.

Figs. 2.12 and 2.13 show the univariate marginal PDFs at t = 0.005s and t =

0.010s respectively, associated with the joint PDFs supported on R6 at those

times, computed through the proposed proximal algorithm. For this simulation,

the initial joint PDF ρ0(q′,p′) = N (µ0,Σ0), where µ0 = (1, 0, 0, 0, 0, 0)>, and
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Figure 2.13: Univariate marginal PDFs at t = 0.01 s for (2.59)-(2.60) computed
from the joint PDF at that time obtained via the proposed proximal algorithm
for recursion (2.61) with time step h = 10−5, and with parameters β = 1 m2/s2,
γ = 1 s−1, ε = 5× 10−2, δ = 10−3, L = 100, and N = 400.
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Figure 2.14: The computational times needed for proximal updates in the 6-
state numerical example reported in Section 2.5.2. Here, the physical time-step
h = 10−5 s, and k ∈ N.
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Σ0 = 10−4 × diag (3.335, 6.133, 3.933, 6.562, 9.246, 5.761). The parameter values

used in the simulation are: h = 10−5, β = 1 m2/s2, γ = 1 s−1, ε = 5 × 10−2,

δ = 10−3, L = 100, and N = 400. The computational times for this 6-state

example reported in Fig. 2.14 reveal that the proximal recursions run remarkably

fast (indeed, faster than the runtime for the 2-state example in Section 2.4.2, cf.

Fig. 2.9).

2.6 Conclusions

In this paper, novel uncertainty propagation algorithms are presented for comput-

ing the flow of the joint PDFs associated with continuous-time stochastic nonlin-

ear systems. By interpreting the PDF flow as gradient descent on the manifold

of joint PDFs w.r.t. a suitable metric, the proposed computational framework

implements proximal algorithms which are proved to be convergent due to cer-

tain contraction properties established herein. Numerical examples are provided

to demonstrate the practical use of the proposed algorithm and its efficiency in

terms of computational runtime. In contrast to the conventional function approxi-

mation algorithms for this problem, the proposed non-parametric framework does

not make any spatial discretization, instead performs finite sample probability-

weighted scattered data computation in the form of temporal recursion. The

location of the atomic measures is delegated to a Euler-Maruyama scheme, thus

avoiding spatial discretization. The results of this paper provide computational

teeth to the emerging systems-theoretic viewpoint [100, 101] that the PDF flows

in uncertainty propagation can be seen as gradient flow.
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Chapter 3

Wasserstein Proximal Algorithms

for the Schrödinger Bridge

Problem: Density Control with

Nonlinear Drift

We study the Schrödinger bridge problem (SBP) with nonlinear prior dynamics.

In control-theoretic language, this is a problem of minimum effort steering of a

given joint state probability density function (PDF) to another over a finite time

horizon, subject to a controlled stochastic differential evolution of the state vector.

As such, it can be seen as a stochastic optimal control problem in continuous time

with endpoint density constraints – a topic that originated in the physics literature

in 1930s, and in the recent years, has garnered burgeoning interest in the systems-

control community.

For generic nonlinear drift, we reduce the SBP to solving a system of forward
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and backward Kolmogorov partial differential equations (PDEs) that are coupled

through the boundary conditions, with unknowns being the “Schrödinger factors"

– so named since their product at any time yields the optimal controlled joint

state PDF at that time. We show that if the drift is a gradient vector field, or

is of mixed conservative-dissipative nature, then it is possible to transform these

PDEs into a pair of initial value problems (IVPs) involving the same forward Kol-

mogorov operator. Combined with a recently proposed fixed point recursion that

is contractive in the Hilbert metric, this opens up the possibility to numerically

solve the SBPs in these cases by computing the Schrödinger factors via a single

IVP solver for the corresponding (uncontrolled) forward Kolmogorov PDE. The

flows generated by such forward Kolmogorov PDEs, for the two aforementioned

types of drift, in turn, enjoy gradient descent structures on the manifold of joint

PDFs with respect to suitable distance functionals. We employ a proximal al-

gorithm developed in our prior work, that exploits this geometric viewpoint, to

solve these IVPs and compute the Schrödinger factors via weighted scattered point

cloud evolution in the state space. We provide the algorithmic details and illus-

trate the proposed framework of solving the SBPs with nonlinear prior dynamics

by numerical examples.

3.1 Introduction

The Schrödinger bridge problem (SBP) is a non-standard finite horizon stochastic

optimal control problem in continuous time. The “non-standard" aspect stems

from the fact that the SBP concerns with steering the flow of the joint state

probability density function (PDF), and not the state trajectory per se, in a

controlled stochastic dynamical system while minimizing the expected control
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effort to do so. In other words, the SBP is a two-point density control problem

subject to controlled trajectory-level dynamics. Fig. 3.1 shows a schematic of the

SBP.

Solving the SBP amounts to feedback synthesis for ensemble shaping. The problem

is of broad contemporary interest due to its potential applications in controlling

a physical population such as robotic swarm [15], ensemble of neurons [163], and

density of highway traffic [63]. From a probabilistic perspective, one can alterna-

tively interpret controlling the joint state PDF as that of dynamically reshaping

uncertainties in a feedback loop – a viewpoint that promotes “control of uncer-

tainties" in lieu of the usual “control with uncertainties". That the role of feedback

could be strategically synthesizing, instead of simply mitigating the uncertainties,

is a recent line of thought [33,34,157].

During 1931-32, the SBP was introduced by Erwin Schrödinger in the two arti-

cles [191, 192]. Schrödinger’s original motivation was to come up with a classical

reformulation of quantum mechanics via diffusion processes; see e.g., [221, 222].

Early mathematical treatment [25,86,124] of the subject considered the case of no

prior dynamics, which is what we refer to as the “classical SBP". The stochastic

optimal control interpretation for the same emerged in [75,159]. We point the read-

ers to [145,216] for survey of the classical SBP. More recent works [38,39,54,55,59]

have considered SBP with prior dynamics. Except the case of linear prior dy-

namics with Gaussian endpoint PDFs, the SBP with prior dynamics–while most

relevant in control applications–remains computationally challenging in general.

The computational difficulty is particularly evident in the case of nonlinear prior

dynamics, since then, solving the SBP reduces to solving a system of coupled

nonlinear partial differential equations (PDEs). Numerical algorithms for solving

the SBP are only beginning to appear now [147, 182]. The purpose of this paper
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is to show that if the nonlinear prior dynamics is either a gradient vector field, or

has both dissipative (gradient) and conservative (Hamiltonian) components, then

we can design scalable point cloud algorithms based on the recursive evaluation

of certain proximal operators with respect to (w.r.t.) the Wasserstein metric,

that solves the associated SBPs. The types of nonlinearities considered in this

paper subsume well-known stochastic models in practical applications such as the

Nyquist-Johnson resistors [35,148], rotational diffusions for describing the orienta-

tion in liquid crystals [64, Ch. 16.5], and statistical mechanics of polymers [64, Ch.

17].

TheWasserstein proximal recursions we employ, solve the forward-backward infinite-

dimensional flows in the space of the Schrödinger factors (see Section 3.2.1), de-

fined as functions of the state vector and time, whose product at any given time

equals the optimal controlled joint state PDF at that time. These factors satisfy

a system of boundary-coupled PDEs, which we solve via the proximal recursions.

An intriguing aspect of our proposed framework is that the Wasserstein proximal

recursions originate in the theory of optimal mass transport (OMT) [210], and two

connections between the OMT and the SBP are well-known: first, the dynamic

version [21] of the OMT can be recovered as the zero-noise limit [143, 160] of the

classical SBP; second, the classical SBP can be recovered as the solution of the dy-

namic OMT problem with Fisher information regularization [59, Sec. 5], [70, Sec.

4]. The use of Wasserstein gradient flows to solve the SBP with prior nonlinear

drift, as proposed here, offers a third connection between the OMT and the SBP.

This can be of independent interest.

The remaining of this paper is structured as follows. In Section 3.2, we recap

the basics of the SBP. Section 3.3 considers the SBP with generic nonlinear prior

dynamics, deduces the necessary conditions of optimality for the same, and derives
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an associated Schrödinger system via the Hopf-Cole transform. In Section 3.4,

we specialize the development in Section 3.3 for two important types of prior

nonlinear dynamics: gradient drift, and mixed conservative-dissipative drift. We

show how to reformulate the corresponding Schrödinger systems to make the same

algorithmically amenable. In Section 3.5, we show that the reformulations derived

in Section 3.4 can be solved via Wasserstein proximal recursions. Section 3.6

provides numerical examples to illustrate the proposed algorithmic framework.

Section 3.7 concludes the paper.

3.2 Background

Notation

We use bold-faced capital letters for matrices, and bold-faced lower-case letters

for column vectors. The Euclidean gradient, divergence, Laplacian and Hessian

operators are denoted by ∇, ∇·, ∆, and Hess(·), respectively. We will sometimes

put subscript to these differential operators to clarify that the operator is w.r.t. the

subscripted variable (e.g, ∇x to mean that the gradient is w.r.t. vector x); we will

drop the subscript when there is no scope for confusion. We use 〈·, ·〉 to denote the

standard Euclidean inner product. For vectors x,y ∈ Rn, we have 〈x,y〉 := x>y,

and that the squared Euclidean 2-norm ‖ x ‖2
2 := 〈x,x〉. For matrices A,B

of appropriate dimensions, 〈A,B〉 := trace(A>B) denotes the Frobenius inner

product. The symbol 0 denotes either a column vector or a matrix (depending on

context), with all entries equal to zeros; the symbol 1 denotes the column vector
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containing all ones; δ(x− y) denotes the Dirac delta located at y.

P2 (Rn) :=
{
ρ : Rn 7→ R≥0

∣∣∣∣ ∫
Rn
ρ dx = 1,

∫
Rn
‖ x ‖2

2 ρ dx <∞
}
.

We use the shorthand x ∼ ρ to mean that the random vector x has the joint

PDF ρ. The notation N (µ,Σ) stands for a joint Gaussian PDF with mean

µ and covariance Σ. The symbol I denotes an identity matrix of appropriate

dimension. We use the the notations � and � for element-wise (i.e., Hadamard)

multiplication and division, respectively. The operands log(·) and ≥ are to be

understood element-wise. The set of natural numbers is denoted by N.

In the following, we briefly review the classical SBP, i.e., the case of no prior

dynamics. We then point out a recent extension: the SBP with linear prior dy-

namics. Along the way, we introduce the Schrödinger system, and the Schrödinger

factors, which will be important in our development.

3.2.1 Classical SBP and the Schrödinger System

Let the state space be Rn. The classical SBP is a stochastic optimal control

problem of the form

inf
u∈U

E
{∫ 1

0

1
2‖u(x, t)‖2

2 dt
}
, (3.1a)

subject to dx(t) = u(x, t) dt+
√

2ε dw(t), (3.1b)

x(t = 0) ∼ ρ0(x), x(t = 1) ∼ ρ1(x), (3.1c)

where the set of feasible controls U comprises of finite energy inputs, i.e., U :=

{u : Rn × [0, 1] 7→ Rn | 〈u,u〉 < ∞}. Here, w(t) denotes the standard Wiener
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process in Rn, the diffusion coefficient ε > 0 (not necessarily small), the prescribed

initial and terminal joint state PDFs are ρ0 and ρ1, respectively. The expectation

operator in (3.1a) is taken w.r.t. the controlled joint state PDF ρ(x, t).

The SBP (3.1) can be transcribed into the following equivalent variational prob-

lem:

inf
ρ,u

∫ 1

0

∫
Rn

1
2‖u(x, t)‖2

2 ρ(x, t) dx dt, (3.2a)

subject to ∂ρ

∂t
+∇ · (ρu) = ε∆ρ, (3.2b)

ρ(x, 0) = ρ0(x), ρ(x, 1) = ρ1(x), (3.2c)

where (3.2b) is the Fokker-Planck or Kolmogorov’s forward PDE, hereafter ab-

breviated as the FPK PDE, associated with the controlled stochastic differential

equation (SDE) (3.1b). Let P(Rn) denote the collection of all joint PDFs sup-

ported on Rn. Notice that the decision variable in problem (4.3) is the pair

(ρ,u) ∈ P(Rn)× U .

From the first order conditions of optimality for (4.3), it is easy to verify that the

optimal pair (ρρopt
,uρ

opt) satisfies the following system of PDEs:

∂ψ

∂t
+ 1

2‖∇ψ‖
2
2 = −ε∆ψ,

∂

∂t
ρρ

opt +∇ · (ρρopt∇ψ) = ε∆ρρopt
,

(3.3)

and the optimal control uρopt(x, t) = ∇ψ(x, t).

Furthermore, (3.3) can be transformed into a system of linear PDEs via the
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mapping
(
ρρ

opt
, ψ
)
7→ (ϕ, ϕ̂) given by

ϕ(x, t) = exp
(
ψ(x, t)

2ε

)
, (3.4a)

ϕ̂(x, t) = ρρ
opt(x, t) exp

(
−ψ(x, t)

2ε

)
. (3.4b)

Specifically, the transformed variables (ϕ, ϕ̂) satisfy the following pair of forward-

backward heat equations

∂ϕ

∂t
= −ε∆ϕ, (3.5a)

∂ϕ̂

∂t
= ε∆ϕ̂, (3.5b)

with coupled boundary conditions

ϕ(x, t = 0)ϕ̂(x, t = 0) = ρ0(x), (3.6a)

ϕ(x, t = 1)ϕ̂(x, t = 1) = ρ1(x). (3.6b)

To ease notation, let

ϕ1(x) := ϕ(x, t = 1), ϕ̂0(x) := ϕ̂(x, t = 0). (3.7)

Then, the solution of (3.5) can be formally written as

ϕ(x, t) =
∫
Rn
K(t,x, 1,y)ϕ1(y) dy, t ≤ 1, (3.8a)

ϕ̂(x, t) =
∫
Rn
K(0,y, t,x)ϕ̂0(y) dy, t ≥ 0, (3.8b)

where

K(t,x, s,y) := (4πε(t− s))−n/2 exp
(
−‖x− y‖

2
2

4ε(t− s)

)
(3.9)
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is the heat kernel or the Markov kernel associated with the pure diffusion SDE

dx(t) =
√

2ε dw(t).

Combining (3.6) and (3.8), it becomes clear that finding the minimizer for the

classical SBP amounts to solving for the pair (ϕ1, ϕ̂0) which satisfies the following

system of nonlinear integral equations, referred to as the Schrödinger system,

given by

ρ0(x) = ϕ̂0(x)
∫
Rn
K(0,x, 1,y)ϕ1(y) dy, (3.10a)

ρ1(x) = ϕ1(x)
∫
Rn
K(0,y, 1,x)ϕ̂0(y) dy. (3.10b)

The existence and uniqueness of solutions to the Schrödinger system (3.10) were

established in [25,86,124]. To compute the pair (ϕ1, ϕ̂0) from (3.10), a fixed point

recursion was proposed in [53]. Such a recursion was also proved [53, Sec. III] to

be contractive in Hilbert’s projective metric [36, 113]. Once the pair (ϕ1, ϕ̂0) is

obtained from (3.10), then using (3.8) one can compute the pair (ϕ, ϕ̂). Finally,

from (5.50), the original decision variables (ρρopt
,uρ

opt) can be recovered via the

mapping (ϕ, ϕ̂) 7→
(
ρρ

opt
,uρ

opt
)
given by

ρopt (x, t) = ϕ (x, t) ϕ̂ (x, t) , (3.11a)

uopt (x, t) = 2ε∇ logϕ(x, t). (3.11b)

From (3.11a), the optimal controlled joint state PDF at any time is a product of

the factors ϕ and ϕ̂ at that time, and hence we refer to (ϕ, ϕ̂) as the Schrödinger

factors. Notice that the factors solve the boundary-coupled PDE system (3.5)-

(3.6).

The computational steps outlined in the preceding paragraph were used to solve
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the classical SBP in Fig. 3.1 with ε = 0.5. Using the optimal control computed

from (3.11b), 100 sample paths (shown in the (x, t) plane in Fig. 3.1) of the

optimal closed-loop SDE were simulated via the Euler-Maruyama scheme with

time step-size 10−3.

3.2.2 SBP with Linear Prior Dynamics

Recently, the classical SBP has been extended [60] to the case when the prior

dynamics is a linear time-varying (LTV) system, i.e., (3.1b) is replaced with the

more general controlled SDE

dx(t) = A(t)x(t) dt+B(t)u(x, t) dt+
√

2εB(t) dw(t), (3.12)

where the system matrices A(t) ∈ Rn×n,B(t) ∈ Rn×m, m ≤ n, and the pair

(A(t),B(t)) is assumed to be controllable for all t. When A(t) is identically zero,

and B(t) is identity, then the setup reduces to the classical SBP. A Schrödinger

system for the LTV case can be established wherein the heat kernel (3.9) is to be

replaced by the Markov kernel associated with the uncontrolled SDE

dx(t) = A(t)x(t) dt+
√

2εB(t) dw(t). (3.13)

We refer the readers to [60, Sec. 4] for the details.

Thanks to the availability of the Markov kernel associated with (3.13), the fixed

point recursion idea and the contraction results mentioned in Section 3.2.1 carry

through in this case, making the computation tractable as in the classical SBP.

We note that in (3.12), the noise and the control act through the same channels,

i.e., the same matrix B(t) appears as the coefficient of both. This is the case we
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will focus in this paper. The more general case of different coefficient matrices

was treated in [57].

3.3 Problem Formulation

In this Section, we consider a much less investigated version of the SBP: a general-

ization of problem (3.1) with nonlinear prior dynamics given by a (deterministic)

vector field f : Rn×R>0 7→ Rn. In particular, we address the following minimum

energy stochastic optimal control problem:

inf
u∈U

E
{∫ 1

0

1
2‖u(x, t)‖2

2 dt
}
, (3.14a)

subject to dx = f(x, t) dt+B(t)u(x, t) dt+
√

2εB(t) dw(t), (3.14b)

x(t = 0) ∼ ρ0(x), x(t = 1) ∼ ρ1(x), (3.14c)

where x ∈ Rn, and the set U comprises of all finite energy inputs, as before.

Clearly, (3.12) corresponds to the special case f(x, t) ≡ A(t)x(t) in (3.14b).

Given f(x, t), B(t) and ε, our objective is to steer the joint state PDF ρ(x, t)

from a prescribed initial PDF ρ0 at t = 0 to another prescribed terminal PDF

ρ1 at t = 1 while minimizing the expected control effort. A schematic for the

problem is shown in Fig. 3.2.

Define the diffusion tensor D(t) := B(t)B(t)>. Problem (3.14) can be formally
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recast into a “fluid dynamics” version [21] given by:

inf
(ρ,u)

1
2

∫ 1

0

∫
Rn
‖u(x, t)‖2

2 ρ(x, t) dx dt (3.15a)

subject to ∂ρ

∂t
+∇ · (ρ (f +B(t)u)) = ε1>(D(t)�Hess (ρ)) 1, (3.15b)

ρ(x, 0) = ρ0(x), ρ(x, 1) = ρ1(x), (3.15c)

where the infimum is taken over all pairs (ρ,u) ∈ P(Rn) × U satisfying (3.15b)-

(3.15c). We note that (3.15b) is the controlled FPK PDE which governs the flow

of the joint PDF associated with the SDE (3.14b). Conceptually, problem (3.15)

is to problem (3.14) what problem (4.3) is to problem (3.1).

3.3.1 Existence and Uniqueness

To establish the existence and uniqueness of minimizer for (3.15), we consider the

convexity of the cost functional (3.15a). For this purpose, we perform a change of

variable (ρ,u) 7→ (ρ,m) by setting m := ρu. By direct substitution, we obtain

the following reformulation of (3.15):

minimize
(ρ,m)

1
2

∫ 1

0

∫
Rn
J(ρ,m) dx dt (3.16a)

subject to ∂ρ

∂t
+∇ · (ρf +B(t)m)− ε1>(D(t)�Hess (ρ)) 1 = 0, (3.16b)

ρ(x, 0) = ρ0(x), ρ(x, 1) = ρ1(x), (3.16c)
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where

J(ρ,m) :=



‖m ‖2
2 /ρ if ρ > 0,

0 if (m, ρ) = (0, 0),

+∞ otherwise.

Since J(ρ,m) is the perspective function of the strictly convex map m 7→ ‖m‖2
2,

hence J is jointly strictly convex in (ρ,m). The constraints (3.16b)-(3.16c) are

linear in (ρ,m). Thus, the convex optimization problem (3.16), and therefore

problem (3.15), admits a unique minimizing pair (ρopt,uopt).

3.3.2 Conditions for Optimality

In this Section, we show that the first order optimality conditions for (3.15) corre-

spond to a coupled system of nonlinear PDEs. Consider the Lagrangian associated

with (3.15):

L(ρ,u, ψ) :=
∫ 1

0

∫
Rn

{1
2‖u(x, t)‖2

2 ρ(x, t) + ψ(x, t)×
(
∂ρ

∂t

+∇ · ((f +B(t)u) ρ(x, t))− ε1>(D(t)�Hess (ρ)) 1
)}

dx dt,
(3.17)

where ψ(x, t) is a C1 (Rn;R>0) Lagrange multiplier. Let

P01 (Rn) :=
{
ρ(x, t) | ρ ≥ 0,

∫
Rn
ρ dx = 1,

ρ(x, 0) = ρ0, ρ(x, 1) = ρ1

}
.

(3.18)

Performing the unconstrained minimization of the Lagrangian L over P01 (Rn)×U

yields the following result (proof in Appendix A.3).

Proposition 5. The pair (ρopt(x, t),uopt(x, t)) that solves (3.15), must satisfy
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the system of coupled PDEs

∂ψ

∂t
+ 1

2‖B(t)>∇ψ‖2
2 + 〈∇ψ,f〉 = −ε〈D(t),Hess (ψ)〉, (3.19a)

∂

∂t
ρopt +∇·(ρopt(f +B(t)>∇ψ)) = ε1>

(
D(t)�Hess

(
ρopt

))
1, (3.19b)

with boundary conditions

ρopt(x, 0) = ρ0(x), ρopt(x, 1) = ρ1(x), (3.20)

and

uopt(x, t) = B(t)>∇ψ(x, t).

Remark 3. Notice that the system of coupled PDEs (3.19) is the same as that ap-

pearing in classical mean field games, but instead of the usual boundary conditions

(see e.g., [139, equation (2)])

ρopt(x, 0) = ρ0(x) (given), ψ(x, 1) = ψ1(x) (given), (3.21)

our boundary conditions are given by (3.20).

The PDE (3.19a) is the Hamilton-Jacobi-Bellman (HJB) equation while the PDE

(3.19b) is the controlled FPK equation. Computing the optimal pair (ρρopt
,uρ

opt),

or equivalently (ρρopt
, ψ) form (3.19)-(3.20) calls for solving a system of coupled

nonlinear PDEs with atypical boundary conditions, and is challenging in general.

To tackle the issues of coupling and nonlinearity, we resort to the Hopf-Cole

transform [68,114] given by (5.50). The geometric interpretation of this transform

for optimal control problems were investigated in [140, 141]. Similar ideas have
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also appeared in the stochastic control literature [76, 85]. In our context, this

transform allows to convert the HJB-FPK system of coupled nonlinear PDEs

(3.19)-(3.20) into a system of boundary-coupled linear PDEs. We summarize this

in the following Theorem (proof in Appendix A.4).

Theorem 6. (Hopf-Cole transform) Given f , ε, ρ0, ρ1, consider the Hopf-

Cole transform (ρopt, ψ) 7→ (ϕ, ϕ̂) defined via (5.50), applied to the system of

nonlinear PDEs (3.19)-(3.20). Then the pair (ϕ, ϕ̂) satisfies the system of linear

PDEs

∂ϕ

∂t
= −〈∇ϕ,f〉 − ε〈D(t),Hess (ϕ)〉, (3.22a)

∂ϕ̂

∂t
= −∇ · (ϕ̂f) + ε1>(D(t)�Hess (ϕ̂)) 1, (3.22b)

with boundary conditions (borrowing notations (3.7))

ϕ0(x)ϕ̂0(x) = ρ0(x), ϕ1(x)ϕ̂1(x) = ρ1(x). (3.23)

Moreover, the optimal controlled state PDF ρopt(x, t) solving (3.15) is given by

(3.11a). The optimal control for the same is given by

uopt(x, t) = 2εB(t)>∇ logϕ.

We note that (3.22a) is the backward Kolmogorov equation in variable ϕ, and

(4.4a) is the forward Kolmogorov or the FPK equation in variable ϕ̂, associated

with the uncontrolled nonlinear SDE

dx(t) = f(x, t) dt+
√

2εB(t) dw(t). (3.24)
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Indeed, (3.22) generalizes the forward-backward heat equations (3.5). As ex-

pected, setting f ≡ 0 and B(t) ≡ I in (3.22) recovers (3.5). Following the

nomenclature in Section 3.2.1, the pair (ϕ, ϕ̂) solving (3.22)-(3.23) defines the

Schrödinger factors for problem (3.15).

The essence of Theorem 6 is that instead of solving the system of coupled nonlinear

PDEs (3.19), we can solve the system of linear PDEs (3.22) provided that we

compute the pair (ϕ1, ϕ̂0) which serves as the endpoint data for

∂ϕ

∂t
= −〈∇ϕ,f〉 − ε〈D(t),Hess (ϕ)〉, ϕ(x, 1) = ϕ1(x), (3.25a)

∂ϕ̂

∂t
= −∇ · (ϕ̂f) + ε1>(D(t)�Hess (ϕ̂)) 1, ϕ̂(x, 0) = ϕ̂0(x). (3.25b)

Denoting the forward and backward Kolmogorov operators in (3.25) as LFK and

LBK respectively, we can write (3.25) succinctly as an infinite dimensional two

point boundary value problem

∂

∂t

ϕ
ϕ̂

 =

LBK 0

0 LFK


ϕ
ϕ̂

 ,
ϕ(x, 1)

ϕ̂(x, 0)

 =

ϕ1(x)

ϕ̂0(x)

 . (3.26)

Solving (3.25) or (3.26) will yield (ϕ(x, t), ϕ̂(x, t)) for all t ∈ [0, 1], which in turn

can be used to determine (ρρopt(x, t),uρopt(x, t)) via (3.11). Notice that this com-

putational pipeline hinges on the ability to first compute the pair (ϕ1, ϕ̂0) using

(3.23) and (3.25), and then utilize (ϕ1, ϕ̂0) to solve (3.25) or (3.26). However,

unlike the situation in Section 3.2, the difficulty now is that the closed-form ex-

pression of the Markov kernel associated with (3.24) is not available in general.

This prevents us from setting up a Schrödinger system like (3.10) to solve for the

pair (ϕ1, ϕ̂0).
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In the following Section 3.4, we will reformulate the Schrödinger system for two

cases: when f is gradient of a potential, and when the prior drift has mixed

conservative-dissipative structure, i.e., a degenerate diffusion of the form (3.14b)

with u,w ∈ Rm, the state space dimension n ≡ 2m, and a constant input matrix

B ∈ Rn×m. In Section 3.5, we will then show how these reformulations can har-

ness the recently-introduced proximal recursions [41, 42] for computing the pair

(ϕ1, ϕ̂0), and consequently the pair (ϕ(x, t), ϕ̂(x, t)). This is appealing since these

proximal algorithms do not require spatial discretization or function approxima-

tion, and instead evolve weighted scattered point cloud data. Therefore, such

algorithms hold the promise for solving the SBP with nonlinear prior dynamics

in high dimensions when no analytical handle on the Markov kernel is available.

3.4 Reformulation of the Schrödinger Systems

Next, we provide algorithmically tractable reformulations of the Schrödinger sys-

tems for two important types of prior nonlinear dynamics: gradient drift in Sec-

tion 3.4.1, and mixed conservative-dissipative drift (i.e., degenerate diffusion, see

e.g., [32, Sec. 7, 8]) in Section 3.4.2. For clarity of exposition, in Section 3.4.1, we

consider B(t) ≡ I. In Section 3.4.2, the matrix B will be non-identity.

3.4.1 The Case of Gradient Drift

We now consider f to be a gradient vector field, i.e., f = −∇V (x) for some

C2 (Rn) function V : Rn 7→ R≥0, and B(t) = I. This reduces (3.15) to the
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following:

inf
(ρ,u)

1
2

∫ 1

0

∫
Rn
‖u(x, t)‖2

2 ρ(x, t) dx dt, (3.27a)

subject to ∂ρ

∂t
+∇ · (ρ(u−∇V )) = ε∆ρ, (3.27b)

ρ(x, 0) = ρ0(x), ρ(x, 1) = ρ1(x). (3.27c)

Applying Proposition 5 and Theorem 6 to (3.27), we arrive at the system of linear

PDEs for (ϕ, ϕ̂) given by

∂ϕ

∂t
= 〈∇ϕ,∇V 〉 − ε∆ϕ, (3.28a)

∂ϕ̂

∂t
= ∇ · (ϕ̂∇V ) + ε∆ϕ̂, (3.28b)

with boundary conditions

ϕ0(x)ϕ̂0(x) = ρ0(x), ϕ1(x)ϕ̂1(x) = ρ1(x). (3.29)

As expected, (3.28a) is a backward Kolmogorov PDE, and (3.28b) is a forward

Kolmogorov or FPK∗ PDE.

We would like to exploit the structure of (3.28) to develop an algorithm that

computes the pair (ϕ1, ϕ̂0) which can then serve as the terminal and initial data

for the following system solving for the pair (ϕ(x, t), ϕ̂(x, t)):

∂ϕ

∂t
= 〈∇ϕ,∇V 〉 − ε∆ϕ, ϕ(x, 1) = ϕ1(x), (3.30a)

∂ϕ̂

∂t
= ∇ · (ϕ̂∇V ) + ε∆ϕ̂, ϕ̂(x, 0) = ϕ̂0(x). (3.30b)

∗This particular instance of the FPK PDE (3.28b) is also known as the “Smoluchowski
equation" [51, Ch. II.4.(vi)].
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After having (ϕ(x, t), ϕ̂(x, t)) from (3.30), we can obtain the pair (ρρopt
,uρ

opt)

via (3.11). To this end, the following result (proof in Appendix A.5) will be an

important step.

Theorem 7. Given V (x), ε, ϕ1(x), consider the terminal value problem (TVP)

(3.30a) in unknown ϕ(x, t). Let s := 1 − t, and q(x, s) := ϕ(x, t) = ϕ(x, 1 − s).

Then q satisfies the initial value problem (IVP)

∂q

∂s
= −〈∇q,∇V 〉+ ε∆q, q(x, 0) = ϕ1(x). (3.31)

Further, p(x, s) := q(x, s) exp (−V (x)/ε) satisfies the IVP

∂p

∂s
= ∇ · (p∇V ) + ε∆p, p(x, 0) = q(x, 0) exp (−V (x)/ε) , (3.32)

where q is a smooth solution of (3.31), and V is such that

∫
Rn
q(x, 0) exp (−V (x)/ε) dx <∞, for all ε > 0.

Thanks to Theorem 7, solving (3.30) amounts to solving the system

∂ϕ̂

∂t
= ∇ · (ϕ̂∇V ) + ε∆ϕ̂, ϕ̂(x, 0) = ϕ̂0(x), (3.33a)

∂p

∂s
= ∇ · (p∇V ) + ε∆p, p(x, 0) = ϕ1(x) exp (−V (x)/ε) . (3.33b)

Notice that (3.33a) and (3.33b) involve the exact same PDE with different initial

conditions, to be integrated in different time coordinates t and s, where t = 1− s.

This implies that availability of a single FPK IVP solver is enough to set up a

fixed point recursion for the pair (ϕ1, ϕ̂0) via (3.33). Once p is computed from
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(3.33b), we can recover ϕ by the relation

ϕ(x, t) = ϕ(x, 1− s) = p(x, s)/exp (−V (x)/ε) (3.34)

3.4.2 The Case of Mixed Conservative-Dissipative Drift

We now consider a degenerate diffusion of the form (3.14b) with u,w ∈ Rm.

The state x consists of two sub-vectors ξ,η ∈ Rm, i.e., x := (ξ,η)> ∈ Rn with

n ≡ 2m. The controlled SDE is given by

dξ

dη

 =
{ η

−∇ξV (ξ)− κη


︸ ︷︷ ︸

f(x)

+

0m×m

Im×m


︸ ︷︷ ︸

B

u
}

dt

+
√

2εκ

0m×m

Im×m


︸ ︷︷ ︸

B

dw, κ > 0, (3.35)

i.e., we consider the SBP (3.14) with the constraint (3.14b) replaced by (3.35).

Here, we assume that V ∈ C2(Rm), inf V > −∞, and that Hess (V ) is uniformly

lower bounded. To glean physical motivation, one may consider m = 3 and think

of ξ and η as three-dimensional position and velocity vectors, respectively [41, Sec.

V.B]; see also [148, Examples 2,3]. So, (3.35) is a controlled Langevin equation.

We are thus led to solve an instance of (3.15) wherein for the constraint (3.15b),

we use the vector field f and the matrix B as shown above, and set the diffusion

tensor as D := κBB> ∈ Rn×n.

Using Proposition 5, the first order conditions of optimality for this variant of
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SBP yields the coupled HJB-FPK system:

∂ψ

∂t
= −〈η,∇ξψ〉+ 〈∇ξV (ξ) + κη,∇ηψ〉 − εκ∆ηψ

− 1
2 ‖ ∇ηψ ‖

2
2, (3.36a)

∂ρopt

∂t
= −〈η,∇ξρopt〉+∇η ·

(
ρopt (∇ξV (ξ) + κη −∇ηψ)

)
+ εκ∆ηρ

opt, (3.36b)

with boundary conditions ρopt (x, 0) = ρ0(x) and ρopt (x, 1) = ρ1(x), and the

optimal control uopt(x, t) = ∇ηψ (x, t).

Following Theorem 6, we now apply the Hopf-Cole transform (ψ, ρopt) 7→ (ϕ, ϕ̂)

given by (5.50), to the system (3.36). This results in the following system of linear

PDEs for (ϕ, ϕ̂):

∂ϕ

∂t
= −〈η,∇ξϕ〉+ 〈∇ξV (ξ) + κη,∇ηϕ〉 − εκ∆ηϕ, (3.37a)

∂ϕ̂

∂t
= −〈η,∇ξϕ̂〉+∇η · (ϕ̂ (∇ξV (ξ) + κη)) + εκ∆ηϕ̂, (3.37b)

with boundary conditions (3.29). In particular, (3.37a) is a backward Kolmogorov

PDE, and (3.37b) is a forward Kolmogorov or FPK† PDE.

Next, we establish a result (proof in Appendix A.6) for (3.37) that is similar in

flavor to Theorem 7, and will be useful for designing proximal algorithm in Section

3.5.

Theorem 8. Given ε, ϕ1(ξ,η), consider the TVP comprising of the PDE (3.37a)

in variable ϕ together with the boundary condition ϕ(ξ,η, 1) = ϕ1(ξ,η). Let
TThis particular instance of the FPK PDE (3.37b) is also known as the “kinetic Fokker-Planck

equation" [212].
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s := 1− t, and q(ξ,η, s) := ϕ(ξ,η, t) = ϕ(ξ,η, 1− s). Then q satisfies the IVP

∂q

∂s
= 〈η,∇ξq〉 − 〈∇ξV (ξ) + κη,∇ηq〉+ εκ∆ηq, (3.38a)

q(ξ,η, 0) = ϕ1(ξ,η). (3.38b)

Further, let ϑ := −η, and

p̃(ξ,−η, s) := q(ξ,η, s) exp
(
−1
ε

(1
2‖η‖

2
2 + V (ξ)

))
.

Then, p(ξ,ϑ, s) := p̃(ξ,−η, s) satisfies the IVP

∂p

∂s
= −〈ϑ,∇ξp〉+∇ϑ · (p (∇ξV (ξ) + κϑ)) + εκ∆ϑp, (3.39a)

p(ξ,ϑ, 0) = q(ξ,η, 0) exp
(
−1
ε

(1
2‖η‖

2
2 + V (ξ)

))
, (3.39b)

where q is a smooth solution of (3.38), and V is such that

∫
Rm

∫
Rm

q(ξ,η, 0) exp
(
−1
ε

(1
2‖η‖

2
2 + V (ξ)

))
dξ dη <∞,

for all ε > 0.

Thanks to Theorem 8, solving the system (3.37) with boundary conditions

ϕ(ξ,η, 1) = ϕ1(ξ,η), ϕ̂(ξ,η, 0) = ϕ̂0(ξ,η),

reduces to solving the system

∂ϕ̂

∂t
= −〈η,∇ξϕ̂〉+∇η · (ϕ̂ (∇ξV (ξ) + κη)) + εκ∆ηϕ̂, (3.40a)

∂p

∂s
= −〈ϑ,∇ξp〉+∇ϑ · (p (∇ξV (ξ) + κϑ)) + εκ∆ϑp, (3.40b)
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with initial conditions

ϕ̂(ξ,η, 0) = ϕ̂0(ξ,η), (3.41a)

p(ξ,ϑ, 0) = q(ξ,η, 0) exp
(
−1
ε

(1
2‖η‖

2
2 + V (ξ)

))
= ϕ1(ξ,−ϑ) exp

(
−1
ε

(1
2‖ϑ‖

2
2 + V (ξ)

))
. (3.41b)

Similar to Section 3.4.1, notice that (3.40a) and (3.40b) involve the exact same

kinetic Fokker-Planck PDE with different initial conditions, to be integrated in

different time coordinates t and s, where t = 1− s. This implies that availability

of a single kinetic FPK IVP solver is enough to set up a fixed point recursion

for the pair (ϕ1, ϕ̂0) via (3.40). Once p(ξ,ϑ, s) is computed from (3.40b), we can

recover ϕ(ξ,η, t) using the relation

ϕ(ξ,η, t) = ϕ(ξ,η, 1− s) = p(ξ,ϑ, s)/exp
(
−1
ε

(1
2‖η‖

2
2 + V (ξ)

))
. (3.42)

Remark 4. While both Theorem 7 and Theorem 8 reduce the respective Schrödinger

systems–which are two point forward-backward Kolmogorov systems–to forward-

forward Kolmogorov IVPs, it is important to recognize the subtle difference be-

tween the transformations employed in these two theorems. Unlike (3.28), the

Schrödinger system (3.37) is not reversible (see e.g., [180, Ch. 6.1]). To ac-

count this, Theorem 8 used a spatial transform (ξ,η) 7→ (ξ,ϑ), in addition to

the time transform t 7→ s. This resulted in a sequence of change-of-variables

ϕ 7→ q 7→ p̃ 7→ p in Theorem 8. To put the matter in perspective, Theorem 7

involved the change-of-variables ϕ 7→ q 7→ p.
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3.5 Wasserstein Proximal Algorithms

In this Section, we will design variational recursions to solve the SBP with gradient

or mixed conservative-dissipative drift. For the case of the gradient drift, the vari-

ational recursions will iteratively solve the system of IVPs (3.33). For the case of

the mixed conservative-dissipative drift, the variational recursions will iteratively

solve the system of IVPs (3.40)-(3.41). The main idea here is to design certain

Lyapunov functionals (usually referred to as the ‘free energy functionals’) such

that the FPK PDEs in (3.33) and (3.40) can be recast as the gradient flow of the

respective Lyapunov functionals w.r.t. suitable metric on the manifold P2 (Rn),

which is the space of all PDFs supported on Rn with finite second moment. For

theoretical developments along this line, we refer the readers to [6]. Our recent

works [41, 42] showed that such infinite dimensional gradient flow structure can

be exploited for designing grid-less recursive algorithms to solve for the transient

solutions of the FPK PDE. We collect the key conceptual ingredients next.

3.5.1 Proximal Operators for Infinite Dimensional Gradi-

ent Flows

First, we introduce the 2-Wasserstein metric W , that will play an important role

in the development that follows.

Definition 4. (2-Wasserstein metric) The 2-Wasserstein metric between two

probability measures µ0, µ1, each supported on Rn, is

W (µ0, µ1) :=
(

inf
m∈M(µ0,µ1)

∫
Rn×Rn

‖x− y‖2
2 dm(x,y)

)1
2

, (3.43)
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where M (µ0, µ1) is the set of all joint probability measures (i.e., couplings) sup-

ported on the product space Rn ×Rn whose marginals are µ0 and µ1, respectively.

Whenever µ0 and µ1 are absolutely continuous, their respective PDFs ρ0 and ρ1

exist (i.e., dµ0 = ρ0(x)dx, dµ1 = ρ1(y)dy), and we use the equivalent notation

W (ρ0, ρ1).

Although Definition 4 introduces the 2-Wasserstein metric W as a static varia-

tional problem, Brenier and Benamou [21] pointed out that W 2 admits the fol-

lowing equivalent dynamic reformulation:

W 2(ρ0, ρ1) = inf
ρ,u

∫ 1

0

∫
Rn

1
2‖u(x, t)‖2

2 ρ(x, t) dxdt, (3.44a)

subject to ∂ρ
∂t

+∇ · (ρu) = 0, (3.44b)

ρ(x, 0) = ρ0(x), ρ(x, 1) = ρ1(x), (3.44c)

which can be interpreted as the minimum energy control problem to steer the

PDF ρ0 to ρ1 over the time interval [0, 1] subject to the deterministic dynamics

ẋ = u. Formally, the classical SBP (4.3) can be viewed as a dynamic stochastic

regularization of (3.44), and this regularization is captured by the diffusion term

ε∆ρ in (3.2b). These ideas can be made rigorous by proving weak convergence of

measures [143,144,160,161] in the ε ↓ 0 limit, i.e., the solution of (4.3) converges

to that of (3.44) in the said limit.

Now the idea is to compute the flows generated by the IVPs (3.33) or (3.40), via

variational recursions over discrete time index pair (tk−1, sk−1) := ((k − 1)τ, (k −
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1)σ), k ∈ N, given by the following map

 φ̂tk−1

$sk−1

 7→
 φ̂tk
$sk

 :=


arg inf
φ̂∈P2(Rn)

1
2d

2
(
φ̂tk−1 , φ̂

)
+ τF (φ̂)

arg inf
$∈P2(Rn)

1
2d

2
(
$sk−1 , $

)
+ σF ($)

 , (3.45)

where τ, σ > 0 are time-step sizes, and the functionals (d, F ) are chosen such that

φ̂tk−1(x)→ ϕ̂(x, t = (k − 1)τ) in L1(Rn) as τ ↓ 0, (3.46a)

$sk−1(x)→ p(x, s = (k − 1)σ) in L1(Rn) as σ ↓ 0. (3.46b)

In words, the variational recursions (3.45) are designed to approximate the flows

generated by (3.33) or (3.40) in the small time-step limit.

The variational maps appearing in (3.45) resemble proximal operators [19, 176]

well-known in the Euclidean and general Hilbert space optimization literature. In

our setting too, d will be a distance metric on P2 (Rn), and F will be a Lyapunov

functional, i.e., non-negative and decreasing along the flows generated by the IVPs

(3.33) or (3.40), and thus motivate defining the proximal operators

proxdτF
(
φ̂tk−1

)
:= arg inf

φ̂∈P2(Rn)

1
2d

2
(
φ̂tk−1 , φ̂

)
+ τF (φ̂), (3.47a)

proxdσF
(
$sk−1

)
:= arg inf

$∈P2(Rn)

1
2d

2
(
$sk−1 , $

)
+ σF ($), (3.47b)

which respectively read as the proximal operator of τF and σF , w.r.t. the metric

d. This metric viewpoint allows clear geometric interpretation of the proximal

recursions (3.45): they define gradient descent of the functionals τF and σF ,

measured w.r.t. the distance metric d; see e.g., [41, 100–102]. For (3.33), the

98



distance d will turn out to be the 2-Wasserstein metricW . For (3.40), the distance

metric d will be a variant of W .

3.5.2 Proximal Recursions

We now outline how the proximal recursions (3.47) can be constructed for the two

nonlinear drifts of our interest: gradient and mixed conservative-dissipative.

Gradient drift

The seminal paper [125] showed that the flows generated by the FPK PDEs of

the form (3.33) can be seen as the gradient descent of the Lyapunov functional

Fgradient(·) :=
∫
Rn
V (x)(·) dx+ ε

∫
Rn

(·) log (·) dx, (3.48)

w.r.t. the distance metric W in P2(Rn). Here, (·) is a placeholder for either ϕ̂

or p in (3.33). From (3.45) and (3.47), the solutions of the IVPs (3.33), denoted

by (ϕ̂(x, t), p(x, s)), can then be approximated (as in (3.46)) by the following

proximal recursions:

 φ̂tk
$sk

 =

 proxWτFgradient

(
φ̂tk−1

)
proxWσFgradient

(
$sk−1

)
 , k ∈ N, (3.49)

where Fgradient is given by (3.48), and the initial conditions:

φ̂t0 = ϕ̂(x, 0)
(3.33a)

= ϕ̂0(x),

$s0 = p(x, 0)
(3.33b)

= ϕ1(x) exp(−V (x)/ε).
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In other words, for the IVPs (3.33), the pair (d, F ) ≡ (W,Fgradient).

To numerically implement the proximal recursions (3.49), we will use the weighted

scattered point cloud algorithm developed in our previous work [41, Sec. III].

Since the metric W (see Definition 4) is itself defined as a variational problem,

evaluating proximal operators w.r.t. W , requires solving nested functional mini-

mization problems. The algorithm in [41, Sec. III.B] uses an entropic or Sinkhorn

regularization followed by block coordinate ascent in the dual space, and provides

convergence guarantees via contraction mapping [41, Sec. III.C].

Mixed conservative-dissipative drift

For FPK PDEs of the form (3.40), recall that x := (ξ,η)> ∈ Rn, y := (ξ,ϑ)> ∈

Rn, and let the “Hamiltonian-like" functionH (x) := 1
2‖η‖

2
2+V (ξ) = 1

2‖ϑ‖
2
2+V (ξ) =:

H(y). It can be verified that

F a
mixed (ϕ̂) :=

∫
Rn
H(x)ϕ̂ (x, t) dx+ ε

∫
Rn
ϕ̂ (x, t) log ϕ̂ (x, t) dx,

and

F b
mixed (p) :=

∫
Rn
H(y)p (y, s) dy + ε

∫
Rn
p (y, s) log p (y, s) dy,

are Lyapunov functionals along the flows of (3.40a) and (3.40b), respectively.

However, since the degenerate diffusions do not allow statistical reversibility, the

flows for (3.40) cannot be recast as the gradient descent of the above functionals

w.r.t. W . To circumvent this, consider instead the functionals

F̃ a
mixed (ϕ̂) :=

∫
Rn

1
2‖η‖

2
2ϕ̂ (x, t) dx+ ε

∫
Rn
ϕ̂ (x, t) log ϕ̂ (x, t) dx, (3.50a)

F̃ b
mixed (p) :=

∫
Rn

1
2‖ϑ‖

2
2p (y, s) dy + ε

∫
Rn
p (y, s) log p (y, s) dy. (3.50b)
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Also, consider the following distance functionals which are modified versions of

(3.43):

W̃τ (µ0, µ1) :=
(

inf
m∈M(µ0,µ1)

∫
Rn×Rn

sτ (x,x) dm(x,x)
)1

2

, (3.51a)

W̃σ(µ0, µ1) :=
(

inf
m∈M(µ0,µ1)

∫
Rn×Rn

sσ (y,y) dm(y,y)
)1

2

, (3.51b)

where x = (ξ,η)> and x = (ξ,η)> are two realizations of the state vector in

(3.35); similarly, y = (ξ,ϑ)>, y = (ξ,ϑ)>, and

sτ (x,x) := ‖η − η + τ∇V (ξ)‖2
2+12

∥∥∥∥ξ − ξτ − η + η
2

∥∥∥∥2

2
, (3.52a)

sσ (y,y) := ‖ϑ− ϑ+ σ∇V (ξ)‖2
2+12

∥∥∥∥ξ − ξσ − ϑ+ ϑ
2

∥∥∥∥2

2
. (3.52b)

Following [81, Scheme 2b], we then set up the proximal recursions

 φ̂tk
$sk

 =

 proxW̃τ

κτF̃a
mixed

(
φ̂tk−1

)
proxW̃σ

κσF̃b
mixed

(
$sk−1

)
 , k ∈ N, (3.53)

with initial conditions (3.41). For the above recursions, the results from [81,

Theorem 2.4] provide the consistency guarantees (3.46) for the flows generated by

(3.40).

The weighted scattered point cloud algorithm from [41] that we mentioned in

Section 3.5.2, can be applied to this case too (see [41, Section V.B]), and we will

use the same to solve (3.40) by numerically performing the proximal recursion

(3.53).
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3.5.3 Sinkhorn Proximal Algorithms for Solving (3.49) and

(3.53)

Our development so far have reduced solving the SBPs with gradient and mixed

conservative-dissipative drifts to that of solving the proximal recursions (3.49)

and (3.53), respectively. For numerical computation, we perform these proximal

recursions over weighted scattered point clouds with sample size N . Specifically,

let xi(t) be the state vector for the i-th sample at time t, and for i = 1, . . . , N ,

k ∈ N, define the N × 1 vectors

φ̂
i

k−1 := φ̂tk−1

(
xi(tk−1)

)
, (3.54a)

$i
k−1 := $sk−1

(
xi(sk−1)

)
, (3.54b)

wherein the superscript i in the left-hand-side denotes the “i-th component of".

The recursions (3.49) and (3.53) are performed over the point clouds

{
xi(tk−1), φ̂ik−1

}N
i=1

,
{
xi(sk−1),$i

k−1

}N
i=1

(3.55)

respectively, following the algorithm given in [41,42]. To do so, the state vectors xi

are updated by applying the Euler-Maruyama‡ scheme to the appropriate version

of the uncontrolled SDE (3.24). For instance, in the gradient drift case, the

uncontrolled SDE associated with (3.33) is

dx = −∇V (x) dt+
√

2ε dw. (3.56)

For k ∈ N, we suppose that {xi(tk−1)}Ni=1 7→ {xi(tk)}Ni=1 and {xi(sk−1)}Ni=1 7→
‡Here, we use the Euler-Maruyama scheme for ease of implementation; it can be replaced by

any SDE integrator; see [41, Remark 1 in Sec. III.B].
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{xi(sk)}Ni=1, are the Euler-Maruyama updates associated with (3.56) with time

step-sizes τ and σ, respectively. Following [41], we write the Sinkhorn regularized

proximal recursions for (3.49) in vector form:

φ̂k = arg min
φ̂

{
min

M∈Π(φ̂k−1,φ̂)

1
2

〈
C
(
{xi(tk−1),xi(tk)}Ni=1

)
,M

〉

+ γ〈M , logM〉+ τ〈V
(
{xi(tk−1)}Ni=1

)
+ ε log φ̂, φ̂〉

}
, (3.57a)

$k = arg min
$

{
min

M∈Π($k−1,$)

1
2

〈
C
(
{xi(sk−1),xi(sk)}Ni=1

)
,M

〉
+ γ〈M , logM〉+ σ〈V

(
{xi(sk−1)}Ni=1

)
+ ε log$,$〉

}
, (3.57b)

wherein for k ∈ N, the (i, j)th component of the matrix C ∈ RN×N in (3.57a)

equals ‖xi(tk−1) − xj(tk)‖2
2; likewise, the (i, j)th component of the matrix C in

(3.57b) equals ‖xi(sk−1)−xj(sk)‖2
2. In (3.57), the notation Π(a, b) stands for the

set of all matrices M ∈ RN×N such that M ≥ 0, M1 = a, and M>1 = b, for

given admissible§ vectors a, b ∈ RN . Furthermore, V
(
{xi(tk−1)}Ni=1

)
returns the

N×1 vector whose ith element equals V (xi(tk−1)); likewise for V
(
{xi(sk−1)}Ni=1

)
.

The term 〈M , logM〉 is the Sinkhorn/entropic regularization, and γ > 0 is a small

regularization parameter. Dualizing (3.57) lead to certain generalized Sinkhorn-

type fixed point iterations [73, 130] whose solutions yield the proximal updates(
φ̂k,$k

)
for k ∈ N. For algorithmic details, we refer the readers to [41, Sec.

III.B]. The convergence guarantees for such iterations follow from the contractive

properties of cone preserving nonlinear maps that arise as first order conditions

of optimality for (3.57), and are detailed in [41, Sec. III.C].

For the mixed conservative-dissipative drift case, the uncontrolled SDE associated
§Here, “admissible" means that the vectors a, b are component-wise nonnegative, and have

equal element-wise sum. This is due to the fact that the generators in (3.33) and (3.40) are both
integral preserving and nonnegativity preserving.
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with (3.40) is

dξ

dη

 =

 η

−∇ξV (ξ)− κη

 dt+
√

2εκ

0m×m

Im×m

 dw. (3.58)

As before, for k ∈ N, we denote the Euler-Maruyama updates associated with

(3.58) with time step-sizes τ and σ, respectively, as {ξi(tk−1),ηi(tk−1)}Ni=1 7→

{ξi(tk),ηi(tk)}Ni=1 and {ξi(sk−1),ϑi(sk−1)}Ni=1 7→ {ξi(sk),ϑi(sk)}Ni=1. To reduce

notational overload, let us recall the shorthands we used in (3.51)-(3.52): x =

(ξ,η)>, y = (ξ,ϑ)>, and write the Sinkhorn regularized proximal recursions for

(3.53) in vector form (see [41, Sec. V.B]):

φ̂k = arg min
φ̂

{
min

M∈Π(φ̂k−1,φ̂)

1
2

〈
Sτ
(
{xi(tk−1),xi(tk)}Ni=1

)
,M

〉

+ γ〈M , logM〉+ τ

〈{1
2‖η

i(sk−1)‖22
}N
i=1
+ ε log$,$

〉}
, (3.59a)

$k = arg min
$

{
min

M∈Π($k−1,$)

1
2

〈
Sσ
(
{yi(sk−1),yi(sk)}Ni=1

)
,M

〉

+ γ〈M , logM〉+ σ

〈{1
2‖ϑ

i(sk−1)‖22
}N
i=1
+ ε log$,$

〉}
, (3.59b)

wherein for k ∈ N, the (i, j)th component of the matrix Sτ ∈ RN×N in (3.59a)

equals sτ (xi(tk−1),xj(tk)), and sτ (·, ·) is given by (3.52a). Similarly, the (i, j)th

component of the matrix Sσ ∈ RN×N in (3.59b) equals sσ (yi(sk−1),yj(sk)), and

sσ(·, ·) is given by (3.52b).

3.5.4 Overall Algorithm

We now bring together the ideas from Sections 3.4 and 3.5.3, and outline the over-

all algorithm to solve the SBPs with gradient and mixed-conservative dissipative

drifts via scattered point cloud-based computation. We perform a recursion over
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the pair (ϕ̂0, ϕ1), and the computational steps for the same are:

Step 1. Guess ϕ̂1(x) (everywhere nonnegative).

Step 2. Compute ϕ1(x) = ρ1(x)/ϕ̂1(x).

Step 3. For the case of gradient drift, compute

p(x, s = 0) = ϕ1(x) exp (−V (x)/ε) .

For the case of mixed conservative-dissipative drift, compute

p(ξ,ϑ, s = 0) = ϕ1(ξ,−ϑ) exp
(
−1
ε

(1
2‖ϑ‖

2
2 + V (ξ)

))
.

Step 4. Solve IVP (3.33b) or (3.40b) till s = 1 to obtain p(x, s = 1).

Step 5. For the case of gradient drift, compute

ϕ0(x) = p(x, s = 1) exp (V (x)/ε) .

For the case of mixed conservative-dissipative drift, compute

ϕ0(ξ,η) = p(ξ,ϑ, s = 1) exp
(1
ε

(1
2‖η‖

2
2+V (ξ)

))
.

Step 6. Compute ϕ̂0(x) = ρ0(x)/ϕ0(x).

Step 7. Solve IVP (3.33a) or (3.40a) till t = 1 to obtain ϕ̂1(x).

Step 8. Repeat until the pair (ϕ̂0, ϕ1) has converged¶.
¶We check whether the Wasserstein distances between the current and previous iterates for

the pair (ϕ̂0, p(x, s = 0)), which is a proxy for the pair (ϕ̂0, ϕ1), are below some user-specified
numerical tolerance. These Wasserstein distances are computed by solving linear programs, i.e.,
discrete versions of (41).
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That such a recursion will converge, follows from the fact [53, Proposition 1 in Sec.

III] that the recursion is in fact contractive in Hilbert’s projective metric [36,113]

provided (i) the endpoint PDFs have compact supports, and (ii) the transition

probability densities for (3.33) and (3.40) are continuous and positive. Under the

stated assumptions on the function V , the transition densities indeed satisfy these

properties; see Appendix A.7. Since our computational framework involves finite

set of scattered points, the compactness condition also holds. Once the endpoint

Schrödinger factors are found as outlined in Steps 1–8 above, we then compute the

Schrödinger factors at any time t, i.e., the pair (ϕ̂(x, t), ϕ(x, t)) using the IVPs

(3.33) or (3.40).

For scattered point cloud-based computation with sample size N , the aforesaid

steps lead to a recursion over the pair of vectors (φ̂0,φ1), each of these vectors be-

ing of size N×1. We refer to this proposed procedure as ComputeFactorsSBP

which takes the N × 1 endpoint PDF vectors ρ0,ρ1 (i.e., the endpoint joint PDF

values evaluated at the scattered sample state vectors) as input, and returns the

converged pair (φ̂0,φ1). As detailed in Algorithm 1, ComputeFactorsSBP

performs the discrete versions of the Steps 1–8 above, followed by computation

of the transient Schrödinger factors. For conceptual clarity, in Algorithm 1, we

list the steps for the case of gradient drift; adapting Algorithm 1 to the case of

mixed conservative-dissipative drift is straightforward following the modifications

in Steps 3, 4, 5 and 7 mentioned before.

The procedure ComputeFactorsSBP involves a main iteration where we guess

an initial vector φ̂1, and repeatedly update the vectors φ̂0, φ̂1,φ0,φ1 using a sec-

ondary function called ProxRecur that performs the proximal recursions (3.57)
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or (3.59) for solving the IVPs (3.33) or (3.40) in Steps 4 and 7 above. The main

iteration requires the parameters γ, ε, τ, σ,N , the function V (·) described before,

and numSteps which is the number of time-steps for the proximal update. Further-

more, we use the two pairs of parameters (tolSB,maxIterSB), (tolPR,maxIterPR):

the first pair specifies the numerical tolerance and the maximum number of itera-

tions for the main iteration in ComputeFactorsSBP; the second pair specifies

the same for the Sinkhorn algorithm used in ProxRecur. Notice that the pro-

cedure ProxRecur subsumes the Euler-Maruyama scheme to update the states

{xi}Ni=1; see [41, Sec. III.B].

Once the converged vector pair (φ̂0,φ1) is obtained, we again invoke ProxRecur

to solve the IVP pair (3.33) or (3.40) via (3.57) or (3.59), and compute the discrete

transient solutions (φ̂k,$k). We remind the readers that since the function p is

integrated in the time coordinate s, its discrete version $k is really evaluated at

t = 1 − kτ , i.e., $k ≈ p(x, t = 1 − kτ) for k ∈ N. We next employ the discrete

versions of the mappings p 7→ ϕ, given by

ϕ(x, t) = p(x, s) exp (V (x)/ε) ,

ϕ(ξ,η, t) = p(ξ,ϑ, s) exp
(1
ε

(1
2‖η‖

2
2+V (ξ)

))
,

to compute $k 7→ φk, i.e.,
(
φ̂k,$k

)
7→

(
φ̂k,φk

)
. This completes the computa-

tion of the transient Schrödinger factors
(
φ̂k,φk

)
as a pair of weighted scattered

point clouds, i.e., as function values (ϕ̂(x, t), ϕ(x, t)) evaluated at the state coor-

dinates that are updated by the Euler-Maruyama scheme.

To compute the discrete optimal pair (ρopt
k ,uρ

opt

k ) from
(
φ̂k,φk

)
, we need to eval-
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uate the Hadamard product

ρopt
k = φnumSteps+1−k � φ̂k, (3.60)

which in our case, is not well-defined as is, since φtrans
numSteps+1−k and φ̂trans

k are

evaluated on different state coordinates (i.e., are supported on different finite

sets). On the other hand, the optimal feedback control

uopt
k = 2εB>∇ logφk, (3.61)

requires computing a gradient w.r.t. the state, which again is not well-defined

for scattered data. To circumvent these issues, we perform scattered data inter-

polation for the transient Schrödinger factors
(
φ̂k,φk

)
via multiquadric scheme

[107,108] that uses radial basis functions to fit a surface to the weighted scattered

point cloud. The interpolation requires the vectors (φk, φ̂k), their correspond-

ing state space coordinates, a set of user-provided query points, and returns the

interpolated values evaluated at the query points. Using the same set of query

points to interpolate the two point clouds for the pair (φk, φ̂k), we perform the

element-wise multiplication (3.60). As for (3.61), we use standard finite difference

techniques to compute the gradient of the logarithm of interpolated values of φk.
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3.6 Numerical Examples

3.6.1 SBP Example with Gradient Drift

We consider an instance of the SBP given in Section 3.4.1 with x ∈ R2, and

V (x1, x2) = 1
4(1 + x4

1) + 1
2(x2

2 − x2
1). The controlled prior dynamics is

dx1

dx2

 = −∇V (x1, x2) dt+

u1

u2

 dt+
√

2ε

dw1

dw2

 . (3.62)

The control objective is to steer the prescribed joint PDF of the initial condition

x(t = 0) ∼ ρ0 = N (µ0,Σ0) to the prescribed joint PDF of the terminal condition

x(t = 1) ∼ ρ1 = c1N (µ1,Σ1) + c2N (µ2,Σ2) over t ∈ [0, 1], subject to (3.62),

while minimizing the control effort (3.27a). Here, we fix

µ0 = (−2, 0)>, Σ0 = diag(0.8, 0.7), c1 = c2 = 0.5, µ1 = (1.5, 2)>,

µ2 = (1.5,−2)>, Σ1 = diag(0.5, 0.8), Σ2 = diag(0.7, 0.8).

Notice that in the absence of control (u ≡ 0), the transient joint PDFs of (3.62)

tend to the stationary solution ρ∞ ∝ exp (−V (x1, x2)/ε) which has two modes

along the horizontal axis; see [41, Fig. 8]. In contrast, the prescribed terminal

bimodal PDF ρ1, specified as a mixture of Gaussians, has two modes along the

vertical axis.

Fig. 3.3 shows the evolution of the optimal controlled joint PDF ρopt(x, t) obtained

by solving the SBP using Algorithm 1 given in Section 3.5.4. For numerical

simulation, we set ε = 6, γ = 0.5, τ = σ = 10−3, N = 500, numSteps = 1000,

tolSB = 0.1, maxIterSB = maxIterPR = 500, and tolPR = 10−3. In Fig. 3.3,
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each subplot corresponds to a different snapshot in time; each subplot is plotted

over the domain [−4, 4]× [−6, 6]. For the purpose of comparison, Fig. 3.4 shows

the uncontrolled joint state PDF evolution starting from the same initial PDF ρ0.

The components of the optimal feedback control uopt(x, t) obtained from the SBP

solution, are shown in Figs. 3.5 and 3.6. Fig. 3.7 depicts the magnitude of uρopt .

3.6.2 SBP Example with Mixed Conservative-Dissipative

Drift

We next consider an instance of the SBP given in Section 3.4.2 with n = 2m = 2,

i.e., x = (ξ, η)> ∈ R2, and V (ξ) = 5ξ4. In other words, the controlled prior

dynamics is

dξ

dη

 =

 η

− ∂
∂ξ

5ξ4 − κη + u

 dt+
√

2εκ

 0

dw

 . (3.63)

Notice that the function V satisfies the conditions mentioned in Section 3.4.2. We

use the same endpoint PDFs ρ0, ρ1 as in Section 3.6.1, and solve the SBP using

Algorithm 1 with the Steps 3, 4, 5 and 7 modified for the mixed conservative-

dissipative case, as mentioned before. Notice that in the absence of control

(u ≡ 0), the transient joint PDFs of (3.63) tend to the stationary solution ρ∞ ∝

exp
(
−1
ε

(
1
2η

2 + V (ξ)
))

.

Fig. 3.8 shows the evolution of the optimal controlled joint state PDF ρopt(x, t)

obtained from the SBP solution, where each subplot is plotted over the domain

[−4, 4] × [−10, 10]. The parameters used in our numerical simulation are: ε = 5,

κ = 0.5, γ = 0.5, τ = σ = 10−3, N = 100, numSteps = 1000, tolSB = 0.1,
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maxIterSB = maxIterPR = 500, and tolPR = 10−3. The optimal feedback control

uopt(x, t) obtained from our SBP solution is shown in Fig. 3.9.

3.7 Conclusions

We address the problem of minimum energy finite horizon steering of state den-

sity between two prescribed endpoint densities via feedback control, subject to

trajectory-level dynamics with nonlinear drift. This is a generalization of the

classical SBP formulated by Schrödinger in the 1930s, and has many potential

applications such as shaping of biological and robotic swarms through feedback

synthesis. We derive optimality conditions for the case of a generic nonlinear drift,

and show that two specific cases, viz. gradient and mixed-conservative dissipa-

tive drifts, are particularly amenable for computational purpose, based on certain

infinite-dimensional proximal recursions that exploit the structure of these non-

linearities. These ideas make contact with the theory of Wasserstein gradient

flow, and optimal mass transport. Building on our previous work [41], we de-

sign proximal algorithms for solving the density steering problems in these two

cases of practical interest. Numerical examples are provided to illustrate the

proposed framework. Our main contribution is to make algorithmic advances in

solving the variants of SBPs that are of interest to the systems-control commu-

nity. From a probabilistic perspective, while there exists a substantial body of

work [12,104,115,170] in steering the second order state statistics (also known as

“covariance control"), steering the joint state PDF subject to controlled nonlinear

dynamics is a relatively new direction of research. The results of this article is

expected to further the theoretical and algorithmic development for the same.
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Figure 3.1: The classical SBP with 1-dimensional state space shown above,
with state variable x ∈ R, concerns determining the optimal control uopt(x, t)
that steers the prescribed initial state PDF ρ0(x) at time t = 0 to the prescribed
terminal state PDF ρ1(x) at time t = 1, while minimizing E

{∫ 1
0

1
2 |u(x, t)|2 dt

}
subject to a controlled diffusion (3.1b), i.e., the SBP solves (3.1) wherein the
expectation operator in the objective is w.r.t. the controlled state PDF ρ(x, t).
The optimal controlled sample paths xopt(t) for 100 randomly chosen initial states
are shown in the (x, t) plane. In the absence of control, starting from ρ0(x), the
(uncontrolled) state PDF at t = 1 becomes ρunc

1 (x), as depicted. For numerically
solving the classical SBP with ε = 0.5 and ρ0, ρ1 as shown above, we used the
fixed point recursion proposed in [53]; see Section 3.2.1 for details.
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Control Problem

Steer joint state PDF
via feedback control

Figure 3.2: Schematic of the SBP with nonlinear prior dynamics (see Section
3.3 for the problem formulation).

Figure 3.3: For the SBP in Section 3.6.1, shown here are the contour plots of
the optimal controlled transient joint state PDFs ρopt(x, t), t ∈ [0, 1], along with
the endpoint joint PDFs ρ0(x), ρ1(x). Each subplot corresponds to a different
snapshot in time; all subplots are plotted on the domain [−4, 4] × [−6, 6]. The
color denotes the joint PDF value; see colorbar (dark hue = high, light hue =
low).
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Algorithm 2 ComputeFactorsSBP using ProxRecur to compute the
Schrödinger factors (φ̂transient

k ,φtransient
k ) for gradient drift

1: procedure ComputeFactorsSBP(ρ0, ρ1, γ, ε, τ , σ, N , V (·), numSteps, tolSB, maxIterSB, tolPR, maxIterPR)
2: φ̂1 ←

[
randN×1, 0N×(maxIterSB−1)

]
. Step 1

3: φ0 ←
[

0N×maxIterSB

]
. initialize

4: φ̂0 ←
[

0N×maxIterSB

]
5: φ1 ←

[
0N×maxIterSB

]
6: p0 ←

[
0N×maxIterSB

]
7: p1 ←

[
0N×maxIterSB

]
8: ptemp ←

[
0N×numSteps+1

]
9: φ̂

temp ←
[

0N×numSteps+1
]

10: ` = 1 . iteration index for ComputeFactorsSBP
11: while ` ≤ maxIterSB do
12: φ1(:, ` + 1) = ρ1 � φ̂1(:, `) . Step 2
13: p0(:, ` + 1) = φ1(:, ` + 1)� exp(−V ({xi}N

i=1)/ε) . Step 3
14: ptemp(:, 1) = p0(:, ` + 1)
15: for i← 1 to numSteps do
16: ptemp(:, i + 1)← ProxRecur(ptemp(:, i), γ,

ε, σ,N, V (·), tolPR,maxIterPR)
17: end for
18: p1(:, ` + 1)← ptemp(:, numSteps + 1) . Step 4
19: φ0(:, ` + 1)← p1(:, ` + 1)� exp(V

(
{xi}N

i=1

)
/ε) . Step 5

20: φ̂0(:, ` + 1)← ρ0 � φ0(:, ` + 1) . Step 6
21: φ̂temp(:, 1)← φ̂0(:, ` + 1)
22: for j ← 1 to numSteps do
23: φ̂

temp(:, j + 1)← ProxRecur(φ̂temp(:, j), γ,
ε, τ, N, V (·), tolPR,maxIterPR)

24: end for
25: φ̂1(:, ` + 1)← φ̂

temp(:, numSteps + 1) . Step 7

26: if W2(p0(:, ` + 1), p0(:, `)) < tolSB & W2(φ̂0(:, ` + 1), φ̂0(:, `)) < tolSB then
27: break
28: else
29: `← ` + 1 . Step 8
30: end if
31: end while
32: return φ̂0(:, `),φ1(:, `) . converged endpoint pair

33: φ̂
transient
k=1 ← φ̂0(:, `) . initialize

34: ptransient
k=1 ← φ1(:, `)� exp(−V

(
{xi}N

i=1

)
1
/ε) . initialize

35: for k ← 1 to numSteps do
36: φ̂

transient
k+1 ← ProxRecur(φ̂transient

k , γ, ε, τ, N, V (·),
tolPR,maxIterPR)

37: ptransient
k+1 ← ProxRecur(ptransient

k
, γ, ε, σ,N, V (·),

tolPR,maxIterPR)
38: φtransient

k+1 ← ptransient
k+1 � exp(V

(
{xi}N

i=1

)
/ε)

39: end for
40: return (φ̂transient

k ,φtransient
k

) . transient Schrödinger factors
41: end procedure
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Figure 3.4: The contour plots of the uncontrolled (u ≡ 0) transient joint state
PDFs ρ(x, t), t ∈ [0, 1], for (3.62) starting from the initial joint state PDF ρ0 given
in Section 3.6.1. Each subplot corresponds to a different snapshot in time. Each
subplot corresponds to a different snapshot in time; all subplots are plotted on
the domain [−4, 4]× [−6, 6]. The color denotes the joint PDF value; see colorbar
(dark hue = high, light hue = low).

Figure 3.5: For the SBP in Section 3.6.1, shown here are the contour plots of
uρ

opt

1 (x, t), the first component of the optimal feedback control. Each subplot is
plotted on the domain [−4, 4]×[−6, 6]. The color (blue = high, red = low) denotes
the value of uρ

opt

1 at each snapshot in time.

Figure 3.6: For the SBP in Section 3.6.1, shown here are the contour plots of
uρ

opt

2 (x, t), the second component of the optimal feedback control. Each subplot
is plotted on the domain [−4, 4] × [−6, 6]. The color (blue = high, red = low)
denotes the value of uρ

opt

1 at each snapshot in time.
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Figure 3.7: For the SBP in Section 3.6.1, shown here are the contour plots for
the magnitude (dark hue = high, light hue = low; see colorbar) of the optimal
feedback control, i.e., ‖u‖2.

Figure 3.8: For the SBP in Section 3.6.2, shown here are the contour plots of
the optimal controlled transient joint state PDFs ρopt(x, t), t ∈ [0, 1], along with
the endpoint joint PDFs ρ0(x), ρ1(x). Each subplot corresponds to a different
snapshot in time; all subplots are plotted on the domain [−4, 4]× [−10, 10]. The
color denotes the joint PDF value; see colorbar (dark hue = high, light hue =
low).

Figure 3.9: For the SBP in Section 3.6.2, shown here are the contour plots of
the optimal feedback control uρopt(x, t). Each subplot is plotted on the domain
[−4, 4]× [−10, 10]. The color (blue = high, red = low) denotes the value of uρopt

at each snapshot in time; see colorbar.
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Chapter 4

Reflected Schrödinger Bridge:

Density Control with Path

Constraints

How to steer a given joint state probability density function to another over finite

horizon subject to a controlled stochastic dynamics with hard state (sample path)

constraints? In applications, state constraints may encode safety requirements

such as obstacle avoidance. In this paper, we perform the feedback synthesis

for minimum control effort density steering (a.k.a. Schrödinger bridge) problem

subject to state constraints. We extend the theory of Schrödinger bridges to

account the reflecting boundary conditions for the sample paths, and provide a

computational framework building on our previous work on proximal recursions,

to solve the same.
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4.1 Introduction

We consider finite horizon feedback steering of an ensemble of trajectories subject

to a controlled stochastic differential equation (SDE) with endpoint joint state

probability density function (PDF) constraints – a topic of growing interest in the

systems-control literature. Motivating applications include belief space motion

planning for vehicular autonomy, and the steering of robotic or biological swarms

via decentralized feedback. While early contributions focused on the covariance

control [92,115,195], more recent papers [56,58,60] addressed the optimal feedback

synthesis for steering an arbitrary prescribed initial joint state PDF to another

prescribed terminal joint state PDF subject to controlled linear dynamics, and re-

vealed the connections between the associated stochastic optimal control problem,

the theory of optimal mass transport [210], and the Schrödinger bridge [191,192].

Follow up works have accounted terminal cost [104], input constraints [12, 171],

output feedback [11], and some nonlinear dynamics [38, 40, 44]. As for the state

or path constraints, prior work [170] incorporated the same in soft probabilistic

sense. The contribution of the present paper is to account hard deterministic

path constraints in the problem of minimum effort finite horizon PDF steering via

feedback synthesis. This can be intuitively phrased as the “hard safety with soft

endpoint" problem.

The main idea underlying the ensuing development is to modify the unconstrained

Itô SDEs to the “reflected Itô SDEs" [110,121,151,217], i.e., the controlled sample

paths in the state space (in addition to the control-affine deterministic drift) are

driven by two stochastic processes: a Wiener process, and a local time stochastic

process. The latter enforces the sample paths in the state space to satisfy the
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deterministic non-strict∗ path containment constraints at all times. These consid-

erations engender a Schrödinger bridge-like formulation–referred hereafter as the

Reflected Schrödinger Bridge Problem (RSBP)–which unlike its classical coun-

terpart, has extra boundary conditions involving the gradients of the so-called

Schrödinger factors. We show how recent developments in contraction mapping

w.r.t. the Hilbert metric, and the proximal recursion over the Schrödinger factors

can be harnessed to solve the RSBP.

4.2 Reflected Schrödinger Bridge Problem

4.2.1 Formulation

Consider a connected, smooth† and bounded domain X ⊂ Rn. Let X := X ∪ ∂X

denote the closure of X . For time t ∈ [0, 1], consider the stochastic control problem

inf
u∈U

E
{∫ 1

0

1
2‖u(t,xut )‖2

2 dt
}

(4.1a)

subject to dxut = f(t,xut ) dt+ u(t,xut ) dt

+
√

2θ dwt + n(xut )dγt, (4.1b)

xu0 := xut (t = 0) ∼ ρ0, xu1 := xut (t = 1) ∼ ρ1, (4.1c)

∗There is no loss of generality in allowing the sample paths to satisfy non-strict path con-
tainment in given X ⊂ Rn since strict containment can be enforced by reflecting them from
ε-inner boundary layer of ∂X for ε small enough.

TMore precisely, there exists ξ ∈ C2
b (Rn) such that X ≡ {x ∈ Rn | ξ(x) > 0} with boundary

∂X ≡ {x ∈ Rn | ξ(x) = 0}.

119



where wt is the standard Wiener process in Rn, the controlled state xut ∈ X , and

the endpoint joint state PDFs ρ0, ρ1 are prescribed‡ such that their supports are

in X , both are everywhere nonnegative, have finite second moments, and
∫
ρ0 =∫

ρ1 = 1. The parameter θ > 0 is referred to as the thermodynamic temperature,

and the expectation operator E{·} in (4.1a) is w.r.t. the law of the controlled

state xut . The set U consists of all admissible feedback policies u(t,xut ), given by

U := {u : [0, 1] × X 7→ Rn | ‖u‖2
2< ∞,u(t, ·) ∈ Lipschitz

(
X
)
for all t ∈ [0, 1]}.

We assume that the prior drift vector field f is bounded Borel measurable in

(t,xut ) ∈ [0, 1]×X , and Lipschitz continuous w.r.t. xut ∈ X . The vector field n is

set to be the inward unit normal to the boundary ∂X , and gives the direction of

reflection. Furthermore, for t ∈ [0, 1], γt is minimal local time: a continuous, non-

negative and non-decreasing stochastic process [89, 109, 184] that restricts xut to

the domain X , with γ0 ≡ 0. Specifically, letting 1{} denote the indicator function

of the subscripted set, we have

γt =
∫ t

0
1{xus ∈∂X} dγs,

∫ 1

0
1{xut /∈∂X} dγt = 0, (4.2)

which is to say that the process γt only increases at times t ∈ [0, 1] when xut hits

the boundary, i.e., when xut ∈ ∂X . Thus, (4.1b) is a controlled reflected SDE,

and the tuple (xut , γt) solves the Skorokhod problem [137, 197, 198]. We point the

readers to [151] for the proof of existence and uniqueness of solutions to (4.1b)

under the stated regularity assumptions.

To formalize the probabilistic setting of the problem at hand, let Ω be the space

of continuous functions ω : [0, 1] 7→ X . We view Ω as a complete separable

metric space endowed with the topology of uniform convergence on compact time
‡The notation x ∼ ρ means that the random vector x has joint PDF ρ.
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intervals. With Ω, we associate the σ-algebra F = σ{ω(s) | 0 ≤ s ≤ 1}. Consider

the complete filtered probability space (Ω,F ,P) with filtration Ft = σ{ω(s) | 0 ≤

s ≤ t ≤ 1} wherein “complete" means that F0 contains all P-null sets, and Ft is

right continuous. The processes wt, xut (for a given feedback policy u) and γt are

Ft-adapted (i.e., non-anticipating) for t ∈ [0, 1]. In (4.1c), the random vectors xu0
and xu1 are respectively F0-measurable and F1-measurable.

Denote the Euclidean gradient operator as ∇, the inner product as 〈·, ·〉, and the

Laplacian as ∆. Letting

L := θ∆ + 〈f + u,∇〉,

the law of the sample path of (4.1b) can be characterized [203] as follows: for each

x ∈ X , there is a unique probability measure Pµx on Ω such that Pµx (xu0 = x) = 1

and for any φ ∈ C1,2
c

(
[0, 1];X

)
whose inner normal derivative on ∂X is nonnega-

tive,

φ(t,xut )−
∫ t

0

(
∂φ

∂s
+ Lφ

)
(s,xus ) ds

is Pµx-submartingale, and (iii) there is a continuous, nonnegative, nondecreasing

stochastic process γt satisfying (4.2). As a consequence [203, p. 196] of this

characterization it follows that the process xut is Feller continuous and strongly

Markov. In particular, the measure-valued trajectory Pµ(t)
xut

comprises of absolutely

continuous measures w.r.t. Lebesgue measure.

The objective in problem (4.1) is to perform the minimum control effort steering

of the given initial state PDF ρ0 at t = 0 to the given terminal state PDF ρ1 at

t = 1 subject to the controlled sample path dynamics (4.1b). In other words, the

data of the problem consists of the domain X , the prior dynamics data f , θ, and

the two endpoint PDFs ρ0, ρ1.
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Formally, we can transcribe (4.1) into the following variational problem [21]:

inf
(ρ,u)∈P2(X)×U

∫ 1

0

∫
X

1
2‖u(t,xut )‖2

2 ρ(t,xut ) dxut dt (4.3a)

subject to ∂ρ

∂t
+∇ · (ρ(u+ f)) = θ∆ρ, (4.3b)

〈−(u+ f)ρ+ θ∇ρ,ν〉|∂X = 0, (4.3c)

ρ(0,xut ) = ρ0, ρ(1,xut ) = ρ1, (4.3d)

where a PDF-valued curve ρ(t, ·) ∈ P2(X ) if for each t ∈ [0, 1], the PDF ρ is

supported on X , and has finite second moment. In this paper, we will not focus

on the rather technical direction of establishing the existence of minimizer for

(4.3), which can be pursued along the lines of [210, p. 243–245]. Instead, we

will formally derive the conditions of optimality, convert them to the so-called

Schrödinger system, and argue the existence-uniqueness of solutions for the same.

4.2.2 Necessary Conditions of Optimality

The following result summarizes how the optimal pair (ρopt,uopt) for problem

(4.3) can be obtained.

Theorem 2 (Optimal control and optimal state PDF). A pair (ρopt,uopt)

solving the variational problem (4.3) must satisfy the system of coupled nonlinear

PDEs:

∂ρopt

∂t
+∇ ·

(
ρopt(∇ψ + f)

)
= θ∆ρopt, (4.4a)

∂ψ

∂t
+ 1

2‖∇ψ‖
2
2 + 〈∇ψ,f〉 = −θ∆ψ, (4.4b)
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where

uopt(t, ·) = ∇ψ(t, ·), (4.5)

subject to the boundary conditions

〈∇ψ,ν〉|∂X = 0, for all t ∈ [0, 1], (4.6a)

ρopt(0, ·) = ρ0, ρopt(1, ·) = ρ1, (4.6b)

〈ρopt(∇ψ + f)− θ∇ρopt,ν〉|∂X = 0, for all t ∈ [0, 1]. (4.6c)

The PDE (4.4a) is a controlled Fokker-Planck-Kolmogorov (FPK) equation, and

(4.4b) is a Hamilton-Jacobi-Bellman (HJB) equation. Because the equations

(4.4a)-(4.4b) have one way coupling, and the boundary conditions (4.6a)-(4.6c) are

atypical, solving (4.4) is a challenging task in general. In the following, we show

that it is possible to transform the coupled nonlinear system (4.4) into a bound-

ary coupled linear system of PDEs which we refer to as the Schrödinger system.

We will see that the resulting system paves way to a computational pipeline for

solving the density steering problem with path constraints.

4.2.3 Schrödinger System

We now apply the Hopf-Cole transform [68,114] to the system of nonlinear PDEs

(4.4).

Theorem 3 (Schrödinger system). Given the data X ,f , θ, ρ0, ρ1 for problem
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(4.3), consider the Hopf-Cole transform (ρopt, ψ) 7→ (ϕ, ϕ̂) given by

ϕ(t, ·) := exp (ψ(t, ·)/2θ) , (4.7a)

ϕ̂(t, ·) := ρopt(t, ·) exp (−ψ(t, ·)/2θ) , (4.7b)

applied to (4.4) where t ∈ [0, 1]. For k ∈ {0, 1}, introduce the notation ϕk :=

ϕ(k, ·), ϕ̂k := ϕ̂(k, ·). Then the pair (ϕ, ϕ̂) satisfies the system of linear PDEs

∂ϕ

∂t
= −〈∇ϕ,f〉 − θ∆ϕ, (4.8a)

∂ϕ̂

∂t
= −∇ · (f ϕ̂) + θ∆ϕ̂, (4.8b)

subject to the boundary conditions

ϕ0ϕ̂0 = ρ0, ϕ1ϕ̂1 = ρ1, (4.9a)

〈∇ϕ,ν〉|∂X = 〈f ϕ̂− θ∇ϕ̂,ν〉|∂X = 0. (4.9b)

For all t ∈ [0, 1], the pair (ρopt,uopt) can be recovered as

ρopt(t, ·) = ϕ(t, ·)ϕ̂(t, ·), uopt(t, ·) = 2θ∇ logϕ(t, ·). (4.10)

Remark 5. From (4.7), both ϕ, ϕ̂ are nonnegative by definition, and strictly pos-

itive if ψ is bounded and ρopt is positive.

Remark 6. Under the regularity assumptions on f and X stated in Section 4.2.1,

the process xt satisfying the uncontrolled reflected Itô SDE

dxt = f(t,xt) dt+
√

2θ dwt + n(xt) dγt, t ∈ [0, 1], (4.11)

is a Feller continuous strongly Markov process. Therefore, the theory of semi-
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Figure 4.1: Schematic of the fixed point recursion for the Schrödinger system
(4.8)-(4.9). The abbreviation “b.c." stands for boundary condition, the symbol �
denotes the Hadamard division.
groups applies and the transition density of (4.11) satisfies Kolmogorov’s equa-

tions. Notice that the transition density or Green’s function will depend on the

domain X . In particular, we point out that (4.8a) is the backward Kolmogorov

equation in unkonwn ϕ with the corresponding Neumann boundary condition

〈∇ϕ,ν〉|∂X = 0 in (4.9b). On the other hand, (4.8b) is the forward Kolmogorov

equation in unkonwn ϕ̂ with the corresponding Robin boundary condition 〈f ϕ̂−

θ∇ϕ̂,ν〉|∂X = 0 in (4.9b). These “backward Kolmogorov with Neumann" and “for-

ward Kolmogorov with Robin" system of PDE boundary value problems are coupled

via the atypical boundary conditions (4.9a).

Theorem 3 reduces finding the optimal pair (ρopt,uopt) for the RSBP to that of

finding the pair§ (ϕ(t,xt), ϕ̂(t,xt)) associated with the uncontrolled SDE (4.11).

To do so, we need to compute the terminal-initial condition pair (ϕ1, ϕ̂0), which
§We refer to ϕ(t,xt), ϕ̂(t,xt) as the Schrödinger factors.
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can be obtained by first making an initial guess for (ϕ1, ϕ̂0) and then performing

time update by integrating the system (4.8)-(4.9b). Using (4.9a), this then sets

up a fixed point recursion over the pair (ϕ1, ϕ̂0) (see Fig. 4.1). If this recursion

converges to a unique pair, then the converged pair (ϕ1, ϕ̂0) can be used to com-

pute the transient factors (ϕ(t,xt), ϕ̂(t,xt)), and we can recover (ρopt,uopt) via

(4.10). This computational pipeline will be pursued in this paper.

Since the PDEs in (4.8) are linear, and the boundary couplings in (4.9a) are in

product form, the nonnegative function pair (ϕ1, ϕ̂0) can only be unique in the

projective sense, i.e., if (ϕ1, ϕ̂0) is a solution then so is (αϕ1, ϕ̂0/α) for any α > 0.

In [53], it was shown that the aforesaid fixed point recursion is in fact contractive

on a suitable cone in Hilbert’s projective metric, and hence guaranteed to converge

to a unique pair (ϕ1, ϕ̂0), provided that the transition density for (4.11) is positive

and continuous¶ on X × X for all t ∈ [0, 1], and ρ0, ρ1 are supported on compact

subsets of X .

4.3 Case Study: RSBP in 1D without Prior Drift

To illustrate the ideas presented thus far, we now consider a simple instance of

problem (4.3) over the state space X = [a, b] ⊂ R, and with the prior drift

f ≡ 0. That is to say, we consider the finite horizon density steering subject

to the controlled two-sided reflected Brownian motion. Using some properties of

the associated Markov kernel, we will show that the Schrödinger system (4.8)-

(4.9) corresponding to this particular RSBP has a unique solution which can be

obtained by the kind of fixed point recursion mentioned toward the end of Section
¶Under the regularity assumptions on f and X stated in Section 4.2.1, the transition density

for (4.11) indeed satisfies these conditions.
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Figure 4.2: For t ∈ [0, 1], the solid line shows a sample path xt for (4.15) with
[a, b] ≡ [−1, 1], θ = 0.5. The dotted line shows the corresponding unconstrained
sample path xunconstrained

t , computed using the two-sided Skorokhod map [137].
4.2.3.

In this case, the Schrödinger system (4.8)-(4.9) reduces to

∂ϕ

∂t
= −θ∂

2ϕ

∂x2 , (4.12a)

∂ϕ̂

∂t
= θ

∂2ϕ̂

∂x2 , (4.12b)

ϕ0ϕ̂0 = ρ0, ϕ1ϕ̂1 = ρ1, (4.12c)
∂ϕ

∂x

∣∣∣∣
x=a,b

= ∂ϕ̂

∂x

∣∣∣∣
x=a,b

= 0. (4.12d)

Notice that (4.12a)-(4.12b) are the backward and forward heat PDEs, respectively,
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which subject to (4.12d), have solutions

ϕ(x, t) =
∫

[a,b]
Kθ(x, y, 1− t)ϕ1(y) dy, t ≤ 1, (4.13a)

ϕ̂(x, t) =
∫

[a,b]
Kθ(y, x, t)ϕ̂0(y) dy, t ≥ 0, (4.13b)

where

Kθ(x, y, t) := 1
b− a

+ 2
b− a

∞∑
m=1

exp
(
− θπ2m2

(b− a)2 t

)

× cos
(
mπ(x− a)
b− a

)
cos

(
mπ(y − a)
b− a

)
(4.14)

is the Markov kernel or transition density [150, Sec. 4.1], [26, p. 410-411] associ-

ated with the uncontrolled reflected SDE

dxt =
√

2θ dwt + dLt − dUt, t ∈ [0, 1]. (4.15)

In (4.15), Lt, Ut are the two local time stochastic processes [89, 109] at the lower

and upper boundaries respectively, which restrict xt to the interval [a, b]; see Fig.

4.2.

Combining (4.13) and (4.12c), we get a system of coupled nonlinear integral equa-

tions in unknowns (ϕ1, ϕ̂0), given by

ρ0(x) = ϕ̂0(x)
∫

[a,b]
Kθ(x, y, 1)ϕ1(y) dy, (4.16a)

ρ1(x) = ϕ1(x)
∫

[a,b]
Kθ(y, x, 1)ϕ̂0(y) dy. (4.16b)

Clearly, solving (4.16) is equivalent to solving (4.12). The pair (ϕ1, ϕ̂0) can be

solved from (4.16) iteratively as a fixed point recursion with guaranteed con-

128



vergence established through contraction mapping in Hilbert’s projective metric;

see [53]. The Lemma 9 stated next will be used in the Proposition 10 that follows,

showing the existence and uniqueness of the pair (ϕ1, ϕ̂0) in (4.16) as well as the

fact that the aforesaid fixed point recursion is guaranteed to converge to that pair.

Lemma 9. For 0 < θ, a < b, consider the transition probability density Kθ(x, y, t)

in (4.14). Then,

(i) Kθ(x, y, t = 1) is continuous on the set [a, b]× [a, b].

(ii) Kθ(x, y, t = 1) > 0 for all (x, y) ∈ [a, b]× [a, b].

Proposition 10. Given 0 < θ, a < b, and the endpoint PDFs ρ0, ρ1 having

compact supports ⊆ [a, b]. There exists a unique pair (ϕ1, ϕ̂0) that solves (4.16),

and equivalently (4.12). Moreover, this unique pair can be computed by the fixed

point recursion shown in Fig. 4.1.

To illustrate how the above results can be used for practical computation, consider

solving the RSBP (4.1) with f ≡ 0, θ = 0.5, X = [a, b] ≡ [−4, 4], and ρ0, ρ1 as

(see Fig. 4.3)

ρ0(x) ∝ 1 + (x2 − 16)2 exp(−x/2), (4.17a)

ρ1(x) ∝ 1.2− cos(π(x+ 4)/2), (4.17b)

where the supports of (4.17) are restricted to [−4, 4], and the proportionality

constants are determined accordingly. For state feedback synthesis enabling this

unimodal to bimodal steering over t ∈ [0, 1], we performed the fixed point recursion

over the pair (ϕ1, ϕ̂0) using (4.16) with ρ0, ρ1 as in (4.17), and Kθ given by (4.14).

For numerical implementation, we truncated the infinite sum in (4.14) after the

first 100 terms. Fig. 4.4 shows the convergence of this fixed point recursion
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Figure 4.3: The endpoint PDFs ρ0, ρ1 shown above are supported on [−4, 4],
and are given by (4.17).
w.r.t. Hilbert’s projective metric. The converged pair (ϕ1, ϕ̂0) is used to compute

the transient Schrödinger factors (ϕ(t,xt), ϕ̂(t,xt)) via (4.13), and then the pair

(ρopt(t,xut ),uopt(t,xut )) via (4.10). Fig. 4.5 depicts the evolution of the optimal

controlled transient joint state PDFs ρopt(t, xut ) as well as 100 sample paths xut
of the optimal closed-loop reflected SDE. These sample paths were computed by

applying the Euler-Maruyama scheme with time-step size 10−3. Notice from Fig.

4.5 that (i) the closed-loop sample paths satisfy −4 ≤ xut ≤ 4 for all t ∈ [0, 1],

and (ii) in the absence of feedback, the terminal constraint ρ(1, xu1) = ρ1 (given

by (4.17b)) cannot be satisfied.
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Figure 4.4: Convergence of the fixed point recursion over (ϕ1, ϕ̂0) in Hilbert’s
projective metric dHilbert.
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4.4 RSBP with Prior Drift

For generic f , X , there is no closed-form expression of the Markov Kernel as-

sociated with (4.8)-(4.9b). Hence, unlike the situation in Section 4.3, we cannot

explicitly set up coupled integral equations of the form (4.16), thus preventing

the numerical implementation of the fixed point recursion (Fig. 4.1) via direct

matrix-vector recursion. In this Section, we will show that if f is gradient of a

potential, then we can reformulate (4.8)-(4.9) in a way that leads to a variational

recursion which in turn enables us to implement the fixed point recursion (Fig.

4.1) in an implicit manner.

4.4.1 Reformulation of the Schrödinger System

Let f be a gradient vector field, i.e., f = −∇V for some potential V ∈ C2(X ).

The associated Schrödinger system (4.8)-(4.9) becomes

∂ϕ

∂t
= 〈∇ϕ,∇V 〉 − θ∆ϕ, (4.18a)

∂ϕ̂

∂t
= ∇ · (∇V ϕ̂) + θ∆ϕ̂, (4.18b)

ϕ0ϕ̂0 = ρ0, ϕ1ϕ̂1 = ρ1, (4.18c)

〈∇ϕ,ν〉|∂X = 〈∇V ϕ̂+ θ∇ϕ̂,ν〉|∂X = 0. (4.18d)

The idea now is to exploit the structural nonlinearities in (4.18) to design an

algorithm that allows computing the Schrödinger factors (ϕ, ϕ̂). To that end, the

following is a crucial step.

Theorem 4. Given V ∈ C2(X ), θ > 0, and t ∈ [0, 1], consider ϕ(t,xt) in (4.18).

Let s := 1− t, and define the mappings ϕ 7→ q 7→ p given by q(s,xs) := ϕ(t,xt) =
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ϕ(1− s,x1−s), p(s,xs) := q(s,xs) exp(−V (xs)/θ). Then p(s,xs) solves the PDE

initial boundary value problem:

∂p

∂s
= ∇ · (p∇V ) + θ∆p, (4.19a)

p(0,x) = ϕ1(x) exp(−V (x)/θ), (4.19b)

〈∇V p+ θ∇p,ν〉|∂X = 0. (4.19c)

Thanks to Theorem 4, solving (4.18) is equivalent to solving

∂p

∂s
= ∇ · (p∇V ) + θ∆p, (4.20a)

∂ϕ̂

∂t
= ∇ · (∇V ϕ̂) + θ∆ϕ̂, (4.20b)

p(s = 1,x) exp(V (x)/θ)ϕ̂0(x) = ρ0,

p(s = 0,x) exp(V (x)/θ)ϕ̂1(x) = ρ1, (4.20c)

〈∇V p+ θ∇p,ν〉|∂X = 〈∇V ϕ̂+ θ∇ϕ̂,ν〉|∂X = 0. (4.20d)

From (4.20a)-(4.20b), ϕ and p satisfy the exact same FPK PDE with different ini-

tial conditions and integrated in different time coordinates t and s. From (4.20d),

ϕ and p satisfy the same Robin boundary condition. Therefore, a single FPK ini-

tial boundary value problem solver can be used to set up the fixed point recursion

to solve for (p1, ϕ̂0), and hence (p(s,xs), ϕ̂(t,xt)). From p, we can recover ϕ as

ϕ(t,xt) = ϕ(1− s,x1−s) = p(s,xs) exp(−V (xs)/θ).
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4.4.2 Computation via Wasserstein Proximal Recursion

Building on our previous works [41, 43, 44], we propose proximal recursions to

numerically time march the solutions of the PDE initial boundary value prob-

lems (4.20) by exploiting certain infinite dimensional gradient descent structure.

This enables us to perform the computation associated with the horizontal arrows

in Fig. 4.1, and hence the fixed point recursions to solve for (p, ϕ̂), and conse-

quently for (ϕ, ϕ̂). We give here a brief outline of the ideas behind these proximal

recursions.

It is well-known [125,190] that the flows generated by (4.20a),(4.20b),(4.20d) can

be viewed as the gradient descent of the Lyapunov functional

F (%) :=
∫
X
V (x)%(x) dx + θ

∫
X
%(x) log %(x) dx (4.21)

w.r.t. the distance metric W referred to as the (quadratic) Wassertein metric

[210] on P2(X ). For chosen time-steps τ, σ, this allows us to set up a variational

recursion over the discrete time pair (tk−1, sk−1) := ((k − 1)τ, (k − 1)σ) as

 φ̂tk
$sk

 =

proxW 2
τF (φ̂tk−1)

proxW 2
σF ($sk−1)

 , k ∈ N, (4.22)

wherein the Wasserstein proximal operator

proxW 2

hF (·) := arg inf
%∈P2(X)

1
2W

2(·, %) + hF (%), h > 0. (4.23)

The sequence of functions generated by the proximal recursions (4.22) approxi-

mate the flows (p(s,xs), ϕ̂(t,xt)) for (4.20a),(4.20b),(4.20d) in the small time step
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limit, i.e.,

φ̂tk−1 → ϕ̂(t = (k − 1)τ,xt) in L1(X ) as τ ↓ 0,

$sk−1 → p(s = (k − 1)σ,xs) in L1(X ) as σ ↓ 0.

In the numerical example provided next, we solved (4.22) using the algorithm

developed in [41].

4.4.3 Numerical Example

We consider an instance of the RSBP with X = [−4, 4]2, f = −∇V , V (x1, x2) :=

(x2
1 + x3

2)/5. For

ρ0(x1, x2) ∝
∏
i=1,2

(
1 + (x2

i − 16)2 exp(−xi/2)
)
, (4.24a)

ρ1(x1, x2) ∝
∏
i=1,2

(1.2− cos(π(xi + 4)/2)) , (4.24b)

the optimal controlled joint state PDFs ρopt(t,xut ) are shown in Fig. 4.6. The

corresponding uncontrolled joint state PDFs ρunc(t,xt) are shown in Fig. 4.7.

These results were obtained by solving (4.22) via [41, Sec. III.B] with τ = σ =

10−3 to perform the fixed point recursion (Fig. 4.1) applied to (4.20).

4.5 Conclusions

In this paper, we introduced the Reflected Schrödinger Bridge Problem (RSBP)

– a stochastic optimal control problem for minimum energy feedback steering

of a given joint PDF to another over finite horizon subject to reflecting bound-
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ary conditions on the controlled state trajectories. Combining our prior work on

Wasserstein proximal recursions with some recent results on contraction mapping

associated with the Schrödinger system, we provide a computational pipeline for

optimal feedback synthesis. Numerical examples are given to highlight the pro-

posed framework.
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Figure 4.5: Shown as the black curves are the optimal controlled transient joint
state PDFs ρopt(t, xut ) for steering the two-sided reflecting Brownian motion with
endpoint PDFs ρ0, ρ1 as in Fig. 4.3. The red curve ρunc

1 is the uncontrolled state
PDF at t = 1, i.e., obtained by setting u ≡ 0. Also depicted are the 100 sample
paths of the optimally controlled (i.e., closed-loop) reflected SDE. This simulation
corresponds to the RSBP (4.1) with problem data f ≡ 0, [a, b] = [−4, 4], θ = 0.5,
and ρ0, ρ1 given by (4.17).

Figure 4.6: For the RSBP in Section 4.4.2, shown here are the contour plots
of the optimal controlled joint state PDFs ρopt(t,xut ) over X = [−4, 4]2. Each
subplot corresponds to a different snapshot of ρopt in time. The color denotes the
joint PDF value; see colorbar (dark hue = high, light hue = low).
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Figure 4.7: For the RSBP in Section 4.4.2, shown here are the contour plots
of the uncontrolled joint state PDFs ρunc(t,xt) over X = [−4, 4]2 starting from
(4.24a). Each subplot corresponds to a different snapshot of ρunc in time. The
color denotes the joint PDF value; see colorbar (dark hue = high, light hue =
low).
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Chapter 5

Finite Horizon Density Steering

for Multi-input State Feedback

Linearizable Systems

In this chapter, we study the feedback synthesis problem for steering the joint

state density or ensemble subject to multi-input state feedback linearizable dy-

namics. This problem is of interest to many practical applications including that

of dynamically shaping a robotic swarm. Our results here show that it is possible

to exploit the structural nonlinearities to derive the feedback controllers steer-

ing the joint density from a prescribed shape to another while minimizing the

expected control effort to do so. The developments herein build on our previ-

ous work, and extend the theory of the Schrödinger bridge problem subject to

feedback linearizable dynamics.
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5.1 Introduction

We consider the problem of steering the statistics of the state vector x(t) from

a prescribed ensemble or joint density ρ0(x) to another ρ1(x) over a finite time

horizon t ∈ [0, 1], subject to controlled nonlinear dynamics of the form

ẋ = f(x) +G(x)u, x ∈ X ⊆ Rn, u ∈ Rm, (5.1)

where f is a smooth vector field on the state space X ⊆ Rn, and G is an n×m

matrix whose columns consist of the vectors gi ∈ Rn for i = 1, . . . ,m, i.e.,

G(x) = [g1(x)|g2(x)|. . . |gm(x)] . (5.2)

It is of broad practical interest to solve this finite horizon density steering problem

while minimizing the average total control effort over the controlled state ensemble

ρ(x, t).

This problem is motivated by the growing need across science and engineering ap-

plications to control a large population of systems. Consider for example, shaping

the bulk magnetization distribution for Nuclear Magnetic Resonance spectroscopy,

controlling heterogeneous (e.g., aerial and ground) robotic swarms [15,79], strate-

gically synchronizing and desynchronizing a neuronal population to regulate the

Parkinsonian tremor [163], and differentially moving the setpoints of a large pop-

ulation of residential air-conditioners by a service provider to make their total

energy consumption track the intermittency in supply (e.g., due to stochastic re-

newable generation) in a privacy-preserving manner [62, 99]. These exemplars

concern population ensemble or density whose shape is actively controlled over

time while preserving the physical mass. The conservation of mass allows an
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alternative interpretation of the underlying mathematical problem – instead of

steering a large number of dynamical systems, one can think of steering a single

system with probabilistic uncertainty in its initial and terminal state, i.e., ρ0, ρ1

being joint state probability density functions (PDFs). This too, arises naturally

in practice, e.g., in robot motion planning [172], where uncertainties in the initial

and terminal states are unavoidable due to process and sensor noise.

From a system-control theoretic viewpoint, finite horizon density steering via feed-

back is a non-classical stochastic optimal control problem. The qualifier “non-

classical" points to the fact that finding the feedback policy requires solving an

infinite dimensional two-point boundary value problem on the manifold of joint

state PDFs. This is an emerging research direction in the systems-control commu-

nity wherein recent advances [56,58–60,104] have uncovered its connections with

the theory of optimal mass transport [210,215] and the Schrödinger Bridge Prob-

lem (SBP) [145,191,192]. Also, there have been results on the covariance steering

problem [115,170,195,196,224] which concerns steering second order state statis-

tics. With the exception of [2, 84], almost all works have focused on steering the

state statistics over a controlled linear system.

Here, we consider finite horizon density steering state feedback linearizable sys-

tems of the form (5.1). The nonlinearities in (5.1) induce non-Gaussian statistics

even if the endpoint PDFs are both jointly Gaussian. Thus, finding the feedback

solution of the density steering problem in a non-parametric sense, is non-trivial.

The main contribution of this paper is to show that it is possible to exploit the feed-

back linearizing transformation for density steering. In particular, we obtain the

optimal state feedback policy in terms of the solution of certain Hamilton-Jacobi-

Bellman (HJB) partial differential equation (PDE). Furthermore, we show that

a dynamic stochastic regularization can be used to derive a system of boundary-
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coupled linear PDEs, which we refer to as the Schrödinger system, whose solutions

recover the optimal state feedback and the optimal controlled joint state PDF.

We envision that the theoretical developments herein will help design algorithms

solving the feedback density steering over nonlinear dynamical systems.

5.2 MIMO Feedback Linearization

We consider multiple-input control system of the form (5.1), and recall some well-

known results on feedback linearization [?] that will be useful in the sequel.

Definition 5. (Full state static feedback linearization) System (5.1) is said

to be full state static feedback linearizable around a point x0 ∈ X if there exists a

smooth feedback of the form u = δ(x)+Γ(x)v defined on X , and a diffeomorphism

τ : X 7→ Rn such that the change of variables z := τ (x) transforms (5.1) into

ż = Az +Bv, z ∈ Rn, v ∈ Rm, (5.3)

wherein the pair (A,B) is controllable.

In other words, (5.1) is full state static feedback linearizable if there exists a triple

(δ(x),Γ(x), τ (x)) such that

(∇τ (f(x) +G(x)δ(x)))x=τ−1(z) = Az,

(∇τ (G(x)Γ(x)))x=τ−1(z) = B,
(5.4)

where the pair (A,B) satisfies

rank
[
B,AB,A2B, . . .An−1B

]
= n. (5.5)
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Definition 6. [?, p. 220] (Vector relative degree) Consider the Multi-Input

Multi-Output (MIMO) system:

ẋ = f(x) +G(x)u,

y = h(x),
(5.6)

where x ∈ X ⊆ Rn,u ∈ Rm as before. Furthermore, h(x) := (h1(x), . . . hm(x)) ∈

Rm, where hj are smooth scalar-valued functions for all j = 1 . . . ,m. The input-

output system (5.6) is said to have vector relative degree π = (π1, π2, . . . , πm) at

x0 ∈ X , if

LgjL
k
fhi(x) ≡ 0, 1 ≤ i, j ≤ m, 1 ≤ k < πi − 1, (5.7)

and the m×m matrix

C(x) :=


Lg1L

π1−1
f h1(x) . . . LgmL

π1−1
f h1(x)

... . . . ...

Lg1L
πm−1
f hm(x) . . . LgmL

πm−1
f hm(x)

 (5.8)

evaluated at x = x0, is non-singular.

Here, πj ∈ N, j = 1, . . . ,m, is the number of times one has to differentiate the

jth output yj w.r.t. t such that at least one of the m input components appears

explicitly in the expression for y(πj)
j . In other words, πj is the number of integrators

between the input and the jth output.

Remark 7. It is known [?, p. 230] that given an n-dimensional vector field f , and

a matrix G(x) of rank m, the system (5.1) is full state static feedback linearizable

if and only if:

(i) there exist functions h1(x), h2(x), . . . , hm(x), such that the input-output system
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(5.6) has relative degree π at x0 ∈ X ,

and

(ii) the relative degree π is such that π1 + π2 + · · · + πm = n, where n is the

dimension of the state vector x.

The output function h(x) play an important role in transforming (5.1) into a

controllable linear system. If we can find h(·) satisfying conditions (i)-(ii) in

Remark 7, then we can use the same to construct a state feedback law and a

desired change of coordinates. Explicitly, this feedback law can be obtained as

u = −(C(x))−1d(x)︸ ︷︷ ︸
:=δ(x)

+ (C(x))−1︸ ︷︷ ︸
:=Γ(x)

v, (5.9)

where C(x) is as in (5.8), and

d(x) :=
(
Lπ1
f h1(x), Lπ2

f h2(x), . . . , Lπmf hm(x)
)>
, (5.10)

The linearizing coordinates z := τ (x) are subdivided as

z =



z1

z2

...

zm


, τ (x) =



τ 1(x)

τ 2(x)
...

τm(x)


, (5.11)

where each zi, τ i ∈ Rπi , i = 1, . . . ,m, have components

zik = τ ik(x) := Lk−1
f hi(x), k = 1, . . . , πi. (5.12)

The feedback law (5.9) and the change of coordinates (5.11), together transform
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(5.1) which is in state-control pair (x,u), into the Brunovsky canonical form in

the state-control pair (z,v), given by

ż = Az +Bv, z ∈ Rn, v ∈ Rm, (5.13)

where A,B are block diagonal matrices

A := diag(A1,A2, . . . ,Am), B := diag(b1, b2, . . . , bm),

wherein for each i = 1, . . . ,m, we have

Ai := [0|e1|e2|. . . |eπi−1 ] ∈ Rπi×πi , bi := eπi ∈ Rπi .

Remark 8. Since static state feedback linearization is equivalent to Remark 7,

hence the matrix (5.8) is invertible at x = x0. This guarantees that Γ(x) and

δ(x) in (5.9) are well-defined at x0.

As seen above, the existence of the (fictitious) output h(·) is a necessary and suffi-

cient condition for full state feedback linearization. The following result allows us

to establish the existence of the h(·) under suitable conditions on the vector fields

f(x), g1(x), . . . , gm(x). Thus, the conditions for full state feedback linearization

can be restated as the following.

Proposition 11. [?, p. 232] Consider the system (5.1) where rank(G(x0)) = m,

and for i = 0, 1, . . . , n− 1, let

∆i(x) := span{adkfgk : 0 ≤ k ≤ i, 1 ≤ j ≤ m}.

Then, there exist scalar-valued functions h1(x), . . . , hm(x), defined on X such that
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(5.6) has relative degree π at x0, with π1 + π2 + · · ·+ πm = n, iff:

(i) ∆i has constant dimension near x0 for each i = 0, 1, . . . , n− 1,

(ii) ∆n−1 has dimension n,

(iii) ∆i is involutive for each i = 0, 1, . . . , n− 2.

Proposition 11 helps to verify if a given system of the form (5.1) is full-state

feedback linearizable. For the construction of the functions hi in Proposition 1,

we refer the readers to [?].

Example 1. Let us consider a system of the form (5.1) defined on a neighborhood

of x0 = 0, given by

ẋ =



x2 + x2
2

x3 − x1x4 + x4x5

x2x4 + x1x5 − x2
5

x5

x2
2


︸ ︷︷ ︸

f(x)

+



0

0

cos(x1 − x5)

0

0


︸ ︷︷ ︸

g1(x)

u1

+



1

0

1

0

1


︸ ︷︷ ︸
g2(x)

u2. (5.14)

A direct computation verifies that (5.14) satisfies the conditions (i)-(iii) of Propo-

sition 11, implying the existence of output functions h1(x), h2(x). Following the
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constructive steps in [?, p. 232], these output functions can be obtained as

y1 = h1 = x1 − x5, y2 = h2 = x4. (5.15)

Notice that

Lg1h1(x) ≡ Lg2h1(x) ≡ Lg1Lfh1(x) ≡ Lg2Lfh1(x) ≡ 0,

Lg1h2(x) ≡ Lg2h2(x) ≡ 0,

and that the matrix

C(x0) =

Lg1L
2
fh1(x) Lg2L

2
fh1(x)

Lg1Lfh2(x) Lg2Lfh2(x)

 ∣∣∣∣
x=x0

=

cos(x1 − x5) 1

0 1

 ∣∣∣∣
x=x0

=

1 1

0 1

 ,

is non-singular. Therefore, (5.14) with output (5.15) has vector relative degree

π = (π1, π2) = (3, 2) satisfying π1 +π2 = 3 + 2 = 5, which is indeed the dimension

of the state space. From (5.12), we obtain the change of coordinates

τ (x) :=



h1(x)

Lfh1(x)

L2
fh1(x)

h2(x)

Lfh2(x)


=



x1 − x5

x2

x3 − x1x4 + x4x5

x4

x5


. (5.16)
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In this case, (5.8) and (5.10) yields

d(x) =

L3
fh1(x)

L2
fh2(x)

 =

 0

x2
2

 ,

(C(x))−1 =

1/cos(x1 − x5) −1/cos(x1 − x5)

0 1

 ,

which, following (5.9), result in the feedback law

u =

−x2
2/cos(x1 − x5)

x2
2


︸ ︷︷ ︸

δ(x)

+

1/cos(x1 − x5) −1 cos(x1 − x5)

0 1


︸ ︷︷ ︸

Γ(x)

v.

(5.17)

Hence, we have constructed a triple (δ(x),Γ(x), τ (x)) given by (5.16)-(5.17), that

transform (5.14) into

ż =



0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0


︸ ︷︷ ︸

A

z +



0 0

0 0

1 0

0 0

0 1


︸ ︷︷ ︸

B

v. (5.18)
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5.3 Minimum Energy Density Control

5.3.1 Stochastic Optimal Control Problem

Given system (5.1), and two prescribed endpoint PDFs ρ0(x), ρ1(x), we consider

the following minimum energy finite horizon stochastic optimal control problem:

inf
u∈U

E
{∫ 1

0

1
2‖u(x, t)‖2

2 dt
}
, (5.19a)

subject to ẋ = f(x) +G(x)u, (5.19b)

x(0) ∼ ρ0(x) x(1) ∼ ρ1(x), (5.19c)

where the state space is X ⊆ Rn, u ∈ Rm and (5.19b) is feedback linearizable.

The infimum is taken over the set of admissible controls with finite energy, i.e.,

U := {u : Rn × [0, 1] 7→ Rm| ‖u‖2
2 < ∞}, and the expectation operator E{·}

in (5.19a) is w.r.t. the controlled joint state PDF ρ(x, t) satisfying endpoint

conditions (5.19c). The objective is to steer the joint PDF ρ(x, t) from the given

initial PDF ρ0 at t = 0 to a terminal PDF ρ1 at t = 1 while minimizing the

expected control effort.

The problem (5.19) can be recast into a “fluid dynamics" version [21], which is

the following variational problem:

inf
ρ,u

∫ 1

0

∫
X

1
2‖u(x, t)‖2

2 ρ(x, t) dx dt, (5.20a)

subject to ∂ρ

∂t
+∇x · (ρ(f(x) +G(x)u)) = 0, (5.20b)

ρ(x, t = 0) = ρ0, ρ(x, t = 1) = ρ1. (5.20c)

Here, the infimum is taken over P(X ) × U , where P(X ) denotes the space of
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all joint PDFs supported on X . We note that (5.20b) is the Liouville PDE [34]

associated to the dynamical system (5.19b).

5.3.2 Reformulation in Feedback Linearized Coordinates

In our recent work [38], we considered the problem (5.19) for the single-input

case, i.e., the case G(x) ≡ [g1(x)] ∈ Rn, and the input u is scalar-valued. The

main idea in [38] was to recast (5.20), which is in state-control pair (x,u), into

an equivalent formulation in feedback linearized state-control pair (z,v). This

was made possible by using the diffeomorphism τ : X 7→ Z to pushforward the

endpoint PDFs ρ0, ρ1 to PDFs σ0, σ1 supported on the feedback linearized state

space Z. Specifically,

σi(z) := τ ]ρi = ρi(τ−1(z))
|det(∇xτ x=τ−1(z)|

, i ∈ {0, 1}, (5.21)

and Z := {z ∈ Rn|z = τ(x),x ∈ X}.

Since τ is a diffeomorphism, the PDFs {σi}i=0,1 supported on the feedback lin-

earized state space Z, are well defined, i.e., spt(σi) ⊆ Z provided that spt(ρi) ⊆ X .

To generalize the reformulation in [38, Sec. III.B] for the multi-input case, we

proceed by setting

δτ := δ ◦ τ−1, Γτ := Γ ◦ τ−1, (5.22)

where δ and Γ are as in (5.9). Using u(z) = δτ (z) + Γτ (z)v, we now transcribe
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(5.20) into

inf
σ,v

∫ 1

0

∫
Z

1
2L(z,v) σ(z, t) dz dt, (5.23a)

subject to ∂σ

∂t
+∇z · ((Az +Bv)σ) = 0, (5.23b)

σ(x, t = 0) = σ0, σ(x, t = 1) = σ1, (5.23c)

where

L(z,v) := ‖δτ (z) + Γτ (z)v‖2
2. (5.24)

The infimum in (5.23) is taken over the pair of transformed PDFs and admissible

controls (σ,v) ∈ P(Z)× V where V := {v : Z × [0, 1] 7→ Rm| ‖v‖2
2 <∞}.

Remark 9. The solution pair (ρopt,uopt) for (5.20) can be recovered from the

optimal solution (σopt,vopt) of (5.23) via the transformations

ρopt(x, t) = σopt(τ (x), t)|det∇xτ x(x)|, (5.25a)

uopt(x, t) = δ(x) + Γ(x)vopt(τ−1(x), t) (5.25b)

for x ∈ X , and t ∈ [0, 1].

Example 2. To illustrate the reformulation (5.23), let us reconsider the system

(5.14). In this case, the inverse mapping of (5.16) is given by

x = τ−1(z) :=
(
z1 + z5 z2 z3 + z1z4 z4 z5

)>
. (5.26)

Here, the determinant of the Jacobian of (5.16) is non-zero for all vectors in Rn,
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i.e., Z = Rn. From (5.17) and (5.22), we have

δτ (z) =

−x2
2/cos(z1)

z2
2

 , (5.27)

and

Γτ (z) =

1/cos(z1) −1/cos(z1)

0 1

 . (5.28)

The functional L(z,v) in (5.24) equals

v>

 2/cos2(z1) −1/cos(z1)

−1/cos(z1) 1

v + 〈
(
z2

2/cos2(z1),

−z2
2/cos(z1) + z2

2

)>
,v〉+ x4

2/cos2(z1) + z4
2 . (5.29)

Remark 10. Because feedback linearization guarantees that the matrix pair (A,B)

is controllable, any vector z1 ∈ Z is reachable from any other vector z0 ∈ Z for all

t ∈ [0, 1] via the flow of (5.13). This ensures that in (5.23c), the initial PDF σ0(z)

can be steered to σ1(z) via the flow σ(z, t) of the controlled Liouville PDE (5.23b).

Thus, the constraint set of (5.23) is non-empty, and the problem is feasible.
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5.3.3 Optimality

To show the existence and uniqueness of minimizer for (5.23), we set m := σv,

and consider the change of variable (σ,v) 7→ (σ,m), transforming (5.23) into

inf
σ,m

∫ 1

0

∫
Z
J (σ,m) dz dt, (5.30a)

subject to ∂σ

∂t
+∇z · (Azσ +Bm) = 0, (5.30b)

σ(x, t = 0) = σ0, σ(x, t = 1) = σ1, (5.30c)

where

J (σ,m) :=



1
2‖δτ (z) + Γτ (z)m

σ
‖2

2 σ if σ > 0,

0 if (σ,m) = (0,0),

+∞ otherwise.

(5.31)

We note that J (σ,m) is the perspective function of the strictly convex map

m 7→ ‖δτ (z)σ+ Γτ (z)m‖2
2; therefore, J is jointly strictly convex in (σ,m). The

constraints (5.30b)-(5.30c) are linear in (σ,m). Hence, (5.30) admits a unique

minimizing pair, and equivalently, so does (5.23). The following theorem sum-

marizes how this optimal pair for (5.23), denoted hereafter as (σopt,vopt), can be

obtained.

Theorem 12. (Optimal control for (5.23)) The optimal control vopt for the

problem (5.23), is given by

vopt(z, t) = (Γ>τ Γτ (z))−1B>∇zψ − Γ−1
τ (z)δτ (z), (5.32)

153



where ψ solves the Hamilton-Jacobi-Bellman (HJB) PDE

∂ψ

∂t
+ 〈∇zψ,Az〉 − 〈∇zψ,BΓ−1

τ (z)δτ (z)〉

+ 1
2〈∇zψ,B

(
Γ>τ (z)Γτ (z)

)−1
B>∇zψ〉 = 0. (5.33)

Furthermore, if the optimal joint state PDF σopt is a solution to the Liouville

PDE

∂σopt

∂t
+∇z ·

((
Az +Bvopt

))
= 0, (5.34)

with boundary conditions σopt(z, 0) = σopt
0 (z), and σopt(z, 1) = σopt

1 (z), then the

pair (σopt,vopt) solves the problem (5.23).

Proof. The Lagrangian associated with (5.23) is

L (σ, ψ,v) =
∫ 1

0

∫
Z

1
2L(z,v)σ(z, t) dzdt

+
∫
Z

∫ 1

0
ψ(z, t)∂σ

∂t
dt dz︸ ︷︷ ︸

term 1

+
∫ 1

0

∫
Z
ψ(z, t)∇z · ((Az +Bv)σ) dzdt︸ ︷︷ ︸

term 2

. (5.35)

In (5.35), we interchange the order of integration and perform integration by parts

w.r.t. t in term 1, and w.r.t. z in term 2. Since σ(z, t) → 0 as z → ∂Z, we can

express L as

∫ 1

0

∫
Z

{
1
2L(z,v)− ∂ψ

∂t
− 〈∇zψ,Az +Bv〉

}
σ(z, t)dzdt. (5.36)
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Performing pointwise minimization of the above w.r.t. v while fixing σ, we obtain

Γ>τ Γτvopt(z, t) = B>∇zψ(z, t)− Γ>τ (z)δτ (z). (5.37)

Taking the matrix inverse on both sides yield (5.32). Substituting vopt back into

(5.36) and equating to zero, we then get

∫ 1

0

∫
Z

{
− ∂ψ

∂t
− 〈∇zψ,Az〉+ 〈∇zψ,BΓ−1

τ (z)δτ (z)〉

− 1
2〈∇zψ,B

(
Γ>τ (z)Γτ (z)

)−1
B>∇zψ〉

}
σ(z, t)dzdt = 0.

(5.38)

Since (5.38) holds for arbitrary σ, we arrive at (5.33). �

Example 3. (HJB for (5.29)) From (5.27)-(5.28), we have

(Γ>τ (z)Γτ (z))−1 =

cos2(z1) cos(z1)

cos(z1) 2

 (5.39)

and

Γ−1
τ (z)δτ (z) =

 0

z2
2

 . (5.40)

Substituting (5.39)-(5.40) into (5.33), and using the pair (A,B) from (5.18), gives

the HJB PDE

∂ψ

∂t
+ z2

∂ψ

∂z1
+ z3

∂ψ

∂z2
+ z5

∂ψ

∂z4
− z2

2
∂ψ

∂z5

+ 1
2

[
cos2(z1)

(
∂ψ

∂z3

)2

+ cos(z1) ∂ψ
∂z3

∂ψ

∂z5
+ 2

(
∂ψ

∂z5

)2]
= 0. (5.41)

Remark 11. Computing the pair (σopt,vopt) in Theorem 12 is challenging in gen-

eral since it calls for solving a system of coupled nonlinear PDEs (5.33)-(5.34)

with atypical boundary conditions. In the following Sections, we will provide fur-
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ther reformulations of (5.23) to make it computationally amenable.

5.4 Stochastic Density Steering: Reformulation

into Schrödinger System

Motivated by [?], we consider a generalized version of (5.23) by adding a diffusion

term to (5.23b):

inf
σ,v

∫ 1

0

∫
Z

1
2L(z,v)σ(z, t) dz dt, (5.42a)

subject to ∂σ

∂t
+∇z · ((Az +Bv)σ)

= ε1> (D(z)� Hess(σ)) 1, (5.42b)

σ(z, t = 0) = σ0, σ(z, t = 1) = σ1, (5.42c)

whereD(z) := BΓ−1
τ (z)(BΓ−1

τ (z))>. In particular, the controlled Liouville PDE

in (5.23b) is now replaced by a Fokker-Planck-Kolmogorov PDE in (5.42b), having

an additional diffusion term
√

2εBΓ−1
τ (z), where the parameter ε > 0 (not nec-

essarily small). Formally, this generalization is equivalent to adding a stochastic

perturbation to the controlled sample path ODE ż = Az +Bv, resulting in the

Itô SDE

dz = (Az +Bv) dt+
√

2εBΓ−1
τ (z) dw, (5.43)

where w(t) ∈ Rm is standard Wiener process. In the special case δτ (z) ≡ 0

and Γτ (z) ≡ I, problem (5.42) reduces to the Schrödinger bridge problem with

linear prior dynamics [?, equation (49)]. Thus, (5.42) is a Schrödinger bridge-

like problem with a prior dynamics that has linear drift and nonlinear diffusion
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coefficient.

The following Theorem characterizes the minimizing pair (σopt,vopt) for problem

(5.42).

Theorem 13. (Optimal control for (5.42)) The optimal control vopt(z, t) for

(5.42) is given by (5.32), where ψ solves the HJB PDE

∂ψ

∂t
+ 〈∇zψ,Az〉 − 〈∇zψ,BΓ−1

τ (z)δτ (z)〉

+ 1
2〈∇zψ,D(z)∇zψ〉+ ε〈D(z),Hess(ψ)〉 = 0, (5.44)

and the optimal joint state PDF σopt(z, t) solves the controlled Fokker-Planck-

Kolmogorov PDE

∂σopt

∂t
+∇z · ((Az +Bvopt)σopt)

− ε1>
(
D(z)� Hess(σopt)

)
1 = 0, (5.45)

with boundary conditions

σopt(z, t = 0) = σopt
0 , σopt(z, t = 1) = σopt

1 . (5.46)

Proof. The proof proceeds similarly as in Theorem 12 except that we now have

an additional term in the Lagrangian (5.35) which we refer to as “term 3", given

by

− ε
∫ 1

0

∫
Z
ψ(z, t)1>

(
D(z)� Hess(σopt)

)
1dzdt.︸ ︷︷ ︸

term 3

(5.47)
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From the following chain of equalities:

∫
Z
〈D(z),Hess(ψ)〉σopt(z, t)dz

=
∫
Z

n∑
i,j=1

Dij(z)∂ψ(z, t)
∂zi∂zj

σopt(z, t)dz

=
n∑

i,j=1

∫
Z
Dij(z)∂ψ(z, t)

∂zi∂zj
σopt(z, t)dz

= −
n∑

i,j=1

∫
Z

∂ψ(z, t)
∂zj

∂(Dijσ
opt(z, t))
∂zi

dz

=
∫
Z
ψ(z, t)

n∑
i,j=1

∂(D(z)ijσopt(z, t))
∂zj∂zi

dz

=
∫
Z
ψ(z, t)1>

(
D(z)� Hess(σopt)

)
1dz (5.48)

we deduce that (5.47) is equal to

− ε
∫ 1

0

∫
Z
〈D(z),Hess(ψ)〉σopt(z, t)dzdt. (5.49)

So, the expression inside the curly braces in (5.36), now will have an additional

term −ε〈D(z),Hess(ψ)〉 that is independent of v. Therefore, pointwise minimiza-

tion of (5.36) with this additional term w.r.t. v, gives (5.32), and the associated

HJB PDE becomes (5.44). �

Next, we show that the so-called Hopf-Cole transform [68, 114] allows to reduce

the system of nonlinear PDEs (5.44)-(5.45) with boundary conditions (5.46), into

a system of boundary-coupled linear PDEs, which we refer as the “Schrödinger

System".

Theorem 14. (Schrödinger System) Consider the Hopf-Cole transformation

158



(σopt, ψ) 7→ (ϕ, ϕ̂):

ϕ(z, t) := exp(ψ(z, t)/2ε), (5.50a)

ϕ̂(z, t) := σopt(z, t) exp(−ψ(z, t)/2ε), (5.50b)

applied to the system of coupled nonlinear PDEs (5.44)-(5.45). The pair (ϕ, ϕ̂)

satisfies the following system of linear PDEs:

∂ϕ

∂t
+ 〈∇zϕ,Az −BΓ−1

τ δτ (z)〉+ ε〈D,Hess(ϕ)〉 = 0, (5.51a)
∂ϕ̂

∂t
+∇z ·

((
Az −BΓ−1

τ δτ (z)
)
ϕ̂
)

− ε1 (D(z)� Hess(ϕ̂)) 1 = 0, (5.51b)

with coupled boundary conditions

ϕ0(z)ϕ̂0(z) = σopt
0 (z), ϕ1(z)ϕ̂1(z) = σopt

1 (z). (5.52)

Proof. From (5.50a), ψ = 2ε logϕ, which yields

∂ψ

∂t
= 2ε
ϕ

∂ϕ

∂t
, ∇zψ = 2ε

ϕ
∇zϕ. (5.53)
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On the other hand, notice that

ε〈D(z),Hess(ψ)〉

= ε〈D(z),Hess(2ε logϕ)〉

= 2ε2
n∑

i,j=1
Dij(z)∂

2 logϕ
∂zi∂zj

= 2ε2
n∑

i,j=1
Dij(z)

(
1
ϕ

∂2ϕ

∂zizj
− 1
ϕ2

∂ϕ

∂zi

∂ϕ

∂zj

)

= 2ε2
ϕ
〈D(z),Hess(ϕ)〉 − 2ε2

ϕ2 〈∇zϕ,D(z)∇zϕ〉. (5.54)

Substituting (5.53) and (5.54) into (5.44) yields

2ε
ϕ

∂ϕ

∂t
+ 2ε
ϕ
〈∇zϕ,Az −BΓ−1

τ (z)δτ (z)〉

+ 1
2

4ε2
ϕ2 〈∇zϕ,D(z)∇zϕ〉+ 2ε2

ϕ
〈D(z),Hess(ϕ)〉

− 2ε2
ϕ2 〈∇zϕ,D(z)∇ϕ〉 = 0,

which gives (5.51a).

Next, let ω(z) := Az −BΓ−1
τ (z)δτ (z). We then have

∇z · (ϕ̂ω(z)) = 〈∇zϕ̂,ω(z)〉+ ϕ̂∇z · ω(z)

= exp (−ψ/2ε)
(
〈∇σopt,ω(z)〉+ σopt∇z · (ω(z))

− σopt

2ε 〈∇zψ,ω(z)〉
)
, (5.55)
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and

ε1>(D � Hess(ϕ̂))1 = exp
(
− ψ2ε

)(
ε1>(D � Hess( ˆσopt))1

− ∂(Dij(z)σopt)
∂xj

∂ψ

∂zj
− 1

2σ
opt〈D(z),Hess(ψ)〉

+ σopt

4ε 〈∇zψ,D(z)∇zψ〉
)
. (5.56)

In (5.50b), taking the partial derivative of ϕ̂ w.r.t. t, and using (5.44)-(5.45)

together with (5.55)-(5.56), we get

∂ϕ̂

∂t
= exp (−ψ/2ε)

(
∂σopt

∂t
− σopt

2ε
∂ψ

∂t

)
= exp (−ψ/2ε)

(
−∇z(σoptw(z))−∇z(σoptD∇ψ)

+ ε1(D(z)� Hess(σopt))1 + σopt

2ε 〈∇zψ,w(z)〉

+ σopt

4ε 〈∇zψ,D(z)∇zψ〉+ σopt

2 〈D(z),Hess(ψ)〉
)

= −∇z · (ϕ̂w(z)) + ε1>(D � Hess(ϕ̂))1,

which is indeed (5.51b). The boundary conditions (5.46) follow directly from

(5.50a)-(5.50b). �

Theorem 14 in principle allows solving problem (5.42) in the following manner. Let

(ϕ1, ϕ̂0) := (ϕ (z, t = 1) , ϕ̂ (z, t = 0)) denote the terminal-initial condition pair for

the system (5.51a)-(5.51b). By making an arbitrary guess for the pair (ϕ1, ϕ̂0),

one can perform a fixed point recursion on the Schrödinger system (5.51)-(5.52),

and the converged pair (ϕ1, ϕ̂0) can then be used to compute the transient pair

(ϕ (z, t) , ϕ̂ (z, t)). Then, by (5.50), we recover (σopt, ψ), and thus (σopt,vopt) from

(5.32). Notice that this procedure with small ε > 0 will yield the pair (σopt,vopt)
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solving problem (5.23). Finally, the mapping (5.25) in Remark 9 recovers the

solution (ρopt,uopt) for problem (5.20). This algorithmic framework and its con-

vergence will be the topic of our future research.

Conclusions

We considered the minimum energy joint state PDF steering problem over finite

time horizon subject to the multi-input state feedback linearizable dynamics. We

showed that the density steering problem can be made amenable in the feed-

back linearized coordinates. We derived the state feedback controller in terms

of the solutions of a pair of coupled HJB and Fokker-Planck-Kolmogorov PDEs.

Furthermore, we reduced this system of coupled nonlinear PDEs to a system of

boundary-coupled linear PDEs. Our results are expected to lay the foundation

for developing computational algorithms solving the density steering problem.
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Chapter 6

Global Convergence of

Second-Order Dynamics in

Two-Layer Neural Networks

Recent results have shown that for two-layer fully connected neural networks, gra-

dient flow converges to a global optimum in the infinite width limit, by making a

connection between the mean field dynamics and the Wasserstein gradient flow.

These results were derived for first-order gradient flow, and a natural question is

whether second-order dynamics, i.e., dynamics with momentum, exhibit a similar

guarantee. We show that the answer is positive for the heavy ball method. In

this case, the resulting integro-PDE is a nonlinear kinetic Fokker Planck equation,

and unlike the first-order case, it has no apparent connection with the Wasser-

stein gradient flow. Instead, we study the variations of a Lyapunov functional

along the solution trajectories to characterize the stationary points and to prove

convergence. While our results are asymptotic in the mean field limit, numerical
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simulations indicate that global convergence may already occur for reasonably

small networks.

6.1 Introduction

The empirical success of neural network models has prompted several theoreti-

cal studies that attempt to shed some light on their performance, and provide

guarantees under suitable assumptions. For fully connected networks, univer-

sal approximation results such as [16, 74] provide a partial explanation for this

empirical success, by proving that a large enough network can approximate any

continuous function on a compact set, though such results do not address the dy-

namics of learning, i.e., whether local search algorithms such as gradient descent

can find global solutions. Recent works [65, 158] have tackled this question for

two-layer networks, and proved convergence to global solutions, by studying the

dynamics in the space of distributions over parameters. They make the obser-

vation that (Euclidean) gradient flow in the parameter space is equivalent to a

Wasserstein gradient flow in the distribution space. This allows for an analysis

of the long-time behavior of the dynamics in the mean field limit, i.e., when the

width of the network tends to infinity.

To the best of our knowledge, previous works in this setting, such as [65,158,188,

194], have only considered first-order gradient dynamics, and a natural question

is whether similar guarantees hold for second-order dynamics, i.e., dynamics with

momentum. This is the subject of our investigation. Momentum methods such as

the heavy ball method [185], Nesterov’s method [165], or the Adam method [132],

are widely used in practice [206] and have received significant attention in the
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optimization literature. Their continuous-time counterpart is given by a family of

second-order differential equations, which can be interpreted as damped nonlinear

oscillators [9,37,87,91]. For example, [204,218] studied the continuous-time limit

of Nesterov’s method, which is an instance in this family with a particular form

of damping.

In this paper, our analysis will focus on the heavy ball method–perhaps the sim-

plest and the earliest instance of second-order optimization dynamics. It corre-

sponds to a constant damping coefficient, making the analysis more tractable.

Even in this relatively simple setting, the distribution dynamics for a two-layer

neural network is given by a nonlinear kinetic Fokker-Planck equation [214], and

unlike the first-order case, there is no apparent connection with the Wasserstein

gradient flow. Hence, our approach to analyze the mean field dynamics will be

somewhat different, even though the tools we use are similar. Our analysis takes

inspiration from previous works in the first-order case [65,158], and also from the

study of kinetic Fokker-Planck equations [31,200].

6.1.1 Two-layer neural networks

We describe the problem setting before summarizing our results. We seek to learn

a function ψ ∈ F , where F is a Hilbert space equipped with the inner product

〈·, ·〉F . The model is parameterized by (θ1, . . . , θn) ∈ Θn, and its output is given

by

ψθ1,...,θn(x) := 1
n

n∑
i=1

Ψ(θi)(x), (6.1)

where n is the number of neurons (also referred to as the width of the network),

x is the input vector, and Ψ(θi) ∈ F . In the two-layer neural network setting, we
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take Θ = Rd, θi = (ai, bi) ∈ Rd−1 × R, and Ψ(θi)(x) = bis(〈ai, x〉), where ai, bi

are the weights of the first and the second layer, respectively, and s : R 7→ R is

an activation function. While (6.1) is perhaps an unusual way to describe the

output of a neural network, it highlights a structure that lends itself to mean

field analysis: the model can be viewed as an average of “basis functions” Ψ(θ)(·),

parameterized by the vector θ ∈ Θ = Rd. This point of view allows us to further

rewrite ψ as the integral

ψµ = 〈Ψ, µ〉 :=
∫

Θ
Ψ(θ) dµ(θ), (6.2)

where µ is a probability measure on Θ, encoding the parameter distribution. When

µ is an average of Dirac masses, i.e., µ = 1
n

∑n
i=1 δθi , the integral (6.2) reduces to

the summation (6.1).

We are given a convex, Fréchet differentiable functional R : F 7→ R+, referred to as

the risk functional, which measures the expected loss of the model. For instance,

in the quadratic loss case, R(ψ) = 1
2E(x,y)|ψ(x)−y|2= 1

2 〈ψ − y, ψ − y〉F , where the

inner product is taken to be 〈ψ, φ〉F := E(x,y)[ψφ], and the features and labels (x, y)

are sampled from a data distribution D. We are also given a regularization func-

tion g : Θ→ R+, and we consider the regularized risk R(Ψθ1,...,θn) + 1
n

∑n
i=1 g(θi).

While this is, in general, a non-convex function of θ, when lifted to the space of

probability measures, it becomes

F (µ) := R(〈Ψ, µ〉) + 〈g, µ〉 . (6.3)

The functional F is convex and Fréchet differentiable. Thus, the learning problem

can be recast as a measure-valued convex optimization problem, infµ F (µ). This

is the point of view taken in [65, 158], as well as in earlier works such as [10, 24].
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We note that while our motivation is the study of neural network dynamics, this

setting applies to other problems, see [10,65].

6.1.2 Particle and distribution dynamics

We give an informal overview of the general strategy used to study the mean field

limit. The first step is to make a connection between the dynamics of the particles

(θ1, . . . , θn) ∈ Θn, and the dynamics of their distribution µ supported over Θ.

Suppose the particles move following a (time-varying) vector field vt : Θ 7→ Rd,

where t indexes time. That is, the trajectories are solutions to the following

ordinary differential equation (ODE):

θ̇t = vt(θt). (6.4)

Then at time t, the distribution µt of these particles – more precisely, the push-

forward of an initial distribution µ0 by the flow of the ODE (6.4) – is given by the

solution to a partial differential equation (PDE) known as the continuity equation:

∂tµt +∇ · (µtvt) = 0, (6.5)

where ∇· stands for the divergence operator. When µt does not have a den-

sity, (6.5) should be interpreted distributionally. Let µnt be the solution of (6.5)

initialized at 1
n

∑n
i=1 δθi . One can show that if the initial positions (θ1, . . . , θn) are

drawn from a fixed distribution µ0, then as the number of particles n tends to

infinity, the solutions µnt , weakly converge to the solution µt of (6.5) initialized

at µ0. One can then focus on studying the dynamics of the mean field limit µt.

The vector field vt in (6.4) and (6.5), which describes the movement of the parti-
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cles, is determined by the particular learning dynamics under consideration. The

choice of vt in [65,158,188,194] corresponds to the first-order gradient flow in θ. In

this case, the PDE (6.5) has additional structure: it corresponds to a Wasserstein

gradient flow of the functional F in (6.3), as is well known in the optimal trans-

portation literature [6,125]. We study a different choice of vt that corresponds to

the heavy ball method. Our primary goal is to provide, under suitable assump-

tions, convergence guarantees to the global minimizers of F , which is similar in

spirit with [65, 158]. The latter two results differ: in [65], the authors study de-

terministic gradient flow under a homogeneity assumption on the objective, and

prove that assuming µt converges, it can only converge to a global minimum.

In [158], the authors study noisy gradient flow for the quadratic loss, and prove

that µt converges arbitrarily close to the global minimum (depending on the mag-

nitude of the noise). Our approach is closer to the latter: we study convergence

of the noisy heavy ball method. The convergence of the noiseless second-order

dynamics in the mean field limit remains an open question.

6.1.3 Summary of contributions

We start by deriving the distributional PDE associated with the heavy ball method

(Section 6.2). To study the dynamics in the mean field limit, we define a Lyapunov

functional in Section 6.3 and bound its variations along solution trajectories. This

relies on a general criterion given in Lemma 15, which reveals a close connection

between the Lyapunov functions for dynamics with no particle interaction (as in

convex optimization) and the Lyapunov functionals for mean field dynamics.

Equipped with this result, in Section 6.4, we characterize the stationary solutions

in Theorem 6, and show that they must satisfy a Boltzmann fixed point equation,
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for which we prove the existence and uniqueness of a solution in Proposition 17.

Furthermore, we show in Theorem 7 that the solution trajectory converges to this

unique stationary point. Finally, we show in Theorem 8 that by using vanishingly

small noise, the limit can be made arbitrarily close to the global infimum of F .

In Section 6.5, we illustrate these results with numerical experiments that include

other variants of second-order dynamics beyond the heavy ball method. The

experiments suggest that the convergence may already occur with a reasonably

small number of particles.

The proofs are deferred to the appendix.

6.2 Mean field second-order dynamics

6.2.1 Assumptions

Let F0(µ) := R(〈Ψ, µ〉) denote the unregularized loss, and F (µ) = F0(µ) + 〈g, µ〉.

We make the following assumptions:

(A1) R : F 7→ R+ is convex, Fréchet differentiable.

(A2) Ψ : Θ 7→ F is Fréchet differentiable.

(A3) ∇F ′(ρ) ∈ L∞(Θ) for all ρ ∈ P(Θ).

(A4) {F ′0(ρ) : ρ ∈ L1(Θ), ‖ρ‖1≤ 1} is uniformly equicontinuous and uniformly

bounded, and g : Θ→ R+ is differentiable and confining, i.e. lim|θ|→∞ g(θ) =

∞ and exp(−βg) is integrable for all β > 0.

We discuss some of the implications of these assumptions. (A1) and (A2) are basic
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regularity assumptions implying that F is Fréchet differentiable and F ′(ρ) : Θ→

R is a differentiable function of θ, so the gradient of the loss in the parameter space

is well-defined. (A3) is used to prove the existence and uniqueness of solutions

of the PDE. The assumption that the loss is regularized by g, together with the

condition (A4), are important to guarantee existence of a stationary solution,

as is common in the literature [31, 158, 180]. In particular, the assumption that

the regularizer g is confining is rather mild; it essentially requires g(θ) to grow

sufficiently fast when |θ| tends to infinity. One simple choice is to take g(θ) = |θ|

(except near 0, since we also require differentiability of g). In Appendix A.24, we

explicate the foregoing assumptions in the context of the quadratic loss, and show

that they are implied by the assumptions made in previous work.

6.2.2 Second-order dynamics

Given a differentiable f : Rd 7→ R, a broad family of second-order dynamics is

described by the ODE

θ̈t = −∇θf(θ)− γtθ̇t, (6.6)

which can be interpreted as a dissipative nonlinear oscillator with potential f , and

damping coefficient γt, see [9, 37, 106, 204]. Under certain assumptions, such as

convexity of f , it can be shown that the solutions converge to global minimizers of

f , see [37]. When γt ≡ γ/t for some positive constant γ, this corresponds to Nes-

terov’s method in continuous-time [204], and when γt ≡ γ is a time-independent

positive constant, it corresponds to the heavy ball method [9,87].

As will become clear shortly, the potential f in our setting is time-varying due to

the interaction between particles. Recall from (6.3) that the objective functional
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is F (µ) = R(〈Ψ, µ〉)+〈g, µ〉, where µ is a distribution over parameters θ ∈ Θ. The

gradient of the objective in the parameter space Θ is given by ∇F ′(µ)(θ), see Ap-

pendix A.12 for a detailed derivation. In particular, setting vt(θ) ≡ −∇F ′(µt)(θ)

in (6.4)-(6.5) corresponds to the first-order gradient flow, as in [65,158].

In the second-order case, it is convenient to write (6.6) as a system of two first-

order equations describing the evolution of position-velocity pair (θ, r) ∈ T Θ (the

tangent bundle). Then µt ∈ M(T Θ) denotes the joint distribution over T Θ at

time t, and [µt]θ is the corresponding marginal measure over Θ. We suppose that

a Brownian motion is applied to the velocity (or rate) r, resulting in the following

Itô stochastic differential equation (SDE):

d

 θ

r

 =

 r

−∇F ′([µt]θ)(θ)− γr

 dt+

 0
√

2γβ−1 dWt

 , (6.7)

where the parameter β > 0 is referred to as the inverse temperature, γ > 0

is the constant damping coefficient, and Wt is the standard Wiener process in

the tangent space of Θ. Eq. (6.7) is an underdamped Langevin equation with

interaction potential F ′([µt]θ). It describes the stochastic heavy ball method [87]

in the parameter space. The dependence of the potential on µt reflects the fact that

the output of the neural network (and its loss) depend not on a single particle, but

on the distribution of all particles. Note that the dependence is on the marginal

[µt]θ, since the loss only depends on positions, and not velocities.

The distribution dynamics corresponding to (6.7) is given by

∂tµt = −∇.

µt.
 r

−∇F ′([µt]θ)− γr


+ γβ−1∆rµt, (6.8)
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where ∆r denotes the Laplacian operator w.r.t. the r variable, and corresponds to

the Brownian motion applied to r. The integro-PDE (6.8) is a nonlinear kinetic

Fokker-Planck equation.

Consistency of the mean field limit We now provide a consistency result

between the second-order particle dynamics and the mean field limit.

Theorem 5. Let µ0 ∈ M(T Θ). Consider a set of n interacting particles with

states {(θit, rit)}
n
i=1 where i denotes the i-th particle. Suppose these particles solve

copies of the SDE (6.7) indexed by i = 1, . . . , n, in which µt is replaced by the

empirical distribution µnt := 1
n

∑n
i=1 δ(θit,rit), and with initial states {(θi0, ri0)}ni=1

sampled independently from µ0. Then there exists µt ∈M(T Θ) such that, almost

surely, µnt → µt weakly, as n → ∞. Furthermore, µt solves (6.8) in the weak

distributional sense with initial condition µ0.

This result motivates the study of the long-time behavior of the mean field limit µt.

One of the advantages of the mean-field setting is that one can work with abso-

lutely continuous distributions, which simplifies the analysis.

Existence and uniqueness of solutions We make the following assumption

on the initial condition µ0, both to obtain existence and uniqueness of a solution,

and to guarantee finiteness of the free energy, introduced in the next section.

(A5) µ0 is absolutely continuous, and the associated PDF ρ0 satisfies 〈g(θ) +

|r|2/2, ρ0〉 <∞, 〈log+ ρ0, ρ0〉 <∞, and
∫
|∇F ′0([ρ0]θ)(θ)|2dθ <∞,

where log+ ρ := max{log ρ, 0}. It is known (see [31, 209]) that if F satisfies (A3)

and the initial condition µ0 satisfies (A5), then (6.8) admits a unique solution

µt ∈ C ([0,∞),M(T Θ)). That µt remains absolutely continuous for all t ≥ 0,
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and hence ρt exists, will be proved in Theorem 7. Since the solution is absolutely

continuous, µt and [µt]θ in (6.7)-(6.8) can be replaced by the corresponding PDFs

ρt and [ρt]θ, respectively.

6.2.3 The linear case

When F (µ) = 〈f, µ〉 for some function f : Θ 7→ R, we have F ′(µ) = f and

there is no particle interaction in (6.7). While this situation is irrelevant in the

neural network context, it is instructive to review results in the linear setting.

In this case, (6.8) becomes a linear Fokker-Planck PDE, which can be shown

(e.g., Proposition 6.1 in [180]) to admit a unique stationary solution with PDF

ρ∞(θ, r) = exp
(
−β

(
f(θ) + 1

2 |r|
2
))
/Z, where Z is a normalizing constant. Under

additional assumptions on the confining potential f , one can also study the rate of

convergence of ρt to ρ∞, see e.g. [13,106,180,214]. Our situation corresponds to a

nonlinear kinetic Fokker-Planck equation, which is not well-understood in the gen-

eral setting. Some special cases have been studied in the literature, such as when

the interaction potential F ′(µ) is a convolution [31,46,200,214]. The convolution

structure in these references is motivated from physical dynamics–the electrostatic

Coulomb interaction in plasma and semiconductor dynamics [1, 78, 80], and the

gravitational Newton interaction in stellar dynamics [18,51,175]–and leads to the

Valsov-Poisson-Fokker-Planck equations [117,183,209]. Unfortunately, this is not

the case in our neural network setting, and these results do not directly apply.

However, we will use similar techniques, and will prove that the stationary solu-

tions have a similar characterization.
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6.3 Variations of a Lyapunov functional

Hereafter, we work with the PDF trajectory ρt ∈ C ([0,∞),P(T Θ)) associated

with the measure-valued solution trajectory µt ∈ C ([0,∞),Mac(T Θ)) for (6.8).

To characterize the stationary solutions, we will study the variations of the fol-

lowing Lyapunov functional, defined for ρ ∈ P(T Θ),

E(ρ) := F ([ρ]θ) +
〈1

2 |r|
2, ρ

〉
+ β−1H(ρ), (6.9)

where H(ρ) := 〈log ρ, ρ〉 is the negative entropy. The functional E is often referred

to as the free energy. In this section, we show that along the trajectory ρt, the

functional E is non-increasing.

Lemma 15. Let vt be a vector field over T Θ, and let ρt be a solution of the

continuity equation ∂tρt = −∇.(ρtvt) with initial condition ρ0 ∈ P(T Θ). Let

V : P(T Θ) 7→ R, and suppose that along ρt, V is Fréchet differentiable and

V ′(ρt) : Θ 7→ R is differentiable. Then for all t ≥ 0,

∂tV(ρt) = 〈∇V ′(ρt), ρtvt〉∗ .

This gives us a simple criterion for a functional V to be non-increasing along

solution trajectories with vector field v(ρ): it suffices that for all ρ, the inequality

〈∇V ′(ρ), v(ρ)〉 ≤ 0 holds ρ-a.e. In the case with no interaction, i.e., V(ρ) ≡

〈V, ρ〉 is linear with V : Θ 7→ R, and the vector field v is independent of ρ, the

condition reduces to 〈∇V, v〉 ≤ 0, which defines Lyapunov functions for single

particle dynamics. With this observation, the free energy E can be viewed as

a mean field generalization of E(θ, r) := f(θ) + 1
2 |r|

2, which is known to be a

Lyapunov function for the heavy ball dynamics, see Appendix A.14.
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To apply Lemma 15 to the free energy E in (6.9), we use the identity ∆rρ = ∇r·∇rρ

to formally rewrite (6.8) as follows.

∂tρt = −∇.(ρtv(ρt)), v(ρ)(θ, r) :=

 r

−∇F ′([ρ]θ)(θ)− γr − γβ−1∇r log ρ(θ, r)

 .
(6.10)

Proposition 16. Consider the Lyapunov functional E in (6.9). Let ρt be the

solution to (6.10). Then

∂tE(ρt) = −γ
〈
|r + β−1∇r log ρt|2, ρt

〉
.

Proof. From (6.9), we obtain

E ′(ρ)(θ, r) = F ′([ρ]θ)(θ) + 1
2 |r|

2+β−1(1 + log ρ(θ, r)), (6.11)

and, using the shorthand `θ := β−1∇θ log ρt, `r := β−1∇r log ρt, we compute

∂tE(ρt) = 〈∇E ′(ρt), ρtv(ρt)〉∗

=
〈 ∇θF

′([ρt]θ) + `θ

r + `r

 , ρt
 r

−∇θF
′([ρt]θ)− γr − γ`r

〉
∗

=
〈
−γ 〈r, r〉 − γ 〈`r, `r〉 − 2γ 〈r, `r〉+ 〈`θ, r〉 −

〈
`r,∇θF

′([ρt]θ)
〉
, ρt
〉
.

We conclude by showing that the last two terms, 〈〈`θ, r〉 , ρt〉 and
〈〈
`r,∇θF

′([ρt]θ)
〉
, ρt
〉

are equal to zero, using duality of the ∇· and ∇ operators. The details are pro-

vided in Appendix A.17. �

The proposition states that the free energy E is non-increasing along solution

trajectories. This fact, together with additional bounds derived in Appendix A.14,
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are the primary ingredients used to prove our main results in the next section.

6.4 Stationary solutions and global convergence

We say ρ? ∈ P is a stationary solution of (6.10) if the solution (ρt)t≥0 obtained

with the initial condition ρ0 ≡ ρ?, satisfies ρt ≡ ρ? for all t ≥ 0.

In this section, we state our main results (proved in Appendix A.19), by charac-

terizing stationary solutions (Theorem 6), proving their existence and uniqueness

(Proposition 17), and establishing convergence of ρt, as t → ∞, to the unique

stationary point (Theorem 7). Furthermore, we show that the limit can be made

arbitrarily close to the global infimum (Theorem 8).

Theorem 6. Suppose ρ? ∈ P(T Θ) is a stationary solution of (6.10). Then,

ρ?(θ, r) =
exp

(
−β

2 |r|
2
)

Z1
[ρ?]θ(θ). (6.12)

where Z1 is the normalizing constant Z1 :=
∫

exp ( − β
2 |r|

2)dr and [ρ?]θ is the θ

marginal. Furthermore, [ρ?]θ solves the following fixed point equation:

ρ(θ) = exp (−βF ′(ρ)(θ))
Z2(ρ) , ρ ∈ P(Θ) (6.13)

where Z2(ρ) :=
∫

exp (−βF ′(ρ)(θ)) dθ.

The proof crucially relies on the variation of the free energy given in Proposi-

tion 16. The theorem states that a stationary solution, if it exists, must be a

product distribution, where the r marginal is a Gaussian, and the θ marginal

satisfies a fixed point equation. This product structure is familiar from the linear

case (Section 6.2.3), where F ′(ρ) ≡ f and the RHS of (6.13) becomes independent
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of ρ, and simply describes a Gibbs distribution. In the nonlinear case, it is not

guaranteed, a priori, that (6.13) admits a solution. This is proved in the next

proposition; our existence proof invokes Schauder’s fixed point theorem [88, p.

286, Theorem 11.6], and this is where assumption (A4) comes into play.

Proposition 17. Suppose assumption (A4) holds, and let T : P(Θ) 7→ P(Θ) be

defined as follows:

T (ρ)(θ) = exp (−βF ′(ρ)(θ))
Z2(ρ) ,

where Z2(ρ) =
∫

exp (−βF ′(ρ)). Then T has a unique fixed point.

We next show that the solution trajectory ρt converges to the unique stationary

solution ρ?, under mild assumptions on the initial condition.

Theorem 7. Consider a measure µ0 ∈Mac (T Θ) satisfying the assumption (A5).

Starting from such an initial condition µ0, the solution (µt)t≥0 of (6.10) satisfies

the following.

(i) For each t ≥ 0, the measure µt ∈ Mac (T Θ), i.e., the associated joint PDF

ρt ∈ P (T Θ) exists.

(ii) The trajectory (ρt)t≥0 converges strongly in L1 to the unique stationary solu-

tion ρ? of (6.10) as t→∞.

Now that we have established the existence and uniqueness of a stationary solution

ρ? ∈ P(T Θ), and convergence to ρ?, we will relate, in the next theorem, F ([ρ?]θ)

to infρ∈P(Θ) F (ρ). Some intuition can be gained from the linear case: when F (ρ) =

〈f, ρ〉, the stationary solution is simply given by the Gibbs distribution, [ρ?]θ(·) ∝

exp(−βf(·)), which concentrates around the minimizers of f as β → ∞, thus

F ([ρ?]θ) approaches infρ∈P(Θ) F (ρ) as β → ∞. The same holds in our non-linear

setting, as stated in the next theorem.
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For λ ∈ [0, 1], let Fλ(ρ) := R(〈Ψ, ρ〉) + λ 〈g, ρ〉, so that F1 ≡ F .

Theorem 8. Let ρ? be the stationary solution of (6.10), and let [ρ?]θ be its

marginal. Then there exists a constant C that depends on F and d, such that

for all β ≥ 1,

F1−1/β([ρ?]θ) ≤ inf
ρ∈P(Θ)

F1(ρ) + C + d log β
β

.

The proof of the above theorem has two components: the first is the observation

that ρ? is a minimizer of the free energy E (this follows from the characterization

in Theorem 6), the second is the bounds on the difference between E and F derived

in Appendix A.14.

As a consequence of the theorem, the objective value at the stationary point can

be made arbitrarily close to the global infimum of F by taking β large enough. It

is worth emphasizing that the presence of noise, i.e., the diffusion term in (6.8), is

essential in guaranteeing existence and uniqueness of the stationary distribution.

In the noiseless case, there may exist multiple stationary points that are not global

minimizers. The addition of noise can be thought of as an entropic regularization

of the functional F (ρ), and Theorem 8 says that one can approach the infimum

of the unregularized problem in the small noise limit.

6.5 Numerical simulations

To illustrate our results, we run synthetic numerical experiments following the

setup used in [65]. The model ψ is a two-layer neural network, as described in

Section 6.1.1, with sigmoid activation function s(·) and width n, i.e., ψ(x) =
1
n

∑n
i=1 bis(〈ai, x〉). The features x are normally distributed in Rd−1, and the

ground truth labels are generated using a similar neural network ψ? with width
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n0, i.e., y = ψ?(x). The risk functional is quadratic, i.e., R(ψ) = 1
2‖ψ(x)− y‖2

F=
1
2Ex[(ψ(x) − ψ?(x))2], where the expectation is over the empirical distribution.

We implement the stochastic heavy ball method using a simple Euler-Maruyama

discretization of (6.7), this will be referred to as (SHB) in the figures. We also

implement noiseless, second order dynamics: the heavy ball method, referred to

as (HB), and Nesterov’s accelerated gradient descent, referred to as (AGD).

6.5.1 Convergence to the global infimum

In a first set of experiments, we set the dimension to d = 100, and vary the

width n of the model, while keeping the width of the ground truth network fixed

to n0 = 20. No regularization is used in this experiment, so that the model

can theoretically achieve zero loss whenever n ≥ n0. The results are reported

in Figure 6.1. In the left subplot, each method is run for 105 iterations, and we

measure the loss at the last iteration. We repeat the experiment 20 times and

plot the average (represented by the lines) and the individual numbers (scatter

plot). The right subplot shows the full trajectory for one realization, for the width

n = 100. The results suggest that the dynamics converge to the global infimum

even with a reasonably small width n. The results also highlight the effect of

noise: the stochastic heavy ball method converges closer to the global minimum

when β is larger, consistent with Theorem 8. Finally, the results for the noiseless

heavy ball method and Nesterov’s method suggest that convergence may occur

for a broader class of second-order dynamics than the setting of our analysis.
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Figure 6.1: Final loss value as the width n of the network increases for several
second-order dynamics (left), and sample trajectories for n = 100 (right).

6.5.2 Stationary distribution

In a second experiment, we illustrate the characterization of the limiting distribu-

tion, which according to Theorem 6, is the product of its marginals, where the r

marginal is a Gaussian ∝ exp(−β|r|2), and the θ marginal is ∝ exp(−βF ′([ρ∞]θ)).

Recall from (6.3) that F (µ) = R(〈Ψ, µ〉) + 〈g, µ〉, thus

F ′(µ)(·) = 〈R′(〈Ψ, µ〉),Ψ(·)〉F + g(·),

where g is the regularizer, which we set to g(θ) = 0.01|θ| in this experiment. The

risk functional is R(ψ) = 1
2‖ψ − ψ

?‖2
F , thus R′(ψ) = ψ − ψ?, and

F ′([µ]θ)(·) = Ex[(
〈
Ψ, [µ]θ

〉
(x)− ψ?(x))Ψ(·)(x)] + g(·). (6.14)

In particular, if we apply this expression to the empirical distribution of the par-

ticles [µn]θ = 1
n

∑n
i=1 δθi , and use m independent samples xj ∼ D to approximate

the expectation, we obtain

F ′([µn]θ)(·) ≈ g(·) + 1
m

m∑
j=1

( 1
n

n∑
i=1

Ψ(θi)(xj)− ψ?(xj)
)
Ψ(·)(xj). (6.15)
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This gives us an expression of the Boltzmann distribution that we can approximate

numerically in the finite particle case, by using [µnk ]θ for large k, in place of [ρ∞]θ

in exp(−βF ′([ρ∞]θ)).

We rerun the same experiment described above, with n = 200, n0 = 20, and in

lower dimension d = 2, so that we can visualize the distributions, and compare

the empirical and theoretical marginals at the end of training. The result is shown

in Figure 6.2, where the empirical marginals (scatter plot) appear to be consistent

with the numerical approximation of the Boltzmann distribution (heat map).
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Figure 6.2: Illustration of the limiting distribution under stochastic heavy ball
dynamics. The loss value as a function of iteration number is shown on the left.
The middle and the right plots show the marginal distributions of position θ and
velocity r, at the last iteration k = 105 (scatter plot). The heat map shows
a numerical approximation of the theoretical limiting distributions according to
Theorem 6. The level sets represent the log of the density of the marginals, i.e.
−βF ′(µnk)(θ), and −β|r|2/2 respectively.

6.5.3 Illustration of the interaction potential

Finally, we illustrate the interpretation of the learning dynamics as interacting par-

ticles. One can view the dynamics of the network parameters (θi)i=1,...,n as evolv-

ing in a static potential given by the loss function f(θ1, . . . , θn) = F
(

1
n

∑n
i=1 δθi

)
,
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defined on Θn. But because ∇θjf(θ1, . . . , θn) = 1
n
∇F ′

(
1
n

∑
i δθi

)
(θj) (see Ap-

pendix A.12), in fact each of the n particles is subject to the same time-varying

potential F ′(µn) : Θ → R, where µn = 1
n

∑n
i=1 δθi is the empirical distribution.

The potential at any time depends on the joint distribution of particles at that

time, but as the distribution converges, the interaction potential also converges.

To illustrate this, we plot in Figure 6.3 the evolution of F ′(µnk) as the step k

increases.
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Figure 6.3: Evolution of the interaction potential F ′(µnk) as k increases.

6.6 Concluding remarks

We studied the stochastic heavy ball dynamics in the mean field limit, and es-

tablished convergence to global minimizers. This is, to our knowledge, the first

global convergence guarantee for second-order dynamics in this setting. Though

the result is asymptotic, numerical experiments on synthetic problems suggest

that the convergence occurs for networks of reasonably small size.

There are several possible directions to investigate quantitative results. For ex-

ample, hypocoercivity [214] is concerned with the study of the rate of convergence

of ρt to its limiting distribution, and while the theory is in its early development

for the nonlinear case, we believe the techniques can be adapted under additional
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assumptions on F . A second direction is the study of fluctuations of solutions,

which quantifies the convergence of µnt to the mean field limit µt as the number

of particles n → ∞, as was done in [188, 194] for gradient flow with quadratic

loss. A third direction is to study the generalization properties of the limit. In

the gradient flow case, this was investigated for instance by [66] for the logistic

loss.

We believe our results can be generalized to a broader family of second-order

dynamics, including Nesterov’s method. One technical challenge in doing so is

that the dynamics has a time-dependence due to the damping coefficient γt, which

may require using a different Lyapunov functional.

Finally, the question of convergence for the noiseless second-order dynamics re-

mains unsettled and requires further investigation. In general, without diffusion,

there may exist stationary points that are not global minimizers (even in the mean

field limit). However, one can hope to prove, under suitable assumptions on F ,

that such stationary points are repulsive, as was done in [65] for gradient flow.
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Chapter 7

Conclusions

In this dissertation we have presented the geometric theory of generalized gradient

flows. This theory provides a unifying framework that can be used to solve and

compute problems in density prediction, control and learning. In Chapter 1, we

gave a brief description of these subproblems and their motivation applications

from different fields. We also presented a short summary of the theory of gradient

flows in the space of PDFs and their connections to each of the three subproblems.

Building on this geometric theory, we developed a novel algorithm to solve the

density prediction in Chapter 1. This algorithm was used to compute the flow

of the joint PDFs of continuous time stochastic nonlinear systems motivated by

several engineering examples. We show that this proposed computational frame-

work is convergent by establishing certain contractive properties. The efficiency

of the proposed algorithm in terms of computational runtime was demonstrated

by numerical examples.

In Chapter 2, we addressed the Schrödinger Bridge Problem (SBP) which is the

problem of minimum energy finite horizon steering of state density between two
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prescribed endpoint densities via feedback control, subject to trajectory-level dy-

namics with nonlinear drift. We derived the conditions for optimality and showed

that two specific cases, gradient and mixed-conservative dissipative drifts, are par-

ticularly amenable for computational purposes using the algorithms we proposed

in Chapter 1. This work contributes to a growing body of algorithmic advances

to solving different variants of the SBP of interest. In Chapter 3, we introduced

the Reflected Schrödinger Bridge Problem (RSBP) which is an SBP subject to

reflecting boundary conditions on the controlled state trajectories. Combining

our prior work on Wasserstein proximal recursions with some recent results on

contraction mapping associated with the Schrödinger system, we provided a com-

putational pipeline for optimal feedback synthesis. Numerical examples were given

to highlight the proposed framework. In Chapter 4, we considered the SBP over

input state feedback linearizable dynamics. We showed that the density steer-

ing problem can be solved in linearized feedback coordinates. We derived the

state feedback controller in terms of the solutions of a pair of coupled HJB and

Fokker-Planck-Kolmogorov PDEs. Furthermore, we reduced this system of cou-

pled nonlinear PDEs to a system of boundary-coupled linear PDEs. Our results

are expected to lay the foundation for developing computational algorithms solv-

ing the density steering problem.

In Chapter 6, we characterized the convergence of neural networks trained by

stochastic heavy ball dynamics in the mean field limit, and established convergence

to global minimizers. We show that rate of convergence to the stationary point is

exponential under a weighted Wasserstein distance. This work is one of the first

works to provide a proof of global guarantees for second-order dynamics.

We outline some of the possible research directions that will be pursued based on

the results of this work.
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7.1 Density Prediction

The classical JKO scheme was originally proposed for systems with gradient drift

and the scaled isotropic noise, and later was extended to account for degenerate

diffusions with mixed conservative-dissipative drifts, many engineering systems in

practice do not admit such canonical forms. For example, the following cases are

of significant interest:

• Euler’s rigid body equations whose drift is a sum of a linear vector field and

a divergence free and non-gradient vector field

• A system of coupled second order nonlinear oscillators with mixed conservative-

dissipative drift with non-isotropic diffusion

• Generic nonlinear stochastic systems whose structure can be exploited to

yield an appropriate distance and free energy functional

The first is a prototypical system in systems-control theory, while the second

appears in dynamical models of kinematic models and interconnected power grids

as well as in models in mathematical biology. Designing a JKO-like scheme for

these systems amounts to amending the distance functional d and the free energy

functional in the proximal operator. Finding a suitable distance function and free

energy functional remains a non-trivial task. Ideally, we would like to develop a

theory to design a scheme that encompasses any choice drift f and diffusion g.

Next, we would like to explore the computational complexity of these algorithms

and how they compare to traditional methods. The main computational bottle-

neck in the proximal recursion algorithm is in the multiplication of the exponen-

tiated cost matrix Γ of size m × n with an n dimensional vector where m is the
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number of particles %k−1 and n is the number of particles %k. When the dimension

of the state space increases n,m also tend to increase to account for the sparsity.

We would like to investigate techniques that would speed up the computational

performance of this algorithm for a large number of particles.

7.2 Density Control

The classes of SBP problems investigated in this dissertation were limited to

quadratic costs. A natural question is how to extend these results to generic La-

grangians. It is expected that the conditions for optimality will be more challeng-

ing. Given its contractive properties, it would be ideal to transform this system

into Schrödinger System; however it is not guaranteed that the Hopf-Cole Trans-

form will yield such a system except for a few cases. We would like to investigate

whether such a generalized transform exists.

One other direction is to consider generic prior linear dynamics. The cases that

we considered were limited to gradient drift, conservative-dissipative drift, and

feedback linearizable,dynamics but the dynamics in practical systems have no ex-

ploitable structures. We envision that the future directions in Density Prediction

will go hand in hand with solving more general trajectory dynamics.

7.3 Machine Learning

We believe our results can be generalized to a broader family of second-order

dynamics, including Nesterov’s method. Due to the time-dependent damping

coefficient γt, we need to use a different Lyapunov functional. There are several
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possible directions to investigate quantitative results. We are concerned with

the study of the rate of convergence of ρt and we have some initial results on

proving exponential convergence towards the equilibrium in weighted Wasserstein

Distance.

Finally, the question of convergence for the noiseless second-order dynamics re-

mains unsettled and requires further investigation. In general, without diffusion,

there may exist stationary points that are not global minimizers (even in the mean

field limit). However, one can hope to prove, under suitable assumptions on F ,

that such stationary points are repulsive, as was done in [65] for gradient flow.
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Appendix A

A.1 Derivation of Fokker-Planck Equation

Consider the stochastic differential equation

dxt = f(xt, t) dt+ g(xt, t) dwt (A.1)

and let φ : X 7→ R be a smooth function with compact support. Consider the

time derivative

d
dtE[φ(xt)] = d

dt

∫
X
φ(x)ρ(x, t) dx =

∫
X
φ(x)∂u

∂t
dx (A.2)

On the other hand, by Ito’s formula we have

dE[φ(xt)] = E[dφ(xt)] (A.3)

= E
[(
〈f , φ〉+ 1

2〈gg
>,Hess(φ)〉

)
dt+ 〈∇φ, g dw〉

]
(A.4)

=
(
E [(〈f , φ〉] + 1

2E
[
〈gg>,Hess(φ)〉

])
dt+ E [〈∇φ, g dw〉] . (A.5)
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Observe that the last term equals zero since dw is independent of of xt so the

expectation becomes

E [〈∇φ, g dw〉] = E
[
∇φ(xt)>g

]
E[dw] = 0 (A.6)

where E[dw] = 0 by Gaussian property of the Wiener process. "Dividing by dt",

on both sides, we get

d
dtE[φ(xt)] = E [〈f , φ〉] + 1

2E
[
〈gg>,Hess(φ)〉

]
. (A.7)

Now using the integration by parts formula

∫
u(∇ · v) dx = −

∫
〈∇u, v〉 dx. (A.8)

we obtain

E [〈f , φ〉] =
∫
X
〈f , φ〉ρ(x, t) dx = −

∫
X
∇ · (ρf)φ(x) dx. (A.9)

Applying the integration parts formula twice yields

E
[
〈gg>,Hess(φ)〉

]
= −

∫
X

n∑
i,j=1

(ρgg>)ij
∂2φ

∂xi∂xj
dx (A.10)

= −
n∑

i,j=1

∫
X

∂

∂xi
(ρgg>)ij

∂u

∂xj
dx (A.11)

=
n∑

i,j=1

∫
X

∂

∂xi∂xj
(ρgg>)ijφ(x) dx. (A.12)
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By equation the two expressions for the d
dtE[φ(xt)], we obtain

∫
X

∂ρ
∂t

+∇ · (ρf) + 1
2

n∑
i,j=1

∂

∂xi∂xj
(ρgg>)ij

φ(x) dx = 0 (A.13)

and since φ is arbitrary, the evolution equation for the pdf ρ is given by

∂ρ

∂t
= −∇ · (ρf) + 1

2

n∑
i,j=1

∂

∂xi∂xj
(ρgg>)ij (A.14)

A.2 Derivation of (2.28):

Noting that scaling and translation by constants do not alter the outer argmin in

(2.27), we rewrite the same as

%k = h arg min
%

{
min

M∈Π(%k−1,%)

1
2h〈Ck,M〉+ ε

h
H(M )

− ε
h

1>M1 + F (%)
}
, (A.15)

since 1>M1 = 1. The Lagrangian L associated with the inner minimization in

(A.15) is given by

L = 1
2h〈Ck,M〉+ ε

h
H(M )− ε

h
1>M1 + F (%)

+〈λ0,M1− %k−1〉+ 〈λ1,M
>1− %〉. (A.16)

Setting the derivative of (A.16) w.r.t. the (i, j)-th element of M equal to zero,

followed by algebraic simplification yields (2.28).
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A.3 Proof of Proposition 5

We start by rewriting the Lagrangian (3.17) as

L(ρ,u, ψ) =
∫ 1

0

∫
Rn

1
2‖u(x, t)‖22 ρ(x, t) dx dt

+
∫ 1

0

∫
Rn
ψ(x, t)∂ρ

∂t
dx dt︸ ︷︷ ︸

term 1

+
∫ 1

0

∫
Rn
ψ(x, t)

{
∇·(ρ (f +B(t)u))− ε1>(D(t)�Hess (ρ)) 1

}
dx dt︸ ︷︷ ︸

term 2

.

(A.17)

Next, we switch the order of integration, perform integration by parts w.r.t. t

in term 1, and integration by parts w.r.t. x in term 2. Assuming the limits for

‖ x ‖2→∞ are zero, the Lagrangian (A.17) then simplifies to

L(ρ,u, ψ) =
∫ 1

0

∫
Rn

(1
2‖u(x, t)‖2

2 −
∂ψ

∂t

− 〈∇ψ,f +B(t)u〉 − ε〈D(t),Hess (ψ)〉
)
ρ(x, t) dx dt, (A.18)

where we have used the (two-fold) integration by parts:

∫
Rn

{
1>(D(t)�Hess (ρ)) 1

}
ψ(x, t) dx

=
n∑

i,j=1

∫
Rn

∂2 (D(t)ρ(x, t))ij
∂xi∂xj

ψ(x, t) dx

=−
n∑

i,j=1

∫
Rn

∂ (D(t)ρ)ij
∂xj

∂ψ

∂xi
dx

=
n∑

i,j=1

∫
Rn

(D(t)ρ)ij
∂2ψ

∂xj∂xi
dx

=
∫
Rn

n∑
i,j=1

(D(t)ρ)ij
∂2ψ

∂xj∂xi
dx

=
∫
Rn
〈D(t),Hess (ψ)〉ρ(x, t) dx.
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Pointwise minimization of (A.18) w.r.t. u for a fixed PDF ρ, gives

uopt(x, t) = B(t)>∇ψ(x, t). (A.19)

Substituting (A.19) back into (A.18), and equating the resulting expression to

zero, we get the dynamic programming equation

∫ 1

0

∫
Rn

(
−∂ψ
∂t
− 1

2‖∇B(t)>ψ‖2
2 − 〈∇ψ,f〉

− ε〈D(t),Hess (ψ)〉
)
ρ(x, t) dx dt = 0.

(A.20)

For (A.20) to hold for arbitrary ρ, we must have

∂ψ

∂t
+ 1

2‖B(t)>∇ψ‖2
2 + 〈∇ψ,f〉 = −ε〈D(t),Hess (ψ)〉, (A.21)

which is the HJB PDE (3.19a). The associated FPK PDE (3.19b) results from

substituting (A.19) into (3.15b). The boundary conditions (3.20) follows from

(3.15c). This completes the proof. �

A.4 Proof of Theorem 6

In (3.4a), taking the gradient of ϕ w.r.t. x, we get

∇ϕ = 1
2ε exp

(
ψ

2ε

)
∇ψ. (A.22)
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Furthermore,

− ε〈D(t),Hess (ϕ)〉 = −ε
n∑

i,j=1
(D(t))ij

∂2

∂xi∂xj
exp (ψ/2ε)

= −εexp (ψ/2ε)
2ε

{ n∑
i,j=1

(D(t))ij
(

∂2ψ

∂xi∂xj
+ 1

2ε
∂ψ

∂xi

∂ψ

∂xj

)}

= 1
2ε exp

(
ψ

2ε

){
− ε〈D(t),Hess (ψ)〉 − 1

2‖B(t)>∇ψ‖2
2

}
. (A.23)

From (3.4a), taking partial derivative of ϕ w.r.t. t gives

∂ϕ

∂t
= 1

2ε exp
(
ψ

2ε

)
∂ψ

∂t

(3.19a)
= 1

2ε exp
(
ψ

2ε

){
− 1

2‖B(t)>∇ψ‖22 − 〈∇ψ,f〉 − ε〈D(t),Hess (ψ)〉
}

(A.22),(A.23)
= −〈∇ϕ,f〉 − ε〈D(t),Hess (ϕ)〉 =: LBKϕ,

i.e., ϕ(x, t) satisfies the backward Kolmogorov equation (3.22a).

To demonstrate that ϕ̂(x, t) satisfies the forward Kolmogorov equation (4.4a),

from (3.4b) we compute

∇ϕ̂ = exp
(
− ψ2ε

)(
−ρ

opt

2ε ∇ψ +∇ρopt
)
. (A.24)
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Consequently,

1> (D(t)�Hess (ϕ̂)) 1

=
n∑

i,j=1
(D(t))ij

∂2ϕ̂

∂xixj

(3.4b)
=

n∑
i,j=1

(D(t))ij
{

exp
(
− ψ2ε

)
∂2ρopt

∂xi∂xj
− 1

2ε
∂ρopt

∂xj
exp

(
− ψ2ε

)
∂ψ

∂xi

− ∂2ψ

∂xi∂xj

ρopt

2ε exp
(
− ψ2ε

)
− ∂ψ

∂xj

(
1
2ε
∂ρopt

∂xi
exp

(
− ψ2ε

)

+ρ
opt

4ε2 exp
(
− ψ2ε

)
∂ψ

∂xi

)}

= exp
(
− ψ2ε

){
ε1>

(
D(t)�Hess(ρopt)

)
1− 〈∇ρopt,D(t)∇ψ〉

− ρopt

2 〈D(t),Hess(ψ)〉+ ρopt

4ε 〈∇ψ,D(t)∇ψ〉
}
. (A.25)

Also, we have

−∇ ·
(
ρoptD(t)∇ψ

)
= −〈∇ρopt,D(t)∇ψ〉 − ρopt〈D(t),Hess(ψ)〉, (A.26)

and

∇ · (ϕ̂f) = 〈∇ϕ̂,f〉+ ϕ̂∇ · f

(5.50),(A.24)
= exp

(
− ψ2ε

)(
− ρopt

2ε 〈∇ψ,f〉+ 〈∇ρopt,f〉

+ ρopt∇ · f
)
, (A.27)

wherein we used the chain rule for the divergence operator. Taking partial deriva-
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tive of (3.4b) w.r.t to t, we then get

∂ϕ̂

∂t
= exp

(
− ψ2ε

)(
∂ρopt

∂t
− ρopt

2ε
∂ψ

∂t

)
(3.19)

= exp
(
− ψ2ε

) [{
−∇ · (ρoptf)−∇ · (ρD(t)∇ψ)

+ ε1>
(
D(t)�Hess

(
ρopt

))
1
}
− ρopt

2ε

{
− 1

2 ‖ B(t)>∇ψ ‖2
2

−〈∇ψ,f〉 − ε〈D(t),Hess(ψ)〉
}]

(A.25),(A.26),(A.27)
= −∇ · (ϕ̂f) + ε∆ϕ̂,

(A.28)

i.e., ϕ̂(x, t) satisfies (4.4a).

Combining (5.50) with (3.20), we obtain the boundary condition (3.23). Finally,

combining (3.4a) with (A.19), yields the optimal control uopt(x, t) = 2εB(t)>∇ logϕ.

�

A.5 Proof of Theorem 7

First, notice that (3.31) follows from combining s = 1− t and (3.30a). Next, using

p(x, s) := q(x, s) exp (−V (x)/ε) , (A.29)

we find that

∇q = exp (V/ε)
(
∇p+ p

ε
∇V

)
. (A.30)
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Applying divergence operator (w.r.t. x) to both sides of (A.30) yields

∆q =
〈
∇p+ p

ε
∇V,∇ exp (V/ε)

〉
+ exp (V/ε)∇ ·

(
∇p+ p

ε
∇V

)
= exp (V/ε)

(
p

ε2
‖∇V ‖2

2 + ∆p+ 2
ε
〈∇p,∇V 〉+ p

ε
∆V

)
. (A.31)

From (A.29), we have

∂p

∂s
= exp (−V/ε) ∂q

∂s
(3.31)

= exp (−V/ε) (−〈∇q,∇V 〉+ ε∆q)
(A.30),(A.31)

= −
〈
∇p+ p

ε
∇V,∇V

〉
+ ε

(
p

ε2
‖∇V ‖2

2 + ∆p

+2
ε
〈∇p,∇V 〉+ p

ε
∆V

)
= 〈∇p,∇V 〉+ ε∆p+ p∆V

= ∇ · (p∇V ) + ε∆p, (A.32)

which is indeed the PDE in (3.32). Setting s = 0 in (A.29) recovers the initial

condition in (3.32). This completes the proof. �

A.6 Proof of Theorem 8

Notice that (3.38) follows by combining s := 1− t, and (3.37a). To derive (3.39),

we start by taking the gradient of

p̃(ξ,−η, s) = q(ξ,η, s)exp
(
−1
ε

(1
2‖η‖

2
2 + V (ξ)

))
(A.33)
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w.r.t. ξ and η, respectively, to obtain

∇ξq = exp
(1
ε

(1
2‖η‖

2
2 + V (ξ)

))(
∇ξp̃+ p̃

ε
∇ξV

)
, (A.34a)

∇ηq = exp
(1
ε

(1
2‖η‖

2
2 + V (ξ)

))(
−∇−ηp̃+ 1

ε
p̃ η

)
. (A.34b)

Applying divergence operator w.r.t. η on both sides of (A.34b) yields

∆ηq = exp
(1
ε

(1
2‖η‖

2
2 + V (ξ)

))(
∆−ηp̃−

2
ε
〈∇−ηp̃,η〉

+ p̃

ε
+ p̃

ε
‖η‖2

2

)
. (A.35)

Thus, we have

∂p

∂s
= ∂p̃

∂s

(A.33)
= exp

(
−1
ε

(1
2‖η‖

2
2 + V (ξ)

))
∂q

∂s
(3.38),(A.34),(A.35)

= exp
(
−1
ε

(1
2‖η‖

2
2 + V (ξ)

)){
〈η,∇ξp̃+ p̃

ε
∇ξV 〉

− 〈∇ξV (ξ)− κη,−∇−ηp̃+ 1
ε
p̃η〉

+∆−ηp̃−
2
ε
〈∇−ηp̃,η〉

p̃

ε
+ p̃

ε
‖η‖2

2

}
= exp

(
−1
ε

(1
2‖η‖

2
2 + V (ξ)

)){
〈η,∇ξp̃〉 − κ〈∇−ηp̃, η〉

+ 〈∇−ηp̃,∇ξV 〉+ κp̃+ εκ∆−ηp̃
}

= exp
(
−1
ε

(1
2‖ϑ‖

2
2 + V (ξ)

)){
〈−ϑ,∇ξp〉+ κ〈∇ϑp, ϑ〉

+ 〈∇ϑp,∇ξV 〉+ κp+ εκ∆ϑp
}

= exp
(
−1
ε

(1
2‖ϑ‖

2
2 + V (ξ)

)){
− 〈ϑ,∇ξp〉

+∇ϑ · (p (∇ξV (ξ) + κϑ)) + εκ∆ϑp
}
,

which is the PDE in (3.39). Setting s = 0 in (A.33) recovers the initial condition

in (3.39) . �

198



A.7 Regularity of the Transition Densities for

(3.33) and (3.40)

In this Appendix, we point out that the transition probability densitiesK(s,y, t,x)

for (3.33) and (3.40), are indeed positive and continuous in x,y ∈ Rn for all s < t.

First, recall that the transition densities themselves solve the same PDEs as in

(3.33) and (3.40), with initial condition limt↓sK(s,y, t,x) = δ(x− y). From the

maximum principle for parabolic PDEs, it follows that the transient solutions of

(3.33) and (3.40) are positive as long as the initial conditions are positive. The

continuity, in the gradient drift case (3.33), is standard assuming V ∈ C2 (Rn);

see e.g., [202, Ch. 1.2]. For the degenerate diffusion case (3.40), the situation is

more subtle: a result from Villani [213, Theorem 7] ensures the continuity (w.r.t.

both state and time) of the transient solutions, under the assumptions on V (·)

stated in Section 3.4.2, viz. V ∈ C2 (Rm), inf V > −∞, and Hess (V ) uniformly

lower bounded.

A.8 Proof of Theorem 1

The necessary conditions for optimality (4.4) can be deduced using the Lagrange

multiplier theorem in Banach spaces; see [223, Ch.4.14, Proposition 1]. This

theorem allows us set up an augmented Lagrangian associated with (4.3) and

perform pointwise minimization to derive (4.4).
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To apply this in our context, define the function spaces

P01 := {ρ(t, ·) ∈ P2
(
X
)
| ρ(0, ·) = ρ0, ρ(1, ·) = ρ1},

P̃01 := P01 ∩ L2(H1([0, 1];X )) ∩ Ḣ1
((
H1([0, 1];X )

)∗)
,

X := P̃01 × L2([0, 1]×X ), Y := L2(H−1([0, 1];X )),

where [0, 1] denotes the time interval, and L2 (·) denotes the space of square inte-

grable functions. The notation L2([0, 1];H1(X )) stands for the Sobolev space of

functions having first order weak derivatives w.r.t. xut ∈ X , and finite L2 norms

w.r.t. t ∈ [0, 1]. Furthermore, Ḣ1
(
[0, 1];

(
H1(X )

)∗)
:= {φ(t, ·) ∈ L2 ([0, 1]) |

∂φ
∂t
∈ L2 ([0, 1]) , φ ∈

(
H1(X )

)∗
}, wherein

(
H1(X )

)∗
denotes the dual space of the

Sobolev space H1(X ). We denote the dual space of P̃01 as P̃∗01. In the defini-

tion of Y , the notation H−1
(
X
)
stands for the space of all linear functionals on

H1
0 (X ) := {φ ∈ H1 (X ) , and vanishes on ∂X}. Then, in (4.3a), the objective

functional F : X 7→ R, and is given by

F (ρ,u) :=
∫
X

∫ 1

0

1
2‖u(t,xut )‖2

2 ρ(t,xut ) dt dxut . (A.36)

The constraint is a mapping G : X 7→ Y given by

G(ρ,u)(ψ):=
∫
X
ψ(1,xut )ρ(1,xut )dxut −

∫
X
ψ(0,xut )ρ(0,xut )dxut

−
∫
X

∫ 1

0

∂ψ

∂t
ρ dxut dt+

∫
X

∫ 1

0
ψ(∇ · (ρu+ f)− θ∆ρ) dxut dt, (A.37)

where we used (4.3c) so that the boundary terms vanish in the integration by

parts. Following [3, p. 112-114], one can show that G′ρ(ρ,u) and G′u(ρ,u) (where
′ denotes derivative w.r.t. the subscripted variable) are surjective, and hence

by [223, Ch.4.14, Proposition 1], there exists ψ ∈ Y ∗ = L2([0, 1];H1
0 (X )). This
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result allows us to perform pointwise minimization of the augmented Lagrangian

L (ρ,u, ψ) :=
∫ 1

0

∫
X

1
2‖u(t,xut )‖2

2 ρ(t,xut ) dxut dt+∫
X

∫ 1

0
ψ
∂ρ

∂t
dtdxut︸ ︷︷ ︸

term1

+
∫ 1

0

∫
X
ψ (∇ · (ρu+ f)− θ∆ρ) dxut dt︸ ︷︷ ︸

term2

.

By performing integration by parts in t, term 1 becomes

∫
X

ψ(1,xut )ρ(1,xut )− ψ(0,xut )ρ(0,xut )︸ ︷︷ ︸
constant w.r.t. (ρ,u)

−
∫ 1

0

∂ψ

∂t
ρdt

dxut .

For term 2, we perform integration by parts w.r.t xut , impose the boundary con-

dition (4.3c), and thereby deduce that L (up to an additive constant) equals

∫ 1

0

∫
X

(1
2‖u‖

2
2−

∂ψ

∂t
− 〈∇ψ,u+ f〉 − θ∆ψ

)
ρ dxut dt. (A.38)

Pointwise minimization of (A.38) w.r.t u while fixing ρ, gives the optimal control

(5.32). Substituting (5.32) back into (A.38) and equating the resulting expression

to zero results in the dynamic programming equation

∫ 1

0

∫
X

(
−∂ψ
∂t
− 1

2‖∇ψ‖
2 − 〈∇ψ,f〉 − θ∆ψ

)
ρ dxut dt = 0.

Since the above holds for arbitrary ρ, we must have

∂ψ

∂t
+ 1

2‖∇ψ‖
2 + 〈∇ψ,f〉+ θ∆ψ = 0,

which is indeed the HJB PDE (4.4b). Substituting (5.32) in (4.3a) yields the FPK

PDE (4.4a).

The Neumann boundary condition (4.6a) follows directly (see [152]). The endpoint

201



conditions (4.6b) follow from (4.3d). The Robin boundary condition (4.6c) is

obtained by combining (5.32) with (4.3c). �

A.9 Proof of Theorem 2

The system of linear PDEs (4.8) are obtained via straightforward but tedious

computation detailed in [44, Appendix B]. The boundary conditions (4.9a) follow

by setting t = 0, 1 in (4.7). To derive (4.9b), evaluate (4.7a) at a boundary point

xbdy ∈ ∂X . In the resulting expression, take the natural log to both sides and

then take the gradient w.r.t. xbdy, to get

∇ψ(t,xbdy) = 2θ∇ϕ(t,xbdy)
ϕ(t,xbdy) . (A.39)

In both sides of (A.39), we take the inner product with the normal vector ν(xbdy),

and use (4.6a), to obtain 〈∇ϕ,ν〉|∂X = 0, as in (4.9b). To deduce the second

equality in (4.9b), we evaluate (4.7b) at xbdy, and then as before, take the natural

log followed by the gradient w.r.t. xbdy, and invoke (4.6a) to arrive at

〈∇ϕ̂(t,xbdy),ν(xbdy)〉
ϕ̂(t,xbdy) = 〈ρ

opt(t,xbdy),ν(xbdy)〉
ρopt(t,xbdy) . (A.40)

Using (4.6a) again in (4.6c), the RHS of (A.40) simplifies to 〈f(t,xbdy),ν(xbdy)〉/θ,

and thus yields the second equality in (4.9b). Finally, (4.10) follows from (4.7)

and (5.32). �
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A.10 Proof of Lemma 1

Proof of (i): To demonstrate continuity, it suffices to show that the infinite sum

in (4.14) for Kθ(x, y, t = 1) converges uniformly on [a, b]× [a, b]. For k ∈ N, let

fk(x, y) := exp
(
− θπ2k2

(b− a)2

)
cos

(
kπ(x− a)
b− a

)

× cos
(
kπ(y − a)
b− a

)
, (A.41)

and notice that

|fk(x, y)| ≤Mk for all (x, y) ∈ [a, b]× [a, b], (A.42)

where Mk := exp (−θπ2k2/(b− a)2). Furthermore,

lim
k→∞

∣∣∣∣Mk+1

Mk

∣∣∣∣ = lim
k→∞

exp
(
−θπ

2(2k + 1)
(b− a)2

)
= 0. (A.43)

By the ratio test [189, Ch. 3, Theorem 3.34], we then have

∞∑
k=1

Mk <∞. (A.44)

From (A.42) and (A.44), the Weierstrass M-test [189, Ch. 7, Theorem 7.10] implies

that ∑∞k=1 fk(x, y) is uniformly convergent for all (x, y) ∈ [a, b] × [a, b], and the

resulting sum must converge to a continuous function. Therefore, Kθ(x, y, t = 1)

is continuous for all (x, y) ∈ [a, b]× [a, b].

Proof of (ii): To establish positivity, set r := b− a, x̃ := x− a, ỹ := y − a. Using
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basic trigonometry and the Euler’s identity, we find that

1
r

+ 2
r

∞∑
m=1

exp
(
−θπ

2m2

r2

) [
cos

(
mπx̃

r

)
cos

(
mπỹ

r

)]

=
∞∑

m=−∞

1
2r exp

(
−θπ

2m2

r2

)
exp

(
imπ(x̃+ ỹ)

r

)
+

∞∑
m=−∞

1
2r exp

(
−θπ

2m2

r2

)
exp

(
imπ(x̃− ỹ)

r

)
. (A.45)

Let

g(m) := 1
2r exp

(
−θπ

2m2

r2

)
︸ ︷︷ ︸

=:g1(m)

exp
(
imπ(x̃+ ỹ)

r

)
︸ ︷︷ ︸

=:g2(m)

, (A.46)

and denote the Fourier transforms of g1(m), g2(m) as ĝ1(m̂), ĝ2(m̂), respectively.

Notice that

ĝ1(m̂) = 1√
4πθ

exp
(
−r

2m̂2

θ

)
, (A.47)

ĝ2(m̂) = δ
(
m̂− x̃+ ỹ

2r

)
, (A.48)

where δ(·) denotes the Dirac delta, and hence by the convolution theorem, the

Fourier transform of g is

ĝ(m̂) = 1√
4πθ

exp
(
−r

2

θ

(
m̂− (x̃+ ỹ)

2r

)2)

= 1√
4πθ

exp
(
−(2m̂r − x̃− ỹ)2

4θ

)
. (A.49)

Invoking the Poisson summation formula [201, Ch. 4, Theorem 2.4], we deduce

∞∑
m=−∞

g(m) =
∞∑

m̂=−∞
ĝ(m̂), (A.50)
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implying that the infinite sum in (A.45) is equal to

1√
4πθ

∞∑
m̂=−∞

[
exp

(
−(2m̂r − x̃− ỹ)2

4θ

)
+

exp
(
−(2m̂r − x̃+ ỹ)2

4θ

)]
, (A.51)

which is obviously positive. Therefore, Kθ(x, y, t = 1) is positive for all (x, y) ∈

[a, b]× [a, b]. �

A.11 Proof of Proposition 1

Using Lemma 9 and that [a, b] is a compact metric space, the hypotheses of [53,

Proposition 4 and Theorem 8] are satisfied. Therefore, the solution pair (ϕ1, ϕ0)

exists and is unique in the projective sense. Furthermore, the fixed point recur-

sion being contractive in Hilbert’s projective metric, converges (by contraction

mapping theorem) to this pair. �

A.12 Gradient in parameter space and differen-

tial in distribution space

Recall that the risk functional is R : F → R+. Let us define the following

functions:

• The objective function in parameter space:

f(θ1, . . . , θn) := F

(
1
n

n∑
i=1

δθi

)
= R

(
1
n

n∑
i=1

Ψ(θi)
)

+ 1
n

n∑
i=1

g(θi).
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• The objective functional in distribution space: F (µ) := R(〈Ψ, µ〉) + 〈g, µ〉.

By the chain rule, the gradient of f is

∇θjf(θ1, . . . , θn) = 1
n

〈
R′( 1

n

∑n
i=1 Ψ(θi)),Ψ′(θj)

〉
F

+ 1
n
∇g(θj), (A.52)

and the differential of F is

F ′(µ)(·) = 〈R′(〈Ψ, µ〉),Ψ(·)〉F + g(·). (A.53)

Identifying (A.52) and (A.53), we see that n∇θjf(θ1, . . . , θn) = ∇F ′(µn)(θj),

where µn = 1
n

∑n
i=1 δθi .

Observe that the gradient is scaled by n, which leads to nonlinear dynamics in

the mean field limit. A different scaling can lead to simpler, linearized dynamics

that are referred to as lazy training 67 or the kernel regime 123,220. Our analysis

is concerned with the fully non-linear regime.

The stochastic heavy ball dynamics in the parameter space is given by


θ̇i = ri,

ṙi = −n∇θif(θ1, . . . , θn)− γri +
√

2γβ−1 dW i
t ,

where i = 1, . . . , n. Using n∇θif(θ1, . . . , θn) = ∇F ′(µn) in the previous equation

yields (6.7).
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A.13 Consistency of the mean field limit

Proof of Theorem 5. The proof of consistency follows a standard martingale ar-

gument, which we briefly sketch here. Additional details can be found in 168,169.

For i = 1, . . . , n, let

X i
t :=

θit
rit

 , b(X i
t , µ

n
t ) :=

 rit

F ′([µnt ]θit)(θit)− γrit

 , σ(X i
t , µ

n
t ) :=

√
2β−1γ

0d×d

Id×d

 ,

and consider the system of Itô stochastic differential equations:

dX i
t = b(X i

t , µ
n
t ) dt+ σ(X i

t , µ
n
t ) dW i

t , (A.54)

where dW i
t , for each i = 1, . . . , n, is the standard Wiener process in T Θ.

For any compactly supported test function ϕ ∈ C2
b (T Θ), i.e., the space of all

bounded continuous functions ϕ : T Θ 7→ R with bounded continuous partial

derivatives of first and second order, we want to describe the time evolution of

the quantity

〈ϕ, µnt 〉 = 1
n

n∑
i=1

ϕ(X i
t). (A.55)

Using Itô’s rule, we have

dϕ(X i
t) = Lµnt ϕ(X i

t) dt+∇ϕ>(X i
t)σ(X i

t , µ
n
t ) dW i

t ,
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wherein the infinitesimal generator L is defined as

Lµϕ(x) := 〈b(x, µ),∇xϕ(x)〉+ 1
2trace

(
σσ>(x, µ)Hess(ϕ)

)
. (A.56)

Therefore,

d〈ϕ, µnt 〉 = 1
n

n∑
i=1

dϕ(X i
t)

= 〈Lµnt ϕ, µ
n
t 〉 dt+ 1

n

n∑
i=1
∇ϕ>(X i

t)σ(X i
t , µ

n
t ) dW i

t

:= 〈Lµnt ϕ, µ
n
t 〉 dt+ dMn

t , (A.57)

whereMn
t is a local martingale. Since ϕ ∈ C2

b (T Θ), we have |∇ϕ>σ|≤
√

2β−1γ|∇rϕ| ≤

C uniformly for some C > 0. Notice that the quadratic variation of the noise term

in (A.57) is

[Mn
t ] = 1

n2

n∑
i=1

∫ t

0
|∇ϕ>(X i

s)σ(X i
s, µ

n
s )|2 ds ≤ tC2

n
,

and by Doob’s martingale inequality, we deduce that

E
(

sup
t≤T

Mn
t

)2

≤ E
(

sup
t≤T

(Mn
t )2

)
≤ 4E

(
(Mn

t )2
)
≤ 4E([Mn

t ]) ≤ 4tC2

n
. (A.58)

So as n → ∞, the noise term in (A.57) converges to zero in probability, and we

get a deterministic evolution equation.

Next, we argue that sequence {(µnt )t>0}∞n=1 of measure-valued stochastic pro-

cesses converges to some probability measure-valued limiting process (µt)t>0 as

n → ∞. To this end, we take {(µnt )t>0}∞n=1 to be the (random) elements of

Ω = C([0,∞),M(T Θ)), the set of continuous functions from [0,∞) intoM(T Θ)
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endowed with the topology of weak convergence. Following 168, 169, it can be

shown that the sequence Pn of probability measures on Ω induced by the pro-

cesses {(µnt )t>0}∞n=1 weakly converges (along a subsequence) to some P, where P

is the measure induced by the limiting process (µt)t>0. By Skorohod’s represen-

tation theorem ?, the sequence {(µnt )t>0}∞n=1 converges P-almost surely to (µt)t>0.

Since the martingale term in (A.57) vanishes as n→∞, we obtain

d〈ϕ, µt〉 = 〈Lµϕ, µt〉 dt = 〈ϕ,L∗µµt〉 dt, (A.59)

which is valid almost everywhere for any test function ϕ ∈ C2
b (T Θ). In (A.59),

L∗ is the adjoint operator of L given by (A.56), and is defined as

L∗mµ(x) := −∇ · (µb(x,m)) + 1
2

n∑
i,j=1

∂2

∂xixj
(µσσ>(x,m))ij. (A.60)

This shows that µt is almost surely a weak solution to the nonlinear Fokker-Planck

PDE (6.8). �

A.14 Variations and bounds on the free energy

This section provides the details of the proofs in Section 6.3, and additional bounds

that are used in the proofs of the main results.
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A.15 Proof of Lemma 15

Proof. By assumption, ρt satisfies the continuity equation ∂ρt = −∇ · (ρtvt), thus

∂tV(ρt) = 〈V ′(ρt), ∂tρt〉 by the chain rule

= 〈V ′(ρt),−∇ · (ρtvt)〉 by the continuity equation

= 〈∇V ′(ρt), ρtvt〉∗ ,

where the last equality follows by duality of the gradient and divergence operators

∇ and ∇·, in the following sense: if f : T Θ→ R is a differentiable scalar function

and G : T Θ→ Rd is a vector field, then

〈∇f,G〉∗ + 〈f,∇ ·G〉 = 0. (A.61)

The inner product in the first summand above is for vector fields whereas the

same in the second summand is for scalar-valued functions. �

A.16 Lyapunov function in the single particle

case

This section highlights a connection between Lyapunov functions for the single

particle case, and Lyapunov functionals for the mean-field dynamics. To simplify

the notation, let ξ = (θ, r) denote a position-velocity pair. Lemma 15 states that

if ρt ∈ P(T Θ) solves the continuity equation ∂tρt = −∇ · (ρtv(ρt)), then the time

210



derivative of a functional V(ρ) along the solution trajectory ρt is given by

d
dtV(ρt) = 〈∇V ′(ρt), ρtv(ρt)〉∗ =

∫
T Θ
〈∇V ′(ρt)(ξ), v(ρt)(ξ)〉 ρt(ξ)dξ. (A.62)

In the single particle case, if ξt ∈ T Θ solves the differential equation ξ̇t = v(ξt)

for a vector field v, then the time derivative of a function V (ξ) along ξt is, by the

chain rule,
d
dtV (ξt) = 〈∇V (ξt), v(ξt)〉 . (A.63)

Comparing the two expressions, we see that (A.62) can be viewed as an integral

version of (A.63). This connection is particularly simple in the linear case with

no interaction: suppose V(ρ) = 〈V, ρ〉 for a differentiable function V : T Θ → R,

and the vector field v does not depend on ρ. Then the following holds:

If 〈∇V (ξ), v(ξ)〉 ≤ 0 for all ξ, then V is non-increasing along ρt, and V is non-

increasing along ξt.

In other words, the same sufficient condition describes Lyapunov functions for ξt

and Lyapunov functionals for ρt. In the nonlinear case, the condition becomes:

If 〈∇V ′(ρ)(ξ), v(ρ)(ξ)〉 ≤ 0 for all ρ and all ξ, then V is non-increasing along ρt,

and V ′(ρ) is non-increasing along the solution to ξ̇t = v(ρ)(ξt).

In this case, the condition describes a family of single-particle dynamics v(ρ) and

corresponding Lyapunov functions V ′(ρ), where the family is indexed by ρ.

We examine the case of the noiseless heavy ball dynamics as an example. In this
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case, we have

vHB(ρ)(θ, r) =

 r

−∇F ′(ρ)(θ)− γr

 , (A.64)

VHB(ρ)(θ, r) = F (ρ) +
〈1

2 |r|
2, ρ

〉
, (A.65)

V ′HB(ρ)(θ, r) = F ′(ρ)(θ) + 1
2 |r|

2, (A.66)

corresponding to equations (6.8),(6.9) without diffusion.

Viewed as a single-particle dynamics, vHB(ρ)(·) describes the damped nonlinear

oscillator with potential F ′(ρ)(·). It is well-known from the optimization literature

that (A.66) is a Lyapunov function for the dynamics (A.64), see, e.g., 87. This

fact can be easily verified: for all θ, r,

〈∇V ′HB(ρ)(θ, r), vHB(ρ)(θ, r)〉 =
〈 ∇F ′(ρ)(θ)

r

 ,
 r

−∇F ′(ρ)(θ)− γr

〉

= −γ|r|2≤ 0.

Therefore, that VHB is a Lyapunov functional for the mean-field dynamics is a

simple consequence of the single particle case. Proposition 16 is an extension of

this fact to the case with diffusion.
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A.17 Time-derivative of the free energy

Proof of Proposition 16. From the expression of the free energy E(ρ) = F ([ρ]θ) +〈
1
2 |r|

2, ρ
〉

+ 1
β
〈log ρ, ρ〉, we obtain,

E ′(ρ)(θ, r) = F ′([ρ]θ)(θ) + 1
2 |r|

2+β−1(1 + log ρ(θ, r)), (A.67)

and, using the shorthand `θ := β−1∇θ log ρt, `r := β−1∇r log ρt, we compute

∂tE(ρt) = 〈∇E ′(ρt), ρtv(ρt)〉∗

=
〈 ∇θF

′([ρt]θ) + `θ

r + `r

 , ρt
 r

−∇θF
′([ρt]θ)− γr − γ`r

〉
∗

=
〈
−γ 〈r, r〉 − γ 〈`r, `r〉 − 2γ 〈r, `r〉+ 〈`θ, r〉 −

〈
`r,∇θF

′([ρt]θ)
〉
, ρt
〉
.

We conclude by showing that 〈〈`θ, r〉 , ρt〉,
〈〈
`r,∇θF

′([ρt]θ)
〉
, ρt
〉
are equal to zero.

Indeed,

∫
T Θ
〈`θ(θ, r), r〉 ρt(θ, r) dθdr

= β−1
∫
T Θ
〈∇θ log ρt(θ, r), r〉 ρt(θ, r) dθdr by definition of `θ

= β−1
∫
T Θ
〈∇θρt(θ, r), r〉 dθdr

= −β−1
∫
T Θ
〈ρt(θ, r),∇θ · r〉 dθdr by duality (A.61)

= 0,
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and similarly,

∫
T Θ

〈
`r(θ, r),∇θF

′([ρt]θ(θ))
〉
ρt(θ, r) dθdr

= β−1
∫
T Θ

〈
∇r log ρt(θ, r),∇θF

′([ρt]θ(θ))
〉
ρt(θ, r) dθdr by definition of `r

= β−1
∫
T Θ

〈
∇rρt(θ, r),∇θF

′([ρt]θ)(θ)
〉

dθdr

= −β−1
∫
T Θ

〈
ρt(θ, r),∇r · ∇θF

′([ρt]θ)(θ)
〉

dθdr by duality (A.61)

= 0,

where the last equality is due to the fact F ′([ρt]θ) does not depend on r. �

A.18 Additional bounds on the entropy and free

energy

We recall the expression of the free energy:

E(ρ) = F ([ρ]θ) +
〈1

2 |r|
2, ρ

〉
+H(ρ)

= F0([ρ]θ) +
〈
g(θ) + 1

2 |r|
2, ρ

〉
+H(ρ),

where H(ρ) := 〈log ρ, ρ〉 is the negative entropy, F0(ρ) = R(〈Ψ, ρ〉) is the unregu-

larized risk, and g : Θ→ R+ is the regularization function.

Let K be the set

K := {ρ ∈ P(T Θ) :
〈
g(θ) + |r|2/2, ρ

〉
<∞}. (A.68)

First, we provide the following lower-bound on the free energy. For ρ ∈ P(T Θ),
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we write log ρ = log+ ρ − log− ρ, where log+ ρ := max{log ρ, 0} and log− ρ :=

max{− log ρ, 0}.

Proposition 18. Suppose that assumptions (A1)-(A4) hold. Then there exists a

positive function C(α) such that for all ρ ∈ K, and all α ≤ β

E(ρ) ≥ F0([ρ]θ) + (1− α/β) 〈g, ρ〉 − C(α)
β

. (A.69)

Proof. We can decompose E into

E(ρ) = F0([ρ]θ) +
〈
g(θ) + |r2|/2, ρ

〉
+ 1
β

(
〈
log+ ρ, ρ

〉
−
〈
log− ρ, ρ

〉
). (A.70)

We focus on bounding the last term. First, following ?, observe that for any

constant c ≥ 1, we have

x log− x ≤ c(x+ e−c) for all x ≥ 0.

The inequality is trivial for x ≥ 1 since the LHS is 0, by definition. For x ∈ [0, 1],

this can be verified by noting that the difference d(x) := x log− x − c(x + e−c)

attains its maximum at x = e−c−1, and d(e−c−1) ≤ 0. Applying the previous

inequality with a function c : T Θ→ [1,+∞), we have

〈
log− ρ, ρ

〉
≤
〈
c(θ, r), ρ(θ, r) + e−c(θ,r)

〉
.

Let α > 0 and take c(θ, r) := 1 + α(g(θ) + |r|2
2 ), which is ≥ 1 since the regularizer

g is non-negative by assumption. Then

〈
log− ρ, ρ

〉
≤ 1 +α

〈
g(θ) + |r|2/2, ρ

〉
+
∫
T Θ

(1 +αg(θ) +α
|r|2

2 )e−1−αg(θ)−α |r|
2

2 dθdr.

(A.71)
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We shall prove that the last term, which we denote by C(α) :=
∫
T Θ(1 + αg +

α |r|
2

2 )e−1−αg(θ)−α |r|
2

2 , is finite by virtue of assumption (A4). Indeed, the assumption

guarantees that e−αg is integrable. It also follows that ge−αg is integrable: indeed,

for any ε ∈ (0, α), using the inequality 1 + εg ≤ eεg, we can write that ge−αg ≤
e−αg+εg−e−αg

ε
, and the upper-bound is integrable by assumption (A4).

To summarize, we obtain

〈
log− ρ, ρ

〉
≤ α

〈
g(θ) + |r|2/2, ρ

〉
+ C(α), (A.72)

for a finite, positive function C(α). Using the last inequality in (A.70), and the

fact
〈
log+ ρ, ρ

〉
≥ 0, we obtain

E(ρ) ≥ F0([ρ]θ) +
〈
g(θ) + |r2|/2, ρ

〉
(1− α/β)− C(α)

β
.

Finally, taking α ≤ β guarantees that the term 〈|r|2, ρ〉 (1−α/β) is non-negative,

and proves the claim (A.69). �

Proposition 19. Let ρt ∈ C ([0,∞),P(T Θ)) be a solution to (6.10) with initial

condition ρ0 ∈ P(T Θ), and suppose that ρ0 satisfies assumption (A5). Then

for all t ≥ 0, the quantities E(ρt), F0([ρt]θ), 〈g(θ) + |r|2/2, ρt〉, 〈log+ ρt, ρt〉, are

bounded independently of t.

Proof. From (A.70), we have

F0([ρt]θ) +
〈
g(θ) + |r|2/2, ρt

〉
+ β−1〈log+ ρt, ρt〉 = E(ρt) + β−1〈log− ρt, ρt〉.

The terms on the left-hand-side are non-negative. We upper bound the right-
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hand-side using (A.72), to obtain

F0
(
[ρt]θ

)
+
〈
g(θ) + |r|2/2, ρt

〉
(1− α/β) + β−1〈log+ ρt, ρt〉 ≤ E(ρt) + β−1C(α).

(A.73)

Choosing α < β, as in the proof of Proposition 18, and using the fact E(ρt) is a

decreasing function of t (Proposition 16), we have

0 ≤ F0
(
[ρt]θ

)
+
〈
g(θ) + |r|2/2, ρt

〉
(1− α/β) + β−1〈log+ ρt, ρt〉

≤ E(ρt) + β−1C(α)

≤ E(ρ0) + β−1C(α) <∞

where the E(ρ0) is finite by virtue of assumption (A5). The statement follows. �

The following is a consequence of Propositions 16 and 19.

Theorem 9. Consider the set up in Propositions 16 and 19. Then the solution

trajectory (ρt)t≥0 for (6.10) satisfies

lim
t→∞

∫
T Θ
|r + β−1∇r log ρt|2ρt dθdr = 0. (A.74)

Proof. Propositions 16 and 19 allow us to deduce that the functional E(ρt) given

by (6.9) has a finite limit as t→∞. Now our strategy is to prove that G := ∂tE is

uniformly continuous in t. Then, by Barbalat’s lemma ?, the claim (A.74) follows.

To prove the uniform continuity of G in t, it suffices to show that ∂tG is upper

bounded for all t ≥ 0. First notice that

|∂tG|= |〈∇G′(ρt), ρtvt〉|= |Eρt [∇G′, vt] |≤
√
Eρt [|∇G′(ρt)|2]

√
Eρt [|vt|2], (A.75)
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where the last inequality is due to Cauchy-Schwarz. By applying Cauchy-Schwarz

again,

Eρt
[
|vt|2

]
=
∫
T Θ

(
|r|2+|∇θF

′([ρt]θ) + γr + γ`r|2
)
ρtdθdr

≤
∫
T Θ

(
(1 + 3γ2)|r|2+3γ2|`r|2+3|∇θF

′([ρt]θ)|2
)
ρtdθdr. (A.76)

Per Assumption (A3), ∇θF
′(ρθt )(θ) ∈ L∞(Θ), and hence

∫
|∇θF

′(ρθt )|2ρtdθdr <∞.

From Proposition 19, we know that
∫
|r|2ρtdθdr <∞. Noting that

∫
|`r|2ρtdθdr =

β−2 ∫ |∇rρt|2
ρt

dθdr = 4β−2 ∫ |∇r
√
ρt|2dθdr, and that ∇r

√
ρ ∈ L2([0, T ], T Θ) for

any T > 0 (see e.g., ?), we have
∫
|`r|2ρtdθdr < ∞. Putting these together,

we find that (A.76) is finite for all t ≥ 0. We also note that the finiteness of∫
|`r|2ρtdθdr = β−2 ∫ |∇rρt|2

ρt
dθdr implies that ρt is positive almost everywhere,

and that the Fisher information
∫ |∇ρt|2

ρt
dθdr <∞.

To show that the other factor in the right-hand-side of (A.75) is finite, let G1 :=

−γ〈|r|2, ρt〉, G2 := −2γ
∫
〈r, `r〉ρtdθdr, G3 := −γ〈|`r|2, ρt〉, and notice that

G = −γ
∫
T Θ
|r + `r|2ρt dθdr = G1 +G2 +G3. (A.77)

218



Direct calculation of the functional derivatives yield

G′1 = −γ|r|2, (A.78a)

G′2 = 2β−1γ∇(
θ

r

) · ∂

∂∇(
θ

r

)ρt
〈0

r

 ,∇(
θ

r

)ρt〉 = 2dβ−1γ, (A.78b)

G′3 = −β−2γ

−|∇rρt|2

ρ2
t

−∇(
θ

r

) · ρ−1
t

∂

∂∇(
θ

r

)ρt
〈 0

∇rρt

 ,∇(
θ

r

)ρt〉


= −β−2γ

(
−|∇rρt|2

ρ2
t

− 2
ρt

∆rρt + 2
ρ2
t

|∇rρt|2
)

= −β−2γ

(
|∇rρt|2

ρ2
t

− 2
ρt

∆rρt

)
.

(A.78c)

Combining (A.77) and (A.78), we get

G′ = −γ|r|2+2dβ−1γ − β−2γ
(
ρ−2
t |∇rρt|2−2ρ−1

t ∆rρt
)
.

Therefore,

∇G′ =

∇θG
′

∇rG
′

 = −γ

 β−2∇θ

(
ρ−2
t |∇rρt|2−2ρ−1

t ∆rρt
)

2r + β−2∇r

(
ρ−2
t |∇rρt|2−2ρ−1

t ∆rρt
)
 . (A.79)

Recalling that β−2ρ−2
t |∇rρt|2= |`r|2, we get

|∇G′|2≤ 3γ2

4|r|2+
∣∣∣∣∇(θ

r

)|`r|2∣∣∣∣2 + 4β−4
∣∣∣∣∇(θ

r

)ρ−1
t ∆rρt

∣∣∣∣2
 , (A.80)

and hence Eρt [|∇G′|2] (the other factor in the RHS of (A.75)) is less than or equal
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to

12γ2
∫
|r|2ρtdθdr︸ ︷︷ ︸

term 1

+3γ2
∫ ∣∣∣∣∇(θ

r

)|`r|2∣∣∣∣2ρtdθdr
︸ ︷︷ ︸

term 2

+12β−4γ2
∫ ∣∣∣∣∇(θ

r

)ρ−1
t ∆rρt

∣∣∣∣2ρtdθdr
︸ ︷︷ ︸

term 3

.

(A.81)

By Proposition 19, the term 1 in (A.81) is finite. Showing the finiteness of the

terms 2 and 3 in (A.81) requires somewhat tedious estimates. We only sketch the

main ideas for the same.

Letting u := |`r|2, term 2 equals
∫
|∇u|2ρtdθdr =

∫
〈∇u, ρt∇u〉dθdr, which upon

integration-by-parts and setting the boundary term to zero becomes:

−
∫
u∇ · (ρt∇u)dθdr = −

∫
u (〈∇ρt,∇u〉+ ρt∆u) dθdr (A.82)

= −Eρt [〈∇ log ρt, u∇u〉] + Eρt [u∆u] . (A.83)

Thus, term 2 in (A.81) can be written as

∫
|∇u|2ρtdθdr = |−Eρt [〈∇ log ρt, u∇u〉] + Eρt [u∆u] |

≤ Eρt [|−〈∇ log ρt, u∇u〉+ u∆u|]

≤ Eρt [|−〈∇ log ρt, u∇u〉|] + Eρt [|u∆u|]

≤ |∇ log ρt|L2(ρt)|u∇u|L2(ρt)+|u|L1(ρt)|∆u|L∞(ρt), (A.84)

wherein we used the Jensen’s, triangle and Hölder’s inequalities, respectively.

Finiteness for two of the four terms in (A.84) have been pointed out before:

|∇ log ρt|L2(ρt)=
∫ |∇ρt|2

ρt
dθdr (the Fisher information) <∞, and

|u|L1(ρt)=
∫
|`r|2ρtdθdr <∞.
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Following some calculation, the same estimates can be used to bound the remain-

ing two terms.

For term 3 in (A.81), notice that ρ−1
t ∆rρt = β2|`r|2+β∇r · `r, and hence term 3

equals

Eρt
∣∣∣∣2β2

(
∂`r
∂θ

)>
`r + β∇θ (∇r · `r)

∣∣∣∣2 + Eρt
∣∣∣∣2β2

(
∂`r
∂r

)>
`r + β∇r (∇r · `r)

∣∣∣∣2.
Similar estimates as before show the finiteness of the above. We summarize: since

each of the two factors in the RHS of (A.75) are finite, ∂tG is upper bounded for

all t ≥ 0, which suffices to conclude that G is uniformly continuous in t. Then by

Barbalat’s lemma ?, (A.74) follows. �

A.19 Stationary solutions and convergence

A.20 Proof of Theorem 6

We seek to prove that any stationary solution ρ? decomposes into the product of

marginals ρ? = exp(−β |r|
2

2 )
Z1

[ρ?]θ, where [ρ?]θ is a solution to the Boltzmann equa-

tion (6.13).

Proof. Let ρt be the solution initialized at ρ?. Since ρ? is stationary, we must have

∂tE(ρt) = 0, i.e., ∫
|r + β−1∇r log ρ?|2dρ? = 0, (A.85)

by Proposition 16. Let ρ?(θ, r) = exp(−β2 |r|2)
Z1

η(θ, r). To prove the first part of

the claim, we seek to show that η(θ, ·) is a constant for a.e. θ. We have r +
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β−1∇r log ρ? = β−1∇r log η, thus (A.85) yields

∇r log η = 0 η-a.e.

This implies that for a.e. θ, the function η(θ, ·) is constant on its support; but it

is also constant (equal to 0) outside its support, thus by continuity it is constant

on its entire domain. This proves the first part of the claim.

So far, we have shown that there exists η ∈ P(Θ) such that

ρ?(θ, r) =
exp

(
−β

2 |r|
2
)

Z1
η(θ),

and we seek to characterize η. By the continuity equation (6.10), since ρ? is

stationary, we must have ∇ · (ρ?v(ρ?)) = 0, i.e.,

0 = ∇θ · (ρ?r) +∇r · [ρ?(−∇F ′(η)− γr − γβ−1∇r log ρ?)]

= ∇θ · (ρ?r)−∇r · [ρ?∇F ′(η)] since ∇r log ρ? = −βr,

=
〈exp

(
−β

2 |r|
2
)

Z1
r,∇θη

〉
−
〈
η∇θF

′(η),∇r

exp
(
−β

2 |r|
2
)

Z1

〉

=
〈exp

(
−β

2 |r|
2
)

Z1
r,∇θη + βη∇θF

′(η)
〉
,

where the equality is for a.e. r, θ. Therefore, ∇θη + βη∇θF
′(η) = 0. This is

equivalent to

∇θ log η + β∇θF
′(η) = 0, η-a.e.,

and integrating, we obtain: log η = −β∇θF
′(η) + a constant. This is equivalent

to the Boltzmann fixed point equation (6.13), as desired. �
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A.21 Proof of Proposition 17

We seek to prove that the operator

T : ρ 7→ T (ρ) = exp(−βF ′(ρ))
Z2(ρ)

admits a unique point on P(Θ). Note that T is well-defined for all ρ by virtue

of assumption (A4). Indeed, F ′(ρ) = F ′0(ρ) + g, and assumption (A4) states

that F ′0 is uniformly bounded on P , and exp(−βg) is integrable, thus if M is an

upper bound on ‖F ′0(ρ)‖∞, we have exp(−βF ′(ρ)) ≤ exp βM exp(−βg), which is

integrable.

Proof of existence: We will use Schauder’s fixed point theorem ?,?, stated below.

Recall that a subset of a metric space is precompact if any sequence in that subset

has a converging subsequence.

Theorem (Schauder’s fixed point theorem). Let X be a Banach space andM ⊂ X

be non-empty, convex and closed. If T : M 7→ M is a continuous operator such

that T (M) is precompact, then T has a fixed point.

Let B = {ρ ∈ L1(Θ) : ρ ≥ 0, ‖ρ‖1≤ 1}. Note that T (B) ⊂ P(Θ), since T (ρ) is

normalized. Thus, to prove that T has a fixed point on P , it suffices to prove

that T has a fixed point on B. To this end, we apply Schauder’s theorem with

X = L1(Θ) and M = B.

Let (ρn) be a sequence of elements in B. We shall prove that (T (ρn)) has a

converging subsequence. We have that F ′ decomposes into F ′(ρn) = F ′0(ρn) +

g. By assumption (A4), (F ′0(ρn))n is uniformly equicontinuous and uniformly

bounded, thus by the Arzela-Ascoli theorem, there exists a subsequence (F ′0(ρkn))
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that converges uniformly to some continuous, bounded function `. We will show

that T (ρkn) converges in L1 to ρ := exp(−β(` + g))/‖exp(−β(` + g))‖1, which

is well-defined since ` is bounded and g is confining. Observing that for all n,

‖T (ρkn)‖1= ‖ρ‖1= 1, we have by Scheffé’s lemma ? that poitwise convergence

of T (ρkn) to ρ implies convergence in L1. Thus it suffices to prove pointwise

convergence.

By continuity of the exponential function, we have

exp(−βF ′(ρkn))→ exp(−β(`+ g)), (A.86)

where the convergence is pointwise. By assumption (A4), {F ′0(ρ), ρ ∈ B} is uni-

formly bounded and exp(−βg) is integrable, thus, by the dominated convergence

theorem,

‖exp(−βF ′(ρkn))‖1→ ‖exp(−β(`+ g))‖1. (A.87)

By (A.86) and (A.87), we have T (ρkn) converges pointwise to ρ, which concludes

the proof.

�

Proof of uniqueness: Suppose ρ1, ρ2 ∈ P(Θ) are two fixed points of T . Then we

have for i ∈ {1, 2},

logZ(ρi) = − log ρi(θ)− βF ′(ρi)(θ) for a.e. θ. (A.88)
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We have

0 = 〈logZ(ρ1)− logZ(ρ2), ρ1 − ρ2〉 since logZ(ρi) are constants

= −〈log ρ1 + βF ′(ρ1)− log ρ2 − βF ′(ρ2), ρ1 − ρ2〉 by (A.88)

= −〈F ′(ρ1)− F ′(ρ2), ρ1 − ρ2〉 −DKL(ρ1‖ρ2)−DKL(ρ2‖ρ1)

≤ −DKL(ρ1‖ρ2)−DKL(ρ2‖ρ1) by convexity of F .

where DKL(ρ1‖ρ2) =
〈
log ρ1

ρ2
, ρ1

〉
. Note that ρ1, ρ2 are both normalized by as-

sumption, so both KL divergences are non-negative, with equality if and only if

ρ1 = ρ2 a.e. This concludes the proof. �

A.22 Proof of Theorem 7

Proof. (i) Recall from Section 2.2 that under the stated conditions on the ini-

tial measure µ0, the equation (6.10) admits a unique solution (µt)t≥0 satisfying

µt ∈ C ([0,∞),M(T Θ)), that is, (µt)t≥0 is a continuous measure-valued trajectory

satisfying
∫

dµt <∞ for all t ≥ 0.

From Proposition 19, we know that the quantities F0([µt]θ) < ∞,
∫
T Θ(g(θ) +

|r|2/2)dµt <∞,
∫
T Θ log+ µtdµt <∞ for all t ≥ 0, with their upper bounds being

independent of t. Hence by the Dunford-Pettis theorem ?, the solutions (µt)t≥0

are weakly compact in L1(T Θ). Thus, there exists µ? and a subsequence (µtk)k≥1

such that (µtk)k≥1 converges weakly to µ?.

To prove µt is absolutely continuous (w.r.t. the Lebesgue measure) for each t ≥ 0,

we now show that the sequence of random vectors (Xk)k≥1 := (θtk , rtk)k≥1 are

uniformly integrable. By de la Vallée-Poussin’s criterion ?, the latter holds if and
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only if there is an increasing function Φ : R>0 7→ R>0 satisfying limx→∞
Φ(x)
x

=

+∞, such that supk≥1 Eµtk [Φ(Xk)] < ∞. To apply this in our context, we set

Φ(x) ≡ x2, and use the result from Proposition (19) that
∫
T Θ|rtk |2dµtk is uniformly

upper bounded for all k ≥ 1. Therefore, (Xk)k≥1 are uniformly integrable, and

equivalently, the measures µtk are absolutely continuous, and the corresponding

joint PDFs exist for all k ≥ 1. Taking {tk}k≥1 to be an arbitrary sequence, we

deduce that µt is absolutely continuous for each t ≥ 0. Taking {tk}k≥1 to be the

sequence corresponding to the weakly convergent subsequence (µtk)k≥1 mentioned

in the previous paragraph, we deduce that µ? is absolutely continuous.

(ii) Let us consider the joint PDF trajectory (ρt)t≥0 corresponding to the measure-

valued trajectory (µt)t≥0 that solves (6.10). From part (i), we know that (ρt)t≥0

exists and is weakly compact in L1(T Θ). Letting

ζt(s, θ, r) := ρt+s(θ, r),

we now prove that (ζt)t≥0 is strongly compact in C([0, T ], L1(T Θ)) for any T > 0.

From Theorem 9, we can write

lim
t→∞

∫ T

0
∂tE(t+ s) ds = 0, (A.89)

which combined with Proposition 16 yields

lim
t→∞
‖r
√
ζt + 2β−1∇r

√
ζt‖L2([0,T ]×T Θ)= 0. (A.90)

The remaining proof follows the same line of arguments as in ?. Specifically, for

any given sequence {tk}k≥1 with limk→∞ tk =∞, letting ζk := ζtk , one shows that

the sequence of {ζk}k≥1 is relatively compact in C ([0, T ], L1(T Θ)) for any T > 0.
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Consequently, ζk → ζ∞ strongly in L1(T Θ), which is to say ρt → ρ? (equivalently,

µt → µ?) strongly in L1(T Θ), as desired. �

A.23 Proof of Theorem 8

We start by showing that ρ? is a minimizer of E(ρ) over K, by adapting the

argument from the first-order case ?. We omit some details and emphasize the

differences.

Recall that

K = {ρ ∈ P(T Θ) :
〈
g(θ) + |r|2/2, ρ

〉
<∞}.

Lemma 20. Let ρ? be the unique solution of the Boltzmann fixed point equa-

tion (6.13). Then for all ρ ∈ K, E(ρ) ≥ E(ρ?).

Proof. First, we argue that E has a minimizer over K. Note that E(ρ) is lower-

bounded on K by Proposition 18. Thus, infρ∈K E(ρ) is finite and there exists a

sequence ρk ∈ K such that limk→∞ E(ρk) = infρ∈K E(ρ). Furthermore, by the same

argument as the proof of Proposition 19, the quantities

F0([ρk]θ),
〈
g(θ) + |r|2/2, ρk

〉
,
〈
log+ ρk, ρk

〉
(A.91)

are bounded uniformly in k. Thus, by de la Vallée-Poussin’s criterion ?, there

exists ρ∞ ∈ K such that a subsequence of ρk converges weakly to ρ∞. By lower

semi-continuity of E , we have E(ρ∞) = infρ∈K E(ρ).

Second, we show that any minimizer of E on K, must, in fact, be equal to ρ?. Let ρ̄

be such a minimizer. Then ρ̄ must be positive a.e., otherwise, a perturbation of ρ̄
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can decrease the value of E . Indeed, suppose that there exists a bounded subset S

of positive Lebesgue measure, such that ρ̄ ≡ 0 on S, and define ρ̄ε = (1−ε)ρ̄+εuS,

where uS = 1S/‖1S‖1 is the uniform distribution over S. Then ρ̄ε is in K (since S

is bounded), and there exist constants A0 and B0 such that

F ([ρ̄ε]θ) ≤ (1− ε)F ([ρ̄]θ) + εA0 by convexity of F〈
|r|2/2, ρ̄ε

〉
≤ (1− ε)

〈
|r|2/2, ρ

〉
+ εB0 by boundedness of S

H(ρ̄ε) = 〈log((1− ε)ρ̄+ εuS), (1− ε)ρ̄+ εuS〉

≤ (1− ε)H(ρ̄) + ε log ε

‖1S‖1
.

Summing the previous inequalities, we see that there exists a constant C such that

E(ρ̄ε) ≤ (1− ε)E(ρ̄) + εC + 1
β
ε log(ε), which is strictly less than E(ρ̄) for ε < e−βC ,

a contradiction. Therefore ρ̄ must be positive a.e.

Once we have established that ρ̄ is positive a.e., we can show that ρ̄ satisfies the

Boltzmann fixed point equation (6.13). Indeed, consider the set Γk := {(θ, r) : 1
k
≤

ρ̄(θ, r) ≤ k}, and let Tk = {f ∈ C∞(T Θ) : support(f) ⊆ Γk, ‖f‖∞≤ 1,
∫
f = 0}.

In other words, Tk is a set of tangent vectors such that ρ̄ + 1
k
Tk ⊂ K. The

directional derivative of E in the direction f ∈ Tk is well-defined and given by

lim
ε→0

E(ρ̄+ εf)− E(ρ̄)
ε

=
〈
F ′([ρ̄]θ) + 1

2 |r|
2+(1 + log ρ̄), f

〉
(A.92)

and since ρ̄ is a minimizer of E on K, (A.92) must be non-negative for all f .

Therefore one must have that the integrand F ′([ρ̄]θ)+ 1
2 |r|

2+(1+log ρ̄) is zero a.e.

on Γk. But since T Θ = ∪k≥1Γk, it must be zero a.e. on T Θ. This implies that ρ̄

is a solution to the Boltzmann fixed point equation (6.13), which admits a unique

solution ρ? by Proposition 17. This concludes the proof. �
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Proof of Theorem 8. Let Fλ denote the regularized functional with regularization

coefficient λ, i.e. Fλ(ρ) = F0(ρ) + λ 〈g, ρ〉. We shall prove that there exists a

constant C1 such that, for all β ≥ 1,

F1−1/β([ρ?]θ) ≤ inf
η∈P(Θ)

F (η) + C1 + d log β
β

.

By Lemma 20, we have E(ρ?) ≤ E(ρ) for all ρ ∈ K, and observing that ρ? ∈ K, we

have by Proposition 18 applied to ρ? and α = 1, F1−1/β([ρ?]θ) ≤ E(ρ?) + C(1)/β.

Combining the previous bounds, we have for all ρ ∈ K,

F1−1/β([ρ?]θ) ≤ E(ρ) + C(1)
β

. (A.93)

In order to conclude, we shall bound the difference between E and F . Note that

E(ρ)−F ([ρ]θ) = 1
2 〈|r|

2, ρ〉+ 1
β
〈log ρ, ρ〉, which can be arbitrarily large due to the

entropy term. To resolve this issue, one can take a convolution with a Gaussian

to control the entropy. More precisely, let η ∈ P(Θ), and define ρη ∈ K as the

product:

ρη(θ, r) := [g1 ∗ η](θ)g2(r)

where g1, g2 are two Gaussian PDFs over θ and r respectively, each with mean

0 and variance 1/β, and ∗ denotes the convolution. Our goal is to bound the

difference between E(ρη) and F (η). Following the same line of argument as in ?,
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there exists a constant K such that

F (g1 ∗ η) ≤ F (η) + K

β
,〈1

2 |r|
2, g2

〉
= d/2

β
,

H(ρη) ≤ (H(g1) +H(g2)) = −d log(2πe/β).

Summing the inequalities above, we obtain

E(ρη) = F (g1 ∗ η) + 1
2
〈
|r|2, g2

〉
+ 1
β
H(ρη) ≤ F (η) + K + d/2− d log(2πe/β)

β
.

(A.94)

Finally, we combine the inequalities (A.93) and (A.94), to obtain, for all η ∈ P(Θ),

F1−1/β([ρ?]θ) ≤ F (η) + C1 + d log(β)
β

,

where C1 is a constant equal to C(1) +K + d/2− d log(2πe). Taking the infimum

over η yields the desired result. �

A.24 The case of quadratic loss

In this section, we illustrate the assumptions in the quadratic loss case.

Let R be given by R(ψ) = 1
2E(x,y)∼D(ψ(x)−y)2 = 1

2‖ψ−y‖
2
F , where (x, y) are the

input feature and labels, respectively, and D is the joint data distribution. The
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functional F is the sum F (µ) = F0(µ) + 〈g, µ〉, where for µ ∈M(Θ),

F0(µ) = R(〈Ψ, µ〉)

= 1
2‖〈Ψ, µ〉 − y‖

2
F

= 1
2‖〈Ψ, µ〉 ‖

2
F−〈〈Ψ, µ〉 , y〉F + 1

2‖y‖
2
F . (A.95)

The first term in (A.95) can be written as

1
2‖〈Ψ, µ〉 ‖

2
F = 1

2Ex
(∫

Θ
Ψ(θ)(x)dµ(θ)

)2
= 1

2

x

Θ

Ex[Ψ(θ)(x)Ψ(θ̃)(x)]dµ(θ)dµ(θ̃)

= 1
2U [µ, µ],

where U(θ, θ̃) := Ex[Ψ(θ)(x)Ψ(θ̃)(x)], and the symbol U [µ, ν] denotes the double

integral
s
U(θ, θ̃)dµ(θ)dν(θ̃). The second term in (A.95) can be written as

−〈〈Ψ, µ〉 , y〉F = −E(x,y)

[
y
∫

Θ
Ψ(θ)(x)dµ(θ)

]
= 〈V, µ〉 ,

where V (θ) := −Ex,y[yΨ(θ)(x)]. The last term in (A.95) is a constant independent

of µ. To summarize, the functional F0 can be written as

F0(µ) = 1
2U [µ, µ] + 〈V, µ〉+ 1

2‖y‖
2
F . (A.96)

We now discuss our assumptions in this quadratic case. In particular, we show

that the assumptions made in 158 (for the first-order gradient flow) imply our

assumption (A4).

First, it is assumed in 158 that a quadratic regularizer is used, g(θ) = |θ|2/2,

which is confining since lim|θ|→∞ g(θ) = ∞ and exp(−βg) is integrable for all

β > 0. This proves the second part of assumption (A4). They also make the
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following assumptions on U, V .

(B1) U and V are uniformly bounded i.e., there exists C1, C2 > 0 such that

‖U(·, ·)‖∞≤ C1, ‖V (·)‖∞≤ C2.

(B2) U and V are differentiable, and have bounded gradients, i.e., there exist

C3, C4 such that

‖∇U(·, θ̃)‖∞ ≤ C4 for all θ̃, ‖∇V (·)‖∞ ≤ C3.

To prove that (A4) is satisfied, we need to show that the family {F ′0(ρ), ρ ∈ B} is

uniformly equicontinuous and uniformly bounded, where B = {ρ ∈ L1(Θ), ‖ρ‖1≤

1}. From (A.96), the Fréchet differential of F0 is given by

F ′0(ρ)(θ) = U [ρ](θ) + V (θ),

where the symbol U [ρ] denotes the function U [ρ](θ) =
∫
U(θ, θ̃)ρ(θ̃)dθ. Then,

• By (B1), U [ρ] + V is bounded, uniformly in ρ ∈ B.

• From (B2), it also follows that for U [ρ] + V is Lipschitz continuous, with a

Lipschitz constant independent of the choice of ρ ∈ B and thus the family

{U [ρ] + V, ρ ∈ B} is uniformly equicontinuous.

Thus assumption (A4) is satisfied.

Note that in 158, the regularization term g(θ) = 〈|θ|2/2, µ〉, together with the

232



boundedness assumptions (B1)-(B2), are crucial to guarantee integrability of

exp(−βF ′(µ)),

so that the Boltzmann distribution (6.13) is well-defined. In the linear case de-

scribed in Section 6.2.3, it is also common to assume that the potential (which in

this case is the same as our regularizer g) is confining, see for example ?.

Assumption (A4) generalizes the conditions on F0 from the quadratic setting to

the convex setting, and replaces the quadratic regularizer with a more general

confining regularizer.

A.25 Proof of Theorem 3

The derivation of (4.19a)-(4.19b) follows [44, Appendix C]. By substituting the

identity ∇q = exp(V/θ)(∇p+ p∇V/θ) in 0 = 〈∇ϕ,ν〉 = 〈∇q,ν〉, we find (4.19c).

�
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