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ABSTRACT OF THE THESIS

Non-asymptotic Analysis of Learning

Long-range Autoregressive Generalized Linear Models

for Discrete High-dimensional Data

by

Parthe Pandit

Master of Science in Statistics

University of California, Los Angeles, 2021

Professor Alyson Fletcher, Chair

Fitting multivariate autoregressive (AR) models is fundamental for analysis of time-series

data in a wide range of applications in science, engineering, econometrics, signal processing,

and data-science. This dissertation considers the problem of learning a p-lag multivariate

AR generalized linear model (GLM). In this model, the state of the time-series at each time

step, conditioned on the history, is drawn from an exponential family distribution with the

mean parameter depending on a linear combination of the last p states. The problem is to

learn the linear connectivity tensor from a single observed trajectory of the time-series. We

provide non-asymptotic error bounds on the regularized Maximum Likelihood estimator in

high dimensions.

We focus on the sparse tensor setting, which arises in applications where there exists a

limited number of direct connections between variables. For such problems, ℓ1-regularized

maximum likelihood estimation (or M-estimation more generally) is often straightforward to

apply and works well in practice. The M-estimator can be posed as a convex optimization

problem and hence can also be solved efficiently.

However, the statistical analysis of such methods is difficult due to the feedback in the
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state dynamics and the presence of a non-linear link function, especially when the underlying

process is non-Gaussian. Our main result in Chapter 3 provides a bound on the mean-

squared error of the estimated connectivity tensor as a function of the sparsity and the

number of samples, for a class of discrete multivariate AR(p) GLMs, in the high-dimensional

regime. Importantly, the bound indicates that, with sufficient sparsity, consistent estimation

is possible in cases where the number of samples is significantly less than the total number of

free parameters.

Towards proving the main result, we present a general framework to establish the Restricted

Strong Convexity (RSC) property for time-averaged loss functions often seen in time-series

analysis. We also derive new concentration inequalities of functions of discrete non-Markovian

random variables. These intermediate results may be of independent interest to the reader.
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Chapter 1

Introduction

Statistical analysis of high-dimensional time series data has several applications in science

and engineering. Linear parametric models such as Autoregressive (AR) models provide

a simple, interpretable and yet, powerful baseline for such applications. This dissertation

provides new results regarding the sample complexity of learning the parameter of high-

dimensional AR models with long-term dependencies.

1.1 Forecasting problem

AR models generalize linear models to the context of time series analysis. In the standard

linear model commonly studied in statistics a response is postulated to be an affine function

of the covariates. In a time series we are often interested in the following forecasting problem:

Given the history of a time series (xt,xt−1,xt−2, . . .), predict the next state xt+1.

Here, the covariates are the history of the time series whereas the response is the next-state.

The AR model predicts the next state as an affine function of the history of the time series.

The results presented in this dissertation appeared in [34, 31, 33]. The papers [31, 33] presented the
case of learning a sparse Bernoulli AR(p) process, whereas [34] extended these results to general GLMs
over discrete valued variables with the presence of a dictionary. These works are coauthored with Mojtaba
Sahraee-Ardakan, Arash A. Amini, Sundeep Rangan and Alyson Fletcher.
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While this may be suited for some Gaussian-like continuous valued signals, for more structured

signals, a natural extension to the linear model is to consider a Generalized Linear Model

(GLM), i.e., the prediction is a nonlinear function of an affine function of the covariates.

These models are also well studied under the name Linear Predictive Coding (LPC) and have

been influential in the development of early speech processing and communication technology.

An immediate question is how much of the history of the state is relevant to predict

the next state of the time series. The AR(p) model predicts xt using (xt−1,xt−2, . . . ,xt−p).

This creates a hierarchy of models, and number of lags p needs to be selected appropriately1.

The hyperparameter p depends on the sampling resolution of the time series as well. In this

work, we assume p is known and fixed, and we are interested in understanding the sample

complexity of estimating the model parameter as p scales.

The learning problem is then to estimate the weights of the affine function of the GLM

described above. For an appropriately chosen GLM, this can be posed as an unconstrained

convex optimization problem and hence can be solved efficiently using off-the-shelf algorithms.

This dissertation concerns the consistency of this M-estimator for a large class of multivariate

AR(p)-GLMs.

Non-asymptotic analysis for the M-estimators of linear models and GLMs is by now a

well studied problem in high dimensional statistics. Most consistency results in this area

rely on the concentration phenomena of empirical processes. M-estimators in the context of

time-series however, have loss functions which consist of empirical processes with temporal

dependence between samples. This makes analysis extremely challenging since concentration

phenomena are either unknown or hard to establish. This is far more complicated in the

non-Markovian setting which we consider in this dissertation.

1A higher p leads to a more powerful model that is costlier to estimate - both statistically and computa-
tionally.
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1.2 Organization of the dissertation

The rest of the dissertation is organized as follows. Chapter 2 presents the general model that

we will work with. Chapter 3 presents the main result regarding learning this model, followed

by a discussion about its consequences, and a sketch of its proof. In Chapter 4 we present

the technique to establish the restricted strong convexity (RSC) condition for loss functions

which are time-averages of an empirical process, commonly seen in M-estimators in time-

series analysis; whereas in Chapter 5 we present new techniques for deriving concentration

inequalities for dependent multivariate processes. Chapter 6 provides numerical simulations

that corroborate our theoretical predictions. Finally, Chapter 7 concludes the dissertation

and lays out some open questions.

1.3 Notation

For two sequences of real numbers {an} and {bn}, we write either of an ≳ bn or bn ≲ an or

bn = O(an) or an = Ω(bn), to mean that there is a constant C > 0 such that an ≥ Cbn for all

n. We write an ≍ bn if both an ≳ bn and bn ≳ an. We write either of an ≫ bn or bn ≪ an or

bn = o(an), if bn/an → 0 as n→ ∞. Table 1.1 provides a list of all other notations used in

the dissertation.
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Table 1.1: List of notations used in the dissertation.

[m] the set {1, 2, . . . ,m} defined for any m ∈ N
n number of samples

N number of variables

p number of lags

L number of filters

si in-degree of variable i var i depends on at most si vars

i, j (index) of variable ∈ [N ]

k (index) of lag ∈ [p]

ℓ (index) of filter ∈ [L]

t (index) of sample/time ∈ Z
Xi discrete subset of R examples: {0, 1}, [m],N,Z,Q
X×p

i discrete subset of R1×p
{[
x1 . . . xp

]
| xk ∈ Xi,∀ k ∈ [p]

}
X discrete subset of RN

∏
i∈[N ] Xi

X×p discrete subset of RN×p
∏

i∈[N ] X
×p
i

xti (scalar) ∈ Xi, variable i at time t

xt (vector) ∈ X , state at time t
[
xt1 xt2 . . . xtN

]⊤
∈ X

xt−∗
i (vector) ∈ X×p

i , history of variable i
[
xt−1
i xt−2

i . . . xt−p
i

]
∈ X×p

i

Xt (matrix) ∈ X×p, p-lag history at time t
[
xt xt−1 . . . xt−p+1

]
∈ X×p

dℓ (vector) ∈ Rp, filter with p lags

D (matrix) ∈ Rp×L, dictionary of L filters
[
d1 d2 . . . dL

]
Θ (tensor) parameter ∈ RN×N×L same as Θ[N ] (c.f. ΘU below)

Θi (matrix) ∈ RN×L parameter for variable i

U subset of variables ⊆ [N ]

ΘU (|U| ×N × L tensor) (Θi)i∈U

∥M∥ (norm) Frobenius norm of tensor M sum(M**2)**0.5 in Python

∥M∥q,r (norm) of M ∈ RB×C , q, r ≥ 1

(∑B
b=1

{∑C
c=1 |Mbc|r

} q
r

)1
q

∥M∥p,q,r (norm) of M ∈ RA×B×C , p, q, r ≥ 1
(∑A

a=1 ∥Ma∥pq,r
)1

p
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Chapter 2

Multivariate Autoregressive

Generalized Linear Models

We consider the problem of learning a p-lag AR(p) generalized linear model (GLM) for a

multivariate time series involving N -variables: xt = (xti) ∈ RN , where xti ∈ Xi ⊆ R for all

i ∈ [N ], t ∈ Z. A particular case of the model we consider is of the form,

xti | zti ∼ Qi(z
t
i), zti = fi

(〈
Θ∗

i ,X
t−1
〉)
, (2.1)

where the inner product corresponds to RN×p, for t = 1, 2, . . . and i = 1, 2, . . . , N where

Xt−1 = [xt−1 xt−2 . . . xt−p] ∈ RN×p is the p-lag history of the process up to time t− 1, and

Qi(z
t
i) is a probabilistic link function. The problem is to estimate, for i = 1, 2, . . . , N , the

unknown parameter Θ∗
i ∈ RN×p, which governs the influence of the process over the next

state of variable i, from an observation of n time steps xt, t = 1, . . . , n. The conditional

distributions Qi(·) and link functions fi are assumed to be known.

Modeling problems of this form appear in a wide-range of applications with time-series

data. For example, in neural modeling, xt can represent a vector of spike counts or some

other measure of activity from N neurons or brain regions, as modelled by [19, 47]. In

this case, estimation of the tensor Θ∗ in equation (2.1) can provide insight into the neural
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connectivity. Other applications include genomics, econometrics [10], data science, sociology,

business management, financial markets [44, 11] and natural language processing.

A key challenge in estimating the multivariate AR(p) models is the large number of

unknown parameters, particularly as the dimension of the process, N , and number of time

lags, p, grows. However, in many cases, one can assume some sparsity constraint in the

connectivity tensor Θ∗. For example, in neural modeling, there are physically limited numbers

of direct connections between brain regions. Under a sparsity assumption, it is common to

estimate Θ∗ via an ℓ1-regularized M-estimator of the form,

Θ̂ := argmin
Θ∈RN×N×p

1
n

N∑
i=1

n∑
t=1

Lit

(
xti ;

〈
Θi,X

t−1
〉)

+ λn∥Θ∥1,1,1, (2.2)

where Lit : Xi×R → R are loss functions and λn∥Θ∥1,1,1 is an ℓ1 regularizer (precise definitions

will be given in the Section 2.3 below). The broad goal of this dissertation is to analyze the

sample complexity of such ℓ1-regularized M-estimators. That is, given a sparsity constraint

on Θ∗, and the number of measurements, n, how well can we estimate Θ∗?

2.1 Key contributions

We consider the case where {Xi}Ni=1 are bounded countable subsets of R. We analyze the

ℓ1-regularized M-estimator equation (2.2) when the loss functions v 7→ Lit(u; v) are strongly

convex, for all u ∈ Xi. We assume that the connectivity tensor can be approximated by a sparse

tensor with at most smax non-zero values in each slice Θ∗
i . Under these assumptions, our main

result in Theorem 1, stated later in Chapter 3, establishes the consistency of the regularized

M-estimator equation (2.2) in the high-dimensional regime of n = poly
(
smax log(N

2p)
)
under

some regularity conditions.

In proving our main result, we establish the so-called restricted strong convexity (RSC) [29]

for a large class of loss functions, for a dependent non-Gaussian discrete-valued multivariate

process. Our proof of the RSC property requires showing a restricted eigenvalue condition,
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which is nontrivial due to the non-Gaussian and highly-correlated nature of the design matrix.

What makes the problem more challenging is the existence of feedback from more than just

the immediate past (the case p > 1).

We establish the RSC for general p ≥ 1 using the novel approach of viewing the p-block

version of the process as a Markov chain. The problem becomes significantly more challenging

when going from p = 1 to even p = 2. The difficulty with this higher-order Markov chain is

that its Dobrushin contraction coefficient is trivially 1. We develop techniques to get around

this issue which could be of independent interest (cf. Section 5). Our techniques hold for all

p ≥ 1.

Much of the previous work towards proving the RSC condition has either focused on the

independent sub-Gaussian case [37, 48] or the dependent Gaussian case [2, 38] for which

powerful Gaussian concentration results such as the Hanson–Wright inequality [40] are still

available. Our approach is to use concentration results for Lipschitz functions of Markov

chains over countable spaces, and strengthen them to uniform results using metric entropy

arguments. In doing so, we circumvent the use of empirical processes which require additional

assumptions for estimation [36]. Moreover, our approach allows us to identify key properties

of the model that allow for sample-efficient estimation.

Although discrete time series are often modeled using the specific link functions such

as logit or softmax, our result allows more flexibility to choose the link functions. For

example in the Bernoulli AR(p) and Truncated-Poisson AR(p) cases discussed in Section 3.5,

any Lipschitz continuous, log-convex link function can be used. The analysis also brings out

crucial properties of the link function, and the role it plays in determining the estimation

error and sample complexity.

Our model also allows for each individual time series xti to lie in distinct spaces Xi which

is desirable in practical applications with heterogeneous types of data.

7



2.2 Previous work

There is a vast literature on recovering sparse vectors in under-sampled settings [7, 6, 12, 13].

The generic results show that if a vector θ is s-sparse in a p-dimensions, it can be estimated

in n = Ω(s log(p)) measurements. However, these results typically do not have feedback as in

the AR process considered here.

The estimation of sparse Gaussian VAR(p) processes with linear feedback has been

considered only more recently [2, 5, 27, 28, 1]. For these models, a restricted eigenvalue

condition can be established fairly easily, by reducing the problem, even in the time-correlated

setting, to the concentration of quadratic functionals of Gaussian vectors for which powerful

inequalities exist [40]. These techniques do not extend to non-Gaussian setups.

In the non-Gaussian setting, Hall et al. [16, 49] recently considered a multivariate time

series evolving as a GLM driven by the history of the process similar to our model. The

Bernoulli AR(1) and Poisson AR(1) with p = 1 lags were considered as special cases of this

model. They provide statistical guarantees on the error rate for the ℓ1 regularized estimator.

More importantly, their results are restricted to the case p = 1 which does not allow the

explicit encoding of long-term dependencies. More recently, Mark et al. [25, 24] considered a

model closer to ours for multivariate AR(p) processes with lags p = 1 or p = 2.

A key contribution of ours is to bring out the explicit dependence on p in the AR(p)

models, allowing for a general p ≥ 1. In the special cases we consider: the Bernoulli AR(p)

and the Truncated-Poisson AR(p), we show how the scaling of the sample complexity and

the error rate with p can be controlled by the properties of the link function fi and a certain

norm of the parameter tensor.

Our results improve upon those in [16, 25] when applied to the Bernoulli AR(p) and

Truncated-Poisson AR(p). Due to the key observation that an AR(p) over a countable space

can be viewed as a higher order Markov chain, our analysis relaxes several assumptions made

by [16, 25]. In doing so, we achieve better sample complexities with explicit dependence on p.

Our analysis borrows from martingale-based concentration inequalities for Lipschitz functions
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of Markov chains [21].

The univariate Bernoulli AR(p) process for p ≥ 1 was considered by Kazemipour et.

al. [18, 19] where they analyzed a multilag Bernoulli process for a single neuron. Their

analysis does not extend to the N > 1 case. Even for N = 1, their analysis is restricted to

the biased process with P(xt1 = 1|Xt−1) < 1
2
for all t. Mixing times of the Bernoulli AR(1)

have been considered in [17]. However, their discussion is again limited to p = 1.

2.3 Models and methods

To state our results in their full generality, we consider a slightly more general model than

equation (2.1). We assume that the multivariate time series xt = (xti) ∈ X ⊂ RN evolves as,

xti | zti ∼ Qi( · | zti) (2.3a)

zti = fi
( 〈

Θ∗
i ,X

t−1D
〉
RN×L

)
(2.3b)

xti ⊥⊥ xtj | xt−1,xt−2, . . . (2.3c)

for t = 1, 2, . . . and i = 1, 2, . . . , N . The key difference here is that we have added a matrix

D = [d1 d2 . . . dL] ∈ Rp×L, a known dictionary of filters {dℓ}Lℓ=1. When D = Ip×p, we obtain

the special case equation (2.1). The role of this dictionary will be explained below. To model

the discrete-valued nature of the states, we assume that xt ∈ X :=
∏N

i=1Xi where each Xi is a

bounded countable subset of R. The matrix Xt−1 = [xt−1 xt−2 . . . xt−p] ∈ RN×p is the p-lag

history of the process up to time t− 1, and Qi( · | z) is a distribution on Xi parameterized by

z. For example an exponential family distribution with mean parameter z. The matrices

Θ∗
i ∈ RN×L, i ∈ [N ] are the (unknown) model parameters and ⟨·, ·⟩RN×L is the inner product.

A process of this form will be denoted GVAR(p).

The distribution Qi( · | zti) represents the conditional distribution of xti given the past

xt−1,xt−2, . . .. Functions fi : R → R are similar to the inverse-link functions in GLMs, and
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can be nonlinear in general. It is worth noting that Xi and Qi can vary for every variable

i ∈ [N ] making the model extremely flexible to include heterogeneous types of discrete data.

The inner product ⟨·, ·⟩RN×L in equation (2.3) is the Hilbert-Schmidt inner product on

RN×L, and can be expanded as:

〈
Θ∗

i ,X
t−1D

〉
RN×L =

N∑
j=1

L∑
ℓ=1

Θ∗
ijℓ

〈
xt−∗
j ,dℓ

〉
Rp (2.4)

where xt−∗
j := [xt−1

j xt−2
j . . . xt−p

j ] is the p-lag history of variable j up to time t − 1, i.e.,

the jth row of Xt−1. Note that (Xt−1D)jℓ =
〈
xt−∗
j ,dℓ

〉
Rp . The parameter (Θ∗

i )jℓ = Θ∗
ijℓ ∈ R

captures the dependence of variable xti on the past activity of variable j, via xt−∗
j . The vectors

dℓ ∈ Rp act as filters that modulate the mean of variable xti based on the past activity of all

the variables, that is, xkj for j ∈ [N ], and t− p ≤ k < t.

2.4 Dictionary and Network interpretations

The filters {dℓ} serve two main purposes: (i) interpretability and (ii) dimension reduction.

For example, in neuroscience applications where the types of spiking behaviors are limited,

the presence of a dictionary causes the model to favor specific forms of interactions between

the spiking activities of two neurons. We refer to [47] which explores these filters for various

interactive behaviors among neurons such as bursting, tonic spiking, phasic spiking, etc.

The dictionary increases the interpretability of the parameter Θ∗
i—one interprets (Θ∗

i )jℓ as

measuring the effect of the activity of neuron i on neuron j, as explained by interaction type ℓ.

Thus, the sparsity of Θ∗
i is more meaningful in the presence of a dictionary. An earlier version

of this work [32] considered modeling the interaction with the past as ⟨Θ∗
i ,X

t−1⟩ where Θ∗
i

lies in RN×p, corresponding to taking D = Ip×p, the identity matrix, in equation (2.3c). The

formulation with a general dictionary D has the added advantage of potentially reducing the

number of free parameters from Np to NL. When L≪ p, this leads to a massive dimension

reduction. The bilinear term ⟨Θ∗
i ,X

t−1D⟩RN×L =
〈
Θ∗

iD
⊤,Xt−1

〉
RN×p can also be thought of
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as a low-rank approximation to the parameter, forcing one factor to be fixed by D. By adding

pre-existing knowledge of temporal interactions between variables, the dictionary allows for a

rich model with fewer parameters, leading to more (sample) efficient estimators for Θ∗.

The parameter Θ∗ can be interpreted as representing a network among variables xti, i ∈ [N ].

A slice Θ∗∗ℓ can be thought of as an adjacency matrix for the influence network explained by

coupling behaviour ℓ. If neurons i and j are not connected, then Θijℓ = 0 for all ℓ ∈ [L]. For

example, in the neural spike train application, one can reveal a latent network among the

neurons (i.e., who influences whose firing) just from the observations of patterns of neural

activity, a task which is of significant interest in neuroscience [30, 43, 4]. Similarly, in the

context of social networks, one might be interested in who is influencing whom [35].

2.5 Example Processes

The GVAR(p) process of the form equation (2.3) can be applied in a wide range of applications.

For example, letting Qi( · | z) = Ber(z) and fi(u) = (1 + e−u)−1 recovers the Bernoulli

autoregressive process in [32]. Similarly, Qi( · | z) = Binomial(Ki, z) and fi(u) = (1 + e−u)−1

models a Binomial process with Ki trials (for coordinate i) and success probability z.

Such a model can be suitable for modeling count data. Another common model for point

processes in neuroscience [43] is the Truncated-Poisson autoregressive process given by

Qi( · | z) = P(min(Mi, Z) ∈ · ) where Z ∼ Poi(z), and fi(u) = exp(u) or fi(u) = log(1 + eu)

for some integer Mi [16, 25]. Although we focus on single-parameter discrete distributions in

this dissertation, the ideas can be easily extended to distributions with multiple parameters.

For example, one can construct a categorical or multinomial process, by allowing zti to be

vector-valued and taking fi to be the softmax function.
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Chapter 3

Learning Sparse AR-GLMs in High

dimensions

We are primarily interested in parameter estimation in the high-dimensional regime where

n≪ N , i.e., when the number of samples n are far fewer than the number of variables N . To

make the estimation feasible, we assume that variable i depends on the past values of only

a few number of variables, si ≪ N. We refer to si as the in-degree of variable i. Our main

result provides sufficient conditions under which the parameter Θ∗ can be estimated in the

high-dimensional setting where n = poly({si}Ni=1, log(NLp)). Recall that n is the number of

samples, p is the number of lags in the AR model, L is the number of filters in the dictionary,

and N is the total number of variables.

Chapter Organization: Section 3.1 formally describes the regularized M-estimator. Sec-

tion 3.3 provides the result which holds under the assumptions stated in Section 3.2. A

few remarks on the several assumptions are given in Section 3.4, whereas special cases of

Theorem 1, such as Binomial and Truncated-Poisson processes, are provided in Section 3.5.

Finally, Section 3.6 outlines a sketch of the proof of Theorem 1.
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3.1 Regularized M-Estimation

We are interested in learning the parameter Θ∗ of the multivariate AR-GLM from equa-

tion (2.3). Given a collection of loss functions Lit : Xi × R → R, for i ∈ [N ] and t ∈ Z, we

consider the following ℓ1-regularized M-estimator

Θ̂ := argmin
Θ∈RN×N×L

N∑
i=1

Li(Θi) + λn∥Θ∥1,1,1,

Li(Θi) :=
1
n

n∑
t=1

Lit

(
xti ;

〈
Θi,X

t−1D
〉)
.

(3.1)

Since both the loss function and the ℓ1 penalty are decomposable, we can solve each of

the N problems in equation (3.1) indexed by i separately,

Θ̂i := argmin
Θi∈RN×L

Li(Θi) + λn∥Θi∥1,1 ∀ i ∈ [N ]. (3.2)

The possible dependence of Lit on t in the M -estimator equation (3.1) allows for the

incorporation of time-discounting factors such as γt for some γ < 1. We consider a large

class of loss functions later stated explicitly in assumptions (A2) and (A3). This class

always includes the negative-log likelihood function for exponential family distributions

Qi( · | fi(v)) with log-concave link fi, and pseudo-likelihood functions in some cases. When

Lit are chosen to be convex, the whole problem equation (3.1) is unconstrained, convex, with

a coercive objective function, whereby the solution Θ̂ is unique. Furthermore, the estimator

equation (3.1) can be solved efficiently using any non-smooth convex optimization solver, such

as the subgradient methods or proximal gradient descent methods [3]. An implementation

for the general problem in equation (3.1) is available at [41] which implements both the

subgradient method as well as the proximal gradient method.

Each iteration of both of these methods involve computation of the gradient of the loss

function followed by finding the sub-gradient or proximal mapping for the regularization.
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Computing the gradient of the loss is the most expensive step. The gradient of the loss is

∇L(Θi) =
1

n

n∑
t=1

L′
it

(
xti ;

〈
Θi,X

t−1D
〉)

Xt−1D, (3.3)

where in L′
it(· ; ·) the derivative is with respect to the second argument. To compute the

gradient, Xt−1D can be precomputed once by multiplying X := {xt}nt=−p+1 and D. Hence,

the complexity of obtaining the gradient ∇L(Θi) at each iteration is dominated by that

of computing ⟨Θi,X
t−1D⟩ for all i, that is, O(nNL). To solve the optimization problem,

one can then use the subgradient method with a provable convergence rate of 1/
√
k after

k steps. This relatively slow rate is due to the non-smoothness of the objective function.

Alternatively, we can use the proximal gradient method that converges at a rate of 1/k. Then,

the overall computational complexity of obtaining an ε-optimal solution is O(nNL/ε). The

parallel implementation in equation (3.2) allows for massive speed-ups in computation when

using GPUs. The main result of this dissertation concerns the statistical complexity of the

estimator and is agnostic to the choice of the optimization solver.

Our main result establishes the statistical properties of estimator equation (3.1) such

as consistency, sample complexity and error rate. Our analysis also highlights desirable

properties of the loss functions Lit and the nonlinearities fi for achieving consistency. The

result also shows the effect of the dictionary D in increasing the sample-efficiency of the

estimator.

3.2 Assumptions for the Main Result

Our main result concerns the estimation error of the parameters {Θ̂i}Ni=1, obtained by

solving equation (3.2). We implicitly assume Θ∗
i to be approximately si-sparse. This

assumption is encoded via the ℓ1-approximation errors

ωi := min
β∈RN×L

{∥β −Θ∗
i ∥1 | ∥β∥0,0 ≤ si}. (3.4)
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We also impose the following assumptions:

(A1) The process is wide-sense stationary and stable, i.e., the power spectral density matrix

exists:

X(ω) :=
∞∑

ℓ=−∞

Cov(xt,xt−ℓ)e−jωℓ ∈ CN×N ,

min
ω∈[−π,π)

λmin (X(ω)) ≥ C2
X > 0.

(A2) The loss function v 7→ Lit(u, v) is twice differentiable and strongly convex for all u,

with curvature κi > 0, i.e., ∂2vLit(u; v) ≥ κi for all u ∈ Xi, v ∈ R, i ∈ [N ], t ∈ N+.

(A3) |∂vLit(u, v)| ≤ CL, and for all v ∈ R, i ∈ [N ], t ∈ N+ we have

U ∼ Qi( · | fi(v)) =⇒ E
[
∂vLit(U ; v)] = 0.

Assumption (A3) guarantees that Θ∗ is the minimizer of the population loss, and is necessary

for the consistency of the M -estimator. The second half of the assumption is generally

satisfied if the loss is taken to be the log-likelihood function. The next example verifies this

for single-parameter exponential families.

Example 1. Assume that Qi( · | z) is an exponential family with density x 7→ exp(xz−ϕ(z)),

for all i. Here, z is the so-called natural parameter of the family and ϕ is the log-partion

function. Let U ∼ Q( · | fi(v)) and take Lit(x, v) to be the log-likelihood of this model, that

is,

Lit(x; v) = −xfi(v) + ϕ(fi(v)).

This class includes Bernoulli, Poisson, and Gaussian (with known variance) AR processes

among others. We have

∂vLit(U ; v) = −Uf ′
i(v) + ϕ′(fi(v))f

′
i(v).
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By a standard property of the exponential family E[U ] = ϕ′(fi(v)), hence E[∂vLit(U ; v)] = 0

verifying the second half of (A3). If, in addition, the family has bounded support and both ϕ

and fi are Lipschitz, then the entire (A3) holds. Distributions such as Poisson and Gaussian

violate the boundedness assumption. However, the truncated version of these distributions

belong to the exponential family and satisfy the boundedness condition.

Example 2. Under the same exponential family distribution as in Example 1, the second

half of (A3) also holds for the squared error loss

Lit(x; v) =
[
x− ϕ′(fi(v))

]2
.

To verify this, it is enough to observe that

∂Lit(U ; v) = 2
[
U − ϕ′(fi(v))

]
· ϕ′′(fi(v))f

′
i(v),

and use E[U ] = ϕ′(fi(v)).

These two examples show that (A3) is satisfied for commonly used loss functions. As

for (A2), we recall that in an exponential family with the natural parameterization, the log-

partition function ϕ(·) is convex. Assumption (A2), however, requires the map v 7→ Lit(u, v)

to be strongly convex. Extra care should be taken in choosing the loss and fi(·) to ensure

that this assumption is satisfied. The stability assumption (A1) is further discussed in the

remarks following the main result.

Let us now define a few constants necessary to state our main result. Let

CD := max
ℓ

∥dℓ∥1,

G = G(Θ∗) := 64C4
DB

4
(
1 + p2ψ

(
τ1(Θ

∗)
))
,

(3.5)
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where ψ(x) = (1− x−1)−2 and

τ1(Θ
∗) := sup

z,y∈X×p

∥Pz − Py∥TV < 1,

Pz := P(Xt+p = · | Xt = z), z ∈ X×p.

(3.6)

Here, X×p ⊂ RN×p denotes the set of matrices consisting of p columns, each from X . Note

that Pz is invariant to t. Now fix U ⊂ [N ] and let us define the following constants needed to

state the main result:

smax := max
i∈U

si, (3.7a)

s+ :=
∑
i∈U

si, (3.7b)

κ := max
i∈U

κi (3.7c)

κ :=
C2

X

8
min
i∈U

κi, (3.7d)

ω̃+ :=
∑
i∈U

κ
ω2
i

si
+ 4ωi, (3.7e)

where CX and κi are specified in assumptions Item (A1) and item (A2) respectively.

3.3 Main Result

We are now ready to state the main result:

Theorem 1. Suppose that {xt}nt=−p+1 are samples from process given in equation (2.3), with

each Xi being a countable subset of [−B,B] for some B > 0, and satisfying (A1). Fix a subset

U ⊆ [N ] and let {Θ̂i}i∈U be the solutions of the optimization problem equation (3.2) with loss

functions Lit satisfying assumptions (A2) and (A3). Fix c1 > 2 and let c = c1/2− 1. If

λn = 2BCLCD

√
c1 log(|U|NL)/n, and n ≳

G

C6
X

s3max log(NL), (3.8)
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then, with probability at least 1− (NL)−Csmax − (|U|NL)−c,

∑
i∈U

∥Θ̂i −Θ∗
i ∥2F ≤ 9

κ2
s+λ

2
n +

ω̃+

κ
λn. (3.9)

where C = O(C−2
X ) only depends on CX.

The error bound in equation (3.9) can be written, up to constants, as:

∑
i∈U

∥Θ̂i −Θ∗
i ∥2F ≲

s+ log(NL)

n
+ ω̃+

√
log(NL)

n
. (3.10)

The two terms in the bound correspond to the estimation and approximation errors, re-

spectively. The estimation error scales at the so-called fast rate log(NL)/n, while the

approximation error scales at the slower rate
√

log(NL)/n. For the exact sparsity model,

where ωi = 0 for all i, the approximation error vanishes and the estimator achieves the

fast rate. For simplicity, assume that CL, CD ≲ 1 ≲ CX. Then, the overall (excess) sample

complexity for consistent estimation is

n≫ max
{
Gs3max, s+, (ω̃+)

2
}
log(NL). (3.11)

By consistency, we mean that the estimator converges to the true parameter when n grows

to infinity, as long as the above condition holds, even when the rest of the parameters s, p, L

and N grow to infinity alongside n. We discuss the meaning of the “excess” qualification for

the sample complexity in the remarks below.

Bound equation (3.10) has a logarithmic dependence on N , the number of variables in

the process, which is a notable feature of our work. Compared to some of the previous work

[19], we overcome the N > 1 barrier for the BAR model while allowing for p > 1 dependence

on the past. The bound also depends logarithmically on L. This means that dictionary D

can be overcomplete, allowing for Θ∗ to be sparse, for nearly no additional cost.
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3.4 Remarks on the Main Result

Let us make a few comments on the various choices in Theorem 1.

3.4.1 Choice of regularization parameter λn

The upper bound provided in equation (3.9) depends on the choice of the regularization

parameter. The result however also specifies a particular value for λn. This choice is governed

largely by the proof technique. In short, we require that the value of λn be larger than the

dual-regularizer-norm of the gradient of the loss function at Θ∗. More details on this are

provided in Section 3.7 after outlining the sketch of the proof of Theorem 1.

3.4.2 Choice of the loss L

Theorem 1 holds for any loss function satisfying conditions (A2) and (A3). For the Bernoulli

AR process, the negative log-likelihood Li,t(u, v) = −u log fi(v)−(1−u) log(1−fi(v)) satisfies

these assumptions for any log-concave fi; see [32]. For the Truncated-Poisson AR process,

the negative log-likelihood takes the form Lit(u, v) = fi(v)− u log fi(v) + log(u!) and satisfies

the assumptions for fi(v) = exp(v) or fi(v) = log(1 + ev).

3.4.3 Choice of U

The result in Theorem 1 has been stated for a general U ⊆ [N ]. Taking U = [N ], gives a

bound on the Frobenius norm of the entire tensor ∥Θ̂−Θ∗∥2F . On the other extreme, we can

take U = {i} to obtain bounds on each slice of the tensor with better scaling with sparsity.

For example, in the exact sparsity setting, we obtain ∥Θ̂i −Θ∗
i ∥2F ≲ si log(NL)/n, avoiding

the extra price of (
∑

j ̸=i sj) log(NL)/n that we pay for the entire tensor.
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3.4.4 Scaling with sparsity

Considering the exact sparsity setting, the scaling of the sample complexity equation (3.11)

with sparsity is n = Ω(s+∨s3max). In the worst case, s+ = smax and we get a cubic dependence

on sparsity which is not ideal. However, when s+ ≳ s3max, Theorem 1 requires n = Ω(s+)

which is the optimal scaling with sparsity. (This can be seen by noting that in the linear

independent setting, one cannot do better than n = Ω(s+).) Our result also holds for the

more general case of ωi ≠ 0. For example, for the ℓq ball sparsity with q ∈ (0, 1), we have

ωi = O(s
1−1/q
i ) hence ω2

i /si + wi = O(ωi) = O(si) and ω̃+ = O(s+) and the same sample

complexity as the exact sparsity case holds.

It is not clear if the worst-case cubic dependence on the sparsity can be improved without

imposing restrictive assumptions. It is worth noting that in our proof, the additional s2i factor

comes from concentration inequality equation (4.4) in Lemma 10. This additional factor can

be removed if one were able to show sub-Gaussian concentration for deviations of the order of

∥β∥2F instead of ∥β∥21,1, in Lemma 10. It remains open whether such concentration is possible

and under what additional assumptions. Section 5 provides a more detailed discussion on

this concentration inequality. Figure 6.4a in Section 6 suggests a superlinear dependence on

s, hinting that the situation may not be as simple as the i.i.d. case.

For p = 1, a sample complexity of ρ3 log(N) was reported in [16, Cor. 1]. One can verify

that ρ in their model is equal to smax in ours, hence they obtain the same s3max dependence

on sparsity. Similarly for p = 2, the result in [25, Thm 4.4] requires (s/r2ρ) log(N) samples

where s and rρ are sparsity parameters defined therein and rρ is inversely related to smax

in the worst case, yielding a similar cubic dependence on sparsity as ours. Furthermore, it

appears that their analysis only holds for smax = O(1), whereas we make no such assumption.

In short, to our knowledge, no prior work has broken the s3max barrier in the non-Gaussian

AR setting.
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3.4.5 Scaling with lag p

Our result is the first to provide sufficient conditions for a sample complexity logarithmic in p

in the case of the identity dictionary, for any value of N . As will be discussed in Section 3.5,

the dependence of the (excess) sample size n on p could be as good as O(logL) for a general

dictionary, under certain tail and normalization conditions. In these cases, one could obtain

an O(1) growth of n as function of p in the best case (when L = O(1)) and an O(log p) growth

in the worse case (the identity dictionary). In contrast, [19, Thm. 1] requires s2/3p2/3 log(p)

samples, for the identity dictionary, and their proof relies heavily on N = 1.

Our bound scales with p through G which is defined in terms of the contraction coefficient

τ1(Θ
∗) in equation (3.6). The contraction coefficient only depends on Θ∗ and is always less

than 1. Intuitively, if Θ∗ is too large, then for two different initializations z and y, the

distributions P(Xt+p = · | Xt = y) and P(Xt+p = · | Xt = z) may significantly differ. A

clear sufficient condition for G = O(1) is to have τ1(Θ
∗) = O(p−1) as well as CD ≲ 1. The

challenge is to control τ1(Θ
∗) in terms of the size of Θ∗. Section 3.5 further discusses sufficient

conditions under which G = O(1). There, we show that for certain exponential families, the

scaling depends on the behavior of the tail of k 7→ |(dℓ)k|, that is, how fast the influence from

the past dies down in the filters {dℓ}.

A subtle point worth noting here, which does not arise in ordinary M -estimation with

i.i.d. measurements, is that n is in fact the excess sample-size one needs beyond the p initial

samples. It is clear that at least p initial samples are needed for estimating a p-lag process.

Examples discussed in Section 3.5 provide conditions that guarantee that the excess sample

size, n, needed for consistent estimation is O(logL) as p grows, the smallest order one could

hope for.

3.4.6 Stability assumption (A1)

We use assumption (A1) to guarantee that the strong convexity holds for the population loss

Θ 7→ EL(Θ). This is key in guaranteeing that any parameter tensor Θ̂ that maximizes the
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regularized loss function in equation (3.1) does not deviate far from the true parameter Θ∗.

Assumption (A1) is by now standard in time-series estimation literature [38, 2, 23]. The

quantity CX is fundamental to multivariate time-series analysis, however, its behavior as a

function of the parameters of the model is not yet fully understood. Intuitively, CX is related

to the flatness of the power spectral density (PSD) X, and the stability of the process. For

the N = 1 case, CX > 0 implies that the process does not have zeros on the unit circle in the

spectral domain.

In general, CX could potentially depend on N , indirectly via Θ∗. In subsequent discussions

of Theorem 1, we have assumed that CX stays uniformly bounded away from zero as N grows.

This assumption is explicitly stated as CX ≳ 1. Our main result (Theorem 1), however, holds

for all positive values of CX, regardless of its growth rate. Even if CX = o(1) with respect to

N , Theorem 1 still gives a consistency result, albeit with a worse dependence on N .

The dependence of CX on N occurs through the scaling of the true parameter Θ∗. That

CX is in general bounded below by a constant (or has a slow decay as a function of N) is

part of the folklore of the time series literature. It is reasonable to assume that this holds

for certain structured Θ∗. However, obtaining exact conditions on Θ∗ for CX ≳ 1 to hold

is, in general, a non-trivial open problem, even for univariate Gaussian AR(p) processes.

The main difficulty is that the relation between the power spectral density of the process

and its parameter is indirect and via the Z-transform. Nevertheless, conditions are known

in special cases. See for example the discussion surrounding Proposition 2.2 in [2], where

explicit conditions are given on the parameter matrix of a VAR(1) Gaussian process, for CX

to stay bounded away from zero.

3.5 Special Cases of the Main Result

Let us now look at the applications of Theorem 1 to two special cases often considered

in discrete-valued time series modeling — Binomial and Poisson AR processes. We take
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U = [N ] throughout this section. To apply the theorem, we need to upper-bound G(Θ∗) in

each case. Since the ψ function in equation (3.5) is non-decreasing on [0, 1), it is enough to

control τ1(Θ
∗). In fact, a sufficient condition for G(Θ∗) = O(1) is to have τ1(Θ

∗) = O(1
p
) and

CD = O(1).

The quantity τ1(Θ
∗) is the maximum total variation distance between the p-step condi-

tional distributions of the process, starting from two initial states y and z. The Pinsker’s

inequality [9, p. 44] can be used to further control the total variation distance by the KL

divergence, which is the natural choice for comparing two exponential family distributions

with independent coordinates.

Recall X =
∏N

i=1 Xi ⊂ [−B,B]N and the notation Pz from equation (3.6). Pinsker’s

inequality yields

τ 21 (Θ
∗) ≤ sup

z,y∈X×p

1
2
DKL(Pz∥Py), (3.12)

where DKL(·∥·) is the KL-divergence. We now state upper bounds on DKL(Pz∥Py) for the

two cases of the Binomial and Poisson processes. A quantity of interest is the tail decay of

the dictionary elements {dℓ}Lℓ=1, measured by

γtℓ :=

p∑
m=t

|(dℓ)m|. (3.13)

Let us define the following norm on Θ,

∥Θ∥⋆ :=
(∑

i,t

L2
i

[∑
j,ℓ

γtℓ|Θijℓ|
]2)1/2

where Li is the Lipschitz constant of the link function fi, and the summations run over

(i, t, j, ℓ) ∈ [N ]× [p]× [N ]× [L]. One can often establish a bound of the form

DKL(Pz∥Py) ≤ CfB
2∥Θ∗∥2⋆ (3.14)
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where Cf depends on {fi} and Θ∗ is the true parameter generating the samples.

Lemma 2. Consider a Binomial AR process given by equation (2.3) with Xi = {0, 1, . . . , Ki},

where Ki ≤ B, and Qi( · | z) = Bin(Ki, z). Assume that fi is Li-Lipschitz, and for some

ε ∈ (0, 1
2
), fi : R → [ε, 1− ε] for all i. Then, equation (3.14) holds with Cf = 6/ε.

The case of B = 1 recovers the result for the Bernoulli Autoregressive Process in [32].

The proof is provided in the Appendix.

Lemma 3. Consider a Truncated Poisson AR process given by equation (2.3) with Xi =

{0, 1, . . . , Ki} and Qi( · | z) = P(min(Ki, Z) ∈ · ) where Z ∼ Poi(z) and Ki ≤ B. Assume

that fi is Li-Lipschitz, and for some ε > 0, fi : R → [ε,∞) for all i. Then, equation (3.14)

holds with Cf = 4/ε.

Combining with equation (3.12), we have the following corollary. The proof is provided

in the Appendix.

Corollary 4. Under the assumptions of Lemma 2 or 3,

τ1(Θ
∗) ≲

B√
ε
∥Θ∗∥⋆.

In particular, if CL, CD ≲ 1 ≲ CX and ∥Θ∗∥⋆ = O(1/p), then G = O(1) and the following is

sufficient for consistency:

n≫ max
{
s3max, s+, (ω̃+)

2
}
log(NL).

In other words, Corollary 4 provides conditions under which consistent estimation is

possible with (excess) sample complexity that grows at most logarithmically in L.

Let us consider some examples for which ∥Θ∗∥⋆ = O(1/p). For the purpose of illustration,

let us separate the tail decay of Θ∗, along the lag dimension, by assuming that

|Θ∗
ijℓ| ≤ Rijhℓ, ∀ (i, j, ℓ) ∈ [N ]× [N ]× [L].
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for some sequence {hℓ}∞ℓ=1 such that
∑∞

ℓ=1 hℓ < ∞ and a matrix R = (Rij). Assume that

Θ∗
ijℓ is normalized so that ∥R∥2,1 = O(1). Moreover, assume that maxi Li = O(1/p). Since

in model equation (2.3), the input to each fi involves terms
〈
xt−∗
j ,dℓ

〉
Rp , each of which is

essentially a sum of p terms (cf. equation (2.4)), the aforementioned assumption on the

Lipschitz constant is a natural normalization that prevents the saturation of the nonlinearities

fi as p grows. Equivalently, we can make this condition more explicit by replacing fi(·) in the

definition of model equation (2.3) with f̃i(
1
p
·) and assuming that f̃i have Lipschitz constants

uniformly bounded by a constant.

Under the above modeling assumptions, consider the following two dictionaries:

Case (a): The identity dictionary, where L = p and (dℓ)m = 1{m = ℓ}. In this case,

γtℓ = 1{t ≤ ℓ}. Then,

∥Θ∥⋆ ≲
1

p
∥R∥2,1

[ p∑
t=1

( p∑
ℓ=t

hℓ

)2]1/2
= O

(1
p

)

assuming that
∑∞

t=1(
∑∞

ℓ=t hℓ)
2 <∞ which holds, for example, if hℓ decays at least as fast as

ℓ−1−α/2 for some α > 1. Note that in this case CD ≍ 1 is trivially satisfied.

Case (b): A general dictionary, with filters satisfying the decay rate maxℓ |(dℓ)m| ≲ m−α−1

for some α > 1. Then, maxℓ γtℓ ≲ t−α and

∥Θ∥⋆ ≲
1

p
∥R∥2,1

( p∑
t=1

t−2α
)1/2 p∑

ℓ=1

hℓ = O
(1
p

)

using
∑∞

t=1 t
−2α < ∞ and

∑∞
ℓ=1 hℓ < ∞. Moreover, since we have CD ≲

∑p
m=1m

−α−1, it

follows that CD = O(1) as p grows.

Thus in both cases, Corollary 4 guarantees that the excess sample size n needed for

consistency grows at most logarithmically in L. This translates to an O(log p) growth in the

case the identity dictionary but could be as low as O(1) for a dictionary with the number

of filters L not growing with p. Note that the summability condition on hℓ in case (b) is

milder than that in case (a), showing the trade-off between the tail decay of Θ (along the lag
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dimension) and the tail decay of the dictionary filters. Having fast decaying filters relaxes

the decay requirement on the tails of Θ.

3.6 Proof Sketch of the Main Result

We now outline the proof of Theorem 1. Our analysis applies the framework of Negahban et

al. [29]. Let

Li(β) :=
1

n

n∑
t=1

Lit,(x
t
i;
〈
β,Xt−1D

〉
), β ∈ RN×L.

Fix U ⊆ [N ] and set ΘU := (Θi)i∈U and similarly Θ∗
U := (Θ∗

i )i∈U and Θ̂U := (Θ̂i)i∈U , all

tensors in R|U|×N×L. We also write LU(ΘU) =
∑

i∈U Li(Θi). Now we have,

Θ̂U = argmin
ΘU ∈R|U|×N×L

LU(ΘU) + ∥ΘU∥1,1,1. (3.15)

In the sequel, ∇LU and ∇2LU are the gradient and Hessian of LU with respect to variable

ΘU . When n≪ |U|NL, the empirical Hessian, ∇2LU(Θ
∗
U), is rank-deficient, hence the loss

function is flat in many directions around Θ∗
U . The approach of Negahban et al. [29] is to

guarantee that LU is positively curved in certain directions, including ∆̂U := Θ̂U −Θ∗
U .

In particular, if the regularization parameter λn is large enough, specifically

λn ≥ 2∥∇LU(Θ
∗
U)∥∞,∞,∞, (3.16)

then, the error tensor ∆̂U lies in a small cone-like subset C(S; Θ∗
U)—to be defined below—and

on this set, LU is “nearly” strongly convex, i.e., ∇2LU(Θ
∗
U) is uniformly quadratically bounded

below.

For a set S ⊆ [N ]× [L], let βS denote the projection of β on the subspace of matrices
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with support S. For β∗ define:

C(S;β∗) := {β : ∥β∥1,1 ≤ 3∥βS∥1,1 + 4∥β∗
Sc∥1,1}. (3.17)

Note that this is a cone-like subset of RN×L around β∗. See [29] for a visualization. Let

S :=
⋃

i∈U{i} × Si where Si ⊆ [N ] × [L] for i ∈ U . Equivalently, S =
⊔

i∈U Si using the

notation of disjoint union. With some abuse of notation, we write Sc :=
⋃

i∈U{i} × Sc
i . The

cone-like set C(S; Θ∗
U) is defined as follows:

C(S; Θ∗
U) := {(∆i)i∈U : ∆i ∈ C(Si; Θ

∗
i ), ∀i ∈ U} . (3.18)

For loss functions Li, i ∈ U , and for δ, β∗ ∈ RN×L, let

RLi(δ;β
∗) := Li(β

∗ + δ)− Li(β
∗)− ⟨∇Li(β

∗), δ⟩ , (3.19)

be the remainder of the first-order Taylor expansion of Li around β∗. Following [29], we say

that LU satisfies restricted strong convexity (RSC) at Θ∗
U with curvature κ > 0 and tolerance

τ 2 if for all ∆ ∈ C(S; Θ∗
U), we have,

∑
i∈U

RLi(∆i; Θ
∗
i ) ≥ κ

∑
i∈U

∥∆i∥2F − τ 2. (3.20)

The left-hand side is the remainder of the first-order Taylor expansion of LU around Θ∗
U , that

is, RLU(∆U ; Θ
∗
U)—defined similar to equation (3.19).

Now, assume that equation (3.16) and equation (3.20) hold. Then, [29, Theorem 1] implies

that Θ̂U −Θ∗
U ∈ C(S; Θ∗

U), and that

∥Θ̂U −Θ∗
U∥2F ≤ 9λ2

n

κ2 |S|+ λn

κ
(2τ 2 + 4∥(Θ∗

U)Sc∥1,1,1). (3.21)

The above inequality provides a family of bounds, one for each choice of S =
⊔

i∈U Si.
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Decreasing |S| reduces the first term, but potentially increases ∥(Θ∗
U)Sc∥1,1,1. We choose S to

balance the two. Let S∗
i ⊂ [N ]× [L] be the support of the minimizer in equation (3.4), so

that |S∗
i | = si. We take S = S∗ =

⊔
i∈U S

∗
i . Consequently, |S∗| =

∑
i∈U si and ∥(Θ∗

U)S∗c∥1,1,1 =∑
i∈U ωi. For this choice of S, Proposition 5 below shows that equation (3.20) holds, with

high probability. To state the concentration inequality, recall the definitions equation (3.7).

Proposition 5 (Restricted Strong Convexity). Under assumptions (A1) and (A2), if we

have,

n ≳
G

C6
X

s3max log(NL) (3.22)

then, the RSC given in equation (3.20) for S = S∗ holds with curvature κ = κ and tolerance

τ 2 = κ
2

∑
i∈U ω

2
i /si, with probability at least 1− (NL)−Csmax where C = O(C−2

X ).

Lemma 6 below shows that Θ∗
U is in fact the minimizer of the expected loss ELU(·). Later,

Lemma 7 shows that taking λn = O(
√

log(|U|NL)/n) is enough for equation (3.16) to hold

with high probability. Putting the pieces together proves Theorem 1. Chapter 4 is dedicated

to proving Proposition 5.

Lemma 6. Under assumptions (A1)–(A3), we have Θ∗
i ∈ argmin

β
ELi(β).

Proof. This is a direct consequence of Lemma 9 and assumption (A3). Notice that from

Lemma 8 we have

Li(Θ
∗
i +∆i) ≥ Li(Θ

∗) + ⟨∇Li(Θ
∗
i ),∆i⟩+ E(∆i;X).

Taking expectations on both sides, and applying lemma 9, we get

ELi(Θ
∗
i +∆i) ≥ ELi(Θ

∗) + ⟨E∇Li(Θ
∗
i ),∆i⟩+ C2

X∥∆i∥2F .
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It follows from Assumption (A3) that E∇Li(Θ
∗) = 0. Thus we get

ELi(Θ
∗
i +∆i) ≥ ELi(Θ

∗)

for all ∆i ∈ RN×L, which proves the claim.

3.7 Choice of regularization hyperparameter

Lemma 7. For any constant c1 > 2,

∥∇LU(Θ
∗
U)∥∞,∞,∞ ≤ BCLCD

√
c1 log(|U|NL)/n (3.23)

with probability at least 1− (|U|NL)−c, where c = c1/2− 1.

Proof. Fix i, j ∈ [N ] and ℓ ∈ [L]. Then we have,

∂Li(Θi)

∂Θijℓ

=
1

n

n∑
t=1

L′
it(x

t
i, ⟨Θi,X

t−1D⟩) (Xt−1D)jℓ =
1

n

n∑
t=1

L′
it(x

t
i, ⟨Θi,X

t−1D⟩)
〈
xt−∗
j ,dℓ

〉
where L′

it(u, v) := ∂vLit(u, v) It follows that

∂Li(Θ
∗
i )

∂Θijℓ

=
1

n

n∑
t=1

Dt
ijℓ where Dt

ijℓ := L′
it(x

t
i,
〈
Θ∗

i ,X
t−1D

〉
)
〈
xt−∗
j ,dℓ

〉
.

Let F t−1 = σ(xt−1,xt−2, . . . ) be the σ-field generated by the past observations of the process.

From assumption (A3), we have E[L′
it(x

t
i, ⟨Θ∗

i ,X
t−1D⟩) | F t−1] = 0, hence

E[Dt
ijℓ | F t−1] = 0.

That is, {Dt
ijℓ}t is a martingale difference sequence. Similarly, by assumption (A3), we

get ∥L′
it∥∞ ≤ CL. If follows that {Dt

ijℓ}t is also bounded, i.e., |Dt
ijℓ| ≤ CL · CD. By the
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Azuma–Hoeffding inequality for martingale differences [45],

P
(∣∣∣∂L(Θ∗)

∂Θijℓ

∣∣∣ > t

)
= P

(∣∣∣ 1
n

n∑
i=1

Dt
ijℓ

∣∣∣ > t

)
≤ 2 exp

(
− nt2

2C2
LC

2
D

)
, t > 0.

Writing ∥∇
∑

i L(Θ∗
i )∥∞,∞,∞ = supijℓ |

∂Li(Θ
∗
i )

∂Θijℓ
|, by the union bound we have,

P
(
∥∇
∑
i∈U

Li(Θ
∗
i )∥∞,∞,∞ > t

)
≤ 2|U|NL · exp

(
− nt2

2C2
L · C2

D

)
≤ δ, t > 0.

Taking t = CL · CD

√
2 log(|U|NL/δ)/n with δ = (|U|NL)−c establishes the result.

30



Chapter 4

Restricted Strong Convexity of

Time-averaged losses

The restricted strong convexity (RSC) property for the loss function defining the estimator is

crucial in proving the main result. The formal result of Proposition 5 is restated below.

Proposition 5 (Restricted Strong Convexity). Under assumptions (A1) and (A2), if we

have,

n ≳
G

C6
X

s3max log(NL) (3.22)

then, the RSC given in equation (3.20) for S = S∗ holds with curvature κ = κ and tolerance

τ 2 = κ
2

∑
i∈U ω

2
i /si, with probability at least 1− (NL)−Csmax where C = O(C−2

X ).

In this chapter we will outline the proof technique for showing this property and provide

details on each step.

Showing the RSC property given in equation (3.20) for a particular choice of S is a

major contribution of this dissertation. This is a nontrivial task since it involves uniformly

controlling a dependent non-Gaussian empirical process. Even for i.i.d. samples, the task is

challenging since the quantity to be controlled, ∆ 7→ RL(∆;Θ∗), is a random function that
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needs to be uniformly bounded below. Controlling the behavior of this function becomes

significantly harder without the independence assumption.

4.1 Proof Sketch for showing Restricted Strong Con-

vexity

We proceed by a establishing a series of intermediate lemmas which are proved in Section ??.

First, we show that β 7→ RLi(β; Θ
∗
i ) is lower-bounded by the following quadratic form:

E(β;X) := 1

n

n∑
t=1

⟨β,Xt−1D⟩2, (4.1)

where X := {xt}nt=−p+1.

Lemma 8 (Quadratic lower bound). Under assumption (A2),

RLi(β; Θ
∗
i ) ≥ κi

2
E(β;X) (4.2)

for all β ∈ RN×L and i ∈ [N ].

Notice that β 7→ E(β;X) is a random function due to the randomness in X. Importantly,

E( · ;X) does not depend on the choice of i. The following set of results establish some

important properties of the random function E( · ;X).

Lemma 9 (Strong convexity at the population level). Under assumption (A1),

E E(β;X) ≥ C2
X ∥β∥2F , for all β ∈ RN×L. (4.3)

Next, we show that for a fixed β, the quantity E(β;X) concentrates around its mean.

Section 5 provides a sketch of the proof of the following concentration inequality:
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Lemma 10 (Concentration inequality). For any β ∈ RN×L, if X is generated as equa-

tion (2.3), then with probability at least 1 − 2 exp (−nt2/G), we have

E(β;X) > EE(β;X)− t∥β∥21,1. (4.4)

Finally, for a fixed i ∈ [N ] we use the structural properties of set C(S∗
i ; Θ

∗
i ) along with

Lemmas 9 and 10 to give a uniform quadratic lower bound on E(β;X), which holds with

high probability:

Lemma 11. Fix i ∈ U . For constants C1, C2 > 0, if si ≥ C2
X

C1
, then with probability

≥ 1− exp( C2

C2
X

si log(NL)−
nC4

X

16Gs2i
),

E(β;X) ≥ C2
X

4
∥β∥2 − ω2

i /si, ∀β ∈ C(S∗
i ; Θ

∗
i ).

The proof of Lemma 11 (cf. Appendix 4.4) makes use of a discretization argument. Proving

uniform laws are challenging when the parameter space is not finite. The discretization of the

set C(S∗; Θ∗) uses estimates of the entropy numbers for absolute convex hulls of collections of

points (Lemma 13). These estimates are well-known in approximation theory and have been

previously adapted to the analysis of regression problems in [37]. The following technical

lemma allows us to put the above results together:

Lemma 12. For all i ∈ U , let ai, bi, di, pi be positive constants, and consider random

variables Xi, Yi ∈ R which satisfy Yi ≥ aiXi, and P(Xi < bi − di) ≤ pi for all i ∈ U . Then

with probability at least 1− |U|max
i∈U

pi, we have,

∑
i∈U

Yi > (min
i∈U

ai)
∑
i∈U

bi − (max
i∈U

ai)
∑
i∈U

di

Proof of Lemma 12. We start by stating a general result that for sets A,B, {Ai}Ni=1, {Bi}Ni=1

33



from a σ-algebra such that (i)
⋂

iAi ⊆ A ⊆ B, and (ii) Bi ⊆ Ai for all i, then

P(B) ≥ P(A) ≥ P
(⋂

i

Ai

)
≥ 1−

N∑
i=1

P(Ac
i) ≥ 1−N max

i
P(Ac

i) ≥ 1−N max
i

P(Bc
i ). (4.5)

The first two inequalities follows from (i), the third inequality is the union bound to P(
⋂

iAi) =

1− P(∪iA
c
i). The last inequality follows from (ii).

Recall that Yi > aiXi, and consider the set definitions Bi = {Xi > bi − di}, Ai =

{aiXi > (mini ai)bi−(maxi ai)di}, A = {
∑

i aiXi > (mini ai)
∑

i bi−(maxi ai)
∑

i di} and B =

{
∑

i Yi > (mini ai)
∑

i bi − (maxi ai)
∑

i di} which satisfy the above inclusion for ai, bi, di > 0.

The lemma follows immediately from equation (4.5).

The RSC property, or Proposition 5 follows by applying these choices in Lemma 12:

Yi = RLi(∆i; Θ
∗
i ), Xi = E(∆i,X), ai = κi

2
, bi =

C2
X

4
∥∆i∥2F , and di = ω2

i /si.

4.2 Quadratic lower bound on Remainder terms: E(β,X)

Fix i ∈ U . Recall that the loss Li can be written as

Li(Θi) =
1

n

n∑
t=1

Li,t(x
t
i,
〈
Θi,X

t−1D
〉
)

We have

∂2Li(Θi)

∂Θiab∂Θikℓ

=
1

n

n∑
t=1

L′′
i,t(
〈
Θi,X

t−1D
〉
) (Xt−1D)ab(X

t−1D)kℓ

=
1

n

n∑
t=1

L′′
i,t(
〈
Θi,X

t−1D
〉
)
〈
xt−∗
a ,db

〉 〈
xt−∗
k ,dℓ

〉
.

Let ∇2Li(Θi) ∈ R(N×L)×(N×L) denote the Hessian matrix of Li, i.e.

∇2Li(Θi) =

[
∂2Li(Θi)

∂Θiab∂Θikℓ

]
, (a, b) ∈ [N ]× [L], (k, ℓ) ∈ [N ]× [L],
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and define the vector ht := [⟨xt−∗
a ,db⟩] ∈ RN×L. Then we have

∇2Li(Θi) =
1

n

n∑
t=1

L′′
i,t(
〈
Θi,X

t−1D
〉
)htht⊤. (4.6)

Hence, for all Θi,β ∈ RN×L, the quadratic form of the Hessian of Li satisfies

〈
β∇2Li(Θi),β

〉
=

1

n

n∑
t=1

L′′
i,t(
〈
Θi,X

t−1D
〉
) vec(β)⊤htht⊤ vec(β)

=
1

n

n∑
t=1

L′′
i,t(
〈
Θi,X

t−1D
〉
)
〈
β,Xt−1D

〉2
(i)

≥ κi
n

n∑
t=1

〈
β,Xt−1D

〉2
:= κiE(β;X), (4.7)

where vec(β) represents the vectorized form of the matrix β (in the same order as rows/columns

of ∇2Li), and inequality (i) follows from L′′
i,t(x

t
i, ·) ≥ κi > 0, which holds by Assumption (A2).

Next, consider the function f(t) := L(Θ∗
i + tβ). By Taylor’s Theorem we have

f(1)− f(0)− f ′(0) =
1

2
f ′′(ξ), for some ξ ∈ [0, 1].

Therefore, there exist a ξ ∈ [0, 1] such that

RLi(β; Θ
∗
i ) =

1

2

〈
β∇2Li(Θ

∗
i + ξβ),β

〉
≥ κi

2
E(β;X),

where the last inequality follows from equation (4.7). This completes the proof.

4.3 Uniform lower bound on EE(β;X)

In this section we provide the proof of Lemma 9.

Using the notation in equation (4.13) and equation (4.14), equation (4.15) implies

EE(∆;X) = E∥Xt∗S(β)∥22 for all t,
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since by assumption the process is wide-sense stationary (i.e., the second moments of the

distribution of Xt∗ is the same for all t). Recall the stacking operator S(β) ∈ RNL defined in

equation (4.14), and let R := EX⊤
t∗Xt∗ ∈ RNL×NL be the population autocorrelation matrix,

again independent of t by stationarity. Then,

EE(β;X) = E∥Xt∗S(β)∥22 = E tr
(
X⊤
t∗Xt∗S(β)S(β)

⊤) = tr
(
RS(β)S(β)⊤

)
.

Since R− λmin(R)I ⪰ 0, we have that

EE(β;X) ≥ λmin(R)∥S(β)∥22. (4.8)

We note that R is a block symmetric matrix with blocks Rij := E[xt−i(xt−j)⊤] ∈ RN×N . We

also note that due to the stationarity, Rij only depends on i−j, so with some abuse of notation

we write Rij = Ri−j, i.e., R is block Toeplitz. Let Ci−j denote the centered autocorrelation

matrix E[(xt−i −Ext)(xt−j −Ext)⊤], whereby Ri−j = Ci−j +Ext(Ext)⊤. Define C similarly

as a block Toeplitz matrix with Cij = Ci−j. Consequently λmin(R) ≥ λmin(C).

Let X(ω) ∈ CN×N be the power spectrum matrix of the process as in assumption (A1) so

that

Cℓ :=
1

2π

∫ π

−π

X(ω) ejωℓdω, (4.9)

Also, recall from assumption (A1) that

C2
X := min

ω ∈ [−π,π)
λmin(X(ω)) > 0. (4.10)

It is well-known that λmin(C) ≥ C2
X. See for example [2, Proposition 2.3] or [15, Lemma 4.1].

For completeness, we prove this assertion below. This together with equation (4.8) and

∥S(β)∥22 = ∥β∥2F proves Lemma 9.
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4.3.1 Proof of λmin(C) ≥ C2
X

Fix u⊤ =

[
u⊤0 u⊤1 . . . u⊤p−1

]
, where ui ∈ RN and set G(ω) = 1√

2π

∑p−1
r=0 ure

−jrω. Then, u⊤Cu

equals,

p−1∑
r,s=0

u⊤r Cr−sus =

p−1∑
r,s=0

u⊤r

[ 1

2π

∫ π

−π

X(ω)ej(r−s)ωdω
]
us =

∫ π

−π

GH(ω)X(ω)G(ω)dω. (4.11)

Since X(ω) is a Hermitian matrix, GH(ω)X(ω)G(ω) is always a real matrix. Moreover, we

have that

GH(ω)X(ω)G(ω) ≥ λmin(X(ω))G
H(ω)G(ω) ≥ C2

XG
H(ω)G(ω)

hence

u⊤Cu ≥ C2
X

∫ π

−π

GH(ω)G(ω)dω = C2
X

p−1∑
r,s=0

u⊤r (δr−sIN)us = C2
X∥u∥22,

by Parseval’s theorem. (Alternatively, reverse the operation in equation (4.11) with X(ω) =

1 · IN and recall that the inverse of a flat spectrum is the delta function). Here, δx = 1{x = 0}.

Taking the minimum over ∥u∥2 = 1 completes the proof.

4.4 Uniform law for E(β;X)

In this section we provide the Proof of Lemma 11.

For the current proof, we have fixed i ∈ [N ]. We also use the notation ∥β∥q := ∥β∥q,q

for the ℓq norm of a matrix β ∈ RN×L. Note that ∥β∥2 = ∥β∥F . We also use the following

notation.

B1(r) := {β ∈ RN×L : ∥β∥1 ≤ r}, ∂B2(r) := {β ∈ RN×L : ∥β∥2 = r},

Bd
p(u) := {D ∈ Rd : ∥D∥p ≤ u}.

ωi := ωsi(Θ
∗
i ) = min

β∈RN×L
{∥β −Θ∗

i ∥1 | ∥β∥0 ≤ si}. (4.12)

C∗
i := C(S∗

i ,Θ
∗
i ) =

{
β ∈ RN×L : ∥βS∗c

i
∥1 ≤ 3∥βS∗

i
∥1 + 4ωi

}
.
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where S∗
i is the support of the best ℓ1 approximator of Θ∗

i that has cardinality si, i.e., the

support of the optimal solution to equation (4.12). One can then show that ∥Θ∗
S∗c
i
∥1 = ωi.

We want to show the following inequality,

E(β;X) ≥ 1

4
C2

X∥β∥2F − τ 2i , ∀β ∈ C∗
i .

We show this inequality by breaking C∗ into the sets

{C∗
i ∩ ∂BF (r1)} ∪ {C∗

i ∩ (BF (r1))
c} ∪ {C∗

i ∩ BF (ω
2
i /
√
si)}.

For the first two sets of these, the inequality can be shown without any tolerance (τ 2i = 0).

We need to allow for some tolerance τ 2i = ω2
i /si when ωi > 0.

4.4.1 Fixed ℓ2 norm

Consider the set C∗
i ∩ ∂B2(r1), where r

2
1 = (ω2

i )/si + 1{ωi=0}.

Note that for any β ∈ C∗
i , we have β = βS∗

i
+ βS∗c

i
, and hence

∥β∥1 = ∥βS∗
i
∥1 + ∥βS∗c

i
∥1 ≤ 4∥βS∗

i
∥1 + 4∥ΘS∗c

i
∥1 ≤ 4

(√
s∥β∥F + ωi

)
∀β ∈ C∗

i

using ∥βS∗
i
∥1 ≤

√
si∥βS∗

i
∥F and ∥ΘS∗c

i
∥1 ≤ ωi. It follows that for any r1 > 0,

C∗
i ∩ ∂BF (r1) ⊆ B1

(
r2
)
, where r2 := 4

(
r1
√
si + ωi

)
Next we consider covering C∗

i ∩ ∂BF (r1) by finding a minimum ε-cover of B1(r2). For a

metric space (T, ρ), let N be a minimum ε-cover of T in ρ, i.e., the smallest set N which

satisfies

∀β ∈ T, ∃β′ ∈ N , such that ρ(β,β′) ≤ ε.
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The quantity N(ε, T, ρ) := log |N | for a minimum ε-cover N is called the metric entropy.

The following is an adaptation of a result of [37, Lemma 3, case q = 1, p = 2]:

Lemma 13. Let X ∈ Rn×d be a matrix with column normalization ∥X∗j∥2 ≤
√
n for all

j. Consider the following (pseudo) metric in the space Rd, ρ(D1, D2) :=
1√
n
∥X(D1 −D2)∥2

on Rd. Then, for a sufficiently small constant C1 > 0, the metric entropy of B1(u) in ρ is

bounded as

N
(
ε,Bd

1(u), ρ
)
≤ C̃2

u2

ε2
log(d), ∀ε ≤ C̃1u.

Now, consider a design matrix X ∈ Rn×NL defined as,

Xt∗ := [(Xt−1d1)
⊤ (Xt−1d2)

⊤ . . . (Xt−1dL)
⊤] ∈ R1×NL, t = 1, 2, . . . n (4.13)

Note that X satisfies the column normalization property ∥X∗j∥2 ≤ CX
√
n for all ℓ since

Xtj ∈ [−CX, CX] for all t ∈ [n] and j ∈ [NL]. Fix ε ∈ (0, 2C̃1r2/r1) for sufficiently small

C̃1 > 0. It follows that there exists an (r1ε/2)-cover, denoted by N ′′
i , of B

NL
1 (r2) in the metric

defined in Lemma 13 with cardinality bounded as

log |N ′′
i | ≤ C̃2

r22
r21ε

2
log(NL).

Define a stacking operator S : RN×L → RNL that flattens a matrix into a vector columnwise:

S(β) :=


β∗1

...

β∗L


∈ RNL. (4.14)
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Also denote for a set A denote by S(A) = {S(a) | a ∈ A}. Then we have

S(C∗
i ∩ ∂BF (r1)) ⊆ S(B1

(
r2
)
) = BNL

1 (r2).

Define a (pseudo) metric on the matrix space RN×L as ρ(β,β′) := ρ(S(β), S(β′)). Since S

is a bijection, it follows that there is an exterior (r1ε/2)-covering of C∗
i ∩ ∂BF (r1) in metric

ρ with the same cardinality as N ′′
i ; call it N ′

i . (Here, the exterior covering means that the

elements need not belong the set they cover. Elements of N ′
i are matrices in B1(r2) but not

necessarily in C∗
i ∩ ∂BF (r1).)

We can pass fromN ′
i to an (r1ε)-cover of C∗

i∩∂BF (r1), denoted byNi such that |Ni| ≤ |N ′
i |

(see Exercise 4.2.9 in [46, p.75]). In particular, we have Ni ⊆ C∗
i ∩ BF (r1).

Using the following equality which is proved in Appendix 4.4.4,

E(∆;X) =
1

n
∥X S(β)∥22, (4.15)

by the triangle inequality
∣∣|a| − |b|

∣∣ ≤ |a− b|, we get,

|
√

E(β;X)−
√
E(β′;X)| ≤ ρ(β,β′), β,β′ ∈ RN×L

for any two matrices β and β′. Using (a− b)2 ≥ 1
2
a2 − b2, with b = E(β;X), and a = E(β′;X)

we have

E(β;X) ≥ 1

2
E(β′;X)− ρ2(β,β′).

If follows that

inf
β∈C∗

i ∩ ∂BF (r1)
E(β;X) ≥ 1

2
inf

β∈Ni

E(β;X)− (r1ε)
2
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By Lemma 10 and the union bound, with probability at least 1− |Ni| exp(−nt2

G
) , we have

E(β;X)− EE(β;X) ≥ −t∥β∥21,1, ∀β ∈ Ni.

Since Ni ⊆ C∗
i ∩ BF (r1), for any β ∈ Ni we have ∥β∥21,1 ≤ si∥β∥2F and ∥β∥F = r1. It follows

that with the same probability 1− |Ni| exp(−nt2

G
),

E(β;X) ≥ EE(β;X)− t sr21 ≥ (C2
X − ts) r21, ∀β ∈ Ni

where we have used Lemma 9 in the second inequality. It follows that with the same

probability

inf
β∈C∗ ∩ ∂BF (r1)

E(β;X) ≥
(1
2
C2

X − 1

2
ts− ε2

)
r21. (4.16)

Taking r1 = (ωi + 1{ωi=0})/
√
si, we can balance the two terms in r2. We obtain

4
√
si ≤ r2/r1 ≤ 8

√
si.

The constraint on ε is ε ≤ 2C̃1(r2/r1). It is enough to require ε ≤ 8C̃1
√
si. Taking ε

2 = 1
8
C2

X

and assuming that si ≥
C2

X

512C̃2
1

=: C2
X/C1 satisfies the constraint. Also, taking t = 1

4
C2

X/si, we

obtain

P
(

inf
β∈C∗

i ∩ ∂BF (r1)
E(β;X) ≥

(1
4
C2

X

)
r21

)
≥ 1− exp

(
log |Ni| − C4

X

n

16s2iG

)
=: Pi (4.17)

Noting that

log |Ni| ≤ C̃2

(
8
√
si
)2( 8

C2
X

)
log(NL),
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the probability is further bounded as

1− P1 ≤ exp
(C2

C2
X

si log(NL)− C4
X

n

16s2iG

)
,

where C2 := 512C̃2. Thus, we have established RSC with high probability for matrices in

C∗
i ∩ ∂BF (r1) with curvature κ = 1

4
C2

X and tolerance τ 2 = 0, as shown in equation (4.17).

Note that when ωi = 0 (i.e., the case of hard sparsity), C∗
i is a cone hence the above

extends immediately to all β ∈ C∗
i , since E(cβ;X) = c2E(β;X) for all c > 0, thus completing

the proof. Let us assume ωi > 0 in the rest of the proof.

4.4.2 Extending to the complement of the ℓ2 norm ball

For ωi > 0, since C∗
i is not a cone, we cannot use a scale-invariance argument to extend to

general matrices. However, we have the following:

Lemma 14. Assume that RSC holds for E in the sense of E(β;X) ≥ κ∥β∥2F , for all

β ∈ C∗
i ∩ ∂BF (r). Then, RSC holds in the same sense for all β ∈ C∗

i ∩ {β : ∥β∥F ≥ r}.

We skip the proof since it can be verified without much difficulty. The lemma establishes

the RSC of the previous step for all of C∗
i ∩ {β : ∥β∥F ≥ r1}. The proof is straightforward

and follows from the observation that E(· ;X) satisfies E(cβ;X) = c2E(β;X), for c ≥ 1.

4.4.3 Extending to small radii

It remains to extend the result to β ∈ C∗ ∩ {β : ∥β∥F < r1}. In this case, we simply take

τ 2 := r21 = ω2
i /si (since ωi > 0 by assumption) so that

E(β;X) ≥ 0 ≥ ∥β∥2F − τ 2

so that the RSC holds with curvature = 1 and tolerance τ 2. Putting the pieces together, we

have the RSC for all β ∈ Ci with the probability given in Step 1, curvature κi = min{1
4
C2

X, 1}
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and tolerance τ 2i = ω2
i /si. This concludes the proof.

4.4.4 Proof of equality equation (4.15)

The right hand side is

1

n

n∑
t=1

(Xt∗S(β))
2 =

1

n

n∑
t=1

L∑
ℓ=1

(Xt−1dℓ)
⊤β∗ℓ

=
1

n

n∑
t=1

L∑
ℓ=1

β⊤
∗ℓ(X

t−1dℓ)

=
1

n
trace(β⊤Xt−1D)

=
1

n

n∑
t=1

〈
β,Xt−1D

〉
This proves the claim.
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Chapter 5

Concentration of Empirical Processes

under Long-range Dependence

In this chapter, we sketch the proof of Lemma 10 which is a concentration inequality for

β 7→ E(β;X), a quadratic empirical process based on dependent non-Gaussian variables with

long-term dependence. We restate Lemma 10 below. Recall the definition of E(β;X):

E(β;X) := 1

n

n∑
t=1

⟨β,Xt−1D⟩2, (5.1)

where X := {xt}nt=−p+1 are observations of a trajectory of the time-series.

Lemma 10 (Concentration inequality). For any β ∈ RN×L, if X is generated as equa-

tion (2.3), then with probability at least 1 − 2 exp (−nt2/G), we have

E(β;X) > EE(β;X)− t∥β∥21,1. (4.4)

For independent sub-Gaussian variables {Xt−1}, such a concentration result is often called

the Hanson–Wright inequality [40, Thm. 1]. Providing similar inequalities for dependent

random variables is significantly more challenging. For dependent Gaussian variables, the

machinery of the Hanson–Wright inequality can still be adapted to derive the desired result [2,
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Prop. 2.4]. However, these arguments do not extend easily to non-Gaussian dependent

variables and hence other techniques are needed to provide such concentration inequalities.

Recent results [14, 8] on the concentration of empirical processes derived from Markov

chains could provide improvements on the results we present here. However, since we are

dealing with a non-Markovian process (when p > 1), such results are not directly applicable.

To that end we derive some new results regarding the mixing properties of the p−Markov

chains that elicit conditions under which we can show concentration of running averages to

their mean. We note that this is an active area of research in theoretical statistics. The

concentration inequality in statement of the lemma is an application of the Azuma-Hoeffding

inequality for bounded martingale difference sequences. See [45]. A key observation, discussed

in Section 5.3, is that process equation (2.3) can be represented as a discrete-space p-Markov

chain. This allows us to use concentration results for dependent processes in countable metric

spaces. There are several results for such processes; see [21, 26, 42] and [20] for a review.

Here, we apply that of Kontorovich et. al. [21]. These concentration inequalities are stated in

terms of various mixing and contraction coefficients of the underlying process. The challenge

is to control the contraction coefficients in terms of the process parameter Θ∗, which in our

case is done using quantities τ1(Θ
∗) and G(Θ∗). Some results developed in this section hold

more generally for any p−Markov process, even those outside the current autoregressive

framework.

5.1 Concentration of functions of Dependent variables

We start by stating the result of Kontorovich et. al. [21] for a process {X t}t∈[n] consisting

of (possibly dependent) random variables taking values in a countable space X . For any

ℓ ≥ k ≥ 1, define the mixing coefficient

ηkℓ
∆
= sup

w,w′,y

∥∥∥P (Xn
ℓ = · | Xk = w′, Xk−1

1 = y
)
− P

(
Xn

ℓ = · | Xk = w,Xk−1
1 = y

) ∥∥∥
TV
, (5.2)
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where the supremum is over w,w′ ∈ X and y ∈ X k−1. Here, Xv
u := (X t, u ≤ t ≤ v) is viewed

either as a member of X×(v−u+1) (the set of a matrices with v − u+ 1 columns from X ) or

simply as a vector in X v−u+1. Let H ∈ Rn×n be an upper triangular matrix with entries ηkℓ

for ℓ ≥ k and zero otherwise. Let ∥H∥∞ := maxk
∑

ℓ≥k ηkℓ be the ℓ∞ operator norm of H.

Proposition 15. [21, Theorem 1.1] Let ϕ : X n → R be an Lϕ-Lipschitz function of {X t}nt=1

with respect to the Hamming norm, then for all ε > 0, with probability at least

1− 2 exp

(
− ε2

2nL2
ϕ∥H∥2∞

)
,

we have

|ϕ({X t}nt=1)− Eϕ({X t}nt=1)| < ε. (5.3)

We apply the above result to ϕ = E(β;X) by finding an upper bound for the Lipschitz

constant Lϕ of the map X 7→ E(β,X) with respect to the Hamming distance over X×(n+p−1) =

(
∏N

i=1Xi)
×(n+p−1). Lemmas 16 and 17 in Section 5.2 shows that Lϕ ≤ (4B2C2

D/n)∥β∥21,1, and

that ∥H∥2∞ ≤ 2(1 + p2ψ1(Θ
∗)), where the quantity ψ1(Θ

∗) is defined below equation (3.5).

Lemma 17 is a general result that applies to any p-lag Markov chain, including the GVAR(p)

processes considered in this dissertation. In Section 5.3 we also develop some tools for

controlling ∥H∥∞ in terms of the contraction coefficient of another related Markov chain

obtained via a non-standard state augmentation.

Returning to the proof of Lemma 10: applying Theorem 15 with ε = t∥β∥21,1, and using

the upper bounds for L and ∥H∥2∞ concludes the proof of Lemma 10.

5.2 Proof Sketch for Concentration inequality

In this section, we prove the following two main lemmas used in Chapter 5.
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Lemma 16. The map X 7→ E(β;X) is Lipschitz with respect to the Hamming distance on

X×(n+p−1), with Lipschitz constant at most (4B2C2
D/n)∥β∥21,1.

A process over a countable space X is referred to as a p -Markov chain if for some finite p,

P(xt = z|{xt−k}k∈N+) = P(xt = z|{xt−k}pk=1), (5.4)

for all z ∈ X , for all t ∈ Z. To keep the exposition simple, we assume that P above does not

depend on t, i.e., the process is homogeneous.

Recall the notation τ1(Θ
∗) defined in equation (3.6), whereby τ1(Kp) = τ1(Θ

∗) by definition.

The following lemma provides an upper bound for ∥H∥∞ as a function of τ1(Θ
∗).

Lemma 17. For a p-Markov process over X , with equivalent kernel K ∈ R|X |p×|X |p given by

equation (5.13) with r = p, the mixing coefficients defined in equation (5.2) are bounded as

ηkℓ ≤ τ1(Θ
∗)1+⌊(ℓ−k−1)/p)⌋, ℓ ≥ k. (5.5)

In particular, for any τ ∈ [τ1(Θ
∗), 1)

∥H∥2∞ :=
(
max
k∈[n]

∑
ℓ≥k

ηkℓ

)2
≤ 2 +

2p2

(τ−1 − 1)2
. (5.6)

5.2.1 Bounding Lipschitz constant: Proof of Lemma 16

It is enough to consider two sequences {xt} and {yt} that differ in a single time step, say at

time point r, so that the state vectors can be written as X = (x−p+1,x−p+2, . . . ,xr, . . . ,xn−1)

and Y = (x−p+1,x−p+2, . . . ,yr, . . . ,xn−1), where r will be fixed. The general case fol-

lows, via triangle inequality, since any Ỹ can be reached from X by a sequence X =:

X(0),X(1), . . . ,X(h) := Ỹ such that X(i) and X(i−1) are Hamming distance 1 apart, for

i = 1, 2, . . . h, where h is the hamming distance of X and Ỹ in X n+p−1.

Let Xt−1 and Yt−1 be defined based on X and Y as before, i.e., the corresponding
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p-lag history at time t − 1. Note that Xt−1 and Yt−1 are different only for t such that

t ∈ {r + 1, . . . , r + p}, and for such t, we have via Hölder’s inequality:

|⟨β,Xt−1D−Yt−1D⟩| ≤ 2B∥(βD⊤)∗,t−r∥1

|⟨β,Xt−1D+Yt−1D⟩| ≤ 2B∥βD⊤∥1,1.

where M∗,i is the i
th column of a matrix M . Note the inner products above are over matrices

in RN×L. In the above inequality we have also used the fact that for any M ∈ RN×p, we

have ⟨β,MD⟩ =
〈
βD⊤,M

〉
where the second inner product is over RN×p. Combining the

above inequalities we obtain

|E(β;X)− E(β;Y)| = 1

n

∣∣∣ r+p∑
t=r+1

[
⟨β,Xt−1D⟩2 − ⟨β,Yt−1D⟩2

]∣∣∣
≤

r+p∑
t=r+1

|⟨β, (Xt−1 −Yt−1)D⟩||⟨β, (Xt−1 +Yt−1)D⟩|

≤ 4B2

n

r+p∑
t=r+1

∥(βD⊤)∗,t−r∥1 ∥βD⊤∥1,1 =
4B2

n
∥βD⊤∥21,1

Finally, ∥βD⊤∥1,1 = ∥Dβ⊤∥1,1 =
∑L

ℓ=1 ∥D(β⊤)∗,ℓ∥1 ≤ CD∥βℓ,∗∥1 = CD∥β∥1,1, where we

have used the fact that CD is the 1 → 1 operator norm of the matrix D, i.e., CD = max
u̸=0

∥Du∥1
∥u∥1 .

This proves the claim.

5.3 Contraction in p-Markov chains

In this section we develop the necessary background to prove Lemma 17. We start by recalling

a well-known contraction quantity, the Dobrushin ergodicity coefficient, and relating it to the

mixing coefficients of p-Markov processes.
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5.3.1 Dobrushin ergodicity coefficient

For a Markov chain (or 1-Markov process) over a discrete space X , let P = (Pij) ∈ R|X |×|X |

be its transition kernel. The kernel is a nonnegative stochastic matrix, i.e., each row is a

probability distribution. Thus, P ≥ 0 and P1 = 1 where 1 ∈ R|X | is the all-ones vector. Let

H1 :=
{
u ∈ R|X | | 1⊤u = 0

}
. (5.7)

This subspace is invariant to every Markov kernels P ∈ R|X |×|X |, i.e., for all u ∈ H1, we have

u⊤P ∈ H1. The Dobrushin ergodicity coefficient of P is defined as

τ1(P ) := sup
u∈H1

∥u⊤P∥1
∥u∥1

. (5.8)

It follows from the invariance of H1 to P that

∥u⊤P ℓ∥1 ≤ τ1(P )
ℓ∥u∥1 ∀u ∈ H1. (5.9)

The following alternative characterization is well-known [39].

Lemma 18. The Dobrushin ergodicity coefficient of P satisfies

τ1(P ) =
1
2
sup

x,y ∈X
∥(ex − ey)

TP∥1 (5.10)

where ex is the x-th basis vector of RX .

Proof. Optimization problem in equation (5.8) is scale invariant, hence,

τ1(P ) = sup
u∈H1(1)

∥u⊤P∥1, (5.11)

where H1(1) = {u ∈ H1 | ∥u∥1 ≤ 1}. We will show that the set H1(1) = C := conv({1
2
(ex −

ey)}). Using this, equation (5.11) is a maximization of a convex function ∥u⊤P∥1 over a
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polytope with extreme points 1
2
(ex − ey), x, y ∈ X . It follows that the maximum occurs, at

least, at an extreme point, which gives the desired result. The inequality in the statement of

the lemma follows since the total-variation is bounded by 1.

The rest of the proof establishes H1(1) = C. The inclusion C ⊆ H1(1) can be verified

easily by checking the membership of extreme points of C in H1(1), since H1(1) is a convex

set. We now prove the nontrivial direction H1(1) ⊆ C.

Let the ambient space be Rm, ∆m the probability simplex in Rm, and ∂ B1 := {u ∈

Rm : ∥u∥1 = 1} the boundary of ℓ1 ball. We have C = 1
2
∆m + 1

2
(−∆m), which is a

Minkowski sum. This follows since taking the Minkowski sum and taking the convex hull

commute [22, Theorem 3]. Hence, it suffices to show that for any vector u ∈ H1(1), there

exists a pair of probability vectors π1, π2 ∈ ∆m such that u = 1
2
(π1 − π2). Since 0 ∈ C, and

H1(1) = conv(0, ∂ B1 ∩H1), it is enough to consider u ∈ ∂ B1 ∩H1.

Let u ∈ ∂ B1 ∩H1, and let u+ and u− be the positive and negative parts of u, that is,

(u+)i = max(ui, 0) and (u−)i = −min(ui, 0). Taking π1 = 2u+ and π2 = 2u−, we have

u = 1
2
(π1 − π2). Also, due to u ∈ ∂ B1, 1 = ∥u∥1 = 1

2
∥π1∥1 + 1

2
∥π2∥1 whereas due to u ∈ H1,

0 = 1⊤u = 1
2
∥π∥1 − ∥π2∥1. It follows that ∥π1∥1 = ∥π2∥1 = 1, that is, π1, π2 ∈ ∆m. This

concludes the proof.

Recall that ∥π1 − π2∥TV denotes the total variation distance between probability distribu-

tions π1 and π2. For discrete distributions we have, ∥π1 − π2∥TV = 1
2
∥π1 − π2∥1 ≤ 1, with

equality if and only if π1 and π2 are orthogonal, i.e., have completely mismatched supports.

Consequently, for any stochastic matrix P , we have τ1(P ) ≤ 1. Furthermore, the inequality

is strict if and only if no two rows of P are orthogonal. Markov kernels with τ1(·) < 1 are

said to be scrambling. A sufficient condition for τ1(P ) < 1 is P having at least one column

with all entries positive.
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5.3.2 The p-step chain

A p -Markov process can be equivalently represented by a Markov kernel K ∈ [0, 1]|X |p×|X |p

that gives transition probabilities for consecutive blocks of size p. For any t ∈ Z,

Kij = P
(
(xt+1−k)pk=1 = j

∣∣∣ (xt−k)pk=1 = i
)
, (5.12)

for all i, j ∈ X×p. Kernel matrix K is constrained since Kij can be nonzero only if

(j2, j3, . . . , jp) = (i1, i2, . . . , ip−1). The r-step chain associated with K has kernel Kr. In

general, for all i, j ∈ X×p and for r ≥ 1

(Kr)ij = P
(
(xt+r−k)pk=1 = j

∣∣∣ (xt−k)pk=1 = i
)
. (5.13)

Similarly, (Kr)ij can be nonzero only if (jr+1, jr+2, . . . jp) = (i1, i2, . . . , ip−r), for r < p.

However, no such constraint applies for r ≥ p. Moreover, one can verify that for r < p,

a pair of rows (Kr)i∗ and (Kr)i′∗ are always orthogonal for i, i′ ∈ X×p such that i1 ̸= i′1.

Consequently, τ1(Kr) = 1 for all r < p.

Fortunately for r = p, one can show that τ1(Kp) < 1, under the mild assumption that

P
(
xt = z|(xt−k)pk=1 = j

)
> 0 for all z ∈ X and j ∈ X×p,

since this implies that Kp is a positive matrix and hence scrambling. Note that the above

condition always holds for the process defined in equation (2.3).

5.4 Bounding Dobrushin ergodicity coefficient

In this section we provide a proof of equation (5.5). We assume that the reader has familiarized

themself with the relevant background explained in Section 5.3.

Recall that Xn
−p+1 := {xn,xn−1, . . . ,x−p+1} together make n steps of the p-Markov process.
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Fix k ≥ 1 and take w ∈ X , y ∈ X p−1, and z ∈ X k−1. We use the shorthand Xk
−p+1 = wyz,

to denote xk = w,Xk−1
k−p+1 = y and Xk−p

−p+1 = z and define the law

L(ℓ→n)
k (wyz) := P

(
Xn

ℓ = · | Xk
−p+1 = wyz

)
= P

(
Xn

ℓ = · | Xk
k−p+1 = wy

)
=: L(ℓ→n)

k (wy)

using the p-Markov property, showing that L(ℓ→n)
k (wyz) does not depend on z. Thus, we

also write L(ℓ→n)
k (wy) for L(ℓ→n)

k (wyz).

Case 1. Assuming ℓ+ p ≤ n, we have

P
(
Xn

ℓ = xnℓ | Xk
k−p+1 = wy

)
= P

(
Xn

ℓ+p = xnℓ+p | X
ℓ+p−1
ℓ = xℓ+p−1

ℓ

)
· P
(
Xℓ+p−1

ℓ = xℓ+p−1
ℓ | Xk

k−p+1 = wy
)

= ϕ
(
xnℓ+p | x

ℓ+p−1
ℓ

)
· ψwy(x

ℓ+p−1
ℓ )

where we have defined ϕ(u | v) := P
(
Xn

ℓ+p = u | Xℓ+p−1
ℓ = v

)
and

ψwy(β) := P
(
Xℓ+p−1

ℓ = β | Xk
k−p+1 = wy

)
We note that ψwy(·) is the wy-th row of Kℓ+p−k−1 which follows by comparing the definition

of ψwy with equation (5.13) applied with t = k + 1 and r = ℓ+ p− k − 1. Letting ei denote

the ith row of identity in R|X |p×|X |p , we have

ψwy = e⊤wy Kℓ+p−k−1.
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Now, we have

2∥L(ℓ→n)
wyz − L(ℓ→n)

w′yz ∥TV =
∑
xn
ℓ

∣∣P(Xn
ℓ = xnℓ | Xk

k−p+1 = wy
)
− P

(
Xn

ℓ = xnℓ | Xk
k−p+1 = w′y

)∣∣
=
∑

xℓ+p−1
ℓ

∑
xn
ℓ+p

ϕ
(
xnℓ+p | x

ℓ+p−1
ℓ

)∣∣ψwy(x
ℓ+p−1
ℓ )− ψw′y(x

ℓ+p−1
ℓ )

∣∣
=
∑

xℓ+p−1
ℓ

∣∣ψwy(x
ℓ+p−1
ℓ )− ψw′y(x

ℓ+p−1
ℓ )

∣∣
= ∥ψwy − ψw′y∥1 = 2∥L(ℓ→ ℓ+p−1)

wy − L(ℓ→ ℓ−p+1)
w′y ∥TV. (5.14)

Thus, we have

ηkℓ = sup
w,w′,y,z

∥L(ℓ→n)
k (wyz)− L(ℓ→n)

k (w′yz)∥TV

=
1

2
sup
w,w′,y

∥ψwy − ψw′y∥1 =
1

2
sup
w,w′,y

∥(ewy − ew′y)
⊤Kℓ+p−1−k∥1.

Let m = ℓ− k− 1. Writing m = p⌊m/p⌋+ (m mod p) and using 1
2
(ewy − ew′y) ∈ H1 (see

Definition equation (5.7)), we get

ηkℓ ≤ sup
v∈H1

∥v⊤Kp+p⌊m/p⌋+(m mod p)∥1 (5.15a)

(a)

≤ sup
v∈H1

τ1
(
K(m mod p)

)
∥v⊤Kp+p⌊m/p⌋∥1 (5.15b)

(b)

≤ sup
v∈H1

∥v⊤(Kp)1+⌊m/p⌋∥1 ≤ τ1(Kp)1+⌊m/p⌋, (5.15c)

where (a) follows from equation (5.9) applied for u⊤ = v⊤Kp+p⌊m/p⌋ which also belongs to

H1, while (b) follows from the inequality in Lemma 18 and the last inequality follows from

inequality equation (5.9) applied for u = v. This is the desired result which holds for ℓ+p ≤ n.

Case 2. When ℓ+p > n, the reduction in equation (5.14) is unnecessary, i.e., there are fewer

than p variables between ℓ and n. We cannot write the difference of the two underlying laws
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in terms of rows of Kr for some integer r. But, we can augment and consider L(ℓ→n+u)
k (wyz)

where u = ℓ+p−n and then get L(ℓ→n)
k (wyz) by marginalization. We have for any w,w′ ∈ X ,

∥L(ℓ→n)
k (wyz)− L(ℓ→n)

k (w′yz)∥TV ≤ ∥L(ℓ→n+u)
k (wyz)− L(ℓ→n+u)

k (w′yz)∥TV

since marginalization does not increase the total variation distance. This follows from the

triangle inequality: Assuming p(·, ·) and q(·, ·) to be some probability mass functions,

∑
x

∣∣∣p(x)− q(x)
∣∣∣ =∑

x

∣∣∣∑
y

p(x, y)−
∑
y

q(x, y)
∣∣∣ ≤∑

x

∑
y

|p(x, y)− q(x, y)|.

Since ℓ+p = n+u, the proof in this case reduces to that of Case 1. The proof of equation (5.5)

is complete.

5.4.1 Sum of mixing coefficients: Proof of equation (5.6)

It is enough to prove the inequality for τ = τ1(Kp). Then, the result follows since 1
( 1
x
−1)2

is

increasing on [τ1(Kp), 1). For this τ , we have for any fixed k (recalling ηkk = 1),

∑
ℓ≥k

ηkℓ ≤ 1 +
∑
ℓ>k

τ 1+⌊(ℓ−k−1)/p⌋ ≤ 1 +
∑
m≥1

mp+k∑
ℓ=(m−1)p+k+1

τm = 1 +
pτ

1− τ
.

It follows that

∥H∥2∞ :=
(
max

k

∑
ℓ≥k

ηkℓ

)2
≤
(
1 +

pτ

1− τ

)2
≤ 2 + 2

p2τ 2

(1− τ)2

which is the desired result.
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Chapter 6

Numerical Experiments

In this section, we evaluate the performance of the estimator in equation (3.1) using simulated

data. We generate the data using the model in equation (2.3). In all the examples, we

first randomly generate Θ∗ and D. To generate Θ∗, we select the support of Θ∗
i for each i

uniformly at random based on the sparsity si. We then fill the support with i.i.d. draws of

the normal distribution, and finally normalize such that ∥Θ∗
i ∥1,1 is a constant.

To report the performance of equation (3.1), we use the metric normalized squared error

(NSE) defined as:

NSE(Θ∗, Θ̂) =
∥Θ∗ − Θ̂∥2F
∥Θ∗∥2F

. (6.1)

to normalize variations in the size of the parameter across independent instances of Θ∗. An

implementation is provided at [41]. We consider the following 3 processes:

6.1 Poisson AR(p) process without dictionary

We evaluate the performance of the regularized maximum likelihood and the regularized

least-squares estimators on a Poisson process with no dictionary, i.e., D = Ip. For the Poisson

process, we use the inverse link function fi(z) = log(1 + ez). Then, these estimators have the
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(a) NSE vs. sample size for a Poisson process
without dictionary.

(b) NSE vs. sparsity for a Poisson process with-
out dictionary.

Figure 6.1: Poisson AR(p) process without a dictionary (i.e., D = Ip).

form of equation (3.1) with

LML
it

(
xti ; z

t
i

)
= zti − xti log(z

t
i), (6.2a)

LLS
it

(
xti ; z

t
i

)
= (xti − zti)

2, (6.2b)

where zti = f(⟨Θ∗
i ,X

t−1⟩), since D = Ip. Note that the M-estimation problem in equation (3.1)

corresponding to equation (6.2a) is convex, whereas it is non-convex for equation (6.2b) (we

report a local minimum). Here, we generate the ground truth parameters as mentioned before

with N = 50 and p = 20 and we use λn = 0.05/
√
n. When comparing NSE v/s n, each

Θi has sparsity 20. The results are shown in Figure 6.1. The error shades correspond to

one standard deviation over 5 independent instances of (Θ∗, Θ̂). With the NSE metric, the

regularized maximum likelihood estimator appears to perform better for the Poisson AR(p)

process, for the random ensemble of problems generated in these examples.
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(a) NSE vs. sample size for a Poisson process
with dictionary.

(b) NSE vs. sparsity for a Poisson process with
dictionary.

Figure 6.2: Poisson AR(p) process with dictionary of size L = 20.

6.2 Poisson AR(p) process with dictionary

We choose D to be entrywise i.i.d. Gaussian with standard deviation σ/p for a constant

σ, so that the ℓ1-norm of all columns of D are close to a constant for large p (the constant

being the mean of a folded normal distribution). The process is generated as in the previous

example using equation (2.3). We take N = 50, p = 200, and L = 20 such that the process

has very long range dependencies. We again consider the two regularized M-estimators:

the regularized maximum likelihood and the regularized least-squares with the inverse link

function f(z) = log(1 + ez). These estimators are identical to the ones in equation (6.2a) and

equation (6.2b), except that zti = f(⟨Θi,X
t−1D⟩) with D ̸= Ip.

The results are shown in Figure 6.2. They are very similar to Figure 6.1. In accordance

with our theoretical results, these figures suggest that for an AR processes with very long

range dependencies, estimating the parameter is easier in the presence of a dictionary.
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6.3 Bernoulli AR(p) process without dictionary

Finally, we look at a Bernoulli autoregressive process. We use the sigmoid function, f(z) =

1/(1+e−z), as the inverse link function. We compare the performance of regularized maximum

likelihood estimator to regularized least-squares estimator. Both of these estimators have the

form of equation (3.1) with

LML
it

(
xti ; z

t
i

)
= −zti log(xti)− (1− xti) log(1− zti) (6.3a)

LLS
it

(
xti ; z

t
i

)
= (xti − zti)

2, (6.3b)

where zti = f(⟨Θi,X
t−1⟩) is the mean parameter of the dimension i of the Bernoulli process

at time t. Note that due to inverse link function, despite convexity of square loss with respect

to zti , the optimization problem corresponding to least square estimator is non-convex and

our results do not apply to it. Nevertheless, we observe that its performance is similar to

maximum likelihood estimator.

Figure 6.3 shows different measures of performance of the regularized maximum likelihood

estimator. We have set N = 50, p = 20 and λn = 0.05/
√
n as recommended by Theorem 1, in

these examples. Figure 6.3a shows how the normalized estimation error changes with respect

to the number of training samples.

The sparsity is 20 for each Θi. Note that we are using the same regularization parameter

for both estimators and not the optimal λn, i.e.without any cross-validation. The error shades

correspond to one standard deviation. Figure 6.3b shows the normalized square error for

different sparsity levels. For small values of sparsity, the denominator Θ∗ has a small norm

which causes high normalized error, however for higher values of sparsity, we see the linear

dependence on sparsity as predicted by Theorem 1.

The next two figures correspond to generalization error as opposed to estimation error

in the first two figures. Here, we use the estimated parameters Θ̂ to predict the process in

the future and calculate the accuracy of prediction. We use 5 MCMC runs of the process to
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(a) NSE vs. sample size for sparsity si = 20 for
all i. (b) NSE vs. sparsity for sample size n = 10, 000

(c) Accuracy vs. steps predicted in the future for
different n.

(d) Accuracy vs. steps predicted in the future for
different s.

Figure 6.3: Bernoulli AR(p) process without dictionary.

estimate the accuracy. The plot shows average accuracy over all N variables of the process.

Figure 6.3c shows the accuracy vs. steps in the future for different training sample sizes and

Figure 6.3d shows it for different levels of sparsity. There is a prominent change in in the

accuracy plots at 21 steps. This corresponds to p = 20 where the future of the process is

being estimated purely based on simulated samples using the estimated parameter. Prior
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(a) Average Frobenius norm of the error over
20 runs with N = 20, p = 20. Each pixel
corresponds to a pair (s, n) for Θ∗.

a
cc

u
ra

cy

(b) Fraction of support recovered by taking the
largest s entries of Θ̂ as the estimator of support.
Here N = 100, p = 1.

Figure 6.4: Simulation results for Bernoulli AR(p) process.

to this point, parts of the samples being used to make the predictions are True values and

not estimated ones. As expected, the accuracies improve as the number of training samples

increase with sparsity fixed, and they decrease as sparsity level increases with number of

training samples fixed. Figure 6.4a shows the estimation error for different sample sizes and

sparsity levels.

Finally, we also use the regularized maximum likelihood estimator to perform support

recovery, i.e. assuming that the true parameter tensor is exactly s-sparse, how does the

support estimated from Θ̂ compare to the support of Θ∗? To do so, we need to estimate the

support from Θ̂. If we know the sparsity s, we can estimate the support by taking the indices

corresponding to the s largest entries of Θ̂ in magnitude. If we do not know the sparsity in

advance, we can estimate the support based on a threshold chosen by cross-validation. Given

a threshold γ, the estimated support would be

ŝupp(Θ) := {(j, k, ℓ) : |Θ̂jkℓ| ≥ γ}.

Note that our theoretical results do not give any guarantees for support recovery. In order to
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guarantee support recovery, a stronger result bounding the error uniformly for each entry

of Θ̂ is required, i.e., we need to control ∥Θ̂−Θ∗∥∞,∞,∞ with high probability. Therefore,

more work is needed to obtain theoretical guarantees for support recovery. Nevertheless,

our simulations show that the estimator is able to recover the support very well. Figure

6.4b shows the results for a process with p = 1, N = 100 and three different sparsities.

For recovering the support, we assumed that the sparsity s is known, and took the indices

corresponding to the s largest entries of Θ̂ as the recovered support. The fraction of the

correctly recovered indices is plotted against the sample size. Figure 6.4b shows that if the

sample size is below some threshold, no entries of the support are recovered, while above the

threshold, the recovered fraction gradually increases to 1.
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Chapter 7

Conclusion

Fitting autoregressive AR(p) models with multiple lags is of broad interest in multivariate time

series analysis. We consider a large class of multivariate discrete-valued AR(p) processes with

nonlinear feedback. We study statistical properties of a general ℓ1 regularized M-estimator

for this model, and provide sufficient conditions on the model hyperparameters under which

consistent estimation is possible. Under assumptions of approximate sparsity, our result

shows that a sample complexity Ω(poly(s), log(Np)) is achievable. Our experiments validate

the theoretical results on simulated data. Commonly occurring special cases of discrete-valued

processes such as Bernoulli AR(p) and Truncated-Poisson AR(p) are explored in detail. The

proof technique develops concentration inequalities and identifies mixing properties of higher

order Markov chains which may be of independent interest. These techniques were previously

unknown to the best of our knowledge.

Several open questions remain to be uncovered for the general AR(p) model. For example

the current model explores the case of bounded, discrete valued data. Getting around

this assumption requires finding concentration inequalities for random averages of the form

in Lemma 10 for real-valued random processes. Also, it remains unknown whether the

dependence on the sparsity hyperparameter s is optimal, since there is a small gap between

our upper bound and the naive lower bound. Finally, it would be interesting to study
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parameter estimation, and potentially even controls, for the case of partial observability, i.e.,

when we observe g(xt) and not xt fully, akin to partially-observed Markov decision processes

(POMDPs).
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Appendix

We provide a proof for lemmas 2 and 3 restated below.

Lemma 2. Consider a Binomial AR process given by equation (2.3) with Xi = {0, 1, . . . , Ki},

where Ki ≤ B, and Qi( · | z) = Bin(Ki, z). Assume that fi is Li-Lipschitz, and for some

ε ∈ (0, 1
2
), fi : R → [ε, 1− ε] for all i. Then, equation (3.14) holds with Cf = 6/ε.

Lemma 3. Consider a Truncated Poisson AR process given by equation (2.3) with Xi =

{0, 1, . . . , Ki} and Qi( · | z) = P(min(Ki, Z) ∈ · ) where Z ∼ Poi(z) and Ki ≤ B. Assume

that fi is Li-Lipschitz, and for some ε > 0, fi : R → [ε,∞) for all i. Then, equation (3.14)

holds with Cf = 4/ε.

Proof of Lemmas 2 and 3

We start by defining some notation. Recall that for z ∈ X×p,

Pz := P(Xt+p−1
t = · | Xt−1

t−p) = P(Xp
1 = · | X0

1−p),

using the invariance of the conditional distribution to time shifts. We also write pz(·) for the

probability mass function of Pz, i.e.,

pz(a) := P(Xt+p−1
t = a | Xt−1

t−p = z) = P(Xp
1 = a | X0

1−p = z), ∀a ∈ X×p.
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We also let q(ξ | a) := P
(
xt = ξ | Xt−1

t−p = a
)
for ξ ∈ X , a ∈ X×p, and define

dK(a;a
′) := DKL

(
q(· | a) ∥ q(· | a′)

)
, a,a′ ∈ X×p,

where DKL denotes the KL divergence. The following lemma gives a decomposition for the

KL divergence between two samples of a p-Markov process. Lemmas 19, 20 and 21 are proved

later in this Appendix.

Lemma 19. Assume that the process is p-Markov in the sense of equation (5.4). Then,

DKL(Pz ∥Py) =

p∑
t=1

Ez

[
dK

(
(Xt−1

1 , z0
t−p) ; (Xt−1

1 ,y0
t−p)

)]
.

Here, Ez denotes the expectation assuming that Xt−1
t is distributed as Pz. The notation

(Xt−1
1 , z0

t−p) ∈ X×p denotes an N × p matrix with columns in X , partitioned across columns

into N × (t− 1) matrix Xt−1
1 and N × (p− t+ 1) matrix z0

t−p.

We also note the following bounds on the KL divergences between Bernoulli random

variables and Poisson random variables to be used in proving Lemmas 2 and 3 respectively.

Lemma 20. Let U ∼ Ber(p), and V ∼ Ber(q) for p, q ∈ [ε, 1− ε] for some ε ∈ (0, 1
2
). Then,

DKL(U∥V ) = p log
p

q
+ (1− p) log

1− p

1− q
≤ 3

4ε(1− ε)
(p− q)2.

Lemma 21. Let U = min{M,Poisson(p)}, and V = min{M,Poisson(q)} for p, q > ε > 0

for some ε. Then,

DKL(U∥V ) ≤ p log
p

q
+ (q − p) ≤ 1

q
(p− q)2 ≤ 1

ε
(p− q)2

Proof of Lemma 2. Continuing with the proof of Lemma 2, recall that S = {0, 1}N , and

xt | Xt−1
t−p ∼

N∏
i=1

Ber
(
fi
(〈
Θi,Xt−1

t−pD
〉))

.
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Let αt
i =

〈
Θ∗

i , (Xt−1
1 , z0

t−p)D
〉
and βt

i =
〈
Θi, (Xt−1

1 ,y0
t−p)D

〉
. Then using the decomposability

of the KL divergence for product measures,

dK
(
(Xt−1

1 , z0
t−p) ∥ (Xt−1

1 ,y0
t−p)

)
=

N∑
i=1

DKL

(
Ber
(
fi(α

t
i)
) ∥∥ Ber

(
fi(β

t
i)
) )
,

≤ 3

4ε(1− ε)

N∑
i=1

[
fi(α

t
i)− fi(β

t
i)
]2
.

By the Lipschitz assumption, [fi(α
t
i)− fi(β

t
i)]

2 ≤ L2
i

(
αt
i − βt

i

)2
. Using ε < 1/2, it follows that

DKL(Pz ∥Py) ≤
3

2ε

N∑
i=1

L2
i

p∑
t=1

Ez

(
αt
i − βt

i

)2
.

Let dmℓ = (dℓ)m be the (m, ℓ)th entry of D. Let zt−m
j ,m = t, . . . , p denote entries on the jth

row of z0
t−p and similarly for y0

t−p. We have

αt
i − βt

i =
〈
Θ∗

i , (0N×(t−1), z
0
t−p − y0

t−p)D
〉
=
∑
jℓ

Θ∗
ijℓ

p∑
m=t

(zt−m
j − yt−m

j )dmℓ,

where 0N×(t−1) is the N × (t− 1) zero matrix. Assuming that Xi ⊂ [−Bi, Bi], we have

|αt
i − βt

i | ≤
∑
jℓ

|Θijℓ|
p∑

m=t

(
|zt−m

j |+ |yt−m
j |

)
|dmℓ|

≤ 2B
∑
jℓ

|Θijℓ|
p∑

m=t

|dmℓ|.

Putting the pieces together finishes the proof.
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Proof of Lemma 3

The proof of Lemma 3, proceeds almost identically to that of 2. In this case however S = NN ,

and

xt | Xt−1
t−p ∼

N∏
i=1

Poisson
(
fi
(〈
Θ∗

i ,Xt−1
t−pD

〉))
.

Let αt
i =

〈
Θ∗

i , (Xt−1
1 , z0

t−p)D
〉
and βt

i =
〈
Θ∗

i , (Xt−1
1 ,y0

t−p)D
〉
. Then using the decomposability

of the KL divergence for product measures,

dK
(
(Xt−1

1 , z0
t−p) ∥ (Xt−1

1 ,y0
t−p)

)
=

N∑
i=1

DKL

(
Poisson

(
fi(α

t
i)
) ∥∥ Poisson

(
fi(β

t
i)
) )
,

≤ 1

ε

N∑
i=1

[
fi(α

t
i)− fi(β

t
i)
]2 ≤ 1

ε

N∑
i=1

L2
i

(
αt
i − βt

i

)2
,

where the first inequality is using Lemma 21 and the second by the Lipschitz assumption on

fi. The rest follows identically as in the proof of Lemma 2.

Proof of Lemma 19

Recall the notation Xp
1 = (xp, . . . , x1). Similarly, let a = (ap, . . . , a1) ∈ X×p so that Xp

1 = a

is the same as Xu = au for all u ∈ [p]. We also write at−1
1 = (at−1, . . . , a1) and so on for

elements of X×p. For any a, z ∈ X×p, we have

pz(a) = P(Xp
1 = a | X0

1−p = z)

=

p∏
t=1

P(xt = at | X t−1
1 = at−1

1 , X0
t−p = z0t−p)

=

p∏
t=1

P
(
xt = at

∣∣ X t−1
t−p = (at−1

1 , z0t−p)
)
=

p∏
t=1

q(at | (at−1
1 , z0t−p))
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where the second line is by the Markov property. Replacing a with a random variable

Xp
1 ∈ X×p,

pz(X
p
1 ) =

p∏
t=1

q
(
xt | (X t−1

1 , z0t−p)
)
.

Letting Ez denote the expectation assuming Xp
1 ∼ Pz, we have

DKL(Pz ∥Py) = Ez log
pz(X

p
1 )

py(X
p
1 )

=

p∑
t=1

Ez log
q
(
xt | (X t−1

1 , z0t−p)
)

q
(
xt | (X t−1

1 , y0t−p)
)

=

p∑
t=1

EzEz

[
log

q
(
xt | (X t−1

1 , z0t−p)
)

q
(
xt | (X t−1

1 , y0t−p)
) ∣∣∣ X t−1

1

]
=

p∑
t=1

Ez dK
(
(X t−1

1 , z0t−p) ∥ (X t−1
1 , y0t−p)

)
where the last line follows by noting that under Xp

1 ∼ Pz, further conditioning on X t−1
1

is equivalent to conditioning on X t−1
1 and X0

t−p = z0t−p, i.e., xt will have distribution

q( · | (X t−1
1 , z0t−p)) under this conditioning.

Proof of Lemma 20

It is enough to prove for the case q ≥ p (the other case follows by applying the proven case

to 1− p and 1− q). The second claim follows from the decomposition of the KL divergence

for product distributions. Let δ := ε(1− ε). Fix p and consider the function

f(q) = p log
p

q
+ (1− p) log

1− p

1− q
− 1

4δ
(p− q)2,

over q ∈ [p, 1− ε]. We have

f ′(q) = (q − p)
( 1

q(1− q)
− 1

2δ

)
.
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We have f(q) = f(p) + f ′(q̃)(q − p) for some q̃ ∈ [p, q]. Note that f(p) = 0 and

f ′(q̃) ≤ (q̃ − p)
(1
δ
− 1

2δ

)
≤ 1

2δ
(q − p)

using the fact that (q̃(1− q̃))−1 ∈ [4, δ−1]. Thus, we have f(q) ≤ (q − p)2/(2δ).

Proof of Lemma 21

The KL divergence between two Poisson distributions with parameters p and q is given by

p log
p

q
+ (q − p)− (q − p)2

q
= p(log

p

q
+ 1− p

q
)

We show that the truncation only reduces the KL divergence using Jensen’s inequality for

the convex function g(u, v) = u log(u, v). Let pi := e−p pi

i!
and qi := e−q qi

i!
. Next, observe that

the KL divergence for the truncated version is

∑
i<M

pi log
pi
qi

+
∑
i≥M

pi log

∑
i≥M pi∑
i≥M qi

Applying the Jensen’s inequality to second term, we get that the quantity above is at most

∑
i<M

pi log
pi
qi

+
∑
i≥M

pi log
pi
qi

which is the KL divergence between Poisson(p) and Poisson(q). Finally, observe that for

p, q > 0

p log
p

q
+ (q − p)− (q − p)2

q
= p(log

p

q
+ 1− p

q
) ≤ 0

where we use the inequality log x ≤ x− 1.
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