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Crystallography, the primary method for determining the three-dimensional (3D) 

atomic positions in crystals, has been fundamental to the development of many 

fields of science
1
. However, the atomic positions obtained from crystallography 

represent a global average of many unit cells in a crystal
1,2

. Here, we report, for the 

first time, the determination of the 3D coordinates of thousands of individual 

atoms and a point defect in a material by electron tomography with a precision of 

~19 picometers, where the crystallinity of the material is not assumed. From the 
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coordinates of these individual atoms, we measure the atomic displacement field 

and the full strain tensor with a 3D resolution of ~1nm
3
 and a precision of ~10

-3
, 

which are further verified by density functional theory calculations and molecular 

dynamics simulations. The ability to precisely localize the 3D coordinates of 

individual atoms in materials without assuming crystallinity is expected to find 

important applications in materials science, nanoscience, physics and chemistry. 

 In 1959, Richard Feynman challenged the electron microscopy community to 

locate the positions of individual atoms in substances
3
. Over the last 55 years, 

significant advances have been made in electron microscopy. With the development of 

aberration-corrected electron optics
4,5

, scanning transmission electron microscopy 

(STEM) has reached sub-0.5 Å  resolution in two dimensions
6
. In a combination of 

STEM
7-9 

and a 3D image reconstruction method known as equal slope tomography 

(EST)
10,11

, electron tomography has achieved 2.4 Å resolution and was applied to image 

the 3D core structure of edge and screw dislocations at atomic resolution
12,13

. More 

recently, transmission electron microscopy (TEM) has been used to determine the 3D 

atomic structure of gold nanoparticles by averaging 939 particles
14

. Notwithstanding 

these important developments, Feynman’s 1959 challenge  3D localization of the 

coordinates of individual atoms in a substance without using averaging or a priori 

knowledge of sample crystallinity  remains elusive. Here, we determine the 3D 

coordinates of 3,769 individual atoms in a tungsten needle sample with a precision of 

~19 picometers and identify a point defect inside the sample in three dimensions. The 

acquisition of a high-quality tilt series with an aberration-corrected STEM and 3D EST 

reconstruction  allow us to trace individual atomic coordinates from the reconstructed 

intensity and refine the 3D atomic model. By comparing the coordinates of these 



3 

individual atoms with an ideal body-centred-cubic (bcc) crystal lattice, we measure the 

atomic displacement field and the full strain tensor in three dimensions. Further 

experimental results, density functional theory (DFT) calculations and molecular 

dynamics (MD) simulations confirm that the displacement field and strain tensor are 

induced by a surface layer of tungsten carbide (WCX) and the diffusion of carbon atoms 

several layers below the tungsten surface. While TEM, electron diffraction and 

holography can measure strain in nanostructures and devices with ≤1 nm resolution
15-17

, 

they are mainly applicable in two dimensions. In order to image the 3D strain field, 

current methods, such as coherent diffractive imaging, compressive sensing electron 

tomography and through-focal annular dark-field imaging
18-20

, use the phase in 

reciprocal space from crystalline samples
15,16

. Here, we directly image the 3D atomic 

positions and calculate the six element strain tensor in a material with a 3D resolution of 

~1 nm
3
 and a precision of ~10

-3
, which are presently not attainable by any other 

methods. 

The experiment was performed on an aberration corrected STEM operated in 

annular dark field (ADF) mode
21

. The sample was a tungsten needle, fabricated by 

electrochemical etching (Methods). By rotating the needle sample around the [011] 

direction from 0 to 180, a tilt series of 62 angles was acquired with equal slope 

increments (Supplementary Fig. 1). The 0 (Fig. 1 inset) and 180 images of the tilt 

series are compared in Supplementary Fig. 2, indicating minimal change of the sample 

structure throughout the experiment. After correcting sample drift, scan distortion, and 

performing background subtraction on each image (Methods), the tilt series was aligned 

to a common rotation axis by a centre of mass method
12

. Only the apex of the needle 

(Fig. 1 inset and Supplementary Fig. 1) was used for the EST reconstruction due to the 
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STEM depth of focus and to minimize dynamical scattering. Three different schemes 

were implemented to reconstruct our experimental data. First, a direct EST 

reconstruction was performed on the tilt series (termed the raw reconstruction). Second, 

3D Wiener filtering was applied to the raw reconstruction to reduce the noise
22

. Third, 

the tilt series images were denoised by a sparsity based algorithm
23

 (Supplementary Fig. 

3) and then reconstructed by EST (Methods).  

The EST reconstruction provides an estimate of the intensity distribution inside 

the tungsten tip, and further analysis known as atom tracing is needed to determine 

atomic coordinates. We traced and verified the 3D positions of individual atoms using 

two independent reconstructions: one using Wiener filtering and the other using sparsity 

denoising (Methods). During atom tracing, a 3D Gaussian function was fit to each local 

intensity maximum in both reconstructions. Then, we screened each of these plausible 

atoms by its fit to the average atom profile calculated from the corresponding 

reconstruction, yielding two sets of atom candidates
 
(Methods). We selected only those 

in common between the two sets, totaling 3,641 atoms. For the non-common atom 

candidates, we evaluated the fit of each atom candidate with the profile of the average 

atom calculated from the raw reconstruction (Methods). An additional 128 atoms met 

our criteria, yielding a total of 3,769 traced atoms. After tracing the 3D positions of 

individual atoms, we implemented a refinement procedure to improve the agreement 

between the 3D atomic model and the raw experimental images (Methods). Each 

experimental image was transformed to obtain 62 Fourier slices, which were used to 

refine the 3D atomic model by iterating between real and reciprocal space
24

 (Methods). 

Figure 1 and Supplementary Figs. 4-8 show the final refined 3D atomic model, 

consisting of 9 atomic layers along the [011] direction. The 3D profile of the average 
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tungsten atom in the refined model is consistent with that of the average atom of the raw 

reconstruction (Supplementary Fig. 9).  

To cross-check our procedure and evaluate the potential impact of dynamical 

scattering effects in ADF-STEM tomography
7,25

, we performed multislice calculations
26

 

using the refined model for the same experimental conditions (Methods, Supplementary 

Fig. 10). By applying the exact reconstruction, atom tracing and refinement procedures, 

we obtained a new 3D atomic model from the 62 multislice calculated images, 

consisting of 3,767 atoms with only three misidentified atoms at the surface. 

Supplementary Fig. 11 shows a root-mean-square deviation (RMSD) of ~22 picometers 

between the experimental model and the new atomic model, suggesting that dynamical 

scattering has a minimal effect on our overall results within the measurement accuracy. 

We attribute the reduction of the dynamical scattering effects to the measurement of 

many images at different sample orientations (i.e. a rotational average) in our 

experiment (Supplementary Information).    

Next, we estimated the precision of the 3D atomic positions determined from the 

experimental data. Based on the measured 0 image, we confirmed that the apex of the 

sample is strained (Supplementary Fig. 12) and selected the least strained region of the 

3D atomic model. Using a cross-validation statistical method
27

 to compare the atom 

positions in the selected region with the atomic sites of a best fit lattice, we determined 

a 3D precision of ~19 pm with contributions of approximately 10.5, 15.0 and 5.5 pm 

along the x-, y- and z-axes, respectively (Methods, Supplementary Fig. 13). The high-

quality reconstruction and coordinates of individual atoms  both identify a point defect 

in the tungsten material in three dimensions. Figures 2a and b, show the reconstructed 

3D intensity and surface renderings of three consecutive layers surrounding the point 
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defect, located in layer 6. A quantitative comparison of the reconstructed intensity at the 

defect site and its surrounding atoms for all three reconstructions (raw, Wiener filtered 

and sparsity denoised) all strongly indicate a tungsten atom is not located at this site and 

it is not an error in the atom tracing. This is further confirmed by an unambiguous 

determination of the point defect in the 3D reconstruction of the multislice images, 

calculated from our experimental atomic model (Methods). While a substitutional point 

defect cluster of light atoms is energetically favourable in tungsten
28

, a definitive 

identification of the substitutional atom species requires an experimental tilt series with 

a better signal to noise ratio.          

Based on the 3D coordinates of the individual atoms, we measured the atomic 

displacement field of the sample (Methods). Figures 2c-e, Supplementary Fig. 14 and 

Movie 1 show the 3D atomic displacements calculated as the difference between the 

measured atomic positions and the corresponding ideal bcc lattice sites. The tip exhibits 

expansion along the [0 1 1] direction (x-axis) and compression along the [100] direction 

(y-axis). The atomic displacements in the [011] direction (z-axis) are less than half the 

magnitude of those along the x- and y-axes (Supplementary Movie 2). The 3D atomic 

displacements were used to determine the full strain tensor in the material. Calculation 

of the strain tensor requires differentiation of the displacement field making it more 

sensitive to noise. Therefore, we convolved the atomic displacement field with a 5.5-Å-

wide 3D Gaussian kernel to increase the signal to noise ratio, but this also reduces the 

3D spatial resolution to ~1nm. Figures 3a-d, shows the distribution of the atoms in 

layers 2-9 and the corresponding smoothed 3D displacement field along the x-, y- and z-

axes, respectively. The six components (xx, yy, zz, xy, xz and yz) of the full strain 

tensor (Figs. 3e-j) were determined from the smoothed displacement field with a 
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precision of ~10
-3

 (Supplementary Fig. 15) (Methods). The xx, yy, xz and yz maps 

exhibit features directly related to lattice plane bending, expansion along the x-axis and 

compression along the y-axis. Shear in the x-y plane is clearly visible in the xy map. 

Compared to the other components, the zz map is more homogeneous. By calculating 

the eigenvalues and eigenvectors using the full strain tensor, we obtained the principle 

strains to be approximately 0.81%, -0.87%, and -0.15% along the [0.074 0.775 -0.628], 

[0.997 -0.083 0.015], and [0.041 0.627 0.778] directions, respectively.  

To understand the origin of the strain field, we projected the experimental 3D 

model along the [100], [0 1 1] and [1 1 1] directions. A comparison of the projected 

atomic positions with an ideal bcc lattice showed that the atomic displacements become 

larger closer to the surface (Supplementary Figs. 16a-c). This suggests that the tungsten 

positions and/or the chemical composition changed near the surface. Carbon was 

present on the tip and could have been intercalated in between the tungsten layers 

leading to a local expansion with octahedral coordination of the carbon, qualitatively in 

agreement with Supplementary Figs. 16d-i. To further explore this, we prepared another 

tungsten needle using the same sample preparation procedure except that carbon was 

deposited on the needle before heating to 1200C in vacuum. ADF and bright-field 

STEM images along the [100] and [111] directions show bending of the atomic columns 

(Supplementary Fig. 17), and DFT calculations of surface tungsten carbide (WCx) are in 

good agreement with the ADF images (Supplementary Text, Figs. 16d-i and Figs. 17a 

and c). Finally, we performed MD simulations of a tungsten needle with and without the 

presence of carbon (Supplementary Text and Fig. 18). The MD results show that the 

strain tensor approaches zero in the carbon-free needle (Supplementary Fig. 19). 

However, with intercalated carbon, the tungsten needle exhibits expansion and 
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compression along the [0 1 1] and [100] directions (Supplementary Fig. 20), 

respectively, in agreement with the experimental measurements (Fig. 3). Thus, our 

experimental results, MD simulations and DFT calculations all indicate that the strain in 

the tungsten needle is induced by surface WCx and the diffusion of carbon atoms several 

layers below the tungsten surface.  

 In conclusion, the 3D coordinates of thousands of individual atoms and a point 

defect in a material have been determined with a precision of ~19 picometers, where the 

crystallinity of the sample was not assumed. This allows direct measurements of the 

atomic displacement field and the full strain tensor with a 3D resolution of ~1 nm and a 

precision of 10
-3

, which were further verified by DFT calculations and MD simulations. 

Although a tungsten needle sample was used here as a proof-of-principle, our method 

can be applied to a wide range of materials that can be processed into small volumes, 

including nanoparticles, nanowires, nanorods, thin films, and needle-shaped specimens 

used in atom probe tomography
29

. While we resolved the positions of individual 

tungsten atoms in this experiment, numerical simulation results indicate that this 

method can also be used to determine the 3D coordinates of individual atoms in 

amorphous materials
30

. The ability to precisely localize the 3D coordinates of individual 

atoms in materials without assuming crystallinity, identify point defects in three 

dimensions, and measure the 3D atomic displacement field and the full strain tensor, 

coupled with DFT calculations and MD simulations, is expected to transform our 

understanding of materials properties and functionality at the most fundamental scale.                    
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Figure legends 

Figure 1. 3D positions of individual atoms in a tungsten needle sample 

revealed by electron tomography. The experiment was conducted using an 

aberration-corrected STEM. A tilt series of 62 projections was acquired from the 

sample by rotating it around the [011] axis. The inset shows a representative 

projection at 0˚. After post-processing, the apex of the sample (labelled with a 

rectangle in the inset) was reconstructed by the EST method. The 3D positions 

of individual atoms were then traced from the reconstructions and refined using 

the 62 experimental projections. The 3D atomic model of the sample consists of 

9 atomic layers along the [011] direction, labelled with crimson (dark red), red, 

orange, yellow, green, cyan, blue, magenta and purple from layers 1 to 9, 

respectively.  

Figure 2. 3D determination of a point defect and the atomic displacements 

in the tungsten needle sample. a and b, 3D density and surface renderings of 

a point defect in the tungsten sample (diamond-shaped region in (c)), clearly 

indicating no tungsten atom density at the defect site. d, e and f, 3D atomic 

displacements in layer 6 of the tungsten sample along the x-, y- and z-axes, 

respectively, exhibiting expansion along the [0 1 1] direction (x-axis) and 

compression along the [100] direction (y-axis). The atomic displacements in the 

[011] direction (z-axis) are smaller than those in the x- and y-axes. The atoms 

with white dots are excluded for displacement measurements due to their 

relatively large deviations from a bcc lattice (Methods). The 3D atomic 

displacements in other layers are shown in Supplementary Fig. 13.  
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Figure 3. 3D strain tensor measurements in the tungsten needle sample. a, 

Atoms in layers 2-9 used to determine the 3D strain tensor, where layer 1 and 

other surface atoms in red are excluded for displacement field and strain 

measurements. b, c and d, 3D lattice displacement field for layers 2-9 along the 

x-, y- and z-axes, respectively, obtained by convolving the 3D atomic 

displacements with a 5.5-Å-wide 3D Gaussian kernel to reduce the noise and 

increase the precision. Expansion along the [0 1 1] direction (x-axis) and 

compression along the [100] direction (y-axis) are clearly visible. e, f, g, h, i and 

j, Maps of the six components of the full strain tensor, where xx, yy, xz and yz 

exhibit features directly related to lattice plane bending, expansion and 

compression along the along the x- and y-axis, respectively. xy shows shear in 

the x-y plane and zz is more homogenously distributed. 

 

 

Figure 1 
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Figure 2 
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Figure 3 

 

METHODS 

Sample Preparation. A tungsten wire with 99.95% purity was annealed under tension until melted, 

creating a large crystalline domain with [011] preferentially aligned along the wire axis. The 250 m wire 

was then electrochemically etched in a NaOH solution using a dedicated etching station with an electronic 

cutoff circuit to form a sharp tip with a <10nm diameter.  The wire was then plasma cleaned in an Ar/O2 

gas mixture and heated to 1000 C in vacuum (~10
-5

 Pa) to remove the oxide layer generated by the 

plasma cleaning. The wire was mounted in a 1 mm sample puck appropriate for the TEAM stage. 

Data Acquisition. Tomographic data was acquired using the TEAM I at the National Center for Electron 

Microscopy in The Molecular Foundry operated at 300 kV in ADF-STEM mode (convergence semi-

angle: 30 mrad; detector inner and outer semi-angles: 38 mrad and 200 mrad; aberration-corrected probe 

size: ~50 pm; beam current: 70 pA). The TEAM stage is a tilt-rotate design with full 360 rotation about 

both axes. The tomography rotation axis was chosen to be the [011] crystallographic axis of the tungsten 

sample. A tomographic tilt series of 62 images was acquired from the tungsten needle sample at EST 
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angles, covering the complete angular range of ±90. Two images of 1024x1024 pixels each with 6 s 

dwell time and 0.405 Å pixel resolution were acquired at each angle. To reduce the radiation dose, a low-

exposure acquisition scheme was implemented
12

. When focusing an image, a nearby sample was first 

viewed, thus reducing unnecessary radiation dose to the sample under study. The total dose used in the 

tungsten needle data set was comparable to that reported before
12,13

. To monitor the consistency of the tilt 

series, we measured the 0 images of the tungsten sample before and after the acquisition of the full data 

set, showing the consistency of the sample structure throughout the experiment (Supplementary Fig. 2).   

ADF-STEM Image Preprocessing. Preprocessing of images involved compensating for constant sample 

drift and STEM scan distortions. Sample drift was determined from the relative shift of the pairs of 

images taken for each EST angle. The STEM scan distortion was determined from the Fourier transform 

of a region 18.5 nm from the apex in the [11 1 ] image assuming a bulk bcc tungsten lattice structure in 

this region. The resulting linear mapping required to correct for the measured drift and to achieve square 

pixels of 0.405 Å pixel size was decomposed into a product of shear transformations and pure x and y 

axis scaling operations which were applied to the ADF-STEM images using Fourier methods for shear
31

 

and scaling operations. Due to the nature of the 2-axis TEAM stage design, the tomography axis has a 

different in-plane orientation in the ADF-STEM image for each EST angle. The Fourier transform of a 

region 12.5 nm from the apex in the individual images was used to determine the orientation of the [011] 

tomography axis. The images were individually rotated using Fourier methods
31

 to align the [011] 

direction along the image vertical.  

Background Subtraction and Denoising of Individual Images. To estimate the background and noise 

level in each experimental image, we adopted a noise model for each pixel, ),()( bbe NnPY   , 

where Y is the intensity counts,  the counts per electron, P(ne) the Poisson distribution of ne electrons, 

and N(b, b) the normal distribution of the background with a mean (b) and standard deviation (b). To 

verify this noise model, we acquired 126 images of a sample for the same experimental conditions with 

TEAM I. Using the 126 images, we calculated P(ne) for various pixels and confirmed that P(ne) was a 

Poisson distribution. Next, we applied this noise model to each experimental image to estimate the 

background and the corresponding ne. After performing background subtraction for each image, we 

obtained 62 images which would be used for the raw EST reconstruction and further denoising. Our 

denoising process was implemented by first transforming Poisson noise to Gaussian noise
32

 and then 
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applying a sparsity based algorithm that has been widely used in the image processing field
23

. 

Supplementary Fig. 3 shows the 0 image before and after denoising as well as their difference, indicating 

that the denoising process did not introduce any visible artifacts.               

EST Reconstructions. The 62 raw and denoised images were reconstructed by EST with the following 

procedure. i) The 62 images were projected to the tilt axis to generate a set of 1D curves, which was 

aligned by cross-correlation with 0.1 pixel steps. ii) The images were then projected to an axis 

perpendicular to the tilt axis to produce another set of 1D curves, which was aligned by a CM method 

with 0.1 pixel per step
12

. Steps i) and ii) were repeated until no further improvement could be made. iii) 

The aligned images were reconstructed by EST with positivity as a constraint and 500 iterations. We 

found that the reconstruction was slightly improved by not enforcing a support constraint. iv) The 3D 

reconstruction was projected back to calculate the corresponding 62 images. The calculated images were 

used as references to further align the experimental images. Steps iii) and iv) were repeated until there 

was no further improvement. v) A loose support (i.e. a boundary slightly larger than the true envelop of 

the sample) was estimated from the final reconstruction and the intensity outside the loose support was 

removed. 

Tracing of 3D Atom Positions. The 3D positions of individual atoms were traced using a twostep 

approach. In step 1, we first identified common atoms in two independent 3D structures. Structure one 

was reconstructed from 62 denoised images and structure two was obtained by taking the square root of 

the product of the raw reconstruction and the Wiener filtered reconstruction (=1)
22

. Step 1 consists of the 

following sub-steps. i) The positions of all local maxima in each 3D reconstruction were identified and 

sorted from the highest to lowest intensity. ii) Starting from the highest intensity, a 3D Gaussian function 

was fit to the local maximum. If a minimum distance constraint (the distance of two neighboring atoms ≥ 

2Å) was satisfied, the peak of the fit to a Gaussian function was chosen as a plausible atom position and 

the Gaussian function was then subtracted from the corresponding reconstruction. Sub-steps i) and ii) 

were repeated until two complete sets of plausible atom positions were obtained from two independent 

reconstructions. iii) Next, the average atom profile was generated by summing up a large number of 

plausible atoms for each reconstruction, omitting extraordinarily high and low peaks. A 3D Gaussian was 

then fit to the average atom profile. iv) Every plausible atom in each complete set was checked with the 

3D Gaussian function of the average atom, 
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 represents a Gaussian approximation to the shape of a plausible atom, )(rfave


 a Gaussian 

approximation of the average atom for a corresponding reconstruction, and 
aveb  the background of the 

Gaussian function fit to the average atom. If Ratom ≥ 1 (indicating the candidate atom is closer to the 

average atom than to the background), the plausible atom was selected as an atom candidate. v) The atom 

candidates in the two datasets were quantitatively compared to each other. The common pairs of atoms in 

the two datasets with deviations smaller than the radius of the tungsten atom (1.39Å) were selected as 

atoms. The position of each selected atom was determined by averaging the common pair of atomic 

positions. vi) Sub-steps i-v) were repeated until there was no further improvement and 3,641 common 

atoms were identified. 

 After finding the common atoms, we examined the non-common atoms in two independent 

datasets in step 2, which consists of the following sub-steps. i) The non-common atoms in the two atom 

candidate datasets were identified. ii) The average atom profile was obtained from the raw reconstruction, 

to which a 3D Gaussian function was fit. Eq. (1) was used to examine the non-common atoms. Those 

with Ratom ≥ 1 and also satisfying the minimal distance constraint were chosen as atoms. iii) We checked 

each of the chosen atoms with both the raw reconstruction and the reconstruction obtained from denoised 

images, and removed false atoms. iv) Sub-steps i-iii) were repeated until no further improvement could be 

made, resulting in an additional 128 atoms being identified. Finally, combining steps 1 and 2, we obtained 

a traced 3D atomic model with a total of 3,769 atoms.  

3D Atomic Model Refinement. The traced atomic model was refined by using the following steps. i) 

The 62 raw experimental images were converted to Fourier slices, )(qF n

obs


 with n = 1,…, 62, by a fast 

Fourier transform. ii) The corresponding 62 Fourier slices were calculated from the traced atomic model 

by  
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where )(qF n

calc


 represents the n

th
 calculated image, M = 3769 is the number of atoms, )(qfe

 the electron 

scattering (form) factor of tungsten
26

,  
jr


 the position of the j
th 

atom, and B’ accounts for the thermal 
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motion of the atom, the electron probe size (50 pm) and the reconstruction error. We note that within a 

tight-binding expansion, the leading term in the scattering is almost the same as the kinematical potential, 

as can be seen by comparing the limits for small thicknesses (see also the later discussion on dynamical 

effects). Since our model consists of one type of atom, every atom was treated as isotropic and identical. 

iii) The experimental and calculated Fourier slices were quantitatively compared by the functional             
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which was minimized with respect to the atomic position (
jr


) by a gradient descent method. iv) The total 

potential energy U of the system in an embedded atom model
33,34 

was used as a regularization to 

independently monitor the refinement  

 



jiji i

iiijij JrU
,,

)()(
2

1
  (4) 

where ɸij represents the pair energy between atoms i and j separated by rij, and Ji the embedding energy 

for an atom i in a site with electron density ρi. The parameters for calculating ɸij and Ji for tungsten atoms 

were obtained elsewhere
33

. The potential energy form of Eq. (4) has been widely used in MD simulations, 

known as the embedded atom method
34

. The total potential U was not used as a constraint in our 

refinement, but was recorded for monitor purposes. The sum of the experimental and potential energy 

terms (E and U) was used to optimize the number of iterations. iv) After obtaining a refined atomic 

model, we compared it with the independent reconstructions, manually adjusted the positions of <1% of 

the atoms, and obtained an updated model. The manual adjustment of a very small percentage of atoms 

has been widely used in the refinement in protein crystallography
24

. The updated atomic model was 

refined once more with the raw experimental images. This step was repeated until the average R1 factor 

could not be further reduced (Supplementary Table 1). B’ in our final refinement was 17.2 Å
2
. The 

relatively large value of B’ is due to the convolution with the electron probe size, thermal vibrations and 

the reconstruction error.      

Multislice STEM Calculations. We performed multislice simulations based on the refined atomic 

model
26

. The atomic model was placed in a rectangular prism super cell (a=110.0Å; b=27.50Å; c=110.0 

Å). The super cell was divided into multiple slices with different atomic positions along the z-axis each 

1.6 Å thick and the x-y plane was discretized into 2048×512 pixels. The experimental parameters were 
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used in the multislice simulations (electron energy: 300keV; C3: 0mm; C5: 5mm; convergence semi-

angle: 30 mrad; detector inner and outer semi-angles: 38 mrad and 200 mrad). The electron beam 

propagated along the z-axis and each ADF-STEM image was generated by a raster-scan of 271×61 pixels 

in the x-y plane with 0.405Å per pixel. By rotating the atomic structure along the y-axis, a tilt series of 

images was computed for the experimental tilt angles. To simulate realistic experimental conditions, a tilt 

angle offset was continuously changed from 0 to 0.5 during the calculation of the tilt series. For each tilt 

angle, we employed the frozen phonon approach and averaged 20 phonon configurations to obtain a 

multislice image. The multislice image was convolved with a 3x3 pixel Gaussian function to account for 

the electron probe size, thermal vibrations, and other incoherent effects making the contrast in the 

simulation comparable to the experimental one. Poisson noise was added based on the experimental 

electron dose. Following this procedure, a tilt series of 62 ADF-STEM images was obtained. 

Supplementary Fig. 10 shows the experimental and multislice images at 0. By using the same 

reconstruction, atom tracing and refinement methods, we obtained a new 3D atomic model from the 62 

multislice images, in which only three atoms were misidentified at the surface. Supplementary Fig. 11 

shows a histogram of the atomic deviation between the original and new atomic models, indicating a 

RMSD of ~22 picometers. 

Precision Estimation of Atomic Displacement Measurements. In the flattest region of the sample 

where the lattice was closest to the ideal bcc, we estimated the displacement precision as the RMSD of 

our measured atomic positions from the site positions of a best-fit lattice. To determine which region of 

the sample was closest to an ideal bcc lattice, we used a cross-validation (CV) procedure
27

. In this 

procedure, a subset of the atomic positions was first selected for testing by determining all sites within a 

given fitting radius. We then calculated a best-fit lattice using a randomly selected set of half of these 

sites, and used it to predict the location of the remaining half. The CV score is equal to the RMSD of 

these predicted sites from the corresponding measurements. This procedure was repeated thousands of 

times using a new randomly generated half subset each time, to determine the mean CV score. This 

procedure was then repeated for various different fitting radii or equivalently the number of sites 

included. The purpose of a CV examination is to determine how many sites should be included in a linear 

best-fit lattice such that the lattice is neither under-fit (too few fitting parameters relative to the number of 

measurements) or over-fit (too many fitting parameters). When this condition is met, the CV score 
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reaches a minimum. The depth of the minimum roughly indicates how close to an ideal lattice the 

measurement is. Supplementary Fig. 13 shows the CV score reaches a minimum when 23 sites are 

included in the lattice fitting. An upper bound for the precision can be estimated using the RMSD fitting 

error when 23 sites are included (Supplementary Fig. 13). For our experimental dataset, this precision 

was ~19 pm. This estimate can be further broken down into the three precision values: approximately 

10.5, 15 and 5.5 pm along the x-, y- and z-axes, respectively. These values represent an upper estimate for 

the precision because no part of the tip forms an ideal bcc lattice. The smaller error along the z-axis is 

because the x-y plane contains information from only 62 images, but the z-axis has no missing 

information. The slight difference between the precision estimate (~19 pm) from the experimental data 

and the RMSD (~22 pm) obtained from multislice simulations is because i) in our multislice simulations, 

the tilt angle offset was continuously changed from 0 to 0.5 during the calculation of the tilt series. This 

offset is slightly larger than our experimental precision (<0.2); and ii) a Gaussian function was used to 

convolve with each of the 62 multislice images (Supplementary Fig. 10). Our numerical simulations 

indicate that if we decrease the width of the Gaussian function, the RMSD can be reduced.       

3D Determination of the Strain Tensor from Measured Atomic Positions. The strain present in the 

reconstruction was measured using the following procedure. First, an ideal bcc lattice was estimated by a 

least squares fit of the atom positions near the tip center. Then, each atom’s displacement from its nearest-

neighbours (up to 8) was calculated.  Atoms that fell within one quarter of the nearest-neighbour bond 

length (0.69 Å) relative to the fitted bcc lattice vectors were marked as belonging to the bcc lattice. The 

lattice was then refit using a least squares method. These two steps were repeated until a self-consistent 

identification of the bcc lattice was obtained, which included 90.42% of the atomic positions (3,408 out of 

3,769 sites).  All atoms not included in the bcc lattice fit were located at the tip surface.  

Next, the atomic displacements were calculated as the difference between the measured atomic 

positions and the corresponding ideal bcc lattice sites (Supplementary Fig. 14). The displacements were 

then interpolated onto a cubic grid using kernel density estimation
35

. In this method, the atomic intensity 

was first estimated by calculating a weighted sum at each voxel of a 3D Gaussian distribution, with a 

standard deviation equal to the kernel width. Then, each of the displacement field (∆𝑥, ∆𝑦 and ∆𝑧) was 

estimated for each voxel by a weighted sum of a 3D Gaussian distribution multiplied by each 
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displacement measurement, divided by the intensity estimate. For example, a set of 𝑁 points at distances 

𝑥𝑖 with displacements of 𝑑𝑖  along the x-axis, would have a displacement field estimate ∆𝑥 of  
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To produce a smooth estimate of the displacement field (a requirement for differentiation), a 3D Gaussian 

kernel with  = 5.5 Å was chosen. The use of a Gaussian kernel increases the signal to noise ratio and 

precision, but reduces the resolution. Resolution is roughly twice of the kernel bandwidth and was ~1 nm 

in our measurements. Finally, the 3D strain tensor was calculated by numerical differentiation of the 

displacement field (Fig. 3), where the edge of the experimental displacement and strain fields were 

masked at approximately one third of the intensity value at the center of the tip. 

Precision Estimation of the Strain Tensor Measurements. To estimate the strain measurement 

precision, we used numerical analysis and Monte Carlo simulations in one, two and three dimensions. 

These results are shown in Supplementary Fig. 15 for evenly spaced measurements along a line, a square 

lattice and a cubic lattice. By defining the relative kernel size (k) in terms of the lattice spacing (a), k =  / 

a, we determined the dependence of the ratio between the RMSD (disp) and the strain measurement 

precision (strain) times the lattice spacing on the relative kernel size. The result is a simple power law for 

all three dimensions. The given numerical prefactors are close approximations. Since our measurements 

were performed on a bcc lattice, the atomic intensity is √2
3

 times that of a simple cubic lattice. Therefore, 

in three dimensions, the strain measurement precision is approximately 

5.23 210 ka

disp

strain


  .  (6) 

Our best fit lattice has side length 𝑎 = 3.18 Å, and we used a kernel width equal to twice the nearest-

neighbour distance (k =  / a = 1.73). These values yield a strain measurement precision of 

%12.0
)73.1()Å18.3(210

Å.190
5.23
strain  . (7) 
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The kernel size was chosen to keep the strain measurement precision well-below the measured peak 

values at the expense of reduced resolution. For example, halving the kernel size to a single nearest-

neighbour length would change the strain measurement precision to 0.68%. 
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