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Abstract

Molecular Insight into Nonlinear Transport Behaviors

by

Ya Gao

Doctor of Philosophy in Chemistry

University of California, Berkeley

Assistant Professor David Limmer, Chair

Nonlinear response occurs naturally when a strong perturbation takes a system far from
equilibrium. Despite of its omnipresence in nanoscale systems, it is difficult to predict in
a general and efficient way. Here we introduce a way to compute arbitrarily high order
transport coefficients of stochastic systems, using the framework of large deviation theory.
Leveraging time reversibility in the microscopic dynamics, we relate nonlinear response
to equilibrium multi-time correlation functions among both time reversal symmetric and
asymmetric observables, which can be evaluated from derivatives of large deviation functions.
This connection establishes a thermodynamic-like relation for nonequilibrium response and
provides a practical route to its evaluation, as large deviation functions are amenable to
importance sampling. Two important features of this new method are highlighted in this work.
Firstly, its efficiency is demonstrated by comparison with direct nonequilibrium simulations,
the Green-Kubo method, and brute-force evaluations of the higher order correlation functions.
Secondly, its utility in generating molecular insight is showcased in a couple of examples,
including the field-dependent conductivities in electrolyte solutions, and thermal rectification
in nonlinear lattices.

In addition to the methodology development, we also explore how molecular insight into
nonlinear transport behaviors can provide us with design principles for nanoscale devices.
This is done by introducing a thermodynamically consistent, minimal stochastic model for
complementary logic gates built with field-effect transistors. We characterize the performance
of such gates with tools from information theory and study the interplay between accuracy,
speed, and dissipation of computations. This work provides a platform to study design
principles for low dissipation computing devices harnessing the theoretical developments in
stochastic thermodynamics.
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Chapter 1

Introduction

Transport processes are often described by phenomenological laws, such as Fourier’s law for
heat conduction, Fick’s law for diffusion, and Ohm’s law for electrical conduction. These
equations propose a simple relationship between the thermodynamic force, or affinity, that
drives the system out of equilibrium, and the resultant current, where the strength of the
response is described by a material specific transport coefficient. As the external perturbation
grows stronger, nonlinear transport behaviors naturally arise, such as shear thinning in
complex fluids, and current rectification in electrical transistors. From a practical point of
view, such behaviors become especially prevalent in nanoscale systems, where microscopic
fluctuations play an important role. As a consequence, understanding the origin of nonlinear
effects are key to the design and manipulation of nanoscale devices.

While the evaluation of transport coefficients from molecular dynamics simulations has
become a standard practice throughout physics and chemistry, such calculations remain
computationally demanding. Transport coefficients are most commonly computed with direct
nonequilibrium molecular simulations, where a current is driven through the system by the
application of specific boundary conditions [1, 2], or by altering the equations of motion [3–5].
Such methods, however, are generally not transferable among different transport processes,
and the result can be sensitive to how the current is generated [6, 7]. Moreover, with direct
simulation the computed response is not easily connected to specific molecular degrees of
freedom.

On the other hand, statistical mechanics provides a theoretical framework for correlating
the macroscopic properties of a system with its microscopic degrees of freedom. While this is
achieved successfully for equilibrium systems by Boltzmann and Gibbs, it is natural to ask
whether a unified theory can be applied to nonequilibrium systems as well. More specifically,
what microscopic quantities should we observe in order to predict transport properties of a
macroscopic system? This question has concerned statistical mechanicians since the 1950s.
While Onsager laid out a theoretical framework for irreversible processes and proposed the
regression hypothesis [8], a major breakthrough came from the work of Kubo [9], and the
ensuing development of the so-called Green-Kubo formulas [9, 10]. Kubo showed that the
linear transport coefficients can be calculated from equilibrium fluctuations of the current, in
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the form of a correlation function. While connections between transport coefficients and the
underlying microscopic degrees of freedom are well established when forces are small, such
connections are much less clear when forces are large and responses are nonlinear. From a
theoretical point of view, a satisfying statistical mechanical theory of transport phenomena
should be capable of describing these nonlinear processes as well.

During the 1970-1980’s, with the advancement of molecular dynamics simulations, there
have been many new developments regarding the nonoequilibrium statistical mechanics of
dense classical systems, especially in the area of thermostatted linear response, and nonlinear
response theories, such as the Kawasaki [11] and the time transient correlation function
formalism [12]. These developments have had a major impact on the computer simulation
methods used to model nonequilibrium fluids, and have established a clearer relationship
between transport processes and microscopic fluctuations. What remains to be developed is
a unified theory of nonequilibrium thermodynamics, especially in the steady state.

The last two decades have observed a growing interest in the field of stochastic thermody-
namics, stimulated by new possibilities in experimental interrogation of nanoscale systems.
Nonequilibrium fluctuation theorems [13–15] and thermodynamic uncertainty relations [16,
17] impose constraints on the distribution functions of fluctuating thermodynamic quanti-
ties like heat and work, which represent refinements of the second law to driven systems.
These theoretical developments have enabled the establishment of a more formal theory for
nonequilibrium steady states. In particular, a considerable amount of work has been devoted
to predicting response coefficients for stochastic systems. Extended fluctuation-dissipation
theorems have been derived for linear responses of nonequilibrium steady states [18–21],
which can be translated into second order response around equilibrium [22]. More generally,
multivariate fluctuation relations imply connections between transport coefficients and cumu-
lants of the current [23, 24]. Many of these advances have been enabled by large deviation
theory [25, 26], which provides a set of mathematical tools for characterizing and evaluating
fluctuations in nonequilibrium systems. These tools have been employed widely to illustrative
model systems, which not only serve as testing grounds for theories, but also reveal new
insights into nonequilibrium phenomena [27–29].

In the present work, I aim to extend these earlier efforts in stochastic thermodynamics to a
larger class of nonequilibrium systems, with the focus on the efficient evaluation and molecular
interpretation of transport coefficients. I will develop a general scheme for the calculation of
arbitrarily high order transport coefficients in stochastic systems from microscopic equilibrium
fluctuations, and illustrate its viability by computing nonlinear transport coefficients from
the derivatives of large deviation functions. The rest of this dissertation is organized as
follows. Chapter 1 briefly reviews theoretical descriptions of transport processes, providing
the context and background for this work. Chapter 2 is devoted to an illustration of a novel
method which relates transport coefficients to large deviation functions. The rest of the
chapters provide a sample of nonlinear transport behaviors that can be studied using the
method above. We start with ionic transport in electrolyte solutions in Chapter 3, where
field-dependent conductivities induced by the Onsager-Wien effect is known as one of the
most common nonlinear transport behaviors. In Chapter 4, we explore anomalous heat
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transport and thermal rectification behaviors in a nonlinear lattice. Finally in Chapter 5, we
turn to nonlinear electron transport in semiconductor devices, which has wide implications
in low dissipation computing.

1.1 From Macroscopic to Microscopic Descriptions

The earliest theoretical description of transport processes is the hydrodynamics approach.
The field of fluid mechanics, or hydrodynamics, provides a continuous description of transport
processes. In this section, we review the basics of hydrodynamics approach and linear
irreversible thermodynamics, and comment on some of the limitations of the approach. We
also describe how to go from this macroscopic description to microscopic definitions.

While classical mechanics establishes conservation laws of mass, momentum and energy,
at the hydrodynamics level we are interested in how their densities evolve over time. This is
described by the Navier-Stokes equations, which take the form of continuity equations. For
example, the change in the mass density ρ(r, t) at position r and time t can be described by
the streaming velocity u(r, t) according to

dρ(r, t)

dt
= −ρ(r, t)O · u(r, t) , (1.1)

while the momentum density evolves according to the pressure tensor P(r, t),

ρ(r, t)
du(r, t)

dt
= −O ·P(r, t) , (1.2)

and the energy density e(r, t) is described by

ρ(r, t)
de(r, t)

dt
= −O · [qh(r, t) + P(r, t) · u(r, t)] , (1.3)

where qh is the heat flux vector.What differentiates these nonequilibrium transport processes
from their equilibrium counterpart is the production of excess entropy. In the framework of
linear irreversible thermodynamics, the entropy production takes the canonical form [30]

σ =
∑

i

JiXi , (1.4)

where Ji are thermodynamic fluxes, Xi are their conjugate thermodynamic affinities, which
can be either an external force, or contact with reservoirs. For example, by combining the
Navier-Stokes equations with a local version of the Gibbs relation with temperature T (r, t),
one can recognize pairs of thermodynamic fluxes and affinities, such as the heat flux qh(r, t)
conjugate to the temperature gradient −OT (r, t)T (r, t)−2, and the viscous pressure tensor
Π(r, t) conjugate to −Ou(r, t)T (r, t)−1.
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Furthermore, based on the local thermodynamic equilibrium postulate, which is assumed
to be valid sufficiently close to equilibrium, the two are related in a linear relation,

Ji =
∑

j

LijXj . (1.5)

In the case where multiple types of affinities are applied onto an isotropic system, one can
use Curie’s principle to greatly simplify the form of the transport coefficient tensor L, and
thus justify the linear constitutive equations such as the Fourier’s law of heat conduction,
and Newton’s law of viscosity. By combining these constitutive equations with Navier-Stokes
equations, one arrives at a closed system of equations that can be solved exactly.

To summarize, while Navier-Stokes equations give an accurate macroscopic description of
fluids, it must be supplemented with the appropriate boundary conditions and constitutive
equations. The latter typically comes from postulates in linear irreversible thermodynamics,
thus the form of which lacks a molecular justification, and the transport coefficients are
usually measured from experiments. In addition, to develop theories based on hydrodynamics
approach, one often has to invoke the local thermodynamic equilibrium postulate, which
puts constraints on the length and time scales, and the nonequilibrium regime that can be
investigated. As an example, the linear phenomenological relation in Eq. 1.5 is clearly a
truncation of the Taylor expansion. More generally, a transport process that is driven by a
single affinity X is described by the full expansion

J = L0 + L1X + L2X
2 +O(X3) . (1.6)

This nonlinear response relation will be the starting point of our analysis throughout this
dissertation. It is worth pointing out that nontrivial response behavior is affordable in the
framework of linear irreversible thermodynamics as well, for example by introducing time
dependency in the linear constitutive relation Eq. 1.5 so that the flux depends on the history
of the affinity. For example, in viscoelastic fluids, the relation between the strain rate γ and
the shear stress Sxy can be written as [31]

Sxy(t) = −
∫ t

0

ds η(t− s)γ(s) , (1.7)

where η is called the Maxwell memory function. Such a relation is known as non-Markovian,
which arise when the strain rate varies significantly over either the time or length scales
characteristic of the molecular relaxation for the fluid. However, such a constitutive relation
is still a linear one, which is fundamentally different from the nonlinear expansion in Eq. 1.6.

As a first step to go from a macroscopic to microscopic descriptions, one needs to
translate the macroscopic quantities defined in continuum into molecular descriptions. Such a
procedure is proposed by Irving and Kirkwood [32], which relates hydrodynamic variables to
nonequilibrium ensemble averages of microscopic quantities. By introducing some microscopic
volume in a system of N particles of mass m, one can define the local density of mass ρ(r, t)
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as

ρ(r, t) =

〈
N∑

i=1

mδ(r− ri)

〉
, (1.8)

where the bracket denotes ensemble average, and similarly for momentum and energy, and
then write down conservation equations for these local quantities. This allows us to derive
microscopic expression for the thermodynamic fluxes, such as the heat flux

qh(r, t) =

〈[∑

i

(vi − u)ei −
1

2

∑

i,j

rij(vi − u) · FijOij

]
δ(r− ri)

〉
, (1.9)

where vi is the velocity of particle i, Fij is the force from the pair-wise potential energy, and
the operator Oij is given by

Oij =
∞∑

n=1

1

n!

(
−rij ·

∂

∂r

)n−1

. (1.10)

We’ll later use these microscopic definitions to compute thermodynamic quantities in molecular
simulations.

1.2 Statistical Mechanical Theory of Transport

Processes

The theory of statistical mechanics is developed to give a molecular basis for the laws of
phenomenological thermodynamics. While it has enjoyed great success for equilibrium systems,
it is natural to ask whether it can be extended to phenomenological laws of transport processes.
In this section, we review a few classical theories that provide a statistical mechanical basis
for transport processes.

The nonequilibrium statistical mechanics of dilute atomic gases is well described by the
kinetic theory [33]. However, extending the simple theory to systems of higher densities
has proved to be a difficult task. A breakthrough came in 1931 with Onsager’s regression
hypothesis, which proposes the notion of relating transport coefficients to spontaneous
fluctuations in equilibrium [8]. It is asserted that spontaneous fluctuations from thermal
equilibrium decay, on the average, according to the transport laws governing the corresponding
macroscopic variables. A further connection between the two was established later by deriving
the path probability of a given succession of states in a system where the macroscopic
variables are Gaussian distributed [34], and it is conjectured that the log-likelihood of a
current fluctuation was given by the entropy production [8].

Zwanzig later compared the role of time-correlation functions in the theory of transport
processes to partition functions in equilibrium statistical mechanics [35]. However, finding
the appropriate form for each distinct transport process has proved to be a daunting task.



CHAPTER 1. INTRODUCTION 6

A myriad of results have been derived to relate time-correlation functions to transport
coefficients, of which we will highlight the work by Kubo and Green below. We restrict
ourselves to classical systems, though a similar approach with some modifications can be
made for quantum systems.

Time-Correlation Functions

Let’s first review some of the properties of time-correlation functions, which will come handy
in the rest of this section. We define the time-correlation function between a variable A and
another variable B as

CAB(t) = 〈A(0)B(t)〉X =

∫
dΓA(0)B(t)fX(Γ) , (1.11)

where Γ denotes the phase space, and fX is the steady state phase distribution under some
time-invariant affinity X. We list some of its properties below, the proof of which can be
found for example in [36].

• Time translational invariance:
Since the ensemble averages are taken over a stationary distribution, time-correlation
functions are only dependent on the time difference t instead of the particular choice of
the time origin, i.e.

CAB(t) = 〈A(0)B(t)〉X = 〈A(t1)B(t2)〉X , t = t2 − t1 . (1.12)

A useful property follows from the time translational invariance for auto-correlation
function CAA(t):

1

tN

∫ tN

0

dt′
∫ tN

0

dt′′ 〈A(t′)A(t′′)〉X = 2

∫ ∞

0

dtCAA(t), tN →∞ , (1.13)

where the right hand side takes the Green-Kubo form.

• Time derivative:

d

dt
CAB(t) = −CȦB(t) = CAḂ(t) , (1.14)

where the dot denotes time derivatives.

• Symmetry:
An important property of equilibrium time-correlation functions is derived from the
time reversal symmetry of the equation of motion. For each variable, define the time
reversal transformation as A→ εAA, where εA = ±1 depending on whether A is even
or odd in the combined power of the momenta, then

CAB(t) = 〈A(0)B(t)〉0 = εAεB 〈A(0)B(−t)〉0 = εAεB 〈A(t)B(0)〉0 = εAεBCBA(t) .
(1.15)
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Combined with Eq. 1.13 it follows that
∫ ∞

0

dtCAB(t) = 0 if εA + εB = 0 , (1.16)

as any time reversed trajectory is also a legitimate trajectory of the system. The
relationship can be extended to correlation functions of multiple variables, as long as
the combined parity is 0.

Green-Kubo Formalism

While Onsager’s regression hypothesis infers that one can calculate transport coefficients
from knowledge of the equilibrium fluctuations, the specific formalism remains unclear. Here
we review one way to derive the Green-Kubo formula following the notes in [37]. Consider
a classical system of N particles where the dynamical state is specified by the coordinates
q = (q1, q2, · · · , qN) and the conjugate momenta p = (p1, p2, · · · , pN). We are interested in
some function A(p(t),q(t)) of the state of the system at time t. The system starts from an
equilibrium state with the Hamiltonian H0 and the corresponding distribution f0(p,q). The
two quantities are related by the Liouville’s equation of motion

∂f0

∂t
= (H0, f0) = 0 , (1.17)

where the bracket denotes the Poisson bracket

(A,B) =
∑

i

(
∂A

∂qi

∂B

∂pi
− ∂A

∂pi

∂B

∂qi

)
. (1.18)

Now at t = 0 consider an external perturbation He applied onto the system

H = H0 +He, He = −AX(t) , (1.19)

where X(t) is the affinity conjugate to A. This form of linear perturbation is not uncommon
in physical systems, for example, if A is the electric dipole moment, then X is an electric
field. If we separate the new distribution function f(t) into the unperturbed part f0 and a
small perturbation ∆f , the latter follows the equation of motion to the first order

∂∆f

∂t
= (H0,∆f)− (A, f0)X(t) , (1.20)

the solution of which is

∆f(t) = −
∫ t

−∞
dt′ei(t−t

′)L0(A, f0)X(t′) , (1.21)

where the Liouville’s operator iL0g = (H0, g), so that g(t) = eiL0tg in the unperturbed
system.
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The response of an arbitrary quantity can now be expressed in terms of the new distribution
function. For example, the current response, which is zero in equilibrium, can be expressed as

〈∆J(t)〉 =

∫
dp

∫
dq J(t)∆f(t) =

∫ t

0

dt′φ(t− t′)X(t′) +O(X2) , (1.22)

where φ is called the after-effect function, or the response function

φ(t) =

∫
dp

∫
dq(f0, A)J(t) . (1.23)

For the canonical distribution f0 = e−βH0/Z, where β = 1/kBT and Z is the partition
function, we have (f0, A) = βȦf0, thus the after-effect function becomes

φ(t) = β
〈
Ȧ(0)J(t)

〉
0
. (1.24)

Thus in Fourier components, we get a linear relationship

〈J(ω)〉 = L1(ω)X(ω) , (1.25)

and the transport coefficient is given by

L1(ω) = β

∫ ∞

0

dt exp(−iωt)
〈
Ȧ(0)J(t)

〉
. (1.26)

Kubo’s theory relies on the perturbation expansion of the state distribution function.
While the formula is exceptionally elegant, the perturbation described in Eq. 1.19 is restricted
to external forces. Transport coefficients associated with internal disturbances, such as
temperature gradients, cannot be treated directly by Kubo’s method. Due to this reason, a
variety of other methods have been proposed, among them is Green’s theory. The new feature
supplied by Green’s theory is the introduction of Brownian motion into the general theory of
irreversible processes [38]. By writing down the Fokker-Planck equation for the probability
distribution of physical variables, Green’s work is the first generalization to previous case
studies that applies to a wide range of transport coefficients, such as viscosity, thermal
conductivity, and diffusion. A related formalism called the Einstein-Helfand formula can
be readily derived from the Green-Kubo formula [39], using the property of the correlation
function in Eq. 1.13.

While Green’s theory is based on Markov process and linear response, its extension to
non-Markovian and nonlinear processes has been given by Zwanzig [40]. In the Mori-Zwanzig
formalism, one can write down a generalized Langevin equation for an aribitrary phase
variable A(t) that evolves under the equilibrium distribution function, using the technique of
projection operator,

dA(t)

dt
= iΩA(t)−

∫ t

0

dτK(τ)A(t− τ) + F (t) , (1.27)
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where K is the memory kernel, F the random force, and the frequency iΩ is an equilibrium
property of the system. By a Laplace transform, one can write down the memory kernel
K, which plays the role of a transport coefficient, in terms of equilibrium auto-correlation
function of the phase variable.

In Table 1.1, we list the Green Kubo formulas for a few commonly used transport
coefficients with the reference for their earliest derivation. The popularity of the Green-Kubo
formula lies in its simplicity and practicality, while its limitation is also evident. Firstly, the
Green-Kubo formula is only expressed for linear response coefficients. Secondly, Green-Kubo
formula is only able to relate transport coefficients to equilibrium fluctuations. This is evident
in the Mori-Zwanzig formulism, where the zero wavevector limit has to be taken in the
Laplace transform, since there is no equilibrium fluctuations in the affinity at zero wavevector
limit. Extending the Mori-Zwanzig formalism to the finite wavevector case is subtle [41].
Thirdly, from a practical perspective, for some low-dimension systems, it is found that the
current auto-correlation function decays slow enough that its integral does not converge [42].

It is worth noting that there exists many other methods that relate transport coefficients
to time-correlation functions, such as the local equilibrium theory by Mori [43], and the
external reservoir theory [44]. While these theories all arrive at the same expression as the
Green-Kubo formula, they aim to justify the simple form in irreversible processes as general as
possible. It is perhaps important to point out that the transport coefficients are independent
of the method used to establish a departure from equilibrium, at least on the level of linear
response [45].

Table 1.1: Transport coefficients with corresponding Green-Kubo formula.

Transport Coefficient Green-Kubo Relations1 Reference

shear viscosity η =
V

kBT

∫ ∞

0
〈Sxy(0)Sxy(t)〉 dt Green [10], Kubo [46]

thermal conductivity κ =
1

V kBT 2

∫ ∞

0

〈
jhx(0)jhx(t)

〉
dt Green [10], Kubo [46]

electrical conductivity σ =
1

V kBT

∫ ∞

0
〈qex(0)qex(t)〉 dt Kubo [9]

interfacial friction coefficient µ =
A

kBT

∫ ∞

0
〈fx(0)fx(t)〉 dt Bocquet & Barrat [47]

Nonlinear Response Theory

Up to now, we have constrained ourselves to linear response theory. In section, we review
several existing theories of nonlinear response. Kubo in his original framework also derived
a perturbation expansion for the nonequilibrium phase space distribution. This is done by

1V : system volume, kB: Boltzmann constant, T : temperature, Sxy: shear stress, jhx : heat flux, qex:
electron current, A: surface area, fx: interfacial friction force
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expanding the nonequilibrium distribution function ∆f in Eq. 1.20 to higher order terms
in the affinity. In a similar spirit, Yamada and Kawasaki [11] derived a closed expression
for the perturbed distribution function ∆f , instead of a power series expansion, using the
Dyson decomposition of the Liouville propagators [48]. Unfortunately, such expressions, as
well as many that followed [49–51], have been difficult to translate into easily measurable
forms with clear physical interpretations. As a result, an explicit expression for computing
nonequilibrium averages is still lacking.

Furthermore, the assumption that such a power series expansion exists is also questionable.
Indeed, non-analytic phenomenological transport processes are found commonly in rheological
systems. Such non-analyticity associated with conserved quantities is often explained by hy-
drodynamical theories. However, such complexities are not the main focus of this dissertation,
and are often absent in simpler Markovian systems.

The simplest generalization of the Green-Kubo formula that fills in this gap is perhaps
the transient time-correlation function formalism [52–54]. It gives an exact relation between
the nonequilibrium ensemble average of an observable and the integral of a transient time-
correlation function between the observable and the current. The full nonlinear response is
embedded in the nonlinear evolution propagator of the observable. For example, in the case
of a Couette flow with strain rate γ, the nonequilibrium response of an observable A(t) is

〈A(t)〉 = 〈A(0)〉 − βγV
∫ t

0

ds 〈∆A(s)Sxy(0)〉 , (1.28)

where the system starts at an equilibrium ensemble at time t = 0, and the affinity is turned
on afterwards. Unlike the Green-Kubo method, the transient time-correlation function has
to be evaluated by performing a nonequilibrium simulation, yet the statistical uncertainty
in the nonequilibrium average is often much larger than that of the direct nonequilibrium
simulation [12].

1.3 Nonequilibrium Fluctuation Theorems from

Stochastic Thermodynamics

Stochastic thermodynamics offers us a new tool to study generic nonequilibrium processes, of
which transport is an example. Stochastic thermodynamic techniques not only establish a
definition for fluxes and affinities, so that the canonical form of the entropy production in
Eq. 1.4 can be justified, but also derive fluctuation theorems that hold arbitrarily far from
equilibrium [13, 14, 55, 56], such as

P (J)

P (−J)
= eβσ , (1.29)

which relates the ratio of probability of observing an arbitrary current J and its time reversal
conjugate to the entropy production of the process. Unlike the previous results in classical



CHAPTER 1. INTRODUCTION 11

transport theory, these universal theorems do not rely on any near equilibrium assumptions,
and thus hold for nonlinear transport regimes as well.

Many of the developments in stochastic thermodynamics are built around the large
deviation function, which is a generalization of the free energy in nonequilibrium systems. It
fully characterizes the fluctuations of a system, and thus its form obeys certain constraints
imposed by the fluctuation theorems, such as the Gallovati-Cohen symmetry [14]. Based on
the properties of the nonequilibrium large deviation function ψX biased on the current J ,
Gaspard derived multivariate fluctuation relations which relate the response of the current to
mixed derivatives of the large deviation function [24],

〈J〉X = −
(
∂2ψX
∂λ∂X

∣∣∣
λ=X=0

)
X − 1

2

(
∂3ψX
∂λ∂X2

∣∣∣
λ=X=0

)
X2 +O(X3) . (1.30)

While this relationship gives an explicit expression for transport coefficients when compared
with Eq. 1.6, the evaluation of the mixed derivatives involve simulations at both different
affinities and different auxiliary fields λ, which makes the computation inconvenient.

Another set of works concern modified fluctuation-dissipation theorems for nonequilibrium
steady states. While nonequilibrium systems violate the fluctuation-response relation due
to the lack of detailed balance, the extent of the violation can be related to the entropy
dissipation [19]. This results in extended fluctuation-dissipation theorems, that acquire an
additive contribution which involves the observable that is conjugate to the perturbation
in the dissipation function [20, 21]. This additional piece is recognized as the time reversal
dynamical activity, or frenesy [18, 22], with which we can write down higher order response
of the current [57, 58],

〈J〉X = 〈JS ′0〉0X − 〈JS ′0D′0〉0X2 +O(X3) , (1.31)

where S and D are the time anti-symmetric and time symmetric part of the path action,
and S ′0, D′0 are their first derivatives evaluated at X = 0. This insight, that the higher order
response is not only governed by dissipation, but also depends explicitly on the dynamical
details of the system, is crucial to understanding nonlinear response behaviors. In the next
chapter, we will build on this insight to derive a large deviation formalism for nonlinear
transport coefficients.
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Chapter 2

Transport Coefficients from Large
Deviation Functions

2.1 Introduction to Large Deviation Functions

Large deviation theory is concerned with the exponential decay of probabilities of large
fluctuations in stochastic systems. These probabilities are important in many fields of study,
including statistics, finance, and engineering, as they yield valuable information about rare
events. In the recent decades, physicists have found interesting connections between large
deviation theory and statistical mechanics - the theories of equilibrium statistical mechanics
can be rephrased using the language of large deviation theory, where large deviation functions
(LDFs) play the role of free energy, an important concept in molecular simulations of chemical
and biological systems. When it comes to nonequilibrium statistical mechanics, an area which
lacks a universal physical theory, large deviation theory underlies much of the recent progress.
They contain information on the stability and response of systems driven into nonequilibrium
steady states.

As with equilibrium free energies, evaluating large deviation functions numerically for all
but the simplest systems is difficult because by construction they depend on exponentially
rare events. One of the first methods designed to compute the large deviation function, known
as the cloning algorithm, involves a large number of walkers evolved in parallel, and achieves
the desired tilted probability distribution by selectively branching and killing the walkers
[59]. As the desired distribution deviates further from the original dynamics, it becomes
more difficult to harvest useful trajectories, and high correlation among walkers introduce
bias in the estimate of the large deviation functions [60]. Such population based methods
are not only computationally expensive, but also suffer from sampling deficiencies that make
application to high-dimensional systems difficult.

To mitigate these problems, a growing amount of work is exploring auxiliary dynamics
that can push the trajectories to the rare fluctuations that contribute most to the large
deviation function. For Markovian dynamics, it has been shown that a Markov process



CHAPTER 2. TRANSPORT COEFFICIENTS FROM LARGE DEVIATION
FUNCTIONS 13

conditioned on rare events involving time integrated random variables can be described in the
long time limit by an effective Markov process, called the driven process [61]. Such an optimal
auxiliary process always exists and can be constructed by a canonical transformation known
as the Doob’s transform. What’s more, this driven process can be interpreted as an optimal
stochastic control process minimizing a cost function related to large deviation functions [62].
The establishment of such a variational principle allows us to design optimization programs
to solve for the large deviation function [63].

In what follows, we first review the large deviation principle in the context of chemical
physics, and introduce the large deviation function. Afterwards, we review a few numerical
methods developed to compute the large deviation function, including the direct diagonal-
ization method, the cloning algorithm, and a variational algorithm that has been developed
recently. While the materials in this section are only meant to provide the prerequisite
for the rest of the chapter, a more complete review of the large deviation function and its
computation can be found in [26].

Large Deviation Principle

We consider diffusion processes described by the stochastic differential equation

dx̃t = F (x̃t)dt+ σ(x̃t) ◦ dwt , (2.1)

where the state of the system x̃t ∈ Rd is determined by the drift F : Rd → Rd, the diffusion
field σ: Rd → Rd, and a Brownian motion wt ∈ R. This is often referred to as the overdamped
Langevin equation in the chemical physics literature, and is used to describe the motion
of particles in implicit solvents. For such a system, we are interested in time integrated
observables up to time tNthat have the general form

A(tN) =
1

tN

∫ tN

0

f(x̃t)dt+ g(x̃t) ◦ dx̃t , (2.2)

where f is a scalar function, g is a vector function, and ◦ denotes the Stratonovich product.
In many physical processes, the probability distribution of A(tN) satisfies a large deviation
principle

P [A(tN) = a] ≈ e−tNI(a) , (2.3)

in the limit tN →∞ with subexponential corrections in tN. This scaling result implies that
the probability of A(tN) decays exponentially with tN, except at the global minimum a∗ of
the rate function I(a) where it concentrates with tN. Note that we will assume that the rate
function I(a) is convex and has a unique global minimum.

To characterize the fluctuations in A(tN), we define the large deviation function, which is
a scaled cumulant generating function of A(tN),

ψ(λ) = lim
tN→∞

1

tN
ln
〈
e−λtNA(tN)

〉
F
. (2.4)
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Here, the average 〈· · · 〉 is taken within an ensemble of paths of length tN, denoted as a vector
of all the configurations visited over that time, or x̃(tN) = {x̃0, x̃1, · · · , x̃tN}. The probability
of observing such a path is given by

PF [x̃(tN)] = ρ[x̃0]

tN∏

i=1

ω[x̃i−1 → x̃i] , (2.5)

where ρ[x̃0] represents the distribution of initial conditions, and ω are the transition proba-
bilities between time adjacent configurations as described in Eq. 2.1. Given a convex rate
function, the large deviation function is related to the rate function by a Legendre-Fenchel
transform

I(a) = inf
λ

[λa+ ψ(λ)] . (2.6)

It follows from the property of cumulant generating function that the fluctuations of A(tN)
are simply given by the derivatives

dψ(λ)

dλ
= −〈A〉F ,

d2ψ(λ)

dλ2
= tN

〈
(δA)2

〉
F
, (2.7)

where δA = A− 〈A〉F .

Direct Diagonalization Method

According to its definition, the large deviation function can be seen as a normalization factor
of the tilted ensemble,

Pλ[x̃(tN)] =
PF [x̃(tN)]e−λtNA(tN)

〈e−λtNA(tN)〉F
, (2.8)

where the original path probability PF [x̃(tN)] is tilted exponentially. A straightforward way
to compute the large deviation function is then to construct a non-conservative process
associated with the tilted path measure. According to the Feynman-Kac formula, for the
diffusion process in Eq. 2.1, such a process can be generated by the tilted operator [61]

Lλ = F · (O− λg) +
1

2
(O− λg)D(O− λg)− λf , (2.9)

where D is the covariance matrix involving the components of the diffusion field σ. The large
deviation function is then the real dominant eigenvalue of the tilted operator

Lλrλ = ψ(λ)rλ , (2.10)

with its associated right eigenvector rλ. For those systems where the tilted operator can
be derived exactly, computing the large deviation function is equivalent to an eigenvalue
problem, which can be solved by numerical diagonalization. This method, however, only
applies to simple systems with limited degrees of freedom.
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Cloning Algorithm

Alternatively, the normalization factor in Eq. 2.8 can be computed from a diffusion Monte
Carlo algorithm, known as the cloning algorithm [59, 64], where an ensemble of trajectories
are integrated in parallel. Each individual trajectory is known as a walker, and collectively
the walkers undergo a population dynamics whereby short trajectory segments are augmented
with a branching process that results in walkers being pruned or duplicated in proportion to
a weight. This algorithm has been used extensively in the study of driven lattice gases [28]
and models of glasses [65, 66].

Without loss of generality, if we choose the observable of interest to be the current J ,
then we find a familiar relationship between biased ensembles

ln pλ(J) = ln p(J)− λtNJ − tNψ(λ) , (2.11)

where pλ(J) = 〈δ(J − J(tN))〉λ is the probability of observing a given value of the current J
in the tilted ensemble, and p(J) is that in the unbiased ensemble. This demonstrates that
ψ(λ) is computable as a change in normalization through histogram reweighting [67].

In order to arrive at a robust estimate for ψ(λ), the two distributions, pλ(J) and p(J),
must have significant overlap. However, for large systems or long observation times, each
distribution narrows, and sampling pλ(J) by brute force is exponentially difficult. To evaluate
the large deviation function, the cloning algorithm samples Pλ[x̃(tN)] by noting that it can
be expanded to

Pλ[x̃(tN)] ∝ ρ[x̃0]

tN/δt∏

i=1

ω̃[x̃i−1 → x̃i]e
−λδtj[x̃i] , (2.12)

where we have discretized the integral for J with timestep δt, and ω̃[· · · ] are the corresponding
transition probabilities per δt. The argument of the product is the transition probability times
a bias factor that is local in time. This combination of terms cannot be lumped together into
a physical dynamics, as it is unnormalized. However, it can be interpreted as a population
dynamics where the non-conservative part proportional to the bias is represented by adding
and removing walkers. In particular, in the cloning algorithm, trajectories are propagated in
two steps. First, Nw walkers are integrated according to the normalized dynamics specified by
ω̃[x̃i−1 → x̃i] for a trajectory of length nδt. Over this time, a bias is accumulated according
to

Wi(t, nδt) = exp

[
−λδt

n∑

j=1

j[x̃t+jδt]

]
, (2.13)

where, due to the multiplicative structure of the Markov chain, the bias is simply summed in
the exponential. After the trajectory integration, ni(t) identical copies of the ith trajectory
are generated in proportion to Wi(t, nδt),

ni(t) =

⌊
Nw

Wi(t, nδt)∑Nw

j=1Wj(t, nδt)
+ ξ

⌋
, (2.14)
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where ξ is a uniform random number between 0 and 1 and b. . . c is the floor function. This
process will result in a different number of walkers, and thus each walker in the new population
is copied or deleted uniformly until Nw are left. With this algorithm, the large deviation
function can be evaluated after each branching step as the deviation of the normalization

ψt(λ) = ln
1

tN

tN∑

i=1

Wi(t, nδt) , (2.15)

which is an exponential average over the bias factors of each walker. In the limit of a large
number of walkers, this estimate is unbiased [68]. The local estimate can be improved by
averaging over the observation time

ψ(λ) =
1

tN

tN/(nδt)∑

t=1

ψt(λ) , (2.16)

which, upon repeated cycles of integration and population dynamics, yields a statistically
converged estimate of ψ(λ). Alternatively, ψ(λ) can be computed from histogram reweighting
using Eq. 2.11 from the distribution of J generated from each walker.

One of the key factors in determining the statistical efficiency of the cloning algorithm is
the number of independent trajectories sampled over tN. In all the calculations shown in this
chapter, walker numbers are chosen individually for each parameter so that at the end of the
simulation, the number of independent walkers which have not been replaced is at least on
the order of 102.

Driven Process

From a sampling point of view, to compute the large deviation function for larger λ’s, we
have to sample exponentially rare events, which is computationally costly. Naturally, one
can use importance sampling techniques [69–72], where an auxiliary dynamics is used to
guide the original dynamics, given proper reweighting is compensated. While arbitrary
guiding distribution can be used, particular ones that greatly improve the efficiency of the
algorithm have been explored. Indeed, for Markovian dynamics, it has been shown that a
Markov process conditioned on rare events involving time integrated random variables can
be described in the long time limit by an effective Markov process, called the driven process
[61]. For the diffusion process in Eq. 2.1, consider a modified diffusion process

dx̃t = u(x̃t)dt+ σ(x̃t) ◦ dwt , (2.17)

with the path probability Pu[x̃(tN)]. It can be shown by Doob’s transform that the process
with the modified force

u = F +D(−λg + O ln rλ) , (2.18)
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where rλ is defined in Eq. 2.10, satisfies the equivalence condition

lim
tN→∞

1

tN
ln
Pu[x̃(tN)]

Pλ[x̃(tN)]
= 0 . (2.19)

As elegant as this theoretical result is, to compute rλ involves solving a eigenvalue problem,
which is not practical for many-body systems. Therefore, driven forces u has to be solved or
approximated by numerical simulations.

Variational Representation of Large Deviation Functions

There are several ways to arrive at the variational representation of large deviation functions,
including the contraction principle and stochastic optimal control. Here we follow the one
that uses the notion of relative entropy. Recall that, given two probability measures P and
Q, the relative entropy of P with respect to Q is defined as

S(P ||Q) =

∫
dP (x) ln

P (x)

Q(x)
. (2.20)

This is also known as the Kullback-Leibler (KL) distance between probability measures, and
is non-negative with equality if and only if P = Q. The rate function can then be expressed
by

I(a) = lim
tN→∞

inf
1

tN
S(Pu||PF ), s.t 〈A(tN)〉u = a , (2.21)

where for the diffusion processes we are considering, the KL distance is easy to write down
explicitly,

S(Pu||PF ) =

〈
1

2
[u(x̃)− F (x̃)]D−1[u(x̃)− F (x̃)]

〉

u

. (2.22)

Physically this shows that the driven process is the Markov process closest to the original
process, in the sense of relative entropy, that satisfies the constraint 〈A(tN)〉u = a. The dual
representation of this constrained problem defines the large deviation function

ψ(λ) = lim
tN→∞

sup
u
{−λ 〈A(tN)〉u −

1

tN
S(Pu||PF )} . (2.23)

This dual problem has the same solution as the original problem for convex rate functions,
which follows from properties of Legendre-Fenchel transforms. Turning the computation
of the large deviatioon function into an optimization problem gives us access to numerous
optimization techniques that greatly improve the numerical efficiency compared to the cloning
algorithm.
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2.2 Derivation of Transport Coefficients 1

We are now ready to derive transport coefficients using the large deviation formalism. We are
interested in stochastic systems maintained in nonequilibrium steady states by an affinity X,
which can either be an external force, or contacts with different thermodynamic reservoirs. We
assume that the macroscopic current in Eq. 1.6 coincides with the nonequilibrium ensemble
average and can be written as a polynomial expansion,

J = L0 + L1X + L2X
2 + L3X

3 +O(X4) , (2.24)

where L0 is the current in the absence of the affinity, which should vanish for equilibrium
systems. L1 is known as the linear transport coefficient, and all the higher order coefficients
L2, L3, · · · , are nonlinear transport coefficients. The generality of this polynomial expansion
will be discussed further towards the end of this chapter. Given this assumption, in this section
we derive an explicit expression for these transport coefficients. Although we will restrict
ourselves to a single type of affinity, the generalization to multiple ones is straightforward.

Nonlinear Coefficients from LDFs

We adopt the same notation x̃ for a continuous stochastic trajectory of length tN as in
Eq. 2.5, where x̃t = {r(t),v(t)} is the specific configuration of the system at time t, with
coordinates r(t) and velocities v(t). We define a relative stochastic action βU [x̃] by a ratio
of the probability of observing a specific path with and without the affinity,

PX [x̃]

P0[x̃]
= eβU [x̃] , (2.25)

where the subscripts denote the value of the affinity; β = 1/kBT where T is the temperature,
kB is Boltzmann constant that will be set to 1 for the rest of the chapter.

We next decompose the total relative path action into two parts according to their time
reversal symmetry,

U [x̃] = A[x̃] + S[x̃] , (2.26)

with A[x̃] denoting the asymmetric part, and S[x̃] the symmetric part. Specifically, if
we define an operator T which returns the time reversed counterpart of a path x̃ so that
Tx̃t = {r(tN − t),−v(tN − t)}, it follows that A[Tx̃] = −A[x̃], S[Tx̃] = S[x̃]. The time
asymmetric part is the entropy production of the irreversible process, which can be written
as the product of the affinity and the conjugated time extensive current [8],

A[x̃] = tNJX, J [x̃] =
1

tN

∫ tN

0

dt j(x̃t) . (2.27)

1Most of the content of this section was originally written by the author for the following publication: C.
Y. Gao and D. T. Limmer, ”Nonlinear Transport Coefficients from Large Deviation Functions”, The Journal
of Chemical Physics 2019, 151 (1).
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The symmetric part is often referred to as the activity [73],

S[x̃] =

p∑

i=1

tNQiX
i, Qi[x̃] =

1

tN

∫ tN

0

dt qi(x̃t) . (2.28)

The number of terms p depends on system details, though for Gaussian processes it is often
only 1. For details, the derivation of J and Qi’s for a general underdamped Langevin system
will be shown later in this section.

Next, we construct a LDF of the form

ψX(λ) = lim
tN→∞

1

tN
ln
〈
e−(λJ tNJ+

∑
i λQi

tNQi)
〉
X
, (2.29)

where λ = (λJ , λQ1 , λQ2 , · · · ), i.e. each dynamical variable is exponentially biased by a
conjugated λ. The bracket denotes path ensemble average with respect to the path probability
density PX [x̃]. It follows by definition that

ψX(λJ , λQ1 , λQ2 , · · · ) = ψ0(λJ − βX, λQ1 − βX, λQ2 − βX2, · · · ) , (2.30)

which provides a symmetry that links the statistical bias λ to the physical driving X.
This relation is distinct from a fluctuation theorem and encodes the fact that X is not a
conjugate variable to J , but rather a linear combination of J and the Qi’s. The derivatives
of the cumulant generating function provide information about the self and cross correlation
functions of J and the Qi’s. For example, the nonequilibrium average current is given by the
first derivative

〈J〉X = −∂ψX(λ)

∂λJ

∣∣∣
λ=0

= −∂ψ0(λ)

∂λJ

∣∣∣
λJ=−βX,λQi

=−βXi
. (2.31)

Expanding ψ0(λ) assuming βX is small,

〈J〉X = 〈J〉0 + βtN
[〈

(δJ)2
〉

0
+ 〈δJδQ1〉0

]
X

+
β2t2N

2

[〈
(δJ)3

〉
0

+
〈
δJ(δQ1)2

〉
0

+ 2
〈
(δJ)2δQ1

〉
0

+
2

βtN
〈δJδQ2〉0

]
X2 + · · · ,

(2.32)

we find a microscopic relation between the average current and affinity, where for brevity,
we have only written down explicitly terms up to O(X2). The notation 〈A1A2 · · ·An〉 =
t−nN

∫ tN
0
dtn 〈a1(x̃t1)a2(x̃t2) · · · an(x̃tN)〉 and δA = A − 〈A〉0 are adopted throughout. By

comparing with Eq. 2.24, and assuming the time averaged current is equal to the macroscopic
current, the expansion in Eq. 2.32 provides explicit expressions for arbitrarily high order
transport coefficients in terms of multi-time correlation functions in the absence of the affinity,
which can be computed from ψ0(λ). While multi-time correlation functions are in general
difficult to converge by direct evaluation, ψ0(λ) can be computed efficiently using importance
sampling methods, as reviewed in Section 2.1.

To highlight the novelty of our method, we discuss how our expression is different from a
few previous results in the literature. Firstly, our result is intimately related to work by Maes
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et al [57, 58], though our current expression Eq. 2.32 is different beyond the third order. This
stems from the fact that the current is derived in terms of a cumulant expansion instead of a
moment expansion, as seen clearly in Eq. 2.32, and from rewriting Eq. 2.31,

〈J〉X =

〈
JeβU

〉
0

〈eβU〉0
. (2.33)

The cumulant expansion ensures better convergence for the transport coefficients. Compared
with the expression in Eq. 1.31, we have explicitly renormalized the nonequilibrium distribution
function here, which is similar to the treatment in the renormalized form of the Kawasaki
distribution function [74]. When the reference state is not in equilibrium, the renormalization
is absolutely necessary in numerically computing the ensemble average of an observable
when tN is longer than the Lyapunov time for the system. Otherwise, the variance in the
exponential term will grow exponentially in time, regardless of the accuracy of the simulation
algorithm.

Secondly, our method is distinct from the multivariate fluctuation relations in Eq. 1.30
that have been derived by constructing the LDF of only current observables [24], where
transport coefficients are expressed as mixed derivatives of both λ’s and the affinities. Here,
by introducing the time symmetric observables Qi’s, the knowledge of the equilibrium function
ψ0(λ) completely determines the current-affinity relationship.

Decomposing the total action by time reversal symmetry enables us to greatly simplify
Eq. 2.32. If the reference system without the affinity is in equilibrium, then it obeys
microscopic time reversibility P0[Tx̃] = P0[x̃]. It follows that the time reversal odd terms,
such as the average current 〈J〉0, and terms like 〈JQi〉0, 〈JQ2

i 〉0 and 〈J3〉0, will vanish. This
reduces Eq. 2.32 to

〈J〉X = βtN
〈
J2
〉

0
X + β2t2N

〈
J2Q1

〉
0
X2 +O(X3) . (2.34)

Note that the linear response reduces to the normal fluctuation-dissipation theorem, while
higher order responses are described by higher order correlations between J and Qi’s. These
correlation functions are given by derivatives of ψ0(λ). Specifically, the linear and first
nonlinear transport coefficients are

L1 = β
∂2ψ0

∂λ2
J

∣∣∣
λ=0

, L2 = −β2 ∂3ψ0

∂λ2
J∂λQ1

∣∣∣
λ=0

. (2.35)

Further simplifications can be made if the system exhibits certain spatial symmetries so that
the dynamics is unchanged upon inverting the coordinates along a specific axis.

While transport coefficients can also be computed directly through nonequilibium simula-
tion methods, we note that by evaluating them from equilibrium fluctuations, our method is
less sensitive to finite size effects arising from boundary conditions and altered equations of
motion required to simulate a driven system. In addition, while direct simulation measures
the nonequilibrium response at a finite value of the affinity, our method generically generates
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the response for a continuum of affinities. Indeed, if one is specifically interested in the current
response at a finite field X, it suffices to measure the local curvature of ψX at λ = 0 by
computing the equilibrium large deviation function ψ0 around λJ = βX, λQi

= βX i according
to Eq. 2.30, where we have established a direct connection between the statistical biased and
nonequilibrium ensembles.

Example: Overdamped Langevin System

Consider a system with N degrees of freedom interacting through potential V (r) at tempera-
ture T . Each degree of freedom i evolves under the underdamped Langevin equation

miv̇i = −miγvi −
dV (r)

dri
+ F + ηi, (2.36)

where mi is the mass, γ is the friction coefficient, F is a constant force, and ηi’s are Gaussian
noise satisfying 〈ηi(0)ηj(t)〉 = 2miγkBTδ(t)δij . The probability of observing a given trajectory
can be written in the Onsager-Machlup form [34]

PF [x̃] ∝ exp

[
−
∫
dt

N∑

i=1

(miv̇i +miγvi + dV (r)/dri − F )2

4miγkBT

]
. (2.37)

The relative stochastic action can be derived from the ratio of path probability with and
without F ,

U [x̃] = −
N∑

i=1

−(2miv̇i + 2miγvi + 2dV (r)/dri)F + F 2

4miγ
. (2.38)

As only the velocities are asymmetric upon time reversal, we identify the time asymmetric
and symmetric parts as

A[x̃] =
N∑

i=1

viF

2
,

S[x̃] =
N∑

i=1

(miv̇i + dV (r)/dri)F

2miγ
−

N∑

i=1

F 2

4miγ
.

(2.39)

As seen, the time symmetric part has a part proportional to F , and a part proportional to
F 2; in other words, S[x̃] =

∑p
i=1 tNQiX

i where p = 2. Defining the affinity X = F/2, we
arrive at the expressions of the dynamical variables,

j(x̃t) =
N∑

i=1

vi , q1(x̃t) =
N∑

i=1

miv̇i + dV (r)/dri
miγ

. (2.40)
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Figure 2.1: Computation of nonlinear transport coefficients of a Brownian ratchet. (a) 2D
surface of the LDF, with a contour plot projected onto the λJ − λQ1 plane, from which the
coefficients are derived. (b) Comparison between nonequilibrium simulation results (black
dots) and theoretical approximations for the current up to first (dotted red), second (dotted
dashed blue), and third (solid black) order. (Inset) The potential landscape of the Brownian
ratchet.

As before, q2(x̃t) = −∑N
i=1 1/miγ is a constant independent of the dynamics. Therefore, the

expression for nonequilibrium current can be written in a closed form

〈J〉X =
∞∑

n=1

(βtNX)n−1

n!

∑

i+j=n

iCi
nκ

n
i,j , (2.41)

where the second sum is taken over all combinations of nonnegative indices i, j such that
i+ j = n. κni,j denotes the n-th order cumulant, with the first few terms:

κ1
1,0 = 〈J〉0 , κ1

0,1 = 〈Q1〉0 ,
κ2

2,0 =
〈
(δJ)2

〉
0
, κ2

1,1 = 〈δJδQ1〉0 , κ2
0,2 =

〈
(δQ1)2

〉
0
,

κ3
3,0 =

〈
(δJ)3

〉
0
, κ3

2,1 =
〈
(δJ)2δQ1

〉
0
, κ3

1,2 =
〈
δJ(δQ1)2

〉
0
,

κ3
0,3 =

〈
(δQ1)3

〉
0
,

· · ·

(2.42)

Higher Order Response: Brownian Ratchet

To validate our method, we consider a single Brownian particle moving on a one-dimensional
asymmetric potential landscape Vp(r) = sin(r/l + sin(r/l)/2). This is a simplest continuous
model that exhibits an asymmetric response of the particle’s displacement to an additional
constant force. The dynamics of the particle with unit mass are described by the overdamped
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Langevin equation

γṙ = −dVp(r)
dr

+ F + η . (2.43)

where F is a constant force, γ is the friction and η is the white noise satisfying 〈η(t)〉 =
0, 〈η(0)η(t)〉 = 2γδ(t)/β. We set γ and l to 1, to define a reduced unit system and take
β = 1/0.3. Considering the mobility of the particle in response to the affinity X = F/2, the
dynamical variables take the form

j(x̃t) = ṙ(t), q1(x̃t) = γ−1dVp
dr

(t) . (2.44)

Here, the time symmetric part is characterized by the force exerted onto the particle by the
ratchet potential. There is an additional second order term q2(x̃t), which is a constant and
does not enter into the expression for the current. Expanding Eq. 2.32 up to the third order,
we arrive at an expression for the integrated nonequilibrium current, or displacement,

〈J〉F = βtN
〈
J2
〉

0

F

2
+ β2t2N

〈
J2Q1

〉
0

F 2

4

+ β3t3N

[
1

6
(
〈
J4
〉

0
− 3

〈
J2
〉2

0
) +

1

2
(
〈
J2Q2

1

〉
0
−
〈
J2
〉

0

〈
Q2

1

〉
0
)

]
F 3

8
+O(F 4) .

(2.45)

It is worth noting that the higher order responses are described not only by the current
fluctuations, but also the correlations between current and force fluctuations. If the potential
is symmetric, the second order term will vanish due to inversion symmetry. It is the asymmetry
in the ratchet potential, and as a consequence, the asymmetry in the forces, that gives rise to
the even order terms. Specifically, the correlation between the squared current and the force
dictates the size of the rectification of the ratchet.

In this simple case, the LDF ψ0(λ) can be computed numerically exactly by the direct
diagonalization method, where the tilted generator is

Lλ = −∂Vp
∂x

(
∂

∂x
− λJ

)
+ T

(
∂

∂x
− λJ

)2

− λQ1

∂Vp
∂x

, (2.46)

the largest eigenvalue of which is the LDF. To solve for the eigenvalues, we construct the
tilted operator with a normalized Fourier basis set exp(ikx) where k ∈ [−15, 15] and is an
integer. The 2D surface of ψ0(λ) is shown in Fig. 2.1(a). The obvious deviation from the
normal distribution, especially the asymmetry in the λQ1 direction, leads to the observed
nonlinear behavior of 〈J〉F . The correlation functions appearing in the average current
are computed from numerical derivatives of ψ0 as in Eq. 2.35, yielding tN 〈J2〉0 = 0.0184,

t2N 〈J2Q1〉0 = −0.0194, t3N(〈J4〉0 − 3 〈J2〉20) = 0.712, and t3N(〈J2Q2
1〉0 − 〈J2〉0 〈Q2

1〉0) = −0.033.
Fitting errors in the coefficients are negligible. The nonequilibrium simulation results are
obtained by integrating the equation of motion using a second-order Runge-Kutta algorithm
[75] with a time step h = 10−3. Numerical results shown are averaged over 103 realizations
with a total observation time tN = 103. In Fig. 2.1(b), we compare direct nonequilibrium
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Figure 2.2: Linear response of a tracer particle in a hydrodynamic flow. (a) LDFs as a
function of λJ while fixing λQ1 = 0. Red curves are quadratic fits. (b) LDFs as a function of
λQ1 while fixing λJ = 0. (c) A comparison between direct nonequilibrium simulation results
and the predicted response. Shaded area is the statistical error of the theoretically predicted
response. The standard error in the direct simulation is smaller than the size of the dots.
(Inset) The flow field and a schematic trajectory of the tracer. Orange arrows illustrate the
underlying velocity field and colors map the value of the stream function.

simulation results with our theoretical predictions, which improve as we include higher
order terms. It is worth noting that in this case, as the large deviation function can be
solved conveniently by matrix diagonalization, the computational efficiency of our method is
far superior compared to direct simulation, which requires sampling of the nonequilibrium
dynamics.

Linear Response around Nonequilibrium Steady State

Lastly, we discuss a system out of equilibrium even at X = 0. This is fundamentally different
from the two cases above, as even at linear response traditional Green-Kubo formulas do not
apply. Nevertheless the response of the system is still encoded in a LDF computed at X = 0,
though one evaluated in the nonequilibrium steady state. The previously derived extended
fluctuation-dissipation theorems [19–21] follow naturally from our general expression for the
nonequilibrium current in Eq. 2.32.

We consider an underdamped particle with unit mass moving in a 2D hydrodynamic flow

v̇x = −γ(vx − Ux) + F + ηx, v̇y = −γ(vy − Uy) + ηy , (2.47)
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where Ux = ∂φ(r)/∂ry and Uy = −∂φ(r)/∂rx describe the divergenceless flow of the stream
function φ(r) = LU0 sin(2πrx/L) sin(2πry/L)/(2π). We set U0 = L = 1, which sets a scale
for length and time. The noise ηi’s satisfy 〈ηi(t)〉 = 0, 〈ηi(0)ηj(t)〉 = 2γδijδ(t)/β, i = x, y.
When the constant force F = 0, it is the non-gradient form of the velocity field that forces
the system out of equilibrium, though the average particle current still vanishes due to spatial
symmetry. As a consequence, the linear response of the particle current includes two terms
proportional to X, as shown in Eq. 2.32. The extended fluctuation-dissipation theorem
includes a term that is the correlation between the current and a time symmetric variable
derived from the first order part of the relative action as has been described previously [18].
Defining the affinity X = F/2, the dynamical variables are

j(x̃t) = vx(t), q1(x̃t) = v̇x(t)/γ − Ux(t) . (2.48)

The time symmetric term includes the particle’s inertia, relative to its local flow velocity,
which is only a function of the particle’s position. The linear response of the current can be
viewed as a Green-Kubo relation, but correlating particle’s velocity relative to the velocity
field Ux [19, 21], up to a boundary term from the integral of v̇x.

We note that the dynamical variables satisfy the relation j(x̃t) + q1(x̃t) = ηx/γ when
F = 0, which implies that tn−1

N 〈(J +Q1)n〉0 = (2/(γβ))n/2(n− 1)!! if n is even, and vanishes
if n is odd. Note that this type of relationship is not restricted to this specific model - it is
quite general for stochastic systems with quadratic path actions. These constraints on the
moments reduce the number of unknown moments we have to compute. Here, we use the fact
that the second order moments satisfy tN 〈(J +Q1)2〉0 = 2/(γβ), which allows us to rewrite
the linear response as

〈J〉F = β

(
1

γβ
+
tN
2

〈
J2
〉

0
− tN

2

〈
Q2

1

〉
0

)
F

2
+O(F 2) . (2.49)

To compute the linear response coefficient, all we need are the curvatures of ψ0(λ) along
λJ = 0 and λQ1 = 0, which are easily computable from the cloning algorithm.

In the following calculations, we set γ = 0.1, β = 0.5× 104. The underdamped equation is
integrated with a second order Verlet-like integrator [76], with a timestep of h = 10−3. Both
nonequilibrium results and LDFs are calculated from trajectories of the length tN = 8× 105.
Fig. 2.2(a) and (b) shows the LDF while fixing λQ1 = 0 and λJ = 0, respectively. To
evaluate tN 〈J2〉0, we compute the LDFs at λJ ∈ [−0.0035, 0.0035], λQ1 = 0 and fit the
curve with a parabola to estimate its curvature. Similarly, tN 〈Q2

1〉0 is estimated with LDFs
at λJ = 0, λQ1 ∈ [−0.0035, 0.0035]. The statistical errors in LDFs are estimated by the
standard deviation among 15 independent samples. To evaluate the statistical error in the
linear transport coefficient, we fit a parabola to each of the sample sets, and compute the
standard error of the mean among the 15 curvatures. The fitted curves yield an estimate of
tN 〈J2〉0 /2 = 2.6874± 0.0015, tN 〈Q2

1〉0 /2 = 2.6773± 0.0013, and the mobility is 30.2± 6.8.
In Fig. 2.2(c), we plot the theoretically predicted linear response along with the nonequilib-

rium simulation results to show their agreement at small values of F . Nonequilibrium results



CHAPTER 2. TRANSPORT COEFFICIENTS FROM LARGE DEVIATION
FUNCTIONS 26

are averaged over 2400 independent trajectories and standard errors of the mean are plotted.
This model has recently been shown to exhibit a negative differential mobility [77]. Near
equilibrium, the mobility is proportional to 〈J2〉0, and thus must be non-negative. However,
the linear response around a nonequilibrium steady state given in Eq. 2.49 clarifies how a
negative differential mobility is possible. While not true at the conditions we consider, in
principle tN〈Q2

1〉0 may be larger than 2/(γβ) + tN 〈J2〉0, resulting in a current that decreases
with added force.

2.3 Linear Transport Coefficients: Comparison with

Green-Kubo 2

As seen in the last section, transport coefficients can be derived from the large deviation
function, and to the first order, our result agrees with the Green-Kubo expression. In fact,
this result can be derived alternatively from the projected large deviation function merely on
the dimension of λJ

ψX(λJ , λQi
= 0) = lim

tN→∞

1

tN
ln
〈
e−λJ tNJ

〉
X
, (2.50)

where all the λQi
in Eq. 2.29 are set to zero. For simplicity, we’ll refer to this projected LDF

as ψ, and use λ instead of λJ for the rest of the section. As before, the derivatives of ψ(λ)
report on the fluctuations of the current J ,

∂ψ(λ)

∂λ

∣∣∣
λJ=0

= −〈J〉X ,
∂2ψ(λ)

∂λ2

∣∣∣
λ=0

= tN
〈
δJ2
〉
X
. (2.51)

According to the fluctuation theorem Eq. 1.29, ψ(λ) obeys the Gallovati-Cohen symmetry

ψ(λ) = ψ(βX − λ) , (2.52)

where X is the generalized force as in Eq. 2.24. This symmetry implies a relation between
the second derivatives of the large deviation function

∂2ψX(λ)

∂λ∂X

∣∣∣
λ=0,X=0

= −∂ 〈J〉X
∂X

∣∣∣
X=0

= −β∂
2ψ0(λ)

∂λ2

∣∣∣
λ=0

. (2.53)

Combined with Eq. 2.24, this gives us the same expression as Eq. 2.35,

L1 = β
∂2ψ0(λ)

∂λ2

∣∣∣
λ=0

, (2.54)

which states that the curvature of the large deviation function around λ = 0 is equal to
the linear response coefficient L1. For small values of λ, the large deviation function can be
expanded as

ψ2
0(λ) =

1

2
L1λ

2 +O(λ4) , (2.55)

2Most of the content of this section was originally written by the author for the following publication: C.
Y. Gao and D. T. Limmer, ”Transport Coefficients from Large Deviation Functions”, Entropy 2017, 19 (11).
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which is parabolic, and completely determined by L1. This implies the distribution of J is
Gaussian, with a variance of L1/tN. This inversion is a direct reflection of Onsager’s notion
of an effective thermodynamic potential, where the probability of a current is given by the
exponential of the entropy production.

The connection between the large deviation result and the Green-Kubo formalism can
be understood by invoking the time translational invariance of the equilibrium averaged
time-correlation function,

βtN
2

〈
(δJ)2

〉
0

= lim
tN→∞

β

∫ tN

0

〈j(x̃0)j(x̃t)〉dt , (2.56)

where the right hand side is the familiar time integral over the current auto-correlation
function that appears in the Green-Kubo relations, assumed to decay faster than 1/t. As
〈J〉 = 0 for an equilibrium system, where X = 0, it is straightforward to relate the second
derivative of the large deviation function with respect to λ evaluated at λ = 0, to L1 as

ψ
′′

0 (0) = 2β

∫ ∞

0

〈j(x̃0)j(x̃t)〉 dt = L1 , (2.57)

This equation is known as the Einstein-Helfand relation and is well known to yield an
equivalent expression for transport coefficients [39]. The additional factor of 2 is merely a
result of our definition of the affinity in Eq. 2.25. Provided an estimate of ψ0(λ) accurate
enough to compute ψ

′′
0 (0), we thus have an alternative means of evaluating L1. In what

follows, we use a few examples to illustrate the relative systematic and statistical errors
associated with the large deviation function method in comparison to traditional Green-Kubo
calculations.

Analysis of Systematic Error: Interfacial Friction Coefficient

We first focus on the systematic errors determining the convergence of both methods. As a
case study, we consider computing the interfacial friction coefficient between a liquid–solid
interface. This friction coefficient is defined by the linear relationship,

fx = −µAvs , (2.58)

where fx is the total lateral force exerted on the solid wall on the x direction, A is the lateral
area of the interface, and vs is the tangential velocity of the fluid relative to the solid. We
can identify a relevant molecular current as the momentum flux along the wall, in this case
proportional to

fx = −
Nl∑

i=1

Nc∑

k=1

d

dxi
uls(|ri − rk|) , (2.59)

the sum of the x component of the forces of all Nl liquid particles on the Nc wall particles,
where the force is given by the gradient of the liquid-solid interaction potential uls. Given
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this current, we can identify its conjugate force as X = (A/T )vs, and, consequently, the
friction coefficient is given by µ = L(A/T ).

The system is modeled as a fluid of monatomic particles confined between two stationary
atomistic walls parallel to the xy plane. The fluid particles interact through a Lennard-Jones
(LJ) potential with characteristic length scale d, energy scale ε, time τ =

√
md2/ε with m as

the mass of the fluid particle, and is truncated at 2.5d. Reduced units will be used throughout
this subsection. The walls are separated by a distance Hz = 18.17d along the z-axis. Periodic
boundary conditions are imposed along x- and y-directions, with the lateral dimensions of the
simulation domain Hx = Hy = 15.90d. Each wall is constructed with 1568 atoms distributed
as (111) planes of face-centered-cubic lattice with density ρw = 2.73d−3, while the fluid
density is ρf = 0.786d−3. The wall atoms do not interact with each other, but are allowed to
oscillate about their equilibrium lattice sites under the harmonic potential uh(r) = kr2/2,
with a spring constant k = 600ε/d2. The mass of the wall atoms is chosen to be mc = 4m.
The interaction between the wall and the fluid atoms is also modeled by a LJ potential with
the same length scale d and truncation, but a slightly smaller energy εwf = 0.9ε, to model
the solvophobicity of the wall [78]. Only the wall particles are thermostatted by the Langevin
equation

mir̈i = −5ri U(rN)−miγṙi + Ri , (2.60)

where the dots denote time derivatives, U(rN ) is the total intermolecular potential from all N
particles at position rN , mi is the particle’s mass, γ = τ−1 is the frictional coefficient, and Ri is
a random force. The statistics of the random force is determined by the fluctuation-dissipation
theorem, which for each component is

〈Ri(t)〉 = 0 , 〈Ri(t)Rj(t
′)〉 = mikBTγδ(t− t′)δij, (2.61)

where δ(t) is Dirac’s delta function and δij is the Kronecker delta.
Previous studies have recognized that µ is difficult to compute due to the confinement of

the corresponding hydrodynamic fluctuations [79, 80], which results in a large systematic error.
This difficulty has led to some questioning the reliability and applicability of Green-Kubo
calculations to compute µ, such as the one shown in Table 1.1 [81],

µ =
A

kBT

∫ tM

0

〈fx(0)fx(t)〉 dt, tM →∞ . (2.62)

Indeed, we have found that the details of the simulation, such as the ensemble, system
geometry and γ used in the Langevin thermostat, all have an important influence on the
calculation of µ. This sensitivity is because the fluctuations that determine the friction are
largely confined to two spatial dimensions, which is well known to result in correlations that
have hydrodynamic long time tails, whose integral may be divergent [82]. However, both our
large deviation function method and the Green-Kubo calculations are based on equilibrium
fluctuations. Provided an ensemble, simulation geometry, and equation of motion, the system
samples the exact same trajectories, so we expect the friction coefficient computed in both
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Figure 2.3: (a) Interfacial friction coefficient computed from Green-Kubo method as a
function of the integration time tM . (Inset) The normalized force auto-correlation function
If (t) = 〈fx(0)fx(t)〉 / 〈fx(0)2〉. (b) Large deviation function of the dynamical observable Fx
with tN = 400τ . The red line is the parabolic fit. (Inset) The average observable 〈Fx〉λ in
the biased ensemble, with the linear fit in red.

ways to agree. Shown in the inset of Fig. 2.3(a) is the Green-Kubo correlation function, which
includes a very slow decay extending to at least 100τ , following short time oscillatory behavior
from the layered density near the liquid-solid interface. The main panel of Fig. 2.3(a) shows
µ computed with increasing integration time tM . Averaging over four independent samples
with a cutoff tM = 1000τ , our estimation of the friction coefficient is µ = 0.109± 0.019ετ/d2.
The interfacial friction coefficient is also computed from the large deviation function, with
tN = 400τ , using the time integrated force

Fx =
1

tN

∫ tN

0

fx(t)dt , (2.63)

as our dynamical observable. The large deviation function and the average time integrated
force 〈Fx〉λ, are shown in the main panel and inset of Fig. 2.3(b), respectively, demonstrating
that within the range of λ we consider the system still responds linearly. With λ = 10−3σ/ετ
and tN = 4000τ , importance sampling gives us an estimate of the friction coefficient as
µ = 0.121± 0.002ετ/d2, in reasonable agreement with the Green-Kubo estimate and with
previous reports [79].

In both the Green-Kubo and the large deviation function calculations, the main source
of systematic error is from finite time. This error is especially highlighted in this example,
where the time-correlation function decays very slowly. We consider the systematic errors in
the estimate of µ by defining a relative error as

Err(sys)[µ] = (µ(t)− µ)/µ , (2.64)
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where µ(t) is the finite time value of the friction coefficient, and µ its asymptotic value at
t → ∞. The form of the time dependent systematic error is different in the Green-Kubo
method compared to the large deviation estimate. In the Green-Kubo method, systematic
errors come from truncating the integral before the correlation function has decayed, and
we denote this time tM , as the cutoff time in the integral of the correlation function. In the
large deviation calculation, systematic errors come from both truncating the integral as well
as sub-time-extensive contributions to the exponential expectation value, which are more
analogous to finite size effects in normal free energy calculations. These contributions are
both determined by the path length tN. The relative systematic error is shown in Fig. 2.4 for
both methods. For this case, it appears that the Green-Kubo method always has a smaller
error than the large deviation function method, though their magnitudes are comparable.

In the Green-Kubo method, it follows that, if we know the analytical form of the correlation
function, we can determine the scaling of the relative error. In the case of interfacial friction,
Barrat and Boquet have proposed that for a cylindrical geometry where the dimension on the
confined direction is much smaller than the other two directions, the force auto-correlation
should decay asymptotically as ∼ 1/t2 using hydrodynamic arguments [81]. This is a direct
consequence of the fact that the velocity autocorrelation function decays as ∼ 1/t in a
two-dimensional system [82], neglecting the self-consistent mode coupling correction that
adds an imperceptible

√
ln t correction [83, 84]. This is confirmed in our simulation result in
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Fig. 2.4 (black line), where the integral of the force correlation function decays as ∼ 1/t.
Since the large deviation function has a Gaussian form, we can analyze the form of the

finite time correction exactly as

Err(sys)[ψ] =
ψ̃(λ, tN)− ψ(λ)

ψ(λ)
=
µ(tN)− µ

µ
+

1

2tNµλ2
ln[4πtNµ(tN)] , (2.65)

where ψ(λ) is the long time limit of the large deviation function, and ψ̃(λ, tN) is its finite
time estimate. This follows from a fluctuation correction about a saddle point integration.
Physically, this correction arises from a tN that is too short, such that ψ(λ) is not the
dominant contribution to the tilted propagator, but rather includes temporal boundary terms
from the overlap of the distribution of initial conditions and the steady state distribution
generated under finite λ [68]. If we expand the first term, we arrive at

µ(tN)− µ ≈ −
∫ ∞

tN

〈j(0)j(t)〉 dt+
1

tN

∫ tN

0

t 〈j(0)j(t)〉 dt , (2.66)

which consists of the term included in the Green-Kubo expression, as well as an additional
term modulated by a factor of 1/tN. Given that the correlation decays as ∼ 1/t2, the first
term on the right hand side scales as ∼ 1/tN, as in the Green-Kubo method, while the second
term scales as ∼ (1/tN) ln tN. This form is shown in Fig. 2.4 and agrees very well with our
data. These additional terms explain why the magnitude of the systematic error is larger
for the large deviation function. In cases where the Green-Kubo correlation function decays
faster than 1/t2, we expect that the dominant contribution to the error will come from the
last term in Eq. 2.65.

Analysis of Statistical Error: Thermal Conductivity

We finally discuss the statistical error of our method by studying the thermal conductivity
κ, of a solid system with particles that interact via the Weeks-Chandler-Anderson (WCA)
potential [85]. The thermal conductivity is defined through Fourier’s law,

e = −κ∇T , (2.67)

where e is the energy current per unit area and∇T is the temperature gradient. From the form
of the entropy production in Eq. 1.4, the thermodynamic force is given by X = −(1/kBT

2)∇T ,
and so the thermal conductivity κ = L/(V kBT

2). As the relevant molecular current, we
study the fluctuations of the heat flux q given by

q = eV =
∑

i

viei +
1

2

∑

i 6=k

(fik · vi)rik , (2.68)

where ei is the per-particle energy, fik is the force on atom i due to its neighbor k from the
pair potential, and rik is the coordinate vector between the two particles. We use a system
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Figure 2.5: Calculation of the thermal conductivity κ, of a WCA solid at T = 1.0ε/kB,
ρ = 1.2d−3. (a) κ(tM ) calculated by integrating the heat flux correlation function up to time
tM . The data are averaged from four samples and the error bars are standard deviations,
which are smaller than the symbols. (Inset) The normalized heat flux correlation function
Iq(t) = 〈qx(0)qx(t)〉 / 〈qx(0)2〉. (b) Large deviation function of dynamical observable Qx, as a
function of the bias λ. The red line is the parabolic fit. (Inset) The average observable in
the biased ensemble 〈Q〉λ, as a function of λ with the linear fit in red.

size of 103 unit cells, with lattice spacing 1.49d. A Langevin thermostat with γ = 0.01τ−1

maintains the system at the state point T = 1.0ε/kB, ρ = 1.2d−3, which yields identical
results for κ as an NVE calculation. We focus on the diagonal component κxx, of the thermal
conductivity tensor.

Within Green-Kubo theory, the thermal conductivity can be computed by integrating the
auto-correlation function of the x component of the heat flux qx,

κ =
1

V kBT 2

∫ tM

0

〈qx(0)qx(t)〉 dt, tM →∞ . (2.69)

The inset of Fig. 2.5(a) is the decay of the auto-correlation function, which comprises a fast
decay from the high frequency vibrational modes, followed by a slower decay that contributes
most to the thermal conductivity and arises due to the low frequency acoustic modes [86]. To
compute κ from the integral, as shown in the main part of Fig. 2.5(a), the upper time limit
is chosen as tM = 1500τ , though the relaxation of the correlation extends only to around 5τ .
To compute κ from the large deviation function, we study fluctuations in the time averaged
heat flux,

Qx =
1

tN

∫ tN

0

qx(t)dt . (2.70)

The transport coefficient κ, is again calculated using Eq. 2.57 by assuming the large deviation
function ψ(λ) as a parabola, which is justified in Fig. 2.5(b). The inset there shows clearly
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the linear response of the biased ensemble average 〈Q〉λ, computed in the tilted ensemble
Eq. 2.8. Given sufficient statistics the two methods converge to the same value. The estimate
of thermal conductivity from the Green-Kubo method using a long trajectory of 1.5× 106τ is
κ = 34.3± 2.2kB/τd, while the estimate from the large deviation function using Nw = 1000
walkers and λ = 10−4 is κ = 34.01± 0.78kB/τd.

While the average values of κ agree between the two methods, the statistical convergence
varies significantly. To make a fair comparison, we set the total observation time of the
trajectories to the same time as the upper limit of the Green-Kubo integral, i.e., tN = tM =
1500τ , which is much longer than the characteristic decay of the current auto-correlation
function. To compensate for computational overhead of propagating Nw trajectories in
parallel in the cloning algorithm, the total averaging time of the Green-Kubo method is
chosen as ttot = tM ×Na, and Na equals the walker number Nw, so that the two methods
require approximately the same computational effort. Both Na and Nw will be denoted as
Ns reflecting the number of independent samples of each fluctuating quantity. We measure
the statistical error by the relative error

Err(stat)[κ] =

√
〈δκ2〉
κ

, (2.71)

which is plotted in Fig. 2.6 for both methods. As usual, the statistical error depends on both
the relative size of observable fluctuations, and the number of independent samples. We find
that as the standard deviations of both methods scale as 1/

√
Ns as expected, our importance

sampling clearly helps to suppress the statistical error compared to the Green-Kubo method
with similar computational effort, decreasing the magnitude of the error by an order of
magnitude at fixed Ns. Even though we have to choose a bias small enough to guarantee a
linear response, we do see that larger bias helps to yield statistically reliable results.

Jones and Mandadapu have performed a rigorous error analysis on the estimates of
Green-Kubo transport coefficients with the assumption that the current fluctuations follow
a Gaussian process [87]. They found that the variance of κ is a monotonically increasing
function of tM , and arrived at an upper bound for the relative error

Err(stat)[κ] < 2

√
tM
ttot

= 2

√
1

Na

, (2.72)

which depends only on the number of trajectory segments of length tM . As a consequence,
the statistics become worse when the system has longer correlation times, and there are no
ways of controlling the intrinsic variance of the observable. On the other hand, in the large
deviation method, the relative error in the large deviation function is

Err(stat)[ψ(λ)] =
1

ψ(λ)

√
ψ′′(λ)

Nw

=
1

λ2

√
2

LNw

|λ| > 0 , (2.73)

which depends not only on the number of samples, in this case , but also has a dependence
on λ and L. In general, as λ increases, the walkers will become more correlated. However,
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Figure 2.6: Relative statistical error in the measurement of κ, from the Green-Kubo method
(black) and the large deviation function method with λ = 10−4 (red) and λ = 5× 10−4 (blue).
Ns denotes the number of walkers Nw used in evaluating the large deviation function, or Na,
an indicator of the total averaging time in the Green-Kubo method. The solid lines are fits
of function y = a/

√
Ns.

within the regime of linear response, or to first order in λ, the number of uncorrelated walkers
should be Nw. Because the large deviation function, ψ(λ), scales as λ2 while its second
derivative, ψ

′′
(λ), has no dependence on λ, the relative size of the fluctuations can be tuned

by changing λ away from 0. This is verified in Fig. 2.6, where increased λ generates an order
of magnitude reduction in the statistical error relative to the Green-Kubo calculation. This
decrease in the statistical error is also confirmed for a series of λs. This tunability afforded by
the large deviation function calculation is the same advantage afforded by direct simulation
of transport processes where the relative size of fluctuations is determined by the size of the
average current produced by driving the system away from equilibrium. Instead of evaluating
κ from the large deviation function directly, we could have derived it from the change in the
average current produced at a given λ. However, in such a case, the relative error would only
scale as |λ| rather than λ2.

2.4 Summary

To summarize, our theory provides a direct relation between the classical statistical mechanical
theory of irreversible processes built around correlation functions, and the modern language
of large deviation theory. The connection should be obvious given Green’s Fokker-Planck
description of random irreversible processes, so our main contribution here is to make the
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connection concrete, and derive specific expressions for different systems. We conclude this
chapter by reviewing some of the advantages and limitations of our method. While our
formalism is exact, it is by no means the only way, or the best possible way, to express
nonlinear transport coefficients. Therefore, we will also compare our formalism with other
previous developed nonlinear generalisations of the Green-Kubo relations, such as the time
transient correlation function (TTCF) formalism mentioned in Section 1.2.

Firstly, the method we propose is general enough that it can be applied to stochastic
systems both near and far from equilibrium, regardless of the specific type of affinity, as
long as a microscopic definition of current and path action can be written down. While we
have commented in Section 1.2 the difficulty in treating internal disturbances, we will show
an example of heat transport generated by temperature gradients later in Chapter 4. As
will be seen, our method not only describe thermal transport processes driven by boundary
conditions, but also mechanical transport processes driven by a perturbing external force
field.

Secondly, while we do not expect our method to replace direct measurement of transport
coefficients from molecular simulations, it does provide an alternative methods to evaluate
and understand higher order response functions. Nonequilibrium molecular simulations are
known to be sensitive to algorithm details. For example, shear viscosity can be computed from
either the system subject to a sinusoidal transverse force extrapolated to infinite wavelength
[88], or planar shear with external particle reservoirs [89], or induced Couette flow using the
Lees-Edwards periodic boundary condition [90]. The inhomogeneities in the thermodynamic
properties of the fluid arising from the boundary conditions can cause trouble in the calculation
of the shear viscosity. What’s more, to maintain a nonequilibrium steady state, one needs to
choose a thermostat, which in turn alters the system equation of motion, and needs to be
treated carefully to not interfere with the system’s intrinsic response [91–93].

While the values of the transport coefficients derived from our method does depend on
simulation details through the relative stochastic action, its computation can involve only
equilibrium simulations, which is much more straightforward to carry out practically. By
analyzing how the time-reversal symmetric term is modified by the thermostat, we can also
analyze the effect of the thermostat on the system response. As seen in Section 2.3, our
method is expected to exhibit superior statistical performance compared to methods relying
on TTCFs, based on a detailed study on the statistical error in the computation of linear
transport coefficients by the Green-Kubo formulas and our method. Higher order transport
coefficients demand a more accurate evaluation of the large deviation function. However, with
the advancement of algorithms enhanced by importance sampling techniques, we expect that
our method will become a standard approach to computing higher order transport coefficients.
Besides, for a physically relevant range of fields, the transport behaviors of the system is
often well predicted by a few lower order transport coefficients. Even restricting ourselves
to the first and second-order effect, as we’ll show in the examples in the following chapters,
already provides us with some fruitful insights in nonlinear transport behaviors.

Thirdly, apart from a computational tool to evaluate higher order transport coefficients,
our method also provides molecular interpretation for nonlinear transport behaviors. This
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will be paramount in our understanding of how nonlinear behaviors arise from complex
molecular interactions, and in turn provides guiding principles in the control of nonlinear
behaviors. By constructing a LDF of both the time symmetric and asymmetric dynamical
variables, we arrive at a function that contains all of the information about current-affinity
relationship as encoded through microscopic correlations. As will be seen in the examples
given in the following chapters, decoding these microscopic correlations will bring fruitful
physical understanding of nonlinear transport behaviors.

As for the limitation of our method, the basic assumption of our theory is that there
exists a power expansion for the nonequilibrium phase space distribution function and the
current in terms of the affinity, and thus we can write down an explicit formula for the higher
order transport coefficients. Critics of Kubos nonlinear response theory have pointed out that
for many transport processes, such expansions do not exist [94, 95]. Indeed, a perturbative
treatment breaks down when long range or long time-correlations exist in a system in the
thermodynamic limit. These divergences are known as the Dorfman’s Lemma, which states
that all relevant fluxes are nonanalytic functions of all relevant variables [96, 97]. Such a
behavior can happen in the vicinity of phase transitions, where diverging correlation lengths
will cause a divergence in the correlation functions corresponding to the transport coefficients.
As a result, our simple series expansion is likely to fail in describing dynamical phase
transitions between nonequilibrium steady states. Additionally, constraints on dynamics can
also result in long range correlations. For example, low dimensional molecular fluids are known
to exhibit diverging diffusivity computed from the Green-Kubo formula, which originates
from the slowly decaying correlation of hydrodynamic modes associated with conserved
quantities [82, 98]. In deterministic systems, conservation of energy and momentum confines
the trajectories of the system to certain manifolds of the phase space. As a consequence,
currents associated with conserved quantities are often non-analytic functions of the affinity
[99]. To circumvent such problems, we will restrict ourselves to Markovian stochastic systems
in the present work, where ergodicity is guaranteed. In all the examples shown, correlation
functions decay to zero in microscopic timescales, so that their integrals in the long time
limit are well defined. With that being said, our method does exclude applications to certain
interesting processes involving memory effects, which may be important in rheological and
hydrodynamic phenomena.

As for some potential extensions of our work, we note that the structure of the large
deviation function dictates that we are restricted to behaviors in the nonequilibrium steady
state. As a result, the access to full time-dependent response is lost, unlike in the TTCF
formalism. It is also unclear how to deal with time-dependent affinity, which traditionally
involve complicated manipulations of the evolution propagators, similar to quantum field
theory [95]. However, with the development of level 2.5 large deviation theory for inhomo-
geneous Markovian processes, one can imagine that at least the analysis of periodic driven
system should be approachable [100]. Furthermore, the expression of transport coefficients in
terms of multi-time correlation functions builds a connection between macroscopic transport
processes and microscopic observables. We expect that theoretical manipulations on these
multi-time correlation functions will yield useful symmetry arguments similar to the Onsager
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reciprocal relations [8], and give us further insights into how nonlinear response behaviors
arise from the molecular details of the system.
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Chapter 3

Ion Transport: Field-dependent
Conductivities in Ionic Solutions

3.1 Introduction

In the previous chapter, we derived generalized fluctuation-dissipation relationship for trans-
port processes. Our approach is general and can be applied to any systems or transport
processes where a connection between nonlinear transport behavior and underlying micro-
scopic dynamics is desired. In this chapter, we focus on a specific nonlinear transport behavior
that is of importance both from the theoretical and experimental perspective - field-dependent
conductivities in ionic solutions. Due to their ubiquity and importance, electrolyte solutions
have been central to the development of theoretical physical chemistry [101]. While Debye-
Hückel theory provides a fundamental picture of non-ideal strong electrolyte solutions taking
into account the electrostatic screening effects, Onsager further considers the dynamical
correlation between ions and proposes a correction to the conductivity [102–104]. More
specifically, for strong electrolytes in the presence of a finite applied field, the electric field
distorts the Debye screening of charges and thus the conductivity increases. This effect is
known as the Onsager-Wien effect [105], and has been well observed in both experimental
and simulated systems [106–108]. Following the pioneering work by Onsager, subsequent
research into the structure and dynamics of electrolyte solutions ushered in modern theoretical
techniques employing pair distribution functions and linear response theories, such as the
Onsager-Wilson continuum theory [109], Kubo-Kirkwood method [110–112], and stochastic
density functional theory [113].

On the other hand, advances in the fabrication of nanofluidic devices have enabled the
study of transport processes on small scales, where novel phenomena emerge from the interplay
of confinement, fluctuations and molecular granularity [114–117]. In these systems, nonlinear
transport is especially pervasive and often qualitatively sensitive to chemical composition.
Some of the most striking recent observations have been in electrokinetic transport of
electrolyte solutions confined to nanometer dimensions, in which large thermodynamic
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gradients can be generated, driving nonlinear responses such as Coulomb blockade and
current rectification [118–122]. For example, ionic mobilities have been observed to depend
on the driving force of the flow, in a manner dependent on the ion pair and the confining
material [115]; ionic rectification can be achieved in nanofluidic diodes or conical pores [120,
123–125]. To gain molecular insight into how these nonlinear behaviors arise from molecular
interactions, and provide guidance on the design of nanofluidic devices, we in turn need
theoretical and simulation tools.

In this chapter, we develop a theory and accompanying numerical technique to efficiently
compute the electric field-dependent conductivity in ionic solutions across all concentration
regimes. To demonstrate the generality of our method, we show results for models with both
implicit (Section 3.2) and explicit solvent (Section 3.3), and compare our findings to existing
analytical theories valid in dilute regimes. For both systems, by decomposing the relevant
molecular correlation functions, we show how interplay between ionic relaxational effects and
solvent friction give rise to nonlinear behaviors.

3.2 Implicit Solvent Model 1

Model System Description

We consider a system of N ions composed of Na anions and Nc cations, in a volume V and
fixed temperature T . The ions’ positions and velocities are denoted rN = {r1, r2, . . . , rN} and
vN = {v1,v2, . . . ,vN}, respectively. These variables evolve according to an underdamped
Langevin equation,

ẋi = vi , miv̇i = −ζivi + Fi

(
rN
)

+ ziE + ηi , (3.1)

where mi and zi are the ith particle’s mass and charge, ζi is the friction from the implicit
solvent, and Fi(r

N) is the interparticle force on ion i derived from an interaction potential,
which will be specified below. Each Cartesian component of the random force, ηiα, obeys
Gaussian statistics with mean 〈ηiα〉 = 0 and variance 〈ηiα(t)ηjβ(t′)〉 = 2kBTζiδijδαβδ(t− t′),
where kB is Boltzmann’s constant. Finally, E denotes an applied electric field, with magnitude
E, which drives an ionic current through the periodically replicated system. This equation of
motion does not conserve momentum, and thus hydrodynamic effects are explicitly neglected
throughout.

We will consider two specific model systems, the NaCl electrolyte solution, and a molten
salt. For the model of NaCl solution, the interaction potential is a pairwise sum of screened
Coulumb potential with dielectric constant εs, and the Lennard-Jones (LJ) potential,

ULJ
ij = 4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]
. (3.2)

1Most of the content of this section was originally written by the author for the following publication: D.
Lesnicki, C. Y. Gao, B. Rotenberg and D. T. Limmer, ”Field-dependent Ionic Conductivities from Generalized
Fluctuation-dissipation Relations”, Physical Review Letters 2020, 124 (20).
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The LJ parameters for each species are taken from [126] and listed in Table 3.1. Frictions
are taken to be ζi = mi/τi with relaxation times τc = 0.11ps for the cations and τa = 0.25ps
for the anions. We consider 0.1M and 1.0M electrolyte solutions at room temperature and
system sizes corresponding to 100 ion pairs.

Table 3.1: Lennard-Jones parameters for each species of NaCl. Lorentz-Berthelot mixing
rules are used to compute the cation-anion cross interaction.

σii (Å) εii (kJ.mol−1)
Na+ 2.58 0.4184
Cl− 4.4 0.4184

For the molten salt, we consider a model of NaCl at T = 1200K with Coulumb and
Born-Huggins-Mayer interactions,

UBHM
ij = Aij exp(

σij − rij
ρ

)− Cij
r6
ij

− Dij

r8
ij

. (3.3)

The Born-Huggins-Mayer parameters are taken from [127] (see Table 3.2). We take the same
friction relaxation time τc = τa = 2ps for the cations and anions. We consider a density of
1.398g.cm−3 and a system size corresponding to 2500 ion pairs.

Table 3.2: Born-Huggins-Mayer parameters for NaCl.

Aij (kcal.mol−1) ρ (Å) σij(Å) C (Å6.kcal.mol−1) D (Å8.kcal.mol−1)
Na+-Na+ 6.08 0.317 2.340 24.18 11.51
Na+-Cl− 4.86 0.317 2.755 161.2 200.07
Cl−-Cl− 3.65 0.317 3.170 1669.6 3353.63

Reweighting Formalism

To compute the ionic conductivity as a function of electric field, we aim to relate dynamic
quantities of the system at a reference field, to those of a system perturbed by an additional
applied field. Given the equation of motion in Eq. 3.1, the probability of observing a
trajectory x̃(tN), or a sequence of positions and velocities over an observation time tN, with
an applied field, is

PE[x̃(tN)] ∝ e−βUE[x̃(tN)] . (3.4)

For uncorrelated Gaussian noises, we have an Onsager-Machlup stochastic action of the form
[128]

UE[x̃(tN)] =
N∑

i=1

∫ tN

0

dt

[
miv̇i + ζivi − Fi(r

N)− ziE
]2

4ζi
, (3.5)
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where the stochastic calculus is interpreted in the Itô sense. We will consider trajectories in
the limit that tN is large so that only time extensive quantities are relevant.

A perturbing field on the system adds an extra drift to the Gaussian action. As a
consequence, we can write down the ratio of the probability to observe a trajectory in the
presence of the field, E = Er + ∆E, relative to the probability to observe the same trajectory
with Er,

PEr+∆E[x̃(tN)]

PEr [x̃(tN)]
= eβ∆U∆E[x̃(tN)] , (3.6)

where the dimensionless relative action, β∆U∆E[x̃(tN)], can be expressed compactly as a sum
of three terms, depending on their symmetry under time reversal,

∆U∆E

tN
= [J +Q− ErσidV ]

∆E

2
− σidV

∆E2

4
, (3.7)

where for simplicity we take the field along one Cartesian direction so that the relative action
depends only on its magnitude.

The first term is asymmetric under time reversal and identified as the excess entropy
production due to the increased nonequilibrium driving. It is given by the product of the
total, time averaged ionic current in the direction of the field,

J [x̃(tN)] =
1

tN

∫ tN

0

dt j(t) , j(t) =
N∑

i=1

zivi(t) , (3.8)

and the extra field ∆E/2. The second term in Eq. 3.7 is symmetric under time reversal and
referred to as the excess frenesy [22]

Q[x̃(tN)] =
1

tN

∫ tN

0

dt q(t) , q(t) =
N∑

i=1

zi
ζi

[
miv̇i(t)− Fi(rN)

]
, (3.9)

which includes the total time integrated force in the direction of the field weighted by zi/ζi,
and a boundary term resulting in a difference in velocities at times 0 and tN, times the
extra field. The remaining terms are trajectory independent constants, proportional to the
Nernst-Einstein conductivity of the solution

βV σid = Ncz
2
cDc +Naz

2
aDa , (3.10)

where Di = kBT/ζi is the diffusion coefficient for an isolated ion of type i. This decomposition
of the relative action admits particularly simple, physically transparent, nonlinear response
relations.

With the relative measure between trajectory ensembles defined in Eq. 3.6, we can relate
nonequilibrium trajectory averages in the presence of the field, to equilibrium trajectory
averages without the field. We do this by setting the reference field, Er = 0, so that E = ∆E.
For a trajectory observable O[x̃(tN)], this relation is

〈O〉E =
〈
Oeβ∆UE[x̃(tN)]

〉
0
, (3.11)
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where trajectory averages over the measure in Eq. 3.4, with field value E, are denoted 〈. . . 〉E.
Setting O to 1, we find a sum rule inherited from the underlying Gaussian process that is
quadratic in the field,

〈
eβtN(J [x̃(tN)]+Q[x̃(tN)])E/2

〉
0

= eβtNσidV E
2/4 , (3.12)

which is interpretable as the ratio of nonequilibrium to equilibrium trajectory partition
functions.

Identifying the joint probability of observing a value of the current and frenesy as
pE(J,Q) = 〈δ(J − J [x̃(tN)], Q − Q[x̃(tN)])〉E, we can relate pE(J,Q) to its equilibrium
counterpart using Eq. 3.11,

ln p0(J,Q)

tN
=

ln pE(J,Q)

tN
− β(J +Q)

E

2
+ βσidV

E2

4
, (3.13)

where we find that the nonequilbrium driving acts to reweight the joint distribution linearly in
J +Q, demonstrating a thermodynamic-like relationship between this sum and its conjugate
quantity E. Note that such linearity is not in general valid for the marginal distribution of
just the current, p0(J) =

∫
dQp0(J,Q), due to correlations between J and Q. Equation 3.13

provides a route to numerically probe the tails of nonequilibrium probability distributions using
generalizations of histogram reweighing techniques, such as those developed for equilibrium
systems, like multicanonical sampling [67].

From the joint distribution, p0(J,Q), we can compute the relationship between the mean
current and the applied field arbitrarily far from equilibrium, as encoded in the electric field
dependent conductivity σ(E) = (d〈J〉E/dE)/V . Using Eq. 3.11 to first write the average
current density, and then differentiating with respect to the field, we find

σ(E) = lim
tN→∞

βtN
2V

〈(
δJ2 + δJδQ

)
eβ∆UE[x̃]

〉
0
, (3.14)

where δO = O−〈O〉, demonstrating that σ(E) is given by a sum of the variance of the current
and the current-frenesy correlations, reweighted by the factor that relates the equilibrium
average to the nonequilibrium ensemble at fixed E. Near equilibrium (E ≈ 0), the weight ≈ 1,
and fluctuations in J and Q are uncorrelated due to the time reversal invariance of detailed
balance dynamics, 〈δJδQ〉0 = 0. In this limit, Eq. 3.14 reduces to a standard Einstein-Helfand
relationship. For small values of E, we can expand the weight, and the first non-vanishing
term emerges at second order in the field and vanishes for uncorrelated Gaussian random
variables.2

We have used these formal relationships to study the electric field-dependent conductivity
of both NaCl electrolyte solutions, and the molten salt. The results for the NaCl systems
are shown in Fig. 3.1 and 3.2, with concentrations of 1M, 0.1M, and dielectric constants

2The conductivity to second order in the field is σ(E)/σ(0) ≈ 1 +
β2t2NE

2

8〈J2〉0

(〈
J4
〉
0
− 3

〈
J2
〉2
0

+ 3
〈
J2Q2

〉
0
− 3

〈
J2
〉
0

〈
Q2
〉
0

)
.



CHAPTER 3. ION TRANSPORT: FIELD-DEPENDENT CONDUCTIVITIES IN IONIC
SOLUTIONS 43

(a) (b) (c)

Figure 3.1: Fluctuations and response of the 1M NaCl solution. Log-probability of the
time averaged current as computed from histogram reweighting are shown for (a) εs = 10
and (b) εs = 78.5. Errorbars are one standard deviation of the mean as computed from
bootstrapping analysis. The dashed lines represent Gaussian distributions fitted using
the data |J | ≤ 0.4eÅ/fs. (Inset) Characteristic snapshots of the simulated system, with
green and yellow spheres representing Na+ and Cl− respectively. (c) Field-dependent ionic
conductivities relative to the Nernst-Einstein value. Lines are computed from reweighting
p(J,Q) and symbols are computed from finite differences of 〈J〉E versus E. Errorbars are
one standard deviation of the mean.

of εs = 10 and 78.5. We find tN = 0.2ps sufficient to converge the conductivity for the
electrolyte systems. Shown in Fig. 3.1(a)(b) are the current distributions computed from
nonequilibrium molecular dynamics simulations for E between 0 and 0.1 V/Å in steps of
0.01 V/Å combined using Eq. 3.13, followed by marginalization over Q. For the 1M solution
of NaCl with εs = 78.5, the current distribution is mostly Gaussian. The Gaussian statistics
follow from the largely dissociated nature of the strong electrolyte in the polar, implicit
solvent, which enables ions to move free of correlations from their surrounding environment.
Gaussian fluctuations are found for 0.1M NaCl with εs = 78.5 as well. This is in contrast
to calculations with εs = 10, where ionic correlations depress motions, leading to smaller
characteristic current fluctuations, as computed by its variance, tN〈J2〉0. Weaker electrolyte
systems exhibit marked deviations from Gaussian statistics with enhanced probability at
large values of J . Similar behavior is found for 1M NaCl with εs = 10.

Shown in Fig. 3.1(c) and Fig. 3.2 are the conductivities computed from p0(J,Q) continu-
ously as a function of the applied field. We have additionally computed the conductivity from
a numerical derivative of the average current versus applied field and find quantitative agree-
ment between both estimates, although the statistical errors are much larger from the finite
difference approach at fixed computational cost. For strong electrolytes that exhibit small
deviations from Gaussian current fluctuations, we find a conductivity largely independent of
the field, while the weak electrolytes exhibiting strong non-Gaussian current fluctuations have
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(a) (b)

Figure 3.2: Field-dependent conductivities of the 0.1M NaCl solution for (a) εs = 10 and (b)
ε = 78.5. Lines and symbols are computed in the same way as Fig. 3.1. (Insets) Characteristic
snapshots of the system.

conductivities that increase with applied field. The increase is initially quadratic, as observed
experimentally [101] for dilute solutions and necessitated by time reversal symmetry, and
plateaus at large fields. For both concentrations, the conductivity plateaus to the same value
as the strong electrolytes at higher fields. At intermediate fields, the 0.1M solution exhibits
a slight maxima in conductivity as has been noted in colloids [129] and low dimensional
systems [130]. However, we don’t observe the peak in conductivity for the 1M system, likely
because velocity correlations break up more easily through interactions among ions in the
more dense system.

In Fig. 3.3 we show similar results for the molten salt system at a concentration of 25.3M.
We find tN = 0.05ps sufficient for the molten salt. The molten salt also exhibits deviations
from Gaussian statistics but with narrow tails, signifying that fluctuations are much rarer
than would be expected from its large variance and reflecting the packing constraints that
inhibit large currents. The molten salt conductivity also increases and plateaus at a larger
field to a value far below σid. This field dependence of the conductivity is phenomenologically
known as the Onsager-Wien effect in the dilute limit [105, 109].

Decoding Molecular Correlations

In order to understand the nonlinear behaviors, we can unpack the relevant correlations using
a generalized fluctuation-dissipation relationship. Specifically, we rewrite the field-dependent
conductivity as an average within a nonequilibrium steady state, using the same procedure
by which we arrived at Eq. 3.14, only now within a trajectory ensemble at fixed E. In this
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Figure 3.3: Fluctuations and response of the molten salt. (a) Field-dependent ionic conductiv-
ities relative to the Nernst-Einstein value. Lines are computed from reweighting p(J,Q), and
symbols are computed from finite differences of 〈J〉E versus E. Errorbars are one standard
deviation of the mean. (b) Log-probability of the time averaged current computed from
histogram reweighting. Errorbars are one standard deviation of the mean as computed from
bootstrapping analysis. The dashed lines represent Gaussian distributions fitted using the
data |J | ≤ 1eÅ/fs. (Inset) Snapshot of the simulated system, with green and yellow spheres
representing Na+ and Cl− respectively.

case, the differential response of the current to an applied field is

σ(E) = lim
tN→∞

βtN
2V

〈
(δJ)2 + δJδQ

〉
E

=
β

V

∫ ∞

0

dtGE(t) , (3.15)

where GE(t) = Cjj(t) +Cjq(t), Cjj(t) = 〈δj(0)δj(t)〉E, Cjq(t) = 1
2
〈δj(0)δq(t) + δj(0)δq(−t)〉E.

The conductivity away from equilibrium is a sum of the integrated microscopic current-current
correlation function and the integrated microscopic current-frenesy correlation function.

Fig. 3.4(a) shows the total time-correlation functions for the conductivity, for both the
electrolytes and the molten salt with and without an applied field. In the absence of an
applied field, the only nonvanishing contribution to GE(t) is the current-current correlation
function. For all systems, current correlations decay within 1ps, and exhibit recoil effects
evident in transient negative correlations, which are spread over a broader range of timescales
for the molten salt. The negative correlations are ionic relaxation effects that result from
ion displacements that transiently distort the local electrostatic environment and generate a
restoring force on the displaced ion from the compensating ionic cloud left behind [113, 131,
132]. At high fields, this negative correlation is suppressed, resulting in a larger integrated
value of the correlation function, hence larger conductivity. While the time-correlation
functions in principle depend on the frictions in the Langevin thermostat, for the small values
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Figure 3.4: Time-correlation functions GE(t) = Cjj(t) + Cjq(t) for the field-dependent
conductivity of 0.1M NaCl with εs = 10 (left), 1M NaCl with εs = 10 (middle), and molten
salt (right). (a) Correlation functions for zero and finite fields. (b) Decomposition of GE(t)
into current-current Cjj(t) and current-frenesy Cjq(t) correlations at E = 0.1V/Å for 0.1M
NaCl and molten salt, and E = 0.05V/Å for 1M NaCl. The solid lines in (b) are GE(t).

employed here, the current is independent of the friction and the frenesy depends on the
friction only though the explicit factors of ζi in Eq. 3.9.

In Fig. 3.4(b) we show the decomposition of GE(t) into the current-current and current-
frenesy correlation functions under finite applied fields. For all systems, the former decays
slower at high fields than at E = 0 and accounts for the largest contribution to the GE(t)
integrand. For the electrolytes, positive contributions to the current-current correlation
function between unlike charges give rise to the shallow maximum at intermediate fields.
These correlations are expected to be quenched out by momentum transfer to an explicit
solvent. The current-frenesy correlations are negative and the dominant contribution to the
frenesy is the total charge weighted force, which directly manifests the depression of the
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conductivity due to ionic correlations. The magnitude of the correlations in the molten salt
are larger than the more dilute electrolytes, reflecting its size extensive definition. The decay
in the correlation function for the molten salt is nearly ten times faster, manifesting the
higher density. For higher dielectric constant systems, the current-frenesy correlations are
negligible, signifying the lack of ion correlations, and as a result, time-correlation functions
are independent of fields.

In the dilute solution limit, Onsager provided a theory for the field-dependent conductivity
that relies on approximating the distortion of the pair correlation functions in the presence of
an applied field [105]. In order to understand the structural origins of these dynamical effects
and make contact with the previous work by Onsager, we can relate the field-dependent
conductivity to the change in the static ion correlations. Within the steady state, we can
rearrange the equation of motion in Eq. 3.1 and insert it into Eq. 3.8. This yields the average
current density in the direction of the field,

〈J〉E
V

= σidE +
∑

i=c,a

Ni

V

zi
ζi

〈
Fi
(
rN
)〉

E
, (3.16)

which is given by a sum of the Nernst-Einstein conductivity times the applied field, and a
correlated contribution from the sum of the average force acting on ions weighted by their
charge. We can express the average force in the direction of the finite field, with unit vector
x̂, as

〈
Fi
(
rN
)〉

E
=
∑

j=c,a

∫
dr ρjgi,j(r|E) x̂ · F(2)

i,j (r) , (3.17)

where ρj is the number density of the jth ion type, and we have introduced the pair distribution

functions gi,j(r|E) and the pairwise decomposable force, F
(2)
i,j , between ions of type i and j.

The pair distribution function is defined as an average within the nonequilibrium steady state

gi,j(r|E) =
1

ρiρj

〈 ∑

k∈Ni,l∈Nj

δ(rk)δ(r− rl)

〉

E

, (3.18)

normalized by the product of the densities of i and j. In the original Onsager treatment,
Eq. 3.16 is assumed to have the form, 〈J〉E/V = [σid + ∆σ(E)]E, where ∆σ(E) is the
correlated contribution to the conductivity computable from the knowledge of how the pair
distribution function changes with applied field.

Shown in Fig. 3.5(a) are the pair distribution functions between Na+ and Cl− for 0.1M
and εs = 10, and in Fig. 3.5(b) for the molten salt, as a function of increasing applied field. In
the presence of the field, the correlations deviate from spherical symmetry. As a consequence,
we plot gi,j(r|E) as a function of distance in direction of the applied field x, and orthogonal
radial coordinate r, as the correlations do retain cylindrical symmetry. With increasing field,
the correlations distort away from spherical symmetry, polarizing in the direction of the
applied field. This is more evident in the dilute solution compared to the molten salt. At
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Figure 3.5: Pair distribution functions ga,c(r|E), between Cl− and Na+ with increasing field,
in the cylindrical coordinates for the (a) dilute solution at 0.1M, εs = 10 and (b) molten salt.

large applied fields, the amplitude of the correlations decrease dramatically for the dilute
solution, clarifying the limit of uncorrelated motion noted in Fig. 3.5(b). Within the molten
salt correlations persist as even large fields are insufficient to mitigate packing constraints.
From Eq. 3.16, these persistent density correlations result in a non-vanishing friction that
depress the conductivity below σid.

3.3 Explicit Solvent Model 3

While we have illustrated how to construct the reweighting and interpret nonlinear behaviors
for an implicit model of NaCl solution, we focus on an explicit model in this section, where
water molecules are represented explicitly. We highlight the subtlety arised in the reweighting
procedure, and discuss the differences in the physical behaviors of the model.

Model System Description

Consider an electrolyte solution of NaCl of N species, composed of Na anions, Nc cations
and Nw water molecules in a volume V and fixed temperature T = 300K. As before, he
species’ positions and velocities are denoted rN = {r1, r2, . . . , rN} and vN = {v1,v2, . . . ,vN},
respectively. These variables evolve according to the same underdamped Langevin equation
as in Eq. 3.1, where the first Ni = Na + Nc labels i = 1, · · · , Ni correspond to the ions,
and the rest i = Ni + 1, · · · , N are reserved for the water molecules. The relaxation time is

3Most of the content of this section was originally written by the author for the following publication:
D. Lesnicki, C. Y. Gao, D. T. Limmer and B. Rotenberg, ”On the Molecular Correlations that Result in
Field-dependent Conductivities in Electrolyte Solutions”, arXiv: 2103.13907.
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Figure 3.6: Characteristic snapshots of NaCl solutions from the molecular dynamics simula-
tions with implicit (left) and explicit (right) solvent.

τ = 1000fs for all species. The pairwise interaction potential Uij consists LJ plus electrostatic
terms such that

Uij = 4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

+
1

4πε0

qiqj
rij

, (3.19)

where qi and qj are the charges on sites i and j, rij is the site-site separation, σij and εij
are the LJ length and energy parameters, and ε0 is the permittivity of free space. The LJ
parameters for Na+ and Cl− are chosen the same as in the implicit model, while the water
molecules are modeled with q-TIP4P/F model [133]. The usual Lorenz-Berthelot combining
rules, σij = (σi + σj)/2 and εij = (εiεj)

1/2, were used to calculate the LJ interactions.
In order to compare the solvent conditions, we also considered a system with an implicit

solvent as in Section 3.2 with dielectric constants εs = 60 of the corresponding water model.
The frictions corresponding to the diffusion coefficients calculated for the ions at infinite
dilution in the explicit solution are ζi = mi/τi with relaxation times τc = 10.1fs and τa = 21.3fs,
for the cations and anions with masses mc = 22.99 a.m.u. and ma = 35.45 a.m.u., respectively.

Simulations are performed for 100 ion pairs and 55508 (5540) water molecules for the
0.1M (1M) solution, using the LAMMPS code [134] with a modified Langevin thermostat to
ensure a Gaussian distribution of the noise. Snapshots of the systems are shown in Fig. 3.6.
Results for the conductivity are obtained from a series of 1ns nonequilibrium simulations for
finite fields between 0 and 0.1V/Å, in steps of 0.01V/Å, with statistical error estimated from
bootstrapping, while those for temporal correlations are obtained from 10 independent 10ns
trajectories.

Reweighting Formalism

As in the implicit model, the stochastic action can be constructed by comparing the ratio of
the probability to observe a trajectory with and without a perturbing field. The flexible water
model employed allows for independent noises to act on each atom in the water molecule,
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while a rigid model would color the noise due to the imposed geometric constraint. For
generality and for utility in subsequent analysis, we consider different perturbing fields with
magnitudes, E = {Ei, Ew} for the ions and water, respectively. As before, we take the field
along one Cartesian direction so that the relative action depends only on these magnitudes.
We further introduce the notation E(2) = {E2

i , E
2
w}. The stochastic action, decomposed

according to symmetry under time reversal, is then

∆UE
tN

=
1

2
[J + Q] · E− 1

4
Nλ · E(2) , (3.20)

which now depends on components of the currents J = {Ji, Jw}, and excess frenesy Q =
{Qi, Qw}, and vector Nλ = {Naλa +Ncλc, Nwλw} from the ions and the water, respectively.
The definition of the dynamical variables are similar to the implicit model, while the subscripts
indicate which species are included in the definition. For example, for the time reversal
asymmetric part,

Ji[x̃(tN)] =
1

tN

∫ tN

0

dt ji(t) , ji(t) =

Ni∑

i=1

zivi(t) ,

Jw[x̃(tN)] =
1

tNN

∫ tN

0

dt jw(t) , jw(t) =
N∑

i=Ni+1

zivi(t) ,

(3.21)

and similarly for the symmetric part Qi and Qw.
With the relative measure between trajectory ensembles defined in Eq. 3.6, we can relate

nonequilibrium trajectory averages in the presence of the field, to equilibrium trajectory
averages without the field. Following the derivation in Chapter 2 (Eq. 2.33), the ionic current
can be expressed as

〈Ji〉E =

〈
Jie

βtN[J+Q]·E/2〉
0

〈eβtN[J+Q]·E/2〉0
, (3.22)

where the joint equilibrium distribution can be obtained by reweighting the nonequilibrium
counterpart pE(J,Q) = 〈δ(Ji − Ji[x̃(tN)], Qi − Qi[x̃(tN)], Jw − Jw[x̃(tN)], Qw − Qw[x̃(tN)])〉E
according to the equation

ln p0(J,Q)

tN
=

ln pE(J,Q)

tN
− β(J + Q) · E

2
+
β

4
Nλ · E(2) . (3.23)

Note that in Eq. 3.22, the dynamical quantities of water are coupled with the ions through
the relative action. Even for observables that depend only on a subset of degrees of freedom,
like those of the ions, the exponential bias correlates them with the entire set of degrees of
freedom in the system.

A practical difficulty arises in applying Eq. 3.23 straightforwardly. As J and Q are both
extensive variables in particle number and observation time, when both are large, pE(J,Q)
becomes exponentially peaked about its most typical values, and the reweighting factors
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become large enough that it is difficult to represent them numerically. This makes performing
the reweighting cumbersome. A solution is found for observables that depend only on the ion
degrees of freedom, by treating the contribution to the reweighting factor from the water
approximately. An accurate approximation can be found by first writing the joint distribution
using Bayes theorem,

pE(J,Q) = pE(Ji, Qi|Jw, Qw)pE(Jw, Qw) (3.24)

= pE(Ji, Qi|Jw, Qw) exp[−tNNwIE(j̄w, q̄w)] ,

where the first term on the right hand side is a conditional probability, and in the second
line IE(j̄w, q̄w) is the rate function for intensive variables j̄w = Jw/Nw and q̄w = Qw/Nw.
The form of the marginal distribution of the water variables is known as a large deviation
form, and holds in the limit of large number of particles and observation time. Under the
assumption that the joint distribution IE(j̄w, q̄w) is peaked in (j̄w, q̄w), we use a saddle point
approximation to evaluate their contribution to the reweighting factors in Eq. 3.22. For the
marginal distribution of the ion variables p0(Ji, Qi) this leads to an approximate reweighting,

ln p0(Ji, Qi) ≈ ln pE[Ji, Qi|j∗w(Ew), q∗w(Ew)]− βtN(Ji +Qi)
Ei

2
−N (Ei, Ew) , (3.25)

where [j∗w(E), q∗w(E)] denotes the maximizer

[j∗w(E), q∗w(E)] = argmin
(j̄w,q̄w)

{ IE(j̄w, q̄w) + β(j̄w + q̄w)E/2} , (3.26)

and the normalization constant N (Ei, Ew) becomes

N = NwIEw(j∗w, q
∗
w) +

β

2
NwtN(j∗w + q∗w)Ew −

β

4
tNNλ · E(2) , (3.27)

which depends only on the applied external fields, not on any fluctuating variables.
We use this approximate expression for the reweighting procedure in the results presented

below. As the extensive dynamical variables related to water molecules are usually larger in
magnitude compared to the ions by an order of magnitude, due to Nw � Ni, this expression
greatly reduces numerical issues in dealing with the exponential of very large numbers. Note
that when the rate function IE(j̄w, q̄w) is quadratic, or the ions and water are uncorrelated,
this approximation is exact. Outside of those regimes, we still find it admits a faithful
approximation to the exact reweighting relation in Eq. 3.23, especially when using additional
fields to reconstruct ln p0(Ji, Qi) far into the tails of the distribution.

To compute the ionic conductivity, one simply needs to perform a differentiation. We first
consider the physical condition where the same field Ei = Ew = E is applied on the whole
system. The ionic conductivity defined as σ(E) = (1/V )d〈Ji〉E/dE can be rewritten as

σ(E) = lim
tN→∞

βtN
2V

〈(
(δJi)

2 + δJiδQi + δJiδJw + δJiδQw

)
eβ∆UE[X(tN)]

〉
0
, (3.28)



CHAPTER 3. ION TRANSPORT: FIELD-DEPENDENT CONDUCTIVITIES IN IONIC
SOLUTIONS 52

which includes both the self-correlations among the ions, and the cross-correlations between
ions and water molecules. This becomes evident upon a Taylor expansion on Eq. 3.28,

σ(E) =
βtN
2V

(〈
J2

i

〉
0

+ 〈JiJw〉0
)

+
3β3t3N

8V

(
1

6

〈
J4

i

〉
0
− 1

2

〈
J2

i

〉2

0
+

1

2

〈
δ(J2

i )δ(Q2
i )
〉

0

+
1

2

〈
J3

i Jw

〉
0
− 3

2
〈JiJw〉0

〈
J2

i

〉
0

+
〈
δ(J2

i )δ(QiQw)
〉

0

+
1

2

〈
δ(JiJw)δ(Q2

i )
〉

0
+

1

2

〈
δ(J2

i )δ(J2
w))
〉

0
− 〈JiJw〉20

+
1

2

〈
δ(J2

i )δ(Q2
w)
〉

0
+ 〈δ(JiJw)δ(QiQw)〉0 +

1

6

〈
JiJ

3
w

〉
0

−1

2
〈JiJw〉0

〈
J2

i

〉
0

+
1

2

〈
δ(JiJw)δ(Q2

w)
〉

0

)
E2 +O(E4) ,

(3.29)

where time reversal and spatial symmetry are invoked to eliminate terms of zero value.
Alternatively, one can construct an artificial perturbation where Ei = E, Ew = 0, i.e. the

external field is only applied to the ions. While this condition is not physical, its utility is
illustrated in the expression for ionic conductivity,

σ̃(E) = lim
tN→∞

βtN
2V

〈(
(δJi)

2 + δJiδQi

)
eβ∆UE[X(tN)]

〉
0
, (3.30)

where compared to Eq. 3.28, all the cross-correlations between the ions and the water
disappear in the Taylor expansion,

σ̃(E) =
βtN
2V

〈
J2

i

〉
0

+
3β3t3N

8V

(
1

6

〈
J4

i

〉
0
− 1

2

〈
J2

i

〉2

0
+

1

2

〈
δ(J2

i )δ(Q2
i )
〉

0

)
E2 +O(E4) . (3.31)

Thus by comparing the conductivity under the two scenarios, we can obtain an estimate of
the contribution from ion-water correlation, which is not readily extracted from the implicit
model.

Shown in Fig. 3.7 are the field-dependent conductivities of the explicit solvent system
at two concentrations, 0.1M and 1M. The reweighted results for both are computed from
Eq. 3.25 using tN = 10fs, which is long enough to justify the saddle point approximation and
converge the mean reweighted current. Specifically, we first constructed p0(Ji, Qi) using a
series of simulations at finite fields at the locations of the direct estimate in Fig. 3.7, and
then use the generalized version of WHAM to stitch joint histograms of Ji and Qi together.
Additionally, we have computed the conductivity from a numerical derivative of the average
current directly from a set of simulations at fixed field. While the two estimates are in good
quantitative agreement, the statistical errors are much smaller for the reweighted results,
as data across the whole fields are supplemented in each estimate. We also compare the
explicit model with the implicit model with corresponding parameters in Fig. 3.7(a), where
the conductivity agrees with the Nernst-Einstein limit, consistent with the results shown in
Section 3.2 for the high dielectric system.
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Implicit, 0.1M Explicit, 0.1M Explicit, 1.0M

Figure 3.7: Field-dependent ionic conductivities for the implicit model at (a) 0.1M, explicit
model at (b) 0.1M and (c) 1M. Lines are computed from reweighting p(J,Q), and symbols
are computed from finite differences of 〈J〉E versus E. Errorbars are one standard deviation
of the mean. In the explicit models we compare the case where an external field is applied on
both the ions and water (black), and only applied on the ions (blue). The red dashed lines
correspond to the Nernst-Einstein conductivities σid (Eq. 3.10).

We find that the conductivity in the explicit models is only weakly dependent on the field
and the curve is well fitted by a polynomial with a positive fourth order and a negative second
order term. The curves for the two different concentrations, 0.1M and 1M are remarkably
similar, though the latter exhibits a consistently lower conductivity. The conductivity at
zero field for both concentrations is suppressed relative to its value at infinite dilution, or
compared to its implicit solvent value.

From the ensemble reweighting theory presented earlier, we have a means of decoupling
the contributions to the field-dependent conductivity from the solvent and those from the
ions. Specifically, we can use a generalized ensemble where only a field is applied to the
ions, not the water, to deduce which correlations suppress the field dependence that result
directly from the water. When the field is only applied on the ions for both concentrations,
the conductivity grows quadratically with a large positive second order term. This is shown
in Fig. 3.7. The drastic difference between these two sets of results can be unravelled by
a comparison between the generalized fluctuation-dissipation relationships in Eq. 3.29 and
Eq. 3.31, where all cross-correlations between the ions and water are absent from the latter
expression. More specifically, the lower conductivity at zero field when the field is applied on
both the ions and water is a direct result of negative correlations in 〈JiJw〉0 at equilibrium.
The negative second order coefficient results from the negative fourth order correlations
between ions and water, among which the dominant term is 〈δ(J2

i )δ(Q2
w)〉0 due to the larger

number of water molecules and subsequently larger fluctuations in Qw.
While the ionic conductivity under the moderate field considered in Fig. 3.7 is weakly field-

dependent, it does eventually grow quadratically under very high fields as shown in Fig. 3.8.
The conductivity is found to exceed the Nernst-Einstein limit for free ions. However, this
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Figure 3.8: (left) High field behavior of 0.1M, explicit solvent system in an ensemble with the
field on both the water and the ions, Ei = Ew = E (black) or just on the ions Ei = E and
Ew = 0 (blue). Lines are computed from reweighting p0(J,Q), and symbols are computed from
finite differences of 〈J〉E versus E. Errorbars are one standard deviation of the mean. The
red dashed line corresponds to the Nernst-Einstein conductivity σid. (right) Charactoristic
snapshots from the molecular dynamics simulations at E = 0 (top) and E = 0.15V/Å
(bottom).

behavior is unphysical. Under fields higher than E = 0.1V/Å in our molecular simulations,
we find that the dipoles of the water molecule all align with the high field, restraining dipole
fluctuations, and leading to dielectric breakdown. Further, water molecules will start to
spontaneously dissociate at such high fields [135], which is not allowed due to the constraints
on water molecules in our model.

Decoding Molecular Correlations

To gain more physical insight into the relevant correlations, we rewrite the equation for the
conductivity using time integrated correlation functions

σ(E) = lim
tN→∞

βtN
2V

〈
(δJi)

2 + δJiδJw + δJiδQi + δJiδQw

〉
E

=
β

V

∫ ∞

0

dt [GJ(t) +GQ(t)] ,
(3.32)

where GJ(t) = Cjiji(t) + Cjijw(t), with

Cjiji(t) = 〈δji(0)δji(t)〉E ,

Cjijw(t) =
1

2
〈δji(0)δjw(t) + δji(0)δjw(−t)〉E ,

(3.33)
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(a) (b) (c)

Figure 3.9: Time-correlation functions for field-dependent conductivities of 0.1M explicit
solvent solution. (a) Time-correlation functions GJ(t) = Cjiji(t) + Cjijw(t) for E = 0 and
E = 0.1V/Å. (b) Contributions to the conductivity from current-current and current-frenesy
for E = 0V/Å. (c) Contributions to the conductivity from current-current and current-frenesy
for E = 0.1V/Å.

and GQ(t) = Cjiqi(t) + Cjiqw(t), with

Cjiqi(t) =
1

2
〈δji(0)δqi(t) + δji(0)δqi(−t)〉E ,

Cjiqw(t) =
1

2
〈δji(0)δqw(t) + δji(0)δqw(−t)〉E .

(3.34)

The conductivity away from equilibrium is a sum of the integrated current-current correlation
function, denoted by GJ , and integrated current-frenesy correlation function, denoted by GQ.
At zero field, GQ is zero due to time reversal symmetry, leaving GJ as the only contribution
to the zero-field conductivity. At finite fields when GQ should contribute to the conductivity
as well, for the concentrations studied, we find that the contribution from Cjiqi(t) negligible
compared to the other three terms. This is due to the screening effect of the explicit water
molecules that results in the ions being largely dissociated, so that the effect of ion-ion
interactions arises mainly from the relaxation of the ionic cloud rather than from ion pairing
and is thus weaker than short-range ion-water interactions. The Cjiqw(t) term exhibits large
statistical fluctuations due to the larger number and stronger intramolecular forces of the
water molecules, and is thus much more difficult to converge by brute force calculations.
We have to infer its contribution from the measured conductivities using the generalized
fluctuation-dissipation relationships.

Fig. 3.9 shows the current-current contribution to the response function for the 0.1M
explicit system at equilibrium E = 0 and at a finite field E = 0.1V/Å. Also in Fig. 3.9,
the total correlation function for E = 0 and E = 0.1V/Å are decomposed into their various
pieces. At zero field, both the ion-ion current self-correlation and the ion-water current cross-
correlation exhibit noticeable recoil effects evident in transient negative correlations. The
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(a) (b) (c)

Figure 3.10: Time-correlation functions for field-dependent conductivities of 1.0M explicit
solvent solution. (a) Time-correlation functions GJ(t) = Cjiji(t) + Cjijw(t) for E = 0 and
E = 0.1V/Å. (b) Contributions to the conductivity from current-current and current-frenesy
for E = 0V/Å. (c) Contributions to the conductivity from current-current and current-frenesy
for E = 0.1V/Å. Throughout errorbars are one standard deviation from the mean.

former (ion-ion), which spreads over longer timescales, integrates to a positive contribution,
and is the only term responsible for the zero-field conductivity when the field is only applied
to the ions. The latter (ion-water) integrates to a much smaller negative contribution, which
accounts for the difference between the zero-field conductivities between the two sets in
Fig. 3.7. At a higher field E = 0.1V/Å, the recoil effect in both correlations is reduced,
resulting in a larger integrated value of both current-current correlation functions, and a
more positive GJ(t).

We can infer the large contribution from Cjiqw(t) at finite field by contrasting the behavior
of σ(E) and σ̃(E). In the case where the field is applied only on the ions, the correlation
function Cjiji(t) integrates to a similarly large contribution as in the case when the field is
applied to both ions and water, and one that is larger than its zero field value. As Cjijw(t) and
Cjiqi(t) are persistently small at E = 0.1V/Å, the large difference between σ(E) and σ̃(E)
must result from significant negative contributions in the current-frenesy correlation function
Cjiqw(t) between the ions and the water. The physical origin of this negative correlation is the
relaxation effects that result from ion displacements that transiently distort the local dielectric
environment and generate a restoring force on the water molecules from the compensating
ionic cloud left behind. This term dominates the total correlation function and compensates
the increase in the current-current correlation functions, yielding a weak dependence on field
of the conductivity. Thus while the current-frenesy correlation function is difficult to compute
explicitly, from the above analysis we are able to infer its effect using the decomposition of
time-correlation functions.

Fig. 3.10 shows the correlation functions for the 1.0M system. Qualitatively, they are very
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similar to those for the 0.1M solution. Both systems exhibit noticeable recoil effects in the
current-current function due to ion-ion terms. In the 1.0M solution, the transient negative
correlation is larger than in the 0.1M solution. This is also true for the current-current function
due to ion-water terms. The combination of these negative correlations results in the reduced
conductivity at E = 0V/Å. As for the small concentration, the currrent-frenesy correlations
from ion-ion terms are negligible even at 0.1V/Å, and the suppressed field-dependence results
from the currrent-frenesy correlations from ion-water terms.

3.4 Conclusion

In conclusion, we have leveraged recent developments in the theory of nonequilibrium systems
to relate ionic conductivities to microscopic correlations under arbitrarily large electric fields
and solvent conditions. We have found that both the fluctuations of the ion’s displacement
as well as the dynamical fluctuations of the intrinsic electric fields acting on an ion, affect the
response of the ionic current to an additional external field. Considering the field-dependence
of the ionic conductivity, we have shown how nonlinear relationships between an ionic current
and applied electric field can emerge in weak electrolytes as ion correlations are reduced, and
how they are mitigated in strong electrolytes due to persistent solvent friction. Our method
works not only for strong electrolytes at low concentrations, for which approximate theories
[109, 136] can accurately predict the conductivity and its field-dependence, but also for weak
electrolytes or elevated concentrations where these theories break down.

This approach of reweighting nonequilibrium trajectories is general, and we expect will find
use more broadly in other cases of molecular transport. It will be particularly interesting to
apply these new statistical tools to investigate the nonlinear response of ionic liquids [137, 138],
as well as transport near charged interfaces, such as nonlinear electrofriction on corrugated
surfaces [139]. In the explicit solvent case, the present theoretical and numerical techniques
also provide new opportunities to investigate coupled transport processes, such as coupled
charge and mass transport in electrolytes [140], the origin of the frequency-dependent solvent
friction on the ions [136, 141, 142], and electro-osmotic response. While we have considered
bulk solutions of monovalent electrolytes, our approach is straightforwardly applied for
multivalent ions, where nonlinear reponses due to field-induced ion pair dissociation should
be more prominent, and can be extended to instances of transport in confinement [143–146],
in which case generalizations of our theory may provide insight into recent experimental
observations [114].
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Chapter 4

Heat Transport: Thermal
Rectification in 1D Nonlinear Lattice

4.1 Introduction

Heat conduction in low-dimensional materials have attracted much attention in recent years
thanks to advanced experimental techniques on nanoscale materials [147–151]. Compared to
bulk materials, reduced dimensionality and conservation laws give rise to unusual relaxation
and transport properties. For example, low-dimensional materials exhibit anomalous heat
transport behaviors, namely the breakdown of Fourier’s law of heat conduction

J = −κOT , (4.1)

where J is the heat flux, and OT the temperature gradient, which manifiests itself as a
divergence of the conductivity κ in the thermodynamic limit, where the number of particles
N →∞, and a slow decay of equilibrium current correlations. The limiting behavior, however,
depends on the system details. For example, for a homogeneous harmonic chain, κ ∝ N ,
indicating perfectly ballistic transport; whereas for a disordered harmonic chain with free
boundary condition, κ ∝ N1/2. The anomalous transport behavior is a signature that the
kinetics of the energy carriers is so correlated that they are able to propagate faster than
in the diffusive case. It has been studied with various theoretical approaches, including the
fluctuating hydrodynamics approach [152, 153], mode-coupling theory [154, 155], and kinetic
theory. However, the mechanism in specific models is not entirely clear, especially in the case
of nonlinear lattices.

A specific nonlinear model of particular interest in numerical and theoretical studies is
the one dimensional Fermi-Pasta-Ulam-Tsingou (FPUT) chain, where neighbouring particles
interact through a quadratic plus a cubic or quartic potential. It has been well-known that
the FPUT chain exhibits anomalous transfer behaviors [156], and the divergence exponent
κ ∝ Nα is reported to be between 0.3 and 0.45 numerically regardless of the boundary
condition [157, 158], which does not contradict with the mode coupling theory prediction
α = 0.4, or the result form fluctuating hydrodynamics α = 1/3 [152].
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The existence of solitons in nonlinear lattices was first discovered by computer simulations
in the solution of the Korteweg-deVries equation [159]. The supersonic solitons have since
been both numerically observed in a wide variety of lattices, and experimentally demonstrated
in crystalline solids [160]. The idea that solitons may play a role in heat conduction dates
back to Toda [161]. Early results from some 1D toy models suggest that the strong inhibition
of coherent solition propagation in the underlying chaotic dynamics produces a normal heat
conductivity independent of length [162, 163]. Later, it has been found that the temperature
dependence of the velocity of solitons agrees well with the sound velocity of energy transfers
[164]. The debate about whether the energy carriers in FPUT chains are solitons or effective
phonons has still not been resolved yet. In addition, other nonlinear excitations such as
breathers may also contribute to the heat transport in FPUT chains [164].

Apart from the anomalous heat transfer behaviors mentioned above, another type of
interesting behavior has been reported in low-dimensional nonlinear materials - thermal
rectification [165]. A thermal rectifier is a type of material with intrinsic structural asymmetry
so that it exhibits an asymmetric heat transport response when a temperature gradient is
applied. Such functional graded materials can be potential candidates for controlling the heat
flow at nanoscales. This behavior has been first observed experimentally in [147], and has been
modeled by mass graded nonlinear chains [166–168]. While a couple of numerical evidences
exist, the problem is far from being fully understood. Indeed, some early investigations
into the disordered FPUT model revealed that the simple perturbative picture in which
anharmonicity and impurities provide two independent scattering mechanisms does not hold
[169]. Furthermore, to our knowledge, the role of solitons in mass graded chain has not been
investigated.

In this chapter, we hope to further investigate the problem of thermal rectification in mass
graded FPUT chain, and provide some molecular insights into the problem. In Section 4.2
we provide a systematic study of the phenomenological behavior of thermal rectification in a
mass graded FPUT model. More specifically, we study how the chain length, mass gradient,
boundary condition, and average temperature affect the rectification behavior. In Section
4.3, we apply our large deviation formalism to this nonlinear transport process, and interpret
the higher order transport coefficients with correlation functions. In addition, we investigate
the influcence of mass gradient to solitons using the momentum excitation method, in order
to give a microscopic explanation to some of the results found in Section 4.2. We end the
chapter with some comments on future directions that remain to be investigated in Section
4.4.

4.2 Thermal Rectification in Mass Graded FPUT

Chain

Here we model a 1D thermal rectifier using the linearly mass graded FPUT chain, which has
been shown to capture thermal rectification behavior [168]. The schematic of the simulated
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Figure 4.1: Thermal rectification behavior in a mass graded FPUT chain with T0 = 0.1,
mh/ml = 20, and fixed boundary condition. (a) Schematic of the simulated system. (b) Tem-
perature profile for each particle i at ∆T = 0.05 for different chain lengths. (c) Nonequilibrium
current as a response to ∆T for N = 200. (Inset) Temperature profile at ∆T = ±0.05.

system is shown in Fig. 4.1(a). The mass of the ith particle is

mi = ml + (i− 1)(mh −ml)/(N − 1), i = 1, · · · , N (4.2)

where N is the total number of particles. The particles oscillate around their average position
bi = ia, while interacting with neighboring particles through the quartic FPUT potential,

VFPUT(r) =
N+1∑

i=1

κ

2
(ri − ri−1 − a)2 +

c

4
(ri − ri−1 − a)4 , (4.3)

where κ and c are the harmonic and anharmonic coupling, and a is the lattice constant.
The potential is also known as the FPUT-β potential. We differentiate between the fixed
boundary condition, where two fictitious particles are fixed at b0 and bN+1, and the free
boundary condition, where no such constraint is applied. We set ml = κ = a/2 = 1, to define
a dimensionless unit system, in which we also let c = 1. The equation of motion is integrated
by the velocity Verlet algorithm with a timestep of h = 5× 10−3.

To apply an external temperature gradient, we place the particles on the two ends in
contact with infinitely large thermal reservoirs kept at temperatures T1 = T0 + ∆T and
TN = T0 −∆T , respectively, with the average temperature T0. This is implemented by an
Andersen thermostat [67] on each of the two end particles, where the time interval ∆t between
successive collisions are distributed as P (∆t) = Γe−Γ∆t and Γ = 0.8 is the coupling strength
to the bath. Fig. 4.1(b) shows the typical temperature profiles for a range of length N , as
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determined from average kinetic energy. For different chain lengths, the temperature profile
does not exactly follow the scaling ansatz Ti = T (i/N). A temperature jump is observed at
the boundaries due to the Kapitza resistance between the system and the bath, which is much
larger at the higher mass end. Thus we will get rid of the first and last quarter of the profile
when computing the thermal conductivity. While a linear temperature gradient is developed
for small chain length, for large N the temperature profile is nonlinear, as observed in other
types of nonlinear lattices and has been explained by the Levy walk model [170, 171].

In the steady state limit, the heat current from the two ends must be same in magnitude
but opposite in direction, so we define the heat current as

j(x̃t) =
T0

4

(
m1v̇1v1 − v1F

FPUT
1 −mN v̇NvN + vNF

FPUT
N

)
, (4.4)

where FFPUT
i = −∂VFPUT(r)/∂ri. This can be interpreted as the rate of change in the kinetic

and potential energy, averaged over contributions from particle 1 and N , scaled by a factor of
T0/2. This constant factor will be convenient when we define the stochastic action in the next
section. Fig. 4.1(c) shows the time averaged nonequilibrium current at different temperature
gradients, which clearly exhibits asymmetric behavior due to the mass asymmetry. More
specifically, under the same magnitude of the affinity, the current flowing against the mass
gradient is weaker than the current flowing along the gradient. While this is partially due to
the boundary effect, as seen in the temperature profiles in the inset of Fig. 4.1(c), it cannot be
fully attributed to the temperature dependence of conductivity, as the average temperature
is higher in the case of ∆T > 0. We will explore the origin of this asymmetry in the rest of
this chapter.

Length Scaling of Conductivity

Due to the jump at the boundary and the nonlinear temperature profile described above,
there is some ambiguity in the definition of temperature gradient and thermal conductivity.
This may not come as a surprise, as the very definition of a temperature gradient relies
on the local equilibrium hypothesis, i.e. defining a local temperature for a macroscopically
small but microscopically large volume at each location in space. Following conventions in
the literature [172], we define the thermal gradient as OT = 2∆T ′/aN , where ∆T ′ is the
temperature difference between particle i = N/4 and i = 3/4N . The conductivity obtained
is thus the bulk conductivity and does not include boundary resistances, which depend on
the properties of the thermostat.

In Fig. 4.2 we show a systematic study on the bulk heat conductivity at different system
lengths N , average temperatures T0, and boundary conditions. The largest system size we
have studied is N = 8000, which is higher than most of the results reported in the literature.
While for the homogeneous mass FPUT chain, the scaling exponent α ≈ 0.4 regardless of the
boundary condition or the average temperature, we see that the scaling behavior seems to
be sensitive to such conditions in the mass graded FPUT chain. This may not come as a
surprise, as it is well known that the scaling of the conductivity depends on the boundary
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Figure 4.2: Length scaling of the bulk heat conductivity at different temperatures for the (a)
fixed boundary condition, and (b) free boundary condition, with mh/ml = 20.

condition even for inhomogeneous harmonic chains. For example, in disordered harmonic
chain, κ ∝ N1/2 for free boundaries, while with fixed boundaries κ ∝ N−1/2, behaving as an
insulator in the thermodynamic limit. Furthermore, the value of the thermal conductivity is
consistently lower for the fixed boundary case while keeping other parameters fixed, because
of the constraint on thermal modes.

At the lowest temperature T0 = 0.01, we observe a scaling behavior close to α = 1 for
both boundary conditions, which is quite different from the behavior at higher temperatures.
This is further evidence to the fact that many anharmonic models exhibit very slow relaxation
to equilibrium below a typical energy density, or temperature [173]. Indeed, it is well known
from the effective phonon theory that the dependence of thermal conductivity on temperature
exhibits two regimes: κ(T ) ∝ T−1 at low temperature region and κ(T ) ∝ T 1/4 at high
temperature region [174]. At a temperature as low as T0 = 0.01, the anharmonicity is rarely
explored by thermal fluctuations, and thus the system behaves similarly to a mass graded
harmonic chain, with a transport mechanism close to ballistic 1. However, the system must
deviate from truly ballistic transport due to the mass gradient scattering. This is confirmed
by the decrease in the scaling exponent at higher chain length, which is measured to be
around 0.9 for fixed boundary, and 0.8 for free boundary chain, at the largest system size
that we studied. Even larger system sizes need to be investigated to confirm whether the
scaling exponent will further decrease and converge with the results at higher temperatures,
as the mean free path of renormalized phonons is on the order of 105 for low frequencies
(ω < 0.1) at such a low temperature [175].

For the higher temperature T0 = 0.1, we observe a scaling exponent α = 0.31 for the free

1Note here even in the harmonic case, how the mass graded chain behaves drastically differently from the
disordered chain in the scaling behavior. The effect of mass profile on thermal modes remains to be studied.
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Figure 4.3: Comparison between the heat current in the mass graded nonlinear chain with
c = 1 (black) and the harmonic chain with c = 0 (blue). Both chains are operating at N = 20,
T0 = 0.1, mh/ml = 20 and fixed boundary condition.

boundary condition, while the scaling exponent is α = 0.57 for the fixed boundary condition
but clearly has not converged with length yet. These results are consistent with the reported
value for the uniform mass FPUT chain. At an even higher temperature T0 = 1, The scaling
exponent converges to α = 0.3 for both the free and fixed boundary condition, which is
consistent with the results reported in [168] even for infinitely high temperature. The faster
convergence behavior is due to the higher nonlinearity strength at higher temperature, and
as a result the mean free path of renormalized phonons is on the order of 104 (ω = 0.1) for
T0 = 0.1, and 103 (ω = 0.1) for T0 = 1[175].

To summarize, our results suggest that while the length scaling exponent of the bulk
thermal conductivity in mass graded FPUT chain may not be sensitive to boundary conditions,
it is dependent on the average temperature of the chain, especially at the low temperature
regime. While the exponent agrees with theoretical predictions in the high temperature limit,
the results at the low temperature regime is more complicated and not conclusive yet. Our
result needs to be confirmed with computations at even larger system size, especially for the
fixed boundary case where the exponent converges slower with N . However, such study will
of course be computationally costly, as the time required to reach the stationary state grows
exponentially with N .

Effect of System Parameters

It has been reported in the literature that the thermal rectification behavior in the simulated
model is very sensitive to specific parameters [168]. Indeed, it is only observable in an
intermediate range of temperatures with the fixed boundary condition. Here we study these
effects systematically, which is the first step to truly understand the nonlinear transport
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Figure 4.4: Comparison of the rectification ratio between different mass gradients, with
T0 = 0.1 and fixed boundary condition.

mechanism. We define the transport coefficients as

〈J〉∆T = L1∆T + L2∆T 2 +O(∆T 3) , (4.5)

where L1 is the thermal conductivity. Unlike the bulk conductivity shown in Fig. 4.2, L1

includes both the bulk and boundary resistance. To characterize the rectification effect, we
define R = L2T0/L1 as the rectification ratio, as this is related to the percentage modulation
of the heat current in the forward and backward direction.

One of the necessary conditions for rectification to arise is the nonlinearality of the lattice.
For example, we compare the heat current in the mass graded FPUT and harmonic chain at
N = 20, T0 = 0.1, mh/ml = 20 in Fig. 4.3. While the harmonic chain has a higher thermal
conductivity due to the absence of scattering from anharmonicity, it exhibits no thermal
rectification behavior despite of the mass gradient.

Secondly, the mass gradient plays a crucial role as well, without which thermal rectification
is absent due to the spatial symmetry. As seen in Fig. 4.4, increased mass gradients generally
induces a higher rectification ratio. The presence of inhomogeneous mass generally induces
localization of the normal modes of the chain, especially in high-frequency modes, as shown
in disordered harmonic systems. Even in the case of generic disordered chain, while the
dynamics is statistically invariant under spatial symmetry, the same does not hold true for
each individual eigenvector [172]. The modulation of thermal modes in the presence of mass
gradient remains to be studied though.

The third parameter that influence rectification is the average temperature T0, as shown
in Fig. 4.5, where rectification ratio is plotted as a function of N at different temperatures.
Note that in the N →∞ limit, the mass gradient vanishes and thus the rectification ratio
should also decay to zero. Therefore, the rectification ratio exhibits a peak when plotted as a
function of N , while the location of the peak shifts to lower N at higher temperatures. For
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Figure 4.5: Rectification ratio at different temperatures for the (a) fixed boundary condition,
and (b) free boundary condition, with mh/ml = 20.

the low temperature limit T0 = 0.01, the location of the peak is at a higher N than the range
plotted, which is similar to the slow convergence of the scaling exponent seen in Fig. 4.2.
It is worth noting that the conclusion arrived at in [168] that rectification only happens at
T0 = 0.1 is based on the data for N = 200. This is clearly not the case taken into account
the change in the system size as well. Indeed, given that the mass gradient decreases with N
as well, one might say that the rectification is indeed the strongest at the lower temperature
limit. Therefore, the explanation arrived there based on the mismatch of the vibrational
spectra needs to be reconsidered. In particular, more investigation into the low temperature
regime needs to be done to properly explain the rectification behavior.

Lastly, the boundary condition has a huge influence on the rectification, as seen in Fig. 4.5
as well. While for the free boundary condition, extended eigenmodes are allowed to exist, all
eigenmodes must vanish at the boundary under fixed boundary condition. The rectification
ratio for the fixed boundary condition is consistently higher than that of the free boundary
condition. In the case of fixed boundary condition, all rectification ratio is negative, while for
the free boundary condition, rectification ratios are positive for small chain lengths, which
is most likely a boundary effect. This suggests that the major contributor to rectificaiton
behavior may be very different depending on the boundary condition.
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Figure 4.6: Computation of the transport coefficients from the large deviation function in a
mass graded FPUT chain with N = 20, T0 = 0.1, mh/ml = 20, and fixed boundary condition.
(a) The shifted LDF ψ∗0(λJ , λQ1) at λQ1 = 10 (red), 0 (black) and −10 (blue). Solid lines
are quadratic fits. (Inset) Variance of the current as a function of λQ1 , measured from the
curvature of the LDFs. (b) Nonequilibrium current (black dots) and the prediction from
Eq. 4.8 approximated to the first (dotted red) and second order (dotted dashed blue), where
the shaded area represents the statistical error in the second order coefficient.

4.3 Microscopic Interpretation of Rectification

Nonlinear Response from the Large Deviation Formalism 2

To apply the large deviation formalism, we start by recognizing that the affinity for the heat
transfer process is X = 1/(T0−∆T )−1/(T0 +∆T ) ≈ 2∆T/T 2

0 . For the Andersen thermostat,
the path probability can be written as

P∆T [x̃] ∝
∏

k

√
m1

2πT1

exp[−m1v1(tk)
2

2T1

]×
∏

l

√
mN

2πTN
exp[−mNvN(tl)

2

2TN
] , (4.6)

where tk(tl) are times at which the first(last) particle collides with the bath. From this we
can derive the relative path action, and the time-symmetric part follows as

Q1[x̃] =
T0

4tN

(∑

k

m1v
2
1(tk)−

∑

l

mNv
2
N(tl)

)
− J [x̃] . (4.7)

Note that since we have chosen to express the action in terms a Taylor expansion of ∆T , we
have an infinite series of time symmetric parts; however, we could have formulated in terms

2Most of the content of this subsection was originally written by the author for the following publication:
C. Y. Gao and D. T. Limmer, ”Nonlinear Transport Coefficients from Large Deviation Functions”, The
Journal of Chemical Physics 2019, 151 (1).
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of ∆(1/T ), in which case there will only be one single term Q1. The average current as a
function of ∆T becomes

〈J〉∆T = βtN
〈
J2
〉

0

2∆T

T 2
0

+ β2t2N
〈
J2Q1

〉
0

(
2∆T

T 2
0

)2

+O(∆T 3) . (4.8)

The first term is the standard Green-Kubo result for the thermal conductivity in terms of an
integrated heat flux autocorrelation function. The second term correlates the squared heat
flux with the instantaneous temperature difference, and results in an asymmetric response of
the current. Since the masses of the two ends are different, the time dependent temperature
fluctuations on either side of the chain need not be the same. This expression illustrates that
thermal current rectification is a product of microscopic correlations between instantaneous
temperature gradients and heat fluxes.

The evaluation of ψ0(λ) from diffusion Monte Carlo is shown in Fig. 4.6(a), while the
nonequilibrium simulation results of the current is shown in Fig. 4.6(b). Both the LDFs
and the nonequilibrium simulation results averaged over 9600 realizations are calculated for
trajectories with tN = 2 × 105. The LDFs are evaluated at λJ ∈ [−32, 32] for λQ1 = 10,
and λJ ∈ [−20, 20] for λQ1 = 0,−10. Eight independent samples are calculated at each
combination of λ, and standard deviations are plotted as error bars in Fig. 4.6(a). For each
set of samples at a specific λQ1 , a parabola is fit, and the error bars in inset of Fig. 4.6(a)
are the standard deviation among the 8 curvatures. To estimate the statistical error in the
second order transport coefficient, the fitted slope in the inset of Fig. 4.6(a) is evaluated
individually for each of the 8 sample sets, and standard error of the mean is reported in
Fig. 4.6(b). While tN 〈J2〉0 is measured by the curvature of ψ0 with λQ1 = 0, t2N 〈J2Q1〉0 is
measured by how the curvature changes as we change λQ1 . Given the definition of Q1, the
change of the curvature with λQ1 directly reports the change in the thermal conductivity
with a temperature gradient. To make a better comparison, we plot the shifted LDFs
ψ∗0(λJ , λQ1) = ψ0(λJ , λQ1)− ψ0(λJ , λQ1 = 0) so that all the curves have the same minimum
value at λJ = 0. Our method correctly predicts the rectification behavior with high accuracy.

To demonstrate the statistical efficiency of our approach, in Fig. 4.7 we compare the
statistical error in the evaluation of t2N 〈J2Q1〉0 by direct evaluation and using the cloning
algorithm. The direct evaluation, plotted as λJ = 0 in Fig. 4.7, is evaluated by computing the
triple correlation function by brute force averaged among 1.2× 105 independent trajectories.
In the cloning algorithm, we evaluate ψ(λJ , λQ1 = 10) for various λJ ’s with the same
number of walkers Nw = 1.2× 105, and compute the correlation function by t2N 〈J2Q1〉0 =
2[ψ0(λJ , λQ1)−ψ0(λJ , 0)−ψ0(0, λQ1)]/(λ2

JλQ1). Statistical errors are estimated by the standard
deviation from 9 independent simulations. We have chosen the same number of walkers
and independent trajectories to ensure that the computational effort in terms of number of
integration steps is the same. For equal computational effort evaluating 〈J2Q1〉0 from the
large deviation function exhibits smaller statistical error for sufficiently large λJ ’s, as shown
in Fig. 4.7. For a fixed λQ1 , the error in the curvature of ψ0 with respect to λJ should scale

as ∝
√
ψ′′0(λJ)/Ñw/ψ0(λJ) = 1/(λ2

J

√
Ñw), where Ñw is the number of uncorrelated walkers.
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Figure 4.7: Comparison of statistical error in t2N 〈J2Q1〉0 from direct evaluation (plotted as
λJ = 0) and the cloning algorithm for different λJ ’s while fixing λQ1 = 10. Red dots are for
positive λJ ’s while black crosses are for negative ones.

Even though the correlation between the walkers as λJ increases brings in a non-trivial
dependence of Ñw on λJ , overall the cloning algorithm still out-performs the direct evaluation
for |λJ | > 8 by about an order of magnitude.

Alternatively, one can compute the first order coefficients as a function of ∆T by

L1(∆T ) =
2βtN
T 2

0

(〈
(δJ)2

〉
∆T

+ 〈δJδQ1〉∆T
)
, (4.9)

where two integrated correlation functions evaluated in nonequilibrium steady states contribute
to the thermal transport - the heat current auto-corelation function, and the current-activity
cross correlation function. This result is shown in Fig. 4.8 for a few different scenarios, all
of which agree with direct nonequilibrium simulations within statistical uncertainty. The
thermal conductivity increases or decreases with ∆T linearly, which is a clear sign of thermal
rectification. We can further decompose the contributions from the two correlation functions in
Fig. 4.8. Interestingly, both terms respond asymmetrically with ∆T , while the auto-correlation
function is the main contributor to the rectification behavior. For example, in Fig. 4.8(a)
where the rectification ratio is negative, both correlation functions increase in magnitude at
negative ∆T , while staying plateaued at positive ∆T . At negative ∆T , the increasing current
auto-correlation function contributes most to the higher thermal conductivity, indicating
increasing density of energy carriers when the temperature at the lower mass end is increased.
At positive ∆T , the decreasing cross correlation function contributes most to the lower
thermal conductivity, which can be interpreted as a boundary effect. Similar behavior can be
found in Fig. 4.8(c) for the free boundary chain, though the asymmetry is less evident. In the
scenario in Fig. 4.8(b) where the rectification ratio is positive, the correlation functions behave
oppositely to the other two scenarios - the autoco-rrelation function increases in magnitude
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Figure 4.8: Computation of the thermal conductivity from nonequilibrium correlation func-
tions in a mass graded FPUT chain at T0 = 0.1 with (a) N = 200, mh/ml = 10, and
fixed boundary condition; (b) N = 20, mh/ml = 20, and free boundary condition; (c)
N = 400, mh/ml = 20, and free boundary condition. (Left) Comparison between results from
nonequilibrium simulations (grey) and Eq. 4.9 (black) with one standard deviation. (Right)
Integrated correlation functions tN 〈(δJ)2〉∆T (blue) and tN 〈δJδQ1〉∆T (red).
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Figure 4.9: Soliton dynamics in the uniform mass FPUT chain with mh = ml = 1, free
boundary condition, and an initial excitation of v0 = 1. (a) Snapshot of the relative
displacements at t = 9000, with the compressional soliton at j = 9331. (Inset) Soliton
position as a function of time. (b) The relative displacement of the soliton as a function of
time.

at positive ∆T , and the cross correlation function increases in magnitude at negative ∆T .
Both correlation functions contribute equally to the rectification behavior, indicating a more
significant role played by the boundary effects.

Momentum Excitation Method

Solitons are promising candidates for energy carriers in FPUT chains. A typical method used
to investigate solitons numerically is the momentum excitation method. In the momentum
excitation method, an initial perturbation is applied on the first particle

ẋj = v0δj,1 , xj = ja , (j = 1, · · · , N) (4.10)

while the rest of the particles start at their equilibrium position with zero velocity. The
displacement of particle j from its equilibrium position at subsequent times is measured
by uj = xj − ja. When |v0| is higher than a certain threshold, a supersonic soliton can be
observed separated from the phonon wave front, as seen in Fig. 4.9(a), where φj = uj − uj−1

denotes the relative displacement between the adjacent particles. While the position of the
soliton changes linear with time, its magnitude oscillates periodically with time, the pattern
of which depends on the initial excitation v0. Tracing the position and the magnitude of
the soliton with time gives us a measurement of its velocity vs and activation energy εa, the
latter of which is defined as the average kinetic energy per site of a soliton.

In Fig. 4.10 we plot the relationship between the soliton velocity, its activation energy,
and the excitation energy defined as εe = m1v

2
0/2 for FPUT chains with uniform mass m = 1
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Figure 4.10: (a) Soliton velocity vs as a function of its activation energy εa. (b) Activation
energy εa as a function of excitation energy εe.

and m = 20. For the higher mass, we scale the soliton velocity by
√
m and find perfect

agreement between the two curves. This simple scaling relationship is evident from the
equation of motion for the FPUT chain. The soliton velocity vs scales as ε

1/4
a in the high

energy limit, which is in agreement with the prediction of sound velocity from nonlinear
fluctuating hydrodynamics. Assuming a Boltzmann distribution of solitons at the temperature
εa/kB, this indicates that the temperature dependence of the soliton agrees with that of
the sound velocity of energy transfer, which is seen as evidence that solitons are promising
candidates for energy carriers in FPUT chains [176]. While the activation energy increases
with the excitation energy, its dependence is different in the low and high energy regime. In
the low energy limit, the activation energy grows quadratically with the excitation energy; in
the high energy limit, the two changes in a linear fashion. This indicates different soliton
dynamics dependent on the temperature regime, which is similar to the results we have
seen for the rectification behavior. It is worth mentioning that there is a threshold in the
excitation energy εe ≈ 0.3, below which the velocity of the soliton is lower than the phonon
front, so that an isolated soliton peak cannot be observed.

To investigate the effect of mass gradient in the soliton dynamics, we next use momentum
excitation method to generate solitons in a mass graded FPUT chain. To observe the soliton
against the mass gradient, the mass along the chain is defined as in Eq. 4.2 with ml = 1. To
observe the soliton following the mass gradient, we again impose a momentum excitation
at the first particle, but we set mh = 1 and vary the value of ml in Eq. 4.2 instead. In
Fig. 4.11(a) we again plot the relative displacements along the chain for a soliton against the
mass gradient with N = 20000, mh/ml = 200, and free boundary condition. Compared with
the uniform mass chain in Fig. 4.9(a), we observe a clear difference in the configurations,
especially at the left end of the chain, where chaotic behaviors arise in the mass graded
chain. The velocity of the soliton decreases with the increasing mass, as seen in the inset of
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Figure 4.11: Soliton dynamics in the mass graded FPUT chain with N = 20000, mh/ml = 200,
free boundary condition, and an initial excitation of v0 = 1. (a) Snapshot of the relative
displacements at t = 19000, with the compressional soliton at j = 4294. (Inset) Soliton
position as a function of time. (b) The relative displacement of the soliton as a function of
time. (Inset) Soliton velocity vs as a function of mass. The black curve is the power law fit
vs = 0.9849m−0.492.
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Fig. 4.11(a). The difference is even more striking when we plot the height of the soliton peak
with time in Fig. 4.11(b). While the magnitude starts at a similar value as in the uniform
chain, it decays dramatically with time until plateauing to a smaller value. The periodic
oscillation seen in the uniform chain is replaced by a more chaotic behavior, which is a result
of the mass scattering effect. This behavior is seen at higher excitation energy as well, though
the decay of the magnitude is less dramatic.

To quantify the effect of the mass scattering, we plot the soliton velocity as a function
of its mass in the inset of Fig. 4.11(b) and fit a power law function vs = Am−B. Naively
the velocity should scale as m−0.5 as explained earlier. The result we obtain is B = −0.492,
which is in good agreement, while A = 0.9849 is interpreted as the velocity extrapolated to
m = 1. We compare this extrapolated soliton velocity with the velocity in the uniform chain
with m = 1, and plot the difference ∆vs = vs(m = 1)− A for a series of mass gradients in
Fig. 4.12(a). Alternatively, one can compare the difference in the activation energy of the
soliton, defined similarly as ∆εa, as it is positively correlated with vs. This result is shown in
Fig. 4.12(b) for both positive and negative mass gradients. While both results are prone to
statistical uncertainties, their positivity in the case of positive mass gradients confirms the
fact that solitons traveling against the mass gradient has a smaller velocity and activation
energy due to the mass scattering. The effect becomes more evident at higher mass gradients,
while it seems absent in the case of negative mass gradient. The decrease in activation energy
also indicates that the threshold of excitation energy to generate an isolated soliton is higher
against a higher mass gradient. Given that this threshold is quite low at εe ≈ 0.3, one might
explain the weaker rectification behavior seen in higher temperatures with the fact that
soliton generation is relatively insensitive to the mass gradient at such high temperatures.
This asymmetric effect also partially explains the fact that increasing the temperature at
the lower mass end facilitates the generation of solitons against the mass gradient, and thus
increases the heat conductivity, while increasing the temperature at the higher mass end has
a smaller effect on the density of the energy carriers generated at the boundary.

The results we have shown so far are all concerned with the free boundary condition. In
the case of fixed boundary condition, the momentum excitation method illustrates a far more
complicated picture of heat transport. As seen in Fig. 4.13, multiple nonlinear excitations,
including soliton, kink, and breather, arise and interact with each other in the mass graded
FPUT chain. While the different behaviors against and following the mass gradient is evident,
a more systematic study on their statistics is needed to interpret their role in heat transport.

4.4 Conclusion

In this chapter, we have presented a systematic study on the anomalous transport and
thermal rectification behavior in FPUT chain, and explored the microscopic origin of nonlinear
behaviors using correlation functions and momentum excitation method. Our result suggests
that the heat transfer mechanism is different in the low temperature and high temperature
regimes, and the energy carriers are of different nature in fixed and free boundary chains.
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Figure 4.13: (a) Snapshot of the relative displacements at t = 15000 with an initial excitation
of v0 = 8, for a FPUT chain with mh/ml = 20. Multiple breathers (blue star) and a kink
soliton (green star) are observed. (b) Snapshot of the relative displacements at t = 9000 with
an initial excitation of v0 = 8, for a FPUT chain with ml/mh = 20. Multiple solitons (red
star) and a kink soliton (green star) are observed.

While we have only studied the dynamics of isolated solitons based on the method of
momentum excitation, more investigations into soliton-soliton interactions, and solitons with
thermal fluctuations need to be done. The right approach to use on this problem is not
entirely clear, though a few recent work in this direction have shed light on the behavior
of solitons in thermal environments. For example, a study on the scattering of solitons in
nonlinear lattice models suggests that solitons can have only a relatively short survival time
when exposed in a thermal environment [177]. Another study on the Korteweg-de Vries
equation with noise and damping suggests a normal diffusion behavior for solitons with very
low energy [178].

More broadly speaking, the interplay between anharmonicity and mass gradient can lead
to unexpected results, and are still far from being fully understood. Despite the already
heavy numerical efforts devoted to the problem, much longer time scales and system sizes
have to be explored in order to fully appreciate the role of nonlinear terms.
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Chapter 5

Electron Transport: Nonlinear
Transport in Computing Circuits

5.1 Introduction 1

The last decade has seen an exponential growth in energy consumption associated with
information, communications, and computing technologies. Such resource demands are not
sustainable, and thus there is a need to design devices with reduced energetic costs. While the
problem of computing efficiency dates back to Landauer [179, 180], with modern developments
in stochastic thermodynamics, this problem is actively being revisited [181, 182]. The main
goal of this chapter is to bridge the gap between developments in nonequilibrium statistical
physics and circuit engineering by proposing a model for stochastic logic circuits that is
thermodynamically consistent, and thus amenable to physical analysis and constraints, but
simple enough to be extendable to complex computing tasks. By treating thermal fluctuations
in electron transport explicitly at a mesoscopic scale, our model reproduces the behavior of a
robust circuit in the low noise limit, but describes errors accurately away from this limit. With
this model we explore the consequences of carrying out computations at low thermodynamic
costs and finite time, and provide design principles for low dissipation computing devices.

State-of-the-art semiconductor devices are typically built from metal-oxide-semiconductor
field effect transistors on the scale of a few nanometers, enabling billions of transistors to
be packed on a single chip. In order to mitigate heating and large energy consumption
burdens, it would be advantageous to operate such small devices with small bias voltages,
however as biases approach thermal scales, fluctuations increase, which necessitates a careful
treatment of thermal noise [183, 184]. The conventional treatment of thermal noise is largely
phenomenological and involves either a correction to the power spectral density [185], or
transformation of the internal noise into external independent sources [186, 187]. Such models

1Most of the content of this chapter was originally written by the author for the following publication:
C. Y. Gao and D. T. Limmer, ”Principles of Low Dissipation Computing from a Stochastic Circuit Model”,
arXiv: 2102.13067.
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are typically valid only near equilibrium where the fluctuation-dissipation theorem can be
invoked to constrain their functional form [188], whereas higher order correlations are needed
in general to determine the full response [21, 189, 190]. While these models can provide
insight into how thermal noise may put a physical limit on the density of transistors [191],
their validity in non-linear electrical networks operating far from equilibrium is uncertain.

Stochastic thermodynamics provides a theoretical way to move beyond an equilibrium
description of thermal noise and its impact on information processing [192]. While information
theory provides limits on the accuracy of typical communication [193, 194], stochastic
thermodynamics provides generalized fluctuation-dissipation relationships, and places limits
on the work required to implement a physical process in finite time and the spectrum of its
fluctuations [13–15, 195]. The link between information theory and stochastic thermodynamics
has generated a wealth of expressions relating precision, speed and dissipation, including
the thermodynamic uncertainty relationships, speed limits, and fluctuation theorems. For
example, dissipation bounds the rate at which a system transforms between different states
[196–200]. Dissipation also provides an upper bound for the precision of a current [17,
201, 202]. A universal tradeoff between power, precision and speed has been proposed for
communication systems as well [203]. These theoretical results have found application in many
biological processes that natively operate near thermal energy scales [16, 204–208]. Placed
in the context of artificial computing, these relationships have shed light on fundamental
constraints on the design of computing devices to minimize thermodynamic costs [181, 182,
209–212].

While such theoretical results are general, to apply them to the problem of computing
design requires a realistic physical representation of information processing, such as bit storage,
measurement, and erasure. Some success has been made with non-linear single electron devices
and Coulomb blockade systems [213–215], where the logical states are represented by the
presence of a few electrons. More recently, thermodynamically consistent stochastic models
have been proposed for transistors and non-linear electronic circuits [216–218]. Even though
such models are capable of describing a broad range of nonlinear devices at a macroscopic
level, they are based on continuum descriptions and therefore model parameters are chosen
phenomenologically. Here we adopt a different approach where single logic gates are described
by a tunnel junction model on the mesoscopic scale, combined with a capacitive circuit model
for the charging and manipulation of the device. Such an approach is able to describe electron
transport processes consistent with the fluctuation theorems [219, 220], but also consistent
with the complementary metal-oxide-semiconductor (CMOS) circuit platform used widely in
modern computing devices. Therefore, it provides an ideal platform to study circuit behaviors
with the tool of stochastic thermodynamics.

In the chapter that follows, we demonstrate principles for low dissipation computing by
constructing a stochastic model for logic circuits from a bottom-up approach. By working with
elementary linear components, we can build nonlinear circuits that are thermodynamically con-
sistent. We first introduce a mesoscopic model for transistor based on the Landauer-Büttiker
formalism in Section 5.2. In Section 5.3 we introduce a model for single gates, including
the NOT gate and the NAND gate, and discuss their physical properties. We then study in
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Figure 5.1: Kinetic diagram of the mesoscopic model for a transistor.

Section 5.4 the collective behaviors of these basic components, including spatial correlations
within combinational circuits, and temporal correlations within sequential circuits, where the
emphasis will be on circuit design principles. The logic circuits are finally modularized and
scaled up to a computing device to illustrate how multiple components are synchronized to
complete a computing task in Section 5.5. Throughout, the thermodynamically consistent
model enables a description of errors and dissipation.

5.2 Tunnel Junction Model for Transistors

The Landauer-Büttiker formalism provides an atomistic view of electrical resistance, and
has been used to study mesoscopic physics in Aharonov-Bohm ring, and the quantum dot.
Here we build a mesoscopic model for a single transistor based on the Landauer-Büttiker
formalism [221], the kinetic diagram of which is provided in Fig. 5.1. The electrodes are
modeled by electron reservoirs with chemical potential µj, with j = s, d denoting the source
and drain respectively, and follows the Fermi distribution of electron density

fj(x) =
1

eβ(x−µj) + 1
, (5.1)

where β = 1/kBT , kB is the Boltzmann constant, T the temperature of the device, and x the
electron energy. The source is kept at µs = 0kBT as the reference, and the drain is kept at
voltage Vd so that µd = −qVd. The channel, denoted by c, is modeled with a single electron
level with energy ε. Electron can jump between the reservoirs and the channel ballistically
with an escape rate Γ from any site (s, d or c). If we denote p1 as the probability that the
channel is occupied, and p0 = 1− p1 as the probability that the channel is empty, we can
then write down a master equation for the occupation of the channel

ṗ1 = (kcsp0 − kscp1)− (kdcp1 − kcdp0) , (5.2)

where the transistion rates kji that describe the exchange rate of an electron from site i to j
are given by

kcs = Γfs(ε) , ksc = Γ[1− fs(ε)] ,
kcd = Γfd(ε) , kdc = Γ[1− fd(ε)] .

(5.3)
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The steady state solution of Eq. 5.2 gives the electron current across the source and the drain

J =
Γ

2
[fs(ε)− fd(ε)] . (5.4)

In other words, it is only when the energy level ε lies within a few kBT of the potentials µs
and µd that we have fs(ε) 6= fd(ε) and a current flows.

To model a transistor, we need to a mechanism to tune the channel energy ε by some
input voltage, which plays the role of the gate voltage in a field-effect transistor. It is worth
mentioning here that there are typically two types of transistors used in modern CMOS
circuits, the N-type and P-type transistors. They are differentiated by their major charge
carriers - electrons for N-type and holes for P-type. In the N-type transistor, a positive gate
voltage applied to the gate lowers the energy levels in the channel, which makes the channel
more conductive and turns the transistor on. In the P-type transistor, on the other hand, a
negative gate voltage increases the number of holes in the channel, and thus induces a on
state in the transistor. To model the effect of the gate voltage accurately requires solving
the electrostatic equations to determine the electron density in the channel. In our model,
for simplicity, we let the channel energy level εi with i = N,P for the N-type and P-type
transistors change linearly with an input voltage Vin, which is a good approximation in the
limit of high gate capacitance [221],

εP = ε0P + qVin , εN = ε0N − qVin , (5.5)

where ε0i=N,P are reference energies and q is the unit of electric charge. The sign of the slope
differentiates the N and P-type transistors with different charge carriers. Fig. 5.2 shows
the current flowing across the transistors with reference energy ε0P = ε0N = 0kBT at different
Vin. As can be seen, with Vin tuning the energy level of the channel, we can reproduce the
switching behavior observed in the transistor.

5.3 Model for Single Gates

Modern CMOS circuits implement logic functions in an energy efficient manner by integrating
N-type and P-type transistors. Based on the model introduced in the last section, we again
choose a mesoscopic tunnel junction model to describe electron transport in a single gate
[221]. As before, the transistors are modeled by two single electron levels of energy εi with
i = N,P for the N-type and P-type transistors. The electrodes are modeled by electron
reservoirs with chemical potential µj with j = s, d, g denoting the source, drain, and gate
respectively. Electron transfer among them is described by a Markovian master equation,
parametrized by transition rates kji. The transition rates are chosen to satisfy a local detailed
balance condition, and thus guaranteeing thermodynamical consistency,

kji
kij

= e−β(Ej−Ei) . (5.6)
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Figure 5.2: Current as a function of drain voltage in the mesoscopic model for a (a) P-type
and (b) N-type transistor. VT = kBT/q denotes the thermal voltage. The escape rate is
chosen as β~Γ = 0.2, and the reference energy ε0P = ε0N = 0kBT .

The energy is described by either the band energy for an electron in the transistor εi, or a
chemical potential µj , for an electron in an electrode. The condition of local detailed balance
is a prerequisite for the application of stochastic thermodynamics, as it ensures a correct
description of dissipation away from equilibrium, and relaxation to a Boltzmann distribution
at equilibrium. While local detailed balance models each microscopic transition as being
thermally mediated, emergent nonlinear behaviors resulting from collections of transitions
can take the system arbitrarily far from equilibrium [222].

The energy levels of the transistors are controlled by an input voltage denoted Vin as in
Eq. 5.5. In the case of a field-effect transistor, Vin refers to the gate voltage that switches
the transistor on and off. In our model, a voltage also uniquely determines the energetics
of the electrodes by modulating their chemical potentials, µj = −qVj. Throughout, we will
differentiate between two different types of electrodes. The first type, including the source
and drain electrodes, are kept at fixed potentials, Vs and Vd, respectively. The second type,
the gate electrode, satisfies a capacitive charging model with a fluctuating voltage Vg for
reading out a gate. This is justified by the fact that in CMOS circuits, the output of a single
gate is usually used as the input of another gate, in which case the two are connected through
a capacitor. The dynamics of Vg is described by the equation of motion

Cg
dVg
dt

= −Jg(t) , (5.7)

where Cg is the capacitance and Jg is the electron current flowing into the electrode from the
transistors. The constant capacitance implies a quadratic energy for charging the electrode,
E = CgV

2
g /2.

We adopt a semi-classical ballistic transport model for the rate of transfer of an electron
from an electrode into or out of a transistor [223–225]. Such a description is valid in the weak
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coupling limit between a transistor and an electrode relative to the thermal energy, and for
transistors that are small in scale relative to the mean free path of the electron. We restrict
our analysis to single energy level transistors, for which the corresponding transition rates
between transistor i and electrode j are

kij = Γfj(εi) , kji = Γ[1− fj(εi)] , (5.8)

where fj(x) is the Fermi distribution defined in Eq. 5.1. The prefactor Γ is related to contact
resistances and is chosen so that the timescale of electron transitions is longer than the
timescale of thermal fluctuation, and thus the broadening of energy levels due to the coupling
is smaller than thermal fluctuations. In making these assumptions to simplify our model, we
have neglected effects such as scattering within the transistor, delocalization between the
electrode and the transistor, and electron correlations, each of which can be incorporated
into our model as long as thermodynamical consistency is retained.

Since we will be considering energy scales on the order of thermal fluctuations at the
room temperature, we use VT = kBT/q ≈ 26meV and β~ ≈ 25fs as our units of voltage and
time, where ~ is Planck’s constant. The voltage signal to noise ratio Vd/VT in our model will
be on the order of 10, which is the prerequisite of low dissipation in the computing process
since the two are closely related. While this ratio is two orders of magnitude lower than the
current industry level, and requires delicate operation of the device, it can be experimentally
achieved by designs such as the single-electron box [226, 227].

We reference potentials relative to the source voltage so that Vs = 0VT , and take ε0P = 0kBT
and ε0N = 1.5qVd so that there exists only one independent energy parameter Vd. The transition
rate constant is chosen as β~Γ = 0.2 to ensure the weak coupling assumption is valid [228].
To study the dynamics of the gates, we use both the exact steady state solution of master
equation when possible, and Gillespie simulations [229] to sample individual trajectories. We
set Cg = 200q/VT in order to separate the timescales of capacitor charging from individual
electron transfer events, simplifying the Gillespie simulations. Details of the numerical
methods and the justification of the parameters will be specified in the following subsections.

NOT Gate

The NOT gate, also known as the inverter, takes a single binary input X, and generates
its complement as the output Y . The circuit diagram of the NOT gate, composed of two
transistors, is shown in Fig. 5.3(a). The N-type transistor is connected to a lower source
voltage Vs = 0VT on its left, while the P-type transistor is connected to a higher drain
voltage Vd to its right. Both transistors are controlled by an input voltage Vin as in Eq. 5.5,
which is treated as fixed in a single gate, while the output voltage Vout is measured between
the two transistors from the capacitor voltage Vg, which evolves according to Eq. 5.7. The
kinetic diagram for our Markovian model is also shown in Fig. 5.3(a). Electrons can move
ballistically between adjacent sites in the kinetic diagram according to a master equation.
The Markovian system is described by the occupation number of the two single electron
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Figure 5.3: (a) Circuit diagram (above) and kinetic diagram (below) of a NOT gate, which is
composed of a N-type (left) and a P-type transistor (right). (b) Voltage transfer curve of a
NOT gate.

levels nN, nP = 0/1, and the gate voltage Vg. Electrons can jump between the transistors and
the reservoirs only if the target site is empty. The rate describing the exchange of electrons
between the transistors and the reservoirs are given by

kNs = Γfs(εN) , ksN = Γ[1− fs(εN)] ,

kPd = Γfd(εP) , kdP = Γ[1− fd(εP)] ,

kNg = Γfg(εN) , kgN = Γ[1− fg(εN)] ,

kPg = Γfg(εP) , kgP = Γ[1− fg(εP)] .

(5.9)

The transition rate between the two transistors depends on their relative energy levels, for
example in the case of εP > εN,

kPN = Γn(εP − εN) , kNP = Γ[1 + n(εP − εN)] , (5.10)

where n(x) = [eβx − 1]−1 is the Bose-Einstein distribution. The rate constant Γ = 0.2/β~ ∼
ps−1 is chosen so that electron transitions happen on a longer timescale than quantum
tunneling, and the broadening of energy levels due to the coupling to electrodes is smaller
than thermal fluctuations.

The dynamics of the capacitor is solved by the equation of motion

dVg = − 1

Cg

∫ tint

0

Jg(t)dt , (5.11)
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where Cg is the capacitance and Jg is the electron current flowing into the electrode from the
transistors. While the transfer of electrons changes Vg, the capacitor is treated as an electron
reservoir at constant chemical potential µg = −qVg within each time interval tint. Thus the
assumption made here is that the electron transfer within each tint is small compared to CgVT ,
and the electron relaxation within the capacitor is fast compared to tint. We have chosen
Cg = 200q/VT , tint = 10β~ in order to justify these assumptions.

Simulations were done with both an iterative, numerically exact diagonalization of the
master equation as well as Gillespie simulations [229]. In both, we employ a separation of
timescales for electron transfer to or from a transistor and gate charging, afforded by the
large gate capacitance. Specifically, the large capacitance means we can update Vg every
discrete tint, and compute rates at fixed Vg in between these dynamical updates. To obtain a
numerically exact solution to the Markovian dynamics, for each interval tint, we solve for the
average occupation number 〈nN〉, 〈nP〉 from the stationary solution of the master equation,
which describes how the probability of the configuration pnN,nP

= (p0,0, p0,1, p1,0, p1,1) evolves
with time

ṗnN,nP
= WpnN,nP

,

W =




−S1 krP + kgP klN + kgN 0
kPr + kPg −S2 kPN klN + kgN
kNl + kNg kNP −S3 krP + kgP

0 kNl + kNg kPr + kPg −S4


 ,

(5.12)

where Sj =
∑

i 6=jWij for a matrix W . The current Jg flowing into the capacitor is then
computed by the sum of two terms

JN→g/q = kgN 〈nN〉 − kNg(1− 〈nN〉) ,
JP→g/q = kgP 〈nP〉 − kPg(1− 〈nP〉) .

(5.13)

In the Gillespie simulation, the electron jumping processes are modeled explicitly as
chemical reactions, with M = 10 reaction rates

w1 = kNs(1− nN) , w2 = ksNnN ,

w3 = kPd(1− nP) , w4 = kdPnP ,

w5 = kNg(1− nN) , w6 = kgNnN ,

w7 = kPg(1− nP) , w8 = kgPnP ,

w9 = kPNnN(1− nP) , w10 = kNPnP(1− nN) .

(5.14)

We use Monte Carlo method to simulate the probability that reaction i will happen after
time t,

P (t, i) = wi exp[−
M∑

i=1

wit] , (5.15)

and the currents between two sites are calculated as the discrete number of jumps between
the two sites. The discretization error in voltages between the average protocol and the
Gillespie simulation is on the order of q/Cg = 0.005VT .
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A NOT gate is typically characterized by its voltage transfer curve (VTC), shown in
Fig. 5.3(b). The VTC reports on the average Vout in response to Vin in the long time limit.
Generically, we find increasing Vin results in a decrease in Vout in agreement with the expected
response of an inverter. However, its behavior is dependent on the scale of the thermal
noise relative to Vd. The limiting values of Vout approach 0 and Vd for Vin = Vd and 0VT ,
respectively, and sharpens between these limits with increasing Vd. Both features result from
tuning the band energies of the two transistors in or out of resonance with their respective
electrodes, as the transistor band energies depend on Vd through Eq. 5.5. Increasing Vd with
Vin = 0VT or Vd, increasingly suppresses current into the gate capacitor from Vd or Vs. In the
limit that current flows from only one electrode with fixed voltage, the gate electrode would
reach an equilibrium state with that same voltage. The approach to this limiting behavior is
exponential, for example for increasing Vd � VT and Vin = 0VT , |Vout − Vd| ∼ exp[−Vd/2VT ].
The VTC is also symmetric around Vin = Vout = Vd/2, under which condition the difference
between the energy level of the transistors and its connecting reservoirs is roughly the same
for the N-type and P-type transistors.

Performance as a computing unit

When used as a computing unit, our first concern is whether our model generates the correct
output with high probability. We define a perfect gate or device as one that generates a
deterministic output according to the truth table, e.g. Y should be the complement of X
for a perfect NOT gate. However in the presence of noise, the deterministic output becomes
stochastic and subject to finite error rates. As can be anticipated from the behavior of
the VTC, in the limit of high Vd/VT , or the low noise limit, the performance of our model
approaches that of a perfect NOT gate, whereas the behavior is nontrivial at smaller Vd.

The input and output signals are given as voltages in this model, so we map them to
binaries by

X =

{
0, Vin = 0VT
1, Vin = Vd

Y =





0, Vout ≤ αVd
1, Vout ≥ (1− α)Vd
∅, otherwise

(5.16)

where ∅ represents an invalid result that cannot be designated and α represents an error
tolerance with 0 < α� 1. We choose α = 0.02 so that the resultant error is below 10−10 for
Vd = 40VT as comparable to current technologies, but our qualitative results are insensitive
to this choice.

To characterize the accuracy of the gate, we define the error rate ξ as the probability
of observing an output different from the perfect gate in a single shot. For the NOT gate,
we observe in Fig. 5.4(a) Gaussian distributions in Vout in the steady state regardless of Vd,
with the same variance 1/(βCg). This is expected from a Boltzmann distribution, reflecting
a proximity to equilibrium despite the presence of persistent currents. Under the Gaussian
assumption, the error rate is uniquely determined by the average output voltage Vout. For
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Figure 5.4: Static properties of a single NOT gate. (a) Steady state distribution of Vg at
t = 5× 106β~, where the red dashed line labels the threshold voltage for Y = 1. (b) Channel
capacity improves with increasing drain voltage Vd.

example, the accuracy rate for X = 0 is determined by the conditional probability

p(Y = 1|X = 0) =

∫ ∞

0.98Vd

dV

√
βCg
2π

exp

[
−βCg(V − Vout)

2

2

]
. (5.17)

In the case of Vd = 5VT , the error rate is calculated as ξ(X = 0) = p[Vout < (1− α)Vd|Vin =
0] = 0.36.

A comprehensive characterization of the accuracy that takes into account the error rate
for both cases of X = 0/1 is the channel capacity

C = max
p(X)

I(X;Y ) , (5.18)

which is the highest information rate that can be achieved with arbitrarily small error [194].
For a binary channel, the capacity is between 0 and 1, with 1 corresponding to a perfect
gate. We compute C numerically from the mutual information I(X;Y ) between the input
and output at steady state as a function of Vd. Marginalizing the conditional probabilities in
Eq. 5.17 computed using Vout in the steady state, the mutual information can be computed
by

I(X;Y ) =
∑

x=0,1

∑

y=0,1,∅

p(x, y) log2

p(x, y)

p(x)p(y)
. (5.19)

We then numerically maximize I(X;Y ) over the base probability distribution p(X) to compute
the channel capacity. Here the capacity is computed to be C = 0.60 for a channel operated at
Vd = 5VT , given the slight difference between the error rate for X = 0 or 1. To reach a higher
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Figure 5.5: Trade-off among accuracy and speed for a single NOT gate. (a) Relaxation
towards the steady state for a NOT gate initialized with Vg = 0VT , and X = 0. (b) The
decay of the error rate with time, scaled by propagation delay τp. (Inset) Propagation delay
as a function of Vd.

capacity, we need the average output Vout to approach the limits 0VT or Vd. This can be
achieved by operating at a higher Vd so that the leakage current flowing through the higher
energy level transistor is even smaller. Given the Gaussian statistics, asymptotically for large
Vd the error scales as ξ ∼ exp[−βCgα2V 2

d /2]
√

2π/βCg/αVd and the channel capacity scales
as C ∼ 1− ξ(1− log2 ξ), consistent with Fig. 5.4(b).

Trade-off among accuracy, speed and dissipation

While the accuracy of the gate improves dramatically for Vd � VT , its performance is
compromised by significantly increasing costs in computation time and energy consumption.
Upon receiving a distinct input signal, the gate requires time to charge or discharge the
capacitor to reach a steady state output signal. The average relaxation to steady state is
shown in Fig. 5.5(a) for an initially discharged capacitor with input X = 0. The relaxation
is monotonic and nearly exponential but with characteristic decay time that depends on Vd.
Under this initial condition and input voltage, εN � µs, so that few electrons can flow between
the source and the capacitor. The lower energy level εP facilitates electrons to transfer from
the capacitor to the drain following the concentration gradient, gradually building up a higher
voltage.

We define the time it takes for Vout to reach (1− α)Vd, the threshold voltage for Y = 1,
as the propagation delay time τp. While the threshold voltage increases linearly with Vd, the
average propagation delay τp grows exponentially. The propagation delay time, τp follows
an inverse Gaussian distribution [230] with a long exponential tail (Fig. 5.6). Note that τp
coincides with the time required for the error rate to decay below 0.5. Fig. 5.5(b) shows
the decay of the error rate with time for Vd = 5, 8, 10VT , scaled by the propagation delay
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Figure 5.6: Distribution of the propagation delay τp for a single NOT gate with X = 0,
Vd = 5VT .

τp for each Vd. As the distribution of Vout remains Gaussian, the time dependence of the
error reflects the charging of the gate capacitor, and specifically follows the evolution of the
mean Vout. While we consider the single shot error, the exponential scaling of τp with Vd
implies that associating an error rate with a time averaged measurement of Vout would yield
a non-monotonic relationship between the waiting time to reach a set error threshold and Vd.
For intermediate Vd, the slower decorrelation time will cause waiting times to increase with
Vd, while for large Vd the suppressed fluctuations will dominate and decrease waiting times.

When the gate is used repeatedly to process a sequence of inputs X = {X1, X2, · · · , XNdata
},

there is no need to re-initialize the gate after each computation, and the residual charge on
the capacitor may help reduce the computational cost. We call this a memory effect, which
introduces temporal correlation between consecutive data transmission processes. For such
an information channel with memory, the accuracy can be characterized with the average
information rate per data, which is a generalization of the channel capacity [231]. The average
information rate per data is defined as

Ī(X; Y) =
1

Ndata

I(X1, · · · , XNdata
;Y1, · · · , YNdata

) , (5.20)

which in the limit of Ndata →∞ and upon maximizing over the input probability distribution
p(X), is the generalization of the channel capacity. As an example, for Ndata = 2, the mutual
information is computed by

I(X1, X2;Y1, Y2) =
∑

x1=0,1

∑

x2=0,1

∑

y1=0,1,∅

∑

y2=0,1,∅

p(x1, x2, y1, y2) log2

p(x1, x2, y1, y2)

p(x1, x2)p(y1, y2)
. (5.21)

To incorporate the memory effect, note that the probability distribution of the ith output
Yi is not only a function of Xi, but also the output voltage of the previous data V i−1

out . The



CHAPTER 5. ELECTRON TRANSPORT: NONLINEAR TRANSPORT IN
COMPUTING CIRCUITS 87

 0.3

 0.4

 0.5

 0.6

 0  0.4  0.8  1.2  1.6  2
I−  (X

;Y
)

τobs / τp

Ndata = 1
Ndata = 2
Ndata = 3

Figure 5.7: Average information rate for a repeatedly used NOT gate with Vd = 5VT as a
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dependence can be expressed with the conditional probability p(V i
out|xi, V i−1

out ), which we
sample by Gillespie simulations of more than 107 trajectories. The dependence of I on the
observation time τobs thus comes from this conditional probability.

Let V 0
out = 0VT , we can write down the joint probability

p(x1, x2, V
1

out, V
2

out) = p(V 2
out|x2, V

1
out)p(V

1
out|x1, V

0
out = 0VT )p(x2)p(x1) , (5.22)

which follows from the Markovian nature of the memory effect, and the fact that the input
data xi are independent from each other. The joint distributions can then be computed by
marginalization, e.g. defining the mapping between Y and Vout in Eq. 5.16 as Y = dig(Vout),

p(x1, x2, y1, y2) =
∑

y1=dig(V 1
out)

∑

y2=dig(V 2
out)

p(x1, x2, V
1

out, V
2

out) , (5.23)

where the sum is over all V i
out, discrete in our simulation, that correspond to yi.

As the numerical maximization is difficult for large Ndata, without loss of generality, we
choose as our input a sequence of independent and identically distributed Bernoulli random
inputs with equal probability of being 0 or 1. We show in Fig. 5.7 the average information rate
at Vd = 5VT for Ndata = 1, 2, 3 as a function of τobs, the processing time for each individual
data from input to output. For Ndata = 1, the information rate first decreases at small τobs,
as ξ(X = 1) inevitably increases at short time due to the initialization Vg = 0VT , and rises
up sharply around the propagation delay τp, which is the time required for ξ(X = 0) to decay.
As we increase Ndata, the memory effect is expected to be especially helpful when consecutive
inputs share the same value, and thus should on average improve the information rate. This
effect is not evident for extremely small τobs, where the error rate for X = 0 is too high to be
corrected by the memory effect. However, the memory effect plays a significant role, bringing
up to 30 percent increase in the average information rate, at intermediate τobs. All curves
eventually converge in the long time limit as the memory effect wears off for times much
longer than the propagation delay.
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Figure 5.8: Entropy production of a NOT gate with Vg initialized to 0VT . (a) Evolution of
the total entropy production for Vd = 5VT of 100 individual simulated trajectories (light blue)
and their ensemble average (dark blue). (b) Distribution of the entropy production rate in the
steady state, measured in the long time limit where τobs = 106β~. (c) The entropy production
during the propagation delay τp (dots) for X = 0, which converges to the quadratic function
CgV

2
d /2 (line) at high Vd. (d) The entropy production rate σss in the steady state decreases

exponentially with Vd for both X = 0/1.

The energy consumption for a gate can be quantified with the entropy production or the
heat dissipated to the environment. From stochastic thermodynamics, the entropy production
of the NOT gate during a long observation time τobs can be computed by the product of
electron current and its conjugate affinity from two separate pathways [217]

Σ(τobs) =

∫ τobs

0

dt Js→N(µs − µg) + Jd→P(µd − µg) , (5.24)

where Js→N is the electron current flowing from the source to the N-type transistor, and Jd→P

is the current from the drain to the P-type transistor (Eq. 5.13). In the process described in
Fig. 5.5(a), the pathway through the N-type transistor is essentially blocked due to the high
energy level of εN, so the main contribution in Eq. 5.24 is the second term in the sum. This
second term has a similar form as the work required to quasi-statically charge the capacitor
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from Vg = 0 to Vg ≈ Vd, and thus is close to CgV
2
d /2. This initial charging process is the

dominant contribution to the total entropy production over short times, and represents the
reversible limit of the NOT gate, shown in Fig. 5.8(c). Once the system reaches the steady
state, there is still a steady entropy production coming from the leakage currents through
both pathways, but the entropy production rate within the steady state is much smaller and
decreases exponentially with Vd, seen in Fig. 5.8(d). This is because the output voltage Vout is
very close to Vd, leaving the affinity across the drain and the output nearly zero. Further, the
corresponding leakage current from the source to the output is small due to the high energy
level εN. The contributions to Σ(τobs) from Vd implies that for each observation time τobs,
there exists an optimal Vd that minimizes Σ(τobs), as confirmed in Fig. 5.9. The minimum Vd
shifts to the right with increasing time as at higher Vd a larger contribution from the steady
state flux counterbalances the higher entropy production during charging.

NAND Gate

We have presented a Markovian model for the NOT gate, which reproduces the performance
of a perfect gate in the limit of high Vd and for which there is a complex interplay between
energy consumption and time. Within the framework presented, it is straightforward to
construct an analogous model of a NAND gate. A NAND gate takes in two binary inputs
XA, XB, and outputs Y = 0 only when both inputs are 1. As shown in Fig. 5.10(a) and (b),
the kinetic diagram, similar to the circuit diagram, is composed of two P-type transistors PA,
PB, and two N-type transistors NA and NB. The NAND gate is described by four occupation
numbers (nPA

, nPB
, nNA

, nNB
) and the gate voltage Vg. The energy levels of PA and NA

depend on the first input voltage Vin,A, while the energy levels of PB and NB are controlled
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Figure 5.10: (a) Circuit diagram and (b) kinetic diagram of a NAND gate. (c) Two-dimensional
voltage transfer curve at Vd = 5VT .

by the second input Vin,B in the same manner as in Eq. 5.5,

εPA
= ε0P + qVin,A , εNA

= ε0N − qVin,A ,

εPB
= ε0P + qVin,B , εNB

= ε0N − qVin,B .
(5.25)

The transition rate between the transistors and reservoirs are described analogously to Eq.
5.9 and 5.10. To avoid numerical issues in Eq. 5.10 when the adjacent transistors have
the same energy levels, we add a 10−3 regularizer in the denominator of the Bose-Einstein
distribution n(x). The output Vg is again treated as a capacitor described by Eq. 5.11, where
the current Jg is the sum of JPA→g, JPB→g and JNA→g, each defined as in Eq. 5.13. As in
the NOT gate, both an average protocol and a Gillespie simulation consisting of 16 chemical
reactions are used to study the dynamics. The entropy production during an observation
time τobs is

Σ(τobs) =

∫ τobs

0

dt Js→NB
(µs − µg) + (Jd→PA

+ Jd→PB
)(µd − µg) . (5.26)

The two dimensional VTC for Vd = 5VT is shown in Fig. 5.10(c), which agrees with the truth
table for a perfect NAND gate.

While the dynamical properties of the NAND gate are very similar to the NOT gate, an
asymmetry arises in the NAND gate due to the different pathways in the kinetic diagram,
which is a feature absent in the NOT gate. Consider the three different inputs (XA, XB) =
(0, 0), (1, 0) and (0, 1) shown in Fig. 5.11(a) for Vd = 5VT . While for a perfect NAND gate,
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Figure 5.11: Decay of the error rate with time under three cases: (Xin,A, Xin,B) = (0, 0), (1, 0)
and (0, 1) for (a) Vd = 5VT and (b) Vd = 8VT for a NAND gate initialized with Vg = 0VT .

these three inputs should all correspond to the output Y = 1, the evolution of the error rate
ξ and its converged values in the steady state are not exactly the same for finite Vd. In the
case of (XA, XB) = (0, 0), as both P1 and P2 have relatively low energy levels, there are
two pathways to charge the capacitor, resulting in a faster error decay rate. For the cases
(XA, XB) = (0, 1) and (1, 0), one of the pathways is blocked due to the high energy level of
the P transistor, so the error rate decays much slower reflecting the slower charging of the
capacitor. While the latter two cases also differ slightly due to the asymmetry in N1 and N2,
such differences shrink drastically when we increase Vd to 8VT in Fig. 5.11(b). The three
cases now converge to similar error rates in the steady state. In fact, as we further increase
Vd, all such asymmetries vanish, another example of which can be found in Fig. 5.12, where
we plot the one dimensional cut of the VTC along the line Vin,A = Vin,B for different Vd. As in
the case of the NOT gate, our model behaves as a perfect NAND gate as Vd approaches 1eV.
For clarification, we define the propagation delay τp of a NAND gate as the time required to
reach the threshold αVd for the input (XA, XB) = (0, 1), which is close to τp for the NOT
gate of the same Vd.

5.4 Logic Circuits

Equipped with a model for the NOT and NAND gate, we now in principle have the tools to
implement arbitrary logic functions. While any logic function can be represented in multiple
ways, the topology of the circuit has an influence on its accuracy, and thermodynamic costs
[212]. In the following section, we first explore spatial propagation effects arising from
assembling multiple gates in a combinational circuit, and then demonstrate memory effects
arising from the feedback loop in a sequential circuit. Understanding the behavior of these
basic computing circuits will be crucial to building up a computing device.

For each logic circuit, which is itself a computing module made up of multiple logic gates,
while each gate has an intermediate output, we reserve the symbol Vout for the specific Vg
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that corresponds to the overall output Y of the module. Intermediate input and output
voltages are not converted to binaries except for the final output Vout. While the output
of each gate is used as the input of the ensuing gate, we neglect the back reaction on Vout

so that the occupation of the ensuing transistors does not affect Vout, which is consistent
with the high capacitance assumption made in Eq. 5.5. Unless specified otherwise, all gates
are initialized at Vg = 0VT at the start of the computation, but no re-initialization is done
afterwards. While the channel capacity is a more comprehensive characterization of the
accuracy and provides the best case scenario, the much larger input space and complicated
memory effects make it cumbersome to calculate in the case of logic circuits. We thus use
the error rate in the final output instead, and consider the worst case scenario in choosing
the inputs to provide an upper bound for the error rate whenever possible.

Combinational Circuit

A combinational circuit maps a given set of inputs to a single output using a number of
gates, such as an adder that computes the sum of inputs and a XOR gate that computes
their parity. As the simplest example, we study the behavior of an array of L NOT gates
indexed by i = 1, 2, · · · , L connected in the way that V

(i)
in = V

(i−1)
g for i > 1. A schematic of

the system can be found in Fig. 5.13(a). The input of the circuit X determines V
(1)

in , and the

output is measured from the last gate Vout = V
(L)
g . The spatial dimension adds complexity to

the evolution of Vg, as illustrated in Fig. 5.13(b) for Vd = 5VT , X = 0. In the steady state,
we expect the output voltage of the odd gates close to Vd, and the even gates close to zero.
For a gate to reach its steady state, its input, which depends on the dynamics of the previous
gate, must first reach its expected value, thus the propagation delay should increase with
the gate index i. As the odd gates are initialized far from its steady state, it will take a
significant amount of time to reach its expected output. For the odd gates which have not
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Figure 5.13: Performance of an array of NOT gates with X = 0, and all Vg initialized to 0VT .
(a) Schematic of an array of NOT gates with a single input X and output Y . (b-c) Evolution
of Vg (b), and the steady state error rate (c) for individual gates with Vd = 5VT . (d) Spatial
propagation rate κ as a function of Vd.

reached the steady state yet, the ensuing even gate will have a lower input voltage, resulting
in the overshoot of voltage before eventually decaying to its expected lower output. The turn
over in voltage of the even gates corresponds to the inflection point on the VTC.

A consequence of the connectivity between gates is the corruption of initial input. While
the input voltage of the first gate is always 0VT , for finite Vd, the maximum input voltage of
the second gate will be slightly lower than Vd, and thus corrupted. As the VTC of the NOT
gate is a non-increasing function, a corrupted input will inevitably cause a higher error rate
in the output, which will propagate along the array. This is shown in Fig. 5.13(c), where
the error rate for individual gates in the steady state rises initially with gate index, before
converging to a constant value after a few gates, and is always higher than that of the single
gate. A similar behavior can be found in the propagation delay time shown in Fig. 5.14(a),
which increases sharply for the first few gates and converges to a slower linear increase
afterwards. This implies that circuit designs with deeper layered structure are unfavorable in
terms of both accuracy and propagation delay.

The convergence behavior is intriguing as it implies the existence of a pair of fixed points
(V ∗odd, V

∗
even) for the intermediate outputs in the steady state. Indeed, the fixed point solution

corresponds to the point on the VTC (Vin = V ∗odd, Vout = V ∗even) satisfying the condition that
its reflection (Vin = V ∗even, Vout = V ∗odd) is also on the VTC. As the fixed point is a dynamically

stable solution, it does not depends on the initial input V
(1)

in , as shown in Fig. 5.14, whereas
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rate of the exponential decay, which is independent of the input V
(1)

in .

the speed of approaching the fixed point characterizes the spatial correlation in the system.
We fit the decay in |V (i)

g − V ∗|/VT with an exponential function exp[−κi], and report the
rate κ for different Vd in Fig. 5.13(d). For Vd = 5VT , the spatial correlation length 1/κ is
on the order of 1, which means spatial correlation exists between neighboring gates. As the
VTC becomes sharper with increasing Vd, the correlation length between gates decreases. In
the limit of high Vd, the fixed point solution can be found exactly at (Vin = 0, Vout = Vd),
which means that the input becomes uncorrupted. To summarize, the combination of gates
introduces longer propagation delay and input corruption, and thus deeper layered circuit
design is advised against. By operating at a higher Vd to reduce spatial correlation, the latter
problem can be mitigated, but of course this is done at the cost of even longer propagation
delay.

As a consequence of the spatial correlation, it is more probable to observe consecutive
errors along the array, which can be illustrated by an error analysis of simulated trajectories.
We simulate an array of NOT gates of length L with V

(1)
in = 0VT , Vd = 5VT , and generate

more than 108 snapshots of the system. For each snapshot, we first search for regions with
de = 1, 2, · · · , 16 consecutive errors, and then count the total number of such error domains,
denoted by N(de). While counting, we do not account for the first 10 gates in each array
as they have not reached the fixed point solution. To characterize spatial correlation in the
system, we compare the value of N(de+ 1)/N(de) computed in our model with the case where
all gates are independent from each other. We denote the single gate error rate of the odd and
even gates as ξ0/1. Note that to make a fair comparison, this error rate corresponds to the
fixed point solution of the array, instead of the error rate of a single NOT gate with X = 0/1.
Assuming odd and even gates are observed with equal probability, it is easy to derive that
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N(de = 1) = (ξ0 + ξ1)/2 and N(de = 2) = ξ0ξ1. One can infer from this simple calculation
that for independent gates, N(de + 1)/N(de) = 2ξ0ξ1/(ξ0 + ξ1) if de is odd, (ξ0 + ξ1)/2 if de is
even. This result is plotted in Fig. 5.15 as the reference, where the zigzag behavior comes
from the difference between ξ0 and ξ1. In addition, we plot in the same figure the value
N(de + 1)/N(de) for our model with L = 60, 110, 160 and 210. For smaller L, as finite size
effect prevents larger error domains to emerge, the value N(de + 1)/N(de) is lower and decays
with de. Such effect mitigates with increasing L, and the value of N(de + 1)/N(de) should
not depend on the exact value of de other than its parity in the L→∞ limit. The converged
values of N(de + 1)/N(de), as shown in Fig. 5.15, is clearly higher than the reference values,
indicating that there exists a positive correlation in errors between adjacent gates. In other
word, given that an error occurs at gate i, the probability of observing another error at its
neighboring gate is enhanced due to the spatial correlation.

Sequential Circuit: RS latch

While combinational circuits are typically used to carry out arithmetic computations, modern
computing devices often include another type of logic circuit to handle memory - the sequential
circuit. Fig. 5.16(a) shows an example of such a circuit, known as the RS latch. The RS

latch consists of two NAND gates where the output of gate 1, V
(1)
g , is sent as an input of gate

2, V
(2)

in,A, and similarly, the output of gate 2, V
(2)
g , is fed back as V

(1)
in,B. The remaining two

inputs, V
(1)

in,A and V
(2)

in,B, corresponds to the two external binary inputs XS and XR, respectively.

The output of the circuit, Vout, which coincides with V
(1)
g , depends not only on the external
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Figure 5.16: (a) Circuit diagram of the RS latch. (b-c) The evolution of the outputs V
(1)
g

and V
(2)
g for 100 trajectories with the initialization V

(1)
g = V

(2)
g = Vd = 5VT , where time

is scaled by the propagation delay τp of the NAND gate. The dark curve represents the
average relaxation behavior. (d-f) The location of the stable informational states determined
by overlapping the VTC for the two NAND gates at (d) Vd = 3VT , (e) Vd = 5VT , and (f)
Vd = 40VT .

inputs XS and XR, but also the stored information of V
(1)
g and V

(2)
g . This is the defining

characteristic of a sequential circuit, which makes it useful as a memory storage. More
specifically for a perfect RS latch, in the “set” stage where the external inputs are set as
XS = 0, XR = 1 or XS = 1, XR = 0, there exists only one dynamically stable state for the
system, so that we can unambiguously designate the memory at Vout as 1 or 0. In the “hold”
stage where XS = XR = 1, however, the system is bistable and its state depends on the
initialized value of V

(1)
g and V

(2)
g . In the vicinity of the fixed points, an effective Hamiltonian

description of the RS latch is quartic in Vout with two minima and a maxima between them
[232]. This emergent bistability resulting from the feedback loop allows the RS latch to
function as a memory storage device.

To function as a memory storage device, a circuit must have at least two distinguishable
states in which information can be stored. For our stochastic model in Fig. 5.16(a), these

states correspond to the steady state solutions that satisfy the feedback condition V
(1)

in,B = V
(2)
g ,

V
(2)

in,A = V
(1)
g under the input V

(1)
in,A = V

(2)
in,B = Vd. An intuitive way to find their location is

to overlap the VTC of the two NAND gates along the cut V
(1)

in,A = Vd and V
(2)

in,B = Vd, which
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Figure 5.17: The evolution of the outputs V
(1)
g and V

(2)
g with the initialization (a) V

(1)
g =

V
(2)
g = 0VT and (b) V

(1)
g = V

(2)
g = 2.5VT where Vd = 5VT . The dark curves represent the steady

state solution from the average protocol, while the lighter curves represent 100 trajectories.
In both cases, the percentage of trajectories that end up in the other informational state
(V

(1)
g , V

(2)
g ) = (0.20VT , 4.89VT ) is less than 10−5 among the 2.56× 106 trajectories simulated.

are not exactly the same due to the asymmetry in the non-perfect NAND gates. We show
a couple of scenarios at different Vd in Fig. 5.16(d-f). At Vd = 3VT , the highly asymmetric

VTCs cross merely at (V
(1)

in,B, V
(2)

in,A) = (0.67VT , 2.61VT ), indicating that the system only has a
single stable state and does not qualify as a memory storage device. As Vd increases to 5VT ,
two dynamically stable informational states start to emerge at (V

(1)
in,B, V

(2)
in,A) = (0.19VT , 4.92VT )

and (4.89VT , 0.20VT ), though the slight asymmetry suggests different dynamics around the

two states. While a third intersection point is found at (V
(1)

in,B, V
(2)

in,A) = (2.93VT , 2.26VT ),
it corresponds to an unstable saddle point. At an even higher Vd = 40VT , the two states
converge to (V

(1)
in,B, V

(2)
in,A) = (0VT , 40VT ) and (40VT , 0VT ), and symmetry is restored.

While the existence of two distinguishable informational states is guaranteed at sufficiently
high Vd, there remains the question of whether these informational states are robust against
noises. While in both the set and hold stage, V

(1)
g and V

(2)
g are usually sufficiently far from

each other that it is possible to distinguish them definitively, there do exist occasions where
the noise can mediate a transition. One such example is shown in Fig. 5.16(b) and (c) for

the initialization V
(1)
g = V

(2)
g = Vd = 5VT . As the outputs of the gates evolve from their

initialization towards the steady state solution, there is a significant overlap between the
two outputs around t = 0.5τp, which leads to about 13% percent of the trajectories failing
to retain the information and evolving to the wrong fixed point. This kind of perturbation
happens when the overlap region includes the unstable intersection point on the VTC, and
the change of convexity of the effective Hamiltonian brings the trajectory towards a different
stable state. Such an initialization error is rare to observe either in the set or hold stage, and
we show additional evidence for the robustness of the circuit at V

(1)
g = V

(2)
g = 2.5VT and 0VT

in Fig. 5.17. In addition, at a higher Vd, as the VTC becomes sharper, not only do the two
minima in the Hamiltonian become more separated, their vicinity also become steeper, both
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operated at Vd = 8VT .

of which facilitate the differentiation between the two states and thus will drastically improve
the robustness of the device.

Sequential Circuit: D flip-flop

With the RS latch as a basic computing unit, we can model a memory storage module that
synchronizes with the clock generator, called the D flip-flop. Modern computing devices
typically include a pulse generator that oscillates between 0 and 1, with a clock cycle τc.
To see how the clock is incorporated into the D flip-flop, we show the circuit diagram of a
D flip-flop in Fig. 5.18(a), built up from 4 NAND gates and 1 NOT gate. The circuit can
be readily modularized as a memory storage unit, denoted with the symbol D, that takes
in an input X representing the data, another input XWE synchronized with the clock, and
generates an output Y . The two NAND gates with the feedback loop on the right hand side
constitute an RS latch, which is responsible for the memory storage. When the write-enable
input XWE = 1, the D flip-flop sets its output Vout in agreement with the data X, whereas
when XWE = 0, the D flip-flop holds its stored value as its output, which can be further
processed for computing purposes.

The clock cycle τc, or the clock frequency 1/τc, is an important parameter as it determines
how fast data can be read and stored. In Fig. 5.18(b) and (c) we illustrate how the clock
cycle influences the accuracy and dissipation of the data transmission process for a D flip-flop
with Vd = 8VT . We start with XWE = 1 and send in a stream of data X = {1, 0, 1, 0, · · · }.
While XWE alternates between 1 and 0 every τc/2, the data input only changes every τc.
This input data sequence is chosen to maximize the alternation in the output, and thus
minimize the memory effect discussed earlier for the NOT gate. Therefore, the error rate and
dissipation in this case are expected to be the highest among all possible input sequences.
The error rate ξ is measured according to the output Vout at the end of each cycle, and is



CHAPTER 5. ELECTRON TRANSPORT: NONLINEAR TRANSPORT IN
COMPUTING CIRCUITS 99

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0  2  4  6  8  10

V o
ut

 / 
V T

Nc

τc / β−h = 107

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0  5  10  15  20  25  30

V o
ut

 / 
V T

Nc

τc / β−h = 2×106(a) (b) (c)

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0  2  4  6  8  10

V o
ut

 / 
V T

Nc

τc / β−h = 3×107  

Figure 5.19: Output voltage of a Dflipflop with clock cycle (a) τc = 2× 106β~, (b) τc = 107β~,
and (c) τc = 3 × 107β~. The input data sequence starts from Xdata = 1 and alternates
between 1 and 0. All gates are operated at Vd = 8VT , and are initialized with Vg = 0VT .
We discard the first few cycles and average over more than 50 cycles when computing the
average error rate and dissipation in Fig. 5.18, so that their values have no dependence on
the initialization.

reported separately for the cycles with X = 1 and 0. The evolution of Vout as a function of
the cycle number can be found in Fig. 5.19.

Similar to the behavior for the single NAND gate in Fig. 5.11(b), the error rate for X = 0
starts to decrease monotonically when τc is longer than the single gate propagation delay
τp. The error rate for X = 1, however, first increases with τc before eventually decreasing.
This counter-intuitive behavior comes from the memory retention behavior in the RS latch.
Once data is stored in the RS latch, it tends to stay in the memory by influencing the
transmission of the following data, and thus introduces temporal correlation between the
outputs. The influence of the data can only be erased given sufficient time to transmit the
following data. This temporal correlation time, or memory retention time, again coincides
with the propagation delay τp. In this example, as the first input X = 1, the output retains
the memory of a higher output at short τc, so the error rate for X = 1 is deceptively low,
and the error rate for X = 0 is high. At τc ≈ τp, the output is stuck between the high and
low outputs before reaching either steady state, so that the error rate for either cycle is high.
In this regime, the average dissipation accumulated within each cycle rises fast with τc, as
charging processes contribute heavily to energy costs. When τc > τp, the memory effect is
eventually overcome and the error rates for both cycles start to decay. The average dissipation
rate also converges to a smaller constant value as within each cycle, the system is able to
reach the steady state, in which much less dissipation is generated. The exponential scaling
of τp with Vd implies that while the asymptotic error is expected to decrease when operating
far from thermal energies Vd � VT , the speed with which the D flip-flop can function with
that lower error is significantly slower. Due to this lag, comparing between a lower and a
higher Vd, the error is expected to be much lower in the former case for a fixed computing
time on the order of τp of the lower Vd.
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Figure 5.20: (a) Schematic of the parity computing device with 2 XOR gates and 4 D flip-flops.
The input of each XOR gate is controlled by 2 input two-way switches, shown in red. The
output two-way switch, shown in green, determines which D flip-flop is used to store the
output of the XOR gate. (b) The average error rate (blue, with axis label on the left) and
dissipation per gate per cycle (red, with axis label on the right) as a function of the time
cycle τc, scaled by the propagation delay of a single NAND gate, averaged over different input
sequences. All gates are operated at Vd = 8VT .

5.5 Computing Devices

With the combinational circuit modularized as the arithmetic logic unit (ALU), and the
sequential circuit as the memory storage device, we can combine the two components to
model a computing device. We choose the task of computing the parity of a sequence of
inputs X = {X1, X2, · · · , XN} of length N , which has wide applications in error detection.
Such a task can be easily implemented by combining (N − 1) XOR gates in a sequential
manner. However, when N is relatively large, due to the limitation in resources, it is beneficial
to break up the task in several steps, and store intermediate results in memory. The clock
generator synchronizes the operation of different components to ensure correct sequencing.

As an example, we consider 2 XOR gates as an ALU, and 4 D flip-flops, D1 to D4, as
a memory device to check the parity of N = 12. Fig. 5.20(a) shows the schematic of our
design, while the complete circuit diagram can be found in Fig. 5.21. Each XOR gate takes
in 2 binary inputs at a time, the source of which is controlled by 2 input two-way switches,
shown in red in Fig. 5.20(a). When the switch is connected to terminal 1, the input comes
from the data sequence X; whereas when terminal 2 is connected, the input comes from
the data stored in a D flip-flop. At the end of each XOR gate is an output two-way switch,
shown in green in Fig. 5.20(a), which controls where to store the output. We store new data
only on free D flip-flops, where the data stored at an earlier time is already read out for
post-processing and does not need to be held any more. The total system requires modeling
over 100 transistors.
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Figure 5.21: (a) Symbol (left) and circuit diagram (right) of a XOR gate, which takes in
two inputs X1, X2, and compute their parity as output Y . (b) Circuit diagram of the parity
computing device with 2 XOR gates and 4 D flip-flops.

We start the computation by sending in pairs of input data from the data sequence, and
computing their parities with the XOR gates. The D flip-flops are set by outputs from the
ALU (first D1, D2 and then D3, D4), and once all D flip-flops have been set, we free them by
sending the stored information back to the ALU for further processing. The computation is
terminated when all inputs are taken into account in the final output, and the entire task can
be completed in 6 clock cycles. A computational tree graph that illustrates how intermediate
outputs are related to the final output can be found in Fig. 5.22, with 12 input nodes in the
0th layer representing the input data, and a single final output l

(1)
4 that computes the parity

of the inputs. The nodes in layer 1 to 3 represent intermediate computation results.
For concreteness, we consider the input sequence X = {0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0} and

plot in Fig. 5.23 the Vout of the XOR gates, D1 and D2, for an ensemble of trajectories.
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Figure 5.22: Computational tree graph of the device that computes the parity of 12 input
data. The node l

(j)
i denotes the jth output of the ith layer. The 0th layer has 12 nodes,

which represent the 12 data in the input sequence. Each child node calculates the parity of
its two parent nodes. The final output l

(1)
4 computes the parity of all the input data.

Here the clock cycle is chosen as τc = 107β~. All gates are operated at Vd = 8VT , while all
capacitors are initialized with zero charge. We highlight with red cross the time points where
outputs are being read out from the D flip-flops. At t = 0, we send in 4 input data, X1 to
X4, by connecting all the input two-way switches to terminal 1. Since all the D flip-flops are
slack at the moment, we can store the computing results of the XOR gates into D1 and D2
by switching both output two-way switches to terminal 1 as well. The clock stays at 0 within
the first half cycle while computations are being done at the ALU, until t = τc/2, when the
clock switches to 1 and the outputs of the ALU are being written into D1 and D2. At t = τc,
as the clock returns to 0, another 4 input data are sent in while the output two-way switches
are connected to terminal 2 so that outputs can be sent to and stored at D3 and D4. At the
end of the second cycle, when we realize that our memory devices are full and can not take in
new inputs, we read out the outputs at D1 to D4 and send them back to the ALU as inputs
by connecting all input two-way switches to 2. We continue the computation in this manner,
until all input data are taken into account and the final output is read from D1 at t = 6τc.

As before, we are interested in the time and dissipation required to achieve a certain
accuracy. In Fig. 5.20(b), we show the error rate for the final output at t = 6τc, and the
average dissipation per gate (averaged over the 28 gates in this device) per clock cycle Σ̄
as a function of τc with Vd = 8VT . Both results are averaged over more than 104 inputs,
which are sequences of independent and identically distributed Bernoulli random variables
with equal probability of being 0 or 1. As expected, the average error rate decays with the
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Figure 5.23: (a) For the input sequence X = {0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0}, the output of
XOR 1 and its corresponding memory storage D1 for 64 individual trajectories at Vd = 8VT ,
τc = 107β~. The red crosses label points where outputs on D1 are read out for further
processing. (b) The output of XOR 2 and its corresponding memory storage D2 with the
same parameters as in (a). The lower plot shows the histogram of outputs at D2 at t = 4τc.
The red dotted line labels the threshold under which the output corresponds to an error.

clock cycle until τc ≈ 3τp, as the extended spatial dimension of the circuit increases the
propagation delay in the final output. At such a high Vd, spatial correlations do not extend
beyond neighboring gates, and are even weaker between different modules, especially for clock
cycles longer than τp. The average dissipation first increases sharply and then converges to a
linear growth in the limit of large τc, similar to the D flip-flop, but slightly lower than that
in Fig. 5.18(c) for the same τc. This is because the input sequences are randomly chosen
instead of alternating between 0 and 1, and the memory effect can help shorten the charging
process, which most contributes to the entropy production. Additionally because of the
synchronization, the D flip-flops may remain at a steady state for a few cycles before it is
freed to store new data. During such periods, the dissipation is especially low as the entropy
production in the steady state is minimal due to relatively small leakage currents. Therefore,
computational protocols that minimize changes on the memory storage device is desirable for
low-dissipation computing. Taking into consideration both the accuracy and dissipation, the
optimal clock cycle to operate with is τc ≈ 2τp, as lowering the speed further will only result
in higher dissipation from the steady state.

In the computational tree graph in Fig. 5.22, if an error is observed in any of the nodes
whose layer is deeper than 0, we look further at its parent nodes to trace where the error
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originates, and its child node (if existing) to see how far the error propagates. We call such a
record of error vertically along the computational tree graph an error path, and its length is
denoted as le. In this computational tree graph, the maximum value for le is 4, which means
the error propagates from layer 1 all the way to the final output; while the minimum value
for le is 1. Among the 1.28× 104 simulations we have done with different input sequences, we
make a histogram of the error paths with length le for different clock cycle τc, which is shown
in Fig. 5.24. For the shortest clock cycle plotted τc = 5× 106β~, which is too soon for the
gates to reach their steady states, we observe an overwhelmingly high number of error paths
of length le = 4. However, when τc is longer, we see an exponential decay in the number
of error paths with increasing le. This exponential decay rate characterizes the temporal
correlation between intermediate computation results. The rate increases with longer τc,
indicating the diminishing correlations, or the weakening of the memory effect at longer clock
cycle. With τc > 2 × 107β~, it is almost impossible to find an error path with le = 4 that
propagates through the computational tree graph.

5.6 Conclusion

We have illustrated a realistic model for stochastic logic gates, and demonstrated its utility
in building arbitrary logical circuits. Information manipulations, such as bit storage and
erasing are represented by the charging and discharging of the capacitors, which is consistent
with current data storage technology. While our model performs as a perfect logic circuit
when operated in the limit of low noise, its thermodynamical consistency allows us to study
the rich interplay between speed, accuracy and dissipation in the intermediate regimes, from
which we can derive some useful design principles for low dissipation computing devices. For
instance, we have provided a physical origin of input corruption in the combinational circuits,
as well as feedback robustness in the sequential circuits, and illustrated how each can be
improved drastically by operating at a slightly higher voltage. In addition, memory effects



CHAPTER 5. ELECTRON TRANSPORT: NONLINEAR TRANSPORT IN
COMPUTING CIRCUITS 105

should be exploited as much as possible to minimize dissipation. With modularization, it is
straightforward to scale up our model to even larger and more complex systems, making it a
useful model to study collective behaviors of circuits.

One of the major motivations of this work is to enable the design of low dissipation com-
puting devices with maximal accuracy and speed. While there exists several theoretical results
that propose bounds on the thermodynamic costs of computing [182, 212], understanding
under what circumstances they are saturated requires a realistic model for the thermal noise.
As each dynamical process in our model obeys a local detailed balance, we are able to harness
the lessons of stochastic thermodynamics to define and analyze the time dependence and
fluctuations of the entropy production. Note that the entropy production Σ we have referred
to throughout the paper is different from the total dissipation, which is the heat released by
the system, by a term ∆S - the change in the Shannon entropy of the system transistors.
Nevertheless, we have used the term entropy production and dissipation interchangeably
since for the timescales studied, the boundary term ∆S is orders of magnitude smaller than
the cumulative term Σ, which is very large due to the large gate capacitance. This then raises
the question of how to further decrease the irreversible dissipation and that associated with
charging the gates. This problem is the crux of optimal control theory, and adiabatic circuit
design [233, 234], from which some design principles can be borrowed. For example, while
we have kept the input voltage of the transistors Vin fixed within each cycle, one can design
optimal feedback protocol that controls it according to the state of the capacitor, in order to
minimize the irreversible dissipation throughout the process. Such optimal feedback protocols
already exist for simple thermodynamic engines [235], and we believe our model provides an
ideal testing ground for applying more advanced stochastic control algorithms [236]. Marrying
our model with a framework that integrates information with thermodynamics [237, 238], we
hope to get a step closer to achieving a computing design that minimizes dissipation while
maximizing accuracy and speed.
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62. Chetrite, R. & Touchette, H. Variational and optimal control representations of condi-
tioned and driven processes. Journal of Statistical Mechanics: Theory and Experiment
2015, P12001 (2015).

63. Das, A. & Limmer, D. T. Variational control forces for enhanced sampling of nonequi-
librium molecular dynamics simulations. The Journal of Chemical Physics 151, 244123
(2019).

64. Giardina, C., Kurchan, J. & Peliti, L. Direct evaluation of large-deviation functions.
Physical Review Letters 96, 120603 (2006).



BIBLIOGRAPHY 110

65. Bodineau, T., Lecomte, V. & Toninelli, C. Finite size scaling of the dynamical free-
energy in a kinetically constrained model. Journal of Statistical Physics 147, 1–17
(2012).

66. Garrahan, J. P. et al. First-order dynamical phase transition in models of glasses: an
approach based on ensembles of histories. Journal of Physics A: Mathematical and
Theoretical 42, 075007 (2009).

67. Frenkel, D. & Smit, B. Understanding Molecular Simulation: from Algorithms to
Applications (Elsevier, 2001).

68. Hidalgo, E. G., Nemoto, T. & Lecomte, V. Finite-time and finite-size scalings in the
evaluation of large-deviation functions: numerical approach in continuous time. Physical
Review E 95, 062134 (2017).

69. Klymko, K., Geissler, P. L., Garrahan, J. P. & Whitelam, S. Rare behavior of growth
processes via umbrella sampling of trajectories. Physical Review E 97, 032123 (2018).

70. Nemoto, T., Jack, R. L. & Lecomte, V. Finite-size scaling of a first-order dynamical
phase transition: Adaptive population dynamics and an effective model. Physical
Review Letters 118, 115702 (2017).

71. Nemoto, T. & Sasa, S.-i. Computation of large deviation statistics via iterative
measurement-and-feedback procedure. Physical Review Letters 112, 090602 (2014).

72. Ray, U., Chan, G. K.-L. & Limmer, D. T. Exact fluctuations of nonequilibrium steady
states from approximate auxiliary dynamics. Physical Review Letters 120, 210602
(2018).
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231. Verdú, S. et al. A general formula for channel capacity. IEEE Transactions on Infor-
mation Theory 40, 1147–1157 (1994).

232. Rahman, A. & Blackmore, D. Threshold voltage dynamics of chaotic RS flip-Flops.
Chaos, Solitons & Fractals 103, 555–566 (2017).

233. Frank, M. P. Common mistakes in adiabatic logic design and how to avoid them.
Embedded Systems and Applications 216 (2003).

234. Zulehner, A., Frank, M. P. & Wille, R. Design automation for adiabatic circuits in
Proceedings of the 24th Asia and South Pacific Design Automation Conference (2019),
669–674.

235. Horowitz, J. M. & Parrondo, J. M. Designing optimal discrete-feedback thermodynamic
engines. New Journal of Physics 13, 123019 (2011).

236. Das, A. & Limmer, D. T. Variational design principles for nonequilibrium colloidal
assembly. The Journal of Chemical Physics 154, 014107 (2021).

237. Barato, A. C. & Seifert, U. Stochastic thermodynamics with information reservoirs.
Physical Review E 90, 042150 (2014).

238. Deffner, S. & Jarzynski, C. Information processing and the second law of thermody-
namics: An inclusive, Hamiltonian approach. Physical Review X 3, 041003 (2013).




