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Deep learning (DL)’s dramatic rise in popularity across the domain sciences and industry

has been accompanied by a correspondingly aggressive increase in the scale and computational

complexity of DL workloads. In order to adopt state-of-the-art techniques, practitioners must

wrestle with systems challenges of performance, cost, and scalability. In this dissertation, we

identify the need for orchestration systems, which ease scaling burdens across the DL lifecycle

through holistic, workload-aware optimizations. Drawing on both established techniques from

data management research and new bespoke algorithms, we build practical orchestration engines

to optimize three common DL workloads in the large-scale setting: model selection, data
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processing, and high-throughput serving. Our systems — which exploit workload- and context-

specific opportunities — address a new layer of the large-scale DL optimization stack, more

granular than current cluster managers and data systems, but still abstracted away low-level kernel

& compiler optimizations. Empirical evaluations show that our orchestration techniques and

systems can accelerate large-scale DL workloads by a large margin, even in complex, real-world

settings. Our approach introduces a new technical lens, unifying systems, databases, and DL

research, ultimately focused on democratizing and amplifying state-of-the-art DL innovations.

Some of the systems proposed in this dissertation have already been adopted in production-scale

industry pipelines, demonstrating the value of such orchestration optimizers for real-world DL.
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Chapter 1

Introduction

1.1 Motivation

Over the past several years, deep learning (DL) has rapidly evolved into a critical

component of the data analytics landscape. In industry, DL models now underpin key applications

such as web search, recommendations, robotics, and business intelligence. In the domain sciences,

DL has enabled substantial advances in fields ranging from drug discovery to climate modeling.

Yet this rapid evolution of state-of-the-art DL practice has come at a cost. DL workloads

now routinely demand vast computational resources, at scales which are out of reach for most

practitioners. While large technology companies can afford the cluster capacities necessary

to develop and deploy such large-scale DL solutions, domain scientists and small-to-medium

enterprises (SMEs) now run the risk of being cut off from state-of-the-art innovations in DL.

Recent advances in DL practice, e.g., the use of large language models (LLMs), have

only exacerbated this need. State-of-the-art models in both natural language processing (NLP)

and computer vision (CV) now routinely demand dozens or even hundreds of GPUs, and are

trained on multi-petabyte datasets. Figure 1.1 depicts how the search for higher accuracy has

motivated this upscaling. We observe a new and emerging need in DL practice: the need for

cost- & performance- optimizations that can alleviate the computational burdens presented by

large-scale DL workloads.

This nascent space of large-scale DL systems has, thus far, been dominated by low-level
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Figure 1.1. Illustration of the relationship between model quality and model size in the
context of NLP. Similar trends are now emerging in CV applications as well. Figure taken
from a 2020 technical report on GPT-3 [29].

optimization efforts, e.g., new kernels [43] and operations [55], or DL-specific compilation

techniques [241, 35]. These approaches — operating at the lowest levels of abstraction — have

created effective building blocks for large-scale DL. But we observe that there remains significant

scope for large-scale DL optimization at a higher level of abstraction, i.e., the orchestration

layer. Recent works [232, 99, 152] have observed that large-scale DL workloads typically exist

in the context of broader systems, operational lifecycles, and infrastructure environments. For

instance, model selection workloads — where the user explores multiple training jobs & models

simultaneously to identify the best configuration for their use case — introduce new challenges

with batched multi-model training, hyperparameter optimization, and efficient resource allocation,

none of which can be resolved by granular per-model optimizations alone.

This orchestration layer is uniquely situated to exploit opportunities for workload-aware

optimization. Lower-level techniques lack context on the broader system and user needs, while

higher-level optimizations (e.g., cluster schedulers [226]) operate at a level of abstraction where

the distinct characteristics of large-scale DL are lost. Orchestration systems for large-scale
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DL can account for specific development patterns (e.g., model selection workloads), exploit

application-specific quirks (e.g., quality degradation tolerances), and leverage meta-learning

(i.e., deriving new optimization strategies from workload observation). Furthermore, such

optimizations are largely orthogonal to lower-level innovations and advances. A new system to

accelerate model selection might easily benefit from new kernels as well — thus combining the

impact of the two.

By optimizing in this way, not only do we amplify the reach of today’s state-of-the-art

architectures and techniques, by making them more accessible and cost-effective, but we also

open the door to further upscaling and innovations. Rather than relying on additional hardware

or innovations at the device level, we enable researchers and practitioners to do more with less,

such that the systems serve as a catalyst for new DL innovations by sidestepping the limitations

of current hardware platforms. Just as techniques like spilling [174] enable large-scale databases

to operate beyond the constraints of memory, so too can these novel orchestration systems enable

DL models to operate beyond the constraints of their existing hardware accelerators.

In this dissertation, we present new workload-aware orchestration systems to optimize

and accelerate large-scale DL. We decompose DL workloads into a three-stage pipeline —

data processing, training/fine-tuning, and inference — to understand how scaling challenges

have uniquely impacted each phase of the process. In each case, we identify opportunities

for orchestration optimizations that exploit the unique workload characteristics presented by

large-scale DL, ultimately enabling significant cost & performance improvements. Thus, the

thesis of this dissertation is as follows:

Workload-aware orchestration systems can enable significant optimizations in the

lifecycle of large-scale DL workloads, accelerating performance and reducing

the costs of state-of-the-art DL practice, democratizing and amplifying the impact

of DL research.
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Our proposed solutions draw on existing techniques from data management research,

adapted for large-scale DL, as well as a combination of new algorithmic and architectural

innovations. We find that our techniques — each targeting a different scaling burden in a

different stage of the DL pipeline — can accelerate performance and reduce costs considerably,

by as much as 6-7X in some cases. These works have already seen strong impact and adoption

in practice, and have been used to enable new products and research at both large technology

companies and academic labs.

1.2 Technical Contributions

In this dissertation, we select three critical phases of the DL pipeline: data pre-processing,

model training/fine-tuning, and inference. We chose these phases for their unique challenges,

importance, and exposure to different scaling dimensions of DL. Data processing highlights

the growing size of training datasets and the complexity of data transformation operations.

Training and fine-tuning require consideration of model sizes and resourcing constraints. In-

ference combines the challenges of model scale and complexity with the demands of serving

a high-throughput, latency-constrained application. Figure 1.2 summarizes and positions our

contributions.

HYDRA: Model-Parallel Model Selection for Memory Intensive Architectures. The

first of our contributions tackles the challenges of model selection, i.e., the empirical process

of evaluating multiple training configurations and hyperparameters, for large-model architec-

tures. While efficient model selection typically involves running multiple models in parallel, to

better optimize end-to-end makespan, large-model architectures often require multiple GPUs to

amortize their high memory demands over the combined capacities of several devices. These

two objectives run counter to one another — the more GPUs needed per-model, the lower the

degree of task-parallelism that can be achieved on a limited-resource compute cluster. HYDRA

introduces a spilled execution pattern, distributing memory demands across a memory hierar-
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Figure 1.2. The DL lifecycle can broadly be divided into several stages. We target three
stages — data pre-processing, training, and inference. The systems we discuss in this
dissertation tackle the scaling challenges seen in each of these three stages.

chy (i.e., system DRAM and GPU memory) rather than across multiple GPUs, and exploits

the reduced memory demands to introduce higher degrees of task parallelism in multi-model

workloads. Combined with a new and efficient scheduling algorithm, Sharded-LRTF, that

minimizes makespan across multiple models, HYDRA achieves up to 1.5X higher training

throughput than even state-of-the-art model parallel techniques that do not exploit multi-model

task parallelization.

This work is the subject of Chapter 3, and is a joint work with Arun Kumar. A short

paper on this work appeared at the SIGMOD conference in 2021 [140]. The techniques and

system architecture have since been adopted in the industry for Transformer model selection

workloads. A longer-form technical report was later posted to the online arXiv repository. The

code for HYDRA is open-source and available on GitHub: https://github.com/knagrecha/hydra.

SATURN: Joint Optimization for Multi-Large-Model Deep Learning Workloads.

SATURN addresses three interconnected challenges faced in multi-model workloads with large-

model architectures: parallelization, resource apportionment, and scheduling. We observe that

such workloads, whether driven by model selection or simply by multi-user cluster configurations,
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introduce several optimization challenges that are typically addressed in isolation (or else not

addressed at all). Parallelization, for instance, determines how an individual model should be

partitioned over its available GPUs. Many strategies exist, e.g., pipelining, data parallelism,

hybrids. We discuss these strategies in depth in a separate technical report [141]. Each technique

presents different advantages in terms of its memory usage and performance, and the best

technique to choose in a given situation depends on the model architecture at hand, the number

of GPUs available, and even the specifications of the given hardware (e.g., communication

bandwidths, accelerator memory capacities). While bespoke strategies may suffice in the single-

model context where resources are provisioned up front, in the multi-model context, even the

number of GPUs assigned to each job (i.e., the resource apportionment) may be optimized for

end-to-end efficiency, complicating the parallelization decisions. In addition, runtime-aware

scheduling decisions can improve makespan considerably, but are subject to constraints based

on the resource demands and runtimes of each individual job. Thus, we formulated a joint

optimization problem — SPASE — combining the challenges of Selecting a Parallelism,

Allocating resources, and constructing a runtime Schedule. SATURN defines this problem as

a mixed integer linear programming (MILP) problem, and solves it using a combination of an

out-of-the-box commercial solver ( Gurobi [65]) and scheduling mechanisms designed to enable

introspective solution adjustments over time.

We find that SATURN achieves up to 1.96X higher training throughput than existing

training techniques, even on multiple nodes and heterogeneously-sized machine instances. This

work is the subject of Chapter 4, and is a joint work with Arun Kumar. A paper on this work

will appear at the VLDB conference in 2024 [143]. It has been adopted at several companies,

including Netflix, where it is used for LLM fine-tuning. The code for SATURN is open-source

and available on GitHub: https://github.com/knagrecha/saturn.

INTUNE: Reinforcement Learning for CPU Resource Optimization in Data Inges-

tion Pipelines. INTUNE addresses a key — but thus far, largely underserved — bottleneck
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in the DL lifecycle: data ingestion. We primarily focus on the recommendation setting, since

it provides as an effective demonstration the importance of this DL optimization stage. Rec-

ommender systems account for an outsized proportion of industry DL workloads, and account

for as much as 50% of compute usage at large technology companies [224]. Interestingly,

though, our empirical studies of a real-world industry recommender cluster demonstrate that the

primary bottleneck in recommender model training is often CPU-driven data processing, not

GPU-driven model execution. Data ingestion pipelines, where data is read from some disk or

online data store, then processed through a series of transformation operations (e.g., user-defined

functions/UDFs, batching stages, shuffles), are often highly complex and compute-intensive —

and in the recommender system case, often more compute-intensive than the model itself! To

address this challenge, INTUNE introduces a reinforcement learning system for data pipeline

optimization; a system that can automatically design and parallelize individual stages of the data

pipeline to maximize end-to-end efficiency.

Our evaluations of INTUNE on both academic and industry workloads show that this

RL-based approach can offer as much as 2.29X higher ingestion throughput than existing state-

of-the-art data pipeline optimizers. We also find that INTUNE is more robust against resource

over-subscription and unexpected cluster changes than existing tooling. This work is the subject

of Chapter 5, and is a joint work with collaborators from Netflix: Lingyi Liu, Pablo Delgado, and

Prasanna Padmanabhan. Netflix provided access to their compute cluster and execution traces

for analyses and experimentation. A paper on this work appeared at the ACM Conference on

Recommender Systems in 2023 [146]. The system has been adopted at Netflix, and is currently

being tested at Meta, Snap, Google, and Uber.

INTUNEX: Reinforcement Learning for Cluster Management & Node Optimization

for Large-Scale Data Ingestion Pipelines. While INTUNE tackles the problem of maximizing

data pipeline throughput for a training job isolated to a single node, larger-scale industry users

frequently employ a disaggregation strategy, where data processing stages are shifted from the
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trainer node to secondary machines. The advantage of this approach is simple: by moving

beyond the resource limits of a single machine, the pipeline can now be replicated across

multiple machines for higher processing throughput. However, resource-efficient replication

is not straightforward. A typical compute cluster might contain several different node types,

e.g., one with 128 CPUs and 500GB of RAM, and another with 64 CPUs and 2TB of RAM.

Each might have different associated costs-of-usage, based on internal demand or external cloud

provider pricing. Determining which nodes to use (and how many of each are needed) is a

complex orchestration problem in and of itself, complicated further by the individual optimization

problems that must be solved on each active node. With INTUNEX, we build on the original RL

optimization problem presented in INTUNE to create a multi-agent RL solver that simultaneously

optimizes individual nodes while also finding the most cost-effective multi-node parallelization

scheme for a given job.

Our evaluations show that INTUNEX achieves comparable single-node performance to

the original INTUNE system while also reducing overall cluster costs by as much as 25% — a

considerable saving, when many data-centers cost many tens of millions of dollars to maintain.

This work is the subject of Chapter 6, and is a joint work with collaborators from Netflix: Lingyi

Liu, and Pablo Delgado. Netflix provided access to their compute cluster and execution traces

for analyses and experimentation. A paper on this work will appear in the ACM Transactions on

Recommender Systems Journal. The system has been adopted at Netflix.

Routing Over LLMs Using Proxy Metrics for Relative Quality Estimation. Over the

last year, LLM inference has quickly become a critical area of DL systems optimization. While

LLMs, and more broadly, Generative AI technologies, have shown impressive capabilities on

complex, real-world tasks that require reasoning & human-like interactions, practical adoption is

often challenging due to the considerable performance overheads of serving LLMs at scale. While

using smaller LLMs may alleviate the pain of serving a large-scale model (e.g., serving LLaMA-

7B [204] in-place of LLaMA-70B), smaller models typically produce lower-quality outputs.
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In this paper, we look to understand this degradation behavior, and identify a straightforward

method to estimate the degree of degradation based only on the input query. Unlike prior works

— which try and predict LLM output quality directly — we re-imagine the problem as one

of relative quality estimation, i.e., how will Model A perform relative to Model B, under the

condition of Query X? We use the resultant prediction to select a candidate LLM that will provide

the best inference performance while respecting a user-configured quality degradation threshold.

We evaluate our procedure on three diverse datasets representing challenging LLM ap-

plications — MT-Bench for chatbots, HumanEval for code generators, and a conversational

recommendation dataset from a streaming service. Our experiments show up to 6.92X improve-

ments in inference performance while maintaining output quality close to the largest candidate

LLM. This work is the subject of Chapter 7, and is a joint work with Arun Kumar and Hao

Zhang.

1.3 Summary and Impact

DL practice has quickly grown both in scale and penetration [7]. Many companies —

both small and large — now employ MLOps practitioners to help with DL training, serving,

and optimization. As a result, there has been a broad upswell of interest in systems for DL

research. While most systems for DL works have focused on low-level kernel optimizations or

novel compilation techniques, relatively little attention has been paid to the orchestration layer.

In this dissertation, we propose various orchestration systems for three different stages of the

DL lifecycle: (1) data ingestion, (2) training, and (3) serving. We show that this orchestration

layer can unlock significant performance benefits and practical efficiency improvements for DL

engineers and researchers, both in the domain sciences and industry.

Our work has been broadly adopted in both industry and academia, demonstrating the

real-world potential of such orchestration systems. At the time of writing this document, we are

aware of the following adoption cases:
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• HYDRA has been used at Meta for various model selection workloads, for both deep

recommendation models and Transformers. Meta engineers are now exploring how

to integrate HYDRA’s techniques with custom hardware platforms that support higher

bandwidth interconnects.

• HYDRA was also used by researchers at UC San Diego and the Lawrence Berkeley National

Laboratory to train 3D-CNN models for DL-driven physical simulations.

• SATURN has been used by Netflix for LLM fine-tuning jobs — some of which are used as

part of production, customer-facing applications.

• INTUNE and INTUNEX have been used by Netflix to optimize data ingestion on recom-

mender model training clusters, providing considerable cost-efficiency wins along with

improved experimentation velocity. Several other companies are currently evaluating the

techniques for their own recommendation clusters as well.

• Our work on routing over LLMs has been tested and adopted as part of some upcoming

conversational chatbot products. Preliminary estimates show that the router will manage

more than 100 queries per second.
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Chapter 2

Background

In this chapter, we cover preliminary concepts necessary for the remainder of this

dissertation. This includes standard machine learning (ML) and DL terminology, systems

concepts and theory, and relevant data management techniques. We refer interested readers to

more in-depth surveys and literature [141, 57, 191, 174, 199] for further background.

2.1 Deep Learning Terminology

Basics. Deep learning, a subset of machine learning, utilizes a class of algorithms

known as artificial neural networks (ANNs). ANNs consist of a computational graph of nodes

(individually referred to as “neurons”). Each of these neurons performs a simple transformation

operation on the data it receives, passing the data forward through the graph. These transformation

operations commonly involve some non-linear function applied to the sum of the neuron’s inputs.

Typically, groups of neurons are organized into standard building-blocks, known as layers,

providing an intermediate layer of abstraction for graph definitions. Popular DL tools such

as PyTorch and TensorFlow offer methods to specify and compose multiple layers together to

construct a model, i.e., a complete computational graph.

The hierarchical, multi-level nature of such DL networks allows them to express complex

relationships in data, even with raw feature inputs. Intermediate layers produce latent representa-

tions of the original inputs within the model, bypassing the need for manual feature engineering
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up-front. As a result, DL models have become broadly popular for analytics on a variety of

modalities, including text, image, audio, and tabular data.

Training. Individual neurons within a model typically record some sort of state, also

known as a parameter. The process of training involves updating a model’s parameters to improve

its output quality for some given objective. The objective is usually defined through some loss

function, which quantifies the discrepancies between a model’s output and the “ideal” result. The

ultimate goal of training is to configure the model parameters in such a way that the loss function

is minimized. This process is typically performed using an optimization algorithm, with gradient

descent being the most common. In gradient descent, the parameters are updated in the direction

that most steeply decreases the loss function. This direction is determined by the gradient of the

loss function with respect to the parameters.

Stochastic Gradient Descent (SGD) and its variants are often used to efficiently optimize

deep learning models. In contrast to standard (or "batch") gradient descent, which computes the

gradient using the entire training dataset, SGD computes the gradient using a single example at a

time. Mini-batch SGD strikes a balance between the two: it computes the gradient using a small

subset of the data, or "mini-batch". This approach benefits from computational efficiencies of

parallel processing while still maintaining a level of noise in the gradient estimates that can help

escape local minima. The size of the mini-batch, a key hyperparameter, impacts the model’s

learning speed and final performance.

Model Selection. Model selection in deep learning is the process of identifying the

most suitable model architecture and hyperparameters for a given task. The architecture refers

to the design of the neural network, such as the number of layers, the number of neurons per

layer, and the type of layers (dense, convolutional, recurrent, etc.). Hyperparameters include the

learning rate, batch size, number of training epochs, and regularization parameters, among others.

Selecting the optimal architecture and hyperparameters often involves a combination of empirical

testing, domain knowledge, and theoretical considerations. Due to model selection needs,
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building a single model often requires training many dozens (or hundreds!) of configurations in

advance. Model selection is often run as part of an automated pipeline [140, 100, 116] or else as

part of a human-in-the-loop exploration procedure [110].

Inference. Inference in the context of deep learning refers to the process of using a

trained model to make predictions on new, unseen data. After a model has been trained, its

learned parameters are used to process input data, propagate it through the network’s layers, and

output a prediction. Inference can be performed on a single example or on a batch of examples,

much like during training. However, unlike training, inference does not involve updating the

model’s parameters; the model is simply applied to the new data as it is. The efficiency of this

process is critical in many applications, especially those requiring real-time predictions. As such,

various techniques are used to speed up inference, such as model pruning, quantization, and the

use of dedicated inference hardware.

LLMs. Large language models, or LLMs, refer to a new class of Transformer-based [211]

model architectures [30] known for their zero-shot capabilities on a wide variety of tasks,

including question-answering [195], problem solving [203], and content creation [53]. LLM

inputs, or prompts, and their outputs, are represented as sequences of “tokens”, each of which

could be translated to individual words, letters, or common phrases.

2.2 Parallelization

A variety of techniques exist for parallelizing DL training. Each offers different advan-

tages or drawbacks, which tend to vary depending on the workload. Understanding the data

access and communication patterns of each strategy is critical to evaluating them in the context

of large-model training.

Model parallelism. A common approach to parallelizing a model’s execution is to

partition, or shard, a neural architecture graph into subgraphs, and assign each subgraph, or

model shard, to a different device. In a feedforward network, these shards might refer to groups
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of stacked layers. The speedup potential of model parallelism depends largely on the architecture

and the sharding strategy. Sequential model sharding on a feedforward network, for example,

will offer no scope for parallel execution, since different accelerators must execute in sequence.

In other cases, the neural computational graph offers natural opportunities for inter-operator

parallelism.

Pipeline parallelism. Pipelining is a more optimized modification of the sequentially-

sharded model parallel setting. It partitions an SGD minibatch into smaller “microbatches,” then

shuttles the microbatches through the model partitions [229, 82, 94, 118]. This enables different

model shards to concurrently run different microbatches. The speedup of pipelining is heavily

tied to the partitioning scheme and the number of microbatches. Prior work has underscored the

importance of tuning these knobs via either expert knowledge or automated heuristics [118].

Tensor parallelism. Another approach is to actually partition the individual operators

in the network. Some operators, such as embedding tables (which map categorical inputs

to continuous vectors through a key-value lookup), can be sharded width-wise with minimal

overheads. Others, such as matrix multiplies, can still be partitioned (e.g. using parallel GEMM

strategies [80]) but involve more communication steps. These width-wise sharding strategies,

more generally known as tensor parallelism as they require input tensor partitioning, can enable

more performant intra-operator parallelism versus inter-operator model parallelism, but require

more effort and thought to implement. In addition, the performance benefits are tempered by

the fact that most tensor parallel operators require at least one (potentially slow) all-gather

communication step to re-aggregate partitioned outputs.

Data parallelism. Historically, the most common parallel deep learning execution

strategy has been to simply replicate a model across multiple accelerators and send different mini-

batches to each copy. Such techniques, broadly classified as data parallelism, can be classified

into two subcategories — asynchronous data parallelism and synchronous data parallelism.

Asynchronous data parallelism techniques, like Parameter Server [113], let replicas run out-of-

sync, with occasional update steps bringing them back in line. Synchronous data parallelism
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techniques, like those provided under the PyTorch DDP [114] package, enforce strict per-mini-

batch synchronization requirements. This ensures that the training updates are mathematically

equivalent to single-processor training (so long as the effective batch size remains consistent).

Hybrids. Recently, some hybridizations of the above techniques have been proposed.

Fully-sharded data parallelism [173, 4] combines data parallel replication with tensor-parallel

partitioning, by sharding the overall model, but using all-to-all communication steps to fully

replicate on individual operators during execution. Other techniques, like 3D parallelism, have

combined data parallelism with both tensor parallelism and pipelining, for higher end-to-end

efficiency. Typically, such complex schemes are implemented to maximize communication

efficiency by accounting for specific hardware interconnect rates and cluster configurations [158].

Some other works [241, 89, 207] implement custom hybrid parallelizations through a compilation

process, solving for an optimal configuration given a specific model and cluster architecture.

2.3 Data Processing

A typical DL dataset is composed of historical user interactions with the target application.

A streaming service, for example, might record user interactions (i.e. plays, ratings) with movies

and shows. Millions of such interactions could be recorded every day. DL models deployed in

production environments must be retrained regularly to account for the dataset updates.

While one dataset might be shared over many models, each model might target a different

aspect of the application — for example, in a streaming service, one model might be used for

ordering rows in the UI, while another might be used for video ordering. Individual models need

different features (i.e. columns) of the base dataset and might require different preprocessing

pipelines. As a result, many processing pipelines are run online, during the model training

procedure, rather than being done offline — which would bloat storage costs by creating multiple

variations of the same dataset. We will now describe a typical online transformation pipeline —

using the recommendation setting as an example.
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Samples are loaded from the base dataset in a disk read operation. Each sample is

represented as a dictionary of key-value pairs, mapping feature names to values. These samples

are used to fill up a batch for SGD training. This is repeated until some significant number

of batches are in memory. They are then shuffled to encourage some randomness in the SGD

procedure to improve model robustness [57].

For each batch, a custom dictionary lookup operation is used to extract relevant feature

columns. In this case, we will say that product ID, user ID, user country, and total product view

time are the relevant columns. Note that this dictionary lookup could be fairly expensive on a

feature-rich dataset.

The first three columns are categorical, while the fourth is continuous. Some random

noise is applied to the continuous variable to augment the data and improve model robustness.

To improve training times, several batches will be “prefetched” at once into GPU memory to

overlap the next pipeline loading phase with model execution, trading memory for performance.

At this point, the pipeline has finished producing a training batch for model consumption.

Millions (or even billions) of recorded interactions will have to run through these stages

to feed and train the model. The throughput rate needed from this pipeline is dependent on the

GPU-driven model execution speed. To improve pipeline performance, two levels of parallelism

are possible.

First, pipelining. This simply exploits the stage-by-stage processing structure. Stages

can be overlapped in a similar way to CPU instruction pipelining [40] to improve throughput.

Maximizing pipeline performance requires a delicate balancing act. Each transformation stage

within the pipeline must take the same amount of time to avoid idling [118] .

Second, per-stage replication. Replicating pipeline stages across multiple processors

can improve per-stage throughput significantly. The effect of this replication interplays with

the balance of stage performances, thus impacting pipeline-parallel throughput. Solving this

complex, joint optimization problem effectively can yield significant performance benefits. At a

coarse-grained level, the entire pipeline itself could be copied across multiple machines [9], but
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this would discard the opportunity presented by the joint optimization problem.

These challenges are complicated further by the possibility of machine resizing. Many

clusters now use techniques such as auto-scaling, interruption & reassignment, or even machine

multi-tenancy. In such cases, external decision-making may cause a job to actually receive new

or different resources across the course of its lifecycle. This setting has become increasingly

popular in recent years as new multi-model training tools [142, 136] have emerged. Effectively

parallelizing such jobs even as the underlying resource pool is actively shifting requires a level

of adaptability and flexibility not present in existing tooling.

2.4 Deep Reinforcement Learning

The general aim of reinforcement learning (RL) is to train an “agent”, or actor, using

data collected from exploring an environment. The agent can choose from a set of actions in

the environment based on the current state. The state is updated as a result of the action and a

reward is computed to reflect the benefit produced as a result of the agent’s action. The new state

and reward are used to modify the agent in a way that encourages reward-positive actions and

discourages reward-negative actions.

A variety of techniques can be used to construct this feedback loop. The Deep Q-Network

(DQN) approach uses a DL model as its agent with and SGD for the feedback loop. For the

purposes of this dissertation, we will primarily focus on this mixed DL-RL setting, also known

as deep reinforcement learning.

DQN Technique. The agent model is trained to approximate an unknown function Q,

where Q(s,a) yields the reward for execution action a in the environment state state. Then,

this DL model can compute an expected total reward for all possible a’s at a given state s, then

select the action that maximizes the expected reward. The action space should be relatively

small to make this search feasible, as excessively large action spaces are known to reduce

model accuracy [202]. It has become common practice to employ action space shaping [93],
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reducing and combining actions to simplify the space. In multi-discrete action spaces (e.g. a

keyboard), wherein multiple simultaneous actions can be taken at once, the potential action space

is exponential with a degree of the maximum number of simultaneous actions.

Selecting an action from a space requires understanding both the immediate and long-

term reward. To predict “overall” reward of an action, the Optimal Action Value Function is

used [28] to shape the agent’s behaviors and teach it expected rewards over time. Thus, the agent

learns a model of its environment and how its actions will change its state and impact its rewards.

This design works well in settings where responsiveness and adaptability are important.

The agent can actively make decisions in response to environmental changes, a positive contrast

against static one-shot optimizers.

Online vs Offline RL. An RL agent can be built in either the “offline” or “online” setting.

Offline RL agents are trained in a simulation environment to understand how the various factors

of their environment impact performance. They rely on the assumption that the final, live

environment will be reasonably similar to the offline simulation settings.

Online RL, by contrast, tunes the agent as it actively interacts with the target application.

This is more flexible and adaptive, but historically, long convergence times have been a significant

concern. Some recent works have proposed a hybrid of the two, initially pre-training the RL

model on offline simulation data then re-tuning it online [164, 146]. The effectiveness of this

hybrid is largely dependent on the specifics of the target application.
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Chapter 3

HYDRA: Optimized Hybrid Task-and-
Spilled Parallelism for Multi-Large-Model
Workloads

In this chapter, we dive deeper into our techniques to combine task parallelism and

model spilling to enable high-efficiency model selection on large-model workloads. While

prior large-model systems generally focus on training one model at a time with maximum

efficiency, HYDRA recognizes that DL practitioners often train models in bulk due to model

selection needs, e.g., hyperparameter tuning, architecture selection, etc. This gap often leads

to significant system inefficiency. We approach this problem from first principles and propose

a new information system architecture — HYDRA — for scalable multi-model training that

adapts and blends ideas from classical RDBMS design with task parallelism from the ML world.

We propose a suite of techniques to optimize system efficiency holistically, including a highly

general parameter-spilling design that enables large models to be trained even with a single

GPU, a novel multi-query optimization scheme that blends model execution schedules efficiently

and maximizes GPU utilization, and a double buffering idea to hide latency. Experiments with

real benchmark large-scale multi-model DL workloads show that HYDRA is over 7x faster than

regular model parallelism and 1.8-4.5X faster than state-of-the-art industrial tools for large-scale

model training.
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3.1 Introduction
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Figure 3.1. A) HYDRA introduces the first known hybrid of model- and task- parallelism.
HYDRA trains multiple models (like Cerebro [151]), exploits task parallelism more ef-
fectively than pipelining, and expands the GPU-to-DRAM offloading optimizations of
ZeRO and DeepSpeed [178, 173]. B) HYDRA combines the benefits of model- and task-
parallelism, hybridizing them to eliminate the weaknesses of both and offer their added
strengths. C) HYDRA in the context of user-interactions and hardware.

Example.

Consider the example of a political scientist building a text classifier for sentiment

analysis on Twitter posts (tweets) to understand polarization between gun rights and gun control

supporters. Their dataset is a few GB in size, much like the majority of DL training jobs

according to recent polls [3]. So, a single-node multi-GPU setting suffices for their task. They

download a few different state-of-the-art BERT models from HuggingFace [223] and prepare

to fine-tune them. They aim tune relevant hyperparameters of all models to help raise accuracy.

However, their GPUs do not have enough memory to even hold one model, and execution causes
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PyTorch or TensorFlow to crash and impede their application.

There are two key issues here. First, the GPU memory bottleneck prevents users from

fully exploring the possibilities of state-of-the-art DL models. Even for cloud users, who are not

bound by their own local resources, this limitation forces them to spend more money on renting

more expensive machines with larger GPUs. Second, the multi-task nature of the model building

process amplifies the hassle of grappling with large models many times over, leading to more

costs and DL user frustration.

System Desiderata.

We have the following key desiderata to support a large-scale multi-model training

system.

• Out-of-the-box Model Scalability. We desire an approach that can easily scale to very

large models even if the user has only one GPU. It should not force users to get multiple

GPUs but nor should it require them to make special manual efforts to adjust their model

or manually handle resources when they do have multiple GPUs.

• High Throughput. Given the ubiquity of needing to train multiple models, we desire an

approach that parallelizes execution to achieve higher overall throughput across a model

training job’s lifecycle.

• Resource Efficiency. We desire a system that is aware of its hardware environment and

maximizes the utility of available GPUs. Not only do we wish to avoid wasting resources,

but we also aim to exploit the full potential of what resources we do have.

• No Effect on Accuracy. We desire a system that does not directly affect the data being

processed or modify the execution patterns of models. Actually altering the model’s

training procedure tends to cause accuracy degradation, something that must be avoided if

we are to offer a seamless training experience for DL practitioners.
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We do not focus on data scalability, nor are we focused on scaling across multi-node

clusters. We are not in the setting of scaling training to 1000 GPUs or PB-sized datasets on

massive clusters like the Googles, NVIDIAs, and OpenAIs of the world. We aim to democratize

large DL models to regular users in the domain sciences, enterprises, small Web firms, etc. From

our own conversations with such data scientists at UCSD and at some companies, we note that a

majority operate on single-node multi-GPU settings. It suffices for their data scale and avoids the

hassle of operating multi-node clusters. Thus, in this work, we focus on studying the single-node

multi-GPU setting in depth for HYDRA. We leave it to future work to extend our techniques to

multi-node clusters, say, by integrating it with Cerebro[151, 100] or DeepSpeed [178, 173, 167].

Limitations of Existing Landscape.

There has been a flurry of recent work in the ML systems world aimed at addressing

some of these issues. However, each fails on one or another of our desiderata.

1) False Dichotomy of Task- and Model- Parallelism

Existing systems do not address the problems of multi-model training and large-scale

model training at once — they choose to focus on either one or the other. Current multi-model

systems cannot train models that do not fit into GPU memory [99, 151, 100, 109, 111], and

existing larger-than-GPU-memory model techniques [82, 70, 22, 89, 173, 178, 132, 99, 79] do

not consider the possibility of multi-model execution. This is problematic, as these systems’

inability to consider all aspects of their workloads prevents them from optimizing the system

holistically to improve model training throughput and maximize resource efficiency. Figure

3.1A) illustrates a few critical examples of this, as well as the gap our work fills.

2) Low Scalability & Resource Efficiency

Most techniques aiming to support the training of models larger than the memory capacity

of a single GPU use “model parallelism” [140] as a starting point. Unfortunately, model

parallelism offers poor scalability, and tends to suffer from low resource utilization due to

sequential dependencies in model architectures that prevent parallel device execution. Systems
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that build off of model parallelism generally inherit these weaknesses to a greater or lesser degree.

We elaborate on these tradeoffs further in Section 8.1.

3) Inability to Train Larger-than-GPU-Memory Models

Considering instead systems that are built specifically for multi-model execution and

model selection, none actually support larger-than-GPU-memory model training [99, 151, 100,

109, 111]. All focus on the challenge of processing a large number of model configurations in

parallel, an approach known as task parallelism. As such, attempting to train larger-than-GPU-

memory models with such systems will generally lead to crashes and other undesirable behaviors.

We elaborate on these systems further in Section 8.1.

Overall, we observe two issues with prior art. First, they conflate scalability with

parallelism. Parallelism is not a fix for scalability but complementary. One must address the

scalability bottleneck from first principles. Second, they all fail to recognize or exploit a key

source of higher degree of parallelism in DL workloads: training multiple models in one go, e.g.,

during model selection such as hyperparameter tuning or neural architecture engineering [99]. By

focusing on this new aim of training multiple model tasks, we introduce a new design motivator

that has not been present on prior works.

Our Approach.

We present HYDRA, a new system for large-scale multi-model DL training that optimizes

workloads holistically. HYDRA is easy-to-use, exposing only higher level APIs to shield DL

users from having to manually optimize execution. Figure 3.1(C) illustrates our high-level

architecture and its placement in between the user-facing APIs and the hardware (more details

in Section 3). The user provides a set of model specifications in a popular DL tool (we focus

on PyTorch), as shown in Listing 3.1, but beyond this initial step, all training procedures are

managed and executed by HYDRA. Our target setting is single nodes with multiple GPUs, a

common setting in natural language processing *NLP) where pretrained models tend to be very

large, but fine-tuning datasets tend to be relatively small [77]. We focus on supporting workloads
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with several large-scale sequentially defined models (e.g. Transformers) that are too large to fit

into the memory of a single GPU, but sufficiently small to fit into DRAM.

Techniques in HYDRA.

HYDRA achieves our previously described desiderata with a suite of data systems tech-

niques, some novel and some old (inspired by RDBMSs), albeit repurposed to DL systems. But

our main novelty is also in how we assemble this “right” set of techniques and adapt them to

build a fully automated system for large multi-model DL workloads. At the core of HYDRA is a

novel hybrid form of parallel DL execution that blends task parallelism and model parallelism to

improve overall resource efficiency in multi-GPU multi-model cases. Figure 3.1B) positions our

hybrid parallelism approach, which we call Shard Alternator Parallelism (SHARP). Basically,

model parallelism’s main con is that it keeps only one GPU busy at a time, while task paral-

lelism’s main con is that it requires a model to fully fit in a GPU’s memory. SHARP obviates

both these issues. While Section 4 will present the details of how SHARP works, our intuition is

to “break multiple models down and put them back together in a blended, better way.”

In order to support SHARP, we design several other components to generalize model

parallelism into a more flexible and more efficient form.

First, we devise a model spilling technique, an analogue to “data spilling” in RDBMSs

where parts of the data are put at a lower level of the memory hierarchy. We blend that with

model parallelism’s notion of model shards by breaking up a large model, only loading some

model shards onto GPUs, while the rest sit in DRAM. This is akin to sharding a large table in an

RDBMS and loading only the active shard from disk to buffer manager. Model spilling provides

a great deal of flexibility in execution management and scheduling for SHARP.

Next, we fully automate the partitioning of all models to respect GPU memory constraints

with a lightweight and highly general approach.

Third, we adopt the classic RDBMS trick of double buffering to reduce the latency in

between execution of model shards on a device. It overlaps GPU computation with loading from
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DRAM and works in lockstep with SHARP.
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Figure 3.2. HYDRA’s layered optimization stack combining scalability (spilling), low-
latency per-model execution (double-buffering), hybrid parallelism (SHARP), and efficient
scheduling (Sharded-LRTF).

Finally, we put all these techniques together to formulate a formal scheduling problem

for our setting. We propose a simple greedy algorithm we call Sharded-Longest-Remaining-

Time-First (Sharded-LRTF) to tackle it. We show using simulations that Sharded-LRTF offers

near-optimal results for both homogeneous and heterogeneous sets of models. Figure 3.2 shows

how these optimizations build on top of one another.

We prototype all of our ideas on top of PyTorch to create HYDRA. We evaluate it empir-

ically on two key large-model benchmark workloads and datasets: hyperparameter tuning for

BERT-Large on the WikiText-2 [133] dataset and neural architecture evaluation for Vision Trans-

former [49] on the CIFAR-10 dataset. HYDRA substantially outperforms all prior approaches,
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yielding near-linear speedups on an 8-GPU machine for both workloads. In particular, it offers

almost 7.5x speedups over regular model parallelism, with a substantial speedup over pipeline

parallelism. HYDRA also reports the highest GPU utilization. We then dive deeper into the

behavior of HYDRA by varying model scales, number of models trained together, and number

of GPUs. We also report an ablation study showing the impact of our two key optimization

techniques: SHARP and double buffering.

In summary, this work makes the following contributions:

• To the best of our knowledge, this is the first work to study the union of scalability and

parallelism from first principles for multi-model training of very large sequential DL

models. Our current focus is single-node multi-GPU settings.

• Inspired by RDBMSs, we present a suite of scaling and efficiency techniques combining

automated model partitioning, model shard spilling, and double buffering.

• We devise a novel hybrid form of DL execution called SHARP combining task parallelism

and model parallelism that mitigates the major cons of both.

• We cast our multi-model shared training as a form of multi-query optimization and build a

simple scheduler featuring an efficient greedy algorithm called Sharded-LRTF.

• We implement all our ideas in a system we call HYDRA. A thorough empirical evaluation

with real multi-model large DL workloads shows that HYDRA substantially outperforms

prior state-of-the-art open source and industrial systems.

3.2 Architecture of HYDRA

HYDRA is designed to be a lightweight wrapper around the popular DL tool PyTorch.1

We do not need any internal code of the DL tool to be altered, which can help ease practical

1It is a relatively simply engineering effort to add support for TensorFlow too but we skip it in our current
version for tractability.
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adoption. Figure 3.1 illustrates the overall architecture of HYDRA and how it handles the models.

There are 4 main components: API, Automated Partitioner, Memory Manager, and Scheduler.

We briefly explain the role of each component.

• API. The user specifies a set of models to be trained using standard PyTorch APIs.

Listing 3.1 provides an example. Note that HYDRA can also scale the training of single

model on a single device. The neural architectures are fully automatically inferred by

HYDRA; no custom annotations are needed. The user just needs to provide the model(s), a

data loading function, and model selection specification, e.g., hyperparameter search grid

or metaheuristics.
1 from hydra import ModelTask , ModelOrchestrator

2

3 # define some models , model_0 and model_1 ...

4 # define some dataloaders , dataloader_0 and dataloader_1

5 # define some task specs , loss_functions , learning rates , etc...

6

7 task_0 = ModelTask(model_0 , loss_fn , dataloader_0 , lr_0 , epochs_0)

8 task_1 = ModelTask(model_1 , loss_fn , dataloader_1 , lr_1 , epochs_1)

9 orchestra = ModelOrchestrator ([task_0 , task_1 ])

10 orchestra.train_models ()

Listing 3.1. Example usage of the API of HYDRA.

• Automated Partitioner. HYDRA automatically ascertains the memory size(s) of the

GPU(s). Then it automatically partitions the model(s) given into model shards that respect

the GPU memory constraints. At a given point in time, a GPU runs computations for only

only one model shard. Section 4.3 explains our sharding process in more detail.

• Memory Manager. After the model shards are constructed, HYDRA puts them all in the

machine’s DRAM. It then moves shards up the memory hierarchy into the GPU based on

the schedule produced by the Scheduler. When a shard’s computation is completed, it is

moved back to DRAM. Intermediate outputs within a model across shards are also written

to DRAM by this component. All of this happens transparently to the DL user. This is

the crux of how HYDRA achieves seamless scalability to very large models. Section 4.2
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Figure 3.3. Illustration of model spilling as a temporal schematic. HYDRA places inactive
shards at a lower level of the memory hierarchy (DRAM here), from which they are re-
activated later.

explains this “model spilling” technique in more detail.

• Scheduler. This component is the core orchestrator of what shard gets placed on what

GPU and when. It uses SHARP, our novel hybrid of task- and model parallelism. It

ensures that the shards of a given model are scheduled in a way that respects the sequential

dependency inherent in the DL model’s forward pass and backward pass. We formalized

this scheduling problem as an MILP, compared a few alternative scheduling algorithms,

and devised a simple new algorithm that best suits our system setting. We also devised a

buffering technique to further raise resource utilization. Sections 3.3.7.1– 3.3.7.3 explain

our ideas in more detail.

3.3 Techniques in HYDRA

We now dive into the techniques in HYDRA to achieve seamless scalability and resource-

efficient parallelism for training multiple large DL models in one go. Our techniques are inspired

by a suite of classical ideas in RDBMSs, viz., spilling, sharding, multi-query optimization, and

double buffering [174, 184], but our work is among the first to study them in the context of

DL training. While the individual techniques may not be highly novel in the context of data

management systems, the way we identify the right set of techniques, adapt them for DL, and

synthesize them in HYDRA is novel. This enables HYDRA to offer state-of-the-art results in this

important DL systems setting.
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3.3.1 Intuition, Motivating Challenges, and Technical Novelty

HYDRA’s core optimization is based on a relatively simple insight. Model parallelism’s

dependencies are too rigid to utilize resources efficiently, and task parallelism is too coarse-

grained with its uninterrupted execution requirement. Blending the two together solves both

problems. Task parallelism allows us to sidestep dependencies in model parallelism by using

blocked or idle devices to train alternate tasks, similar to the difference between sleeping and

busy waiting in CPU processor design [51]. Meanwhile, model parallelism allows us to break

down previously atomic training tasks into “chunks”, based on shards, and then reassemble

shards of different models in a more efficient way. This is the same idea that underpins the

speedups seen in prior hybrid parallel works [151, 116].

To exploit this intuition, our system must demonstrate two key characteristics.

1) Shard Movement Flexibility. For our model shards to be taken apart and put back

together again effectively, we must introduce a degree of flexibility that is not present in model

parallelism. Model parallel shards cannot be moved around between devices, nor can they be

offloaded or delayed. But if we are to blend schedules across models, we must support the

possibility of shards being temporarily put off or shifted. To solve this problem, we introduce

model spilling, wherein we demote and promote shards of the model between GPU memory

and DRAM. We then layer on communication optimizations with double-buffering. Note that

this concept is not novel, spilling is an age-old idea from RDBMSs. Offloading has also been

explored before [132, 99, 79]. It is our generalization of offloading tensors into spilling full

sub-models (shards) and our redesign of RDBMS spilling for DL that is novel.

2) Shard Orchestration Once we obtain sufficient flexibility to orchestrate models freely,

we must move and schedule them efficiently. Model schedules must be blended together to

achieve optimal makespans, but the choice of shards and models at each timestep must be decided

by some scheduler. We introduce our blended parallel scheme, Shard Alternator Parallelism

(SHARP), and a greedy scheduler, Sharded-Longest-Remaining-Time-First (Sharded-LRTF).
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The basic concept of scheduling across multiple different tasks is not inherently novel — prior

work in multi-query optimization has explored this for the RDBMS setting, and hybrid parallel

works[151, 116] have explored it in the context of data parallelism and task parallelism. However,

this is the first work to expand this concept to the model-task hybrid setting, and the first to

devise a scheduler for this problem.

3.3.2 Model Spilling

In traditional model parallelism, a model is divided into shards; each shard is placed on a

different (GPU) device. But all shards must be loaded across multiple GPUs for a forward/back-

ward pass to work at all. We observe that this is an overkill: due to the sequential dependency

across layers inherent in DL models, only one device is typically “active” with computation at

any point in time. The other devices are merely repositories for inactive model shards.

Exploiting the above observation, we use a simple idea in HYDRA to avoid making all

shards active: spill to DRAM. Only an active shard is promoted to a GPU’s memory, while the

rest “wait” in DRAM. This is akin to sharding a large table and staging reads between disk and

DRAM in RDBMSs, except we focus on a higher level in the memory hierarchy and apply it

to a large model instead. All this means HYDRA scales to arbitrarily large models on a single

device. So, even a trillion-parameter DL model can now be trained on a single GPU out of the

box, given sufficient DRAM. This can already makes a qualitative difference for DL users with

limited resources.

Model spilling is a direct reimagining of model parallelism, serving as a substitute rather

than a complement. It retains the notion of shards and chunks of layers and does not alter the

execution pattern, unlike other memory offload systems [173, 178, 132]. A natural analogy

might be busy waiting versus blocking in CPU execution. In model parallelism, unused shards

still block the CPU, busy-waiting in place while their dependencies are resolved. SHARP sends

these unused shards “to sleep”, allowing processors to work on other models in the meantime.

Spilling can be used as a direct replacement of existing model-parallel setups. The only downside
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is that model spilling introduces GPU-DRAM interactions, which are slower than the GPU-GPU

interactions of model parallelism. The latency costs can be mitigated or even eliminated, however,

as shown in Sec 3.3.6.

The use of model spilling, or indeed any sharded execution strategy, poses two open

questions: Who does the sharding and how? How to efficiently train multiple models together

with sharding in a multi-GPU setup? Our next two techniques tackle precisely these questions.

3.3.3 Automated Model Partitioning

Both traditional model parallelism and our model spilling depend on some sort of “cut

point” to split the neural computational graph because shards must consist of disjoint subsets

of layer groups. Prior art [159] uses some basic heuristics, albeit restricted to a specific class

of models. Unfortunately, their approach is not general enough for our purpose. While one

could use sophisticated graph partitioning algorithms for “optimal” partitioning, we find that

is not worthwhile for two reasons. First, this stage is anyway only a tiny part of the overall

runtime, which is dominated by the actual training runs. Second, due to the marginal utility of

over-optimizing here, it will just make system engineering needlessly complex.

We prefer simplicity that still offers generality and good efficiency. Thus, we use a

dynamic greedy approach based on toy “pilot runs.” Algorithm 1 presents it succinctly. The basic

idea is to pack as much of a model as possible on to a GPU. If the set of GPUs is heterogeneous,

we use the smallest-memory GPU to ensure cross-device compatibility of shards. We treat a

DL model as an ordered list of layer indices, with the layers being “cut-points” in the graph to

enable smooth partitioning. HYDRA then iterates through these indices to run “toy” passes with a

single mini-batch once. If the run is successful, the Partitioner raises the shard size by appending

the next set of layers. If the GPU throws an out-of-memory error, we remove the set of layers

appended last. Thus, in this dynamic way, we find the near-maximum set of layers that fit in

GPU memory; this set is then cut off from the model as its own shard. The Partitioner continues

this process for the remaining the layers, until that model is fully partitioned We record runtime
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Algorithm 1: Dynamic model partitioning algorithm.
Input: Model as a sequence of layers L with size m; data mini-batch B;
GPU G
Output: Array of partition indices A
Append 0 to S
for i = 0 to m−1 do

Place L[i] and B on G
B′← Forward pass through L[i] with B
T ← New tensor with same shape as B′

Backpropagate T through L[i] without freeing its memory
if G out of memory then

Append i to S
for j = 0 to i−1 do

Release all memory consumed by L[j]
Append i to A

end for
end if

end for

statistics for later use by our Scheduler.

3.3.4 SHARP

We now present one of our key novel techniques: Shard Alternator Parallelism (SHARP),

a hybrid of classical model parallelism and task parallelism. We define our basic unit of

computation, shard unit, as follows: the subset of computations of a forward or backward pass

on a model’s shard. Thus, a full forward or backward pass of a model is a sequence of shard

units.2 Overall, the scheduling goal is to execute all shard units of all models given by the user

for all epochs.

Figure 3.4 illustrates the basic idea of SHARP contrasted with both task- and model

parallelism. After a model’s shards are created (Section 3.3.3), shard units are naturally set. The

key difference in SHARP is that a given model’s shard units do not necessarily run immediately

2In recent ML literature, this unit is also called a “microbatch” [82]. We prefer to use the more standard
terminology of “unit” from the operations research and systems literatures instead because the term “microbatch”
may cause confusion on whether the mini-batch data is split further, which is not the case. A shard unit splits the
computations (not data) of a forward/backward pass of a whole mini-batch.
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Figure 3.4. Demonstrative illustration of SHARP and contrasting with regular task par-
allelism and model parallelism for training 3 models A, B, and C, each with 2 shards.
Real-world schedules tend to be more complex, but this simplified diagram shows SHARP’s
capacity for optimization.

after one another, i.e., they may be staggered over time. This is the key reason for SHARP’s

higher efficiency–it breaks things down and puts them back together better.

Notice that SHARP is only possible due to the flexibility of model spilling. Model

spilling’s shards can be used as semi-independent sub-models, as contrasted with parameter-

spilling systems where there is no real notion of independence. Only with shard-spilling can we

effectively support blended execution schedules across models.

While the idea of SHARP is fundamentally simple (but novel), realizing it in a working

system faces two bottlenecks: (1) the sheer number of shard units and (2) the latency of swapping

shards between device memory and DRAM. First, note that the number of shard units to be

handled by HYDRA is multiplicative in four quantities: number of models given by the user,
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number of shards per model, number of mini-batches per epoch, and number of epochs per

model training run. In realistic DL scenarios, one can easily hit tens of millions of shard units!

Thus, next we answer two questions regarding the above bottlenecks: How to automate the

orchestration of large numbers of shard units? Is it possible to reduce latency of swapping shard

units

3.3.5 Automated Shard Orchestration

To realize SHARP in an system, we must handle 3 kinds of “data” before, during, and

after a shard unit: (1) training data mini-batch, (2) model parameters, and (3) intermediate

data/outputs of a shard unit. Thankfully, DL tools like PyTorch offer APIs that enable data to be

transferred from GPU memory to DRAM and vice versa. We use those APIs in HYDRA under

the hood to automate shard orchestration.

Each model is defined as a “queue” of shards in DRAM, ordered according to the neural

computational graph. Each shard is associated with its necessary data, such as an input mini-

batch, intermediate data between shards, and/or gradients sent backward. The shard at the front

of the queue is transferred to GPU memory along with its associated data to begin running that

shard unit.

After execution completes, the shard parameters (possibly updated) are returned to

DRAM. In addition, the shard’s intermediate outputs, say, a gradient vector or a loss value, are

also written to DRAM and attached to the model. They will be used as inputs for the model’s

next shard. The last shard of a model concludes a full mini-batch training pass; after that, the old

mini-batch is discarded and the next mini-batch of the prepared data will be used.

3.3.6 Double-Buffering

A common trick used in RDBMSs, e.g., for external merge sort, is double-buffering [174].

The basic idea is this: the processor’s memory (higher in the memory hierarchy) is split into

two regions: one for active processing and the other as a “loading zone” for the next task. We
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bring this trick to the DL systems world for the first time. HYDRA uses it to mask shard loading

latencies. We protect a “buffer space” in GPU memory during model partitioning (Section 3.3.3)

to guarantee that so much buffer memory will be available during training.

Prior analyses [192] demonstrate that intermediate activations produced during training

form the largest proportion of GPU memory consumption, as much as 99% in some cases!

Double-buffering need not transfer intermediate activations — those will be produced by check-

pointing inputs between shard groups during training. Therefore, the double-buffer need only be

large enough to hold the model state, optimizer state, and input data, which only forms only a

small proportion of overall memory consumption. In practice, a buffer size consisting of 5% of

total memory is more than sufficient, though users can adjust this value as needed.

When our Scheduler picks the next shard to be run, we transfer it to that GPU’s buffer

space even as the previous shard unit is running there. Interestingly, our double-buffered DL

training in HYDRA also offers a serendipitous new bonus: we can avoid spilling (to DRAM)

altogether in some cases. When a model’s current shard unit is active, if its next shard is double-

buffered on the same GPU, intermediates need not move at all, eliminating latency. While we

focus on the GPU memory-DRAM dichotomy, our above techniques are general enough to be

applicable across the entire memory hierarchy: between DRAM and local disk, local and remote

disk, etc.

3.3.7 Scheduling Formalization of SHARP

The sheer number and variable runtimes of shard units across models necessitates a

rigorous automated Scheduler. We immediately face two technical challenges. First, different

models may train for different numbers of epochs due to convergence-based SGD stopping

criteria or early stopping in AutoML heuristics. Second, devices may disappear over time,

say, due to faults, or get added, say, due to elasticity. For these reasons, we choose a dynamic

scheduling approach to place shard units on devices as and when a device becomes available over

time. This design decision tackles all three challenges above in a unified way and also simplifies
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system implementation.

We treat each model to be trained as a queue of shard units unifying reasoning of division

within a mini-batch, across mini-batches within an epoch, and across epochs.

3.3.7.1 Formal Problem Statement as MILP

The scheduling problem is as follows. When a device (GPU) becomes available, a shard

unit must be selected from one the model’s queues to be placed upon that device. Shard units

become eligible for scheduling if they have no pending dependencies, i.e., they are at the front

of their queue and no other shard unit of that same model is still running on another device.

The Scheduler’s job is to pick a shard unit from the set of eligible shard units. Double-buffered

training is already factored into this formulation: the Scheduler is actually picking shard units

for double-buffering, and they get promoted from the buffer to compute.

All shard unit runtimes are given as input. Recall from Section 3.3.3 that the partitioner

records this data during its pilot run. We now present the formal scheduling problem as an MILP.

Table 3.1 explains our notation.

Objective: min
X ,Y

C (3.1)

The MILP objective, as defined in Equation 3.1 is to pick a shard unit ordering that can

minimize makespan (completion time of the whole workload at this granularity).

∀t, t ′ ∈ [1, . . . , |T |] ∀p, p′ ∈ P∀ j ∈ [2, . . . ,Mt ] Xt,p, j ≥ Xt,p′, j−1 +St, j−1 (3.2)

Equation 3.2 simply enforces the sequential ordering of shard units within a model. Note

that this set per model here is unified within a mini-batch, across mini-batches within an epoch,

and potentially across epochs too–they are all sequentially dependent.
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Table 3.1. Notation for our MILP scheduling formalization. We denote the symbols used in
our constraints as well as their plain-English definitions.

Symbol Description

T List of models specified by the user to be trained

P List of devices (GPUs) available for training.

Mi ∈ Z+ Mi is the total number of shard units for model Ti ∈ T . Note
that this covers all mini-batches (and potentially epochs).

Si ∈ RMi Si is a variable-length list of shard unit runtimes for model Ti.
The runtime of shard unit j is denoted as Si, j.

Xi ∈ R|P|×|Mi| Xi is a variable-shape matrix of start times of shard units of
model Ti across workers. The start time of shard unit j on
worker p is denoted as Xi,p, j. Note that this linear ordering
covers not just the model’s forward and backward passes but
also ordering across mini-batches (and potentially epochs).

Yi ∈ {0,1}|P|×L×L L is the total number of shard units across all models, i.e.,
L = ∑i Mi, indexed cumulatively by the index of model i and
its shard unit j (denoted i_ j). Yp,i_ j,i′_ j′ = 1⇔ Xi,p, j < Xi′,p, j′ .

U An extremely large value used to enforce boolean logic.

∀ j ∈ [1, . . . ,Mt ] ∀ j′ ∈ [1, . . . ,Mt ′] Xt,p, j ≥ Xt ′,p, j′+St ′, j′− (U×Yp,t_ j,t ′_ j′) (3.3)

∀ j ∈ [1, . . . ,Mt ] ∀ j′ ∈ [1, . . . ,Mt ′] Xt,p, j ≤ Xt ′,p, j′−St, j +(U× (1−Yp,t_ j,t ′_ j′)) (3.4)

Equations 3.3 and 3.4 enforce model training isolation, i.e., only one shard unit can run

on a device at a time.
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∀ j ∈ [1, . . . ,Mt ] Xt,p, j ≥ 0 (3.5)

∀ j ∈ [1, . . . ,Mt ]C ≥ Xt,p, j +St, j (3.6)

Equation 3.5 is just non-negativity of start times, while Equation 3.6 defines the makespan.

Using a MILP solver such as Gurobi [65] enables us to produce an “optimal” schedule in

this context. But the above task is a variant of a general job-shop scheduling problem described

in [206], and it is known to be NP-complete. Given that the number of shard units can span

thousands to tens of millions, solving it optimally will likely be impractically slow. Thus, we look

for fast and easy-to-implement scheduling algorithms that can still offer near-optimal makespans.

3.3.7.2 Intuitions on Scheduling Effectiveness

We observe that there are 2 primary cases encountered by a scheduler in our setting:

1. The number of models is equal to or greater than the number of available devices.

2. The number of models is less than the number of available devices.

In case (1), there will always be at least one eligible shard unit for each device at every

scheduling decision. Any shard-parallel scheduling algorithm that accounts for all devices can

easily keep all devices busy most of the time, i.e., busy waiting is unlikely. In case (2), all models

can be trained simultaneously. Since each model’s shard unit uses at most one device in SHARP,

and since there are more devices than models, there is no contention for resources here. In this

case, regular task parallelism-style scheduling suffices and the makespan will just be the runtime

of the longest “task.”
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Algorithm 2: The Sharded-LRTF scheduling algorithm.
Struct {

Remaining epochs e
Minibatches per epoch b
Remaining minibatches in current epoch ce
Minibatch training time t
Remaining train time in current minibatch cm

}
Input: Idle Models [M]
Output: Model MaxModel
MaxTrainTime = 0
for Index i, Model m in [M] do

ModelTrainTime =((me−1)×mb +mce−1)×mt +mcm
if ModelTrainTime > MaxTrainTime then

MaxTrainTime = ModelTrainTime
MaxModel = m

end if
end for

In both the cases above, even basic randomized scheduling might yield reasonable

makespans. However, what it will not take into account is that case (1) is not static. Over time,

as models finish their training, our setting may “degrade” from case (1) to case (2). Thus, two

different schedulers that operate on a workload in case (1) may differ in their effectiveness based

on how gracefully they degrade to case (2). As noted before, the makespan in case (2) scenario

is determined solely by the longest-running remaining model. This gives us an intuition for a

simple scheduler that can often do better than randomized: minimize the maximum remaining

time among the remaining models.

If degradation to case (2) occurs early on, and if there is a substantial differences in task

runtimes post-degradation, the overall completion times can differ significantly based on the

scheduling. Such degradation can arise in model selection workloads that use early stopping for

underperforming models, e.g., Hyperband [111], or by manual user intervention. Thus, we aim

for a scheduling algorithm that can address such cases too in a unified way.

We propose a simple and practical greedy heuristic we call Sharded Longest Remaining

Time First (LRTF) based on our above intuitions. Algorithm 2 explains our algorithm. Sharded-
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LRTF selects the model training task with the longest total remaining train time at every possible

scheduling decision time. Since a new scheduling choice must be made at the completion of

every shard unit, the selection will update its choice of longest task at a very fine-grained level.

Note that the selection procedure runs efficiently with linear time complexity.3

3.3.7.3 Our Scheduling Algorithm: Sharded-LRTF

To quantitatively understand the effectiveness of Sharded-LRTF, we compare it using

simulations against a basic randomized schedule and a Gurobi-output “optimal” schedule. For

tractability, we set a timeout of 100s for Gurobi. We who both a homogeneous setting (all

neural architecture are identical) and a heterogeneous setting, wherein they differ significantly.

We assume all GPU devices are identical for simplicity, but that is also common in practice.

Per-epoch runtimes of a model in the homogeneous setting are all fixed to 2 hours each, with

2000 shard units each. For the heterogeneous setting, per-epoch model runtimes are set between

30 minutes to 4 hours; number of shard units are set between 100 to 10,000. We randomly sample

an initial set and report the average and standard deviations of 3 runs on the fixed set. Variance

occurs due to non-deterministic scheduling behaviors from random selection and Gurobi timeout.

Figure 3.5 shows the results.

We note that MILP “optimal” has higher makespan in some cases because Gurobi did

not converge to the global optimal in the given time budget. The randomized approach matches

it or performs worse in many cases. But Sharded-LRTF matches or significantly outperforms

the other approaches in many cases, especially in the heterogeneous setting. This is in line with

the intuition we explained that being cognizant of longer running models in the mix is helpful.

Also note that the runtime of Sharded-LRTF is in the order of tens of milliseconds, ensuring it is

practical for us to use in HYDRA repeatedly for scheduling shard units on devices dynamically.

Note that the actual mini-batch training computations on the device are the dominant part of the

overall runtime.
3In fact, an alternate data structure to record shard references can enable even constant-time selection.
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3.4 Experiments

We now compare HYDRA against state-of-the-art open source and industrial tools for

large-model DL training: PyTorch Distributed, Microsoft’s DeepSpeed, FlexFlow from Stan-

ford/CMU, and Google’s GPipe. GPipe’s microbatch count and partition count is equal to the

GPU count. FlexFlow requires some manual guidance by editing the system-generated paral-

lelism strategy file to ensure memory errors do not occur. We also show multiple variants with

DeepSpeed, including superimposing a hybrid task parallelism (note that regular task parallelism

is not applicable) and a hybrid data parallelism offered by DeepSpeed. We then dive into how

HYDRA performs when various workload and system parameters are varied.

Table 3.2. Details of end-to-end workloads. *Architectures similar to BERT-Large and ViT,
scaled up for demonstration.

NLP Workload Computer Vision Workload

Model
Architectures BERT-Large* Vision Transformer (ViT)*

Model Sizes 1B 300M, 600M, 800M, 1B, 1.5B, 2B

Batch Size 8, 16. 32 512, 1024

Learning Rate 10−3,10−4,10−5,10−6 10−3

Epochs 4 5

Workload Details. We use two popular DL model selection scenarios: hyperparameter

evaluation and neural architecture evaluation. Table 3.2 lists details. For hyperparameter

evaluation, we focus on masked-language modeling with the Transformer architecture BERT-

Large [47], trained on the WikiText-2 dataset. The neural architecture is fixed and we vary batch

size and learning rate as key hyperparameters to create a total of 12 models to train, each with 1B

parameters. For neural architecture evaluation, we focus on a computer vision task with variants

of the Vision Transformer (ViT) model [49] and the CIFAR-10 dataset. We create models with

sizes between 300M parameters and 2B parameters. We also vary batch sizes, leading to a total
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of 12 models again.

Machine Setup. We focus on single-node multi-GPU training, anecdotally the most

common among DL practitioners. We use 8 Nvidia RTX 2080Ti GPUs with 11GB memory,

NVLink-enabled. The machine runs Ubuntu 18.04. and the node has 500GB DRAM and 80

CPU cores.

3.4.1 End-to-End Workloads

Figure 3.6 presents overall runtimes and GPU utilization results. We find that the

baseline off-the-shelf PyTorch Distributed and DeepSpeed model parallelism report massive

resource under-utilization. Thus, their runtimes are the highest. The basic hybrids with data- or

task- parallelism do provide higher utilization and some modest speedups, but the fundamental

limitations of model parallelism persist with such approaches, such that they still fall substantially

short of ideal linear speedup (8x in this case). GPipe-style pipeline parallelism is much better,

with about a 4x speedup against regular model parallelism. But HYDRA is the most efficient

approach overall, reaching about 7.5x, close to the physical upper bound. The average GPU

utilization of HYDRA is also the highest at over 80%.

3.4.2 Drill Down Analysis

We now dive deeper into the behavior of HYDRA when varying key parameters of interest

from both ML and system standpoints.

3.4.2.1 Impact of Model Scale.

We vary the scale of the models to see the impact on relative performance of HYDRA.

We fix the number of GPUs at 8 and the number of models to 12. Figure 3.8 shows the results.

We see that HYDRA’s speedups over regular model parallelism is fairly consistent even as the

model scale grows. This is because our partitioning approach (Section 3.3.3) and the dynamic

Sharded-LRTF algorithm (Section 3.3.7.1) together ensure that shard unit times are similar
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Figure 3.6. End-to-end workload results: Runtime speedups relative to the baseline PyTorch
Distributed and GPU utilization. All evaluations were closely monitored to ensure none
suffered hardware failure or GPU disconnects.
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A)

B)

Figure 3.7. System microbenchmarks. A) demonstrates the impact of task set size on
performance while resources are fixed, while B) demonstrates the impact of cluster size on
performance while the task set size is fixed.

even as model scale grows; basically, it just leads to more shard units to run. Our SHARP and

double-buffering techniques further ensure that having more shard units do not cause relatively

more resource idling on average.

3.4.2.2 Impact of Number of Models.

We now vary the number of models that are trained together. The number of GPUs is set

to 8; all models have are uniformly large, at 250M parameters (same Transformer workload as

before). Figure 3.7A shows the results. We see that HYDRA exhibits close to 8x speedups when

the number of models is 8 or more but lower than that, the speedup is capped close to the actual

number of models. This flattening in the fewer-models regime is inherited from task parallelism

by SHARP. The GPU utilization numbers vary proportionally to the speedups seen.
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Figure 3.8. Impact of model scale. Runtimes normalized to the first instance of regular
model parallelism for clarity.

3.4.2.3 Impact of Number of GPUs.

We now study how varying the number of GPUs affects HYDRA’s speedup behavior.

We fix the workload to 4 Transformer models, each with 250M parameters. We choose only 4

models to showcase both regimes: when the number of devices is less than models and vice versa.

Figure 3.7B shows the results. We see that HYDRA exhibits a roughly linear speedup when there

are more models than devices. And when that flips, since HYDRA runs out of models to schedule,

the speedup flattens as the degree of parallelism is limited. As before, this is due to SHARP

inheriting the degree of parallelism from task parallelism. We believe further hybridization

of SHARP with data parallel training can help boost speedups and resource utilization in this

regime; due to its complexity, we leave it to future work.

3.4.2.4 Ablation Tests.

In this experiment, we explore the effect of system components on framework perfor-

mance. The number of devices is fixed to 8, with 16 Transformer models. All optimization levels

include model spilling as a baseline, as this technique is critical to HYDRA’s basic operations.

Table 3.3 demonstrates the results. Pure model spilling dramatically slows down model training.

This is only to be expected, given that it introduces a dependency on DRAM. SHARP’s through-

put improvements dominate the slowdowns of model spilling, but it is important to note that

46



SHARP’s speedups are workload-dependent. Double-buffering largely eliminates the cost of

model spilling, enabling further speedups.

Table 3.3. Runtimes and slowdowns of HYDRA when our two key optimizations are disabled
one by one.

Optimization Level Runtime (hrs) Aggregate Speedup

HYDRAwithout SHARP or double-buffering 24.14 1X

HYDRA without double-buffering 4.3 5.61X

HYDRA 1.85 13.05X

3.5 Conclusion

Training larger-than-GPU-memory DL models is an increasingly critical need for DL

users. Yet existing “model parallelism” tools are sub-par on scalability and parallelism, are often

hard to use, and massively underutilize GPUs. Moreover, no existing system inherently supports

both multi-model training and larger-than-GPU-memory model training. We present HYDRA, a

new system for large-scale multi-model DL training inspired by the design and implementation

of RDBMSs that uses the memory hierarchy consciously and exploits multi-task execution to

optimize performance. We identify a judicious mix of data systems techniques–some novel and

some classical RDBMS ideas adapted to DL (such as sharding, spilling, and double buffering)–

to enable large-model training even on a single GPU. By further exploiting the high degree

of parallelism in multi-model training, we devise a novel hybrid parallel execution technique

inspired by multi-query optimization. Our work shows that the DL systems world can benefit

from learning from the RDBMS world on data systems techniques that enable more seamless

scalability and parallelism for DL users.

Chapter 3 contains material from “Hydra: A System for Large Multi-Model Deep

Learning” by Kabir Nagrecha and Arun Kumar, and “Model-Parallel Model Selection for Deep

Learning Systems” by Kabir Nagrecha, which appears in Proceedings of the 2021 International
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Conference on Management of Data. The dissertation author was the primary investigator

and author of this paper. The code for our system is open source and is available on GitHub:

https://github.com/knagrecha/hydra.

48



Chapter 4

SATURN: Joint Optimization for Paral-
lelism, Resource Allocation, and Schedul-
ing on Multi-Large-Model Workloads

In this chapter, we dive deeper into our joint optimization techniques, which unify the

problem spaces of parallelization, resource allocation, and scheduling on memory-intensive multi-

model workloads. Such large-model architectures typically demand complex parallelization

schemes to both distribute memory demands and accelerate training, e.g., fully-sharded data

parallelism or pipeline parallelism. But the recent popularity of large-model architectures has

spurred on the development of a vast number of competing parallelization schemes — each with

their own advantages in different scenarios. Combined with this are the challenges of resource

allocation and scheduling, which in turn affect the optimal parallelization choices. Thus, in order

to both simplify the burden placed on practitioners and also to maximize end-to-end efficiency, a

system that can optimize over all three interconnected dimensions at once is needed.

4.1 Introduction

Case Study: Consider a data scientist, Alice, building an SQL autocomplete tool to

help database users at her company. She has a (private) query log that contains her company’s

database schemas, common predicates, etc. She downloads two LLMs from HuggingFace —

GPT-2 and GPT-J — both of which are known to offer strong results for textual prediction
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tasks [171, 213]. She finetunes multiple instances on her dataset, comparing different batch

sizes and learning rates to raise accuracy. She uses an AWS instance with 8 A100 GPUs. She

launches the DL tuning jobs in parallel, assigning one GPU each. Alas, all of them crash with

out-of-memory (OOM) errors. She is now forced to pick a large-model scaling/parallelism

technique and assign multiple GPUs to each job. But to do so she must answer 3 intertwined

systems-oriented questions: (1) Which parallelism technique to use for each model? (2) How

many GPUs to assign to each model? (3) How to orchestrate such complex parallel execution for

model selection workloads?

In this paper, we tackle precisely those 3 practical questions in a unified way to make it

easier, faster, and cheaper for regular DL users like Alice to benefit from such state-of-the-art

large DL models.

4.1.1 Motivation

We start by first explaining why prior art for large-model and parallel DL systems is

insufficient to tackle the problem. Table 4.1 lists a conceptual comparison of our setting with

prior art on several key aspects. Section 8.2 discusses related work in greater detail.

(1) Which parallelism technique to use for each model? There are a multitude of tech-

niques in the ML systems world to parallelize/scale large models across GPUs. Some common

techniques are: sharding the model, spilling shards to DRAM [79, 132], pipeline parallelism

as in GPipe [82], fully-sharded data-parallel (FSDP) as in PyTorch [2] and ZeRO [173], hand-

crafted hybrids as in Megatron [190], as well as general hybrid-parallel approaches such as

Unity [207, 89] and Alpa [241]. But no technique dominates all others in all cases. Relative

efficiency depends on a complex mix of factors: hardware, DL architecture specifics, even batch

size for stochastic gradient descent (SGD). Figure 4.1(B) shows two empirical results on real

workloads to prove our point. Even between just pipelining and FSDP, complex crossovers

arise as GPU counts and batch sizes change. Furthermore, many techniques expose knobs that

affect runtimes in hard-to-predict ways [118], e.g., pipelining requires tuning partitions and
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B)

A)

Figure 4.1. (A) Trends of the sizes of some state-of-the-art DL models in NLP and CV (log
scale), extrapolated from a similar figure in [190]. (B) Our empirically measured runtime
crossovers between FSDP and pipeline parallelism, with knobs tuned per setting.

“microbatch” sizes, while FSDP requires tuning offloading and checkpointing decisions. Thus,

we need to automate parallelism technique selection for large-model DL training.

(2) How many GPUs to assign to each model? Many DL practitioners use fixed clusters

or have bounded resource budgets. So, they are either given (or decide) up front the number

of GPUs to use. But in multi-model settings like model selection, there is more flexibility on

apportioning GPUs across models. The naive approach of running models one after another

using all GPUs is sub-optimal as it reduces model selection throughput and adding more GPUs

per model yields diminishing returns. Alas, the scaling behaviors of large-model parallelism

techniques are not linear and often hard to predict, as Figure 4.1(B) shows. Prior art has studied

data-parallel resource allocation (e.g., Pollux [170] and Optimus [163]) and model selection

optimization (e.g., Cerebro [100] and ASHA [109]). But none of them target large-model DL,

which alters the cost-benefit tradeoffs of GPU apportioning in new ways due to interplay with

parallelism selection and complex scaling behaviors. Thus, we must automate GPU apportioning
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Table 4.1. Overview of prior art. Column desiderata are described in Sections 4.1.1
and 4.1.2.

Fidelity Multi-
Model

Resource
Allocation

Parallelism
Selection

Out-of-the-Box
Large Model

Support

Hybrid
Parallelism
Alpa [241] 3 7 7 3(limited) 3

FlexFlow [89] 3 7 7 3(limited) 7

Unity [207] 3 7 7 3(limited) 3

Performance
Evaluation
Paleo [168] 3 7 7 3(limited) 7

Model
Selection
Cerebro [100] 3 3 7 7 7

ASHA [109] 3 3 3 7 7

Scheduling
Gandiva [226] 3 3 7 7 7

Antman [227] 3 3 7 7 7

Tiresias [62] 3 3 7 7 7

Resource
Allocation
Pollux [170] 7 3 3 7 7

Optimus [163] 7 3 3 7 7

SPASE
SATURN (ours) 3 3 3 3 3

for large-model model selection.

(3) How to orchestrate such complex parallel execution for model selection? This is a

scheduling question, i.e., deciding which jobs to run when. Two naive approaches are to run

models in a random order or to use a generic task scheduler. Both can lead to GPU idling due to
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a lack of awareness of how long models actually run. Prior art has studied runtime-aware DL

scheduling, e.g., Gandiva [226] and Tiresias [62], but none target large-model DL. The complex

interplay of parallelism selection and GPU apportionment can affect runtimes in a way that

alters the tradeoffs of scheduling. The model selection setting adds more considerations: we

must optimize end-to-end makespan rather than just a throughput objective [170, 163]. Specific

desiderata must be met: fidelity on ML accuracy and generality on specification. We expand on

these in Section 4.1.2.

Overall, there is a pressing need for a unified and automated way to tackle these 3

systems concerns of model selection on large models: select parallelism technique per model,

apportion GPUs per model, and schedule them all on a given cluster. No prior art — including

all those described in Table 4.1 — can address this novel setting that has emerged with the rise of

large-model DL. We call this new joint problem SPASE: Select Parallelism, Apportion resources,

and SchedulE.

4.1.2 System Desiderata

To help democratize large-model DL and ease practical adoption, we seek a data system

that tackles SPASE with the following desiderata:

(1) Extensibility on parallelism selection. Given the variety of large-model parallelism

techniques (henceforth called “parallelisms” for brevity), the system must support and select

over multiple parallelisms and also make it easy for users to add new parallelisms in the future

(e.g. for model-technique codesign [9, 190, 52]). Without support for user extension, parallelism

selectors/hybridizers are limited in scope, as noted in Table 4.1.

(2) Non-disruptive integration with DL tools. The system must natively support

popular DL tools such as PyTorch [114] and TensorFlow [8] without modifying their internals.

This can offer backward compatibility as those tools evolve.

(3) Generality on multi-model specification. The system should support multiple model

selection APIs, e.g., grid/random search or AutoML heuristics. We assume the system is given a
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Figure 4.2. Overview of how SATURN’s components tackle the SPASE problem for multi-
large-model DL workloads.

set of model training jobs with known epoch counts. Evolving workloads can be supported by

running all models one epoch at a time.

(4) Fidelity on ML accuracy. The system must not deliberately alter ML accuracy when

applying system optimizations. Approximations such as altering the model, training algorithm,

or workload parameters are out of scope because they can confound users.

4.1.3 Our Proposed Approach

To meet all of the above desiderata, we design a new information system architecture

to tackle SPASE that is inspired by some techniques in database systems. We call our system

SATURN. Our current focus is on the common fixed-cluster setting rather than autoscaling [181].

As Figure 4.2 shows, our approach is three-pronged:

(1) Parallelism Selection and UPPs. We translate high-level (“logical”) model training

specifications into optimized “physical” parallel execution plans based on instance details,

inspired by physical operator selection in RDBMSs, e.g., selecting hash-join vs. sort-merge

join for a given join operation. To meet the first desideratum of extensibility, we introduce

the abstraction of User-Pluggable Parallelisms (UPPs). UPPs can be used to specify existing

parallelisms in standard DL tool code, or enable users to add new parallelisms as blackboxes

for SATURN to use. This also ensures the second desideratum of non-disruptive integration. We

create a default UPP library in SATURN to support 4 major existing parallelisms: pipelining,
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spilling, distributed data parallelism (DDP), and FSDP. Each UPP can support knob-autotuning,

similar to auto-tuning of physical configuration parameters of a data management system [208,

74].

(2) Performance Profiling. To apportion GPUs and select parallelisms in a way that

ensures the fourth desideratum, we need accurate estimates of job runtimes as is. We exploit a

basic property of SGD: since minibatch size is fixed within an epoch, we can typically project

epoch times accurately from runtime averages over a few minibatch iterations. This is similar

to prior works (e.g. the Clockwork inference system [63]) that exploit the deterministic and

predictable performance behaviors displayed by DNNs to proactively plan out high-quality

execution schemes. Coupled with the offline nature of model selection, we can create a general

and effective solution: profile all jobs using the full “grid” of options for both GPU counts and

parallelisms based on only a few minibatches. The overhead of this approach is affordable due

to the long runtimes of actual DL training. This also ensures our second and third desiderata

as all DL tools offer data sampling APIs that we can just use on top of the user-given model

specifications. Of course, we use the full training data for the actual DL jobs to ensure the fourth

desideratum.

(3) Joint Optimization and Scheduling. Given the above system design choices, we

can now tackle SPASE using joint optimization. We formalize this problem as a mixed-integer

linear program (MILP). Using realistic runtime estimates, we perform a simulation study to

compare an MILP solver (we use Gurobi [65]) to a handful of strong scheduling heuristics.

The solver yields the best results overall even with a timeout. Thus, we adopt it in SATURN as

our SPASE optimizer. Actual model training, not the optimizer, heavily dominates overall

runtimes in DL workloads, so we view this design decision as reasonable because it ensures

both efficiency and simplicity, easing system maintenance and adoption. Finally, we augment

our Optimizer with an “introspective” scheduling extension known in prior art to further raise

resource utilization.
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We intentionally design SATURN to be a simple and intuitive system to tackle SPASE in

a way that can help ease practical adoption. Figure 4.3 in Section 3 shows our system architecture.

SATURN is implemented in Python and exposes high-level APIs for (offline) specification of

UPPs and model selection APIs for actual DL training usage. Under the hood, SATURN has 4

components: Parallelism Plan Enumerator, Performance Profiler, Joint Optimizer, and Executor.

The runtime layer builds on top of the APIs of the massively task-parallel execution engine

Ray [136] for lower level machine resource management, e.g., placing jobs on GPUs, as well as

to parallelize our profiling runs. Using two benchmark large-model workloads from DL practice,

we evaluate SATURN against several baselines, including an emulation of current practice of

manual decisions on SPASE. SATURN reduces overall runtimes by 39% to 49%, which can yield

proportionate cost savings on GPU clusters, especially in the cloud. We perform an ablation

study to isolate the impacts of our optimizations. Finally, we evaluate SATURN’s sensitivity to

the sizes of models, workloads, and nodes.

Novelty & Contributions. To the best of our knowledge, this is the first work to

unify these three critical requirements of large-model DL workloads for end users: parallelism

selection, resource apportioning, and scheduling. By casting the problem this way, we judiciously

synthesize key system design lessons to craft a new information system architecture that can

reduce user burden, runtimes, and costs via joint optimization in this important analytics setting.

Overall, this paper makes the following contributions:

• We formalize and study the unified SPASE problem, freeing end users of large-model

DL from having to manually select and tune parallelisms, apportion GPUs, and schedule

multi-jobs.

• We present SATURN, a new information system architecture to tackle SPASE that is

also the first to holistically optimize parallelism selection and resource apportioning for

multi-large-model DL. SATURN employs a generalized profiler to estimate parallelism

runtimes and an MILP solver for joint optimization.
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• To enable generalized and extensible support for parallelisms, we create the abstraction of

User-Defined-Parallelisms (UPPs). UPPs can be used to specify parallelisms as blackboxes

in SATURN.

• We perform an extensive empirical evaluation of SATURN on two benchmark large-model

DL workloads. SATURN reduces model selection runtimes by up to 49% in some cases.

We make our code publicly available on GitHub 1.

4.2 Background and Preliminaries

We provide a brief background on parallelization techniques to describe the fundamentals

relevant to our problem space. For the interested reader, we provide a broader overview of the

ML Systems space in the Appendix of our tech report [145].

Multi-GPU parallelism is now common in large-model DL training [86]. Several

parallelization schemes already exist, and researchers continue to routinely devise and propose

new techniques. A comprehensive review of all such approaches is out of scope for this paper;

we refer interested readers to the relevant surveys [141, 192]. Instead, we only highlight a few

common approaches here for reference. We also mention the tunable knobs for each parallelism

that complicate scaling behaviors and theoretical performance analyses.

Data Parallelism replicates a given DL model across multiple accelerators. Each is fed a

different minibatch partition for parallel processing. Replica synchronization can be done in two

ways — either via a central parent server, for Parameter Server (PS)-style data parallelism [112,

179], or through peer-to-peer communication, for all-reduce data parallelism [185, 114] with

synchronization at SGD boundaries.

Model Parallelism partitions the model rather than the data. The model graph is sharded

and partitioned over GPUs to distribute the memory footprint. The speedup potential of model par-

allelism depends on the partitioning scheme and model architecture. Hand-crafted, architecture-

1https://github.com/knagrecha/saturn
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specific approaches can perform well [1], while simple and generic partitioning schemes tend to

be slower [140].

Pipelining [229, 82, 94, 118] & Fully-Sharded Data Parallelism (FSDP) [173, 114] are

more advanced hybridizations of model parallelism with data parallelism. Each presents its own

tradeoffs and optimization knobs (e.g. “microbatches” for pipelining [118], and “offloading” and

“checkpointing” [36] for FSDP). For brevity, we elaborate on the specifics of these techniques in

the Appendix of our tech report [145].

Spilling is not a parallelism technique in itself but is often used in combination with a

parallelism technique to reduce GPU memory pressure. It swaps model shards between GPU

memory and DRAM for piece-wise GPU-accelerated execution [140, 16]. This adds DRAM-

GPU communication overheads, but it can enable large models to be trained with even just one

GPU. Spilling exposes a partition count knob, to select the number of DRAM spills during

execution.

Model selection is the process of training and comparing model configurations. Two

popular procedures are grid search, in which all combinations of sets of values of hyper-

parameters (e.g., batch size, learning rate) are used, and random search [23], in which random

hyper-parameter combinations from given intervals are used. Early stopping can reduce the set

of configurations during training [109, 111, 176]. The high resource demands of model selection

on large models can sometimes force a DL user to settle for a smaller search space, but this risks

missing out on higher accuracy [57, 99]. Faster execution of such workloads empowers users to

run larger searches, in turn helping accuracy. Many users expect fidelity in this setting, as we

explain in Section 4.1.2.

4.3 System Overview

We now describe SATURN’s architecture that meets the desiderata in Section 1.2. SAT-

URN has 4 main modules, as Figure 4.3 shows. For workload specification, it exposes a high-level
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Figure 4.3. System architecture of SATURN and the interactions between the components.

API and the Parallelism Library. The Trial Runner handles runtime estimation. The Joint Opti-

mizer and Executor tackle the SPASE problem. SATURN uses Ray [136]’s low-level APIs as the

runtime layer that places jobs on GPUs. Next, we describe each of SATURN’s components.

4.3.1 Workload Specification

The first phase, workload specification, is handled by our API and the Parallelism Library

component.

API. SATURN’s API provides an easy-to-use interface for both registering parallelisms

(for developers) and submitting large-model training jobs (for end users of DL). We now provide

a brief overview; due to space constraints, we provide the full example pseudocode in the

technical report [145]. There are two parts to the API: the Library API and the Trainer API.

Users create “Tasks” through the Trainer API by specifying functions for model initialization

and data loading, along with any hyper-parameters. This is sufficiently general to cover most

model selection workloads. Listing 4.1 illustrates.
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1 from saturn.trainer import Task , HParams , execute , profile

2

3 t_1=Task(get_model ,get_data ,HParams(lr=1e-3,epochs=5,optim=SGD))

4 t_2=Task(get_model ,get_data ,HParams(lr=3e-3,epochs=5,optim=SGD))

Listing 4.1. Specifying tasks through SATURN’s API.

Training procedures are defined by “User-Pluggable Parallelisms” (UPPs), which imple-

ment the parallel execution approach for SGD. These parallelisms can be registered with our

Library by a developer (e.g., ML engineer) or a system-savvy end user of DL. The registration

process is shown in Listing 4.2.

1 from saturn.library import register

2

3 register("parallelism -a", ParallelismA)

4 register("parallelism -b", ParallelismB)

Listing 4.2. Parallelism registration.

Once all parallelisms and tasks are specified, DL users can invoke the Trial Runner to

produce runtime estimates in a single line of code, followed by invoking the whole training

execution in another single line of code. Listing 4.3 illustrates these.

1 profile ([t_1 , t_2 , t_3])

2 execute ([t_1 , t_2 , t_3])

Listing 4.3. Profiling and execution invocations.

Parallelism Library. The design of this library is inspired by functional frameworks,

user-defined function templates in RDBMSs, and DL model hubs [223]. We follow a define-once,

use-anywhere design, wherein registered UPPs can be reused across models, execution sessions,

and even different cluster users. This is achieved by managing library-registered parallelisms

as a database of code files. The Library allows developers to register new parallelisms by

implementing an abstract skeleton, shown in Listing 4.4.
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1 class BaseParallelism:

2 def search(task:Task ,gpus:List[int])->Dict ,float:

3 pass

4 def execute(task:Task ,gpus:List[int],knobs:Dict)->None:

5 pass

Listing 4.4. Parallelism specification skeleton.

The search function should use the task and GPUs to provide (1) execution parameters

(e.g., microbatch count, partition count) and (2) a runtime estimate. Knob-optimization can also

optionally be tackled here. Failed searches (e.g., OOMs) can be handled by returning null values.

The execute function trains the provided task to completion using the allotted GPUs. It also uses

any execution parameters produced during the search phase to optimize execution.

Developers can implement a UPP with standard DL tool code (e.g., TensorFlow or

PyTorch) without restrictions. This enables easy integration of pre-existing parallelisms. Indeed,

we validate that functionality by adding 4 major parallelisms in our default Parallelism Library:

DDP [114], GPipe-style pipeline parallelism [94], FSDP, and model spilling via the FairScale

package [16]. These out-of-the-box parallelisms in SATURN are maximally general in that they

can be automatically applied to any DL model supported by them. Implementing UPPs for each

took 100−250 lines of Python code. Once defined, UPPs can be registered with the Library

under a user-set name (e.g. “pytorch-ddp”).

Our design can help developers retain a familiar environment without low-level code

changes or extraneous workflows to, say, translate their parallelism implementation into a new

configuration file format, a custom domain specific language, etc. Our Parallelism Library serves

as an organized roster for registering and using large-model DL parallelisms. While it is a key

part of SATURN, it can potentially also be useful as its own standalone tool.

4.3.2 Performance Estimation

The Trial Runner estimates the runtime performance of models with different parallelisms

and GPU apportionments. The Trial Runner is not a parallelism selector: it simply generates

the statistics needed to solve SPASE. It is our empirical substitute for the complex parallelism-
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specific theoretical models used in prior art [170, 163]. Such empirical profiling helps “future

proof” SATURN to an extent: by not tightly coupling SATURN to specific parallelisms’ theoretical

models, we can directly support future DL tool compilers and/or accelerator hardware as they

evolve. As we highlight in Section 4.1.2, extensibility is one of our key desiderata. The Trial

Runner has two submodules: Plan Enumerator and Profiler.

Plan Enumerator. This sub-module constructs a “grid” across all supported parallelisms

and GPU apportionment levels for each model. That represents the space of “physical plans” for

every model that will then be profiled to obtain runtime performance estimates.

Profiler. This sub-module takes the outputs of the Plan Enumerator to produce runtime

estimates for the optimization phase. We exploit a property of SGD: since it is iterative and

consistent, we can accurately extrapolate epoch runtimes from averaged performance over a just

few minibatches [63]. We use Ray to parallelize these profiling runs and reduce the Profiler’s

runtime. In our experiments, profiling 12 multi-billion-parameter models for 4 parallelisms took

< 30min. This overhead is affordable because the actual DL model selection, on the full training

data, can take hours or even days.

4.3.3 Joint Optimizer and Executor

We now use the Trial Runner’s statistics to tackle the SPASE problem in a unified manner

via holistic optimization.

Joint Optimizer. The Joint Optimizer is invoked transparently when the user invokes the

execute function. It uses the runtime estimates produced by the Trial Runner and cluster details to

produce a full execution plan. This plan bakes in all of parallelism selection, GPU apportionment,

and schedule construction. To construct the plan, the Joint Optimizer automatically determines

the following for all model configurations given by the user: (1) which parallelism to use, (2)

how many GPUs to give it, and (3) when to schedule it.

Our Optimizer is implemented in two layers. First, an MILP solver to produce makespan-

optimized execution plans. Second, an introspective, round-based resolver that runs on top of the
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MILP solver to support dynamic reallocation. Section 4.4 goes into the technical details of the

MILP, why we chose to use an MILP solver instead of heuristics, and additional techniques in

the Joint Optimizer.

Executor. This module handles the running of the full execution plan generated by

the Joint Optimizer. The Executor runs on top of the lower level APIs of Ray to leverage its

task-parallel processing. By default, Ray uses its own task scheduler, and swapping that out

for a custom scheduler is challenging. So, for the Executor we implement our plan over Ray’s

scheduler. We achieve this by “tainting” Ray-owned GPUs so that they can only be used by the

corresponding jobs from our pre-calculated schedule. Thus, the Executor ensures that Ray’s

scheduler cannot deviate from our SPASE solution. This scheme lets us faithfully recreate the

optimizer-designed plan without overheads or induced inefficiencies, even though the design

goes beyond Ray’s intended usage.

4.3.4 Current Limitations

SATURN supports both single-node and multi-node training across different models, but

in the current version we focus on the case where each model fits in aggregate node memory (i.e.,

total GPU memory + DRAM). Since we focus on the large-model case, we do not consider GPU

multi-tenancy (e.g., as in ModelBatch [156]). We also focus on the homogeneous GPU cluster

setting and leave to future work adding support for heterogeneous hardware clusters, hardware

type selection, and elastic provisioning (e.g., like in [154, 124]). Anecdotally, we find that many

DL users in domain sciences and enterprises do indeed fit this setting. Furthermore, many of the

parallelisms in our existing Library do not yet support cross-node training for a single model

out-of-the-box. So, we defer support to a future extension as those parallelisms evolve. Despite

these assumptions, SATURN can already train 10B+ parameter models on even just one node.

These limitations can be mitigated in the future as follows: (1) adjust the MILP in Section 4.4 for

hardware selection, (2) give the Trial Runner a larger space to explore, and (3) add multi-node

parallelisms to the Library [236].

63



Two other relevant extensions are support for autoscaling support and elastic changes of

jobs mid-execution. An obvious and straightforward way to incorporate these extensions would

be to submit workloads to SATURN one-epoch-at-a-time, then induce environment/workload

changes at a higher level, in between SATURN’s invocations. Future work could look to support

more fine-grained integrations, e.g., where SATURN controls the autoscaling decisions. We

discuss some possible adaptation points in Section 4.4.4, but leave these extensions to future

work.

4.4 SPASE Joint Optimizer

We now describe the SPASE problem and dive into our MILP formalization. Using a

simulation study, we evaluate an MILP solver (Gurobi [65]) against baselines and heuristics from

standard practice and prior art. We explain our introspective mechanism that enables SATURN to

adaptively reassess its MILP solution over time.

4.4.1 Problem Basics

SPASE unifies parallelism selection, resource allocation, and schedule construction.

Typical schedulers can set task start times, while resource schedulers can select a GPU apportion-

ment as well. But with SPASE, our joint optimizer must consider a third performance-critical

dimension: select the parallelism to use for each model on the allotted GPUs. To the best of our

knowledge, ours is the first work to unify and tackle this joint problem.

In model selection workloads, it is common for all jobs to be given up front. So, we focus

on that setting. Using the Trial Runner module, we generate the necessary runtime statistics for

all given jobs. But even with that information, the joint problem is intractable; prior work on

network bandwidth distribution [12] has shown that even the basic resource allocation problem

is NP-hard. SPASE is a more complex version of that problem that also handles parallelism

selection and makespan-optimized scheduling; so it is also NP-hard. Brute-forcing the search

space is also impractical due to its sheer size. The number of schedule orderings alone grows
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super-exponentially with the number of jobs [205]. As such, solving it optimally is ruled out.

Thus, we choose to formulate SPASE as an MILP and use an industrial-strength MILP solver

(Gurobi [65]) to leverage its time-tested optimization power. Later, in Section 4.4.3, we justify

this decision further using a simulation study. We find that the MILP solver significantly and

consistently outperforms known baselines and strong heuristics despite its time limit. We rely on

Gurobi’s sophisticated techniques to avoid pitfalls such as poor local optima [66] in this highly

non-convex optimization space. Even if the solver does only reach a local optimum, the solution

should be of reasonably high quality. We describe and evaluate these risks further towards the

end of Section 4.4.3.1 and the Appendix of our tech report [145]. To the best of our knowledge,

ours is the first MILP formulation to unify DL parallelism selection, resource allocation, and

scheduling. Not only does it enable us to state the problem with mathematical precision, it also

enables us to explore the problem space’s intricacies via the simulation study.

4.4.2 MILP Formulation

Inputs. Our MILP input consists of a full grid of models, their valid configurations,

as well as the corresponding runtime estimates generated by the Trial Runner. Table 4.2 lists

our notation, and Figure 4.4(A) illustrates an example. As noted in Section 4.3, our empirical

runtime estimates already bake in the communication overheads of each parallelism.

Summary. To summarize the MILP’s function in plain-English: we ask the solver to

assign to each task: (1) GPU IDs with associated node IDs, (2) an execution configuration

(determining the parallelism and resource apportionment), and (3) a float start time. Each task

should only be assigned one node and one configuration, and the number of GPUs assigned

should agree with the specifications of the chosen configuration. The task should not block any

GPUs on a node it is not using. The start time for a given task should align all assigned GPUs

(i.e., gang scheduling), and the assigned start times should not cause task overlaps on the same

GPUs. Ultimately, the solution should minimize the makespan.

Formulation. We now go into each constraint in depth. To make the formulation easier
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Table 4.2. MILP Notation used in Section 4.4.2. We provide the symbols as well as their
plain-English definitions.

Inputs to the MILP

Symbol Description

N List of nodes available for execution.
T List of input training tasks.
U Large integer value used to enforce conditional constraints.
GPUn The number of GPUs available on node n.
St Number of configurations available to task t. A configuration consists of

both a parallelism and a GPU allocation.
Gt ∈ Z+St Variable length list of requested GPU counts for each configuration of

task t.
Rt ∈ R+St Variable length list of estimated runtimes for each configuration of task

t.

MILP Selected Variables

Symbol Description

C Execution schedule makespan.
Bt ∈ 0,1St Variable length list of binary variables indicating whether task t uses the

corresponding configuration from St .
Ot,n ∈ 0,1 Binary indicator of whether task t ran on node n.
Pt,n,g ∈ 0,1 Binary indicator of whether task t ran on GPU g of node n.
At1,t2 ∈ 0,1 Binary indicator of whether task t1 ran before task t2. If At1,t2 is 1, t2

must have run after t1.
It,n,g ∈ R+ Start time of task t on GPU g of node n.

to comprehend, we illustrate our constraints using a running example workload in Figure 4.4.

The figures are purely demonstrative, and do not represent a realistic model selection job —

which may be considerably larger and more complex.

Objective: min
B,O,P,A,I

C (4.1)
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Model A Model B Model C

Configs

Config 1
Parallelism: FSDP
Resources: 2 GPUs
Runtime: 10 hours

Config 2
Pipelining

3 GPUs
8 hours

Config 3
FSDP

4 GPUs
7 hours

Config 1
Spilling
1 GPUs

40 hours

Config 3
FSDP

3 GPUs
27 hours

Config 4
Pipelining

4 GPUs
25 hours

Config 1
FSDP

4 GPUs
24 hours

Config 2
Pipelining

2 GPUs
30 hours

A) B)

C) D)

Figure 4.4. (A) depicts the configs (i.e., variables G & R) used throughout our examples;
(B) illustrates a feasible but suboptimal SPASE solution and the corresponding makespan;
(C) illustrates an optimal SPASE solution; (D) illustrates violations of the constraints in
Equation 4.3.

We now define the constraints. Equation 4.2 defines the makespan; it is the latest task’s

start time plus the runtime of that task’s selected configuration. Figure 4.4(B) & (C) illustrate

some example SPASE solutions and their corresponding makespans.

C ≥ It,n,g +Rt,s−U× (1−Bt,s)

∀s ∈ St∀t ∈ T,∀n ∈ N,∀g ∈ G
(4.2)

Next, for each task, there should only be one selected configuration and only one selected

node. Figure 4.4(D) illustrates this constraint.

∑
x∈Bt

x = 1; ∑
y∈Ot

y = 1 (4.3)
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Next, we enforce the GPU requests of the solver onto the execution schedule. Each

task must be assigned the number of GPUs corresponding to its selected configuration. Since

direct equality comparisons are not possible in an MILP formulation, Equations 4.4 and 4.5 in

combination ensure this constraint by enforcing both ≤ and ≥ inequalities. Figure 4.5 illustrates.

Figure 4.5. Illustration of a SPASE solution where tasks select too few or too many GPUs,
violating constraints 4 & 5.

∑
t∈Pt,n

t ≥ Gt,s−U× (2−Ot,n−Bt,s)∀s ∈ St ,∀t ∈ T,∀n ∈ N (4.4)
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∑
t∈Pt,n

t ≤ Gt,s +U× (2−Ot,n−Bt,s)∀s ∈ St ,∀t ∈ T,∀n ∈ N (4.5)

Figure 4.6. Illustration of a SPASE solution where a task blocks GPUs on a node it has not
selected, violating constraints 6 & 7.

We must also ensure that the task uses 0 GPUs on any nodes it is not executing on.

Equations 4.6 and 4.7 combine ≤ and ≥ inequalities to enforce this requirement. Figure 4.6

illustrates.
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∑
t∈Pt,n

t ≤ 0−U× (Ot,n +Bt,s)∀s ∈ St ,∀t ∈ T,∀n ∈ N (4.6)

∑
t∈Pt,n

t ≥ 0+U× (Ot,n +Bt,s)∀s ∈ St ,∀t ∈ T,∀n ∈ N (4.7)

Next we apply a gang scheduling constraint, i.e. for each task, all assigned GPUs

must initiate processing simultaneously. Formulating this constraint is challenging — we need

consistency over a set of MILP-selected values, on a set of MILP-selected indices, across an

MILP-selected gang size. Our solution is to take a fixed start-time target — the sum of MILP-

selected start times over all GPUs, divided by the number of allocated GPUs. By ensuring each

selected time is thus equal to the average of the times, the times must by definition be equal to

one another. This constraint also naturally encourages the solver to fix start times on unused

GPUs to 0 without explicit enforcement, since non-zero values bloat the numerator of the left

hand side. Equations 4.8 and 4.9 in combination enforce this constraint. Figure 4.7 illustrates.

∑x∈It,n x

Gt,s
≤ It,n,g +U× (3−Pt,n,g−Bt,s−Ot,n)

∀s ∈ St ,∀t ∈ T,∀g ∈ GPUn,∀n ∈ N

(4.8)

∑x∈It,n x

Gt,s
≥ It,n,g−U× (3−Pt,n,g−Bt,s−Ot,n)

∀s ∈ St ,∀t ∈ T,∀g ∈ GPUn,∀n ∈ N

(4.9)
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Figure 4.7. Illustration of a specific model violating gang scheduling requirements, thus
breaking Constraints 8 & 9.

Finally, we encode a task isolation constraint, so that no tasks overlap on the same GPU.

Equation 4.10 applies if task t1 came before task t2, while equation 4.11 guarantees no overlap

if task t1 came after task t2. Variable A acts as a before-or-after selector, determining which

constraint is relevant for each pair of tasks. Figure 4.8 illustrates.

It1,n,g ≤ It2,n,g−Rt,s +U× ((3−Pt1,n,g−Pt2,n,g)−Bt,s +At2,t1)

∀s ∈ St ,∀t1 ∈ T,∀t2 ∈ (T −{t1}),∀g ∈ GPUn,∀n ∈ N
(4.10)

It1,n,g ≥ It2,n,g +Rt,s−U× ((4−Pt1,n,g−Pt2,n,g)−At2,t1−Bt,s)

∀s ∈ St ,∀t1 ∈ T,∀t2 ∈ (T −{t1}),∀g ∈ GPUn,∀n ∈ N
(4.11)
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Figure 4.8. Illustration of a SPASE execution plan violating task isolation requirements,
thus breaking Constraints 10 & 11.

This MILP formulation is complex because it spans and unifies three different system

decisions in our setting. Our Joint Optimizer constructs all the constraints automatically for a

given instance and provides them to Gurobi [65]. We use the PuLP interface for Gurobi to keep

all variables within a single Python process space.

4.4.3 Simulation-based Comparisons

We now evaluate our MILP-solver approach. We begin by discussing baselines from

current practice and heuristics in prior art. Then, we run evaluations on simulated workloads and

find that the MILP-solver outperforms the other approaches by a significant margin.

4.4.3.1 Baselines

As the case study in Section 7.1 highlighted, large-model users must currently tackle the

SPASE problem manually. So we can define the initial baseline based on current best practices.

A common heuristic is to just maximize each task’s allocation. Each task is given all GPUs in a
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node; then the best parallelism for that particular setting is applied. The models are run one after

another. This optimizes local efficiency and maximizes available GPU memory for each task.

This heuristic becomes a suboptimal degenerate case of the apportioning and scheduling parts

of the SPASE problem. We call this baseline “Max-Heuristic”, and anecdotally we find this is

common in current practice.

The opposite extreme would be to minimize the number of GPUs assigned to each task

to maximize task-parallelism [140]. We call this baseline “Min-Heuristic.” While it runs many

models in parallel, this approach suffers a lot of DRAM spilling for large models.

Finally, we devise a strong algorithmic heuristic that incorporates our runtime estimates

to produce non-trivial solutions. It extends an idea from Optimus, a DL resource scheduler

in prior art that proposes a greedy resource allocator that uses an “oracle” to provide runtime

estimates [163, 170]. Optimus iteratively assigns GPUs to whichever model that will see the

greatest immediate benefit. The original Optimus implementation used a throughput-prediction

oracle for PS-style data parallelism, but subsequent works [170] have made it standard to provide

an alternate oracle to adapt Optimus for different parallelisms. Our Trial Runner statistics serve

as our oracle, thus allowing us to manually configure optimal parallelism selections for Optimus’

benefit. Since this is not part of the base offerings of Optimus, we denote this strengthened

modification of Optimus as Optimus*. Optimus* serves as a strong baseline SPASE solver,

tackling problems of resource allocation and model selection natively, and parallelism selection

through our augmentation. SATURN’s main advantage over this baseline is its use of joint

optimization. For our simulation study, we call this baseline algorithm Optimus*-Greedy.

Algorithm 3 presents its pseudocode, reusing variables from Table 4.2.

The Optimus*-Greedy algorithm yields resource allocations per task. We transform

that into a SPASE solution by selecting the best parallelism for each task’s allocation post-hoc.

In the multi-node case, we run this algorithm one node at a time. Like many iterative greedy

algorithms, this approach relies on consistent scaling behaviors. It has only a local greedy view,

rather creating a one-shot global resource distribution.
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Algorithm 3: OPTIMUS*-GREEDY(Tasks T , GPUs G)
1: L = [1|t ∈ T ]
2: while sum(L) < G do
3: CR = [Rt,s|t, l ∈ (T,L),s ∈ St where Gs,t == l]
4: PR = [Rt,s|t, l ∈ (T,L),s ∈ St where Gs,t == l +1]
5: GAIN = [c− p|c, p ∈ (CR,PR)]
6: L[ArgMax(GAIN)]++
7: end while
8: return L

Apart from the above three approaches to cover standard practice and prior art extensions,

we also include a simple randomization-based baseline. In summary, we compare with 4

approaches:

1. Max-heuristic: All GPUs within a node are given to one task at a time.

2. Min-heuristic: A single-GPU technique (spilling) is given to each task to maximize task

parallelism. If additional GPUs are available, they are divided evenly.

3. Optimus*-Greedy: A greedy algorithm inspired by the one used in the Optimus [163]

resource scheduling paper.

4. Randomized: Parallelisms and allocations are randomly selected for every task, then tasks

are randomly scheduled.

For each of the above approaches, we use our Profiler results to select the best possible

parallelism+allocation for each model. For instance, if a baseline determines that Model A

should receive 8 GPUs, we refer to the Profiler to determine which parallelism gives Model A

the best runtime at 8 GPUs. This same best-check procedure is used to determine the gain values

for Optimus*-Greedy.

Since our MILP is complex, Gurobi is unlikely to converge to an optimal solution in

a practical timeframe. Thus, we set a reasonable timeout — from our trials [145], we set it to

5mins — for the solver to produce a solution. We rely on Gurobi’s industry-strength techniques
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1) 3.41X 
2) 1.58X

TXT IMG TXT IMG

Single-Node 4-Node 4-Node Heterogeneous

1) 2.45X 
2) 1.51X

1) 2.27X 
2) 1.49X

TXT IMG

Figure 4.9. Simulation results comparing our MILP to two key baselines. For each group,
we list SATURN’s speedup versus (1) the weakest and (2) the second-best performer.

to find a high-quality (though possibly suboptimal) solution even within the allotted time. The

Appendix of our tech report [145] shows the diminishing returns of having a larger timeout. We

leave it to future work to adapt the timeout for the given workload.

4.4.3.2 Simulation Workloads

We simulate 2 benchmark workloads, described in Table 4.3. Runtime estimates for

all models and configs are produced by the Trial Runner beforehand. We simulate 3 hardware

settings: an 8-GPU single node, 32-GPUs over 4-nodes, and 4 heterogeneous nodes with GPU

counts of 2, 2, 4, and 8 (16 GPUs in total). To adapt the baselines for the heterogeneous setting,

we distribute models across nodes randomly, weighting each node’s probability by its GPU

count. Figure 4.9 presents the simulation results. All approaches are run 3 times and averaged,

with 90% confidence intervals displayed; but only the randomized algorithm shows significant

non-determinism on the homogeneous node settings. In all cases, the MILP-solver approach

yields significantly better solutions than the baselines. We achieve a makespan reduction of

up to 59% over the Min-Heuristic, 36% over the Max-Heuristic, 54% over Randomized, and

33% over Optimus*-Greedy. In the heterogeneous setting, the improvements are slightly lower,

ranging from 18% to 42%. We attribute this to the small 2-GPU nodes, which provide less

flexibility for resource apportioning or parallelism selection, thus reducing the candidate solution

space. Overall, SATURN’s Gurobi-solved approach consistently outperforms the alternatives.
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Figure 4.10. Depiction of the introspective feedback loop.

The MILP-solved approach has the highest overhead; a 5min timeout versus < 10 seconds for

the baselines. But the overhead is negligible given the typical scale of the makespans.

4.4.4 Introspection

In general, one-shot up-front scheduling is suboptimal. Workloads can evolve over time,

either due to online changes (e.g., an AutoML heuristic killing or adding models to train) or

ongoing execution (task runtime reduce as they are trained). If the optimizer can be rerun partway

through execution, it might produce a different, more performant, solution for the remainder of

the workload. To achieve this, we propose the use of introspection [226].

A key feature in some state-of-the-art DL schedulers [226], introspection proposes that

a scheduler should “learn” as it executes. There are two ways in which a schedule might be

altered or adapted via introspection. First is pre-emption. Rather than blocking a GPU for a

full job lifecycle, jobs can be swapped to different GPUs or paused temporarily. This enables

fine-grained schedule construction and increased optimization flexibility. Second is dynamic

rescaling. The initial up-front training plans could be adjusted (e.g., 6 GPUs down to 2) partway

through a schedule. In SPASE, this can also involve changing the parallelism.
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We now describe how we implement introspection in SATURN. Figure 4.10 illustrates

our design. We treat our SPASE MILP solver as a blackbox sub-system. At periodic intervals

(e.g., every 1000 seconds), we re-evaluate the underlying workload. The partial training over

the previous interval may have modified the set of models. We rerun the solver on the interval

boundaries so that it can introspectively adjust its original solution. By treating each interval-

defined segment of training as effectively independent, we preserve gang scheduling semantics

within each segment, while allowing for graceful exits and relaunches across intervals. Such

sequences of independent segments are possible due to the iterative nature of SGD, as well

as the ease of checkpointing models during training [170]. Global batch size consistency is

respected by adjusting per-device batch sizes to account for new allocations. Since we focus

on model selection with the fidelity desideratum, we cannot modify the user-configured batch

size transparently. Algorithm 4 provides pseudocode for the basic algorithm. Essentially, we

re-trigger the solver on a fixed interval and determine if the new solution improves performance

versus just continuing with the existing plan. If the new plan is superior, we checkpoint all active

jobs and re-launch with the new plan.

Algorithm 4: ROUND INTROSPECTION(Workload W , Interval I)
1: ScheduleS = MILP(W )
2: M = Makespan(S)
3: E2ESchedule = S[0 : I]
4: T = 500
5: while W not exhausted do
6: W =W after I seconds of S
7: S = S[I :]
8: M = M− I
9: Proposal = MILP(W )

10: if Makespan(Proposal) ≤M - T then
11: S = Proposal
12: M = Makespan(Proposal)
13: end if
14: E2ESchedule.append(S[0 : I])
15: end while
16: return L
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Figure 4.11. Sensitivity plots for SATURN and Optimus*-Dynamic for interval and threshold
knobs. We fix the interval to 1000s for the first analysis and the threshold to 500s for the
second.

To demonstrate the impact of SATURN’s introspection, we compare with a new dynamic

baseline, “Optimus*-Dynamic”, by swapping the MILP-solver for the Optimus*-Greedy algo-

rithm. Figure 4.11 shows the impact of the interval length and the improvement threshold knob.

Since each round produces a holistically optimized solution, SATURN’s performance improves

monotonically (not accounting for pre-emption costs) as knobs become more fine-grained. Lower

interval/threshold levels naturally subsume higher levels in this scheme. In contrast, locally-

optimizing algorithms such the Optimus*-Dynamic approach have non-monotonic behaviors.

Introspection does not have to occur on interval completion; we can simulate the next-

interval state based on the current solution. Then, the solving process for the next introspection

round can be overlapped with execution of the current round to hide the latency of introspection.

This scheme provides speedups of 15% to 20% over our one-shot MILP, as shown in Section 4.5.3.

With introspection plus our MILP-solver, SATURN’s Joint Optimizer is 1.5x-4.1x faster than

the heuristics described in Section 4.4.3. Our introspection optimization significantly improves

offline execution, but it also naturally supports online AutoML optimizations such as early-

stopping [111, 109] or new job arrivals in a multi-tenant cluster through workload reassessment.

We do not explicitly optimize for AutoML heuristics in the current version of SATURN; but it is

easy to extend it to exploit this optimization.

We use a tolerance level, T , to describe the minimum acceptable benefit of an intro-

spective plan switch. If the swap only provided a 5 second benefit, for example, the switching
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Table 4.3. Model selection configurations of workloads.

Workload
TXT IMG

M
od

el
Se

le
ct

io
n

C
on

fig
ur

at
io

n

Model Arch.
(params)

GPT-2 (1.5B), GPT-J (6B)
ViT-G (1.8B), ResNet

(200M)

Dataset WikiText-2 ImageNet
Batch Size {16, 32} {64, 128}
Learning
Rate

{1e-5, 1e-4, 3e-3} {1e-5, 1e-4, 3e-3}

Epochs 10 10
# Models 12 12

overheads alone might outweigh the makespan reduction.

Our introspection optimization takes inspiration from prior art in DL cluster schedul-

ing, e.g., Antman [227] and Gandiva [226] which demonstrated the value of pre-emption on

minibatch boundaries, as well as Pollux and Optimus [170, 163], which showed the value of

dynamic rescaling. Our contribution is in unifying both of those optimization ideas to craft

our introspection technique, which also incorporates change-of-parallelism across introspection

rounds.

4.5 Experimental Evaluation

We now run an extensive empirical evaluation. We aim to answer two questions: (1)

What performance benefits does SATURN provide compared to current practice? (2) How much

do each of SATURN’s optimizations contribute to the overall speedups?

Workloads, Datasets, and Model Configurations: We run 2 model selection workloads

with benchmark DL tasks. Table 4.3 lists the model selection configurations for both workloads.

The first (TXT) is a text workload with LLMs. It uses the popular WikiText-2 [133] dataset.

WikiText-2, which is drawn from Wikipedia, has previously been used as a benchmark on

landmark LLMs such as GPT-2 [171]. TXT uses two GPT models: GPT-2 (1.5B parameters),
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introduced in 2019, and GPT-J (6B parameters), introduced in 2021. Both are still considered

state-of-the-art for application-specific finetuning purposes2. The second (IMG) is image classifi-

cation comparing a large ResNet (200M parameters) and a large-scale Vision Transformer (1.8B

parameters). It uses the computer vision benchmark dataset ImageNet [45] (14M images and

1000 classes). IMG’s mix of model classes should help provide a more challenging workload to

optimize.

Software Setup: All models are implemented and trained with PyTorch 2.0. We register

4 parallelisms in SATURN.

1. PyTorch Distributed Data Parallelism [114].

2. PyTorch Fully-Sharded Data Parallelism [114].

3. GPipe, adapted from an open-source implementation [94].

4. Model spilling, provided by the FairScale library [16].

We use Gurobi 10.0 for our SPASE MILP-solver; the introspection threshold and interval

parameters are set to 500s and 1000s, respectively. For the underlying job orchestration, we use

Ray v2.2.0. Datasets are copied across nodes upfront.

Hardware Setup: We configure 3 hardware settings: (1) 8-GPU single-node, (2) 16-

GPU 2-nodes, and (3) heterogeneous 2-nodes, where one node has 8 GPUs and the other has 4

(12 GPUs in total). All settings use AWS p4d instances.

Baselines: No prior end-to-end system can solve the SPASE problem; prior art either

does not support large models or else fails model selection constraints, as Table 4.1 showed. So,

we compare SATURN with 4 baselines using the approaches in Section 4.4.3.

2Extreme-scale LLMs such as GPT-3 or BLOOM are too large (175B+ parameters) for our current scope because
they need hundreds of GPUs for reasonable runtimes, which we are unable to afford. They are likely also infeasible
and/or an overkill for most end users of DL, especially in domain sciences, small companies, etc., who are our main
target. We leave it to future work to extend SATURN to such extreme-scale models.
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(1) Current Practice: A heuristic without any task parallelism within nodes. It allocates 8

GPUs per task. Parallelism selection is set by a human to “optimal” choices for an 8-GPU

allocation, (typically FSDP). This is perhaps most representative of current practice by

end users of DL.

(2) Random: A randomizer tool selects parallelism and apportioning and then applies a

random scheduler. This represents a system-agnostic user.

(3&4) Two modified versions of Optimus*-Greedy (Alg. 1) combined with a randomized sched-

uler (see Section 4.4). We name these baselines Optimus*-Dynamic and Optimus*-Static.

These are the strongest baselines for large-model model-selection we could assemble from

prior art.

The above approaches cover both current practices and reasonable strong heuristics for

our problem setting. We note that the two Optimus*-based baselines use our Trial Runner as an

oracle for their runtime estimates and parallelism selection decisions (the original Optimus paper

only had runtime models for Parameter Server-style data parallelism [163]). This highlights the

novelty of our problem setting — the strongest baseline from prior art needs to reuse a module

of our system.

4.5.1 End-to-End Results

Model Selection Runtimes: We first compare the end-to-end runtimes versus the 4

baselines. The Trial Runner search overheads are included in SATURN’s runtime. Figure 4.12(A)

presents the results.

SATURN achieves significant speedups versus all baselines. Against Current Practice, we

see makespan reductions of 39-40% on a single-node, 43-48% on 2 homogeneous nodes, and

41-45% on 2 heterogeneous nodes. Against the strongest baseline (Optimus*-Dynamic), we see

makespan reductions of 30-34%, 38-40%, and 32-39% on the three hardware configurations re-

spectively. Since the same UPP implementations are used in all cases, the speedups are achieved
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Figure 4.12. (A) End-to-end runtimes. Speedups versus current practice are also noted.
Results are averaged over three trials, with the 90% confidence interval displayed. (B)
Average GPU utilization over time at a 100s sampling rate on the single-node TXT job. (C)
End-to-end runtimes of SATURN versus compositions of tools on a reduced version of the
TXT job on 2 nodes.

purely via the better parallelism selections, resource allocations, and schedule constructions. All

compared approaches (including SATURN) use logically equivalent SGD and offer the same

accuracy.

Figure 4.12(B) plots GPU utilization. SATURN achieves good utilization throughout, ex-

cept an initial low-utilization period for the Trial Runner’s search and MILP solving period. GPU

utilization alone can be misleading; tools such as nvidia-smi can artificially inflate utilization [5].

So, these results should not be taken as a measure of training performance in isolation.

Overall, SATURN reduces model selection runtimes substantially for all workloads in all

evaluated settings. It also offers more qualitative benefits to end users of DL because they are

freed from manually selecting parallelisms, deciding on resource allocations, or tuning system
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parameters.

Intuition on Efficiency Gains. SATURN’s performance improvements arise due to

its holistic optimization approach. To the best of our knowledge, this is the first work that

characterizes the parallelism performance crossovers and incorporates them into a joint optimizer.

Our empirical profiler and unified SPASE formulation enable us to optimize in a parallelism-

agnostic fashion. The heuristic and algorithmic baselines make assumptions about scaling

behaviors (e.g., consistency, linear scaling, etc.) that do not always hold up in large-model DL

practice. To prove our point further, Table 4.4 lists the parallelisms+allocations selected by

SATURN for a few models from the single-node workloads. We see a non-trivial mixture of

decisions across the models trained.

Table 4.4. Parallelisms and apportionments chosen by SATURN for a few evaluated models.

Model Config Parallelism Apportionment

GPT-2 (Batch 16, 1e-5 LR) Pipelining 5 GPUs
GPT-2 (Batch 32, 1e-4 LR) FSDP 4 GPUs
GPT-J (Batch 16, 1e-5 LR) FSDP 8 GPUs
GPT-J (Batch 32, 1e-4 LR) Pipelining 3 GPUs
ResNet (Batch 64, 1e-4 LR) DDP 2 GPUs
ResNet (Batch 32, 1e-4 LR) Spilling 1 GPU
ViT-G (Batch 32, 1e-4 LR) FSDP 4 GPUs
ViT-G (Batch 16, 1e-4 LR) FSDP 6 GPUs

SATURN’s MILP-chosen SPASE solutions combine into a multi-model SPASE solution

to minimize end-to-end runtimes. Our unified data systems-style approach frees DL users to

focus on their goals instead of tedious low-level decisions.

4.5.2 Joint Optimization Evaluation

To better understand the value of joint optimization for SPASE, we evaluate SAT-

URN against different compositions of tools — Alpa [241] + ASHA [109]; Alpa + Opti-

mus* [163]; Alpa + SHA [111] — each used together but unaware of each other. A/SHA
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& Optimus are designed for multi-model training and GPU allocation; Alpa tackles parallelism

selection. In combination, they can be used to solve the dimensions of the SPASE problem, but

in a separated fashion. We elaborate on these tools in Section 8.2.

To mimic A/SHA’s early-stopping behaviors, we run SATURN and Optimus* one epoch at

a time. We take the early stops produced by A/SHA and apply them to SATURN and Optimus*’s

workloads on epoch boundaries. A/SHA is configured to use 3 rungs, with allocations of 1, 3, and

6 epochs respectively, so completed jobs will have run for 10 epochs. The decay factor is set to 2,

so half of the jobs survive each rung. Since A/SHA was built for settings with substantially more

accelerators than models, we use a smaller version of the TXT workload with 8 jobs (eliminating

the 3e-3 learning rate option) on 2 nodes.

We report the results in Figure 4.12(C). We find that SATURN outperforms Alpa + ASHA

by nearly 3X. Even if we remove Alpa’s search times (e.g., if the searches were run once up-front)

and directly compare SPASE solution quality, SATURN still outperforms the composite baseline

by 1.67X. Against Alpa + Optimus*, the speedups are 6.25X (resp. 1.54X) when including

(resp. excluding) Alpa’s compilation times. The Optimus* runtime that includes the compilation

times is so high because it needs to construct its throughput oracle [170] up front by running

the compiler for every possible allocation for every model. SATURN’s significant speedups

against all 3 baselines support our view that the SPASE problem is a novel space where joint

optimization has a significant role to play, rather than a simple composition of existing problem

spaces.

4.5.3 Drilldown Analyses

4.5.3.1 Ablation Study

We separate our optimizations into 4 layers: scheduling, resource allocation, parallelism

selection, and introspection. We apply these one-by-one as follows. First, a version without

any of our optimizations. FSDP is used with checkpointing and offloading (i.e., a non-expert

config), resource allocations are set manually to 4 GPUs per task, and a random scheduler is used.
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Second, we use our makespan-optimized scheduler. Third, we reintroduce resource apportioning

to the MILP. Fourth, we allow for automatic parallelism selection and knob tuning. Finally, we

overlay introspection. This completes SATURN. We use the single-node TXT workload in our

study. Table 4.5 notes the marginal speedups.

Table 4.5. Ablation study, showing how SATURN’s performance changes as new optimiza-
tions are added.

Optimizations Abs. Speedup Extra Speedup

Unoptimized 1.0X 1.0X
+ MILP Scheduler 1.1X 1.1X

+ Resource Allocation in MILP 1.33X 1.2X
+ Auto. Parallelism Selection 1.95X 1.47X

+ Introspection 2.27X 1.16X

The scheduler-only MILP provides better packing for some initial makespan improve-

ments. Adding in resource apportioning lets the solver reshape task runtimes and demands to

produce more speedups. Automatic parallelism selection creates even more flexibility and adds

in knob-tuning to improve parallelism performance. Introspection enables the solver to reassess

its solution and adapt to shifts in the workload to cap off SATURN’s speedups.

4.5.3.2 Sensitivity Analyses

We test SATURN’s sensitivity to the size of: (1) workloads, (2) models, and (3) clusters.

For workload size scaling, we run TXT on a single 8-GPU node with the GPT-2 model,

set batch size to 16, and vary the number of learning rates explored. Figure 4.13(A) presents

the results. SATURN scales slightly superlinearly as larger workloads enable broader scope for

optimization. This suggests strong performance on large-scale model selection workloads.

Next, we vary model size. We run TXT on a single 8-GPU node with batch size set

to 16 and learning rate set to 1e-5. All models are versions of GPT-2. We vary model size by

stacking encoder blocks, akin to what GPT-3 does [30]. Figure 4.13(B) presents the results.
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Figure 4.13. SATURN sensitivity plots on the TXT workload versus (A) workload size, (B)
model size, and (C) node size. Charts are in log-log scales, normalized to the initial setting.
(C) labels each point with the marginal speedup.

SATURN achieves mostly linear scaling, but with slight slowdowns on the largest model sizes.

This is because the largest models force the SPASE solution to use the only viable configuration

(8-GPU FSDP with checkpointing and offloading) for every model. This study shows how our

SATURN’s performance can be limited by the underlying UPP implementations; while it can

solve SPASE effectively, it still needs performant UPP options.

Finally, we vary the number of GPUs visible to SATURN. We use TXT for this experiment.

Figure 4.13(C) presents the results. SATURN achieves superlinear speedups for 2 reasons. First,

the single-GPU case necessitates DRAM spilling, while larger GPU counts reduce the spilling

required and open up more parallelism options. Second, higher GPU counts broaden the solution

space for the MILP, enabling higher flexibility.

4.6 Conclusions

Finetuning of pre-trained large DL models is increasingly common in DL practice. But

navigating the complex space of model-parallel training is unintuitive for regular DL users
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even though it is needed to reduce runtimes and costs. The complex interplay of parallelism

selection with model selection workloads, which requires decisions on resource apportioning

and scheduling, can also lead to high resource wastage if not handled well. This work resolves

these issues by formalizing the joint SPASE problem unifying large-model parallelism selection,

resource apportionment, and scheduling and designing a new information system architecture we

call SATURN to tackle SPASE. With user-friendly APIs, joint optimization, and a judicious mix

of systems techniques, SATURN reduces large-model DL model selection runtimes by 39-49%

over current practice, while freeing DL users from tedious systems-level decisions. Overall,

SATURN offers maximal functionality in a critical DL setting, while promoting architectural

simplicity to ease real-world adoption. Future extensions could explore alternative algorithmic

approaches to the SPASE problem, extend SATURN for other scheduling objectives, and handle

autoscaling clusters and dynamic job re-configurations.

Chapter 4 contains material from “Saturn: An Optimized Data System for Large Model

Deep Learning Workloads” by Kabir Nagrecha and Arun Kumar, which appears in Proceedings

of VLDB Endowment Volume 17, Issue 4, 2023. The dissertation author was the primary

investigator and author of this paper. The code for our system is open source and is available on

GitHub: https://github.com/knagrecha/saturn. This work was supported in part by Meta under a

Meta Fellowship Award.
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Chapter 5

INTUNE: Reinforcement-Learning-based
Data Pipeline Optimization for Deep Rec-
ommender Models

5.1 Introduction

Recommendation systems now underpin many essential components of the web ecosys-

tem, including search result ranking, e-commerce product placement, and media suggestions in

streaming services. Over the last several years, many of these services have begun to employ

deep learning (DL) models in their recommendation infrastructure, to better exploit historical

patterns in their data. In turn, DL-based product recommendation has quickly become one of the

most commercially significant applications of DL. Companies have begun to invest heavily in

DL recommendation infrastructure, often maintaining entire datacenters and super-clusters for

the sole purpose of recommender model training [9]. But in many cases, these infrastructural

investments have run into critical hurdles [64]. Practitioners and cluster administrators are

discovering that the training optimization challenges faced with DL recommender models differ

significantly from those seen in historical practice with other DL model types [224]. In particular,

recent studies of industry clusters have found that the unique design of recommender model

architectures has left training pipelines susceptible to inefficiencies in data ingestion [239].

Most DL architectures are dominated by high-intensity matrix operators, and standard
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tooling for DL training optimization has evolved to support models that fit this pattern [190,

69, 89, 108, 178, 82, 141]. In such cases, model execution usually dominates training times to

such a degree that data ingestion procedures (e.g. disk loading, shuffling, etc) can be overlapped

with and hidden underneath the matrix operation times. Unfortunately, however, DL-based

recommender models (DLRMs) are atypical in this regard.

Recommender datasets are generally composed of both sparse (categorical) and dense

(continuous) features, and joining information across features requires transforming these two

representations into a common format. To this end, DLRM architectures use embedding tables

to transform categorical inputs into dense embedding vectors through a hash-table lookup. These

can then be combined with the dense vectors and fed through some secondary DL model to

produce user-item probability ratings [221]. Figure 5.1 illustrates a typical architecture.

The embedding tables, which are the typically single largest component of the DLRM

architecture, use a key-value lookup rather than dense matrix multiplication. For this reason,

DLRM models are often less compute-intensive than other architectures of a comparable size.

Figure 5.2 charts the differences in computational intensity between large-scale recommendation

models versus language models and computer vision architectures, illustrating that DLRM

models require orders of magnitude fewer operations than comparably-sized Transformers

or Convolutional Neural Networks. This uniquely light computational footprint can lead to

unexpected system optimization challenges.

Challenge & Motivation. The low computational intensity of DLRMs generally trans-

lates to low model latencies, which fail to mask the cost of data-loading and transformation.

Improved GPU hardware and new model acceleration techniques have only exacerbated this

issue by reducing model runtimes and increasing the requisite data-loading throughput to keep

the model fed during training. The fault is not only with the models, however; the problem

is aggravated further still by the generally high demands of online data processing, i.e. data

transformation at ingestion time, for recommendation applications. In other domains (e.g. lan-
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Figure 5.1. A typical DLRM architecture [38, 9]. The model uses an embedding table
to convert sparse categorical data to dense vectors that can then be merged with dense
features in some overlaid DNN. Adapted from a similar illustration in prior art [221].

guage modeling, computer vision) not only are training times dominated by model execution,

so that data processing latencies can be more effectively hidden, but it is also practical to push

the heaviest data transformation steps to an offline pre-compute phase. This greatly reduces

the need to optimize data-loading. By contrast, recommendation datasets are uniquely reliant

on the online step, which must be done alongside model execution. We attribute this to three

characteristics of recommendation data: scale, reusability, and volatility.

First, scale. A recommender dataset for a popular application might span billions of
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Figure 5.2. Approximate parameter & FLOP counts for popular architectures in language
modeling and image recognition contrasted against DLRM models drawn from a recent
paper [137]. FLOPs are reported on single-element batches (single-token for language
models). We also report averaged FLOPs per parameter, derived from the previous two
charts. Y-axis is set to log-scale for all charts.

interactions and require terabytes (or even petabytes!) of disk space. Offline data transformation

can bloat these already high storage costs further still. Consider, for example, a common data

processing operation such as augmentation, which randomly modifies various aspects of a data

sample to produce an altogether new sample. Applying this operation offline might double or

triple the size of an already massive dataset; the only practical way to run such transformations

would be to do them online so that augmented samples can be discarded as soon as they are

consumed. Furthermore, this scale issue often makes caching, which might otherwise help to

mitigate processing challenges, impractical.
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Second, reusability. A single core dataset might be reused for multiple different DLRM

architectures. In a movie recommendation system, one DLRM might be used to rank rows,

another might be used to rank search results, while yet another might rank genres. Each model

would likely require different data transformation operations and feature extraction procedures.

Pushing data transformation to the offline phase would require replicating and re-processing the

original dataset dozens of times, again bloating storage and compute costs.

Third, volatility. Recommendation datasets are updated frequently as new interactions

are recorded. In addition, ephemeral IDs often lead to dataset changes in domains such as

e-commerce, e.g. when a product is added or removed from the platform. Any offline transfor-

mations would have to be re-run frequently as the dataset evolves. Incremental transformation is

not always practical; some operations such as shuffling require the whole dataset to be present.

Prior analyses [239, 135] of DLRM training have recorded the impacts of these issues

in practice, suggesting that online data ingestion optimization is critical to improving DLRM

training performance. This new and emerging problem lacks a satisfactory solution. Table 5.1

provides an overview of existing tooling, but none of these prior systems can effectively tackle this

issue. Generic pipeline tools such as AUTOTUNE & Plumber [138, 98] often lead to sub-optimal

performance for DLRM jobs, or can even cause fatal out-of-memory errors. GPU data-loaders

can be situationally useful, but cannot be recommended for general use due to concerns over

processor cycle contention between the model and pipeline [239]. The only CPU-based DLRM

data pipeline work we are aware of [239, 137] relies on a specialized cluster architecture design,

and is not feasible to adopt for typical users. We expand on these in Section 4.1.1.

We seek a new system — one which can improve data-loading throughput in a gen-

eral, scalable fashion without disrupting practitioner workflows or requiring large-scale cluster

changes.

Approach & Contributions. In order to reason about the data-ingestion problem from

first principles, we study traces taken from our internal DLRM training cluster. We focus on the
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Table 5.1. Overview of existing tooling.

Name Description

Generic
Pipelines

AUTOTUNE [138] TensorFlow’s built-in tool for optimizing tf.data
pipelines, considered to be a state-of-the-art

optimizer [98].
Plumber [98] AUTOTUNE alternative with roughly equivalent

performance.

DLRM
Pipelines Data

PreProcessing
Service [239]

Meta’s internal service for data ingestion. Replicates
data pipelines across machines and wraps them

behind a singular entry-point. Tailored for Meta’s
cluster; adoption would require a cluster re-design to

match their architecture.

GPU
Data-loading

DALI Nvidia’s tool for GPU-accelerated data-loading
primitives, targets image processing operations

(rotations, resizing, etc).
NVTabular Nvidia’s tool for GPU-accelerated data-loading

primitives, focuses on tabular data. Introduces GPU
resource contention between the model and data

pipeline; not always practical to use.

outcomes observed by real-world DLRM practitioners, and observe shortfalls in generic data

pipeline optimizers. We study training times and processor utilization to better understand how

poorly optimized data ingestion pipelines increase costs and reduce efficiency.

From our studies, we find that a lack of adaptability and feedback is the primary missing

piece in generic data pipeline optimization tools. Out-of-memory errors, under-optimized user-

defined-functions (UDFs), and poor responsiveness to dynamic machine re-sizing are the three

main symptoms we observe. Addressing the first symptom requires incorporating feedback

from the system’s memory usage monitor, the second requires actively adapting the optimizer’s

performance model of black-box UDFs, and the third requires adaptability under changing

hardware conditions.

We use this key finding to motivate the design of a new data pipeline optimization tool for
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our cluster users at Netflix. We build a feedback-driven, adaptive tool to optimize data ingestion

pipelines that we name INTUNE. INTUNE serves as a drop-in replacement for industry-standard

optimizers such as tf.data’s AUTOTUNE, requiring no large-scale cluster redesigns or workflow

disruptions. It can be applied to any data pipeline framework, including tf.data, PyTorch

Datasets, and Ray Datasets. At the core of INTUNE is a reinforcement learning (RL) agent trained

on historical job traces and tuned online to understand how to distribute computational resources

across the data pipeline. RL provides the adaptability we need to mazimize performance. The

idea of a “DL-for-systems-for-DL” loop has recently gained traction in the systems world [161];

INTUNE provides a complete example of this loop in practice.

We apply INTUNE to jobs on our real-world training cluster and see 1.18-2.29X speedups

in training times versus current tooling. We observe that INTUNE can converge on an optimized

resource distribution within only a few minutes, even on complex real-world pipelines. Our tests

show that INTUNE is both practical and effective in improving DLRM training efficiency. We

run scaling studies to test INTUNE’s performance further, and find that it achieves good scaling

performance with respect to both workload size and machine size.

Our contributions can be summarized as follows:

1. We provide in-depth analyses of DLRM model training job traces taken from our real-world

compute cluster, highlighting the critical and unique problem of data pipeline optimization.

2. We identify and study a new gap in the DL systems landscape, and evaluate the weaknesses

of state-of-the-art tooling for data ingestion during model training.

3. We propose a novel automated data-pipeline optimizer motivated by our cluster studies,

INTUNE. To the best of our knowledge, INTUNE is the first system to use RL for data

pipeline optimization. It is also an instance of the emerging “DL-for-systems-for-DL”

loop.

4. We run comprehensive evaluations of INTUNE against state-of-the-art baselines on real-
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world workloads. We find that INTUNE significantly outperforms the baselines by a factor

of 1.18-2.29X, providing significant speedups and training cost reductions.

The remainder of the paper is structured as follows. Section ?? dives into the fundamen-

tals of DL recommender training, data processing, and RL. Section 5.2 analyzes real job traces

from a compute cluster to provide motivation for INTUNE’s development. Section 5.3 goes into

the details of INTUNE and describes how it conceptually addresses each of the challenges we

identify. We show the results of our experimental studies in Section 5.4, where we benchmark

our system’s performance on a variety of workloads. Section 4.1.1 describes some existing

tools for data processing and other related areas. Finally, we provide our concluding remarks in

Section 5.5.

5.2 Cluster Study

We now analyze training jobs from our real-world DLRM compute cluster to better

understand the key data pipeline challenges faced by practitioners.

5.2.1 Motivation

TensorFlow, a popular DL framework, provides the tf.data API for users to build input

data pipelines from the primitive operations we have discussed thus far (batch, UDF, shuffle,

etc). The new torchdata pipeline composition tool introduces similar functionality for PyTorch,

though the TensorFlow data pipeline ecosystem is relatively more mature and more appropriate

for our evaluations. The de-facto standard tool for tf.data data pipeline optimization is

AUTOTUNE, which is built-in to TensorFlow [138]. tf.data is commonly considered to be one

of the most advanced data pipeline construction tools available to practitioners, and AUTOTUNE

is generally accepted to be state-of-the-art in pipeline optimization [98]. Due to its popularity

and widespread adoption, we will take it as the standard benchmark for automated tooling in

our cluster study. Historical practice on our production cluster has surfaced three issues with
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Figure 5.3. (A) Our study of real job traces shows that compute time is dominated by
data processing rather than model execution, even on the most compute-intensive models.
Jobs using AUTOTUNE are marked in black, jobs using human-selected distributions are
marked in blue, and unoptimized pipelines are marked in red. (B) Breakdown of individual
pipeline stage latencies when using AUTOTUNE. For each stage, we provide a scatter-plot the
percentage of pipeline time taken up.

AUTOTUNE.

1. Low efficiency on DLRM pipelines. Tools like AUTOTUNE often produce suboptimal

configurations in practice, bloating runtimes and costs.

2. High failure rates. AUTOTUNE has shown a tendency to trigger costly out-of-memory

errors, typically caused by resource-overallocations.

3. Poor support for rescaling. Cluster techniques such as machine multi-tenancy or virtual-

ization can add new resources to jobs over time. Unfortunately, AUTOTUNE does not take
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full advantage of the new resources without human intervention.

We can validate these three points through quantitative analyses of DLRM job traces on

our cluster. We recorded jobs run over a period of two weeks for our study.

17.72X Failure 
Rate!

7.58%

0.55%

A) B)

C)

Disk 
Load Batch Shuffle UDF

10.6%1 CPU 1 CPU 1 CPU 1 CPU

AUTOTUNE AUTOTUNE AUTOTUNE AUTOTUNE 30.8%

HUMAN HUMAN HUMAN HUMAN 41.4%

Percent of Target 
Throughput Rate

32 CPUs

64 CPUs

128 CPUs

64 CPUs

32 CPUs

Figure 5.4. Deepdive into a case-study pipeline. (A) The percentage of target throughput
achieved with different approaches. (B) Illustration of AUTOTUNE’s versus human-set
alternatives. (C) Performance of various tools when the machine is re-sized during job
execution. Approaches with manual intervention use the -Adaptive suffix, and results are
normalized to the Single-CPU-per-stage baseline.

5.2.2 Cluster Trace Analyses

We take data from a large GPU cluster reserved only for DL recommendation model

training. A broad mix of job-types are present; both exploratory ad-hoc experimentation as well

as automated production pipelines. Our results show that as much as 60% of time is spent on data

ingestion rather than model execution, even when AUTOTUNE is applied. Manually-optimized

jobs tend to perform somewhat better, while unoptimized jobs see the worst skew towards
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data processing. In all cases, we see a significant opportunity for improvement — reducing

data processing times would provide significant cost savings and efficiency improvements.

Figure 5.3(A) presents our data.

Next, we dive into the fine-grained stages of the data pipeline, to better understand the

composition of the end-to-end costs. All data pipelines in this analysis use AUTOTUNE, and

follow a standard order of disk load → batch → shuffle → UDF → prefetch. These

pipelines do not include a “cache” stage due to memory constraints; these jobs operate with

high-dimensional features & very large datasets. Figure 5.3(B) shows the results.

Maximizing pipeline throughput requires maintaining equal per-stage latencies [118].

But AUTOTUNE is known to struggle with irregular stages such as UDFs or varied-size disk

loads [98]. Our empirical study confirms this issue at a mass-scale. On average, UDF mappings

and disk loading dominate runtimes, and the skew towards UDFs tends to grow as overall data

pipeline latencies increase. The proportion of time spent on shuffling or batching tends to stay

mostly consistent regardless of overall pipeline latency, further pointing to UDFs as the primary

stumbling-block for AUTOTUNE. Unfortunately, UDFs are a key piece of most of DLRM data

pipelines, covering basic tasks such as feature extraction, re-mapping, and transformation. A

previous study [239] of DLRM training describes 16 common preprocessing operations; we

found that 14 of these 16 required UDF implementations! Poor UDF optimization alone is

sufficient to discourage AUTOTUNE adoption among our users.

5.2.3 Pipeline Deep Dive

To gain more detailed insights, we will now analyze a singular production training

pipeline from Netflix as a case study. This job is rerun on a regular basis, multiple times per

day, allowing us to collect a rich history of statistics. Training jobs are run on machines with

128 Intel Xeon 3.0GHz CPUs, and datasets are stored on a remote network filesystem. One of

our primary aims in this section is to demonstrate how current state-of-the-art tooling fails to

serve our needs. To illustrate this, we labeled jobs according to whether they used AUTOTUNE,
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human-set configurations, or else no optimization at all (i.e. one CPU per stage). We contrast

these approaches in our experiments.

The model is relatively small — under 10M parameters. The model latency is very low,

so to avoid idle times, the data pipeline must offer a high throughput rate. The data processing

pipeline requires: (1) loading data from disk, (2) shuffling it in a fixed buffer, (3) applying a

UDF to extract and convert categorical features to standard mappings, then (4) batching the data

before (5) prefetching it to the GPU. If only one CPU is given to each stage, pipeline throughput

is 11% of the data-loading rate needed to keep the model served at all times (i.e. no idling), as

shown in Figure 5.4(A). After AUTOTUNE distributes all these processors, pipeline throughput is

increased by 2.81X to 31% of the target rate.

We contrast this against manually chosen allocations, which increases the pipeline

throughput to 41% of the target rate. Further improvements (e.g. to 100% of the rate, with no

idle times in model execution) would require scaling beyond the machine’s current resources.

But even within the machine, we found scope for a 1.34X speedup versus AUTOTUNE! Ideally, we

should be able to produce this configuration automatically, without manual intervention.

Another serious issue we observe in applying AUTOTUNE to this example pipeline is

overallocation. If we allow AUTOTUNE to take control of the prefetch stage, it tries to improve

performance by maximizing prefetches. This bloats memory usage, often causing OOM errors.

Figure 5.4(B) illustrates the frequency of OOM errors produced by applying AUTOTUNE to this

pipeline. Recovering from these errors requires a teardown and reset, leading to significant

downtime.

An increasingly popular technique in large-scale compute clusters is machine resiz-

ing [154, 142, 136], either from scheduler interruption & re-assignment [226, 227], or job

completions on a multi-tenant machine [142]. Rescaling the data pipeline to make use of new

resources requires the optimizer to actively respond to hardware changes. Figure 5.4(C) charts

the performance of various approaches in this setting. We see that out-of-the-box AUTOTUNE

does not respond effectively to machine re-sizing, and does not increase pipeline throughput
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even when new CPUs are provided to the job. If human intervention is used to reset and re-

launch AUTOTUNE, the scaling improves but is still significantly under-performs the fully-human

alternative. This reliance on human decision-making and intervention is impractical.

Now that we have observed DLRM data pipelining problems in a real training cluster,

we seek a solution that can address these challenges.

5.3 System Design

Our studies in Section 5.2 surfaced three issues with current tooling: (1) suboptimal

performance on DLRM pipelines due to UDFs, (2) inability to scale as resource caps are changed,

and (3) a tendency to overallocate resources, leading to OOMs. We propose that all three of

these problems would be resolved by a feedback-driven tool. A tool that actively evaluates its

environment and collects feedback live would be able to (1) fine-tune its understanding of UDF

performance throughout training, (2) actively respond to changing resource caps, and (3) manage

memory usage.

With this in mind, we turn to RL to design our tool for data pipeline optimization —

INTUNE. As we discussed in Section ??, building an RL agent for data pipeline allocation

requires us an environment, an agent, and an action space. We now discuss these RL system

components.

5.3.1 Environment

The environment in our setting should reflect the data pipeline state and available hard-

ware. Certain aspects of the environment are static (e.g. DRAM-CPU bandwidth), others are

uncorrelated to the agent’s actions (e.g. model latency), while others are directly impacted by its

actions (memory usage, CPU usage). We model our environment with the aim of providing the

RL agent with any and all information it might need to make an informed decision. Our finalized

list of factors is shown in in Table 5.2.

These details are sufficient for the agent to quickly grasp its problem setting. The static
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Table 5.2. RL environment factors.

Factor Motivation

Agent-Modified Factors
Pipeline
Latency

Allows agent to understand the performance
of the current configuration. May change

based on agent actions.
Free CPUs Allows agent to see how many extra CPUs it

can allocate. May change based on (1) agent
action or (2) machine resizing.

Free Memory
(bytes)

Allows agent to see how much memory it
can use to increase prefetch levels. May

change based on agent actions.

Uncorrelated Factors Model
Latency

The actual model execution time. Updated
regularly to improve estimation accuracy.

Unrelated to agent actions.

Static Factors
DRAM-CPU
Bandwidth

(MB/s)

Interconnect speed can impact the value of
prefetching. Found up front and unchanged

throughout training.
CPU

Processing
Speed (GHz)

CPU processing speed can impact
decision-making on resource allocation.

Found up front and unchanged throughout
training.

Agent 

User

DL 
Framework

Data Pipeline SpecModel Spec

InTune

New Pipeline 
Data

Performance 
Feedback

Error Estimation

Figure 5.5. INTUNE’s RL data pipeline system architecture.
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factors will provide some “immediate” information while the other aspects will help it to learn

how its actions impact data pipeline performance. Our agent reward is directly based on data

pipeline latency and memory usage. Equation 5.1 shows the function.

R = throughput× (1− memoryused

memorytotal
) (5.1)

If prefetch is not used excessively, then the memory usage portion of the equation is

largely irrelevant. But to avoid OOM outcomes like those seen with AUTOTUNE, we ensure that

INTUNE’s reward approaches 0 as memory consumption nears 100%.

5.3.2 Agent Model

We aim to build a low-cost, lightweight model architecture for the RL agent. Since

INTUNE runs in parallel with the target DL job, we do not want to over-consume resources.

To minimize computational demands, INTUNE’s DQN agent is a simple three-layer MLP

architecture using the ReLU activation function, built in PyTorch. It can be run on either CPU or

GPU resources, or even as a remote service interacting with the target job over the network.

If the action space consists of <256 possible choices, this model only requires <200FLOPs

per iteration, which should not interfere excessively with the actual model training job. We train

different versions of the agent in offline simulations to prepare them for live deployment/tuning.

Each version is built for a different common pipeline length on our clusters (e.g. one agent for

4-stage pipelines, one for 5-stage, etc). During actual data ingestion, the model is fine-tuned using

live feedback to adapt it for the current job. We report on convergence behaviors in Section 5.4.1.

5.3.3 Action Space

As we discussed in Section ??, it is common practice to reshape the agent action space

to improve accuracy. If we allowed our agent to directly select any distribution of resources,

the size of INTUNE’s action space would be
(n+r−1

r−1

)
where n is the number of CPUs and r is

the number of pipeline stages. On a typical setup (e.g. 128 CPUs over 5 stages), this would
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yield 1.2e7 possible actions — which is entirely impractical. Based on the agent we described in

Section 5.3.2, this would increase iteration compute costs to more than 6.1GFLOPs!

Instead, we use action-space reshaping, and design an incremental action space. At every

step, INTUNE’s agent can choose to “raise-by-one”, “maintain”, or “lower-by-one” the allocation

of each stage. Memory-bound factors use a megabyte unit while processing-bound factors use

a CPU unit. On its own, this is somewhat inefficient. In order for the system to allocate 128

CPUs, a minimum of 128/n iterations would be required. To improve search and convergence

times, we give the agent additional options of “raise-by-five” and “lower-by-five”. This yields

an action space of 5r options. Since r is typically <= 5, this is entirely manageable. Increasing

the action space by adding new options (e.g. “raise-by-ten”) could be used to further modify

the convergence behaviors, but we found that increment options of 1 and 5 are sufficient for

INTUNE to rapidly converge on a performant solution.

These three components — environment, model, and action space — provide the basis

for INTUNE.

5.3.4 Interface & Usage

We aim to make INTUNE easy to integrate into existing user code, without disrupting

workflows or requiring cluster architecture changes. Users design their data ingestion pipelines

in standard framework code (e.g. PyTorch, tf.data), then wrap their pipeline under INTUNE,

specifying any tunable performance knobs. Performance monitoring and value adjustment is all

handled automatically by INTUNE. Listing 5.1 provides an example.

1 pipeline = create_pipeline ()

2 system_pipeline = intune.pipeline_wrapper(pipeline , knobs =[ pipeline.stage_1 , pipeline.stage_2 ...])

3 ...

4 train(model , system_pipeline) # replace references to pipeline with system_pipeline

Listing 5.1. INTUNE usage.

We illustrate the overall design in Figure 5.5. Note the generality of INTUNE’s design;

nothing about it is tied to a specific data pipeline framework. So long as the framework exposes
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32 CPUs
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64 CPUs

32 CPUs 32 CPUs
64 CPUs
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32 CPUs

Criteo Netflix Criteo Ours

C)

32 CPUs
64 CPUs

128 CPUs
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128 CPUs
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Criteo Ours

32 CPUs
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32 CPUs 32 CPUs
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64 CPUs

32 CPUs

Figure 5.6. All figures use the legend in the leftmost chart. (A) Pipeline throughput over
time for each approach, normalized to the Unoptimized baseline. (B) CPU utilization over
time for each approach. Only active CPUs are considered, to prevent confounding system
behaviors with the separate impact of rescaling. (C) GPU Utilization over time for each
approach.

optimization knobs (e.g. for CPU assignment), this approach is applicable.

5.4 Evaluation

We now provide a thorough evaluation of INTUNE. Our aim is to answer the following

questions.

1. Does INTUNE capable of achieving higher pipeline throughput than standard tools such as

AUTOTUNE?

2. Is INTUNE less susceptible to issues such as out-of-memory errors than standard tooling?

3. Is INTUNE capable of responding to resource rescaling?

4. Does INTUNE converge on an optimized solution quickly?
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Workloads. We use two workloads, one drawn from an internal recommender model

and dataset and one built using Meta’s open-source DLRM code and the Criteo dataset. The

custom dataset task focuses on product recommendations while the Criteo dataset is used in a

click-through-rate prediction task.

Datasets and Pipelines. The custom dataset uses dozens of sparse features, and fewer

than 5 continuous features, with a batch size in the tens of thousands. The Criteo dataset consists

of 26 sparse categorical features and 13 continuous features and a batch size of 24,096. We

initialize the dataloader allocations with a simple “even division” of CPUs across stages. The RL

agent then modifies the distribution provided by this heuristic. We do not consider a cache stage

in the current version, since most of the relevant jobs on our cluster do not use one, but there is

no reason INTUNE could not be extended to manage the resource allocations of cache stages as

well.

Models. The model taken from our production pipeline is fairly small — <5M parameters,

most of which are contained in the embedding tables. We make a large model for the Criteo

dataset, with 25B+ parameters, most of which are in the embedding tables. In both cases, the

model latency is sufficiently low such that training times are dominated by data processing.

Hardware Setup. The production model is trained on a single 40GB A100 GPU. We

initially provide the data pipeline with 32 Intel Xeon 3.0GHz CPUs, then on regular intervals

double the CPU count up to a limit of 128. Then, we halve the allocation repeatedly until we

reach 32 CPUs again. Approaches other than INTUNE rescale via manual intervention and re-

launching; INTUNE will naturally adapt to the environmental change and so does not require this

intervention step. The Criteo model is too large for a single A100 to train, so we use a standard

hybrid parallelism approach [219] to distribute memory demands and accelerate training. We use

the same CPU scaling procedure applied to the custom model (i.e. 32→ 64→ 128→ 64→ 32).

The datasets are stored on a high-bandwidth network-mounted filesystem, a common approach

for large-scale recommendation datasets.
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Baselines: We compare INTUNE to the following baselines.

1. Unoptimized. In this version, only a single CPU is allocated per stage such that no

parallelism is possible.

2. AUTOTUNE. AUTOTUNE is a standard TensorFlow offering, commonly used to optimize

tf.data pipelines.

3. AUTOTUNE-Adaptive. We checkpoint and re-launch AUTOTUNE on machine rescaling

intervals to allow it to adapt to the new machine resources.

4. Plumber-Adaptive. Plumber [98] is a more user-friendly alternative to AUTOTUNE that

uses an MILP to distribute resources. We apply the same checkpointing approach as in

AUTOTUNE-adaptive. Plumber offers additional auto-caching optimizations; we disable

these since they are orthogonal to our resource-distribution work with INTUNE and could

be integrated with INTUNE in the future.

5. Heuristic. This version simply distributes CPUs evenly to emulate what a human user’s

best guess distribution might look like. INTUNE’s RL agent is initialized from this state as

well.

These baselines cover most typical configurations, both manual and automated.

5.4.1 End-to-End Performance

Pipeline Performance. We compare achieved training throughput for all approaches

on both the real-world and Criteo pipelines. We initiate rescales at regular intervals to evaluate

how each system “responds” to the new resource availability. We normalize throughput to the

Unoptimized baseline in all our analyses. Figure 5.6 (A) presents the results.

INTUNE provides significantly better throughput and hardware utilization than the

strongest competitors on both pipelines. Accounting for flexible rescaling, the average marginal

gain versus standard AUTOTUNE tooling increases to 2.05X and 2.29X on the custom pipeline

106



and Criteo pipeline respectively. Against the alternatives which employ human intervention, the

marginal improvement is still significant, ranging between 10-20%. Not only does our approach

eliminate the headache of manual intervention, but it also achieves lower compute times and

higher utilization. In each experiment, we observe that INTUNE achieves a stable throughput

rate within about 10 minutes. The Plumber baseline also requires some tens of iterations to

converge, but this period is so short it does not register on the chart. On long-running jobs,

INTUNE’s 10-minute optimization time is insignificant, but it may be problematic for short

ad-hoc experiments. But in such cases, fine-tuned performance optimization is rarely important.

We also observe significantly lower failure rates than AUTOTUNE. On average, AUTOTUNE

caused an 8% OOM failure rate on both pipelines, whereas INTUNE did not cause even a single

crash. This improved robustness makes INTUNE an attractive option for failure-sensitive jobs.

INTUNEalso achieves higher processor utilization, illustrated in Figures 5.6 (B) & (C)

likely due to reduced idling from more effective resource allocations. Some part of the CPU

utilization increase can also be attributed to the overhead of maintaining a secondary RL model;

unfortunately it is difficult for us to separate the two. The improved GPU utilization follows

directly from the higher data throughput, since the GPU & model are fed faster.

Intuition on Effectiveness. INTUNE’s ability to map out and tune its performance

estimates over time allow it to adapt and outperform other baselines on both pipelines. No

other system can adapt as effectively to machine re-sizing out-of-the-box. The improvements

against baselines which employ human intervention can be attributed to one of the other primary

weaknesses we observed in Section 5.2, UDF performance modeling. As we will show in

Section 5.4.2.1, INTUNE proves to be significantly better than the strongest baseline — AUTOTUNE

— in optimizing UDF pipeline stages.

5.4.2 Drilldown Studies

We now dive into INTUNE’s scaling behaviors on the real-world data pipeline. We aim

to answer the following questions.
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1. How does INTUNE’s performance change as the pipeline’s complexity is changed?

2. How does INTUNE’s performance change as CPU counts are changed?

3. How does INTUNE’s performance change as batch size changes?

A) B)

C)

Figure 5.7. Performance scaling with respect to (A) pipeline complexity, (B) CPU count,
and (C) batch size.

5.4.2.1 Pipeline Complexity Scaling

We report on performance normalized to the AUTOTUNE baseline on the same pipeline.

All settings use the same machine, with 128 Intel Xeon 3.0GHz CPUs, and a constant model

latency of 0s (to encourage maximal pipeline optimization). Pipeline “complexity” is adjusted by

increasing/decreasing pipeline length (e.g. + batching, + shuffling). Figure 5.7(A) presents
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the results. We see that our system’s marginal improvement over the AUTOTUNE baseline grows as

pipeline complexity increases, with a spike when UDFs are introduced. This corroborates earlier

studies which found that AUTOTUNE underperforms on more complex, UDF-driven pipelines [98].

5.4.2.2 Machine Size Scaling

We now study the scaling efficacy of INTUNE. We increase CPU count in increments

of 2, ranging from 8 to 128. AUTOTUNE is re-launched at each machine size to rebase the

relative performance. Figure 5.7(B) presents the results. INTUNE’s relative improvements over

AUTOTUNE tend to grow as the valid configuration space increases, but then flattens out to a

constant outperformance of roughly 20%. This flattening should be expected; AUTOTUNE is a

strong baseline and even a 20% performance margin is significant [98].

5.4.2.3 Batch Size Scaling

In our final scaling study, we evaluate our system’s performance with respect to batch

size. Like the pipeline complexity study, we evaluate our system’s ability to respond to varied

workload intensity. Larger batch sizes increase demands on specific stages (i.e. the batch stage,

prefetch stage, and possibly the UDF stage). Since end-system users might wish to deploy

the system on any range of batch sizes, we implement this study to give a more thorough

understanding of our system’s offerings to users. Figure 5.7(C) presents the results. We see that

our system manages to maintain (and even improve) average sample throughput even as batch

size increases.

5.5 Conclusion

DLRM training costs are often dominated by online data ingestion rather than model

execution. The primary throughput bottleneck in this setting is CPU-driven data processing

rather than GPU-accelerated model operations. Thus, optimizing the data ingestion phase is

critical to ensuring cost- & time- effective model development. Unfortunately, existing tooling
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for DL data ingestion pipelines does not support DLRM setting effectively. We draw on lessons

learned from analyses of real DLRM workloads from our training cluster at Netflix to motivate

the design of a novel RL-based system we name INTUNE. INTUNE dynamically allocates CPUs

& memory across stages of the online data ingestion pipeline, significantly improving efficiency

over industry-standard baselines without requiring changes to the cluster architecture or user

workflows. Benchmarks on real & synthetic training pipelines show that our system outperforms

the strongest out-of-the-box tools by >2X, and human-managed baselines by up to 20%. Overall,

INTUNE offers significant performance and cost benefits for recommender training pipelines and

should serve to encourage further training optimization works customized for the unique needs

of DLRM training. Future extensions could extend INTUNE to other decisions in the DLRM

data pipeline; e.g. intermediate caching, or how to scale the pipeline across multiple machines.

Chapter 5 contains material from “InTune: Reinforcement Learning-based Data Pipeline

Optimization for Deep Recommendation Models” by Kabir Nagrecha, Lingyi Liu, Pablo Delgado,

and Prasanna Padmanabhan, which appears in Proceedings of the 17th ACM Conference on

Recommender Systems, September 2023. The dissertation author was the primary investigator

and author of this paper.
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Chapter 6

INTUNEX: Reinforcement Learning for
Intra- & Inter-Node Recommender Data
Pipeline Optimization

In this chapter, we describe INTUNEX, an extension of INTUNE that broadens the

data pipeline optimization problem to account for multi-node processing. INTUNEX moves

beyond the problem of resource allocation and orchestration to capture the complexities of node

allocation in a cluster, while accounting for the same fundamental challenges seen with INTUNE:

complex pipelines, uncertain performance models, and high performance demands. We extend

our reinforcement-learning-based meta-learning scheme to a multi-agent architecture, with the

first level handling node allocation, and the second-level directly applying the solver used by the

base INTUNE system. INTUNEX improves cluster efficiency and costs considerably, and is now

used for production-scale workloads in industry.

6.1 Introduction

While the base INTUNE system is highly effective in optimizing DLRM training jobs

that remain within a single node, multi-node processing remains a considerable challenge. This

setting — which associates multiple data-processing CPU nodes with a single GPU-based trainer

node — has become increasingly popular, largely due to the challenges of data ingestion we

highlighted in INTUNE. But naïve replication, where the pipeline configuration is simply copied
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across nodes [239] misses out on opportunities for fine-grained, cost-effective optimization. IN-

TUNE demonstrated that such workload-aware optimization can achieve significant performance

benefits.

Drawing on the same line of thinking — RL-based workload-aware optimization —

we expand our optimization problem to cover a higher level of resource allocation, i.e., node

allocation. In a given training cluster, different node instances will be present, each with their

own cost & performance profiles. In such heterogeneous clusters, the data pipeline may be

scaled over multiple dissimilar machines [144]. Autoscaling must also be factored in here

— resized machines are effectively new machines with different hardware configurations [97].

The complexity of this combined problem is considerable — resource-allocation, re-sizing, &

monitoring must be solved for both intra- and inter- node resources. But accurately determining

which nodes to use (and how many of each are needed) can help maximize the performance and

cost-efficiency of jobs. So, given some cluster resources and a DLRM training job, INTUNEX—

our extended version of INTUNE — aims to identify: (1) the most cost-effective set of nodes for

the given job, and (2) performance-optimized pipelines for each individual node (i.e., the base

INTUNE problem).

We evaluate INTUNEX on the same toy & real-world workloads used for the original

INTUNE system, but now expand the job to be run in a multi-node configuration on a real-

world, industry cluster provided by Netflix. We observe that even in this multi-node, multi-level

optimization problem, the RL principles underlying INTUNEX still enable us to quickly converge

on optimized resource distributions. Ultimately, we observe that INTUNEX enables up to 15-25%

higher cost-efficiency across our training cluster, potentially unlocking many millions of dollars

of savings on industry-grade workloads.
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6.2 System Design

Our problem combines two interlinked resource orchestration challenges: at the intra-

node layer (i.e., memory & CPU resources), and at the inter-node layer (i.e., different machines

& nodes as resources). So, we use a interlinked multi-agent RL design.

First, we simplify the problem. If two machines are identical in their resources, the

pipeline solutions for those two machines can also be identical. So, rather than optimizing ma-

chines on a single-instance basis, we view machines as groups. Identical machines belong to the

same abstracted group, and optimization decisions are made for the entire group simultaneously.

After autoscaling events where an individual machine’s resources are changed, the changed

machine splits off to form a new group — since it is no longer identical to its former groupmates.

Next, we consider intra-node resource optimization. Each group’s optimization can be

solved independently of other groups, since there is no cross-machine dependence. So, we create

a separate RL agent for each group to produce resource allocation solutions for each group. We

refer to these agents as group agents. These group agents each use the design first proposed in

the original INTUNE system [146].

Finally, we consider the problem of adding & removing nodes, i.e., inter-node opti-

mization. A higher-level orchestrator must make these decisions — while accounting for cost

efficiency (Equation 6.1). Our orchestrator must operate under uncertain conditions and handle

variable per-node performance; a static solver or MILP would not be appropriate. We use a

secondary RL agent — the orchestration agent — to tackle this problem.

cost efficiency =
throughput

cost
(6.1)

Figure 6.1 illustrates the overall architecture.
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Figure 6.1. INTUNEX’s multi-agent architecture.

6.2.1 Reinforcement Learning Setting

Environment. The original INTUNE paper already covers the group agent environment

& solution. So, here, we focus on the environment and RL setting used for the orchestrator agent.

We design the orchestrator agent’s environment to create a view of the performance of

multiple groups simultaneously. We formulate the problem as a resource distribution challenge.

The optimizer is provided with pools of different nodes, and it must draw from these pools to

compose a well-optimized pipeline. Each node comes at a cost, e.g., based on cloud instance

pricing or some internal budgeting scheme.

Thus, the agent must be aware of: (1) the number of instances placed in each node group,

(2) the number of instances available to add to each node group, (3) the cost per instance/group,

(4) the throughput of each group, and (5) as a corollary of (4), the average instance throughput

for each group. Table 6.1 summarizes these environmental factors.

Autoscaling events and instance partitioning can also be factored in without difficulty,

since partial nodes can be seen as “new node types” for the purposes of the orchestrator. For

tractability, we assume that all possible machine sizes are known in advance.
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Table 6.1. Orchestrator environment factors.

Factor Motivation

Agent-Modified Factors

Group Sizes. Allows agent to understand the current
number of instances per group. May change

based on agent actions.
Group

Throughput
Allows agent to see the throughput of each
group. Depends on group sizes, the local

group agent, and the instance types.
Free Nodes Allows agent to see the number of machines

available to add on for each group.
Group Costs Allows agent to see the cost associated with

each group.
Overall Costs Allows agent to see its overall costs.
Throughput Allows agent to see its overall performance

& throughput.

Uncorrelated Factors
Instance

Throughput
The throughput of each group’s base

instance. Updated regularly to account for
each group-agent’s optimization decisions.

Model
Latency

The model’s latency, which defines the
required throughput to serve it.

Static Factors
Instance Costs

($)
The cost of each group’s base instance.

Per-Instance
Statistics

Multiple factors covering technical details
for each instance, e.g., CPU counts, memory,

etc.
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The actions of the orchestrator (e.g., increment/decrement group size) are then evaluated

using our reward model. The reward must account for cost-efficiency, as shown in Equation 6.1,

while accounting for application-specific biases towards cost or throughput. We define a flexible

reward function to encode these requirements as shown in Equation 6.2.

R =
λ (throughput)

φ(cost)
(6.2)

λ & φ encode application-specific motivations. In this paper, we use the following

functions:

φ(cost) =


inf if cost > budget,

1 if cost < budget.

λ (throughput) =


1 if x≥ 1

model latency ,

throughput∗model latency if throughput < 1
model latency .

These encode a cost budget & target throughput rate. Figure 6.2 illustrates how the

reward scales with throughput & cost for a given budget & model. Of course, system users may

configure λ & φ appropriately for their specific needs.

Agent Model. The agent architecture we use for the orchestrator is largely the same

as the original architecture used for the group agents drawn from INTUNE. As before, we

leave agent architecture maintenance, swapping, and deployment to the discretion of the cluster

administrator. We adopt the same hybrid offline-online training paradigm, where the agent is

pre-trained offline on historical traces, then updated online for incoming jobs.

Action Space. Much like the group agent, we formalize our agent’s action space as a

discrete set of increment/decrement/maintain options. This action-space shaping stage helps
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Cost 
exceeds 

budget

Throughput meets target

Figure 6.2. Our chosen λ and φ cause the reward to scale linearly with throughput unless
the compute budget is exceeded or the target data serving rate has been met. We illustrate
with a fixed budget of $200 and a model latency per-batch of 10ms.

minimize complexity and encourages a simpler model optimization (as opposed to operating in a

continuous configuration space).

The orchestrator agent must account for variability in the group agents’ performances.

As each group agent converges on an optimized state, the throughput provided by each group

might change dramatically. To mitigate this issue — which can muddy observations taken by

the agent — we use an architecturally simple mechanism based on action space masking [48].

We simply prevent the orchestrator agent from taking a “removal” action on any group until

the local group agent has at least passed some number of iterations (e.g., 100) for optimization.

Previous studies [146] have shown that group agent convergence should occur relatively quickly,

so reliable performance readings should be available within a short period of time.

Interface and Usage. We opt for the same interface used by INTUNE; the multi-node

extension is handled transparently with background cluster queries (e.g., on Ray). We find that

this is sufficient for a hands-off cluster administration approach, though adapting this interface

layer should be straightforward if more transparency is needed.
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6.3 Evaluation

We now provide a thorough evaluation of INTUNEX’s optimization capabilities. The

original INTUNE paper already makes the case for RL-based pipeline optimization on a single

node, so, we focus our evaluations here on the multi-node setting.

Workloads. We use two workloads, one drawn from an internal recommender model

and dataset and one built using Meta’s open-source DLRM code and the Criteo dataset. The

custom dataset task focuses on product recommendations while the Criteo dataset is used in a

click-through-rate prediction task.

Datasets and Pipelines. The custom dataset uses dozens of sparse features, and fewer

than 5 continuous features, with a batch size in the tens of thousands. The Criteo dataset consists

of 26 sparse categorical features and 13 continuous features and a batch size of 24,096. We

initialize the dataloader allocations for the group agent with a simple “even division” of CPUs

across stages. The agents then modify the distribution provided by this heuristic.

Models. The model taken from our production pipeline is small — <5M parameters,

most of which are contained in the embedding tables. We make a large model for the Criteo

dataset, with 25B+ parameters, most of which are in the embedding tables. In both cases, the

model latency is sufficiently low such that training times are dominated by data processing.

The Criteo model is trained on 8 40GB A100 GPUs using hybrid parallelism [219], and the

production model is trained on a single 40GB A100. In the multi-node experiments, we apply

8-way intra-node data-parallelism for the production model.

Hardware Setup. In addition to the trainer machine, which is provided by default as

a zero-cost node, we allocate additional instances to a resource pool. This pool consists of

four instance types, chosen for their diverse specifications, costs, and varied processing speeds.

Each machine type comes with 32 available instances. We configure the “pipeline budget” to

$1500/day. Table 6.2 describes the hardware specifications and associated costs of each instance
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Table 6.2. Group hardware configurations, prior to any autoscaling events which create
new groups. Costs are estimated based on AWS 1-year reservations with public pricing in
the us-east-2 region. The p4d.24xlarge is provided by default, as the trainer box.

Group 1 Group 2 Group 3 Group 4 Group 5
(default)

CPUs 96 128 96 128 96
CPU Max
Speed (GHz) 3.1 3.5 3.6 3.5 3.0

Memory (GB) 768 1024 192 512 1152
Daily Cost ($) 97.54 136.23 57.58 91.04 451.93 (0)
AWS Instance r5d.metal r6id.metal c5.metal m6i.metal p4d.24xlarge

type.

To simulate autoscaling events, and further node heterogeneity, half of the nodes in each

group undergo a re-sizing procedure, halving then doubling the available CPU & memory (e.g.,

128 CPUs→ 64→ 32→ 64→ 128).

Since this only affects half the nodes in each group, the evaluated systems may easily

ignore these re-sized machines and only use the original base instances. So, the impact of

autoscaling will be much less than in the previous INTUNE experiments, where the baselines

were forced to respond to resource changes. Here, re-sizing is presented as an opportunity for

flexibility (i.e., with more candidate instance types) rather than an enforced resource shock.

Baselines. We use the following intra-node optimization baselines, each of which

implements CPU resource optimization:

1. Unoptimized. In this version, only a single CPU is allocated per stage such that no

parallelism is possible.

2. AUTOTUNE. AUTOTUNE is a standard TensorFlow offering, commonly used to optimize

tf.data pipelines.

3. AUTOTUNE-Adaptive. We checkpoint and re-launch AUTOTUNE on re-sized instances to

allow it to adapt to the new machine’s resources.
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4. Plumber-Adaptive. Plumber [98] is a more user-friendly alternative to AUTOTUNE that

uses an MILP to distribute resources. We apply the same checkpointing approach as in

AUTOTUNE-adaptive.

5. Heuristic. This version simply distributes CPUs evenly to emulate what a human user’s

best guess distribution might look like. INTUNEX’s RL agent is initialized from this state

as well.

These baselines cover most typical configurations, both manual and automated. We

combine them with a straightforward greedy knapsack solver which maximizes total available

CPU cores within the cost budget. This reflects a reasonable algorithmic baseline for multi-node

optimization.

Criteo

B)

Halving Halving Doubling Doubling

Ours Criteo Ours

C)

Criteo Ours
Halving Halving Doubling Doubling

A)

Halving Halving Doubling Doubling Halving Halving Doubling Doubling Halving Halving Doubling Doubling Halving Halving Doubling Doubling

Figure 6.3. All figures use the legend in the leftmost chart. (A) Pipeline throughput over
time for each approach in the multi-node experiments, normalized to the Unoptimized
baseline. (B) Average CPU utilization across all budgeted nodes over time for each approach.
(C) GPU utilization over time for each approach.

Pipeline Performance. Figure 6.3 (A) presents the results of our multi-node evaluations

on the Criteo & Netflix pipelines. INTUNEX provides significantly better throughput and

hardware utilization than the strongest competitors on both pipelines. Autoscaling events are

less significant for the baselines in this setting, as they only affect half of the candidate instances.

INTUNEX still benefits however, leveraging the increased flexibility offered by partial instances

to optimize its cost-efficiency. It achieves peak marginal performance gains of 25% and 15%

versus AUTOTUNE on the custom pipeline and the Criteo pipeline respectively.

Since the internal model runs on 8 GPUs in this setting, its throughput demands are

considerable. Even so, INTUNEX sustains high GPU utilization rates across the job lifetime,
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demonstrating its ability to support low-latency models & high throughput demands.

We also observe that INTUNEX still converges to a stable throughput rate relatively

quickly, even with the multi-level RL formulation.

Drilldown Study. We now dive into INTUNEX’s multi-node scaling behaviors on the

real-world data pipeline. For single-node scaling studies, we refer the reader to the INTUNE [146]

paper, which analyzes how group-agent performance scales as machine sizes change, pipeline

complexity increases, and workloads are re-configured.

So, for the multi-node setting, we evaluate our system’s performance with respect to the

number of different instance types available in the node pool. The intention is to understand

the effectiveness of our orchestration agent as the complexity of cost-efficiency problem space

increases. As in the end-to-end experiments, we use AWS instances to define our instance types

& budgeting. We take a selection of 20 different instances across the c7a, r7i, r6i, and m7a

types. The budget is set to $1500 with 32 instances per type, as in the end-to-end experiments.

Figure 6.4 illustrates how INTUNEX’s solution’s cost-efficiency ratio scales as more

instance types are added to the pool (in order of price). We see that INTUNEX monotonically

improves its cost-efficiency ratio as the candidate space increases in size. This result implies that

our RL-solver approach scales well even as the problem complexity increases, and should be

capable of managing even the most diverse cluster scenarios.

6.4 Conclusion

DLRM training costs are often dominated by online data ingestion rather than model

execution. The primary throughput bottleneck in this setting is CPU-driven data processing

rather than GPU-accelerated model operations. Thus, optimizing the data ingestion phase is

critical to ensuring cost- & time- effective model development. Unfortunately, existing tooling

for DL data ingestion pipelines does not support the DLRM setting effectively. Our prior work —

INTUNE — dynamically allocates CPUs & memory across stages of the online data ingestion
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Figure 6.4. We report on cost-efficiency scaling (Equation 6.1) with respect to the degree of
instance variety available in the cluster.

pipeline, significantly improving efficiency over industry-standard baselines without requiring

changes to the cluster architecture or user workflows. But, for the multi-node setting, a new layer

of optimization is necessary. Determining which nodes to use for a pipeline (and how many of

each) is a challenging optimization problem. But, by extending INTUNE’s RL formulation, we

propose a new system — INTUNEX — that handles both inter-node and intra-node optimization.

We find that INTUNEX can improve overall cluster efficiency on real-world workloads by as

much as 15-25%, potentially unlocking significant cost savings for industry users.

Chapter 6 contains material from “Reinforcement Learning for Intra- & Inter-Node

Recommender Data Pipeline Optimization” by Kabir Nagrecha, Lingyi Liu, and Pablo Delgado,

which appears in ACM Transactions on Recommender Systems of the 17th ACM Conference

on Recommender Systems, Volume 5. The dissertation author was the primary investigator and

author of this paper.
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Chapter 7

Routing Over LLMs Using Proxy Metrics
for Relative Quality Estimation

In this chapter, we elaborate on our optimizations targeting LLM serving. LLMs demon-

strate impressive zero-shot capabilities on many real-world tasks across a variety of domains.

Unfortunately, adoption of state-of-the-art LLMs in enterprise applications is often bottlenecked

by inference performance challenges. While using smaller LLMs may alleviate these bottlenecks,

they usually produce lower-quality outputs. In this paper, we propose a routing procedure that

uses simple lexical analysis techniques to assess the complexity of a query, then predicts the

resultant quality differential between LLMs. We use the prediction to select a candidate LLM

that will provide the best inference performance while respecting a user-configured quality degra-

dation threshold. We evaluate our procedure on four different model families — LLaMA-2 [204],

Qwen-1.5 [17], Vicuna [39], and Falcon [13] — over five diverse datasets representing challeng-

ing LLM settings — MT-Bench for human-like chat experiences, MMLU for broad language

understanding, HellaSwag for natural language reasoning, HumanEval for code generators, and

a conversational recommendation dataset from a streaming service. We also demonstrate that our

approach is even effective for routing across models of different families. Our experiments show

up to 6.92X improvements in inference performance while maintaining output quality close to

the largest candidate LLM.
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7.1 Introduction

Large language models (LLMs) have demonstrated strong performance on a variety of

tasks, including chat services [29], code generation [34], and product recommendation. Recent

studies have shown that overall response quality is closely correlated with LLM scale; larger

models with more parameters typically perform better on standard benchmarks [240, 72, 34].

However, significant challenges arise when adopting such large-scale models. In par-

ticular, inference performance is strongly correlated with model size. Table 7.1 compares the

performance achieved by differently-sized LLaMA-2 variants [204] on the MT-Bench workload.

Thus, users building performance-sensitive applications are forced into a trade-off be-

tween quality and performance. Opting to use a larger LLM may offer higher quality — but at

the cost of lower serving throughput. A smaller LLM might offer the opposite trade-off.

Table 7.1. Throughput achieved by LLaMA-2-7B, -13B, and -70B on the MT-Bench
workload.

MODEL THROUGHPUT (QUERIES/SECOND)

LLAMA-2-7B 7.02
LLAMA-2-13B 2.96
LLAMA-2-70B 0.97

Many recent papers [33, 189, 196, 175, 247, 248] explore ways to navigate this trade-off

by assigning different queries to different LLMs. Each of these works takes some approach

to predict whether an LLM’s output will satisfy a quality threshold for a given metric and

domain, i.e., by training a model or function to produce a “reliability” score for the metric.

To simplify prediction, most such works (barring a few exceptions, e.g., FrugalGPT [33] &

AutoMix [126]) focus on tasks with straightforward evaluation mechanisms such as classification

and multiple-choice Q&A.

The key to such routers is the ability to predict the quality of an LLM output on a given
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metric. As such, these routers were built and evaluated for a relatively small set of straightforward,

specialized tasks with simple metrics.

But LLMs have introduced a range of new applications [203, 53], e.g., content cre-

ation [107], chatbots [29], and code generators [34]. Holistic LLM evaluation for these broad

tasks is non-trivial and may require complex procedures (e.g., human scoring or sandboxed code

execution).

Such tasks were well-studied even before the advent of LLMs; the metrics are easy to rea-

son about and do not need to account for the unique capabilities of LLMs. Predicting outcomes

on such metrics and tasks with reasonable confidence may be feasible. But such tasks do not lever-

age the versatility, generalizability, and creativity of LLMs [53, 203], which has enabled many

new real-world applications for deep learning (DL) with complex, ambiguously-defined metrics.

These LLM-specific applications include (but are not limited to) interactive chatbots [29], content

creation tools [107], malware analyzers [134] and detectors [58], conversational recommenders,

code generators [34], and roleplay gaming assistants [246].

Building metric-predictors for such tasks is significantly more challenging. For example,

if a predictor could forecast the outcome of LLM-generated code, then it could be used to address

the halting problem [44]! The search for holistic LLM evaluation approaches has motivated

a variety of complex, empirically-grounded analysis mechanisms, e.g., LLM-as-a-Judge for

chatbots [240], or execution sandboxes for code generation [34]. Due to the complexity of these

approaches, routers which predict the absolute quality of LLM outputs on evaluation metrics

cannot branch out to support these new and emerging settings.

To better illustrate the problem, we now describe a realistic example where a routing

mechanism is needed — but the results of evaluation are hard to predict.

Illustrative Use Case. Consider an ML engineer working at a large Web company. The

company is building a product to help writers generate manuscripts and creative texts. They

anticipate tens of thousands of monthly active users. The engineer has been tasked with hosting

an LLM for the application. They are given a service-level objective (SLO) of serving 100 queries
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per second. Researchers at the company have fine-tuned 3 LLaMA-2 instances, LLaMA-2-7B,

-13B, and -70B. The 70B instance is “state-of-the-art”; it is the absolute best model available for

this task.

Initially, the engineer hosts this state-of-the-art model. Analyses show that users typically

accept about 40% of LLM-generated texts and report an 80% satisfaction rate. The serving

throughput is only 30 queries per second, however.

Thus, for performance reasons, the engineer must explore the trade-off between model

quality and throughput. Internal studies suggest that users will still be satisfied with a 10%

degradation in output quality (i.e., a 36% acceptance rate) relative to their current experience.

A/B-tests with the 7B & 13B models show 28% and 32% acceptance rates respectively. A routing

approach may help navigate the trade-off between performance and quality more effectively.

We note two key ideas illustrated in the example that help inform our approach. First, the

quality of the user experience is bounded by the best LLM available. In the previous example,

the defined tolerable acceptance rate of 36% is not set in a vacuum; it is defined in relation

to the best & largest LLM candidate (and the best-achievable output quality). Second, on a

per-query basis, it is difficult to predict user interactions with creative texts (thus making existing

LLM-routing systems inapplicable). However, it may be feasible to predict the relative quality

of the 13B-parameter model’s text versus the 70B-parameter model.

Contributions and Key Idea. To obviate the difficulty of approximating and projecting

potentially complex domain-specific metrics (e.g., the acceptance rate in our content creation

example), we suggest an alternate approach to routing. Rather than predicting LLM output

performance or reliability, we analyze the query complexity to predict the relative quality differ-

ence between a candidate LLM and the best-baseline LLM, and use the estimated degradation

to inform routing decisions. Thus, we shift the focus of the predictor from the metric (which

may be ambiguous or hard to predict performance on) to assessing the relationship between

LLMs. This re-framing lets us simplify and generalize routing to cover more complex tasks with
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challenging metrics. Essentially — simplicity of method enables complexity of application.

In this paper, we derive straightforward proxy metrics and demonstrate that they are

strongly correlated with quality degradation between LLM instances. We use these correlations

to construct a simple threshold-based routing mechanism that assigns input queries across

different candidate LLMs. We apply our approach to five diverse tasks with varied and complex

metrics and demonstrate consistently strong performance across different domains and evaluation

procedures. We use MT-Bench [240] with its LLM preference scoring, the MMLU [73] (5-shot)

benchmark which covers a wide range of tasks including social sciences, STEM, and language

comprehension, HellaSwag (10-shot) [233] for reasoning, HumanEval [34] for coding, and a

conversational recommendation dataset taken from a streaming company with a Mean Reciprocal

Rank (MRR) score. We compare to strong cascade baselines for inference routing optimization

on complex workloads — FrugalGPT and AutoMix — as well as some predictive routers which

directly select a model to use. We show that our simple predictive router is more performant

than the cascade mechanisms, and also more accurate and capable than existing predictive

mechanisms.

In all cases, across these diverse target metrics, workloads, and datasets, our simple

and straightforward routing approach demonstrates that it can significantly improve inference

performance while respecting a user-configured threshold for relative quality degradation.

1. We demonstrate that simple lexical analysis proxy metrics are strongly correlated with

output quality differences between LLMs across a diverse set of tasks.

2. We exploit this insight to construct a routing mechanism that applies the proxy metrics to

compute estimated accuracy degradation between model instances.

3. We apply this routing procedure to varied workloads and applications and achieve signifi-

cant performance gains with minimal accuracy losses, pushing into a new region beyond

the existing Pareto-frontier of quality-performance trade-offs.
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7.2 Background

We provide definitions for terminology used throughout this paper. We assume that the

reader is familiar with deep learning (DL) in general, and omit discussion of ubiquitous concepts

(e.g. gradient descent, etc).

Query Routing is well-known in the context of P2P networks [197] & databases. These

systems distribute content over different servers, rather than simply replicating data. Similarly,

CDNs [127] route queries based on server “preferences”, loads, and estimated latencies.

Throughput & Latency are used to describe the performance behaviors of serving

systems. Throughput refers to the number of queries can be serviced in a fixed period of time,

while latency refers to the turnaround time for a single query. Average latency scales inversely

with throughput; higher serving throughput typically yields lower average latency. In the LLM

context, latency may either refer to full-query latency (i.e., the time for a full response to be

returned) or time-to-first-token, which is more relevant when the output is streamed to the client.

For the purposes of this paper, we focus on the former case.

LLM Inference Challenges are increasingly becoming the bottleneck in real-world

adoption. Transformer decoders are autoregressive [211] leading to sequential dependencies that

are hard to optimize at a low-level. Thus, users are often motivated to employ smaller LLMs

when they are performance-constrained.

7.3 Problem and Motivation

Objective. For a given query q, our aim is to select and apply the model m with the

highest inference performance that meets some user-defined quality-degradation threshold ε on

their task metric µ . Referring back to our illustrative use case in Section 7.1, we want to enable

the engineer to select which LLaMA-2 model should serve a given query while maintaining

output quality within 10% of the 70B-parameter instance.

Formally, we seek:
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mopt(ε) = argmax
m s.t. µ(m(q)) meets ε

P(m,q) (7.1)

where P refers to inference performance.

The key challenge in this optimization problem is assessing the constraint: µ(m(q))

meets ε . Computing µ in the online setting is generally infeasible, since it may require access to

a ground-truth label or an expensive verification process (e.g., for code generation).

The standard procedure, employed by existing frameworks, is to first train some veri-

fier/scorer τ as a proxy for µ , then to transform the optimization problem as follows:

mopt(ε) = argmax
m s.t. τ(m(q))>ε

P(m,q) (7.2)

Training and defining τ is a non-trivial task. Cascade systems [175, 196, 126, 33] produce

outputs and apply some verifier (e.g., a small multi-layer-perceptron or kNN) to use as τ . When

µ is more complex (e.g., for chatbot workloads), correspondingly sophisticated output verifiers

are necessary. FrugalGPT [33] uses DistilBERT (a 66M parameter Transformer), and AutoMix

uses a self-verification procedure [120] combined with a Markov Decision Process [126, 92]. In

all cases, the transformation requires invoking m(q) and τ(m(q)) (potentially for every single

candidate m) to compute the argmax function.

One recent paper [189] suggests using a kNN to predict quality on µ(m(q)) to inform

routing without actually invoking m(q). But as we discussed in Section 7.1, this relies on µ being

easy to predict — their work focuses primarily on tasks such as classification, multiple-choice

Q&A, and single-word responses. Even then, large amounts of data (O(100K)) are needed to

train the k-NN.

Our aim is to substitute the constraint so that we no longer rely on the relationship

τ(m(q))≈ µ(m(q)) or even a predictor for µ . This lets us avoid computing m(q) and sidestep

challenges faced in applications with more complex and nuanced µ metrics (e.g., code generation)

where the metric is difficult to predict directly.
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Approach. We exploit and re-frame the semantics of ε in the objective function. Suppose

we have a candidate set of models, e.g., LLaMA instances, as in our earlier example. If we select

some baseline model from the candidate set m′, e.g., LLaMA-2-70B, then we can define the

constraint as follows:

mopt(ε
′) = argmax

m s.t. µ(m(q))
µ(m′(q))>ε ′

TP(m,q) (7.3)

where ε ′ is now a relative degradation measure between LLaMA-2 instances rather than

an absolute quality threshold. We expand on how to set ε ′ later in this section.

While µ might be defined in a way that makes it difficult to approximate — e.g., a human-

(or LLM-) evaluated quality score, a set of unit tests for code generation — measuring relative

quality degradation only requires predicting the relationship between two differently-sized LLMs

on the given task. Indeed, previous works [76] have already found correlations between model

scale and output quality; we simply exploit this relationship. In other words — while µ(m(q))

and µ(m′(q)) are hard to predict, µ(m(q))
µ(m′(q)) can be informed by the relationship between m and m′.

So, we introduce an approximation function Θ for µ(m(q))
µ(m′(q)) .

Modeling q∼ µ(m(q))
µ(m′(q)) . We now consider ways to define the approximation function

Θ(m,q).

Deriving a theoretical solution to µ(m(q))
µ(m′(q)) is non-trivial. Instead, we look to empirically

evaluate candidate metrics c such that c(q)∼ µ(m(q))
µ(m′(q)) . These metrics can be straightforward yet

still serve as useful approximations. Figure 7.1 illustrates how simply bucketing input queries

by length in characters can lead to different degradation outcomes on the MT-Bench evaluation

workload.

In Section 7.4, we provide an empirical study of correlations between simple lexical

analysis metrics and µ(m(q))
µ(m′(q)) . This gives us functions c such that c(q) ∼ µ(m(q))

µ(m′(q)) , providing a

basis for our Θ function. In Section 7.5 we leverage these mechanisms to optimize LLM serving

for a broad and diverse set of real-world applications (a chatbot task, a code generation assistant,
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Figure 7.1. Comparison of average scores (normalized to best) across differently-sized
LLaMA-2 variants on the MT-Bench task. The relative performance changes as we filter
queries by length.

and a conversational recommender system) to assess whether these correlations are consistent

across domains and complex metrics.

Applying Θ for routing. Deriving Θ lets us redefine our objective function as follows.

mopt(ε
′) = argmax

m s.t. Θ(m,q)>ε ′
P(m,q) (7.4)

In the worst case, this procedure invokes m′(q) (the biggest/slowest model). Compare

this to the worst-case for cascade mechanisms, which may invoke all candidate LLMs. We

compare the performance in Figure 7.2(A).

Quality Constraint. Our routing procedure optimizes performance, but must respect a
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Figure 7.2. (A) Worst-case average serving latency (i.e., all queries need largest model)
for a direct-routing approach versus a simple cascading approach. Models range in from
size from 1.5B to 70B parameters. We do not include verifier overheads (e.g., DistilBERT
invocation for FrugalGPT’s cascade [33]). MPT-30B is the slowest LLM to serve, so
the performance of direct routing flattens past that point. (B) Pareto-frontier between
performance on MT-Bench and throughput. We plot models of sizes ranging from 1.5B
parameters to 70B. Experiments run on 8 A100 GPUs. The target optimization region on
this frontier is bounded by ε ′.

quality constraint; application developers leveraging LLMs will likely have SLOs for both.

To illustrate, we describe a use-case taken from our experiences with the proposed

routing mechanism at a large streaming company. Initially, the company ran a limited test of

a large-scale LLM for a chatbot use case. They recorded the current output quality based on

user interactions and feedback. Assessments showed that the throughput was insufficient for a

broader deployment, but some x% of quality degradation could be tolerated without significantly

affecting user satisfaction. The degradation induced by switching to a smaller LLM for all

queries would have exceeded the tolerance level, however. Thus, a routing mechanism was

needed.

Figure 7.2(B) illustrates how a quality degradation threshold could be overlaid to con-

straint our optimization over the Pareto-frontier. We expose the knob ε ′ from our optimization

problem, so that users can configure the threshold to meet their quality needs. Thus, in our

real-world example, inference performance was improved considerably while still maintaining

132



Query Length (in characters) Number of Named EntitiesReading Time (in minutes)

7B correlation: 0.888

13B correlation: 0.981

7B correlation: 0.877

13B correlation: 0.903

7B correlation: 0.899

13B correlation: 0.882

Figure 7.3. We bucket queries according to 3 different lexical analysis metrics and assess
how correlated they are with accuracy degradation. We also report the Pearson correlation
coefficient between the metric and the quality degradation from the 70B baseline. Y-axes
are inverted to make the curve easier to understand visually.

quality degradation < x%.

7.4 Approximation Metrics and Routing

Equations 7.1 and 7.4 in the previous section defined our overall objective and our

proposed approximation.

Now, we look to find an appropriate function Θ that is strongly correlated with µ(m(q))
µ(m′(q)) .

For clarity, we focus our explorations in this section on the MT-Bench [240] single-turn workload,

using GPT4-as-a-Judge as the evaluator. This exemplifies a metric that is challenging to approx-

imate via some simple predictor, as explained in Section 7.1 and Section 7.3. In Section 7.5

we expand our approach to other datasets to demonstrate consistent performance across diverse

domains/metrics.

We use three LLaMA-2 model instances of varying sizes (7B, 13B, and 70B) as our

candidate model set M. This is reflective of typical practice in industry settings; a company

might consider a few such state-of-the-art models for their serving needs.

7.4.1 Proxy Metrics

We evaluate three different simple, easy-to-compute lexical analysis metrics, imple-

mented using the LFTK [105] library, and assess their correlation with quality degradation
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between LLM instances. The metrics are presented below.

We consider the following three metrics:

1. Query Length. This simple character count metric is easy to compute and can serve as a

simple measure of query complexity.

2. Reading Time. A basic reading time formula provided by the LFTK library. This can

serve as a measure of lexical complexity.

3. Number of Named Entities. References to persons or places can imply complex logical

reasoning tasks or queries that draw on general knowledge. So, this metric can help inform

our understanding of query complexity.

These metrics are both straightforward and easy to compute. Applying them at routing

time would induce minimal overheads. Other metrics are certainly possible, but we leave further

metric exploration to future work. Our focus is demonstrating the feasibility of estimating
µ(m(q))
µ(m′(q)) on complex tasks.

From a modeling standpoint, these metrics are well-motivated. Larger LLMs are known

to be more capable of keeping track of increased logical complexity [76, 54]; metrics such

as query length and the number of named entities can serve as proxies for complexity, thus

estimating a potential driver of performance gaps between models.

We rank input queries according to each metric, distribute them into quantiles, then

compute the Pearson correlation coefficient between the metric and quality degradation (i.e.,

1− µ(m(q))
µ(m′(q)) where m′ is the largest model) across quantiles.

Figure 7.3 illustrates the results of correlating these metrics with quality degradation

between LLM instances. Note that in some edge-cases, 7B and 13B models may produce

marginally better results than the 70B baseline.

We find that all three metrics — query length, reading time, and number of named entities

— are strongly correlated with the response quality degradation relative to the LLaMA-2-70B
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Query: Please 
summarize the 

following…

f1

f2

…

f3

Proxy Metrics

13B: 90%
7B: 70%

13B: 65%
7B: -45%

13B: 99%
7B: 80%

Quality Estimation

7B Worst Case: 45%
13B Worst Case: 65%

ε’ ≤ 45%: 

7B Model

ε’ > 45%, ≤ 65%: 

13B Model

ε’  >65%: 

70B Model

Figure 7.4. Illustration of the routing procedure applied to an incoming query to determine
which candidate model to use.

model baseline.

We now define a procedure to use each metric c(q) to create our approximation function

Θ(m,q). Given a query q, we compute our metric c(q) and map it into a quantile on our curve

correlating c(q) with 1− µ(m(q))
µ(m′(q)) . We then take the µ(m(q))

µ(m′(q)) value associated with the upper-bound

of the quantile, providing an upper-bound estimate of quality degradation.

This assumes the curves for c are available in advance. We relax this assumption in

Section 7.4.3, but for now, we presuppose that we have access to an oracle that can provide these

curves.

7.4.2 Routing Mechanisms

We now describe and evaluate our routing scheme.

Θ-Ensemble. Previously, we demonstrated some candidate metrics c and defined a

procedure to compute corresponding Θ estimators. Using an ensemble of Θ estimators can

mitigate the risk of an inaccurate routing decision. Equation 7.5 presents this new formulation.

Later, in Section 7.5 we provide an ablation study on the ensemble mechanism.

mopt(ε
′) = argmax

m s.t. Θi(m,q)>ε ′ ∀Θi∈{Θ0,Θ1...}
P(m,q) (7.5)

Since each Θ-function is computationally light, computing 3 together should still not
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induce significant overheads.

Routing Procedure. To solve Equation 7.5 we must compute the argmax function,

which requires iterating over the model list M. We sort the models in order of size (which serves

as a proxy for P(m,q)). For each model, we compute Θ(m,q). If the constraints are satisfied, we

compute m(q) and return the response.

The largest model will yield 100% quality for every Θ function, since our degradation

estimate is computed in relation to this model. We constrain the user-defined ε ′ threshold so

that it cannot exceed 100%; thus, we guarantee that we will find some viable candidate model to

serve the query.

Algorithm 5 presents our routing procedure in pseudocode, and Figure 7.4 illustrates an

example routing process.

Algorithm 5: Θ-Proxy Routing Procedure
for m ∈M do

for Θ ∈Θ0,Θ1, ... do
if Θ(m,q)< ε ′ then

skip to next m
end if

end for
return m,m(q)

end for

In effect, this algorithm iteratively computes and moves along the Θ-approximated

Pareto-frontier between performance and quality for the given query and proxy metric. It then

returns the point along the frontier that satisfies the quality requirement across all metrics.

To verify this procedure, we evaluate on MT-Bench, setting ε ′ to 85%. Figure 7.5

illustrates the results. We find that our router can re-direct 64.4% of queries away from the largest

model while still maintaining an output quality within 5% of the largest-model-only baseline.

The actual quality degradation is significantly lower than the tolerance threshold we set; this is

because our Θ-function routing procedure estimates an upper-bound on quality degradation.
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Figure 7.5. (A) Normalized MT-Bench scores of LLaMA-2 baselines model as well as our
multi-model routing mechanism. (B) Distribution of query assignments made by our our
router.

Figure 7.6. Curves observed using a random subset of the prompts versus the curves from
the full dataset.

7.4.3 Sample-Based Estimation

We previously assumed access to the correlation curves between proxy metrics and

quality degradation. To relax this assumption, we use a straightforward approach used in other

systems works [186]: we construct the curve based on a random sample of queries that might be

collected online or from some pre-existing deployment.

To validate our approach, we use a large-scale real-world dataset for a conversational

recommender system at a major streaming service. The dataset is O(10k) in scale. We use

10% of the prompts to construct our curve. The relevant evaluation metric is MRR. Figure 7.6
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presents the curves from the subset and contrasts them against the curves from the full dataset.

Qualitatively, the curves are similar — the sampling mechanism is effective. Future iterations

could look to eliminate even this data-sample requirement.

7.5 Experiments

7.5.1 End-to-End Experiments

We now run a series of experiments to compare our work to existing serving options.

We evaluate whether our proposed routing techniques materially shifts the Pareto-frontiers (and

thus, the feasible and desirable serving options) for performance-constrained LLM application

developers.

Workloads. We use four workloads taken from a diverse range of LLM-based appli-

cations. First, a chatbot workload — we use the MT-Bench evaluation scheme here. Second,

a general evaluation of broad LLM capabilities, with a 5-shot MMLU evaluation. Third, an

evaluation of reasoning capabilities and logic, with a 10-shot HellaSwag evaluation. Fourth,

an internal conversational recommender system (CRS) workload taken from a major streaming

service. We use a recommendation metric, MRR, to score this workload. A fifth workload —

HumanEval, for code generation — is used in a separate experiment for code-specific models as

well. This diverse set of workloads, metrics, and datasets can help assess the generalizability of

our approach across domains.

MT-Bench and HumanEval are relatively small datasets, while the others include several

thousand prompts. For the large-scale datasets, sampling a small subset for curve construction is

relatively easy; we use roughly 10% of the datasets to define our curves or train any relevant

routers/predictors used in the baselines. For the smaller datasets, we use 50% of whole data to

construct the curve, since a smaller sample would induce excessive variability.

Baselines. We compare our approach to three single-model baselines and two state-of-

the-art cascade baselines. We enumerate them below.
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1. Single Model X. These simple baselines route all requests to some singular model X .

2. FrugalGPT (Cascade). This baseline adapts the cascading design from FrugalGPT [33]

and applies it to the models used in the simple baselines. We do not include FrugalGPT’s

orthogonal optimizations (e.g. caching, etc) since they could also be combined with our

routing mechanism. We train the verifier (and LLM cascade selector) on the same subsets

of data we sample for our routing mechanism’s curve construction.

3. AutoMix (Cascade). AutoMix [126] is a recent work that uses a mixture of self-

verification [81] and a Partially Observable Markov Decision Process [92] as its verifier.

AutoMix was originally benchmarked for the two-model case; it is straightforward to

extend their proposed cascade chain to cover 3 models, though.

4. K-NN (Predictive). A recent work [189] proposed using a k-NN predictive algorithm

for direct routing. This can serve as a more direct comparison to our own simple routing

procedure.

5. MLP (Predictive). Another recent paper [78] suggests using an MLP for prediction,

directly inspired by the paper mentioned in the previous baseline. This serves as another

direct comparison to our procedure.

All baselines use 8-A100-40GB nodes, one per model replica (for simple baselines) or

model instance. The cascade mechanisms, e.g., FrugalGPT and AutoMix were designed to

navigate the trade-off between output quality and the cost of LLM API invocation, not inference

performance. But they are the state-of-the-art for model serving selection on LLM workloads,

and thus the main options practitioners can use today. So, we consider them necessary and useful

baselines to show how cascade mechanisms compare to direct routers.

Models. In order to assess whether our techniques generalize across different model

families, we use 4 different model families, each of which provides 3 or more differently-sized

instances. We enumerate them below.
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Table 7.2. Reported throughput lift achieved by our routing approach relative to the
approximate Pareto-frontier of the single-model baselines.

LLAMA-2 QWEN-1.5 VICUNA FALCON ALL AVERAGE

MT-BENCH 1.8X 3.28X 1.7X 3.98X N/A 2.69X
MMLU 1.92X 4.77X 1.97X 6.92X 4.55X 4.02X
HELLASWAG 2.8X 2.42X 1.67X 3.68X 2.31X 2.58X
CRS 2.98X 3.64X 2.08X 3.41X 3.39X 3.31X
HUMANEVAL 1.65X N/A N/A N/A N/A N/A
AVERAGE 2.23X 3.14X 2.18X 4.49X 3.41X 3.15X

1. LLaMA-2 (7B, 13B, 70B).

2. Qwen-1.5 [17] (7B, 14B, 72B).

3. Vicuna [39] (7B, 13B, 33B).

4. Falcon [13] (7B, 40B, 180B).

We also assess cross-family routing, by including a combined baseline where all models

across all 4 families are used.

Results. Figure 7.7 presents the Pareto-frontiers we observe over the simple baselines,

then overlays the scores achieved by the algorithmic baselines (including our own). Table 7.2

presents the aggregated performance gains across the workloads. We assume an online applica-

tion with a data stream, and report performance as average throughput/node.

Our approach moves significantly beyond the Pareto-frontier. With ε ′ set to 85%, we

maintain the quality requirement relative to the large-model baseline on all workloads, while

achieving considerable speedups on all workloads. Our approach outperforms all routing and

cascade baselines as well.

To demonstrate our technique’s effectiveness on non-natural-language tasks, we also run

a benchmark for a code-specific model series (CodeLLaMA) on the HumanEval dataset, with

140



LL
aM

A 
2

No
rm

al
iz

ed
 N

od
e 

Th
ro

ug
hp

ut
LLaMA-7B

LLaMA-13B

LLaMA-70B

FrugalGPT AutoMixMLP-R

kNN-R

Ours

1.8X lift

Relative Quality Routing (ours)

Single-Model Baselines

Cascade Routers

Predictive Routers

LLaMA-7B

LLaMA-13B

LLaMA-70B

Ours

FrugalGPTAutoMix

kNN-R

MLP-R

1.92X lift

LLaMA-7B

LLaMA-13B

LLaMA-70B

Ours

FrugalGPT
AutoMix

kNN-R

MLP-R

2.8X lift

LLaMA-7B

LLaMA-13B LLaMA-70B

Ours

FrugalGPT AutoMix

kNN-R
MLP-R

2.98X lift

Q
w

en
 1

.5
No

rm
al

iz
ed

 N
od

e 
Th

ro
ug

hp
ut

MT-Bench

Qwen-7B

Qwen-14B

Qwen-72B

Ours

FrugalGPT
AutoMix

kNN-R

MLP-R

3.28X lift

Qwen-7B

Qwen-14B

Qwen-72B

Ours

FrugalGPT AutoMix

kNN-R

MLP-R
4.77X lift

Qwen-7B

Qwen-14B

Qwen-72B

Ours

FrugalGPT AutoMix

kNN-R

MLP-R 2.42X lift

Qwen-7B

Qwen-14B

Qwen-72B

Ours

FrugalGPT AutoMix

kNN-RMLP-R 3.64X lift

MMLU (5-shot) HellaSwag (10-shot) CRS
Vi

cu
na

No
rm

al
iz

ed
 N

od
e 

Th
ro

ug
hp

ut
No

rm
al

iz
ed

 N
od

e 
Th

ro
ug

hp
ut

Vicuna-7B

Vicuna-13B

Vicuna-33B

Ours

FrugalGPT
AutoMix

kNN-RMLP-R

1.7X lift

Vicuna-7B

Vicuna-13B
Vicuna-33B

Ours

FrugalGPTAutoMix

kNN-R

MLP-R 1.97X lift

Vicuna-7B

Vicuna-13B

Vicuna-33B

Ours

FrugalGPT AutoMix

kNN-R

MLP-R 1.67X lift

Vicuna-7B

Vicuna-13B

Vicuna-33B

Ours

FrugalGPTAutoMix

kNN-R

MLP-R

2.08X lift

Falcon-7B

Falcon-40B Falcon-180B

Ours

FrugalGPTAutoMix

kNN-R
MLP-R

6.92X lift

Falcon-7B

Falcon-40B

Falcon-180B

Ours

FrugalGPT
AutoMix

kNN-R

MLP-R

3.98X lift

Falcon-7B

Falcon-40B

Falcon-180B

Ours

FrugalGPTAutoMix

kNN-R MLP-R

3.68X lift

Falcon-7B

Falcon-40B Falcon-180B

Ours

FrugalGPTAutoMix

kNN-R MLP-R
3.41X lift

M
ix

ed
-F

am
ili

es
Fa

lc
on

No
rm

al
iz

ed
 N

od
e 

Th
ro

ug
hp

ut

Excluded due to 
insufficient 
dataset scale

Ours
3.39X lift

LLaMA-7B
Qwen-7B

Falcon-7B

Vicuna-7B

LLaMA-13B

LLaMA-70BFalcon-40B
Falcon-180B

Qwen-14B

Qwen-72B

Vicuna-13B

Vicuna-33B

FrugalGPT
AutoMix

Vicuna-7B
LLaMA-7B

Falcon-7B

Qwen-7B

LLaMA-13B

LLaMA-70BFalcon-40B
Falcon-180B FrugalGPT AutoMix

Qwen-14B

Qwen-72B
Vicuna-33B

kNN-R
MLP-R

2.31X lift

OursVicuna-13B

Qwen-7BVicuna-7BLLaMA-7B

Falcon-7B

LLaMA-13B

LLaMA-70B
Falcon-40B Falcon-180B

Qwen-14B

Qwen-72B

AutoMix FrugalGPT

kNN-R
MLP-R

Vicuna-13B

Vicuna-33B

4.55X lift

Ours

Normalized Quality Normalized Quality Normalized Quality Normalized Quality

Figure 7.7. We chart how our approach compares to algorithmic baselines on the Pareto-
frontier of quality-performance trade-offs in routing. We exclude the all-model baseline for
the MT-Bench workload, since it has too few questions (80) to effectively train the cascade
mechanisms or predictive router baselines for a mix of many different models.

the Pass@1 metric. Figure 7.8 illustrates the results.

7.5.2 Ablation & Scaling Studies

To better understand the behaviors of our approach, we run an ablation study on our

Θ-ensemble and a scaling study. For simplicity, our scaling and ablation studies will focus on

routing with the LLaMA-2 family [204].

Ablation Study. We drill-down into the Θ-ensemble of proxy metrics to better understand
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Figure 7.8. We apply our approach to a domain less strictly tied to natural language
expression — coding. Our results show that relative quality estimation still works effectively
for programmatic text and coding tasks.

how increasing the number of proxies affects the relationship between the ε ′ threshold and

observed quality. We chart out ε ′ versus actual evaluated quality in three cases — one where ε ′

has to be satisfied for all three Θ-constraints, one where it has to satisfied for two, and one where

it only has to be satisfied for one. Figure 7.9 illustrates.
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Figure 7.9. Ablation tests on our five workloads demonstrating how the relationship
between the accuracy threshold and the actual observed accuracy shifts depending on the
number of proxies involved.

We see that more proxies induces more conservative routing decisions to better respect

the ε ′ threshold. The rate of accuracy improvement in relation to ε ′ increases considerably with
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each additional proxy.
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Figure 7.10. We chart normalized throughput against the ε ′ threshold to demonstrate how
the knob can tune performance.

Scaling Study. Next, we study how altering the relative degradation threshold ε ′ affects

the throughput of our system. We chart out throughput versus threshold on all three workloads,

normalized to the fastest baseline (LLaMA-Small). We observe a downward curve; as the

threshold increases and the router introduces more “large-model” invocations for higher quality

guarantees, the achieved inference performance degrades. We can see that ε ′ serves as an

effective knob for users to navigate the quality-performance trade-off.

7.6 Conclusion

LLMs have enabled many new and exciting applications of DL. But evaluating LLMs in

such applications can require complex, non-standard metrics. This presents a challenge when

designing routing mechanisms to distribute queries over LLMs; predicting output quality on

such metrics is non-trivial. We present a new approach to LLM routing that predicts relative

degradation between LLM instances rather than the actual metric scores. We demonstrate that

simple lexical analysis techniques can be used to estimate this LLM-to-LLM relationship. We use
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this to build a mechanism to route queries over candidate LLMs. Evaluations on three workloads

show up to 6.92X throughput improvements versus a large-model baseline with < 12% quality

degradation. As more users leverage LLMs in performance-sensitive applications (e.g., web

search, ad serving), optimizing inference will likely be critical to broad adoption. We believe

our work, which helps users navigate performance-quality trade-offs more effectively, can help

address this challenge. In the future, we could look to make our system more end-to-end by

automating proxy metric-selection based on the application, and also expand our studies to cover

more emerging LLM use cases. We can also look to support more settings, e.g., offline scoring,

where workload distribution and straggler management become important.

Chapter 7 contains material from “Routing Over LLMs Using Proxy Metrics for Relative

Quality Estimation” by Kabir Nagrecha, Arun Kumar, and Hao Zhang, which is currently under

submission. The dissertation author was the primary investigator and author of this paper.
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Chapter 8

Related Work

8.1 Related Work for HYDRA

Pipeline parallelism: State-of-the-art pipeline parallel tools [82, 70] build on top of

model parallelism by treating the sequence of shards as a staged pipe. They exploit the fact

that DL training uses mini-batch SGD, wherein mini-batches are independent samples of the

training dataset, and so stage out successive mini-batches through the pipe of shards to reduce

idling. Prior work on pipelining has explored the problem of “bubble” periods during which the

pipe has to be flushed to avoid collisions between mini-batches moving in opposite directions

[56, 229, 115, 153].

One approach suggests mitigating the issue by creating “asynchronous” stages that use

stale parameters for updates without executing backward passes of mini-batches in synchronous

order, rescheduling them to reduce the number of flushes that need to occur in total [70, 153, 56,

229]. However, asynchronous pipelining introduces accuracy degradation and cannot guarantee

convergence to the same degree of accuracy as the non-parallelized model [15, 119, 139, 200].

Data Parallel Hybrids: Techniques like ZeRO [173] apply parameter sharing to dis-

tribute memory costs across model instances, while still employing data parallel distribution

of the input batches. This reduces the memory demands per GPU, but at the cost of frequent

cross-device synchronization. In cases when the model is very large, these frameworks often need
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to be hybridized with other techniques. For example, ZeRO-Offload and L2L [178, 167] propose

offloading data from GPU memory to DRAM to improve scalability GPU. ZeRO-Offload runs

parameter updates on the CPU instead of the GPU, and L2L executes a single layer at a time in a

quasi-spilling approach. However, these systems are not scoped to address multi-model training,

unlike HYDRA.

Offloading Systems: SwapAdvisor [79] is a tensor offloading system that allows data

(parameters, gradients, intermediates) to be swapped out of GPU memory and onto DRAM. This

enables large models to be trained on a single GPU. Unlike HYDRA’s flexible shard-swapping,

SwapAdvisor swaps at an individual tensor level with a complex swapping plan optimized

across the entire model’s execution. The degree of optimization prevents easy generalization

to SHARP’s multi-model blended scheduling. In addition, SwapAdvisor’s swap plan simulator

can introduce overheads due to the sheer size of the optimization space, and the communication

latencies introduced by swapping can be costly. Another data offloading framework [132]

proposed offloading only intermediates activations produced during training that would not be

necessary until later in the model’s execution. Such offloads are only possible along long-term

residual connections that span several layers’ worth of execution time, and the design also

requires that model parameters fit on GPU memory. Both these frameworks could be hybridized

with HYDRA to enable larger shards to be trained, but this would increase system complexity

substantially.

Tensor parallelism: In contrast to inter-layer model parallelism, tensor parallelism

offers the ability to parallelize compute between model shards. Rather than splitting a model

into different layer groups, it splits individual layers into multiple pieces that can be run in

parallel [187, 89]. However, tensor parallelism introduces substantial overhead in splitting

tensors and recombining them, as well as challenges around efficient data communication.

Moreover, not all layers can be split in such a fashion — convolutional layers are among the few

that can be tensor-parallelized easily. In the future, HYDRA could be extended to support mixed
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layer-tensor parallelism, but for now we only address inter-layer model parallelism.

Model Memory Reducers: Techniques to reduce the memory footprints of large archi-

tectures have received much attention in DL systems [36, 61, 101, 85, 87]. Model quantization

[84] in particular has been a popular technique for reducing memory footprints at inference time.

The goal of such systems is orthogonal to HYDRA, and memory reduction techniques could

be integrated into the overall architecture in the future. Other work on machine teaching [215]

and data distillation [217] aims to minimize the memory footprints of data, but these techniques

address a different aspect of memory in DL systems.

Multi-query optimizations for DL systems: Some recent works have looked to optimize

ML systems by exploiting multi-model execution, e.g., systems such Cerebro [100], Model-

Batch [157], ASHA [109], and SystemML [25]. Cerebro proposes a hybrid parallelism scheme

named MOP combining task- and data- parallelism, akin to (but different from) SHARP’s hybrid

model-task parallelism. SystemML also hybridizes task- and data- parallelism, but for classical

ML workloads rather than DL. ModelBatch raises GPU utilization by altering the DL tool’s

internal execution kernels. None of them tackle larger-than-GPU-memory models, which is our

focus. Other examples of MQO for DL systems are Krypton [148] and HummingBird [150] but

they focus on inference, not training.

8.2 Related Work for SATURN

Parallelism Selectors and Hybridizers: Paleo [168] focused on performance models

for data parallelism and model parallelism. But the DL parallelism landscape has changed

since then (2016), with numerous new approaches. While Paleo might be extended to newer

parallelisms, our empirical Trial Runner approach is more easily extensible and highly general.

Alpa, FlexFlow, and Unity [241, 89, 207] focus on generating bespoke parallelism strategies for

model architectures through complex search procedures. They can produce efficient single-model

plans, but the cumulative search overheads can get high when applied repeatedly to multi-model
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training. They also do not consider multiple models being trained in model selection workloads.

In addition, these tools must manually be redesigned for new approaches (e.g., spilling). These

tools could potentially be viewed as parallelisms for SATURN’s UPP abstraction.

DL Model Selection Systems: SATURN follows a line of work on systems for model

selection, including Cerebro [100], Hyperband [111], and ASHA [109]. However, none of these

prior works were explicitly designed for the large-model setting, where users must navigate

multiple complex and varied parallelisms, as explained in Section 7.1. Cerebro hybridizes

task- and data-parallelism to train multiple DL models in parallel on sharded data. Hyperband

reallocates training resources (e.g., number of epochs) across tasks based on convergence

behaviors. SHA implements a rung-based promotion plan to kill off less-promising job instances

and prioritize the execution of higher-value ones. ASHA extends this to execute promotions

asynchronously. ModelKeeper [103] suggests warm-starting across similar model configurations.

This could be used to reduce the demands of model selection up front, before SATURN executes.

All these techniques exist at a higher-level of abstraction, e.g., data sharding, early-stopping, or

warm-starting. Thus, they are orthogonal to SATURN and could be combined with our work in

future extensions.

DL Resource Schedulers: Pollux and Optimus [170, 163, 164] tackle apportion-

ment [146] and scheduling, two parts of SPASE. But they do not explicitly support larger-than-

GPU-memory models, where complex parallelisms alter performance tradeoffs in non-trivial

ways, as our work shows. In Optimus’ case, we can take the core mechanisms and adapt them

for large-model training, as we do in our Optimus* baselines. But such adaptations underper-

form native large-model tools such as SATURN. These tools also do not target model selection

workloads and optimize for throughput, while makespan is better suited for our setting. They

also alter model accuracy, violating our fidelity desideratum. A config submitted to Pollux (e.g.,

batch size X and learning rate Y) may yield different accuracies than the same X and Y without

Pollux. Themis [128] studies scheduling fairness for ML jobs from different users; their goal
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and setting are orthogonal to ours in that we focus on model selection jobs from the same user

and optimize for makespan.

Pipelining & FSDP: Pipelining is a modification of model parallelism in which the

model is sharded in a sequential fashion. It partitions a minibatch into smaller “microbatches,”

then shuttles the microbatches through the model partitions [229, 82, 94, 118]. This enables

different model shards to concurrently run different microbatches. The speedup of pipelining

is heavily tied to the partitioning scheme and the number of microbatches. Prior work has

underscored the importance of tuning these knobs via either expert knowledge or automated

heuristics [118].

Fully-Sharded-Data-Parallelism (FSDP) is a more recent approach that blends model

parallelism with data parallelism. Originally introduced in Microsoft’s ZeRO [173], it has since

been integrated into the PyTorch Distributed package [114]. FSDP partitions a model graph

across multiple accelerators, then sends different minibatch partitions to the accelerators. FSDP

runs All-Gather on model layers in sequence as data moves through the graph. The currently

executing layer group is data-parallel-replicated; the other operators are still distributed in a

model-parallel way. FSDP exposes two main user-configured optimizations to reduce GPU

memory pressure: (1) gradient checkpointing [36] and (2) DRAM spilling. Turning these knobs

on can lower GPU memory pressure at the cost of some performance. Ascertaining when it is

worth turning one or both of these techniques generally requires empirical testing.

DL Cluster Schedulers: Schedulers such as Gandiva, Apollo, Tiresias, & Antman target

a different setting [227, 226, 27, 62, 18] and require manual resource specification. Gandiva

does offer opportunistic rescaling for elastic [225] jobs, but without knowledge of the model’s

scalability. These systems and other orchestrators like Pathways [20] tackle systems challenges

that arise with very large clusters. Our focus is complementary in that we aim to free end users

of DL from needing to hand-tune systems factors. One could potentially integrate SATURN with

such larger schedulers by allocating a set of nodes for SATURN to manage locally for model
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selection. Gavel [154] schedules over heterogeneous resources, which is beyond our scope, but

does not tackle the SPASE problem. Their metrics to handle heterogeneity could potentially be

used in a future SATURN extension.

System Optimizers: KungFu [129] provides an interface for users to express various

procedures for mid-training system parameter changes. Litz [169] provides a programming model

for elastic parameter server data parallelism. TeraPipe uses dynamic programming to optimize the

partitioning and execution of pipeline parallelism [118]. Systems like Rammer [123], GO [245],

TVM [35], SystemML’s query rewriter [26] and compiler autotuners [166, 210] provide similar

up-front optimizations for DL workloads. These automated search procedures are orthogonal to

our own work and support can be added in the future using our UPP abstraction and Library API.

Other Model Selection Systems: Nautilus [147] optimizes model selection for transfer

learning. α-NAS [91] proposes a method for creating architecture search workloads. Other sys-

tems like FairRover [235] tackle human-in-the-loop model building. These works are orthogonal

to our own — they create/modify the model selection workload that SATURN executes.

Other DL System Optimizations: Optimizations such as compilation [35, 6, 104, 95,

166], batching [155, 238, 121], compression [68, 182, 46], and graph substitution [87, 88, 207]

are orthogonal to our work. Many systems (e.g. DeepSpeed [173, 172, 178], Megatron [158,

190, 1], Hotline [11], HugeCTR [220], RecShard [186, 9], HogBatch [125], and Switch Trans-

formers [52]) propose new parallelisms, all expressible under our Library API. Data pipeline

optimizations [177, 215, 218, 222], fairness systems [234, 59, 180], and end-to-end pipeline

managers [24, 21, 193, 165, 228] are also mostly orthogonal to our own work; we do not

restrict the workload/data design. Some other works have addressed large-model challenges

in different ways; e.g. by using alternative, parameter-efficient architectures [194] or else by

training on non-GPU hardware [41, 198]. By contrast, SATURN is intended to optimize existing

large-model GPU-training settings. Still other works optimize for settings such as DL infer-

ence [230, 19, 148, 14, 32, 31] or non-DL compute [60, 212, 75, 10, 50, 237]. These works
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target a different setting entirely.

8.3 Related Work for INTUNE and INTUNEX

Data Pipeline Optimizers: AUTOTUNE is generally considered to be the gold-standard

data pipeline optimizer for tf.data pipelines [138]. Built-in to TensorFlow, the tool offers users

with a seamless optimization experience that can be added to existing pipelines in just a single

line of code. This design philosophy of abstraction has its detractors; recent works [98] have

criticized its black-box approach to optimization. AUTOTUNE is designed to support any tf.data

pipeline, but its generality leaves it vulnerable to task-specific issues, such as those we outline in

Section 7.1 and explore in Section 5.2. INTUNE is more narrowly focused than AUTOTUNE in

target workloads, but is also more general in its support for non-tf.data pipelines.

Plumber was introduced as a more user-friendly alternative to AUTOTUNE (but still re-

stricted to tf.data). It uses a linear programming solver to determine a resource allocation.

However, in practice it often underperforms AUTOTUNE [98] in its allocations. It does offer the

ability to automatically inject caching into the pipeline to improve performance. A future version

of our system could borrow this optimization from Plumber and add caching as an action for the

agent. But in the recommenders setting, where dataset sizes routinely reach several terabytes or

even petabytes [137], caching optimizations may not always be feasible.

DALI & NVTabular offer GPU-accelerated data-loader primitives for image and tabular

data modalities respectively In practice, we find that NVTabular is more suited to offline feature

engineering, since using the GPU for online data ingestion can lead to contention over cycles

between the pipeline and the model. As a result, practitioners on our cluster have generally found

it impractical to adopt NVTabular for our target setting.

CoorDL proposed a set of carefully-designed techniques to eliminate data stalls, including

sophisticated caching procedures [135]. We address the related, but orthogonal, problem of data

pipeline parallelization and throughput optimization. We leave it to future work to combine
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their results with our own. Another recent work [83] focused on analyzing various training

pipelines and identifying typical bottlenecks. They characterize general pipeline design spaces;

by contrast, our work focuses specifically on DLRM challenges.

Meta’s Data PreProcessing Service [239] tackles a similar problem to ours — online

data ingestion pipelines for large-scale DLRM training. Their work primarily focuses on

understanding performance issues in Meta’s cluster, and describing their “disaggregated data

service” approach. The idea of the service is to place replicas of the data ingestion pipeline

on additional, separate CPU servers, which feed the trainer machine the data samples over the

network. The details of their auto-scaling procedure remain closed, but this resource allocation

procedure only operates at a multi-node level. By contrast, we focus on both in-node and cross-

node resource allocation. Since we maximize per-node performance, it offers more opportunities

for restraint at the multi-node level.

Other query optimization tools [148, 100, 147, 82, 214] exist, but target settings other

than data pipeline optimization.

Resource Allocation: Some works (Pollux [170], Optimus [163], and Gandiva [226])

have tackled GPU apportioning in the scheduling setting. There is some overlap in the core ideas

behind these works and our own.

Pollux proposes a novel “goodput” metric, combining convergence rates with throughput

— to account for the fact that performance-oriented decisions (e.g., batch-size rescaling) may

simultaneously reduce convergence efficiency. Similarly, our design uses cost-efficiency for

multi-node orchestration, balancing costs against throughput.

Optimus proposes a greedy resource allocation strategy to distribute spare compute over

DL jobs — but subsequent works like Saturn demonstrated the value of jointly optimizing

the allocation problem for global efficiency. INTUNE takes lessons from both works — both

observing the value of automatic resource distribution & the importance of global optimization

objectives.
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Still other works [109, 100] consider general resource apportionment for hyperparameter

tuning. Like INTUNE, these tools reduce the manual configuration burden in the DL training

process.

Broadly, these tools — and INTUNE — are part of an emerging “systems for DL” space.

Such works develop workload-aware optimizations [43], proposing systems that identify and

exploit the unique characteristics of deep learning workloads to improve performance and

scalability.

Deep Reinforcement Learning for Systems: In parallel with the emergence of systems-

for-DL research, deep-learning-for-systems work has also been gaining in popularity [209, 37].

Deep RL in particular has become a tool-of-choice for various systems applications [67]. Several

works have tackled resource allocation using RL [164, 71, 201]. They aim to use the flexibility

of RL to tackle the complexity and dynamic nature of intractable, online problems. Similarly, our

work exploits the flexibility of RL to meet the needs of recommender data ingestion pipelines

that are unaddressed by existing systems. Others have applied RL for SQL optimization [242,

130, 131, 162, 96]. The use of a learned algorithm helps relax the need for exact information

that may be impractical to obtain in large RDBMSs. Our work also uses RL to relax the need for

exact profiling of blackbox UDFs.

8.4 Related Work for LLM Routing

Inference optimization: Techniques to improve serving performance has long been a key

focus of systems for DL research [148, 149]. The popularity of LLMs has driven the development

of a broad swathe of inferencing techniques & systems for this class of models. Works such as

vLLM [102], AlpaServe [117], FlexGen [188], & Orca [231] propose various orchestration and

GPU management techniques to boost inferencing throughput and minimize latency. Lower-level

kernel optimizations [43, 42, 106, 216] have also gained widespread attention.

Multiplexing Inference Requests: Some recent works [247] explore multiplexing
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inference requests across multiple models, much like our own approach. Cache & Distil [175],

OCaTS [196] propose recording application queries over time and using them to train a small-

scale student model. This idea is orthogonal to our own proposal.

Like our paper, FrugalGPT [33] and AutoMix [126] benchmark complex LLM applica-

tions where challenging and holistic evaluation metrics are needed. They use cascade schemes,

where one or more LLMs (or APIs) are invoked in order of increasing complexity until a verifier

assesses that the output quality has reached some threshold. FrugalGPT focuses on optimizing

over an API marketplace with many candidate models (rather than a hosted cluster with fewer

candidates), and offers mechanisms tailored to that setting — e.g., a cascade optimizer that

eliminates API options not worth considering. To approximate challenging metrics, FrugalGPT

uses a secondary Transformer, DistilBERT [183] while AutoMix uses a combination of self-

verification [243] and a Markov Decision Process [92]. These designs are state-of-the-art for

multi-LLM routing on complex tasks, but focus on optimizing API invocation cost. This is useful

for cost-conscious users, e.g., domain scientists and small businesses. But for users hosting

their own models (e.g., in mid-to-large-scale enterprises) for performance-sensitive applications,

the inference performance-quality trade-off may be more important. In our experiments, we

benchmarked adapted versions of FrugalGPT and AutoMix for hosted models, but found that

our direct-routing procedure is better suited for performance-quality optimization than cascade

mechanisms.

CELMOC [248] and some others [189, 247] consider direct-routing schemes like ours.

They either limit themselves to straightforward tasks, where there is a clear correct or incorrect

answer derived from the response itself, e.g., classification or multiple-choice Q&A, or simplify

the task (e.g., repeated identical queries). In such cases, training a metric-predictor may show

strong results. But as we emphasize in Section 7.1, the new applications that have emerged

specifically with LLMs often involve complex, difficult-to-approximate metrics.

Mixture-of-Experts Routing: In recent years, Mixture-of-Expert (MoE) architectures
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have become increasingly popular [122, 90]. MoE routing demonstrates some similarities to

our problem setting. Architectures such as the Switch Transformer [244] and systems such as

GShard [108] route input tokens across different candidate layers within the model itself. This

sort of “conditional computation” can significantly increase efficiency, and enable practitioners to

scale up models by several orders of magnitude without suffering significant computational cost

increases. Our work introduces routing at a higher-level, i.e., across different model instances.

Query routing: The process of sending different inputs across different servers has

previously been studied in the context of load balancers for CDNs [160] and distributed data

stores [197]. CDN load balancers distribute requests across multiple server replicas to minimize

response latencies and avoid overloading servers. These CDNs now underpin a significant

portion of internet traffic as a whole — as LLM traffic grows, similar infrastructure may likely

become critical to enabling broad adoption.
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Chapter 9

Conclusion and Future Work

In this dissertation, we identify and explore the need for orchestration systems in the

context of large-scale DL. We demonstrate that such orchestrators — which tackle fundamental

problems such as scheduling, resource allocation, routing, technique selection, as well as the

confluence of these problems — can offer considerable speedups and cost-reductions for DL

workloads. To users in the domain sciences and small-to-medium enterprises, this could represent

a new way to access previously too-costly state-of-the-art models and techniques. For users oper-

ating on massive compute clusters, these systems can offer improved experimentation velocity

and significant cost savings. Our techniques, which combine workload-aware optimization with

a data-systems-inspired lens, take a holistic view of the DL lifecycle, addressing multiple critical

stages — data processing, training/fine-tuning, and serving. The resultant speedups are already

being leveraged in real-world practice by both domain scientists and large technology companies,

thus demonstrating that our proposed orchestration layer represents an important piece of the DL

systems landscape.

9.1 Future Work Related to HYDRA

Non-Sequential Neural Architectures. HYDRA focuses on neural computational graphs

that can be represented as sequences of layers or groups of layers, in keeping with more typical

pipeline parallel schemes [115, 159, 229, 56]). The most popular classes of GPU-memory-
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bottlenecked models in DL practice today, viz., Transformers, as well as most convolutional

neural networks and multi-layer perceptrons do satisfy the assumption. Some not-fully-sequential

models such as Inception, ResNets, and DenseNets are easily handled because residual or skip

connections can be linearized with a single “super-vertex” in the graph specification given to

HYDRA. As long as the user defines the graph in that way using the DL tool’s API, HYDRA

works out of the box for such models too. But for recurrent neural networks (RNNs) and

graph neural networks (GNNs), HYDRA would need to be extended to account for non-trivial

dependencies across shard units of a model. Backpropagation through time, maintaining memory

cells, and cross-layer global connections all require non-trivial extra implementation machinery

and modifications to our Scheduler. We leave such extensions to future work.

Large Model Inference. This work focused primarily on training of large models. But

a trained model is then used for inference in an application. If one wants to use a GPU for

inference, the same GPU memory bottleneck exists. Fortunately, HYDRA’s model spilling,

automated partitioning, and automated shard orchestration all suffice already for out-of-the-box

large model inference too.

DL Tool Generality. HYDRA is currently implemented as a wrapper around PyTorch.

But all of our techniques are generic enough to be used with, say, TensorFlow or MXNet as well.

Future extensions could look to adapt HYDRA to support these other frameworks.

CUDA-level Optimization. We designed HYDRA to operate on top of PyTorch to

ensure backward compatibility as PyTorch evolves. This means we did not exploit any low-level

optimizations for GPU-to-GPU transfers. One could technically imagine using multiprocessing

in CUDA to reduce this latency, including for our double-buffering technique. But all this will

require us to write new kernels in CUDA for memory management and hook them into the DL

tool. We leave such ideas to future work.

More Hybrid Parallelism. When there are fewer models than devices, HYDRA may

under-utilize the devices due to the limitation it inherits from task parallelism. But one could
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do better by hybridizing data parallelism and pipeline parallelism with HYDRA to raise overall

resource utilization. This is feasible because both of those approaches are technically complemen-

tary to SHARP and HYDRA’s other techniques. We leave such sophisticated hybrid-of-hybrids

parallelization to future work. But we note that in cases where there are more models than

devices, SHARP is already close to optimal utilization, as our empirical results show.

9.2 Future Work Related to SATURN

Alternate Scheduling Objectives. SATURN currently optimizes for end-to-end makespan

on batched multi-model workloads, but in a broader compute cluster, other objectives (e.g.,

throughput, fairness, average completion time) might be more relevant. Adapting SATURN’s

optimization scheme to support such alternative metrics should be relatively straightforward,

only requiring a minor adjustment of the MILP formulation. The general techniques we propose

should be applicable regardless.

Cloud Autoscaling. SATURN has some limited support for “elastic auto-scaling” jobs

through its introspection mechanism, which can checkpoint and re-launch jobs with alternate

resource apportionments. But it is also possible that the broader cluster itself might have some

autoscaling optimizations (i.e., the amount of resources on the cluster changes over time). To

support such environments, SATURN would need to actively monitor for resource changes in

order to adapt its execution plans on-the-fly.

Learned Profiling. SATURN’s empirical profiler is both simple and effective; many

prior scheduling works have used similar mechanisms as well. But in scenarios with very

limited cluster resources or strict time restrictions, the profiling overheads may seem excessive.

SATURN’s profiler could be replaced with a predictive mechanism, similar to the throughput

estimator used in Gavel [154]. This could reduce profiling overheads — at the cost of introducing

some uncertainty to the performance measurements. As we emphasized in our desiderata, modern

parallelization techniques often introduce complex performance behaviors that are difficult to
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predict or assess. Even so, some sort of learned predictor could be a useful mechanism for

specific use cases with straightforward parallelism selections.

9.3 Future Work Related to INTUNE and INTUNEX

Other DL Settings. INTUNE and INTUNEX primarily focus on the recommendation

setting for three reasons. First, that recommender data pipelines tend to be uniquely complex,

and commonly process terabytes or petabytes of data. Second, that recommender models

often demand expensive GPU nodes, but are still bottlenecked by data processing. Third, that

recommendation workloads make up an outsized proportion of DL practice in industry. However,

the techniques proposed with INTUNE and INTUNEX are not recommender-specific; rather,

recommender systems are simply an ideal use case. There is no reason the same system could

not be used for image processing pipelines in CNN training, or even for NLP workloads.

Caching. Works such as Plumber [98] have already proposed simple — but theoretically

optimal — mechanisms to identify cache points in data processing pipelines. As we mention

in our evaluation of recommender pipelines, the size of recommendation datasets often makes

caching impractical, but there are certainly use cases with relatively smaller datasets where

caching could be useful. Fortunately, integrating the greedy caching mechanism proposed in

Plumber with INTUNE or INTUNEX should be fairly straightforward. The caching determinations

are run up front, based on data-sizing estimates, and can be done separately from the actual

parallelization and optimization stages.

9.4 Future Work Related to LLM Routing

Expert-Routing. Our current scheme focuses on mitigating the performance of serving

a large model by offloading queries to smaller models when possible. However, an alternate

formulation might consider multiple similarly-sized models, each with their own domain special-

izations. Routing over such models might require a different query assessment mechanism, e.g.,
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based on query topic, rather than complexity.

Automatic Metric Selection. Our current work demonstrates the effectiveness of a

few straightforward complexity metrics on some given domains. These metrics are unlikely

to serve as “universal” measures of complexity; instead, users must consider what measures

are most appropriate for their domain and application. A future iteration of our work might

look to automatically select metrics drawn from a candidate pool based on their effectiveness in

predicting the quality degradation behaviors of different model candidates.

Model Swapping. We currently assume all models are hosted in GPU memory and are

immediately accessible at query time. However, in a more resource-constrained cluster, it is

possible that some models may be stored on main system memory and swapped back and forth

between the GPU and DRAM. Incorporating the overheads of these swaps might introduce a

new layer of complexity to our routing formulation, but could be beneficial for domain scientists

or small-to-medium enterprises who lack sufficient GPU resources to host all candidate models

at once.
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