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Understanding Symbols:
A Situativity-Theory Analysis of Constructing Mathematical Meaning

James G. Greeno, Randi A. Engle, Laura K. Kerr, and Joyce L. Moore
Stanford University School of Education
Stanford, CA 94305
greeno@csli.stanford.edu

Abstract

We report analyses of the construction and
interpretation of mathematical symbols that refer to
quantitative properties and relations of a physical
system. Middle-school students solved problems that
involved contructing tables, equations and graphs to
represent linear functions of a device where blocks are
moved varying distances by turning a handle that
winds string around spools of different sizes. Previous
research analyzed activities of reasoning about
quantities of this system as attunement to constraints
and affordances, a characterization of students’ implicit
understanding of concepts of variable and linear
functions. This report concerns activities of
representing quantitative properties and relations using
mathematical notations. We are developing analyses
of constructing and interpreting tables, equations, and
graphs in terms of attunement to constraints and
affordances of the represented system, the system of
notations, and relations between the constraints of the
notations and the represented domain. We present
examples that illustrate concepts of semantic clumps,
groups, and morphisms; descriptive and demonstrative
representations; multiple referent domains; and
constructions of meaning in contributions to
conversational discourse.

Introduction

We are analyzing how humans understand concepts and
the meanings of symbolic representations. Our
approach, which we call situativity theory, focuses
theoretical attention on interactions between agents,
other people, and material systems in their
environment (Greeno, 1992; Greeno & Moore, 1993).
We draw on concepts and methods of ethnographic
studies of everyday activity (Lave, 1988; Suchman,
1987), ecological psychology (Gibson, 1979/1986;
Turvey, 1990; 1992), and philosophical situation
theory (Barwise & Perry, 1983; Devlin, 1991) along
with many precursors (Dewey, 1929/1958; Mead,
1934).

Previous studies (Greeno, Moore, & Mather, 1992;
Moore & Greeno, 1991) have analyzed implicit
understanding of mathematical concepts by middle- and
high-school students reasoning about quantitative
properties of an apparatus that we call the winch,
adapted from an apparatus used by Piaget, Grize,
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Szeminska, & Bang (1968/1977), shown in Figure 1.
Students answered questions such as where a block
would be after some number of turns, or how many
turns it would take for onec of the blocks to catch up
with the other. Their success indicated that they
implicitly understood variables and linear functions,
although there was no evidence that these concepts
were known explicitly. In these studies, students’
understanding could be characterized in terms of
attunement to constraints and affordances, such as their
attunement to the constraint that there is a constant
distance the block moves cach time the handle is
turned and the affordance that a ruler provides for
reasoning about numerical values.

Our current work focuses on how people understand
symbolic representations of mathematical variables and
functions. We gave students problems involving
tables and equations in one experiment and graphs in
another experiment. They were asked to construct and
use these symbolic representations to make inferences
about the winch system. Our theoretical task was to
characterize how students understood the symbolic
representations they constructed and to describe the
processes through which those understandings were
achieved.

Theory

Characterizing Meanings

Our analysis describes how symbols are constructed
and interpreted and how conceptual understanding
results from this activity. We use Clark and Wilkes-
Gibbs's (1986) idea that reference is a collaborative
achievement in conversation, and an extension of
Clark and Schaefer's (1989) method for analyzing
conversational turns to identify episodes in which a
meaning for a symbolic expression is achieved in the
conversational common ground. We employ a

modification of Barwise and Perry's (1983) relational
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theory of meaning to characterize events in which a
symbolic expression is given meaning. In this theory,
meaning is a relation between a situation where a
symbolic expression is spoken, written, or drawn, and
the situation that the expression refers to.

Constraints of Representing

Understanding symbolic representations is an activity
that involves attunement to constraints and affordances
about (a) the domain that is referred to, (b) the domain
of notational expressions, and (c¢) the meaning
relations between notations and their referents.
Co-constrained properties. In the referent
domain, attunement to constraints makes it possible to
refer to co-constrained properties of a situation. For
example, in the winch system the labeled size of each
spool is equal to its circumference in inches, which
equals the distance that a block moves each time the
handle is turned with that spool. This means that
saying or writing a numeral can be interpreted as
referring to the size of a spool, a distance per turn, or
both. Further, if a phrase is used that specifies one of
these (e.g., "the 'four' spool") its referent can be
extended to include the distance per turn of a block
with that spool, if the speaker and listener(s) are
attuned to the constraint that these quantities are equal.
Similarly, symbols have co-constrained properties that
provide alternative ways of referring. For example, in
the graph of a linear function through the origin, the
steepness of the line and its y-coordinate at x=1, are
distinguishable visual features which both correspond
to the slope of the function. When a property of the
line is interpreted as referring to the slope of the
function, either its steepness, or a y-coordinate, or
both, may be the focus of attention.
Syntax, semantics, and symbolic
communication. Constraints of the notations can
be considered the syntax (in a broad sense) of the
representational system. For example, in equations
there are constraints on the sequence of numerals,
letters, and operation signs that students learn, and
there is a simple grammar that determines a phrase
structure for any algebraic expression. In graphs, there
are constraints such as the continuity of a line that is
considered as an object and affordances such as
considering any segment of a line as an object.
Constraints and affordances of the interpretive
process involve the ways in which notations are used
as symbols. These are the semantic conventions of the
representational system. For example, in an equation,
two adjacent symbols (e.g., "3x") represent two
numbers or quantities that are combined by
multiplication. In a two-dimensional graph, a line
represents a function of two variables with any point's
coordinates representing a pair of variable values
included in the function.
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Some Concepts and Distinctions

Cognitive analyses often reveal unexpected
complexities. Our study has led us to realize that
relations between symbols and their referents are
complicated in several ways.

Clumps, groups, and morphisms. The
structure of students' uses and interpretations of
symbols varied considerably. They varied to the degree
to which: (a) different symbols, concepts or
interpretations were differentiated from each other and
(b) relations between them were specified
systematically. We use the term "clump" to
characterize cases in which symbols or concepts were
used interchangably with little specification of how
they are related. At the other extreme were highly-
structured "groups” in which distinct symbols or
concepts were systematically related using composable
and invertible operations. A further level of
structuring occurred when the operations of a group in
one domain (e.g. making 3 turns with a 4-spool and
seeing how far the block moves) were systematically
related to the operations of a group in another domain
(e.g. computing 3 times 4). Such inter-domain
structures are referred to as "morphisms”.
Descriptive and demonstrative
representations. Symbolic expressions like
equations can be interpreted as descriptions; that is, as
propositions about a situation that are either true or
false. Interpreting an expression as a description
involves identifying objects, properties, and relations
that the expression designates as truth conditions and
determining whether those conditions hold in a
situation or situation type. In an equation, variables
are generally interpreted descriptively while the entire
equation asserts a relation among quantities or
numbers that may be true or false.

Symbolic expressions like lines in graphs and pictures
in other types of diagrams, can be interpreted as
demonstrative representations, that is, as objects with
properties and relations that correspond to properties
and relations of objects in the situation or domain that
the expression represents. Interpreting an expression
demonstratively involves (a) identifying objects in the
referent situation or domain that correspond to the
objects in the representation, (b) identifying properties
and relations of represented objects that are like
properties and relations of the symbolic objects, and
(c) determining whether the represented situation or
class of situations has the properties and relations that
it should have for the representation to be correct. In a
graph, lines are generally interpreted demonstratively
while numerals that mark distances along axes are
generally interpreted descriptively.

Multiple referent domains. Mathematical
expressions (tables, equations, and graphs) can be



interpreted as referring to numbers and their properties,
or to the quantitative properties and relations of material
systems. Quantitative and numerical properties can be
integrated more or less strongly in people's
understanding. We observed differences in students’
uses and interpretations of symbols as referring to
either numbers and numerical operations, to quantities
and their relations, or to both in an integrated fashion.
Conversational constructions of meaning.
Interpretations of symbols are both social and
cognitive achievements. In our studies, interpretations
occurred during social interactions as pairs of students
worked on problems presented in workbooks. In these
settings, meanings of symbols were components of
the common ground constructed during conversation.
We can describe events of constructing meaning as
contributions to conversation (Clark & Schaefer,
1989), involving presentations that function as
proposed interpretations which are then accepted,
questioned, modified, or rejected in subsequent
conversational turns.

Examples

In order to illustrate these distinctions and concepts,
we present some examples from two studies using the
winch system (Figure 1) with two different kinds of
workbooks.

Example 1

The table-and-equations workbook included problems
for which students constructed and explained tables that
showed positions of the block after different numbers
of turns with different spool sizes, and also constructed
and explained equations for calculating values of
variables, such as finding the position of a block or
number of turns given all other relevant values
(starting position, spool size, etc.) We examine how a
pair of eighth-grade students, whom we call Julie and
Paula, solved problems in this workbook after they
had completed all items involving tables and had
constructed some equations.
Clumps, groups and morphisms. We are
finding that the relations between sets containing
symbols, their referents and interpretive
correspondences vary over two dimensions: the degree
to which items are differentiated from each other and
the extent to which relations between items are
specified systematically. This is illustrated by the
development of Julie and Paula's use of the term
"distance”, symbolized in their equations by D,
especially as they distinguish it from end position.
Before Item 8, all calculations involved situations
where the block started at zero. In those cases, the
distance that a block moves is equivalent to its end
position, and either of those quantities is equal to the
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number of turns times the spool size. Paula and
Julie's references to various properties of distance and
end position appear to have been linked into a clump.
Throughout the first 8 items, the terms "distance
moved" and "end position" were used interchangeably.
"Clumping" is also evidenced by Julie and Paula’s use
of a hybrid phrase "the distance a block moves to"
which incorporates conceptual aspects of both distance
moved and end position. Also there was no evidence
that Julic and Paula understood the relation that made
distance and cnd position equivalent in this case.

Paula and Julie's lack of differentiation between
distance and end position became problematic in [tem
8b when starting position was no longer assumed to
be zero. They were asked to "write your word equation
so that you taking into account where the block was
before any turns were made." Julie proposed that “you
subtract,” then they worked on an example (4 turns of
a 3-spool with a nonzero starting point) until Paula
finally agreed, "So you have to—subtract....” They
were able to subtract 12 from the end positions of 15
and 18 and recognize that the results would equal
starting positions of 3 and 6. However, because they
clumped different distance terms together, they had
trouble converting their algorithm into an equation.
For example, Paula originally proposed the equation
"Tx S =D - D = the original distance,"
meaning to substitute different values for each distance
variable. After several trials they eventually derived
the equation "D - (T X S) = the starting point,”
which we characterize as still involving some
clumping as end position values rather than distance
moved values were substituted for D.

In items 9 and 10, Paula and Julie were given an
equation which introduced Y as a symbol for end
position. As they followed the conventions set up by
this equation, D and the concept of distance moved
played only a minimal role in their reasoning.

In item 11, Julie and Paula began examining what
they meant by different terms and symbols. This led
them towards a group structure that distinguished end
position (Y) and distance moved (D) while specifying
the relation between them. Ironically, their progress
was prompted by an oversight. When asked to write
an equation "to find out how many times the handle
was turned...[using] the same letters you used in your
last equation” in Item 11a, Julie and Paula wrote down
"D/s = t,", the equation they had derived in Item 7
before non-zero starting points were considered.
However, item 11b asked them to apply their equation
to a problem with a non-zero starting point:

"The winch has a 6-spool on it with the block

starting at 2. The block has ended up at 14. How

many times was the handle turned."”
To solve the problem, they would have to either
modify their equation or reinterpret it.

This process began when they started listing the
variables to use. After they wrote down "D =



distance, S = spool size, t = turns,” Paula
proposed that Y be included: "and Y equals ending
point, even though we don’t use it we should just put
..oh, we don’t use it, we don’t need t0." Julie
proposed to instead use P, which she added with
Paula’s implicit agreement, "oh, P is slarting
position." Then Julie said,

"D divided by S equals T, and we have to

subtract 2"

Paula rejected this proposal by protesting against
Julie's use of a specific value for P:

"Minus 2, it’s not always 2 though"

Julie then changed her proposal to "minus P" (making
their equation (D /S ) - P =T ), but Paula rejected
this by making a proposal of her own:

"I know that Y is the ending point how about that?

[pause] use Y [pause] I don’t think we need a new

variable..."

Julie expressed her disagreement by not writing
Paula’s suggestion down, arguing that Y was not one
of the variables on their list. After nine repeated
directives from Paula she eventually wrote it down.
Now their equation was (D /S)-Y =T.

However, when they tried to substitute values into
the equation, they followed their earlier clumping of D
with end position and substituted the end position, 14,
for D. This left them with no number to substitute for
Y. This problem caused Paula to reinterpret distance:

"Hold on cause now the distance is 14 minus 2

which is 12 that’s the distance that it traveled so we

have to put 12 not 14"

Julie agreed, erasing 14 and writing in 12. The degree
to which this reinterpretation had been incorporated in
their scheme is evidenced by the fact that they did not
consider it necessary to write out their decomposition
of distance traveled: AsPaula summed it up:

"well, the distance, I mean people can figure that

out cause you have to do the ending point minus

the beginning point”

This reinterpretation forms a group structure by
distinguishing distance moved from end position while
encapsulating the exact relationship between them.
Conversational construction of meaning. By
analyzing conversational turns in terms of
presentations and acceptances (Clark & Schaefer, 1989)
we can identify episodes in which meanings are
proposed, considered, modified, and accepted by each
pair of students. In many cases, a student could simply
use a symbol since its interpretation was apparently
clear and acceptable to the other student. In other
cases, a student would propose a symbol or
interpretation to be accepted. In some cases, the other
student questioned or objected to the proposal, with
subsequent conversational tums needed to arrive at an
agreed-to meaning to contribute to common ground.

One example was in the proposal by Julie that
“you subtract,” which was used during the discussion
of examples and eventually accepted explicitly by
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Paula, "So you have to—subtract.” Another example
was Paula’s proposal to include the variable Y in their
variable list for Item 11b, which was rejected by Julie
with a counterproposal to include P that Paula
accepted saying "Oh, p is starting position." A more
complex example was a proposal by Paula to evaluate
the expression "D/S = T," asking "How much is
distance?" The proposal to engage in this project was
accepted by Julie, who said, "14." Three turns later,
Paula rejected Julie’s proposed interpretation of D,
saying "Hold on cause now the distance is 14 minus 2
which is 12; that’s the distance that it traveled."
Multiple referent domains. It seems to us that
for these students, equations referred both to quantities
in the winch system and to numbers and arithmetic
operations, with their focus shifting back and forth
between these comfortably. Other students interpreted
referents of equations in a less integrated way, relating
quantities to variables but interpreting the
combinations of symbols in an equation as
corresponding to numerical operations that were not
integrated with combinations of quantities.

Example 2

This example comes from the triangles-and-graphs
workbook where students constructed and explained
graphs representing the motion of blocks with given
spool sizes and starting positions. Students used a
large graph board with the abscissa labeled "Tums"
and the ordinate labeled "Block position". They were
given plastic right triangles of three different colors
and sizes: green triangles 1 inch wide and 3 inches
high; blue triangles 1 inch wide and 4 inches high; and
red triangles 1 inch wide and 6 inches high. When
triangles were placed on the graph board as shown in
Figure 2, a triangle’s hypotenuse formed a line that
represents a block's position over one turn using one
of the spools. Placing several triangles so their
hypotenuses were aligned formed a line representing
how the block’s position changes over several turns.

Items 1 and 2 were questions about properties of the
winch, while Items 3 and 4 involved constructing
representations. Item 1 said, "Connect the black block
to the 3-spool and the white block to the 6-spool.
With the blocks at zero, link the handles together.
Without actually doing it, what do you predict would
happen if you turned the handles several times?" Item
2 specified a 3-spool and a 4-spool with the 3-spool’s
block starting ahead, and also asked students to predict
what would happen when the handle was turned. Item
3 presented the diagram shown in Figure 2 and asked,
"What do you think these green triangles are a picture
of? You can use the winch if you want." Item 4
presented a blank grid with the same labels as Figure 2
and asked, "Imagine [that a block] is at zero and
connected to the 4-spool. Show us how you could use



Figure 2

the blue triangles to figure out where the block would

be after 2 turns. Check your answer on the winch if

you want."

One pair of students, whom we call Irene and
Janna, answered Item 1 by writing, "The white block
would move more than the black one because the six
spool is larger than the 3 spool and would take more
string when turned.” For Item 2, they predicted that the
block connected to the 4-spool would catch up. They
did not arrive at an answer to Item 3 initially. They
mentioned that the triangles on the graph were "a
picture of" a flag, sunglasses, and a Christmas tree
before deciding to go to the next item.

In working on Item 4, Irene and Janna were attuned
to the label "Tums" on the x-axis of the printed graph
and interpreted it as a symbol for turns of the winch
handle:

Irene: [Restating the question] Figure out where the

block would be after 2 turns.

Janna: Oh, yeah, these are the turns [point along the

x-axs].

Irene: Oh, yeah, see turns, 2 tums it’s on the 4-spool,
maybe? After 2 turns it would be there? Wherever,
wherever there is [moves finger from (0,4) to (2,0)
to (2,4) to (0,0)].

Irene and Janna then placed the blue triangles (4-
spools) on the graph paper in the same way the green
triangles were placed in Figure 2. They noticed that a
blue triangle "goes up to the 4." They associated this
information with their knowledge about turns:

Irene: Oh, yeah, because it goes up to the 4. Two

turns, yeah, see that’s right.

Janna: It’s not.

Irene: See, cause it, that shows....

Janna: Two turns.

Irene: In two turns, it would go (inaudible).

At this point, Irene and Janna returned to Item 3
and wrote, "After one turn, the block is at 3 and after 2
turns it is 6." Irene said, "See different triangles are
different shapes, different lengths. That’s why we have
to use blue for that one. You see?" Working on Item 4
again, Irene and Janna concluded:

Janna: Ok, so it’d be—
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Irene: So, after 1 wum it’ll be at 4 and 2 turns it would

be at 8.

They then drew the lines on the graph shown in

Figure 3.

The morphism they constructed between sizes of
triangles and spools was apparent in the next item:
Janna: Well if this is a 4-spool [holds up a blue
triangle], we have to find a 6-spool. [Pick up a red
triangle.] This must be a 6-spool.

Two other seventh-grade students, whom we call
Kathy and Helen, were not attuned to the co-
constrained properties of the winch, spool
circumference and distance per tum. To explain why a
block attached to a 4-spool passed the block attached
to a 3-spool in Item 2, they wrote, "Because the one at
zero had a heavier block." They did not recognize that
the distance a block moves and the size of its spool are
co-constrained properties. Consequently, their results
did not reveal an implicit understanding of linear
functions. Instead, they were constrained by the total
distance moved by the block and the number of turns
necessary to reach the block’s end position irrespective
of the spool’s circumference as a co-constrained
property of these events.

Thus the graphical constraints they were attuned to
were "Turns" (the abscissa) and the total length of the
combined triangles. Co-constraints between these
properties is evidenced by their demonstrative
representation of the winch. As seen in Figure 4, the
triangles were treated as arbitrary shapes, the proper
combination of which allowed them to represent the
total distance moved by the block. This interpretation
of the triangle-graph representational system is also
seen in their conversations about the winch:

Kathy: Ok, we go to 20 [starting their measurements
at 16 with a blue triangle on the winch grid, Kathy
turns the handle 1 1/2 turns). Ok, two turns is half
a, it’s half a thing away. It’s half a triangle
[referring to the position of the block pointer in
relation to the top of the triangle].

Helen: So 2 turns is like about one and a blue and a
green, almost [stack a blue and green triangle on
the table). Cause this, I think, if I'm right, is about
half. [measuring the green triangle in relation to the
blue triangle] So it’s like a blue and a green.

7




Clumps, groups, and morphisms with
demonstrative representations. These examples
differ in the students’ attunements to constraints and
affordances of the winch system, which probably
accounts for how they differentially use the triangles as
representations. Irene and Janna were attuned to the
constraint that linked the circumferences of spools to
the distances blocks moved on each turn. They
apparently grasped the significance of the individual
triangles in Figures 2 and 3—that is, that each triangle
afforded representation of a single turn of the handle
and that combinations of triangles afforded
representations of sets of turns. In contrast, Kathy and
Helen had a less differentiated attunement to
constraints of the winches, recognizing only that
differences in total distance resulted from differences
between the spools. Their use of triangles reflected this
more global attunement. They used arbitrary
combinations of triangles to construct a representation
with a total height that was approximately equal to the
total distance that they judged a block would move in
two turns.

Discussion

Our results are encouraging for analyzing the
construction and interpretion of symbolic
representations in terms of attunements to constraints
and affordances. It is clear from these preliminary
results that learning a representational system involves
more than acquiring referential correspondences
between symbols and their referents. A situativity-
theory analysis based on attunement to constraints and
affordances explains how reasoning about the
represented system, constructing and using symbolic
expressions, and creating correspondences between
symbols and their referents all contribute interactively
to conceptual understanding.

We chose the domain that we are studying partly
because of its educational importance. We believed that
by constructing a physical system in which
quantitative relations are easily understood, we could
provide a semantic interpretation of symbolic
representations that could be learned more
meaningfully. The results of our study support this
idea. Students did learn to construct and interpret
symbolic representations of quantitative properties of
the winch system.
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