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Rainbow trapping of guided waves

Javier Polanco and Rosa M. Fitzgerald

Department of Physics, University of Texas, El Paso, Texas 79968, USA

Tamara A. Leskova and Alexei A. Maradudina)

Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
(Submitted April 8, 2011)

Fiz. Nizk. Temp. 37, 1173–1180 (November 2011)

We study theoretically the propagation of a wave packet that is a superposition of three s-polarized

guided waves with different frequencies in a planar waveguide consisting of a dielectric medium

with a graded index of refraction, sandwiched between perfectly conducting walls. The electric

field at each point within the waveguide is calculated, and it is shown that each of the constituent

modes ceases to propagate at a specific distance along the waveguide that depends on its frequency

and on the geometrical and material parameters defining the waveguide. This simple model displays

the phenomenon of rainbow trapping of guided waves in an explicit fashion, without the use of a

negative index metamaterial. VC 2012 American Institute of Physics. [doi: 10.1063/1.3672159]

There is currently a great deal of interest in slow light.1

Experiments carried out involving ultracold atomic gases

showed that light could be slowed down in traversing them2

and even stopped.3 The ability to slow light is of fundamen-

tal interest, but it also has practical uses in classical and

quantum optical communication.4

It is therefore perhaps not surprising that with an

increase in the use of surface plasmon polaritons in nano-

scale devices attention has also begun to be directed at the

possibility of slowing down these surface electromagnetic

waves with the expectation that this will increase the scope

of photonic devices based on them.

It has been known for some time5 that the dispersion curve

of a surface plasmon polariton propagating normal to the

grooves and ridges of a classical metallic grating approaches

the boundary of the one-dimensional first Brillouin zone

defined by the period of the grating with zero slope, due to

periodicity and time reversal symmetry. Thus the group

velocity of the surface plasmon polariton slows down as the

zone boundary is approached, and vanishes at the boundary

itself. The slowing down of a surface Plasmon polariton

wave packet by this mechanism was recently observed

experimentally.6

This work was followed by several papers in which the

slowing down of surface plasmon polaritons and guided

waves was studied on the basis of a different approach. In a

planar waveguide consisting of a dielectric layer sandwiched

between two metals the number of modes than can be sup-

ported by this structure depends on the dielectric constant of

the layer and its thickness. As the thickness of the dielectric

layer decreases the number of modes supported by the wave-

guide decreases. Thus, if the waveguide does not have paral-

lel walls, but instead has a thickness that decreases with

increasing distance along it, at critical distances along the

waveguide the number of modes decreases successively by

one. These critical distances depend on the wavelengths of

the modes. The group velocity of the mode that stops propa-

gating at each of these distances is zero. When the thickness

of the dielectric layer reaches the value where the waveguide

no longer supports a mode, the group velocity of the only

remaining waveguide mode at the corresponding distance

along the waveguide is zero. If the waveguide is illuminated

by polychromatic light consisting of several discrete wave-

lengths (a light rainbow), different light colors stop propa-

gating at different positions along the waveguide. Thus, the

light rainbow has been stopped and trapped.

This concept was used as the basis of an investigation by

Tsakmakidis et al.7 of the trapping of a guided wave packet

in which a semi-infinite portion of the dielectric layer had a

positive refractive index and parallel walls, while the

remaining semi-infinite portion of the layer had a negative

refractive index and a slowly decreasing thickness. The sub-

strate and superstrate consisted of positive index dielectric

materials. Trapping of the different frequency components

of the guided wave packet at different points of the wave-

guide was predicted by these authors. This effect was

observed experimentally by Zhao et al.8

A trapped rainbow was predicted and observed experi-

mentally by Smolyaninova et al.9 in a system of which a

spherical metal structure was placed on a metal substrate.

The air between the two metallic surfaces had a circularly

symmetric structure whose thickness increased with increas-

ing distance along the substrate from the point of its contact

with the sphere. When illuminated from the side by poly-

chromatic light, this structure displayed the trapping of its

different wavelength components at specified distances

along the substrate from the point of contact.

A variant of the tapered waveguide approach was used

by Gan et al.10 in a theoretical study of the trapping of sur-

face plasmon polaritons. We have noted above that the dis-

persion curve of the lowest frequency branch of the

dispersion relation for surface plasmon polaritons propagat-

ing normally to the grooves and ridges of a classical grating

approaches the boundary of the first Brillouin zone defined

by the period of the grating with a zero slope and a value

(the cutoff frequency) that depends on the depth of the

grooves. The deeper the grooves, the lower the cutoff fre-

quency. Gan et al. considered a metallic lamellar grating the
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depth of whose grooves increased linearly and slowly along

the grating. When a surface plasmon polariton of a given fre-

quency propagates along such a grating, it can reach a point

along it at which the groove depth has a value such that an

infinite grating with that groove depth would have a cut off

frequency below that of the surface Plasmon polariton. At

that point the surface wave ceases to propagate: its frequency

falls in the region of the gap in the dispersion relation of an

infinite grating with that groove depth. The surface plasmon

is trapped at this point. If the incident surface plasmon polar-

iton is a superposition of surface waves with different wave-

lengths, the different wavelength components will be

trapped at different points along the grating.

What characterizes these studies of rainbow trapping is

the absence of a quantitative theory underlying them. They

are all based on the result that the narrower the thickness of

a waveguide the fewer propagating modes it can support.

While this result may be sufficient to estimate the points

along the waveguide where these modes disappear one by

one, it tells us nothing about the amplitudes of the propa-

gating modes, it neglects the backscattering of the waves at

the points where the group velocity vanishes, and it does not

show how sharp the trapping phenomenon is, in view of the

finite lengths of the structures studied.

In this paper we study the propagation of electromag-

netic waves through a waveguide with a linearly graded

dielectric constant, with a view to addressing the points

raised in the preceding paragraph.

Taking the point of view that the use of a structure incor-

porating a negative index metamaterial is an unnecessary

complication, the structure we study consists of a dielectric

medium that occupies the region �d< x3< d, and has a

graded dielectric constant given by

eðx1Þ ¼

e1 x1 <�L
1

2
ðe1 þ 1Þ � 1

2L
ðe1 � 1Þx1 �L< x1 < L

1 x1 > L

8>><
>>: : (1)

For simplicity we assume that the region x3> d and

x3<�d are filled with a perfect conductor. The electro-

magnetic field incident in this graded index waveguide

from the region x1¼�1 is a superposition of N s-polar-

ized modes, each with a different frequency, supported by

an infinitely long waveguide of constant thickness 2d and

filled with a uniform dielectric medium whose dielectric

constant is e1. The intensity of the electric field in this

graded index waveguide will be calculated as a function

of x1 and x3, from which the trapping of the incident rain-

bow can be observed.

The single nonzero component of the electric field in the

waveguide, E2(x1,x3jx), satisfies the Helmholtz equation

@2

@x2
1

þ @2

@x2
3

þ eðx1Þ
x2

c2

� �
E2ðx1; x3jxÞ ¼ 0 (2)

in the domain �1< x1<1, �d< x3< d, subject to vanish-

ing boundary conditions on the planes x3¼6d, and the con-

tinuity of E2(x1,x3jx) and @E2(x1,x3jx)/@x1 at x1¼6L.

We solve Eq. (2) by the method of the separation of var-

iables. If we express E2(x1,x3jx) in the form

E2ðx1; x3jxÞ ¼ f ðx1Þgðx3Þ; (3)

we find that f(x1) and g(x3) satisfy the equations

d2

dx2
1

f ðx1Þ þ eðx1Þ
x2

c2
� a2

� �
f ðx1Þ ¼ 0; (4a)

d2

dx2
3

gðx3Þ þ a2gðx3Þ ¼ 0; (4b)

where a2 is the separation constant.

The solution of Eq. (4b) that vanishes at x3¼�d is

gðx3Þ ¼ A sin aðx3 þ dÞ: (5)

The requirement that g(d)¼ 0 yields the result that

a ¼ np
2d
; n ¼ 1; 2; 3;…: (6)

Consequently we can write the solution of Eq. (4b) in

gnðx3Þ ¼ An sin
np
2d
ðx3 þ dÞ; n ¼ 1; 2; 3;…: (7)

When Eq. (6) is substituted into Eq. (4a), we can write the

resulting equation as

d2

dx2
1

fnðx1Þ þ eðx1Þ
x2

c2
� np

2d

� �2
� �

fnðx1Þ ¼ 0: (8)

We seek the solution of this equation in each of the three

regions (�1,�L), (�L,L), and (L,1).

x1<�L: In this region Eq. (8) becomes

d2

dx2
1

fnðx1Þ þ e1
x2

c2
� np

2d

� �2
� �

fnðx1Þ ¼ 0: (9)

The solution of this equation is

fnðx1Þ ¼ að1Þn exp i

�
e1

x2

c2
�
�

np
2d

�2�1=2

x1

( )

þ að2Þn exp �i

�
e1

x2

c2
�
�

np
2d

�2�1=2

x1

( )
: (10)

The first term can be regarded as an incident field, while the

second term can be regarded as a reflected wave.

�L< x1<L: In this region fn(x1) satisfies the equation

d2

dx2
3

fnðx1Þ þ
�

x2

c2

�
1

2
ðe1 þ 1Þ � 1

2L
ðe1�1Þx1

�

�
�

np
2d

�2	
fnðx3Þ ¼ 0: (11)

The solution of this equation is

fnðx1Þ ¼ bð1Þn Ai
ax2

c2

� �1=3

ðx1�bnÞ
 !

þ bð2Þn Bi
ax2

c2

� �1=3

ðx1�bnÞ
 !

; (12)
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where

bn ¼
b

a
� 1

a

npc

2dx

� �2

; (13)

with

a ¼ 1

2L
ðe1�1Þ; b ¼ 1

2
ðe1þ1Þ: (14)

In Eq. (12) Ai(z) and Bi(z) are two linearly independent Airy

functions.11

x1>L: In this region the equation satisfied by fn(x1) is

d2

dx2
1

fnðx1Þ þ
x2

c2
� np

2d

� �2
� �

fnðx1Þ ¼ 0: (15)

The solution of this equation

fnðx1Þ ¼ cn exp i
x2

c2
� np

2d

� �2
� �1=2

x1

( )
; (16)

which corresponds to a transmitted wave in this region.

There is no wave incident from x1¼1.

The boundary conditions satisfied by fn(x1) are the conti-

nuity of fn(x1) and of dfn(x1))/dx1 at x1¼�L and at x1¼L.

At x1¼�L we obtain the pair of equations

að1Þn exp �i e1
x2

c2
� np

2d

� �2
� �1=2

L

( )

þ að2Þn exp i e1
x2

c2
� np

2d

� �2
� �1=2

L

( )

¼ bð1Þn Ai
ax2

c2

� �1=3

ð�L� bnÞ
" #

þ bð2Þn Bi
ax2

c2

� �
ð�L� bnÞ

� �
; (17a)

i e1
x2

c2
� np

2d

� �2
� �1=2

að1Þn exp �i e1
x2

c2
� np

2d

� �2
� �1=2

L

" #(

� að2Þn exp i e1
x2

c2
� np

2d

� �2
� �1=2

L

" #)

¼ a
x2

c2

� �1=3
(

bð1Þn Ai0
ax2

c2

� �1=3

ð�L� bnÞ
" #

þ bð2Þn Bi0
ax2

c2

� �1=3

ð�L� bnÞ
" #)

; (17b)

where the prime denotes differentiation with respect to argu-

ment. At x1¼ L we obtain a second pair of equations

bð1Þn Ai a
x2

c2

� �1=3

ðL� bnÞ
" #

þ bð2Þn Bi a
x2

c2

� �1=3

ðL� bnÞ
" #

¼ cn exp i
x2

c2
� np

2d

� �2
� �1=2

L

( )
; (18a)

a
x2

c2

� �1=3

bð1Þn Ai0 a
x2

c2

� �1=3

ðL�bnÞ
 !"

þ bð2Þn Bi0 a
x2

c2

� �1=3

ðL�bnÞ
 !#

¼ i
x2

c2
� np

2d

� �2
� �1=2

cn exp i
x2

c2
� np

2d

� �2
� �1=2

L

( )
:

(18b)

Equations (17) and (18) allow us to obtain the coefficients

að2Þn ; bð1Þn ; bð2Þn , and cn in terms of að1Þn . Thus, we rewrite

Eqs. (17) and (18) in the matrix form

MðnÞ

að2Þn

bð1Þn

bð2Þn

cn

0
BB@

1
CCA ¼

að1Þn

að1Þn

0

0

0
BB@

1
CCA (19)

where the nonzero elements of the matrix M(n) are presented

in the Appendix. We can then write

að2Þn

bð1Þn

bð2Þn

cn

0
BB@

1
CCA ¼ NðnÞ

að1Þn

að1Þn

0

0

0
BB@

1
CCA (20)

where N(n) is the matrix inverse to M(n). Therefore we have

the results

að2Þn ¼ N
ðnÞ
11 þ N

ðnÞ
12

� �
að1Þn ; (21a)

bð1Þn ¼ N
ðnÞ
21 þ N

ðnÞ
22

� �
að1Þn ; (21b)

bð2Þn ¼ N
ðnÞ
31 þ N

ðnÞ
32

� �
að1Þn ; (21c)

cn ¼ N
ðnÞ
41 þ N

ðnÞ
42

� �
að1Þn : (21d)

We now assume that the portion of the waveguide in the

region x1<L is a single mode waveguide, i.e., we assume

that n¼ 1. From Eq. (10) we see that we must have

ffiffiffiffiffiffi
e1
p x

c
>

p
2d

(22)

and

ffiffiffiffiffiffi
e1
p x

c
<

np
2d
; n � 2: (23)

These inequalities restrict x/c to the interval

1ffiffiffiffiffiffi
e1
p p

2d
<

x
c
<

2ffiffiffiffiffiffi
e1
p p

2d
: (24)

At the same time we wish to have no propagating modes in

the region x1>L. From Eq. (16) we see that for this to be the

case we must satisfy the inequality

x
c
<

p
2d
: (25)
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We will assume that e1 is sufficiently greater than unity that

2=
ffiffiffiffiffiffi
e1
p

is smaller than unity. Therefore the right-hand in-

equality in Eq. (24) is more restrictive than the inequality

(25). If we introduce the dimensionless frequency X by

x
c
¼ X

p
2d
; (26)

the inequalities (24) become

1ffiffiffiffiffiffi
e1
p < X <

2ffiffiffiffiffiffi
e1
p : (27)

We will choose for e1 the value that corresponds to silicon,

namely e1¼ 12. With this value of e1, the inequalities (27)

become

0:2887 < X < 0:5774: (28)

With these results in hand we will assume that the incident

electric field is a wave packet formed by the superposition of

N¼ 3 modes whose frequencies Xj(j¼ 1,2,3) satisfy the

inequalities (28), namely

X1 ¼ 0:35; X2 ¼ 0:45; X3 ¼ 0:55: (29)

It now remains to determine the half-width d of the wave-

guide and the length 2L of the portion filled with the graded

index dielectric medium. We do this by first noting that the

wavelength k of the mode of the frequency x in the region

x1<�L is obtained from the relation

ffiffiffiffiffiffi
e1
p x

c
¼ 2p

k
; (30)

so that

k ¼ 4dffiffiffiffiffiffi
e1
p

X
: (31)

where we have used the relation (26). The wavelengths corre-

sponding to the frequencies X1, X2, X3 are therefore given by

k1 ¼ 3:2991d; (32a)

k2 ¼ 2:5660d; (32b)

k3 ¼ 2:0995d: (32c)

We will choose for k1 the value k1¼ 0.6328 lm. It follows

from Eqs. (32) that k2¼ 0.4922 lm, and k3¼ 0.4027 lm.

From the same equations we find that d¼ 0.1918 lm.

In choosing a value for L we wish to make the ratio d/L
sufficiently small that the dielectric constant within the

region �L< x1< L of the waveguide is changing slowly

with x1. We have chosen the value L¼ 6 lm, which yields

the ratio d/L¼ 0.032.

The incident electric field in the region x1<�L can be

written in the form

E2ðx1; x3Þinc ¼
X3

j¼1

a
ð1jÞ
1 sin

p
2d
ðx3 þ dÞ

� exp i
p
2d

e1X2
j � 1

h i1=2

x1

� 	
; (33)

where xj/c¼Xj(p/2d). Since the scattering problem is a lin-

ear one, the reflected field in the region x1<�L is given by

E2ðx1;x3Þref ¼
X3

j¼1

N
ð1jÞ
11 þN

ð1jÞ
12

� �
a
ð1jÞ
1

� sin
p
2d
ðx3þdÞexp �i

p
2d

e1X2
j �1

h i1=2

x1

� 	
:

(34)

Similarly, the transmitted field in the region x1> L is

E2ðx1; x3Þtr ¼
X3

j¼1

N
ð1jÞ
41 þ N

ð1jÞ
42

� �
a
ð1jÞ
1

� sin
p
2d
ðx3 þ dÞ exp i

p
2d

X2
j �1

h i1=2

x1

� 	
:

(35)

FIG. 1. Plots of jE2(x1,0)incj (a), jE2(x1,0)refj (b), and jE2(x1,0)inc

þE2(x1,0)refj (c) in the region x1<�L of the waveguide.
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The field inside the region �L< x1< L containing the

graded index material is

E2ðx1; x3Þgr ¼
X3

j¼1

a
ð1jÞ
1 sin

p
2d
ðx3 þ dÞ

�
��

N
ð1jÞ
21 þ N

ð1jÞ
22

�
Ai

��
a

x2
j

c2

�1=3

ðx1 � bðjÞ1

�

þ
�

N
ð1jÞ
31 þ N

ð1jÞ
32

�
Bi

��
a

x2
j

c2

�1=3

ðx1 � bðjÞ1

�	
:

(36)

The matrix elements Nð1jÞ
mn are the elements of the matrix

inverse to the matrix M
(n) whose elements are given in the

Appendix, when n¼ 1 and x is replaced by xj¼Xj(pc/2d).

The Airy functions Ai(z) and Bi(z) are both oscillatory

functions of z for negative values of z, and have a descending

or ascending exponential behavior, respectively, for positive

values of z. Therefore, we can expect that the mode whose

frequency is xj in the incident field will stop propagating

at the position x
ðjÞ
1 given by

x
ðjÞ
1 ¼ bðjÞ1 ¼

1

a
b� pc

2dxj

� �2
" #

¼ 1

a
b� 1

X2
j

 !
: (37)

With our assumption that e1¼ 12, we find from Eqs. (14) that

a ¼ 5:5

L
; b ¼ 6:5: (38)

With these values of a and b, and the values of Xj given by

Eqs. (29), we find that the stopping points x
ðjÞ
1 are

x
ð1Þ
1 ¼ �0:3024L ¼ �1:8144lm; (39a)

x
ð2Þ
1 ¼ 0:2480L ¼ �1:7037lm; (39b)

x
ð3Þ
1 ¼ 0:5805L ¼ �3:4845lm; (39c)

where the second equality in each case follows from our

assumption that L¼ 6 lm.

We illustrate the preceding results by numerical calcula-

tions of the electric field and its intensity in each of the

regions x1<�L, �L< x1< L, and x1> L. In these

FIG. 2. (a)–(c) Plots of the real

and imaginary parts of E
ð1Þ
2 (x1,0)gr,

E
ð2Þ
2 (x1,0)gr, and E

ð3Þ
2 (x1,0)gr, res-

pectively. (d) Plots of the real and

imaginary parts of [E2(x1,0)gr]. (e) A

plot of jE2(x1,0)grj. The dashed verti-

cal lines indicate the values of

x
ðjÞ
1 (j¼1,2,3).
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calculations, to simplify the resulting figures, we have set

x3¼ 0 and have assumed that each amplitude a
ð1jÞ
1 ( j¼ 1,2,3)

is equal to unity.

In Fig. 1 we plot jE2(x1,0)incj (a), jE2(x1,0)refj (b), and the

magnitude of the total field jE2(x1,0)incþE2(x,0)refj (c) in the

region x1<�L. The shorter period oscillations observed in

(c) compared with those in (a) and (b) arise from the inter-

ference of the incident and reflected waves in this region of

the waveguide. It is seen from these results that the intensity

of the reflected field is comparable to the intensity of the

incident field.

More interesting is the behavior of the electric field in

the region �L< x1< L of the waveguide occupied by the-

graded refractive index medium. In Figs. 2(a)–2(c) we plot

the real and imaginary parts of E
ð1Þ
2 ðx1; 0Þgr, E

ð2Þ
2 ðx1; 0Þgr, and

E
ð3Þ
2 ðx1; 0Þgr, respectively, as functions of x1. It is seen that

each of these fields decreases rapidly to zero exponentially

as x1 increases past the distances x
ð3Þ
1 , respectively. This is

the rainbow trapping effect. However, a stepwise decrease in

the real and imaginary parts of the total electric field at each

of these distances is less clearly present in Fig. 2(d),

although a trend to smaller values of ReE2 (x1,0)gr as x1

crosses x
ðjÞ
1 (j¼ 1,2,3) is seen. The same can be said of the

plot of jE2(x1,0)grj presented in Fig. 2(e).

Propagation of the electric field stops at x1�x
ð3Þ
1 , and

the magnitude of the field decreases exponentially for x1

greater than x
ð3Þ
1 .

The magnitude of the electric field in the region x1>L,

jE2(x1,0)trj, also decreases exponentially with increasing x1,

as can be seen from the result plotted in Fig. 3.

We have studied the propagation of a wave packet con-

sisting of a superposition of three s-polarized guided waves

with different frequencies in a planar waveguide consisting

of a dielectric medium with a graded index of refraction

sandwiched between perfectly conducting walls. This simple

model system displays features observed in earlier studies of

the rainbow trapping of guided waves, in particular that each

frequency component of the incident wave packet stops

propagating at a specific distance along the waveguide that

depends on its frequency (its color) and on the material and

geometrical parameters defining the waveguide. It also

shows some features not discussed in these earlier studies.

These include the strong reflection of the incident field from

the waveguide, which appears to be due to the cessation of

transmission of the waves comprising that field at specific

distances along the waveguide, and the fact that the trapping

phenomenon is not sharp but displays an exponential decay

of the electric field strength on the transmission side at each

of these distances. An attractive feature of the model system

studied is that its properties can be studied analytically rather

than purely studied numerically.

APPENDIX

The nonzero elements of the matrix M(n) entering

Eq. (19) are:

M
ðnÞ
11 ¼ � exp i2 e1

x2

c2
� np

2d

� �2
� �1=2

L

( )
; (A1)

M
ðnÞ
12 ¼ exp i e1

x2

c2
� np

2d

� �2
� �1=2

L

( )

� Ai a
x2

c2

� �1=3

ð�L� bnÞ
" #

; (A2)

M
ðnÞ
13 ¼ exp i e1

x2

c2
� np

2d

� �2
� �1=2

L

( )

� Bi a
x2

c2

� �1=3

ð�L� bnÞ
" #

; (A3)

M
ðnÞ
21 ¼ exp i2 e1

x2

c2
� np

2d

� �2
� �1=2

L

( )
: (A4)

M
ðnÞ
22 ¼ exp i e1

x2

c2
� np

2d

� �2
� �1=2

L

( )

�
a x2

c2

� �1=3

i e1
x2

c2
� np

2d

� �2
� �1=2

Ai0 a
x2

c2

� �1=3

ð�L� bnÞ
" #

;

(A5)

M
ðnÞ
23 ¼ exp i e1

x2

c2
� np

2d

� �2
� �1=2

L

( )

�
a
x2

c2

� �1=3

i e1
x2

c2
� np

2d

� �2
� �1=2

Bi0 a
x2

c2

� �1=3

ð�L� bnÞ
" #

;

(A6)

M
ðnÞ
32 ¼ Ai a

x2

c2

� �1=2

ðL� bnÞ
" #

; (A7)

M
ðnÞ
33 ¼ Bi a

x2

c2

� �1=3

ðL� bnÞ
" #

; (A8)

M
ðnÞ
34 ¼ � exp i

x2

c2
� np

2d

� �2
� �1=2

L

( )
; (A9)

FIG. 3. A plot of |E2(x1,0)tr| in the region x1>L of the waveguide.
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M
ðnÞ
42 ¼

a
x2

c2

� �1=3

i
x2

c2
� np

2d

� �2
� �1=2

Ai0 a
x2

c2

� �1=3

ðL� bnÞ
" #

; (A10)

M
ðnÞ
43 ¼

a
x2

c2

� �1=3

i
x2

c2
� np

2d

� �2
� �1=2

Bi0 a
x2

c2

� �1=3

ðL� bnÞ
" #

; (A11)

M
ðnÞ
44 ¼ � exp i

x2

c2
� np

2d

� �2
� �1=2

L

( )
: (A12)

We dedicate this paper to the memory of E. A. Kaner on

the occasion of his 80th birthday. Gone, but not forgotten.
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