
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Complexity of Finding and Measuring Ground States in Quantum Systems

Permalink
https://escholarship.org/uc/item/3pr5r3gv

Author
Meiburg, Alexander Heinz Zhong

Publication Date
2023
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3pr5r3gv
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA
Santa Barbara

Complexity of Finding and Measuring Ground
States in Quantum Systems

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Physics

by

Alexander Heinz Zhong Meiburg

Committee in Charge:

Dr. Bela Bauer, Microsoft, Co-Chair

Professor Leon Balents, Co-Chair

Professor Andrea Young

June 2023



The Dissertation of
Alexander Heinz Zhong Meiburg is approved:

Professor Andrea Young

Dr. Bela Bauer, Microsoft, Co-Chair

Professor Leon Balents, Co-Chair
June 2023



Complexity of Finding and Measuring Ground States in Quantum Systems

Copyright © 2023

by

Alexander Heinz Zhong Meiburg

iii



Acknowledgements

I owe many thanks to my parents, who both worked not only to provide me

with wonderful educational opportunities, but even more importantly to give me a

curiosity, love, and joy about learning and exploring mathematics. Without their

influence, I believe I would be much less content with my life.

I must thank my wife Lindsay for supporting me, and graciously accepting

the adventures of moving with me and accepting the geographical constraints of

an academic life. Her support and admiration has empowered me more than she

knows. It delights me that her name, which she has so graciously let me take as

my own, is also printed here.

My advisor, Bela Bauer, has given me guidance and grounding when I didn’t

even know what to start asking. He has encouraged me when things have gone

well, and just as importantly, helped me accept them when they haven’t.

Thanks to Eric Vigoda and Scott Aaronson for their encouragement as this

physicist has slowly poked his nose into the world of theoretical computer science,

and for their guidance when I’m bewildered by how foreign the customs can be.

And thank you to a long list of names from Zapata Computing, who gave me

a wonderful summer (and then some) seeing the product side of quantum sci-

ence, and helped me mentally prepare for life after school from many different

perspectives.

iv



Thank you to Adolfo Holguin and David Grabovsky for many late and long

discussions about math, even if half the time one (or even both) of us was totally

lost.

And thank you to my cats, Zenith, Chester, and Karma, for giving me a wholly

different kind of support, always happy to lend a very pink pairs of ears when I

needed someone to talk to.

v



Curriculum Vitæ

Alexander Heinz Zhong Meiburg

Education

2023 Doctor of Philosophy in Physics, University of California, Santa

Barbara (Expected).

2021 M.A. in Physics, University of California, Santa Barbara.

2018 B.S. in Math and Physics, California Institute of Technology.

Professional Experience

2019 - 2023 Graduate Student Researcher, University of California, Santa

Barbara

2022 Instructor, University of California, Santa Barbara

2022 Quantum AI Research Intern, Zapata Computing

2018, 2019 Research Intern, Facebook Reality Labs

2017 - 2018 Research Technician, NASA Jet Propulsion Laboratory

2015 Summer Undergraduate Research Fellow, California Institute of

Technology

2014 Intern, Climate Hazards Group, University of California, Santa

Barbara

vi



Primary Publications

• Inapproximability of Positive Semidefinite Permanents and Quantum State To-

mography. 2022. IEEE 63rd Annual Symposium on Foundations of Computer

Science (FOCS).

• Linear-time generalized Hartree-Fock algorithm for quasi-one-dimensional systems.

Phys. Rev. Research 4, 023128. Joint work with Bela Bauer.

• Quantum Constraint Problems can be complete for BQP, QCMA, and more.

arXiv:2101.08381.

• Accelerated Green’s Function Reconstruction on Quantum Devices. In prepara-

tion. Joint work with Bela Bauer.

• Generative Learning of Continuous Data by Tensor Networks. In preparation.

Joint work with Jing Chen, Jacob Miller, and Alejandro Perdomo-Ortiz.

vii



Abstract

Complexity of Finding and Measuring Ground States in

Quantum Systems

Alexander Heinz Zhong Meiburg

Given a quantum system that we seek to understand, finding the ground state

is often the first and most informative task we can assume, from which we can then

examine dynamics, excitations, entanglement geometry, and so on. But there are

several different precise senses in which we could ask to ”find the ground state”,

and depending on the exact system and the question, the resulting task could

be quite easy or difficult. This thesis examines four distinct problems, drawing

from a toolkit of Bayesian statistics, the Density Matrix Renormalization Group,

convex optimization, Fourier analysis, and computational complexity theory.

In one setting, we are given a set of local interactions and asked only, is this

Hamiltonian frustrated? This question can be very easy or difficult depending on

the types of interactions permitted by the symmetry of the system. We show that

in fact there are in fact ”natural” (in a precise, mathematical sense) interaction

types of many different difficulties, including complexity classes BQP and QCMA.

In the second setting, we have repeatedly measured an unknown quantum state,

and we are tasked with determining the most probable state given the measure-

ments. We show that this task is in fact exponentially difficult (NP-hard) in the

viii



dimension of the Hilbert space. In the third setting, we examine one-dimensional

fermionic systems, and show how Gaussian Fermionic Matrix Product States and

DMRG can be combined with Hartree-Fock iteration to find approximate groud

states very quickly. In the final setting, we use a quantum computer to per-

form binary measurements of Green’s functions and wish to reconstruct the whole

function. We show that although classical statistical techniques give an accept-

able reconstruction, imposing physicality constraints greatly enhances the sample

efficiency and reconstruction quality.
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Chapter 1. Introduction

The four body chapters of this thesis consider four distinct problems, each

asking some form of: how can optimization algorithms help us understand quan-

tum systems, and how difficult is this? We Below we give descriptions of and

connections between the four parts.

1.1 Quantum Makes Complexity More Compli-

cated

Our physical world has generously provided us with a wide variety of difficult

problems to ponder. The inputs to these problems could be physical constants,

experimental data, or human design parameters; the outputs could be, for in-

stance, a configuration of particles, or a calculated energy value, or parameters to

some new physical model. Today we can simulate 60 trillion particles interacting

gravitationally [93], but solving for 256 binary inputs to a circuit is considered

implausible with humanity’s computing resources, and finding the ground state

energy of a 6x6 Hubbard model is beyond the limit of what we compute exactly.

The massive gap in difficulty can only be understood in terms of qualitative dif-

ferences in the nature of these questions. The goal of computational complexity

theory is then categorizing these problems by their difficulty.

2



Chapter 1. Introduction

In many settings, the distinction of ”easy” and ”hard” problems is now well-

understood, often with sharp theorems delineating the transitions. Often, these

correspond to phase transitions in statistical physics, for instance satisfiability

transitions [80, 129], costs in resource allocation problems [131], or computational

questions about partition functions themselves [61, 91].

Living in a quantum world as we do, many of the classical problems we have

studied have interesting and natural quantum generalizations. Sometimes, the

quantum variants can be solved by appropriately extending existing solutions

to the classical problems. Sometimes they require radically new ideas and ap-

proaches. And sometimes, unfortunately, the quantum problems turn out to be

exponentially harder than their classical versions – or even just unsolvable (un-

decidable), period. Complexity theory is a rich field, and it turns out that intro-

ducing quantum mechanics into the mix makes all of it even more complicated.

Quantum mechanics makes complexity even more complicated.

Chapters 2 and 3 of this thesis examine two particular instances of this. Chap-

ter 2 examines constraint satisfaction problems, a formal way of discussing ”dis-

crete variables with local restrictions on configurations”. The algebraic theory

of constraint problems has filled many books, and precise classification theorems

are known, where only two levels of difficulty can occur. Constraint problems

naturally quantize to the problem of frustration-free Hamiltonians. The work of

3



Chapter 1. Introduction

Chapter 2 shows that in addition to four known cases of difficulty for frustration-

free Hamiltonians, at least four more are possible – including BQP, the precise

power of quantum computing itself. Any putative classification theorem would

need to account for all of this!

Chapter 3 studies a form of quantum Bayesian inference. The classical prob-

lem is simple: given n samples from some unknown probability distribution P

over d elements, what P best explains the samples (maximum likelihood)? Be-

sides having a closed form solution, the convexity of the problem permits efficient

and precise solutions even in the presence of complicated priors or constraints.

The quantum analog has an unknown d-dimensional mixed state ρ with n mea-

surements (or more generally, POVMs) and we want to reconstruct ρ. Perhaps

surprisingly, this problem turns out to be exponentially hard in d (harder than

NP, in fact) – and so doubly exponentially in the number of particles q, as d ≈ 2q

in general. This result, as it turns, is relevant to some purely linear algebraic

questions as well.

1.2 Efficiently Solvable Ground States

A second theme is that of trying to find ground states of systems efficiently. If a

quantum system is defined by its Hamiltonian (or equivalently, a unitary), then the

4



Chapter 1. Introduction

ground state is the natural extremum of the system. If the world is an optimization

problem, then the ground state is surely the solution1. Unfortunately, ground

states can be very difficult to approximate even for simple systems[77], forcing us

to constrain our model in some way.

The fact that the Hamiltonians of Chapter 2 must be frustration-free relax

our problem, by allowing us to focus on only states that are local ground states

as well. This corresponds to the classical statement that ”satisfy all the rules”

is much easier to reason about than ”satisfy as many rules as possible”. This

stricter, easier optimization problem is easier for us to work with.

One-dimensional systems admit2particularly good approximate ground states

with easy descriptions. For free-fermion systems, the Gaussian state formalism

compresses this further, and these can be combined as in Bauer & Schuch[108]

as the GFMPS algorithm. Chapter 4 concerns adapting this to systems that are

not free-fermion, using Hartree-Fock iteration. By limiting our search space to

Gaussian states of bounded entanglement, we can find our (restricted) ground

state in linear time.

1 There is an exception to be made for physics at nonzero temperature, where the optimization
objective is replaced byH ·ρ+T S(ρ), and the extremum is the thermal state ρ = Z−1 exp(−βH).

2 They admit these descriptions, under some assumptions about local interactions and entangle-
ment entropy. Any proofs of convergence go out the window once we go to free-fermion states
and Hartree-Fock iteration, unfortunately; it is unlikely that rigorous error bounds exist.

5



Chapter 1. Introduction

1.3 Bayesian State Estimation

Probability and uncertainty are essential to any operational definition of quan-

tum mechanics. Scientific inquiry in any probabilistic setting must ultimately

employ Bayesian reasoning to model the underlying quantities. Chapters 3 and 5

both address variants of this problem.

Chapter 3 has our experimentalist repeatedly preparing some unknown quan-

tum state (by, for instance, doing an experiment, or running a circuit on a

quantum computer) and taking measurements to reconstruct the state. Given

their observed data, what should we expect the state to be? This natural ques-

tion is surprisingly difficult, a difficulty attributable to the nonlinearity of | <

ψobs|ψexperiment > |2. We are able to give a O(nd) algorithm for computing the

answer, though, and show that this is essentially optimal.

Dual to reconstructing states is, of course, reconstructing time evolution. In

the setting most realistic for realizing on near-term quantum computers, we have

access to a real-time Green’s function G(t) for different perturbations on some

state of interest ρ. Measurements take a simple mathematical form, as a Bernoulli

variable with p = 1+eiθG(t)
2

with a t and θ we can choose. The Bayesian scientist

wants to estimate the function G(t) optimally from these measurements, a linear

but infinite-dimensional problem. Chapter 5 explores how we can reconstruct G(t)

6



Chapter 1. Introduction

efficiently, both in terms of sample efficiency and computational time, to resolve

G(t) accurately and quickly.

With these themes in mind, let us move on to the meat.

7



Chapter 2

BQP-Complete Frustration-Free

Hamiltonians
1

1 Based on the work in 10.48550/arXiv.2101.08381
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Chapter 2. BQP-Complete Frustration-Free Hamiltonians

Quantum constraint problems ask whether a Hamiltonian is frustration-free:

given a collection of local operators, is there a state that is in the ground state of

each operator simultaneously? It has previously been shown that these problems

can be in P, NP-complete, MA-complete, or QMA1-complete, but this list has not

been shown to be exhaustive. We show that there are also constraint problems that

are BQP1-complete (also known as coRQP), i.e. they capture all efficient quan-

tum computations. Our construction is constructive and provide the first natural

complete problem for BQP1. We also extend our results to QCMA-complete and

coRP-complete CSPs, and show that all quantum constraint problems can be real-

ized on qubits, a trait not shared with classical constraint problems. These results

suggest a significant diversity of complexity classes present in quantum constraint

problems.

2.1 An Introduction to Constraint Problems

In the classical world of constraint problems, it is known that all constraint

problems fall either inside the class P of polynomial-time solvable problems, or

are NP-complete and expected to be intractable [132]. In this sense, there is

a simple binary classification of their complexity. This classification requires a

9



Chapter 2. BQP-Complete Frustration-Free Hamiltonians

certain notion of “natural” constraint problem classes, where constraints can be

freely attached between any two pair of variables.

In the quantum setting, constraint problems can be naturally translated as a

question about local Hamiltonians. To maintain the same corresponding notion of

naturality used in complexity theory, the Hamiltonians allow local terms between

any small set of particles. This may seem physically implausible (for instance,

we have no spatial locality), but provides the simplest setting for studying the

complexity of the resulting problems. Our new results are showing that quantum

constraint problems can be complete for BQP1, QCMA1, and coRP.

We first give precise definitions of our problem settings (Section 2.2) and an

overview of results and techniques (Sections 2.3 and 2.4). In Section 2.5 we prove

the BQP1 result by exhibiting a particular language. Although the language is

complicated to define, it satisfies our goal of showing the complexity class as

possible as a constraint problem. In Sections 2.6, 2.7 we show to modify the BQP1

language to build languages complete for QCMA1 and coRP. The remainder are

technical notes and future directions.

10



Chapter 2. BQP-Complete Frustration-Free Hamiltonians

2.2 Background

2.2.1 Classical constraint problems

The classical notion of constraint problem or constraint satisfaction problem

(CSP) take the form of a domain of variable values, and clauses: relations on a

set of variables. Usually these terms are specifically in reference to finite constraint

problems, where the domain D is finite, and the clauses C are of bounded arity

k. A clause of arity m ≤ k is a subset of Dk. We will focus our attention on finite

CSPs, referring to them simply as CSPs.

Four representative examples could be 2SAT, 3SAT, 3COLOR, and Mod3 (the

set of linear equations in variables mod 3, where each equation has at most 3

variables). A CSP instance is a finite number of variables n, and a list of clauses

applied to certain variables. The instance is satisfiable iff there is an assignment

A : [n] → D such that, for every clause c ∈ C applied to variables (v1, . . . vm),

the assigned values (A(v1), . . . A(vm)) ∈ c. The problem corresponding to a CSP

is determining the satisfiabiliy of its instances. 2SAT and Mod3 are in P, while

3SAT and 3COLOR are NP-Complete, that is, in NPC.

A landmark theorem by Dmitry Zhuk [132], the so-called CSP Dichotomy

Theorem, showed that every constraint problem is either in P or NPC. This

does not rule out the possibility of other NP-Intermediate languages (the set
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NP\(P∪NPC)), problems that cannot be expressed as constraint problems in

particular. Problems such as graph isomorphism or integer factorization are be-

lieved to be in this class. A single instance of graph isomorphism (GI) can be

easily encoded as a single instance of a constraint problem (such as 3SAT), but

then there are other instances of 3SAT that are much harder than mere graph

isomorphism. Finding a constraint problem that only permitted the expression of

GI problems would immediately yield either a polynomial time algorithm for GI,

or a subexponential algorithm for NPC, by Zhuk’s result. The CSP Dichotomy

Theorem also provides a systematically checkable condition for whether a problem

is in P or NPC, the existence of a polymorphism.

A natural question is how this result might translate to the world of quan-

tum problems. We define the quantum version of constraint problems, and em-

phasize the distinction from quantum optimization problems. We review known

results about quantum constraint problems. The main contribution is provid-

ing three new quantum constraint problems, that are complete for the classes

BQP1 = coRQP, QCMA, and coRP. These imply that any putative quantum di-

chotomy theorem would need at least 7 distinct cases – or a proof that some of

these 7 complexity classes are actually equal to one another – in stark contrast to

the 2 cases in the classical case.

12
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2.2.2 Quantum Constraint Problems

Quantum Constraint Satisfaction Problems, or QCSPs, can be viewed as a

quantum version of a CSP or as a question about frustration free Hamiltonians.

A QCSP has a domain size d, and a set of clauses or interactions C = {Hi}. A

clause Hi of arity m is a Hermitian operator on the space of m many d-qudits,

(Cd)⊗m. We require that each clause is a projector, i.e. H2
i = Hi. For a problem

instance on n variables, the interactions Hi extend naturally to operators on the

whole Hilbert space. If the arity of all interactions is at most k, then the QCSP

is k-local. An instance of a QCSP is then a collection of the interactions applied

at different qudits. We use fonts to distinguish the clause types of the QCSP Hi,

from the particular clauses of the instance Hi. An instance is satisfiable if there

is a state |ψ⟩ ̸= 0 such that ∀iHi |ψ⟩ = 0, equivalently if the total Hamiltonain

H =
∑

iHi satisfies H |ψ⟩ = 0.

This can be viewed physically as the question, isH frustration-free? Frustration-

free Hamiltonians have applications in one-way computation [35], and are often

easier to study in terms of entanglement structure.

If there is a satisfying assignment (a YES instance), we expect we should be

able to verify this state exactly, and accept with probability one. If the ground

state has positive energy bounded from below by an inverse polynomial 1/p(n),

then running p(n) rounds should suffice to detect the failure with high probabil-
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ity. But if the true ground state has positive but exponentially small energy, we

may be unable to observe this small energy, and erroneously accept. Thus this

chapter will discuss a promise problem variants of QCSPs, which excludes super-

polynomially small gaps. We are given a constant b > 1/poly(n), and promised

that the either the total Hamiltonian has a frustration-free ground state, or that

the ground state has energy at least b. All complexity classes mentioned herein

are formulated as promise problem classes, with perhaps with trivial promises

(P and NP, which requires no promise), and all completeness theorems refer to

promise problem completeness. Probabilistic classes such as QMA are semantic

classes, not syntactic, which largely precludes the possibility of a non-promise

problem being complete; and so virtually all discussion of the classes concerns

their promise variants. [30] discusses this distinction in more detail.

2.2.3 Previous Results

We review some known statements about quantum constraint problems.

Proposition 2.1 (Folklore.). Every classical CSP can be efficiently mapped to a

corresponding QCSP, preserving satisfiability.

This occurs by simply writing each classical clause in the classical basis, where

they are diagonal.

14
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Definition 2.1 (k-QSAT [27]). The QCSP k-QSAT is the QCSP with d = 2

qubits, and with clauses C as the set of all k-local interactions.

Theorem 2.1 ([27]). 2-QSAT is in P.

Definition 2.2 (QMA1 [56]). A language L belongs to the class QMA1 iff there is

a uniform family of quantum circuits U of polynomial size, such that for an input

x:

Perfect Completeness: If x ∈ L, then there exists a state |y⟩, such that mea-

suring the first qubit of U |x⟩ |y⟩ is 1 with probability 1.

Soundness: If x ̸∈ L, then for any state |y⟩, such that measuring the first qubit

of U |x⟩ |y⟩ is 0 with probability at least 2/3.

Theorem 2.2 ([56]). 3-QSAT is QMA1 complete.

Definition 2.3 ((r, s)-QSAT). The QCSP (r, s)-QSAT is most naturally described

as having a mixture of r-qudits and s-qudits, with 2-local clauses only between r-

and s-qudits. This can be defined in our definition of QCSP, using d = r + s,

where allowed clauses are 2-local projectors that project onto the first r states in

the first qudit, and the last s states in the second qudit.

Note that (2, 2)-QSAT is the same as 2-QSAT, and that (r′, s′)-QSAT is at least

as hard (r, s)-QSAT if r′ ≥ r, s′ ≥ s.

Theorem 2.3 ([47]). (3,5)-QSAT is QMA1 complete.
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It is worth also noting that the analogous (2,3)-SAT is NP-complete, but it is

unknown if (2,3)-QSAT is QMA1 complete or not. Some 2-local qutrit Hamiltoni-

ans such as the AKLT Hamiltonian[4] exhibit interesting entanglement structure

in a frustration free system.

Definition 2.4 (k-STOQ-QSAT [30]). The QCSP k-STOQ-QSAT is the version

of k-QSAT restricted so that all clauses have nonpositive off-diagonal elements

(they are “stoquastic”).

Theorem 2.4 ([30]). For any k ≥ 6, the problem k-STOQ-QSAT is MA-complete.

For k < 6, it is contained in MA.

2.2.4 Quantum Optimization Problems

As an aside, it is worth pointing out the difference between quantum constraint

problems and quantum optimization problems. A quantum optimization problem

has a similar form: an allowed set of local operators, and we ask if there is a a

quantum state with sufficiently low energy. The two key differences are that (1)

the local operators are not necessarily projectors, and (2) we ask if the ground

state has energy below some a, as opposed to being in the ground state of all

clauses simultaneously. The Hamiltonians constructed in satisfiable instances are

not necessarily frustration free, then.
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The complexity classes of these problems were classified2 by Cubitt and Monta-

naro in [39], where it was shown they fall into P, NP-complete, StoqMA-complete,

and QMA-complete. Indeed, it is known the optimization problem 2-Local-Hamiltonian

is already QMA-complete [77], analogous toMAX-2-SAT already being NP-complete.

Cubitt and Montanaro’s classification is analogous to the “Min CSP classification

theorem” on classical optimization problems, an optimization-oriented analog of

the dichotomy theorem. We will not further discuss optimization problems here.

2.3 Statement of results

It is known that some CSPs are not simply in P, but in fact complete for P:

they model all efficient classical computation. It seems natural to ask whether

there are QCSPs that capture efficient quantum computation, viewed as BQP.

The class BQP consists of the problems for which there exists uniform quantum

circuits of polynomial size that return the correct answer with probability at least

2/3. However, we are discussing exact satisfying assignments of a Hamiltonian, so

allowing a solution that may be wrong 1/3 of the time would prove very difficult,

and we must restrict ourselves to one-sided error. This is the same reason that

[56] uses QMA1 over QMA. We define the class as following:

2 Technically, this result was shown only for problems on qubits; and then, only for when the
clauses are all 2-local, or all Pauli matrices are allowed clauses. It seems reasonable to expect
they generalize.
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Definition 2.5 (BQP1). A language L belongs to the class BQP1 iff there is a

uniform family of quantum circuits U of polynomial size, such that for an input

x:

Perfect Completeness: If x ∈ L, then measuring the first qubit of U |x⟩ gives

1 with probability 1.

Soundness: If x ̸∈ L, then measuring the first qubit of U |x⟩ gives 0 with proba-

bility at least 2/3.

It is worth noting that BQP1 could also be called coRQP, the set of comple-

ments to RQP: quantumly solvable problems with perfect soundness and bounded-

error completeness [20, 19]. Our first main result is

Theorem 2.5. There is a fixed set C of 5-local projectors on 13-dimensional

qudits, such that the QCSP for C is complete for BQP1.

The majority of the work shall be in proving this theorem. In the process of

constructing these projectors, it will become apparent that two more complexity

classes could be handled as well, QCMA1 and coRP.

Definition 2.6 (QCMA1). A language L belongs to the class QCMA1 iff there is a

uniform family of quantum circuits U of polynomial size, and a polynomial p(n),

such that for an input x:
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Perfect Completeness: If x ∈ L, there is a classical bitstring y ∈ {0, 1}p(|x|),

such that measuring the first qubit of U |x⟩ |y⟩ gives 1 with probability 1.

Soundness: If x ̸∈ L, then for all y ∈ {0, 1}p(|x|), measuring the first qubit of

U |x⟩ |y⟩ gives 0 with probability at least 2/3.

Definition 2.7 (coRP). A language L belongs to the class coRP iff there is a

random Turing machine T , such that T always runs in polynomial time, and for

any input x:

Perfect Completeness: If x ∈ L, T accepts x with probability 1.

Soundness: If x ̸∈ L, T rejects x with probability ≥ 2/3.

The class QCMA1 is a one-sided error variant of QCMA [6]. In [75] it was shown

that QCMA1 = QCMA, so our QCMA1-complete problem is equivalently QCMA-

complete. coRP, and its more common complement class RP, are standard [95].

They are the one-sided error versions of BPP. Our other two main results are,

Theorem 2.6. There is a fixed set C of 5-local projectors on 15-dimensional

qudits, such that the QCSP for C is complete for QCMA.

Theorem 2.7. There is a fixed set C of 5-local projectors on 15-dimensional

qudits, such that the QCSP for C is complete for coRP.

This seems to be the first discussion of BQP1, and its difficulty is likely similar

to that of BQP. In the context of coRP, the distinction between promise problems
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and decision problems is more important, and so it is technically a Promise coRP-

complete problem.

Our last results establish that all QCSPs can be described entirely on qubits,

something which is not expected to hold in the classical setting. This implies that

there are also QCSPs for BQP1, QCMA, and coRP on qubits alone.

Theorem 2.8. (Informal) Every QCSP C on d-qudits is equivalent in difficulty

to some QCSP C ′ on qubits.

2.4 Construction Techniques

Before diving into the construction of the BQP1-complete Hamiltonian, we go

over a few of the tools.

2.4.1 Universal Gate Set

In their proof that Quantum 3-SAT is QMA1-Complete, Gosset and Nagaj [56]

use a gate set G′ = {Ĥ, T, CNOT}. This has the property that every matrix

element is of the form (a+ ib+
√
2c+ i

√
2d)/4, see their Definition 3. For reasons

that will become clear later, we would like a gate set that leaves no classical basis

state unchanged, and so we use the modified gate set

G = {Ĥ, ĤT, (Ĥ ⊗ Ĥ)CNOT} (2.1)
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Through appropriate multiplications by Ĥ, this allows the construction of all of

G′, so this is still universal. It is straightforward to compute all matrix elements

and check they have the same form. A language L is BQP1-hard if there is a

(classical) polynomial time reduction from any L′ ∈ BQP1 to L. A language is

BQP1-complete if it is both BQP1-hard and in BQP1 itself. It is immediate that

EQP ⊆ BQP1 ⊆ BQP. Given that EQP and BQP are commonly understood to

capture at least some of the power of quantum computing (e.g. strong oracle

separations from P), BQP1 can be understood to be lower- and upper-bounded

between these, and so has some essential quantum nature itself.

Unfortunately, since BQP1 is a class with a vanishing error probability (on one-

side), the notion of “universal gate set” is delicate. The gate that conditionally

rotates phase by π/3, for instance, cannot be built exactly from G′, although it

can be approximated exponentially well. This is a problem faced in Gosset and

Nagaj [56] as well.

For this reason, BQP1 is not a well-defined complexity class on its own; it

requires an assumption on the allowed gate set that the circuit U should be built

from. If we fix the gate set G above, we get a class BQP1,G, of problems with

one-sided error solvable using G. The QCSP we will construct below is complete

for the class BQP1,G. If we preferred a different gate set G ′, say be adding R(π/3)

gate to G, we would have a new class BQP1,G′ , and the problem we construct is
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complete for that class. In this sense, the construction is generic, and we simply

write that the QCSP is BQP1-complete. In section 2.8 we give a definition of weak

QCSPs that attempts to fix these irritating details.

2.4.2 Ternary Logic

We will use ternary logic (also known as “dual rail logic”), a standard tool in

proving P-completeness. While 2-SAT is a problem that can be solved efficiently

on a classical computer, it is not believed to capture the full power of classical

computing. But another problem, Horn-SAT, is P-complete: it captures the full

power of classical computation. The ideas in that proof will be important in our

construction, lifted to a quantum setting, so we briefly outline it here.

Horn-SAT is the boolean CSP which allows any OR clauses in at most 3

variables with at most one negative variable: clauses like (vi ∨ vj), (¬vi ∨ vj ∨

vk), (vi), (¬vi), but not (¬vi ∨ ¬vj). By setting all variables to true, all clauses

are satisifed except those of form (¬vi), which imply vi must be false. This prop-

agates, possibly reducing some (vi∨¬vj)→ (¬vj), flipping more variables to false

until a satisfying instance or conflict is found. Thus, it is in P.

To be P-complete, a CSP must be flexible enough to establish an arbitrary

computational graph, usually as a circuit. And yet, it must not permit the con-

struction of problems that require guessing the input, such as a circuit with the
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input left blank and the output forced “True”, because this would lead to NP-

hardness. Informally, Horn-SAT accomplishes P-completness through dual-rail

logic: for each Boolean variable vi in the original circuit, we make two variables

in the Horn-SAT instance, vi,T and vi,F , representing the assertion that vi is true

or false, respectively. We add the constraints that vi,T =⇒ ¬vi,F . This implies

that at most one of them can be true – but does not rule out the case that both

are false. This is the third state, “Undefined”, of the ternary logic. All logic gates

of the circuit are then constructed so that they are trivially satisfied, if both vi,T

and vi,F are false. A Horn-SAT problem can then constrain the inputs to a circuit

by requiring one or the other variable to be true, but if the input is left uncon-

strained (as in the NP proof-checking setup), then the circuit can be satisfied by

just leaving both vi,T and vi,F false.

If our variables are 3-state (instead of Boolean), we can construct P-Complete

problems more easily. The dual-rail variable is replaced with a single variable,

whose states are labelled “true”, “false”, and “undefined”. The output of a gate

with “undefined” at any input can be anything, but if a gate has two defined

inputs, it must compute its output appropriately. This allows the implication of

variable states to only travel forward in the computation graph (conducting com-

putation along the way) and not backwards (which would allow the construction

of NP-hard input-guessing problems).
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2.4.3 Monogamy

The monogamy of entanglement [37] states that a subsystem A cannot be fully

entangled with subsystem B and with subsystem C at the same time. A 2-qubit

clause such as HBellPair = I − (|00⟩+ |11⟩)(⟨00|+ ⟨11|) has a unique ground state,

a Bell pair, which is fully entangled between its two qubits. In a QCSP with

HBellPair applied once to qubits 1 and 2, and applied a second time to qubits 2

and 3, we could immediately reject: any satisfying assignment would require qubit

1 to be fully entangled with qubit 2 and qubit 3, violating monogamy. This is

a trick we can use to force certain clauses to pair up certain variables, without

allowing the creation of any more complicated constraint graphs.

2.5 Existence of BQP1-complete Constraint Sat-

isfaction Problems

We now proceed to show that there exist CSPs that are complete for BQP1.

While our proof proceeds constructively, i.e. considers a specific class of such

Hamiltonians, this specific class is rather specialized and implausible of a real

physical system. However, the crucial point is that such a CSP can exist at all,

rather than its specific form.
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The problem will be built with 13-dimensional qudits. We will soon define the

problem in terms of the allowed clauses, but first give a more convenient notation

for the 13-dimensional space. There is a subspace spanned by three states, labelled

as

|0L⟩ , |1L⟩ , |UL⟩

another two states labelled as

|0EC⟩ , |1EC⟩

and an eight dimensional subspace which is the tensor product of three 2-dimensional

spaces:

C(|0CL⟩ , |1CL⟩)⊗ C(|0CA⟩ , |1CA⟩)⊗ C(|0CB⟩ , |1CB⟩)

We will abuse notation somewhat and write operators such as |1CL⟩ ⟨0CL|, which

should be understood as shorthand for 05 ⊕ (|1CL⟩ ⟨0CL| ⊗ I4). Here 05 is a

5-dimensional zero operator, on the the first 5 of the 13 states, and I4 is the

4-dimensional identity operator on the CA and CB subspace. This is the most

natural extension of |1CL⟩ ⟨0CL|, which is an operator on a two-dimensional Hilbert

space, to an operator on the 13-dimensional Hilbert space.

We will also write equations such as X = Y12+Z23, to mean that X is a 3-local

operator, built from the 2-local operators Y and Z, which act on the first two and

last two qudits respectively. That is, X = Y ⊗ I + I ⊗ Z.
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With this notation, we can define the problem now, after which we’ll elaborate

on how it was constructed, which will motivate the definition.

Definition 2.8 (Quantum-Clock-Ternary-SAT ). The problem Quantum-Clock-Ternary-

SAT is the quantum constraint problem with 5 clauses. The allowed clauses are

HStart, HEnd, and for each unitary U in the gate set G, a clause Hprop,U . Since

|G| = 3 above, this is five clauses total.

To give expressions for the clauses, first define the 1-local operators,

HL = I − |0L⟩ ⟨0L| − |1L⟩ ⟨1L| − |UL⟩ ⟨UL| (2.2)

HE = I − |0EC⟩ ⟨0EC | − |1EC⟩ ⟨1EC | (2.3)

HC = |0L⟩ ⟨0L|+ |1L⟩ ⟨1L|+ |UL⟩ ⟨UL|+ |0EC⟩ ⟨0EC |+ |1EC⟩ ⟨1EC | (2.4)

PD = |0L⟩ ⟨0L|+ |1L⟩ ⟨1L| (2.5)

and the 2-local operator,

HBP = I − (|0CB0CA⟩+ |1CB1CA⟩)(⟨0CB0CA|+ ⟨1CB1CA|) (2.6)

and for any 2-qubit unitary U , define the 2-local T (U) by the product

T (U) = UB(PD ⊗ PD) (2.7)

where UB acts on |0L⟩ and |1L⟩ the way that U would act on |0⟩ and |1⟩, and the

zero operator if either input is something else. That is, mapping |0⟩ and |1⟩ to
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|0L⟩ and |1L⟩ induces an isometry C2 → C13; this extends naturally to operators

U : (C2)2 → (C2)2.

There are three more clauses to define, but they are difficult to write down

simply as projectors. In terms of determining frustration-free ground states, we

really only care about the fact that our operators are positive semidefinie, and

geometry of their kernels, not the energies of any excited states. Any non-projector

operator can be “normalized” by adjusting the energies of all excited states to be 1.

For example, a 2-qubit operator that applies HC on the first qubit and HE on the

second qubit could be written HC,1+HE,2, and this is shorthand for the normalized

projector I − (I −HC)⊗ (I −HE) = HC,1 +HE,2−HC,1HE,2. The following three

definitions use this shorthand.

The clauses are HStart and HEnd are 4-local and defined by

HStart =(I − (|0EC0CA⟩+ |1EC1CA⟩)(⟨0EC0CA|+ ⟨1EC1CA|))12 (2.8)

+ (|0CL⟩ ⟨0CL| ⊗ (I − |0L⟩ ⟨0L|))24

+
(
(|0CL⟩ ⟨0CL|+ |1CL⟩ ⟨1CL| − |0CL⟩ ⟨1CL| − |1CL⟩ ⟨0CL|)⊗ |0CL⟩ ⟨0CL|

)
23

+HBP,23

+HE,1 +HC,2 +HC,3 +HL,4
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HEnd =(I − (|0EC0CB⟩+ |1EC1CB⟩)(⟨0EC0CB|+ ⟨1EC1CB|))12 (2.9)

+ (|1CL⟩ ⟨1CL|)⊗ |1L⟩ ⟨1L|)24

+
(
(|0CL⟩ ⟨0CL|+ |1CL⟩ ⟨1CL| − |0CL⟩ ⟨1CL| − |1CL⟩ ⟨0CL|)⊗ |1CL⟩ ⟨1CL|

)
23

+HBP,32

+HE,1 +HC,2 +HC,3 +HL,4

Each Hprop,U is 5-local, defined by

Hprop,U =PD ⊗ PD ⊗ |1C0C0C⟩ ⟨1C0C0C |+ I⊗2 ⊗ |1C1C0C⟩ ⟨1C1C0C | (2.10)

− T (U)⊗ |1C1C0C⟩ ⟨1C0C0C | − T (U)† ⊗ |1C0C0C⟩ ⟨1C1C0C |

+HBP,34 +HBP,45

+HL,1 +HL,2 +HC,3 +HC,4 +HC,5

(These are not projectors as written, and they should be interpreted as the

normalized versions; really, that Hprop,U is the unique projector with the same

kernel as the operator on the right-hand side.)

End definition.

Now it is time to give some meaning to the parts of the problem. We can give

better names to the 13 basis states. The first three basis vector span the “logical

subspace”, on which we will do ternary logic: 0L and 1L represent logical 0 and
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1 qubit states, and UL represents an “undefined” qubit. The operator HL just

requires that a particular 13-qudit is, in fact, a logical qubit.

Since our construction is based on Kitaev’s circuit-to-Hamiltonian mapping, we

need clock qudits, but we will assign them separate states than the logical qudits.

The latter 10 vectors of our 13-dimensional space form the “clock subspace”,

which will perform this role. This allows to avoid worrying whether a |0⟩ is a

“clock zero” or a “logic zero”. Compare this with Kitaev’s Hamiltonian, where

the same |0⟩ state is used for both, but many constraint problems can be built

that look nothing like a circuit.

Eight of the clock states are a tensor product of three 2-dimensional subspaces:

{|0CL⟩ , |1CL⟩}, {|0CA⟩ , |1CA⟩}, and {|0CB⟩ , |1CB⟩}. The CL component is “logical

clock” states, corresponding to the 0 and 1 clock states in Kitaev’s clock construc-

tion, and these actually carry the information of the current time is in the circuit’s

evaluation. The CA and CB components do not carry information on timing, and

will be used for something else. The operator HC requires that a 13-qudit is a

clock qudit.

Since we will be able to do the same clock-to-Hamiltonian mapping, we will

have BQP1-hardness. But in order to keep the difficulty within BQP1, we want

to avoid building any problem that looks like something other than a clock-to-

Hamiltonian mapping. In particular, things would be very complicated if the
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chain of clock states branched, instead of forming a linear path of time. We will

use monogamy to uniquely pair each clock qudit – and therefore, each moment in

time – with a unique predecessor and successor.

The CA and CB components are the auxiliary parts of the clock state, used in

the monogamy construction. By establishing a Bell pair between the CA compo-

nent of a 13-qudit x the CB component of another 13-qudit y, we are stating that

y is the clock qudit immediately following x in time. Since the CA component of

x cannot form another Bell pair by monogamy, x now has a uniquely following

moment in time. HBP expresses this constraint between two clock qudits.

2.5.1 Initializing and terminating

Unlike QMA problems, we do not want to leave the input up to guessing: the

circuit should start in the |0n⟩ state. For that purpose HStart is designed to force

a particular qubit to start in the |0⟩ state. Since the start of time is indicated by

the first clock qudit being zero, HStart really only needs to say that: either the

clock qudit is one, or the logical qudit is zero. This is the second line of (2.8).

But it would be a headache if it HStart was applied somewhere other than

the start of time, effectively forcing logical qubits to be zero in the middle of

execution. To avoid this mess, we’ve added two more “clock endpoint” states,

|0EC⟩ and |1EC⟩. These can be entangled with a CA or CB to form a Bell pair,
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terminating a chain of clock qudits. For the same reasons of monogamy, a single

CA can’t be entangled with anything else if it’s entangled with a EC qubit.

So, HStart can be attached a clock qudit x, and require that x’s CA subspace

is entangled with an EC subspace; this means that x must be the first clock qudit

in the chain. Then HStart says that, if x is zero, the logical qubit y must be zero

as well. This accomplishes initialization of the input.

Breaking down (2.8), it is an operator on 4 qudits: an endpoint qudit, a clock

qudit, a second clock qudit, and a logical qudit. The fifth line forces them to be of

these these types. The first line requires that the first two qudits form a maximal

Bell pair with their EC and CA states. The second line requires that, when the

second (clock) qudit is zero, the fourth (logical) qudit is also zero.

To understand lines three and four of (2.8), we need to note a particular detail

with how time is encoded, and the propagator terms. In Feynman’s description,

each propagator has the form

I ⊗ |t⟩ ⟨t| − I ⊗ |t+ 1⟩ ⟨t+ 1| − Ut ⊗ |t⟩ ⟨t+ 1| − U †
t ⊗ |t+ 1⟩ ⟨t|

and Kitaev noted that checking the time |t⟩ can be done in a 3-local way with a

unary encoding, where |t⟩ is indicated by the pattern |110⟩t−1,t,t. This form doesn’t

apply when t = 0 or t = L, though, and they instead need terms like |00⟩0,1 and

|11⟩tMax−1,tMax
. This means that we can’t use the same form of propagator clause

for all times. One solution would be to have additional clause types, specifically
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for the start and end, but this could make the reasoning about correctness con-

siderably more complicated. The resolution is to have HStart and HEnd include

a propagator of their own, applying an identity gate in the process that doesn’t

modify the state. Then our main propagator term can begin at t = 2 with the

same form for each application.

HEnd does in (2.9) almost the exact opposite of HStart. Instead of pairing with

CA, the endpoint qudit forms a Bell pair with the CB subspace, because we want

HEnd to come at the end of the chain. The second line of (2.9) requires that, when

the second (clock) qudit is one, the third (logical) qudit is either 0L or UL – zero

or undefined. This way, HEnd states that, at the end of execution, we should not

get a “1” as a result. If all the input bits are defined, we will get a well-defined

ouptut, and HEnd performs the same role as Hout in [81] and [78].

2.5.2 Propagating ternary logic

We are not guaranteed that all of our qudits have an HStart clause on them,

and we want to avoid having to guess the input as in QMA problems. In a

classical circuit, ternary logic would address this problem as follows: should any

of the input bits be uninitialized, all downstream bits can be undefined, leaving

the output undefined as well, which is always a satisfying assignment.
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In our quantum world, where the satisfying state is a superposition of the

computing history across all time, there’s a simpler solution: just end time itself,

and “destroy the universe” if we try to compute on an undefined input.

In [81], the propagating clause for a two-qubit unitary U was:

HKitaev = I ⊗ (|t⟩ ⟨t|+ |t− 1⟩ ⟨t− 1|)− U ⊗ |t⟩ ⟨t− 1| − U † ⊗ |t− 1⟩ ⟨t|

where |t− 1⟩ = |100⟩ , |t⟩ = |110⟩ .

For a candidate solution |ψ⟩, it straightforward to check that |ψ⟩ can only be in

the nullspace of H if:

U (I ⊗ ⟨t− 1|) |ψ⟩ = (I ⊗ ⟨t|) |ψ⟩

that is, the logical state encoded in |ψ⟩ for time t must be equal to U applied to

the state at time t− 1. They must also have the same amplitude. The fact that

the amplitudes are equal at each step implies |ψ⟩ must be a uniform superposition

across all times.

For our Hprop,U defined in (2.10), we need these ingredients, that for defined

inputs we propagate the state with the same amplitude. If the input is in the

undefined state |UL⟩, we will drop the requirement that the amplitude remains

the same. The computation can terminate early, because our solution |ψ⟩ is no

longer required to have any component on times after t− 1.
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The first line of (2.10) replaces an I in HKitaev with a PD⊗PD, which projects

away |UL⟩ states. Hprop,U has all the same nullspace as HKitaev:

|0L0L⟩ ⊗ |1C0C0C⟩+ (U |0L0L⟩)⊗ |1C1C0C⟩ ,

|0L1L⟩ ⊗ |1C0C0C⟩+ (U |0L1L⟩)⊗ |1C1C0C⟩ ,

|1L0L⟩ ⊗ |1C0C0C⟩+ (U |1L0L⟩)⊗ |1C1C0C⟩ ,

|1L1L⟩ ⊗ |1C0C0C⟩+ (U |1L1L⟩)⊗ |1C1C0C⟩

with the additional options of:

|UL0L⟩ ⊗ |1C0C0C⟩ ,

|UL1L⟩ ⊗ |1C0C0C⟩ ,

|0LUL⟩ ⊗ |1C0C0C⟩ ,

|1LUL⟩ ⊗ |1C0C0C⟩ ,

|ULUL⟩ ⊗ |1C0C0C⟩

The third line of (2.10) requires that Hprop,U be placed on the correct sequence

of clock bits – that if it is placed on, say, the 3rd, 5th, and 12th sites of the

clock chain, that will be unsatisfiable because of the contradictory Bell pairs. The

fourth line of (2.10) simply requires the right types of particles at each site.

Now that we have motivated the definition, we can proceed to the main result.
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NameIgnored 1 (Theorem 2.5 (restated)). Quantum-Clock-Ternary-SAT is BQP1-

complete.

Proof. We need to show provide a BQP1 algorithm for deciding instances of

Quantum-Clock-Ternary-SAT , and show its completeness and soundness, and then

that Quantum-Clock-Ternary-SAT is BQP1-hard.

Part 1: Quantum-Clock-Ternary-SAT is in BQP1.

First, a brief note about the form of the input. Providing every term of

the input Hamiltonian in the standard basis would take up exponential space.

We assume that the input is provided as a list of clauses (and the qudits they

operate on), or a list of 5-local interactions (which might not be manifestly of

the form allowed). It possible to find the set of clauses corresponding to a list of

5-local interactions by solving a system of linear equations in O(n5) time; that

this preprocessing can be performed in polynomial time on a classical machine

means we don’t have to care about the input form. Henceforth we assume that

the input is a list of (clause, sites) data, indicating that clause number clause is

acting on the sites sites.

The following BQP1 algorithm, we claim, solves this problem. The algorithm

proceeds by identifying the structure of (possibly several) BQP1 circuits in the

problem, which is a classical operation that can be completed in polynomial time.

Then it executes each circuit and verifies that the result passes.
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Algorithm 1

1. For each 13-qudit, check all clauses it occurs in. Each clause will apply one

of HL, HC , or HE to it. A given qudit should only ever have one of these

applied to it, otherwise we immediately reject. Label each qudit as a logical,

clock, or endpoint qudit, depending on which is applied. Any qudits that

have none of these applied, have no clauses applied at all, and so can be

ignored for the rest of the problem.

2. For each clock qudit and endpoint qudit, inspect all HBP , HStart,BP , and

HEnd,BP terms applied to it. These should only ever create bell pairs between

the same pairs of underlying qubits, in the CA, CB, and EC subspaces. If

any underlying qubit is paired with multiple others, reject.

3. Every qudit labelled as an endpoint qudit has at least one of HStart or HEnd

applied to it. If any endpoint qudit has both HStart and HEnd, reject. Oth-

erwise, label it as a “start qudit” or “end qudit” accordingly, and proceed.

4. The pairs from step 2 induce a linear structure where endpoints are con-

nected to at most one clock qudit, and each clock qudit is connected to at

most two qudits on either side. Following these connections, all clock qudits

and endpoint qudits can be linked into some collection of paths and cycles.
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5. For any cycle from step 4 (which necessarily consists entirely of clock qudits),

or any path without any endpoint qudits, assign all clock qudits the |0C⟩

state, and they can be ignored for the rest of the problem.

6. If any remaining paths have no start qudit, assign all clock qudits in that

chain |1C⟩ and ignore them for the rest of the problem.

7. If any remaining paths have no end qudit, assign all clock qudits in that

chain |0C⟩ and ignore them for the rest of the problem.

8. All remaining paths have at least one start qudit and end qudit. Since a

single start or end can’t be entangled with multiple others, it must be exactly

one start qudit and end qudit – otherwise it would have been rejected in

step 2.

9. At this point we are left with a collection of clock paths, with associated

unitaries from each Hprop,U acting on logical qubits. In the case of a single

clock path, this is a (ternary-logic) quantum circuit, and we need to evaluate

it. In the case of multiple clock paths operating on the same qubits, we need

to ensure compatibility of the two circuits, which is more complicated. We

first describe the case of a single clock path, and then generalize to multiple

clock paths.
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Case: Single clock path Every logical qubit with a HStart on it must be in the

|0L⟩ state at t = 0. Every other logical qubit could be in any state, including

being entangled with each other; but we will see that we can assume that they all

begin in the |UL⟩ state, representing an “undefined” logical state, without losing

completeness.

Any time a qubit in the |UL⟩ state reaches a unitary gate, we can find a

satisfying assignment for that circuit by terminating history there. In a fully

functional circuit with unitaries U1, . . . UT and initial state |0n⟩, the full solution

to the constraint problem would be the state

|Ψ⟩ = 1√
T

T∑
i=1

(UiUi−1 . . . U1 |0n⟩)⊗ |Clocki⟩ (2.11)

and the HEnd checks the |ClockT ⟩ subspace. But if an input qudit |UL⟩ is operated

on at time t, then a solution to the constraint problem is the state

|Ψ⟩ = 1√
t

t∑
i=1

(UiUi−1 . . . U1 |0n⟩)⊗ |Clocki⟩ (2.12)

This is in the ground state of each Hprop, and when HEnd checks the |ClockT ⟩

subspace, we are trivially in its ground state, because the projection of |Ψ⟩ in

that subspace is the zero vector.

So, if any undefined qubit is acted on by a unitary, we know we can accept,

without any further checking. If no such case arises, then any solution to the

QCSP must be a valid computational history. A quantum computer can execute
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the circuit from the known starting state |0n⟩, and measure all the check qudits,

the qudits with HEnd applied. If these are all in the |0⟩ state, we accept. If any

are in the |1⟩ state, we reject.

Case: Multiple clock paths

If we have multiple clocks that operate on disjoint sets of qubits, then our

constraint problem is completely separable, and we need only to verify each part

independently. It becomes more difficult if both clock paths are operating on the

same set of qubits, as there is no meaningful ordering of time.

To handle that case, will show that either the clock paths can be reduced in

a way such that they no longer share any logical qubits; or, if this is impossible,

then it must be a frustrated instance. Picking up from Step 9 above, we have

processed our problem to have only complete clock paths – those that start with

HStart, have a path of HProp,U , and terminate with HEnd. We would like to know

that each qubit is either defined or not, for any times:

Theorem 1. If a qubit Q is initialized by HStart in any complete clock path, then

its support must be entirely in the |0L⟩ and |1L⟩ subspace; that is, any frustration-

free ground state would never produce a measurement |UL⟩.

Proof. We can decompose a candidate ground state as,

|Ψ⟩ =
t=tMax∑
t=0

αt |ψt⟩ ⊗ |t⟩ (2.13)
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where the factor states represent everything other than the clock path, and the

time. The HStart implies that when t = 0, Q is in the pure ket0L state. The

propagators (which exist for each time, because the clock path is complete) imply

that

αt+1 |ψt+1⟩ = αtT (U) |ψt⟩ (2.14)

The operator T (U) will either map a defined state to another defined state, or

an undefined state to a zero vector. But, it will never map a defined state to an

undefined state. Since Q starts out defined at t = 0, it cannot become undefined

at any t. □

This means we can unambiguously separate qubits into “defined” logical qubits

(those with an HStart from a complete clock path) and “undefined” qubits (the

others). Now we look at what happens if two clock paths share defined logical

qubits:

Theorem 2. If two complete clock paths operate only on defined qubits, one clock

path has an HStart term on a qubit, and another clock path acts with a gate on

that qubit, then the resulting Hamiltonian is frustrated.

Proof. Suppose there is a state |Ψ⟩ with zero energy. Any state on three sub-

systems A, B, C can be expanded in terms of a basis on each of those subsys-

tems. In this case, we will expand |Ψ⟩ in terms of the (logical qubits)×(first clock
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path)×(second cloth path) subsystems:

|Ψ⟩ =

a=2
Nlogical

b=21+tMax1

c=21+tMax2∑
a=0, b=0, c=0

γa,b,c |a⟩ ⊗ |b⟩ ⊗ |c⟩ (2.15)

so that the coefficients γa,b,c determine the state in the standard basis. As before,

our support must be entirely on clock strings like 1 . . . 10 . . . 0, as any “01” con-

figuration would incur an energy penalty. Thus our |Ψ⟩ must exist entirely on the

valid clock states:

|Ψ⟩ =
a=2

Nlogical∑
a=0

ĩ∈ clock states
j̃∈ clock states

γa,̃i,j̃ |a⟩ ⊗ |̃i⟩ ⊗ |j̃⟩ (2.16)

Here ĩ is running over only 1 + tMax1 many values, in place or i running over

all 21+tMax1 , and likewise for j̃. We know that the other entries of γ are all zero,

those corresponding to invalid clock states. For this reason we adapt our indexing

and write ĩ as running from 0 to tMax1. The time coordinates (the clock states)

are then given by a pair (̃i, j̃). To each pair of times (̃i, j̃), there is corresponding

logical state
∑

a=0 γa,̃i,j̃ |a⟩ – although that expression is not normalized. So let us

define |ψi,j⟩ by

αĩ,j̃ |ψĩ,j̃⟩ =
∑
a=0

γa,̃i,j̃ |a⟩ , ⟨ψĩ,j̃|ψĩ,j̃⟩ = 1, 0 ≤ αĩ,j̃ ≤ 1. (2.17)
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In this form, |ψĩ,j̃⟩ indicates the logical state at a given pair of times, and αĩ,j̃ tells

us its relative magnitude. Explicitly,

αĩ,j̃ =

√√√√a=2Nlogical∑
a=0

|γa,̃i,j̃|2 (2.18)

(At this point we drop the tildes on ĩ and j̃ as there is no confusion with the

earlier indices.) These |ψi,j⟩ are the correctly normalized states. Then the whole

state, the one that by hypothesis has zero energy, is

|Ψ⟩ =

i=tMax1
j=tMax2∑
i=0, j=0

αi,j |ψi,j⟩ ⊗ |i⟩ ⊗ |j⟩ (2.19)

At this point, we have only slightly narrowed the space of possible |Ψ⟩s, which are

those with illegal clock states (clock states with a “01” configuration). The form

above is superficially similar to a history state, but the different scalars αi,j mean

it is not necessarily a history state. A history state would have the additional

requirement that the mangitudes of all α’s are equal.

Each propagator HProp,U on circuit 1 is only satisfied when

αi+1,j |ψi+1,j⟩ = Uiαi,j |ψi,j⟩ , (2.20)

and likewise for circuit 2,

αi,j+1 |ψi,j+1⟩ = Ujαi,j |ψi,j⟩ . (2.21)

As the Us are unitary, we can conclude that all αi,j are the same magnitude, and

in particular can all be taken to be equal to 1/
√
tMax,1tMax,2. At this point we do
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know that |Ψ⟩ must be a history state, albeit an unusual one with multiple times

coordinates.

The hypothesis of this lemma is that there is a qubit Q acted on with a gate U

in circuit 1, and acted on with HStart in circuit 2. The HStart in circuit 2 requires

that whenever j = 0, Q must be in the pure 0 state. The gate in circuit 1 is

associated to some time tG, and it requires that

|ψtG+1,j⟩ = U |ψtG,j⟩ (2.22)

for all j. When j = 0, these together imply

|0⟩ |ψ′
tG+1,j⟩ = U |0⟩ |ψ′

tG,j
⟩ (2.23)

where U is acting on |0⟩, and |ψ′⟩ contains the other logical qubits. But we chose

our gates in 2.1 so that a pure |0⟩ state will not remain a pure |0⟩ state after the

gate. This form a condtradiction, so there can be no frustration-free state in this

configuration. □

This leaves only the case of what happens when logical qubits are shared by

two clock paths, but left undefined (no HStart). We see that we can always put

them in a pure |UL⟩ state, and this cannot make the problem unsatisfiable. For

when we do so, the HProp,U terminates the clock path early. This in turn removes

gates from the path, which can only remove the problems that Lemma 2 describes.

Terminating the clock path early also disconnects the HEnd, which means that we
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cannot fail the final check there. With these lemmas we can now write down the

algorithm for multiple clock paths:

Continuing from the other pre-processing, we are left with a collection of

complete linear clock paths, and logical qubits.

10. For any logical qubit with no HStart, mark it as an undefined qubit. Mark

the remaining logical qubits as defined. (Lemma 1)

11. For any gate that operates on an undefined qubit, reduce that clock path:

it now only extends up to the time of that gate. Because all qubits without

HStart are undefined, the only remaining qubits that are acted on by gates

are those with HStart.

12. Once all clock paths are reduced, check if any logical qubit has an HStart in

one path and a gate in another. If so, reject (Lemma 2). If we pass this

step, then no defined qubit has gates in multiple paths.

13. Otherwise, we are left with clock paths that involve disjoint sets of defined

logical qubits. These can be checked separately as in the single-path case:

14. If it is a reduced clock path, we know that it passes without further compu-

tation (since there is no final HEnd check).
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15. Otherwise, execute the circuit with a quantum computer and verify its out-

put is |0L⟩ on all logical qubits with an HEnd.

We have used classical preprocessing to separate out the system into a number

of single clock-path subsystem S1 . . . Sν with no interactions between subsystems.

We have a zero-energy ground state |Ψ⟩ for the whole system iff we have zero-

energy ground states |Ψν⟩ for each subsytem. Each |Ψν⟩ can be decomposed into

a history state
∑N

i=1 αi |ψi⟩L |i⟩C . Each propagator at time t implies αt = αt−1

and |ψt⟩ = Ut |ψt−1⟩, up until it acts on an undefined input at some time tU , where

we take αi = 0 for all i ≥ tU . If no undefined inputs are acted on, we end up with

a uniform superposition of time, and HEnd validates the result.

To see completeness, consider a YES instance. It will first pass each step

of the classical preprocessing (all of our rejection reasons in the preprocessing

are justified). The final quantum circuit(s) have a unique execution history, that

accept with probability 1; when we run those circuits, we accept the instance with

probability 1 as well, so we get perfect completeness.

To see soundness, consider a NO instance. It is either a NO instance because

it fails the structural requirements that we check in the preprocessing – and we

reject it then – or because the only valid execution history has a nonzero amplitude

in the |1L⟩ state on some HEnd check. By the promise, it must be at least a

1/p(n) amplitude, otherwise its execution history would form a state with energy
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< 1/p(n). So our execution of the circuit has at least a 1/p(n)2 chance of rejecting.

This is soundness.

Part 2: Quantum Clock-Horn-SAT is BQP1-Hard

Let UX be the uniform quantum circuit that solves some given BQP1 problem.

Let m be the number of qubits that UX acts upon, and k be the number of gates

applied. Without loss of generality, we assume the gates are applied one at a time,

one per time step. Then take a Quantum Clock-Horn-SAT problem on m+ k+4

sites. m will be used for the qubits, k for the time steps, and 4 for the first and last

clock sites and the endpoints. Label the logical qubit sites as Qi, the timestep

sites as Ti, and the other four as S, T0, Tk+1, and E. Then the clauses in the

problem are:

1. For each i ∈ [m]: an HStart clause, acting on S, T0, T1, Qi.

2. For each t ∈ [k], where Ut is the t-th unitary of UX acting on bits j and k:

an Hprop,U clause, acting on Qj, Qk, Tt−1, Tt, Tt+1.

3. A final HEnd clause, acting on E, Tk+1, Tk, Q1

Then we claim this problem, denoted P(UX), is satisfiable iff UX ∈ Lyes. First

observe that each qudit can be identified as a logical, clock, or endpoint qudit, and

so any satisfying assignment must be in the appropriate subspaces. We can now

break each qudit into the subspaces of |0CA⟩, |0CL⟩, and so on. The entanglement
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qubits are now an entirely separate problem from the logical and “logical clock”

qubits, and they can be easily recognized to be satisfied by Bell pairs. Since all

qubits are initialized in the |0L⟩ state, it can be seen inductiviely that they can

never enter the undefined |UL⟩ state without polynomially large energy penalty.

This lets us restrict to our attention to the behavior when all logical qubits are

in the |0L⟩/|1L⟩ subspace. We can remove the Bell pairs, which are otherwise

uncoupled, from the system. What remains is precisely Kitaev’s clock Hamilto-

nian from [81], up to a renaming of the basis states, which is shown there to be

frustration-free iff the modelled circuit accepts. Thus the our proof of correct-

ness requires very little direct algebraic manipulation: after throwing away the

extra subspaces, we are left with the same verbatim Hamiltonian, and we can rely

on that result. Thus the majority of the arguing above is about under exactly

what circumstances we can discard certain subspaces or summarily reject invalid

instances.

We briefly summarize Kitaev’s proof here for completeness. The history state

|Ψ⟩ can be decomposed in the clock basis as |Ψ⟩ =
∑k

i=0 αi |ψi⟩L |i⟩C with αi real

and positive. |ψ0⟩ is necessarily the initializing |0⟩n state on some qubits. By

construction of this hard instance, there are no undefined qubits. The propagator

at time t can only be in its ground state if αt−1 = αt, and by induction all α’s

are equal to 1/
√
k. Propagator t also can only be in its ground state if |ψt⟩ =
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Ut |ψt−1⟩, implying |ψk⟩ = Ucircuit |ψ1⟩. The HEnd then will produce an energy

penalty unless the result of the circuit in Q1 is a |0⟩ state at step t = k.

If the original problem was in the language, the BQP1 circuit always accepts,

and the QCSP is exactly satisfiable. If the original problem was not in the lan-

guage, the BQP1 circuit rejects with probability at least 1/2, and so there is no

approximately satisfying assignment in the QCSP.

2.6 QCMA completeness

There is a straightforward modification of the above that shows the existence of

QCMA-complete local Hamiltonian problems. In fact, we will construct a QCMA1-

complete problem, then use the result of [75] that QCMA1=QCMA. The class

QCMA1 is similar to BQP1, except that the input is allowed to be a classical

proof string. The construction remains largely the same as above, so we will not

reiterate all of it, only the relevant modifications. We need to permit the logical

bits to be in either the |0⟩ or |1⟩ state – but not any superposition of the two, nor

any entangled state.

One strategy to do this, if someone gave us a proof state to verify, would be

to simply measure the proof state in the classical basis before proceeding with

the computation. If they tried to decieve us by giving us anything other than a
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classical basis state, this measurement would collapse it into a classical basis state

– or, more precisely, a mixture of classical states.

But a constraint problem has no notion of “measurement”. What we can do

is request two copies of the state, and then perform a Swap Test on each pair of

qubits. That is, for each qubit input to the problem, we take two copies of the

qubit, and impose a clause

HCommit = I − |00⟩ ⟨00| − |11⟩ ⟨11| (2.24)

on them. This will force that measuring the second qubit in the classical basis

puts the first qubit in a pure state; the first qubit cannot be in the |+⟩ state

or entangled with any other qubits in the input. The second qubit acts as a

commitment qubit.

Again, we can’t actually measure the second qubit, but if we make sure never

to touch them for the duration of the computation, they are effectively removed

from the problem, and we can trace them out to understand the computation. To

prevent ourselves from using the commitment qubits in the computation, we can

create a separate subspace of states for them, so that we can’t get them confused

with our actual logic qubits. So the construction is:

First, define two more basis states, |0P ⟩ and |1P ⟩, the commitment bit states.

In addition to the HStart clause that forces a bit to start off as zero, we define a

5-local clause HStart−Unk that starts a bit off in either |0L⟩ or |1L⟩. It classically
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copies the logical bit to the commitment bit:

HCommit = I − |0L0P ⟩ ⟨0L0P | − |1L1P ⟩ ⟨1L1P | (2.25)

and then

HStart−Unk =(I − (|0EC0CA⟩+ |1EC1CA⟩)(⟨0EC0CA|+ ⟨1EC1CA|))12 (2.26)

+ (|0CL⟩ ⟨0CL|)⊗ (I − |0L⟩ ⟨0L| − |1L⟩ ⟨1L|)24

+ ((I − |0CL⟩ ⟨0CL|)⊗HCommit)135

+
(
(|0CL⟩ ⟨0CL|+ |1CL⟩ ⟨1CL| − |0CL⟩ ⟨1CL| − |1CL⟩ ⟨0CL|)⊗ |0CL⟩ ⟨0CL|

)
23

+HBP,23

+HE,1 +HC,2 +HC,3 +HL,4

All lines except the second and third identical to HStart. The second line requires

that, at t = 0, the bit must be in only logical states 0 or 1, and not undefined.

This is contrasted with HStart, where we require that it be 0 specifically. The third

line of (2.26) requires that, at t = 0, the bit must be equal to the commitment

bit.

The commitment effectively turns our computation’s initial state into a partial

trace that removes the commitment qubits, which is a mixture of classical states.

So we know that if the final computation succeeds, it is only because the input

was a mixture of suceeding classical bitstrings – which would imply that there was

indeed at least one valid proof string.
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An equivalent setup (although not easily built as a QCSP) would be the having

some k extra logical qubits next to some k < n we normally work with, with a

requirement that the first time uses gates to copy (with CNOT) from the originals

to the extras; and the extras are never touched again. This setup is easy to

analyze in the sense that we can discuss its history state. If the logical state of

the verifying circuit at t = 0 is |ψ0⟩ =
∑2k

b=0 βb |0⟩
n−k |b⟩, then the initial state of

the enlarged system would be

2n∑
b=0

βb |0⟩n−k |b⟩ |b⟩

and the full history state is

1√
T

T∑
t=0

U1...t

2n∑
b=0

βb |0⟩n−k |b⟩ |b⟩ =
2n∑
b=0

βb

(
1√
T

T∑
t=0

U1...t |0⟩n−k |b⟩

)
⊗ |b⟩ . (2.27)

When the first half is examined in isolation, and the half consisting of the extra

copies is removed, what remains is a classical mixture of history states run on

different classical input strings |b⟩.

Given a verifier circuit for a QCMA problem, we can embed it the same way

we embedded in Part 2 for BQP problems. The witness bits (which are absent

in BQP) get HStart−Unk instead of HStart. Iff there is a frustration-free state, the

bitstrings |b⟩ in its support produce a passing output in the verifying circuit, in the

same way that |0⟩ produces a passing output in a BQP circuit. This correctness

shows that the problem is QCMA1-hard.
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To see that the problem is also in QCMA1, the proof is largely the same as

the BQP1 problem. In order to solve it in QCMA1, we will accept a classical

proof string built from concatenating the proof strings to each circuit chunk in

the problem, and running each verifying circuit. The arguments about identifying

chunks, clock paths, and undefined bits all go through as before. There is the new

case where a single commitment bit is a copy of several distinct input bits, or even

input bits in separate circuits. But this merely imposes the restriction that the

classical proof string has equal bits in those two locations, which does not make

the problem any harder to verify: when a proof string is provided, check for any

commitment clauses that share the same logical qubits, and if those two bits in

the proof string differ, reject. Otherwise, the problem is identical to the problem

in BQP, except with this alternate provided input state, and the same algorithm

can be used with this alternate initial state. This modified verification algorithm

implies that the problem is in QCMA1, and so is QCMA1-complete.

2.7 coRP completeness

The reduction to a coRP-complete problem is even simpler, since we build on

the idea of proving MA-hardness from [30]:

Any classical MA verifier V can be transformed into a quantum verifier
V ′ which uses a quantum circuit U involving only classical reversible
gates (for example, the 3-qubit Toffoli gates) together with ancillary
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states |0⟩, |+⟩, and measures one of the output qubits in the |0⟩, |1⟩
basis.

Note that MA is just the version of coRP that is allowed to have a proof

string provided. (Really, this is MA1; but MA = MA1.) Thus, we can modify the

BQP1-complete problem as follows:

• Replace the universal quantum 2-qubit gate set with a universal classical

reversible 3-bit gate set. This changes from Hprop from being 5-local to

being 6-local.

• In addition to HStart, we have a HStart−Rand. They are identical except in

that HStart−Rand initializes in the |+⟩ state instead of |0⟩.

The remainder of the proof holds just as before. The preprocessing is doable

classically, and so can be executed by even a simple coRP machine. The final

circuit to evaluate is a classical probabilistic verifier and so can be done by the

coRP machine as well.

To be precise, the BQP proof is completely agnostic to the gate set, in the sense

that it shows the clauses built from gate set G is a complete problem for compu-

tations with the gate set G. It is also agnostic to how the initial state is specified,

as long as there is no entanglement. Separately, it was shown in [30] that the gate

set of the 3-qubit Toffoli gates is universal for classical probabilistic computation,
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given access to initial states |0⟩ and |+⟩. Since the BQP-completeness proof is

agnostic to these modifications, the resulting set of clauses is complete for coRP.

In [5] a coRP-complete problem involving local Hamiltonians is also con-

structed, using their notion of “pinned” Hamiltonians: these are problems with

the promise that the ground state |ψ⟩ has nonzero overlap with the all-zero state,

i.e. ⟨0|ψ⟩ > 0. This pinning promise allows the verifier to assume that |0⟩ is a

functioning ’witness’, reducing the complexity from MA to coRP. The “pinning”

promise cannot be expressed in terms of local constraints, though, so it is not a

QCSP in the sense we have defined it.

2.8 Weak QCSPs

As noted in section 3.1, there is the detail of gate sets and exact results. For

classical computations, there are finite universal gate sets (such as {CCNOT}).

Even for probabilistic computations, we only need uniformly random bits (or a 50-

50 bit flip gate) to build a robust definition of BPP, RP, MA, AM, PP... and so on

– as uniformly random bits can be used to closely approximate other probabilities,

and we only need certain bounds on the probability of a given trial.

For quantum circuits, phases can cancel out exactly, so that a single phase

gate or qubit distribution cannot suffice for exact computations. Since different
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circuits might need all variety of phases, we cannot keep perfect exactness with a

finite set while allowing all the circuits we might want; at the same time, allowing

an infinite set of gates creates issues such as uncomputable amplitudes, and raises

questions of how we are to encode the circuit.

The Solovay-Kitaev theorem gives a weaker, but arguably more natural, notion

of universal gate set, one that allows us to approximate a given gate to exponen-

tially good accuracy in polynomial time. This is not useful to use in studying

constraint problems as we have defined them together, as we have required that

all ground states be exact. To remedy this, we present the notion of a weak

quantum CSP, which will allow exponentially small errors (energy) in the ground

state.

Definition 2.9 (Weak Quantum CSP). A weak QCSP has a domain size d, a set

of clauses C = {Hi}, and constants a, b, and c, with b > a > 0. Each clause Hi

of arity m is a Hermitian projector on (Cd)⊗m.

An instance of this weak QCSP is given by an integer n indicating the number

of d-qudits, and a list of clauses that apply to n qudits. The instance is satisfiable

if the ground state energy is less than a/nc, and is unsatisfiable if the ground state

energy is greater than b/nc, and we are promised one of these is the case. (So,

weak QCSPs are a class of promise problems.)
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It is worth emphasizing that the constants a, b, and c are not allowed to vary

with the instance, but are rather part of the language itself. This restriction means

that every weak QCSP is in QMA, because we only need to measure the energy

to within a polynomial gap: after O(nb) measurements we can have a probability

of error bounded away from 1/2. We choose to fix these constants for a whole

constraint problem class, in contrast to k-Local-Hamiltonian in [78], where

they are parameters of an instance.

At the same time, weak QCSPs are generally independent of gate set. While

strong QCSPs naturally describe complexity classes with one-sided error, weak

QCSPs naturally describe complexity classes with two-sided bounded error. If

we have a quantum algorithm that uses a gate set G1 to solve a problem with

two-sided bounded error in polynomially many gates, we can also solve with two-

sided bounded error in polynomially man gates using any other universal gate

set G2. This is shown by applying the Solovay-Kitaev theorem, to simulate the

first gate set using the second one. The Solovay-Kitaev theorem provides O(2−k)

precision per gate with only O(k) times more gates. If the original algorithm

uses f(n) gates, we can always solve the weak QCSP in O(f(n) log(f(n)) gates

with bounded error. The fact that we don’t have to worry about exact gate

set will make several complexity classes more natural, at the expense of a more

complicated notion of “problem”.
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2.8.1 Results on weak problems

First, it is straightforward to verify that there are still P, NP, MA, and QMA

complete problems among weak QCSPs. P-complete and NP-complete problems

like Horn-SAT and 3-SAT are described by commuting projectors, so the ground

state energy of an unsatisfiable instance is always at least 1. Thus taking a =

1/3, b = 2/3, c = 0 suffices to formulate those problems as weak QCSPs.

To see that we still have a QMA-complete problem, refer to the specifics of the

proof that 3-Local-Hamiltonian is QMA-complete in [78]: their construction

yields a problem whose ground state energy is below c1ε
n

if satisfiable, or above c2
n3

is unsatisfiable, where ε is the algorithm’s allowed probability of error. By running

the algorithm O(n) times in series, ε becomes O(2−n) < 1
n2 , and so it suffices to

take a = c1, b = c2, c = 3. Then their construction permits the rewriting of

any QMA circuit into an instance of this weak QCSP. We could also do this with

QMA1-complete 3− QSAT to arrive at QMA-complete weak QCSP.

This shows the scheme by which a 1/poly(n) gap promise translates into the

weakness of the QCSP. [30] have the same gap for their their MA-complete prob-

lem, and so it also can be described as weak QCSP. Interestingly, in this case,

MA=MA1, and so the complexity class does not change; the same holds for

QCMA=QCMA1.
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The other two cases we gave above, coRP and BQP1 also all have polynomially

small gaps, and are designed to emulate a circuit that accepts perfectly on accept-

ing instances. If we instead allowed our original circuit to have a polynomially

small two-sided error, we could build a weak QCSP instead, that is complete for

the corresponding two-sided error complexity class. If the original QCSP had a

minimum unsatisfiable ground-state energy of O(n−p), then whatever circuit we

are embedding as QCSP, let us repeat it enough times that its error is O(n−p−1).

Then choosing c = p + 0.5 and taking any positive a and b describe it as a weak

QCSP. This gives the following result.

Corollary 2.1. There are weak QCSPs that are complete for the classes BPP and

BQP.

This means that any putative dichotomy-like theorem for weak QCSPs would

need to at least account for the seven cases of P, BPP, NP, MA, BQP, QCMA,

QMA – or show that some pair of these are equal. The insensitivty to choice of

gate set could make this type of result more appealingly natural, and indeed more

physical, as no real-world gate set can be realized with zero error.
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2.9 Universality of qubits for QCSPs

We can show that any QCSP can be reduced to another problem using only

only qubits, with little computational power. This may initially sound unsur-

prising, as operations on qubits are certainly universal for quantum computation.

But it is perhaps surprising, in light of the fact that the analogous statement is

believed to be false in the classical world!

Among classical constraint problems, it is believed that distinct complexity

classes arise for different size domains. For boolean constraint problems, it is

known [7] that every problem is either coNLOGTIME, L-complete, NL-complete,

⊕L-complete, P-complete, or NP-complete. This is a refinement of the dichotomy

theorem specialized to boolean problems, as the first five classes are all contained

within P. Among ternary constraint problems though, there are new classes that

appear, such as Mod3L-complete, which are not expected to be equal to any of

the six the previously listed [32, 14].

When constructing a circuit for a quantum computer, we can emulate a d-

qudit with a ⌈log2(d)⌉ qubits, and carry out unitaries on those qubits. We can

certainly try the same thing for a QCSP, turning (for instance) each 4-qudit into

2 qubits, and a k-local clause becomes 2k-local. The issue arises that we cannot

ensure that the 2k-local clauses are applied to qubits in a consistent fashion. One
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clause might treat a particular qubit as “bit 1” of an 4-qudit, while another clause

might use that same qubit as “bit 2”. This would lead to constraints that were

previously unrealizable. Clauses could also “mix and match”, combining “bit 1”

from one 4-qudit with “bit 2” from another 4-qudit. The exact same problems

exist in the classical setting.

In the quantum world, we can fix this, again by using monogamy to bind

together our constituent qubits into ordered, entangled larger systems. Each

clause in the resulting problem is given a projector that forces this particular

ordering of qubits, and any two clauses that try use the same qubits in multiple

ways are frustrated. Formally,

NameIgnored 2 (Theorem 2.8 (formal)). For any QCSP C on d-qudits, there is

another QCSP C ′ on qubits, and AC0 circuits f and g, such that f reduces C to C ′,

and g reduces C ′ to C. If C is k-local, then C ′ can be chosen to be 4 ·2⌈log2(⌈log2(d)⌉)⌉k

local (that is, O(log(d)) times larger.)

Proof. First we will show that for any d-qudits, we can reduce to 4-qudits; after

that we will reduce to qubits. Finally we show that the reduction is in AC0.

We will view 4-qudit as the product of a “data” qubit and an “entanglement”

qubit. A d-qudit will be replaced by n = ⌈log2(d)⌉ many 4-qudits, and the

state of the d-qudit will be encoded in the product of all the data qubits. If

d < 2⌈log2(d)⌉ = 2n, that is, if d is not exactly a power of 2, we will have a
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Hamiltonian term T1 in our clauses to ensure that the last 2n − d states are not

used. Acting on entanglement subspaces of the 4-qudits, consider a term T2 whose

nullspace consists of just the vector

(
1⊗Xθ ⊗X2θ ⊗ . . . Xnθ

) |0⟩n + |1⟩n√
2

(2.28)

where θ = 1
2(n+1)

. This is a kind of GHZ state, which uses a slightly different pair

of basis states (instead of just |0⟩ and |1⟩) on each separate qubit. Any bipartition

of this state is impure, but since T2 has a one-dimensional nullspace, it cannot be

satisfied by any mixed state. Thus the sum of two T2 on any two overlapping but

distinct sets of 4-qudits will be frustrated. If two copies of T2 act on the same

4-qudits in a different order, they will apply the wrong angles Xkθ at those sites,

and the ground states do not align – also leading to frustration.

Each clause H of C is mapped to a new clause H ′ that acts as H on the data

subspaces of each set of 4-qudits; that has T1 = 1−
∑d

i |i⟩ ⟨i| on each clumping of

4-qudits, to ensure that only the first d states are used; and T2 on each clumping

of 4-qudits, to ensure that they will only be clustered to each other and in a

particular order.

Then we want to reduce this from 4-qudits to qubits. As we show in Appendix

A, there exists a particular Hamiltonian H4→2 that satisfies certain properties: it

acts on four qubits; it has a nullspace of dimension 4; if two copies of H4→2 are

applied to sets of qubits that overlap but are not equal, the result is frustrated; if
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two copies of H4→2 are applied to four qubits but in a different order, the result is

frustrated. This lets us ”fix” the groups of 4 qubits and they act as d = 4 qudits.

In the C ′ QCSP, any problem where qubits are mixed or applied in inconsistent

orders, can immediately be rejected. Some qubits may not be acted on by any

clause, and so not correspond to a d-qudit in C, but then those qubits can simply be

ignored. This leaves us with only correctly grouped qubits, in a certain subspace,

that thus function equivalently to the d-qudits.

Combined, this gives a faithful reduction from d-qudits to qubits, and back

again. It turns a k-local Hamiltonian into a 4⌈log2(d)⌉k local Hamiltonian, which

is the majority of the theorem. It remains to check the complexity of the reduc-

tions, that the reduction can be carried out in AC0.

In the above description, the expansion factor is 4⌈log2(d)⌉. To get a low circuit

complexity, we want the expansion to be a power of two. Thus we round this up

to 4 · 2⌈log2(⌈log2(d)⌉)⌉, which will denote x; the QCSP C ′ is augmented through just

adding more qubits to increase the subspace dimension, and then T1 is modified

again to prevent those states from being occupied.

An instance of a k-local QCSP C can be written down as a list of integers, each

given by an integer clause type, and k many integers representing the qudits they

act on. The clause types of C ′ are in one-to-one correspondence with the clause

types of C, so those integers remain unchanged. Each clause acting on qudit i now
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instead acts on qudits [xi, xi+ 1, . . . xi+ (x− 1)] in that order. Thus a reduction

circuit f only needs to be able to replicate an integer several times, multiply by

a constant power of 2, x, and add a number i ∈ [0, x). This is in AC0 (in fact it

requires no gates at all).

For a circuit g to convert back from C ′ to C, we need to map qubit numbers

back to qudits numbers, and check that no qubits are used in inconsistent fashion.

For each collection of qubits [a1, a2, . . . ax] that a clause in C ′ is acting on, we can

map that to the d-qudit number a1. Thus, many qudit numbers will go unused,

but this doesn’t affect the correctness: as long as all collections use the same

numbers in the same order, they will all be mapped to a1. To check that all

qudits are used in a consistent fashion, we need to check for each pair of collections

([a1, . . . ax], [b1, . . . bx]) that they do not use qubits in inconsistently. Logically, this

reads:

(
((ai = bi) ∧ (aj = bj)) ∨ ((ai ̸= bi) ∧ (aj ̸= bj))

)
∧ (ai ̸= bj) ∧ (aj ̸= bi)

and this must be checked for every collection, for every i and j, and then combined

by an unbounded fan-in AND. The integer equalities ai = bi and ai ̸= bi can

be evaluated with unbounded fan-in AND and OR respectively. This check is

all in AC0. If the check fails, the circuit outputs some fixed clause(s) that are

unsatisfiable, otherwise it outputs a repetition of the first clause. This AC0 circuit
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checks that the qudits are used consistently, and if they are, gives an equivalent

instance in the original language.

If we don’t care about having the reductions be in AC0, and instead allow

P-reductions, then 4⌈log2(d)⌉k locality suffices. This reduction is optimal within

a factor of 4, in the sense that encoding one d-qudit in several qubits requires

at least ⌈log2(d)⌉ many qubits. In section 4 we showed that there is a 5-local

13-qudit problem that is BQP-complete. Together with Theorem 2.8, we have:

Corollary 2.2. There is a BQP-complete QCSP on qubits, with 80-local interac-

tions.

In practice the locality could be reduced quite a bit, likely below 20 with work.

2.10 Future directions

The seven complexity classes that are known to occur as strong QCSPs are

now, in rough order of difficulty:

1. P: Classical, no proof, deterministic checks.

2. coRP: Classical, no proof, probabilistic checks.

3. NP: Classical, classical proof, deterministic checks.
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4. MA: Classical, classical proof, probabilistic checks.

5. BQP1: Quantum, no proof, probabilistic checks.

6. QCMA: Quantum, classical proof, probabilistic checks.

7. QMA1: Quantum, quantum proof, probabilistic checks.

Are there obvious omissions we should expect to look in, or does this list seem

complete? It seems natural in one way: we can have classical or quantum verifiers;

we can have no proofs, classical proofs, or quantum proofs; and we can have

deterministic or probabilistic verification. This would produce 12 classes in total.

But we cannot have a quantum proof for a classical verifier, bringing us down to

10 classes. And it is very hard to force deterministic verification on a quantum

verifier; EQP is a difficult class to study. Any construction of an EQP-complete

constraint problem would likely require knowledge of particular forms of circuits

that are powerful enough to capture the full power of EQP, while constrained

enough to guarantee that they always produce deterministic results.

It is clear, though, that the set of gates can be freely exchanged. There is the

question if there are gate sets that are more powerful than classical computation

but weaker than universal quantum computation. This is plausibly the case for

nonstandard models of computation, such as sampling problems [25, 82] or one-

clean-qubit models [54, 115], but is less clear for the standard quantum circuit
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model. But if it was discovered that there was such a set of intermediate-power

gates, we would immediately have a corresponding constraint problem class which

captures its difficulty.

The same questions linger for weak QCSPs. EQP-complete problems are ex-

tremely unlikely to exist among weak QCSPs, as weak QCSPs do not depend on

gate sets and EQP problems genearlly do. We can also ask about exotic gate sets

yielding two-sided error complexity classes as weak QCSPs.

The constructions given herein is certainly very large, both in arity of the

clauses and local dimension of the qudits. It is natural to ask if there are smaller

and more natural constraint problems that could realize the classes we discussed.

In particular, finding a 3- or even 2-local constraint would be exciting. This

does not seem implausible given that 2-local Hamiltonian problems are in general

QMA-hard. Ideally we would even have something analogous to Theorem 8 for

locality reduction, that all QCSPs could be made 2-local using high-dimensional

qudits. In classical CSPs these are well-studied under the name of binary con-

straint problems [38].

Finally, regarding coRP and BPP, it is somewhat surprising that these easy

classical complexity class arises from a purely quantum Hamiltonian. It would be

good to reformulate the problem as closely as possible in purely classical terms.

Aharanov and Grilo have recently performed a reformulation like this for MA,
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transforming the language of stoquastic Hamiltonian constraints into a much sim-

pler classical problem [44].
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1 Based on the work in 10.1109/FOCS54457.2022.00013
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3.1 Background: Bayesian Inference

Below is perhaps the most basic scientific task for finite probabilistic systems:

A probabilistic process P produces samples from d distinct possible
outcomes. Nothing is otherwise known about P . An experimenter
takes nmany samples from P , giving observation counts (k1, k2, . . . kd),
with

∑
ni = n. Given this experimental data, what should we estimate

the distribution P to be?

The statement that ”nothing is otherwise known” is a large weasel word. In prin-

ciple, we need a prior belief of plausible different distributions P should be. A

typical starting point is a uniform prior over P , which can be informally described

as giving each distribution (p1, p2, . . . pd) the same initial probability density, al-

though other popular priors exist[76].

The question of ”what should we estimate the distribution” is also not precise.

Possible questions include, ”What is the probability of the next sample being an

m?”, ”What distribution P is most likely is given the data?”, or ”What is the

probability that the true distribution P is within distance ϵ of my hypothesis

P0?”. Under very reasonable and modest assumptions, these can all be computed

efficiently2. This is the pleasant world of classical Bayesian statistics.

The quantum analog of this scenario would replace the d-case discrete distribu-

tion with a quantum state ρ in a d-dimensional Hilbert space. If all measurements

2 Here ”efficiently” means ”in polynomial time in n and d”. The relevant assumption is that
the posterior is convex. This is always satisfied by the uniform prior, and it is satisfied by the
Jeffreys prior described in [76] as long as each of the d possibilities has been observed at least
once.
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are taken in the standard basis (or are all in some other shared basis), this reduces

to the classical case, just as we would want for a quantum generalization. When

the measurement data come from different bases, the question is more complex.

The three types of questions above now become, ”What is the probability of ob-

serving m on a subsequent measurementM?”, ”What mixed state ρ best explains

the data?”, and ”What is the probability that the true state ρ is within distance

ϵ of my hypothesis ρ0?”. This is an idealized form of quantum state tomography,

where we try to estimate a state by repeatedly preparing and measuring it.

As it turns out, the quantum nature of the problem makes it much more

difficult, even for the simple case where all states are pure and all measurements

are projective. The likelihood functions are no longer convex, and so the classical

algorithms based on convexity don’t apply, but this on its own does not preclude

the possibility that some other algorithm could quickly reconstruct ρ. The main

work of this chapter is giving complexity-theoretic reasoning to prove that this

problem is difficult.

3.2 Background: Matrix Permanents

A different problem, at first glance unrelated, is that of computing of matrix

permanents. The matrix permanent is a classical problem of intense interest in
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the study of counting problems. For a matrixM ∈ Cn×n, the permanent is defined

as

Perm(A) =
∑
σ∈Sn

n∏
i=1

ai,σ(i) (3.1)

summing over all products of permutations of rows and columns. This equation

bears a close resemblance to that of the determinant, which has an additional

factor (−1)sign(σ) within the sum. It is known that matrix permanents are hard

to compute or even estimate in general, and we will review what is known about

their hardness. It has been previously suggested that the permanents of positive

semidefinite (PSD) matrices may have efficient approximations. By algebraically

connecting these permanents to the quantum state estimation problem described

above, we also show the hardness of PSD permanent approximation.

How difficult is it compute a permanent? The expression in Eq 3.1 can

be directly evaluated in O(n!) time, and this gives an exact answer. Ryser’s

formula[106] improves this to an O(2nn) time algorithm. Valiant showed in 1989

that computing the permanent exactly is #P-hard3, even for 0-1 matrices[118, 18].

However, it is amenable to efficient approximation in particular settings, such as

when all elements are nonnegative (and thus the permanent is as well). In 2001,

3 #P is a complexity class far harder than NP, and is comparable to the difficulty of PH, the
polynomial hierarchy. #P asks ”How many solutions are there to this easily-checkable prob-
lem?”. Finding just one solution is the task of NP, but #P requires us to reliably distinguish
between the case of 10100 solutions or 1 + 10100 solutions. PH can be briefly described as ”Can
I guarantee a win in a board game in k moves?”, for an arbitrary but fixed k.
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Jerrum, Sinclair and Vigoda[72] gave a fully-polynomial randomized approxima-

tion scheme (FPRAS) for permanents of nonnegative matrices. In 2002, Gurvits

and Samorodnitsky[58] gave a polynomial time en multiplicative approximation

to PSD mixed discriminants, which included permanents of nonnegative matrices

as a special case. (This special case was not useful in isolation, as the 2001 result

gave arbitrarily good approximations.)

When the matrix is Hermitian positive semidefinite (HPSD, or if purely real,

PSD), the permanent is again necessarily nonnegative (even though the indi-

vidual entries are not), and this offers hope of efficient multiplicative approx-

imation. HPSD permanents are of particular interest to the quantum infor-

mation community - for reasons unrelated to quantum state tomography, but

rather related to thermal BosonSampling experiments[116, 104, 79]. Computing

PSD permanents exactly remains #P-hard[57]. It is known that by Stockmeyer

counting[57, 104, 114] computing multiplicative approximations to PSD perma-

nents is contained in FBPPNP4. In 1963, Marcus[94] observed that the product

of the diagonal of a PSD matrix immediately gives an n! approximation ratio to

the permanent. In 2017, [8] gave a polytime approximation to PSD permanents

4 FBPPNP can be defined as follows: Given access to a special oracle that will instantly solve any
NP problem for you, and a source of randomness, FBPPNP is the set of numeric functions you
can compute the answer to in polynomial time with high confidence. The ability to repeatedly
solve NP hard problems makes this class generally infeasible, but it is still much easier than #P
or PH in general.
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within a ratio of cn with c = e1+γ ≈ 4.85. [130] described a similar approach with

the same approximation ratio. [34] and [16] gave algorithms for approxmation

when the spectrum of the matrix is small in radius, that is, when λmin/λmax is

not too small.

3.3 Statement of Main Results

Our main result is to show that there is no efficient approximation of PSD

permanents. Stated precisely, we show that it is NP-hard to approximate within

a particular subexponential factor:

Theorem 3.1 (Thm 3.5, restated). For any constant ϵ > 0, it is NP-hard to

approximate the permanent of n× n HPSD matrices within a factor of 2n
1−ϵ

.

Note that the constant 2 can be exchanged for any c > 1 without changing

the theorem. In Section 3.5.5, we show that this theorems also holds for the case

of purely real PSD matrices.

Our work provides a lower bound on the difficulty of approximating PSD

permanents, that almost matches known upper bounds. The algorithm of [8]

shows that the singly exponential approximation ratio 4.85n is possible within

polynomial time, while we show that subexponential approximation ratio 2n
1−ϵ

is

intractable. This primarily leaves the question whether (1 + ϵ)n is polynomial-
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time computable for any ϵ > 0. The algorithms of [34] and [16] fail on the hard

instances that we construct: the matrices we construct are highly rank deficient,

and therefore have λmin = 0.

We arrived at our hard instances via a problem in quantum state tomography.

If a matrixM is positive semidefinite, then it has a matrix square root V V † =M .

If M is n× n, and rank d, then V is n× d. We show that

Perm(M) =
(d+ n− 1)!

2πn

∫
v⃗∈Cn, |v|=1

dv⃗
d∏
i=1

|v⃗ · Vi|2 .

Here Vi are the rows of V , and the integral is the Haar measure over the unit

complex sphere. As we will see, this integral occurs naturally in the context of

Bayesian inference, where the rows Vi correspond to an observation history. We

analyze the problem by first establishing a concentrating construction (Lemmas 4

and 5). Informally, when Vi contains many copies of basis vectors e⃗j and vectors

of the form
e⃗j±ie⃗k√

2
, the integral concentrates at the points (up to a phase) of an

appropriately scaled hypercube:

∫
v⃗∈Cn, |v|=1

dv⃗

d∏
i=1

|v⃗ · Vi|2 ≈ C
∑

v⃗∈{−1,+1}d

∏
i

|v⃗ · Vi|2

for some constant C that depends only on d and n. This concentration will let

us relate permanents to combinatorial problems (Lemma 6), specifically counting

solutions to Not-All-Equal-3SAT, and ultimately let us prove hardness.
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The connection to quantum state tomography means we also get results about

the hardness of estimating quantum states given measurements. For a quantum

system with Hilbert space dimension n and poly(n) observations, the maximum

pure state likelihood is the highest likelihood of those observations attainable over

any pure state |ψ⟩.

Theorem 3.2 (Thm 3.9, informal). For any constant ϵ > 0, the following task is

NP-hard: given a series of quantum observations, find a pure state with likelihood

at least 2−n
1−ϵ

times the maximum pure state likelihood.

Unless RP=NP, this implies that there is no PRAS for maximum likelihood

estimation (MLE) quantum state tomography (in fact, it is not even in APX).

We have similar statements about the NP-hardness of computing the Bayesian

average state and Bayesian average observables (Theorem 3.8). These results are

unusual in that they imply exponential difficulty in dimension n in the Hilbert

space Cn. Most quantum problems are only considered tractable if they have

efficient algorithms in the number of particles q = log(n), and have trivially

polynomial solutions in n; whereas we show that (assuming ETH[70]) quantum

state tomography takes time exponential in n.

We stress that although our work has connections to quantum information

through BosonSampling and tomography, our discussion of complexity is focused

on classical computers. The NP-hardness are statements about classical hardness,
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and the algorithm described in section 3.6.3 for tomography in fixed dimension is

a polynomial time classical algorithm. Unless NP⊆BQP however, our results rule

efficient permanent computations on quantum computers as well.

3.4 Key ideas of the proof

We start with a lemma relating symmetric, multilinear functions to perma-

nents. Similar lemmas have appeared in [15, 16], and they can broadly be viewed

as alternate forms of Wick’s Theorem [133].

Theorem 3. Suppose f : (Cd)2n → R is a function of 2n vectors of dimension d,

with the properties:

• Multilinear in its first n arguments:

f(v1, . . . , αvi + βv′i, . . . ) = αf(v1, . . . , vi, . . . ) + βf(v1, . . . , v
′
i, . . . )

• Conjugate multilinear in its latter n arguments:

f(v1, . . . , αvn+i+βv
′
n+i, . . . ) = α∗f(v1, . . . , vn+i, . . . )+β

∗f(v1, . . . , v
′
n+i, . . . )

• Symmetric in its first n arguments, and its latter n arguments:

f(v1, v2, . . . ; vn, vn+1, . . . ) = f(vσ(1), vσ(2), . . . , vτ(n), vτ(n+1))
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• Invariant under unitary change of basis: for any unitary U ∈ Cd×d,

f(v1, v2, . . . ; vn, vn+1, . . . ) = f(Uv1, Uv2, . . . ;Uvn, Uvn+1, . . . )

Then f is determined up to an overall constant C by the formula,

f(v1, . . . ; vn, . . . ) = C Perm(Aij), where Aij = vi · v∗j (3.2)

and the constant C can be determined by

C =
f(e⃗1, e⃗1, e⃗1, . . . )

n!
(3.3)

where e⃗1 is the unit basis vector in the first coordinate.

Proof. Because f is invariant under a unitary change of basis, f can only depend

on its inputs through inner products of vectors, ⟨vi, vj⟩. Since f is multilinear,

it can be written as a sum of terms tk, where each tk is a product of terms from

the vectors. The separate linearity and conjugate linearity means that the only

permitted inner products are of covariant (first n) and contravariant (latter n)

vectors. This means every term in the sum must be some product of the form∏
i∈[n] vi · v∗n+σ(i) for some permutation of n. Then by symmetry of the arguments,

all pairs must occur in the same relation to either, so all pairings must occur

equally. This leaves only a single form, the result above.

Computing C can be found by substituting in e⃗1 in 3.2 so that all dot products

become 1. The permanent of the all-1’s matrix is just n!, so this becomes the

normalizing factor. □
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This lets us relate the permanent to a particular integral over unit-norm com-

plex vectors:

Theorem 3.3. For any L,R ∈ Cd×n be complex matrices, denoting the kth row

as Lk, ∫
v⃗∈Cn, |v|=1

dv⃗

(
d∏

k=1

x⃗†Lk

)(∏
k

R†
kx⃗

)
=

2πn Perm(LR†)

(d+ n− 1)!
(3.4)

Note that when L = R, the product in the integral becomes
∏

k |⟨Lk, x⃗⟩|2, and the

product M = LL† is PSD.

Proof. Viewing the left side as a function f of the n rows of each L and R, we

can see that it satisfies all the hypotheses of Lemma 3. It is linear in each row of

L, conjugate linear in each row of R, and symmetric under permuting the rows of

L or the rows of R. It is also invariant under a unitary change of basis:

f(UL,UR) =

∫
v⃗∈Cn, |v|=1

dv⃗
∏
k

v⃗†(ULk)
∏
k

(URk)
†v⃗

=

∫
v⃗∈Cn, |v|=1

dv⃗
∏
k

(U †v⃗)†Lk
∏
k

R†
k(U

†v⃗)

=

∫
u⃗∈Cn, |u|=1

dv⃗
∏
k

u⃗†Lk
∏
k

R†
ku⃗ = f(L,R)

so that we’ve used the symmetry of the unit sphere in Cn to remove the unitary

via u⃗ = Uv⃗. Setting each Lk = Rk = e⃗1, the spherical integral can be computed

with standard formulae (e.g. [53]) to find the normalizing constant

C =
1

n!

∫
v⃗∈Cn, |v|=1

dv⃗ (v⃗†e⃗1)
n(e⃗†1v⃗)

n =
1

n!
· 2πdn!

(d+ n− 1)!
=

2πn

(d+ n− 1)!
. (3.5)
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□

This formula is similar to another well-known expression for the permanent in-

volving Gaussian integrals, and can be understood as a version of Wick’s theorem.

[15, 133]

3.4.1 Construction Details

Before diving into the proof of hardness itself, we aim to provide some intuition

of the construction. We focus on the integral F =
∫
x⃗

∏
k |⟨Vk, x⃗⟩|2 over a the sphere

of unit (complex) vectors, and build up a set of vectors V with desirable properties.

The proof will involve gradually adding vectors to a list Vk, in turn modifying the

integrand IV (x⃗) =
∏

k |⟨Vk, x⃗⟩|2. This integrand IV (x⃗) is nonnegative, so there

cannot be any cancellation in the integral. Our goal will be only showing that

certain regions have exponentially small magnitude, so that only particular regions

with appreciable contribution remain, and they are primarily responsible for the

overall value of F . Then, the magnitude of F will be used to understand the

value of I on those particular regions, where large values of F indicate solutions

to an NP-hard problem. And since F can be computed by a HPSD permanent,

computing that permanent must be hard as well.

How are we to choose the V in order to make an interesting function IV ?

Each vector Vk introduces zeroes on the sphere at all vectors orthogonal to Vk.
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All points approximately orthogonal to Vk will have a very small magnitude, and

so contribute very little to the integral. We will start our collection of vectors

includes many copies of each standard basis vector e⃗k. This creates high-degree

zeros along each of d distinct perpendicular directions, slicing the sphere so that

the only regions with appreciable magnitude form the corners of a cube.

Figure 3.1: Schematic of how we can create “corners” on the sphere by repeatedly
cutting with planes. Blue represents lower magnitude. This shows only purely
real x⃗.

After adding one copy of each basis vector e⃗k, the magnitude at a given point

x⃗ = (α1, . . . αd) is the product of the absolute values of its entries in that basis:

IV (x⃗) =
∏

j |αj|2. This is maximized when |αj| = |αk| = 1√
d
for all j, k. If we

then subsequently add several vectors of the form
e⃗j+ie⃗k√

2
and

e⃗j−ie⃗k√
2

, together these

rule out a purely imaginary phase between the j and k components, so that the

maxima are at
e⃗j±e⃗k√

2
. After adding these two for each j ̸= k, I(x⃗) will peak near

x⃗ = eiθ√
d
(1,±1,±1 . . . ). Up to an overall phase of x⃗, we’ve focused I to a set of
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2d−1 distinct points. These 2d−1 circles of “binarized” vectors form a set B0. To

get this, we had to put d + 2
(
d
2

)
= d2 vectors into Vk. By analogy with quantum

information, we will refer to these as the Z vectors and Y vectors respectively.

Together, this set of d2 vectors will form one “basic set” – “basic” in the set of

“enforcing the basis”.

Once we have our basic vectors to concentrate I at these binarized points

B0, we want to add vectors that will penalize some of these 2d−1 points, so that

finding the optimum becomes a search problem over exponentially many points.

Our functional I is only sensitive to the relative phase between components of a

vector, and not to the signs of the components themselves. This leads us most

naturally to the problem of Not-All-Equal 3-Satisfiability, or NAE3SAT.[107] So

now consider the impact of adding a triple of “clause vectors”,

v⃗1 =
e⃗1 + e⃗2 − 2e⃗3√

6

v⃗2 =
e⃗1 − 2e⃗2 + e⃗3√

6

v⃗3 =
−2e⃗1 + e⃗2 + e⃗3√

6
.

Each is orthogonal to 1√
3
(e⃗1 + e⃗2 + e⃗2), in which all the relative signs are positive

(or equivalently, all negative). We call this collection of three vectors a “clause

set”. This effectively rules out the possibility of all signs being the same. There
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are three not-all-equal points (up to phase):

p⃗1 =
1√
3
(e⃗1 + e⃗2 − e⃗3)

p⃗2 =
1√
3
(e⃗1 − e⃗2 + e⃗3)

p⃗3 =
1√
3
(−e⃗1 + e⃗2 + e⃗3)

The three p⃗i all have the same squared inner products with the set of v⃗i, those

being {8
9
, 2

9
, 2

9
} in some order, and so all p⃗i have an equal IV (p⃗i) =

32
729

.

The total effect may be visualized in the following plot:

Figure 3.2: Three plots of IV (x⃗). Only real points are plotted, smaller values
are blue. As the integrand only depends on points up to an overall phase, all
points appear effectively doubled, as IV (x⃗) = IV (−x⃗). There are twelve vectors in
V . Nine come from a basic set: e⃗1, e⃗2, e⃗3, and (e⃗j ± ie⃗k)/

√
2 in six permutations

(given by j, k ∈ {1, 2, 3}, j < k). The right-angled crosses are due to the first
three vectors, dividing the space into eight corners (the Z vectors). The last three
vectors in V are a clause set: (e⃗j + e⃗k − 2e⃗ℓ)/

√
6 (in all 3 permutations), creating

the 6-way intersection shown in the second diagram, eliminating two opposing
corners of the eight.
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Here we look at d = 3 with one basic set and one clause set. The plot doesn’t

display states with complex coefficients, but it can be verified that the maxima

have all real phases. Without the clause vectors, there would be eight high ampli-

tude points. The first subplot shows the effect of the clause most directly: out of

the four points (up to sign) in B0, one of them – the top right corner – has been

eliminated. The excluded option has three zero planes running through it.

By adding appropriate clause sets, the only remaining points with large values

will be those satisfying an NAE3SAT problem, which is NP-hard. The other points

will be too small to contribute to the integral, so that evaluating the integral tells

us about the satisfiability of the NAE3SAT problem. With the outline complete,

we now begin the steps of the proof, starting with the concentration.

3.5 Proof of Hardness

3.5.1 Concetration

After one basic set, each point in B0 has a value IV (x⃗) of 1/dd
2
(by direct

calculation). We would like to show that any state far away from B0 has a signif-

icantly lower value. For this reason, and with the intuition that the integrand IV

represents likelihood values, we talk about relative values of IV . By the value of

IV (a) relative to IV (b), we simply mean IV (a)/IV (b).
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Any unit vector x⃗ ∈ Cd can be written as

x⃗ =
eiΘ√
d

d∑
k=1

√
αke

iπ(θk+nk)e⃗k

where Θ, α⃗k and θ⃗k are all real, αk ≥ 0,
∑

k αk = d, θ1 = 0, and all Θ,

θk ∈ [−1/2, 1/2]), and nk ∈ {0, 1}. The α⃗, θ⃗, and n⃗ respectively indicate the

amplitudes, phases relative to the first component, and signs of the real part.

This polar representation is unique except for when one of the α0 = 0, which is

a measure-zero set. Accordingly, we can neglect this measure zero set in subse-

quent discussions of the integral
∫
IV (x) – as we could otherwise arbitrarily set

IV (x) = 0 there without modifying the integral.

Theorem 4. Let x⃗ be a unit vector with polar representation Θ, α⃗, θ⃗, and n⃗. Let

ϵα be the 2-norm distance of α⃗ = (α1, . . . αd) from 1⃗. Then when V is one basic

set, the value of IV (x⃗) relative to any point in B0, is at most 1− ϵ2α
4d
. If ϵα ≤ 1/2,

then the likelihood is also at most 1− 3θ2i for all components θi of θ⃗.

Proof. Then B0 consists of the points with αk = 1 and θk is an integer. If x⃗

has significant distance from all elements of B0, then either the amplitudes αk or

phases θk must differ significantly from these conditions. The likelihood after of

the measurements is

L(ψ) =

(∏
k

∣∣∣∣√αk
d

∣∣∣∣2
)∏

j≤k

∣∣∣∣∣
√
αje

iπ(θj+nj) + i
√
αke

iπ(θk+nk)

√
2d

∣∣∣∣∣
2 ∣∣∣∣∣
√
αje

iπ(θj+nj) − i√αkeiπ(θk+nk)

√
2d

∣∣∣∣∣
2

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=

(∏
k

αk
dd

)(∏
j≤k

α2
j + α2

k + 2αjαk cos(2π(θj − θk + nj − nk))
4d2

)

=
1

dd(2d)d2−d

(∏
k

αk

)(∏
j≤k

α2
j + α2

k + 2αjαk cos(2π(θj − θk))

)

The first factor coming from the Z vectors e⃗k in the basic set, and the last two

factors coming from the Y vectors
e⃗j±ie⃗k√

2
, for each j < k, in the basic set.

The first step is to bound the likelihood in terms of the magnitudes αk. Looking

at the effect of the Z vectors,
∏d

k αk, we have a convex function on the standard

(d− 1)-simplex
∑
αk = d. It is clearly maximized at α⃗opt = (1, 1, 1, . . . 1), where

it evaluates to 1. Suppose that our state |ψ⟩ has an associated α-vector, α⃗ =

(α1, . . . αd) is a distance at least ϵα away from α⃗opt, and that ϵα ≤ 1. Then one

of the coordinates must be at least ϵα/
√
d away from 1. With generality, let this

coordinate be α1. If α1 ≤ 1 − ϵα/
√
d, then the greatest the likelihood could still

be is when the other αk are all equal at 1 + ϵα/
√
d(d − 1). Multiplying these

together, the resulting likelihood is upper-bounded by 1− ϵ2α
2(d−1)

. If α1 has instead

been increased so that α1 ≥ 1 + ϵα/
√
d, then the likelihood is maximized when

the other αk are all equal at 1 − ϵα/
√
d(d − 1). Multiplying these together, the

resulting likelihood is upper-bounded by 1− ϵ2α
4d
. Since the latter of these bounds

is looser, we see that any state whose α⃗ is at least ϵα away from the all-ones vector

has a likelihood at most 1− ϵ2

4d
in these measurements.
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This gives bounds on the Z vectors’ contribution to the likelihood. To keep

this bound when the Y vectors are added, we need to check that they are also

maximized at α⃗ = 1⃗. Each factor

∏
j≤k

α2
j + α2

k + 2αjαk cos(2π(θj − θk))

is maximized when θj−θk is an integer, at which point it becomes
∏

j≤k(αj+αk)
2 =

(
∏
αj + αk)

2. This is in turn globally maximized by αj = αk = 1, so the error

bound on α⃗ holds.

The next step is to bound the likelihood in terms of the θ⃗. We only care about

the degree to which θi−θj is not an integer, let rij = θi−θj to the nearest integer,

so rij ∈ [−1/2, 1/2]. Given that cos(2πr) ≤ 1 − 8r2 for all r ∈ [−1/2, 1/2], we

have a relative likelihood of

IV (x⃗)

IV (B0)
=
α2
j + α2

k + 2αjαk cos(2πrjk)

α2
j + α2

k + 2αjαk
≤
α2
j + α2

k + 2αjαk(1− 8r2jk)

α2
j + α2

k + 2αjαk
= 1− 16αjαk

(αj + αk)2
r2jk

Let’s assume that each αj is in the interval [1/2, 3/2] – which is implied by them

being sufficiently close to the all-ones vector, that is, ϵα ≤ 1/2. Then the expres-

sion
16αjαk

(αj+αk)2
is at least 3, so

IV (x⃗)

IV (B0)
≤ 1− 3r2jk

which tells us that every phase θi should be close to 0 for IV to be large, or else

suffer a 1− 3r2 penalty in the likelihood. □
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Later we will also need lower bounds on the likelihood, if we are in U .

Theorem 5. If a state x⃗ is within distance ϵ ≤ 0.1 of some point b in B0, and V

is one set of basic vectors, then x⃗ has likelihood at least

IV (x⃗) ≥
1− 2ϵd5/2

dd2
.

or in terms of the relative value, IV (x⃗)/IV (B0) ≥ 1− 2ϵd5/2.

Proof. We will again use polar representation for x⃗:

IV (x⃗) =
1

dd(2d)d2−d

(∏
k

αk

)(∏
j≤k

α2
j + α2

k + 2αjαk cos(2π(θj − θk))

)

If our point x⃗ is within distance ϵ < 1 of B0, then each of the αi must individually

be within ϵ
√
d of 1, and each θi satisfies

cos(πθi) >
√
1− ϵ2 =⇒ |θi| < ϵ/2

and so

cos(2π(θj − θk)) ≥ 1− (2π(θj − θk))2

2
≥ 1− (2πϵ)2

2
.

Then the likelihood is bounded by,

L(ψ) ≥ 1

dd(2d)d2−d

(∏
k

1− ϵ
√
d

)(∏
j≤k

(1− ϵ
√
d)2 + (1− ϵ

√
d)2 + 2(1− ϵ

√
d)2
(
1− (2πϵ)2

2

))

=
1

dd(2d)d2−d
(1− ϵ

√
d)(d

2+d)/2
(
4− 4π2ϵ2

)(d2−d)/2
≥ 1

dd2

(
1− ϵ

√
d(d2 + d)/2− π2ϵ2(d2 − d)/2

)
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If ϵ <
√
d/π2, which is implied by ϵ < 0.1, then the term π2ϵ2(d2 − d) is smaller

than ϵ
√
d(d2+ d)/2, so we can combine the two. We can also bound d2+ d < 2d2.

L(ψ) ≥ 1

dd2

(
1− 2ϵ

√
d(d2 + d)/2

)
=

1− 2ϵd5/2

dd2

□

Together, these two lemmas establish a form of concentration: points close to

B0 have large (lower-bounded) values of IV , and points far from B0 have small

(upper-bounded) values of IV .

3.5.2 Restricting to neighborhoods of G

Now we consider the effect of clause sets. A clause C is defined by a triple

of integers (C1,C2,C3). A point b ∈ B0 with coordinates (b1, b2, . . . bd), each bk =

±eiΘ, is “good” for the clause C if {bC1 , bC2 , bC3} are not all equal. A point in B0

is “good” for a set of clauses if it is good for each of them, and a point is “bad”

if it is not good. Each clause C has an associated set of three clause vectors

v⃗1 =
e⃗C1 + e⃗C2 − 2e⃗C3√

6

v⃗2 =
e⃗C1 − 2e⃗C2 + e⃗C3√

6

v⃗3 =
−2e⃗C1 + e⃗C2 + e⃗C3√

6
.
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Theorem 6. Take a clause C = (C1,C2,C3) and let V be its three clause vectors.

Nowhere does IV exceed 1. At any point x⃗ within a distance ϵ of a good point,

IV (x⃗) ≥ 32
27d3

(
1− 12ϵ

√
d
)
. At any point x⃗ within a distance ϵ of a bad point,

IV (x⃗) ≤ 4096
27
ϵ6.

Proof. To see that 1 is an upped bound on IV , note that IV is a product of dot

products of unit vectors, each of which is at most 1, so that IV ≤ 1.

For the second claim, we have a point x⃗ close to a good point g⃗. Since we only

care about the value of IV and the distance between |x⃗ − g⃗|, we may adjust the

phase of x⃗ and g⃗ jointly so that g⃗ is entirely real, and all of its entries are ±1. We

decompose x⃗ in the form

x⃗ = αe⃗C1 + βe⃗C2 + γe⃗C3 +∆x⃗⊥

Then the impact of the three clause vectors is,

IV (x⃗) =
1

63
|α + β − 2γ|2 · |α− 2β + γ|2 · | − 2α + β + γ|2

We seek to bound this value in the vicinity of good points. A good B0 point has

not all signs equal. Since we can permute the elements of C without affecting the

value of IV , a general good point g⃗ can be written as

g⃗ =
1√
d

(
−e⃗C1 + e⃗C2 + e⃗C3 +

√
d− 3 g⃗⊥

)
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where g⃗⊥ contains the support on all the other basis vectors. It has IV (g⃗) =
32

27d3
,

by direct computation. Then for our other point x⃗ within a distance ϵ of g⃗, each

coordinate must also be within ϵ of the corresponding coordinate in g⃗. So

ℜ[α+β−2γ] ≤ 1√
d

(
(−1 + ϵ

√
d) + (1 + ϵ

√
d)− 2(1− ϵ

√
d)
)
= −2(1−2ϵ

√
d)/
√
d

and similarly

ℜ[−2α+β+γ] ≥ 1√
d

(
−2(−1 + ϵ

√
d) + (1− ϵ

√
d) + (1− ϵ

√
d)
)
= 4(1−ϵ

√
d)/
√
d ≥ 4(1−2ϵ

√
d)/
√
d.

Putting together the six factors,

IV (x⃗) =
1

63
|α + β − 2γ|2 · |α− 2β + γ|2 · | − 2α + β + γ|2 (3.6)

≥ 1

63
ℜ[α + β − 2γ]2ℜ[α− 2β + γ]2ℜ[−2α + β + γ]2 (3.7)

≥ 1

63
32

27d3
×
(
1− 2ϵ

√
d
)6

(3.8)

≥ 1

63
32

27d3
×
(
1− 12ϵ

√
d
)

(3.9)

which is the second claim. For the third claim, take a bad point h⃗ in B0, for which

we can correct the phase to put it in the form

h⃗ =
1√
d

(
+e⃗C1 + e⃗C2 + e⃗C3 +

√
d− 3 h⃗⊥

)
Then for a nearby point only ϵ away, each coordinate is at most ϵ away. This

means

ℜ[α + β − 2γ] ≤
(

1√
d
+ ϵ

)
+

(
1√
d
+ ϵ

)
+

(
−2√
d
+ 2ϵ

)
= 4ϵ
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ℑ[α + β − 2γ] ≤ 4ϵ

=⇒ |α + β − 2γ|2 ≤ 32ϵ2

and similarly for the other two permutations, so that

IV (x⃗) ≤
1

63
(32ϵ2)3 =

4096

27
ϵ6.

□

3.5.3 F =
∫
x IV (x⃗) Approximates #NAE3SAT

With these bounds, we will be able to relate the number of solutions to a

NAE3SAT instance to the integral F =
∫
x
IV (x⃗).

Theorem 3.4. Given an instance of NAE3SAT with d variables and k clauses,

let the set of vectors V be given by K1 = 1600d7 ln2(d) copies of basic vectors (Z

and Y vectors), together K2 = d2 ln(d) copies of the clause vectors for each clause.

For sufficiently large d, there is a function p(n, k) such that, if there is at least one

solution to the NAE3SAT, F =
∫
x
IV (x⃗) ≥ pd−22d, and if there are no solutions,

F ≤ pd−d
2
.

Proof. The theorem will hold if we take p as the value of IV at a good point, or

p = d−K1d2
(

32

27d3

)K2

.
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If the original NAE3SAT instance has a satisfying assignment (1, 0, 0, 1, . . . ), there

is a corresponding good point

g⃗ =
1√
d
(+e⃗1 − e⃗2 − e⃗3 + e⃗4 . . . )

with a large value of IV (g⃗). Each set of basic vectors introduces a factor of 1/dd
2

in I, and each set of clause vectors introduces a factor of 32/27d3. Thus

IV (g⃗) = d−K1d2
(

32

27d3

)K2

= p

Further, we want to show that around this good point g⃗, there is an appreciable

volume with large IV , that will contribute substantially to F . Around each good

point, take the ball of radius

ϵg =
1

3200d9(1 + d)
.

Then by Lemma 5, each set of basic observations gives a factor in I of at least

I1 ≥
1− 2ϵgd

5/2

dd2

and by Lemma 6, each set of clause observations gives a factor at least

I2 ≥
32

27d3
(1− 12ϵg

√
d)
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so that the final IV value of each point in the ball is at least

I0 = IK1
1 IK2

2 ≥ p(1− 2ϵgd
5/2)K1(1− 12ϵg

√
d)K2 (3.10)

≥ p(1− 2ϵgK1d
5/2)(1− 12K2ϵg

√
d) (3.11)

= p

(
1− 2

1

3200d9(1 + d)
(1600d7 ln2(d))d5/2

)(
1− 12(d2 ln(d))

1

3200d9(1 + d)

√
d

)
(3.12)

≥ p

(
1− ln2 d√

d

)
(3.13)

This means the total contributed to F by the ball around this good point is then

at least p(1 − ln d/
√
d) times the volume of this ball around g⃗. The ball is not

actually a sphere in R2d, as it lies on the manifold of normalized states, which is

curved; it’s the intersection of a ball centered at g⃗ and the unit sphere. But since

ϵg < 1/2, this deformation reduces the volume by less than a factor of 1/2, and

then we can use the standard volume of the ball. So the volume obeys

Vol ≥ 1

2
· 2(d− 1)!(4π)(d−1)

(2d− 1)!
ϵ2d−1
g

and a single good point contributes a total likelihood to pnorm at least

Vol · I0 ≥ pc1c
−d
2 d9d−21d

for some particular constants c1, c2 > 1; the d−21d term clearly dominates the scale

for large d. For sufficiently large d then we can write

F ≥ Vol · I0 ≥ pd−22d
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which establishes the first claim. The second claim concerns when there are no

good points. Suppose for contradiction that there is some point x⃗ (not necessarily

in B0) so that IV (x⃗) > p/dd
2
. Applying Lemma 4, we know that it must have

ϵα = |α⃗− 1⃗| < 0.1/d2, otherwise it would have at most

IV (x⃗) ≤
(
d−d

2

(1− 0.12/4d5)
)K1

< d−K1d2 exp(−K1/400d
5) (3.14)

= d−K1d2 exp(−4d2 ln2 d) (3.15)

< d−K1d2 exp
(
−4d2 ln2 d+ d2 ln d ln(32/27)

)
(3.16)

= d−K1d2 exp
(
−d2 ln2 d+ d2 ln d ln(32/27d3)

)
(3.17)

= d−K1d2 exp

(
−d2 ln2 d+ ln

((
32

27d3

)K2
))

(3.18)

= d−K1d2
(

32

27d3

)K2

/dd
2 ln d = p/dd

2 ln d (3.19)

< p/dd
2

(3.20)
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Since ϵα ≤ 1/2, we can also apply the second part of Lemma 4 and check that the

all phases |θi| < 0.1/d, otherwise our point would have IV at most

(
d−d

2

(1− 3θ2i )
)K1

<
(
d−d

2

(1− 0.03/d2)
)K1

(3.21)

<
(
d−d

2

(1− 0.12/4d5)
)K1

(3.22)

< p/dd
2

(3.23)

Since the amplitudes are all within ϵa of 1/
√
d, and the phases are all within 0.1/d

of 0, the point’s distance to the nearest point b in B0 is at most

distB0 ≤
√
d

(
ϵa +

(
1√
d
+ ϵa

)(
(1− cos(θi))

2 + sin2(θi)
))

≤
√
d

(
0.1

d2
+

(
1√
d
+

0.1

d2

)
(2− 2 cos(0.1/d))

)
≤
√
d

(
0.1

d2
+

2√
d
(0.1/d)2

)
≤ 0.11

d3/2

If that point b is bad, then by Lemma 6 our point would have IV at most

d−K1d2

(
4096

27

(
0.11

d3/2

)6
)K2

= d−K1d2
(
0.00023

d9

)K2

= d−K1d2
(

32

27d3

)K2
(

0.00023

(32/27)d6

)K2

< p× 0.0002K2 ≤ p/5000d
2 ln d = p/(5000d)d

2

< p/dd
2

.

We’ve shown that all points have IV ≤ p/dd
2
. The volume of integration is

S2n−1 < 1, so the total integral F is less than p/dd
2
. □

3.5.4 NP Hardness

We can now prove our main result.
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Theorem 3.5. For any constant C < 1, it is NP-Hard to approximate the per-

manent of an n × n Hermitian positive semidefinite matrix within a factor of

2n
C
.

Proof. We can reduce from NAE3SAT. Given an NAE3SAT instance on d vari-

ables, we can use the set of vectors V described in Theorem 3.4 and examine

the resulting value F . As we have O(d9) vectors in V , the quantity F can be

represented as a permanent of a matrix of size O(d9). The NAE3SAT instance is

satisfiable if F ≥ pd−22d and unsatisfiable if F ≤ pd−d
2
, which can be distinguished

if approximating within a factor of dd
2−22d = O(dd

2
), and so O(2d

2
) will suffice.

If we had an oracle that could approximate permanents of size n PSD matrices

within a factor of 2n
C
for some C < 1, then we could do the replica trick: take

the matrix corresponding to F , and repeat itM = d(2−9C)/(1−C) many times along

the diagonal. The result is a matrix of size Md9, which is then approximated

within a factor of 2(Md9)C . The resulting matrix size Md9 is still poly(d) for any

fixed C. Then we raise this approximate answer to the power 1/M to recover an

approximation to the original permanent, and it has multiplicative error

(
2(Md9)C

)1/M
= 2d

10CMC−1

= 2d
9Cd2−9C

= 2d
2
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which is sufficient to distinguish between satisfiable and unsatisfiable instances. As

NAE3SAT is NP hard, so is approximating HPSD permanents with this accuracy.

This result is complementary to one of Anari et al[8], where they show that

one can approximate within a factor of exp((1+ γ+ o(1))n) where γ is the Euler-

Mascheroni constant, while we showed that permanents cannot be approximated

with subexponential error. Our hard instances circumvent the fast approximation

schemes of [16] and [34], which both have requirements on the spectrum of the

matrix, and perform more favorably when λmax/λmin is smaller. Our instances

are of low rank (only rank d, which is much larger than the matrix size n) so that

λmin = 0.

Finally, we conjecture that the reduction above is approximation preserving:

that each good point contributes an equal amount of likelihood that can easily be

estimated beforehand. Showing this would require tighter error bounds.

Conjecture 3.1. With an appropriate choice of polynomial-scaling K1 and K2,

the construction used in Theorem 3.4 is an approximation-preserving reduction

from #NAE3SAT to HPSD permanents, such that approximating HPSD Perma-

nents within a factor C is as hard as approximating #NAE3SAT (or #3SAT)

within a factor C.
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It is known that by Stockmeyer counting[57, 104, 114] computing multiplicative

approximations to PSD permanents is contained in FBPPNP, and if it is indeed as

hard as approximating #3SAT, it seems unlikely to be much easier than this.

3.5.5 Real Matrices

The arguments above all involve complex vectors, complex matrices, and inte-

grals over the complex unit sphere. The arguments however can easily be adapted

to show that PSD permanents remain hard even for purely real matrices. We

could have proved the results only for the real case and this would of course imply

hardness for the more general complex case, but the proof for the real case was less

symmetric, asthetic, or inuitive than the complex case, which is why we delayed

to this section.

Theorem 3.6. For any constant C < 1, it is NP-Hard to approximate the per-

manent of an n× n real positive semidefinite matrix within a factor of 2n
C
.

Proof. The construction proceeds very similarly to above, by reducing from NAE3SAT.

However, we now use one dimension more in the space: a d-variable NAE3SAT

problem is mapped to a (d+1)-dimensional spherical integral
∫
I(x⃗). The clauses

are mapped, as before, with K2 many sets of clause vectors, connecting the vari-

ables 1 through d in the original problem with dimensions 1 through d in the

spherical integral I(x). The “basic sets” still include K1 many instances of the
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unit vectors e⃗k in each basis direction k ∈ [d+ 1], what we previously referred to

as the Z vectors.

The Y vectors were, in preivous proofs, of the form
e⃗j±ie⃗k√

2
, for j ̸= k. This

was the sole source of complex terms in our vectors, and the reasons the resulting

matrices were complex. Instead now we use four copies of each of
e⃗j±e⃗d+1√

2
. These

each softly enforce the constraint that the component of x⃗ in the j direction and

the d + 1 direction have relative phase ±i (that is, ±
√
−1). Since each j has ±i

relative to d+ 1, this implies that each j ̸= k have relative phase ±1.

To make this quantitative and precise, we refer to the proof of Lemma 4. The

bound of 1 − ϵ2α
4d

applies as before, since the e⃗k vectors occur just as before. As

proved in Lemma 4, if θj and θd+1 differ by a phase (up to ±1) of ∆θj = θj−θd+1,

then the likelihood I(x) is reduced by a factor of 1 − 3∆θ2j ; since we use each

vector eight times, this becomes (1 − 3∆θ2j )
8. Then for two j ̸= k, j, k ≤ d, the

likelihood is at most

(1−3∆θ2j )4(1−3∆θ2k)4 ≤

(
1− 3

(
|∆θj|+ |∆θk|

2

)2
)8

≤

(
1− 3

(
|θj − θk|

2

)2
)8

≤ 1−3(θj−θk)2

which gives us the same bound on the relative phases as before, so that an anal-

ogous statement to Lemma 4 for our new basis set. The proof of Lemma 5 holds

with few modifications: in the proof above, the Y terms

∏
j≤k

α2
j + α2

k + 2αjαk cos(2π(θj − θk))
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lead to the a penalty

∏
j≤k

(1−ϵ
√
d)2+(1−ϵ

√
d)2+2(1−ϵ

√
d)2
(
1− (2πϵ)2

2

)
=
(
(1− ϵ

√
d)
(
4− 4π2ϵ2

))(d2−d)/2

≥ 1− (ϵ
√
d+ π2ϵ2)

d2 − d
2

.

Here instead we have four copies of each phase constraints, but only between j ≤ d

and d+ 1. So the penalty from

∏
j≤d

(
α2
j + α2

d+1 + 2αjαd+1 cos(2π(θj − θd+1))
)4

becomes

∏
j≤d

(
(1− ϵ

√
d)2 + (1− ϵ

√
d)2 + 2(1− ϵ

√
d)2
(
1− (2πϵ)2

2

))4

=
(
(1− ϵ

√
d)
(
4− 4π2ϵ2

))4d

≥ 1− (ϵ
√
d+ π2ϵ2)(4d) ≥ 1− (ϵ

√
d+ π2ϵ2)

d2 − d
2

as before, as long as d ≥ 9. The resulting conclusion of the lemma that the relative

value IV (x⃗)/IV (B0) ≥ 1− 2ϵd5/2 thus still holds.

Finally, Lemma 6 remains umodified in this setting, as the form of the clause

vectors is unchanged. As all the necessary lemmas hold as before, and the proofs

of Theorems 3.4 and 3.5 only care about relative values, they will all hold in the

real-valued PSD setting. □
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3.6 Quantum State Tomography

The author initially found the above construction while investigating the worst-

case hardness of quantum state tomography, and the hardness implies that several

problems in the context of tomography are NP-hard as well.

Quantum State Tomography (QST) is the procedure of estimating an unknown

quantum state from a set of measurements on an identically prepared ensemble.

The procedure can encompass both the choosing of measurement bases as well as

estimating the resulting state from the measurements; in adaptive settings, the

running estimate is also used to inform future measurement choices[68, 103]. We

focus on the latter task, of building an estimate of the state. We look at four

related forms of what “estimation” can qualify as:

1. Finding the Maximum Likelihood Estimator (MLE): the pure state ρ most

likely to produce the observations.

2. Finding the Bayesian expected state ρAvg: assuming a prior over the possible

pure states, finding the mixed state presenting the mixture of appropriately

weighted possible states.

3. Computing the expectation value of some future observation(s).
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4. Finding the probability that the unknown state is in fact some particular ρ0.

(As there are infinitely many different pure states, we are actually asking

for the probability density at ρ0.)

The first three estimations problems have all been extensively studied with var-

ious heuristics. MLE can be attempted by linear inversion[102, 40], iterative

search[92, 69], or even neural networks[117]. Bayesian estimation can be ac-

complished by direct numerical integration[22] or particle based sampling[68],

possibly with neural networks guiding the particles[103]. Directly estimating

future samples has also been attempted with neural networks[112] or classical

shadows[1, 2, 66]. The author is not aware of any prior work on computing esti-

mation problem 4.

We can show that estimation problems 2, 3, and 4 are essentially as hard as

approximating PSD permanents, and that task 1 is also NP-hard. The exponen-

tial difficulty (assuming ETH[70]) is in fact in the dimension d of the underlying

Hilbert space. Many questions in quantum information appear to be “exponen-

tially” hard, in the sense that it is hard to analyze a system q qubits faster than

O(2q). But here d = 2q, so that even when the number of qubits is a logarith-

mically small q = log(d), the problem of state estimation remains exponentially

hard.
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3.6.1 Outline of Tomography Results

Of the four forms above, we focus first on estimation problem 4. Although it

is likely the question least relevant to experiment, it is the easiest to manipulate

algebraically. We call it Quantum-Bayesian-Update, or simply QBU, and

define it in Section 3.6.2. In Section 3.6.3, we give an exponential time algorithm

for QBU, showing that it is at least possible. In Section 3.6.4 we show that

estmation problems 2, 3, and 4 are equivalent. In Section 3.6.5 we explain QBU’s

connection to HPSD permanents, and show it is NP-Hard to approximate within

subexponential error. In Section 3.6.6 we show how the construction of difficult

PSD permanents can also be modified shows that the MLE problem (estimation

problem 1) is also NP-hard to approximate: it is NP-hard to check the existence

of a state with likelihood within a subexponential factor.

3.6.2 Quantum Bayesian Update

We define the QBU problem as follows: given a series of observations Oi each

taken from a copy of ρ, and a guess ρ0, what is the probability density that ρ = ρ0?

The actual probability of equality is zero – unless we have some other powerful

information about the state – which is why we ask for the probability density in

the space of candidate density matrices.
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Bayes’ theorem lets us compute the probability density of a true state ρ in

terms of the likelihood of the observations P (O|ρ), a prior belief distribution

P (ρ), and the total probability of the sequence of observations P (O). It reads,

P (ρ0|O) =
P (O|ρ0)P (ρ0)

P (O)

In order for the equation to be meaningful and not identically zero on both sides,

we can read ρ as representing a small volume in the space of density matrices.

While there are many natural priors on the space of density matrices, we focus on

the case where we know the unknown state ρ is pure. This models, for instance,

where we are trying to identify the output of a unitary quantum channel. The

most natural prior is then the uniform distribution over all pure states, given by

the Haar measure. Then all P (E) are equal. The likelihood of a given observation

Oi is simply Tr[Oiρ], so our goal is to compute

P (ρ|O) =
∏

i∈[n] Tr[Oiρ]
P (O)

In general Oi could be operators of any rank, and could belong to POVMs.

For hardness, it will suffice it consider only observations with rank 1 and trace

1, but for now we allow them to be general. For any particular ρ and sequence

Oi, the likelihood
∏

Tr[Oiρ] can be evaluated directly in O(nd2) operations. The

difficulty then lies in the normalizing factor,
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pnorm = P (O)

so that

P (ρ|O) = p−1
norm

∏
i∈[n]

Tr[Oiρ]

This indicates the probability of an entire sequence of observations. While a

single observation has the simple form of P (Oi) = Tr[Oi], the expression rapidly

becomes more complicated as we consider sequences of observations.

A brief example is useful for understanding what pnorm represents. Suppose

that we measure a qubit 1000 times along each of the X, Y, and Z axes: we expect

to see a particular amount of bias. Observing 1000 results each of +X, +Y, and

+Z would be very unlikely, as the qubit cannot be in the +1 eigenstate of all

three axes at once. It would be similarly surprising to see exactly 500 counts

each of +X, -X, +Y, -Y, +Z, and -Z: this state shows no tendency of a particular

orientation, but a pure qubit state must show a bias towards some orientation.

This would have a small value of pnorm, as there is no good state to explain the

sequence observed. A sequence of 1000 +Z observations, and 500 each of +X, -X,

+Y, and -Y is much more likely, as it can be well explained by the |↑⟩ state, and

so has a larger value of pnorm.

As we just saw, computing Pdensity(ρ = ρ0|O) is easy if pnorm is known, and

conversely pnorm can be easily computed from the probability density. pnorm is
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a more attractive goal for our problem, as it doesn’t depend on ρ0. It can be

computed by summing up all unnormalized probabilities:

pnorm =

∫
x⃗∈Cd

1

∏
i∈[n]

Tr[Oixx†] dx

where the integral is over the Hilbert space Cd restricted to length-1 vectors.

This leads to the definition,

Definition 3.1 (Quantum-Bayesian-Update). Given a collection of observations

O = (O1, . . .On) in a Hilbert space of dimension d, compute

pnorm =

∫
x⃗∈Cd

1

∏
i∈[n] Tr[Oixx†] dx
Tr[Oi]

(3.24)

3.6.3 Polynomial time QBU for fixed d

This space of state vectors Cd
1 has the geometry of a real (2d − 1)-sphere,

and the entries of ρ are quadratic in the Cartesian coordinates for this sphere.

Thus, pnorm becomes a integral over a (2d−1)-sphere of a homogeneous 2n degree

polynomial in the 2d variables. The expansion of the polynomial into monomials

takes O((2n)2d) time, and each monomial can then be immediately integrated over

the sphere using the formula[53]

∫
Sk

xα1
1 x

α2
1 . . . xαk

k =


0 if any αi are odd

2
∏

i Γ(
1
2
(αi+1))

Γ(
∑

i
1
2
(αi+1))

if all αi are even

(3.25)
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where Γ is gamma function, Γ(1
2
(α+1)) =

√
π2α(α−1)!!. This gives a polynomial

time algorithm for evaluating pnorm when d is fixed.

3.6.4 Relationship between estimation problems

Since QBU is not of particular interest to actual tomography tasks, we show it

is equivalent (under polynomial many-one reductions) to the more realistic tasks

2 and 3 above, of estimating observables or the state itself. We can show that

these are just as difficult (or, just as easy) as the Bayesian update step.

Computing ρAvg

Given that there will always be room for uncertainty, we cannot meaningfully

ask for a single pure state as an answer, but we can ask for ρAvg: the mixed state

representing the correctly updated mixture over all the possible true states, given

by
∫
P (ρ)ρ dρ. The impure ρAvg reflects the expectation of all observables given

our current information.

We parameterize the space of density matrices by a single vector ψ ∈ S2d−1,

and given some completed observations O, the Bayesian expected state is

ρAvg =

∫
ψ∈S2d−1

P
(
|ψ⟩ ⟨ψ|

∣∣∣O) |ψ⟩ ⟨ψ| dψ
=

∫
ψ∈S2d−1

p−1
norm

(
|ψ⟩ ⟨ψ|

) ∏
O∈O

⟨ψ|O|ψ⟩ dψ
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whose individual matrix elements are

⟨i|ρAvg|j⟩ = p−1
norm

∫
ψ∈S2d−1

⟨i|ψ⟩ ⟨ψ|j⟩
∏
O∈O

⟨ψ|O|ψ⟩ dψ

We have already discussed computing pnorm, as a spherical integral of a polyno-

mial. For any given i and j, the remaining integral is also a spherical integral of a

polynomial, and can be computed in the same fashion. In fact we can re-use the

results from the large product excluding the i and j, and so ρAvg can be recovered

in O(nd) time.

On the other hand, a diagonal element ⟨i|ρavg|i⟩ gives

⟨i|ψ⟩ ⟨ψ|i⟩
∏
O∈O

⟨ψ|O|ψ⟩ = ⟨ψ|
(
|i⟩ ⟨i|

)
|ψ⟩

∏
O∈O

⟨ψ|O|ψ⟩ =
∏

O∈(O∪{|i⟩⟨i|})

⟨ψ|O|ψ⟩

which is the same integrand as for pnorm, only with one additional observation

|i⟩ ⟨i| added.

If we had an algorithm compute ρAvg efficiently, we could use it to solve the

Bayesian update problem on a set of observations O, by discarding the last ob-

servation Olast, computing ρAvg, decompose Olast into a scaled sum of projectors∑
i λi |i⟩ ⟨i|, and then evaluate the sum of matrix elements

∑
i λi ⟨i| ρAvg |i⟩. This

shows that state estimation is at least as hard as Bayesian updating.
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Computing observable expectations

We could try to only find the expectation of a particular observable A, and

not the whole state ρAvg, conditioned on our observations. We can write this as

E[A|O]. This is also just as hard: density matrices as a d2 − 1 linear space, and

expectations of observables are linear in ρ, so by computing the exact expectation

of d2 − 1 independent obsevables, we can find ρAvg exactly. This is of course

precisely the idea behind least-squares quantum state estimation, and it shows

that computing expectation values is as hard as ρAvg.

Finally, if we could compute a Bayesian update, we could compute the ex-

pectation values of observables. Just as before, write our desired obsevable as

A =
∑
λi |i⟩ ⟨i|, and evaluate

E[A|O] =
∑

λiE[|i⟩ ⟨i| |O] =
∑

λip
−1
norm

∫
ψ∈S2d−1

∏
O∈(O∪{|i⟩⟨i|})

⟨ψ|O|ψ⟩ dψ

Computing pnorm and each of the d many spherical integrals is a Bayesian update

problem. We have reductions (Bayesian update)→ (Compute ρAvg)→ (Compute

E[A|O]) → (Bayesian update), so these are equivalent in difficulty. Note that

these are many-one reductions, which is unavoidable as ρAvg is a matrix-valued

function problem while the two are scalar-valued.
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3.6.5 NP-Hardness of QBU and ρAvg

We now state the main hardness results on quantum tomography.

Theorem 3.7. For any C < 1, it is NP-hard to compute the value pnorm for

Quantum-Bayesian-Update with an approximation factor of at most 2n
C
.

Proof. When Oi are all rank-1 operators, the numerator in Eq. 3.24 is of the form

in Theorem 3.3, and the denominator in Eq. 3.24 can be efficiently computed

by direct calculation. Thus any PSD permanent can be efficiently reduced to

a problem of computing pnorm with an approximation-preserving reduction, and

QBU is NP-Hard to approximate to the same degree.

Theorem 3.8. For any C < 1, it is NP-hard to compute a diagonal matrix entry

of ρAvg, in any basis, with an approximation factor of at most 2n
C
. It is also

NP-hard to compute the expectation of a positive semidefinite operator O with an

approximation factor of at most 2n
C
.

Proof. A diagonal element of ρAvg is the expectation value of the rank-1 PSD

operator projecting onto that element, so the first statement is a special case of

the second. As described above, both of these quantities then also take the form

of a PSD permanent, and any PSD permanent can be turned into these problem

by taking the desired matrix element (in the first case) or observabe O (in the
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second case) to be the first vector V †
1 V1. These are also approximation preserving

reductions, so these are also NP-hard to approximate.

3.6.6 NP-Completeness of Maximum Likelihood Estima-

tion

In the case of MLE state tomography, we are not so demanding that we require

knowledge of the full average state, and we are content with just finding one good

explanatory state |ψ⟩. Accordingly, we do not consider a permanent
∫
x
IV (x) (a

problem of counting solutions to 3-SAT), but just the question of maximizing

IV (x) (a problem of finding a solution to 3-SAT). This allows to show that the

problem is actually lies in NP, while this is unlikely to be true for the other

problems described above, unless BPPNP = NP (widely presumed to be false).

Formulating the MLE problem as a decision problem:

Definition 3.2 (C-Approximate-Quantum-MLE). Given a collection of observa-

tions Oi of an unknown quantum state |ψ⟩, and a real number p, decide whether

there is a |ψ⟩ whose likelihood L(ψ) =
∏

i ⟨ψ|Oi|ψ⟩ is at least p, or if L(ψ) < p/C

for all ψ, being promised that one of these is the case.

We will show that even the approximate problem is NP-hard, for any C.
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Theorem 3.9. For any C > 1, the C-Approximate-Quantum-MLE problem is

NP-complete.

Proof. Containment in NP is straightforward, as one can supply a description of

the state |ψ⟩, which requires only d many real numbers, and then L(ψ) can be

directly evaluated.

To show hardness, we use the same NAE3SAT construction as in Theorem 3.4.

As was shown in the proof of that theorem, any good point (thus, a solution to

the underlying NAE3SAT problem) has

L(ψ) = I0(x) ≥ p

(
1− ln2 d√

d

)
.

We also show in that proof that, if there are no good points (and thus no solutions)

then

L(ψ) = I0(x) ≤ p/dd
2

for all points. Thus, the existence of a high likelihood point even within C < dd
2

implies the existence of a solution.

3.6.7 Practical Difficulty of Tomography

Although the above results imply that several approaches to quantum state

tomography may be difficult to compute exactly, these difficult instances are some-

what artificial and unlikely to occur in practice. Additionally, difficult instances
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such as the one constructed in the above proofs could be readily addressed in

practice by the addition of measurements in e.g. the X measurement basis, which

would directly probe the relative signs in the state vector and allow relatively

efficient readout of the state. Additionally, the constraint that we only search for

pure states – while a useful prior that could be relevant once high-fidelity quan-

tum computer exists – makes a highly nonconvex search space. If we relax this

and take a prior with uniform measure over the space of density matrices, then

the resulting likelihood function is logarithmically convex and the resulting MLE

problem can be solved in polynomial time in d. Thus, these results should not

be taken as a statement that quantum state tomography is actually exponentially

hard in the Hilbert space dimension d. Rather, any analysis of quantum state

tomography procedures will need at least one of: careful choice of measurement

basis, only probabilistic guarantees on convergence, or (if doing MLE) a convex

prior.
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4.1 Introduction

While the quantum many-body problem for fermions can in general not be

solved numerically efficiently, a plethora of approximate computational approaches

have been developed that are able to capture relevant properties of many-fermion

systems in certain limits. A widely used class of such methods are Hartree-Fock

and self-consistent Bardeen-Cooper-Shrieffer (BCS) theory [12, 13]. These can be

viewed as variational mean-field methods: they find the best approximation to the

exact ground state within the space of non-interacting fermion states. Another

powerful approach is density-functional theory, which expresses the total energy

of the fermionic system as a – generally unknown – functional of the electron den-

sity [64]; while finding this functional is difficult, decades of numerical experience

have shown that relatively simple approximations to this functional, such as the

local density approximation, can successfully describe materials where the effect

of interactions is moderate [73].

Common to these approaches is that the most computationally expensive step

in the numerical simulation is finding the ground state of a system of fermions

coupled to their self-consistent potential (the mean-field potential in the case

of HF and BCS [62], and the Kohn-Sham potential in the case of DFT [83]).

Without further approximation, this step scales cubically in the number of degrees
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of freedom and as such becomes prohibitively costly for systems in excess of a few

thousand degrees of freedom.

Here, we will demonstrate that in low spatial dimensions and for local Hamil-

tonians, this step can be accelerated significantly by using tensor network states

(TNS) [125, 128, 51, 101, 111, 96, 97, 98, 120, 74, 121, 122] (for recent reviews,

see Refs. [100, 99, 31]). Such states are known to be able to compactly represent

weakly entangled quantum many-body states, such as the ground states of local

Hamiltonians. In many cases, the computational scaling of these approaches is em-

pirically found to be approximately linear in the size of the system and exponential

in its bipartite entanglement. However, in the case of free fermions, this can be re-

duced further to a polynomial scaling in the entanglement by using so-called Gaus-

sian fermionic tensor network states [87, 49, 110, 45, 59, 52, 50, 60, 71]. Recently, a

particular variant, Gaussian fermionic matrix-product states (GFMPS) [110], was

used as basis for efficient computational methods for non-interacting fermions in

quasi-one-dimensional systems. These methods are able to compute equilibrium

and non-equilibrium properties for systems order of magnitudes larger than naive

approaches [108].

In this chapter, we focus on accelerating the self-consistent generalized Hartree-

Fock (gHF) iteration [11, 23, 43, 41] using Gaussian fermionic matrix-product

states. We begin by reviewing the gHF approach, which should be viewed as the
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most general variational method using states of non-interacting fermions and ele-

gantly unifies Hartree-Fock and self-consistent BCS theory. We then rederive the

self-consistency equations for gHF, review key properties of GFMPS and discuss

how to efficiently implement the gHF iteration using GFMPS. Finally, we demon-

strate the approach on an example of interacting fermions in a quasi-dimensional

geometry in the presence of an inhomogeneous trapping potential.

We note that other numerical approaches to solve the gHF problem have been

discussed in Ref. [85, 86]. In particular, Ref. [85] discusses how to perform real-

and imaginary-time evolution in the gHF setting, and pursues imaginary-time

evolution as an approach to find the ground states. We focus here instead on

the self-consistent field approach, which is often faster but may be more prone to

becoming trapped in local minima. We note that the time evolution described in

Ref. [85] could similarly be accelerated using GFMPS techniques [108]. A different

approach to improve the performance of gHF based on highly scalable methods

for solving the fermionic problem for sparse systems was discussed in Ref. [90],

reaching remarkably large systems by parallelizing the computation on several

thousand computational cores.
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4.2 Methods

4.2.1 Gaussian fermionic states

We consider a lattice of fermions, where the operators a†i and ai create and

annihilate a fermion on the i’th site, respectively. For our purposes, it will be

convenient to introduce a basis of self-adjoint Majorana fermion operators, which

we denote ci, and which satisfy the commutation relations {ci, cj} = 2δij. They

are related to the standard creation and annihilation operators by ĉ2i−1 = âi+ â
†
i ,

ĉ2i = −i(âi−â†i ). In this way, any system withN fermionic modes can be rewritten

as one with 2N Majorana fermions.

For any density operator ρ̂ of a system of fermions, we can associate a real

anti-symmetric so-called covariance matrix Γ:

Γij =
i

2
Tr(ρ̂[ĉi, ĉj]). (4.1)

For pure states, which we focus on here, Γ has to satisfy Γ2 = −1. Gaussian

states are furthermore characterized by the property that this covariance matrix

contains a full description of the density operator, i.e. the expectation value of any

operator can be computed from it [28] (for a more formal definition of Gaussian

states, see Ref. [26]). Specifically, the expectation value of a Majorana monomial
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x∈X ĉx, where X denotes some set of lattice sites, is given by

Tr

(
ρ̂
∏
x∈X

ĉx

)
= Pf(ΓX ), (4.2)

where Pf(·) denotes the Pfaffian and ΓX the covariance matrix restricted to the

sites in X . This should be viewed as embodiment of Wick’s theorem in the

covariance matrix formalism.

For Hamiltonians quadratic in creation and annihilation operators (alternately,

quadratic in Majorana operators), i.e. of the form

Ĥ = −i
∑
i, j

Hij ĉiĉj (4.3)

where H is real and anti-symmetric, the ground state is always Gaussian. H can

be diagonalized and has purely imaginary eigenvalues. The minimum energy state

is determined by the covariance matrix

Γ = i(V−V
†
− − V+V

†
+) (4.4)

where V+ (V−) are the normalized eigenvectors of H corresponding to eigenvalues

with positive (negative) imaginary parts. In this way, Γ and the ground state can

be determined through a diagonalization of H. Such diagonalization takes O(N3)

time.

Every pure Gaussian fermionic has well-defined fermion parity, i.e. any pure

Gaussian state |γ⟩ satisfies
∏
ĉi |γ⟩ = eiπ

∑
â†i âi |γ⟩ = p |γ⟩ with p = ±1. (See
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Appendix B.2.) In terms of the covariance matrix γ corresponding to this state,

the parity is given by Pf(γ), where Pf denotes the Pfaffian. An important subset

of states within the class of Gaussian fermionic states are those with a well-defined

particle number, i.e. that satisfy
∑
â†i âi |γ⟩ = n |γ⟩ for some integer n. These are

traditionally referred to as Slater determinants and can be written as
∏n

i=1 d̂
†
i |0⟩,

where the d̂†i are a new set of n fermionic creation operators that are related to the

original â†i by a unitary transformation, and |0⟩ is again the fermionic vacuum.

4.2.2 Generalized Hartree-Fock

For Hamiltonians that are not quadratic, finding the ground state is in gen-

eral exponentially difficult. However, the solution can be approximated using a

variational approach, i.e. finding the state within some efficiently parametrized

variational class that minimizes the expectation value of the energy. If a suffi-

ciently powerful class of variational states is chosen, this approximates physical

properties of the true ground state accurately. Choosing this variational class

to be the Slater determinants, i.e. Gaussian fermionic states with fixed particle

number, leads to the well-known Hartree-Fock approach. By considering the en-

tire set of Gaussian fermionic states, i.e. including those with fluctuating particle

number, one arrives at a generalized Hartree-Fock approach that is also able to

capture superconductivity at the mean-field level, i.e. contains the ground states of
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BCS theory where the superconducting order parameter has no quantum fluctua-

tions [11]. It is known that there exist systems that are much better approximated

by generalized Hartree-Fock than by non-generalized Hartree-Fock [29].

We now review this generalized Hartree-Fock approach, rederive the self-consistent

iteration for its numerical solution, and clarify its relation to better-known ap-

proaches. Our starting point is a Hamiltonian that is quartic in the fermion

operators:

Ĥ = −i
∑

Tij ĉiĉj +
∑

Uijkℓĉiĉj ĉkĉl. (4.5)

Here, Tij is real and antisymmetric, while Uijkℓ is real and antisymmetric under

exchange of any two indices, i.e. Uijkℓ = −Ujikℓ = Ujkiℓ = . . .. Any quartic fermion

Hamiltonian can be written in this form, including physically relevant cases such

as the Hubbard Hamiltonian and the Coulomb interaction (see Appendix B.1 for

details).

The energy for a Gaussian state |Γ⟩ with corresponding covariance matrix Γ

is easily evaluated using Eqn. (4.2) by recognizing that the expectation value of
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the 4-fermion term is given by

⟨Γ|ĉiĉj ĉkĉl|Γ⟩ = Pf



0 Γij Γik Γil

−Γij 0 Γjk Γjl

−Γik −Γjk 0 Γkl

−Γil −Γjl −Γkl 0


(4.6)

= ΓijΓkl − ΓikΓjl + ΓilΓjk. (4.7)

We can now use the identities (repeated indices are summed over):

−
∑

UijklΓikΓjl = −
∑

UikjlΓijΓkl

=
∑

UijklΓijΓkl (4.8)

and

∑
UijklΓilΓjk =

∑
UiljkΓijΓkl

=
∑

UijklΓijΓkl (4.9)

to arrive at the final expression

⟨Γ| Ĥ |Γ⟩ =
∑

TijΓij + 3
∑

UijkℓΓijΓkl. (4.10)

The factor of 3 can be viewed as counting the Hartree term, Fock term, and

BCS term each, which are traditionally viewed as distinct. However, due to the

symmetries of the Majorana representation, here these three terms all appear

symmetrically.
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We now have to find the pure-state covariance matrix Γ (i.e. satisfying the

non-linear constraint Γ2 = −1) that minimizes the above expression. We can

recover the typical self-consistent HF iteration by starting with an initial guess Γ0

(satisfying (Γ0)2 = −1) and expressing the new state as Γ = Γ0+ δΓ (where δΓ is

not by itself a valid covariance matrix). In terms of this new Γ and the starting

point Γ0, the energy is given by

⟨Γ|Ĥ|Γ⟩ =
∑

TijΓ
0
ij + 3

∑
UijkℓΓ

0
ijΓ

0
kℓ (4.11)

+
∑

Tij(Γij − Γ0
ij) + 3

∑
Uijkℓ(Γij − Γ0

ij)Γ
0
kℓ

+3
∑

UijkℓΓ
0
ij(Γkℓ − Γ0

kℓ) +O(
∥∥Γ− Γ0

∥∥2)
≈ const.+

∑[
Tij + 6UijkℓΓ

0
kℓ

]
Γij (4.12)

Here, we have made the key approximation to neglect terms of order ∥Γ− Γ0∥2

in order to arrive at a linear functional of Γ. Furthermore, we have used the

same symmetries as in Eqns. (4.8), (4.9) to collect different terms together. We

note that the final expression can be viewed as an effective quadratic Hamiltonian

acting on Γ,

Fij = Tij + 6
∑
kℓ

UijkℓΓ
0
kℓ, (4.13)

which is commonly referred to as Fock matrix. Its ground state is by construction

a valid covariance matrix that satisfies Γ2 = −1. When the system has local
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hopping and interaction terms T and U , they are sparse and will have only O(N)

entries, so the Fock matrix can be computed from Γ in O(N) time. The iteration

now proceeds by solving for the ground state of F , then replacing Γ0 by that

new state and recomputing the Fock matrix F , and repeating this procedure until

convergence.

While it is known that this iteration cannot find the lowest-energy state in

all cases [109], for many systems, especially those in which ∥U∥ ≪ ∥T∥ , it is

empirically known to converge rapidly and reliably to a global minimum energy.

In other cases, there can be local minima or stable oscillations. The Optimal

Damping Algorithm attempts to remediate this by choosing the minimum-energy

convex combination tΓnew+(1− t)Γold [33]. Since the energy is a scalar quadratic

function of t, this can be directly minimized through evaluation at any three values

of t.

Computing Γ from H requires an eigenvalue decomposition, an operation

which scales as O(N3) in general. In many cases, this will become the computa-

tional bottleneck and limit the system size for which Hartree-Fock can be used

to several fermionic degrees of freedom. It is worth noting, however, that there

are important use-cases for Hartree-Fock where this is not the bottleneck. For ex-

ample, in quantum chemistry the Hamiltonian is non-local and the basis is not a

real-space grid, such that there are O(N4) terms in the Hamiltonian that need to
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be computed as multi-dimensional integrals over the basis functions. In this case,

computing the terms of the Hamiltonian is the bottleneck of the Hartree-Fock

simulation. However, as we will see in the next section, when the Hamiltonian is

local and the system quasi-one-dimensional, Gaussian fermionic tensor networks

offer a more time- and memory-efficient approach.

4.2.3 Gaussian fermionic tensor networks

While a generic state on N particles can have as many as N/2 bits of entan-

glement across a cut, obeying what is commonly referred to as a volume law, the

entanglement in low-energy states is typically much less. The situation is best un-

derstood for gapped, local Hamiltonians in one spatial dimension, which are known

to have area-law entanglement in their ground state [46], i.e. the entanglement is

bounded by a constant regardless of system size. The same behavior is expected

for most systems also in higher dimensions [119]. The area law is typically violated

in gapless systems; however, in many cases this violation is mild. For example,

conformal field theories in 1D have only O(log(N)) entanglement [65, 123], i.e.

the area law is violated by a logarithmic correction.

Tensor networks [100, 99, 31] make use of the entanglement properties of low-

energy states to represent them more efficiently. Matrix product states (MPS) are

a particular class of tensor network states [51, 126, 101] that is known to be able to
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efficiently represent the ground states of gapped one-dimensional Hamiltonians.

Furthermore, MPS can be manipulated efficiently and the variational problem

can in many cases be solved efficiently using the density-matrix renormalization

group (DMRG) method [125]. The accuracy of the approximation can be con-

trolled systematically using the bond dimension M of the MPS, which is the size

of the matrices associated with each site in the lattice; as such, the computational

cost scales with the third power of the bond dimension. The maximum bipar-

tite entanglement that can be captured in an MPS is bounded by log(M), and

therefore M needs to grow exponentially with the entanglement in the system.

While rigorous bounds for the scaling of MPS simulations are available [88, 67],

heuristically one often finds an approximately linear scaling of the computation

time with system size for gapped systems.

However, if the underlying Hamiltonian is quadratic, this exponential scaling

in entropy can be improved further [87, 49, 110, 45, 59, 52, 50, 60, 71, 108]. A

conventional tensor network can be understood as associating a quantum state

with the vertices of a graph (which may or may not be the underlying lattice); the

degrees of freedom on these states are associated with edges of the graph and can

be physical or auxiliary. The physical quantum state is recovered by projecting the

auxiliary degrees of freedom on each edge of the graph onto a maximally entangled

state. One can now choose these quantum states associated with the vertices of
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the graph to be Gaussian states, i.e. states satisfying Wick’s theorem, and choose

the maximally entangled state that the edges are projected onto as a Gaussian

state as well. In this case, the physical state being represented is Gaussian as well,

and the entire computation can be performed in terms of covariance matrices of

the states. This representation inherits most properties of general tensor network

states; however, the exponential scaling with the entanglement entropy is replaced

by a polynomial scaling, i.e. the ansatz is exponentially more efficient in terms

of its scaling with entanglement entropy. This construction was used to obtain

practical, efficient algorithms for one-dimensional systems of free fermions using

Gaussian fermionic matrix-product states (GFMPS) in Ref. [108]; these methods

form the basis of the efficient gHF calculations presented in this chapter.

On a technical level, a GFMPS is obtained by associated to each site i on a

chain a pure Gaussian state |γi⟩ with covariance matrix γi. The fermionic modes

on each state can be assigned to three groups: physical modes and auxiliary

modes connecting to the left and right. These auxiliary degrees of freedom can

be thought of as capturing entanglement to the left and right of the system,

respectively, and the physical state is obtained by projecting the right auxiliary

modes on site i with the left auxiliary modes on site i+1 onto a maximally mixed

state (often referred to as ”tracing out” or ”contracting”), so that only physical

modes are left. The number of auxiliary modes on each bond, which we denote
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as χ and which should be viewed as hyperparameter refining the ansatz similar to

the bond dimension M for conventional MPS, bounds the bipartite entanglement

in the state by S ≤ χ log
√
2, i.e. the maximal entanglement is linear rather than

logarithmic in the case of conventional MPS.

As a crucial ingredient for practical calculations, Ref. [108] describes the canon-

ical form for GFMPS, efficient computation of the total energy as well as a way to

express the total energy as a linear function of a local tensor. These components

together allow for a straightforward generalization of standard MPS techniques,

such as the DMRG algorithm, which (starting from an initial guess for the state,

for example a completely random state) finds an approximation of the ground

state of the system by iteratively optimizing each tensor (or pairs of tensors) in

the MPS. This optimization is swept back and forth across the system until con-

vergence is reached. While a detailed review of the technical aspects of GFMPS

calculations is beyond the scope of this manuscript, we review some key aspects

of the GFMPS method in Appendix B.3.

For the discussion of our numerical results below, an important practical dif-

ference between conventional MPS and GFMPS is that in the latter case, it can

be advantageous to group several physical sites together and form a lattice of such

blocks. We will therefore typically refer to a block of B sites, which is a single

site in the GFMPS but encompasses B physical sites. Choosing χ and B must
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be done carefully, and one must generally ascertain convergence with respect to

χ. For a given χ, it is typically close to optimal to choose blocks of size 2χ (if the

goal is to minimize memory) or χ (if the goal is to minimize computation time).

4.2.4 gHF using GFMPS

In the full solver, the gHF iteration forms an outer loop; its pseudocode is

shown in Fig. 4.1. In each iteration, it queries the covariance matrix Γ0 from

the underlying GFMPS representation, builds an effective potential F from the

covariance matrix Γ0, and then passes this new potential to the DMRG solver

to obtain an updated Γ in GFMPS form. In the inner loop, several sweeps of

the DMRG optimization are performed to obtain the lowest-energy GFMPS for a

given Fock matrix F . The GFMPS is re-used as the initial state for the DMRG

solver in the next gHF iteration in order to speed up convergence.

In principle, the entire dense covariance matrix Γ can be extracted from a

GFMPS. However, this would require O(N2) memory and negate the time and

memory savings of the GFMPS approach. We focus on a local Hamiltonian, where

T and U connect each block to only a small number of other blocks. Then we only

need to extract a block-space Γ, populating the blocks that are connected by T

and U . Strictly local models like the Hubbard model have only intra-block quartic

terms (U), and inter-block quadratic terms (T ), so that a sparse Γ can be extract
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Algorithm 1 GFMPS gHF

function Gfmps-gHF(T, U)

gfmps← random initial state

GfmpsDmrg(T, gfmps);

Γ = ExtractGamma(gfmps);

E0 ←∞

for s← 1 to maxIter do

F ← 6Uij,klΓk,l + Ti,j;

GfmpsDmrg(F, gfmps);

Enew ← (Fi,j + Ti,j)Γj,i/2

∆E ← E0 − Enew

If |∆E| < ∆Etarget, break;

Γ = ExtractGamma(gfmps);

E0 ← Enew

end for

end function

Figure 4.1: Pseudo-code description of the gHF iteration using a GFMPS-based
solver.
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in O(N) time; the same asymptotic scaling will be preserved for models with finite

but bounded range (e.g., next-nearest-neighbor interactions). Conversely, a non-

local interaction such as an unscreened Coulomb interaction with 1/r decay would

add terms between all pairs of blocks, and thus require computing all elements

of Γ and lead to a dense Γ and F . In this unfavorable case, the GFMPS-based

approach would recover the computational cost of the dense approach. In some

cases, for example for screened Coulomb interaction of the form e−r/ξ/r, it may

be possible to introduce a sharp cutoff and set all interaction terms beyond this

distance to zero in order to recover the linear scaling.

Pseudocode for the subroutines GfmpsDmrg and ExtractGamma can be

found in Appendix C. It is important to note that the same gfmps object is being

used across iterations, and the previous state computed by GfmpsDmrg is used

as input to the next GfmpsDmrg. After the first one or two iterations, the

effective potential F will not change much, so the previous state of gfmps is a

good initial state for the DMRG solver.
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4.3 Results

4.3.1 Model

To demonstrate the efficacy of the approach, we study the Hubbard model

on a two-dimensional rectangular lattice with a quadratic anisotropic trapping

potential, loosely modeling trapped quantum gases [36, 42, 113]. The number

operator at a site r is n̂rσ = â†rσârσ, and the electron density as its expectation

⟨n̂rσ⟩. The superfluid density is 1
2
⟨âr↑âr↓ + â†r↑â

†
r↓⟩. The Hamiltonian is given by

Ĥ = Ĥ0 + Ĥint + Ĥtrap (4.14)

Ĥ0 = −t
∑

⟨r1,r2⟩,σ

â†r1σ âr2σ − µ
∑

n̂r1σ (4.15)

Ĥint = U
∑
r

(
n̂r↑ −

1

2

)(
n̂r↓ −

1

2

)
(4.16)

Ĥtrap =
∑
r,σ

(Vxr
2
x + Vyr

2
y)n̂rσ, (4.17)

where â†rσ creates a fermion of spin σ on site r = (x, y) of the lattice, by ⟨r1, r2⟩ we

denote pairs of nearest-neighbor pairs, and the spin index σ runs over {↑, ↓}. Here,

t denotes the hopping strength, µ sets the chemical potential and thus controls

the filling of our system (noting that due to the Majorana representation being

used in our method, we don’t fix the particle number), U is the strength of the

on-site Hubbard interaction, and Vx and Vy control the properties of the harmonic

trap. We quote all energy scales below in units of the hopping t.
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We note that in the metallic phase, the Hubbard model exhibits a mild vio-

lation of the area law: for a system of width W and length L, with L ≫ W , the

entanglement entropy will scale as W logL. However, as previously demonstrated

in Ref. [108], the scaling of the GFMPS approach remains cubic in W and only

slightly higher than linear in L.

In addition to the parameters of the physical model, there are the parameters

of the method. Both dense gHF and GFMPS are run until ∆E < 10−3, where ∆E

is the energy difference after subsequent iterations. The GFMPS has additional

parameters for the bond dimension χ and block size B. Lengths were picked

to always be multiples of B, so that all blocks were equal size. We generally

performed 4 GFMPS DMRG sweeps per gHF iteration and use the single-site

DMRG algorithm [127].

4.3.2 Square systems

While the GFMPS approach is much better suited to quasi-one-dimensional

systems, i.e. where the length L far exceeds the width W , we first test the

accuracy of the approach for a square system with W = L = 32. Although

this not in the L ≫ W regime we are primarily interested in, this allows us

to ascertain what convergence rates or hyperparameters we might expect, and

the O(L3) scaling of the GFMPS on square systems still outperforms the O(L6)
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Figure 4.2: Top-left: filling fraction over space with standard Hartree-Fock.
Top-right: with GFMPS accelerated method. Bottom: difference between top
two, contrast enhanced 13x.
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Figure 4.3: (a) Convergence of the energy as function of CPU time for various
bond dimensions χ as well as for the dense Hartree-Fock solver. Here we have used
L = 280, U = 0.4t. A bond dimension of χ = 80 sufficed to achieve similar energy
to the dense solver (< 10−3 error), but ran 7.5x faster. Energy is relative to the
final result of the dense computation, which converged on the 4th iteration after
653 s. (b) Convergence of the energy estimate as function of bond dimension. (c)
Comparing the time for one Hartree-Fock iteration at different bond dimensions,
for L = 400t, U = 0.4t. (d) Time required to run Hartree-Fock to convergence
(δ < 0.001) on varying system lengths. The standard dense approach displays
roughly O(n3) time, while the GFMPS scales close to linearly. Dashed lines are
the lines of best fit (power law fits).

135



Chapter 4. Linear-time generalized Hartree-Fock algorithm for quasi-one-dimensional
systems

traditional Hartree-Fock. The parameters of the Hamiltonian were chosen as

U = 0.4t, Vx = Vy = 0.02t, µ = 0.3t, χ = 32, B = 8. This puts it in the weakly

repulsive regime 0 < U/t < 1. The GFMPS DRMG method found a state of

energy -6791.37 and peak filling 1.140, while the full dense method found -6793.47

and peak filling 1.169. The largest difference in filling was just off-center, with

0.072. This gave agreement within a relative error of 10−4 for the energy and

about 6 · 10−2 for the filling. Shown in Fig. 4.2 are the densities of GFMPS and

dense solution in the top two panels, and the difference between the two in the

bottom panel. We can see that the 90-degree rotational symmetry of the physical

system is broken by choosing how the physical system is mapped onto the one-

dimensional arrangement of the GFMPS. In Fig. 4.2, the sites of the GFMPS are

arranged along the horizontal direction of the system. The vertical and horizontal

reflection symmetry still remains in the GFMPS solution.

4.3.3 Computational performance for quasi-one-dimensional

systems

To evaluate the performance benefit of the GFMPS approach for quasi-one-

dimensional systems, we turn our attention to systems of fixed width W = 4 and

varying length L. For the other parameters, we choose U = 0.4t, Vx = Vy =

(6/L2) t, µ = 0.3t, χ = 4, B = 8. Each run of the DMRG used 4 sweeps. The
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potential was chosen to scale Vx ∼ L−2 so that the fraction of the trap occupied

by particles stays roughly constant, with the potential rising from 0 in the center

to 1.5 at the edges.

The first test was to see how our method compares to dense generalized

Hartree-Fock. Because it is a variational approach, the minimum energy attained

is our primary figure of merit. We also want to ensure that we see the linear

scaling of computation time with the length of the trap for the GFMPS-based

calculations, as compared to a cubic scaling for conventional, dense Hartree-Fock.

First, we held L = 280 fixed and observed accuracy and runtime with different

bond dimensions. We found that at χ = 80, the error in energy was < 0.001, which

represents capturing almost all the energy that Hartree-Fock can. The GFMPS

computation took only 65 seconds, as opposed to 490 seconds with dense Hartree-

Fock. This represents a 7.5x speedup. Results with other bond dimensions are

shown in panels (a)-(c) of Fig. 4.3.

The same value χ = 80 was then used across a broad span of lengths to see how

the computation time scaled with system size for otherwise fixed parameters. Our

results are shown in Fig. 4.3(d). We expect that the GFMPS scales approximately

linearly with length, while the dense method, which requires diagonalizing an

O(L) size matrix, would scale cubically. Fitting power laws t = a · Lp to each

yielded exponents of 1.20 for the GFMPS and 2.95 for the dense methods, in
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good agreement with expectations. Despite holding χ fixed, the error in energy

did not increase significantly, staying below 10−3.

4.3.4 Repulsive case

Having established the improved performance of the GFMPS-based solver for

weakly interacting systems, we now investigate whether the expected behavior is

found also in more strongly interacting cases, starting with the case of repulsive

interactions. To this end, we increase the interaction strength to U/t = 3.0. The

phase diagram of the translation-invariant Hubbard model is well-understood [89,

48] and it is known that as µ varies there are separate partially-filled (compressible)

and half-filled (incompressible) phases. The half-filled phase occurs in a region of

chemical potential µ ∈ [−µ0, µ0] centered around the half-filled point µ = 0. The

critical value µ0 is given by [48, 89]

µ0 = −2 +
u

2
+ 2

∫ ∞

0

dω

ω

J1(ω)e
−ωu/4

cosh(ωu/4)
(4.18)

≈ exp(−6/u) (4.19)

with u = U/t and the approximation good for u ≪ 1. By creating an effective

µ > −µ0 in the center of our trap and µ < −µ0 on the edges, we should see

distinct regions appear in the same system.
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Figure 4.4: Comparison of the metastable state found by standard Hartree-Fock
iteration, and the true global minimum HF configuration. Top: Filling fraction
along the length of the system. Bottom: entanglement entropy across different
cuts of the system. Orange line is the local minimum which fails to avoid the
repulsive energy penalty, and has accordingly higher entanglement entropy in
middle of the system. Runs from several different initial random states reliably
converged to these same two cases. 139
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Figure 4.5: Evolution of energy over time as GFMPS DMRG is run with different
bond dimensions. It was expected that smaller bond dimensions would fall more
quickly, but bottom out at higher energy. We found instead that higher bond
dimensions became stuck at a higher energy, due to a local energy minimum.
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We ran with system parameters of U = 3.0t, Vx = Vy = 6/L2 t, µ = 0.3t,

χ = 40, B = 8. The GFMPS produced a solution in line with the two-phase

result we expected. Its electron density is shown as the solid line in the top panel

of Fig. 4.4. As anticipated, we find an expected region of unit filling in the center

of the trap and a continuous decay to zero filling towards the edge.

Comparing the result of the GFMPS-based calculation with the result of the

dense solver, we find that the latter converged to a state with considerably higher

energy. Furthermore, as shown in the dashed line in the top panel of Fig. 4.4,

the state did not exhibit the extended plateau of unit filling in the center of the

system. This was surprising as we generally view the GFMPS as a more restricted

ansatz, and therefore expect the dense solver to produce lower energies. In this

case, however, it turns out that the dense solver becomes trapped in a stable yet

unphysical fixed point of the Hartree-Fock iteration, a local minimum which is

avoided by the GFMPS-based solver.

To understand why the GFMPS is able to avoid this fixed point, we compared

the entanglement entropy of the global minimum and the local minimum, as shown

in the bottom panel of Fig. 4.4. The entanglement of the local minimum is much

larger than that of the global minimum, which in the center of the trap potential

corresponds to an incompressible and thus weakly entangled state. This hints

at why the GFMPS is able to avoid this local minimum: like all tensor-network
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based approaches, it is (at finite bond dimension) biased towards low-entanglement

solutions, thus making it more likely to find the incompressible state.

To confirm this, we reran the GFMPS solver with much larger bond dimen-

sions, where its behavior should more closely resemble that of the dense solver.

Results are shown in Fig. 4.5. We find that indeed for bond dimensions χ ≥ 80,

the GFMPS-based solver becomes trapped in the same local minimum as the

dense solver. Intermediate bond dimensions may become trapped in this local

minimum for a few sweeps, but eventually find the global minimum. Overall, this

suggests that it may in some situations be beneficial to limit the bond dimension

of the GFMPS at least in initial sweeps of the self-consistent iteration.

4.3.5 Attractive case

When U < 0, the interaction between fermions is attractive, and we expect the

appearance of finite superconducting pairing as measured by âi,↑âi,↓ + â†i,↑â
†
i,↓. At

the half-filled point µ = 0, the Hubbard model on bipartite lattices has a U → −U

symmetry corresponding to applying (âi,↑ + â†i,↑)(âi,↓ + â†i,↓) at every other site.

To study specifically the behavior of the superconducting phase, we thus study

densities away from half-filling.

We simulate at µ = 0.5, L = 2000, varying U/t in order to see both the weakly-

and strongly-interacting cases.
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As expected, we observe that the convergence is fast for weak interactions like

U = −0.5t, where the Hartree-Fock procedure does not modify the potential as

greatly between iterations. U = −4t converged more slowly in the middle, as

discussed in the previous section, likely for similar reasons of gradually adjust-

ing the potential. All solutions showed electron density oscillations, especially

pronounced in the vicinity of the ⟨ni⟩ = 1 point (the x location with a filling of

approximately one fermion per site). Running the Hartree-Fock iteration for many

more steps gradually reduced the amplitude of the oscillations, but they did not

go away, suggesting that these Friedel-like oscillations are genuine physical effects,

but that the search procedure may be prone to overestimating them.

It is well-known that many qualitative features of the superconducting phase

are well-captured by the BCS [13] mean-field solution, which can be viewed as

a more restricted version of the gHF ansatz. For the translationally-invariant

case, the mean-field solution can be obtained semi-analytically by solving the

gap equation, which relates the filling fraction n, superconducting gap ∆ and the

interaction strength U , and in one dimension takes the form

ξ(k) = −2 cos(k)− µ− U
(
n− 1

2

)
(4.20)

n =
1

2π

∫ 2π

0

Θ(−ξ(k)) dk (4.21)

2

|U |
=

∫ kF

0

dk√
ξ(k)2 +∆2

. (4.22)
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To compare to our numerical gHF solution, we can consider what we refer to

as ”local gap approximation” (following the ”local density approximation” widely

used in density-functional theory calculations), where we approximate the solu-

tion at each point in space by the solution of the (translationally-invariant) gap

equation for the parameters at that point in space. This should be appropriate in

the limit where the potential varies very slowly compared to the coherence length

of the superconductor.

At U = −2, where the coherence length is on the order of a few lattice sites,

this local gap approximation accurately reproduces the numerical gHF solution,

as shown in the top panel of Fig. 4.6. The deviation is most pronounced at the

edges of the system, where the local gap approximation has the superfluid density

drop sharply to zero, while in the true inhomogeneous problem it tapers off over a

few sites. At the much weaker interaction strength of U = −0.65, which is much

more representative of real-world conditions, where superconducting pairing is a

weak effect compared to the Fermi energy, a very distinct picture emerges. Our

results for this regime are shown in the bottom panel of Fig. 4.6. We find that the

local gap approximation is much less accurate at capturing the inhomogeneous so-

lution, underestimating the strength of superconducting pairing by approximately

a factor of 2 in the center of the system. Our GFMPS-based approach is still able
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Figure 4.6: Comparison of gHF-GFMPS calculation of superfluid density with
predictions of superfluid density from the BCS gap equation. Both have V =
6t/L2. Top figure: µ = −1, U = −2. Bottom figure: µ = −0.75, U = −0.65. As
the local gap approximation becomes more accurate as L increases, a larger L of
2000 was chosen for the bottom figure to show how the differences persist.
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to solve this inhomogeneous system of several thousands of degrees of freedom in

113 seconds.

4.4 Outlook

In this chapter, we have demonstrated that using numerical methods based on

Gaussian tensor networks can accelerate computational methods that map many-

body electron problems onto effectively non-interacting problems. This family

includes Hartree-Fock and self-consistent BCS, which can be unified into the gen-

eralized Hartree-Fock method used here, but also other widely used approaches

such as density functional theory. We thus expect this general approach to be

applicable to a wide array of problems.

Application areas where an inhomogeneous real-space solution may be par-

ticularly important include systems with very large unit cells, which is a feature

typically found in Moiré materials such as twisted bilayer graphene (tBLG) [9].

Our approach seems suitable, for example, to extend recent studies of tBLG us-

ing hybrid Wannier orbitals to larger systems [63]. Similarly, in mesoscopic device

physics, inhomogeneities in the system often play an important role, and the meth-

ods put forward here suggest a pathway to realistic simulations of such structures.
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5.1 Introduction

For a Hamiltonian H, a unitary excitation1 operator O, and a state |ψ⟩, we

define the real-time Green’s function as

G(t) = ⟨ψ| exp(iHt)O† exp(−iHt)O|ψ⟩ (5.1)

and the real-frequency Green’s function as the Fourier transform,

G̃(iω) = −i
∫ ∞

0

G(t)e−tω dt

The imaginary-frequency Green’s function is also of interest, but cannot be im-

plemented directly on a quantum computer, as the corresponding imaginary-time

evolution is not unitary. With the scheme described in [17], many samples of

G(t) are taken with a smaller quantum computer are collected into a (classical)

computer’s database, where the signal is then Fourier transformed to produce an

estimate of G̃(iω). While the quantum hardware requirements are modest, the

number of samples required for chemical accuracy is high.

However, we have other information about the signal G(t) that should, in prin-

ciple, allow us to better estimate it from fewer samples. We describe and compare

several schemes for better estimation of G̃(iω), and show that they should lead

to polynomial reduction in sample complexity, with an advantage of roughly 100x

1 The most familiar Green’s function G′ uses O′ = a†, a (nonunitary) creation operator. Defining

O± = a† ± a, with Green’s functions G±, we can recover G′ = G++G−
2 , so restricting ourselves

to unitary excitations here suffices.
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at chemical accuracy scales. Our first main approach uses Gaussian processes,

and we discuss choices of kernel function and complex phases. Our second main

approach uses the L1 boundedness of its Fourier transform G̃(ω) to impose con-

straints that greatly enhance convergence. We discuss uncertainty estimation and

adaptive sampling.

5.2 Measurement Model

We assume that the state |ψ⟩ can be efficiently prepared on the quantum

computer, and that the (unitary) operator O is easily implemented by gates as

well. The time evolution exp(iHt) cannot in general be carried out exactly, but a

Trotter decomposition of the Hamiltonian allows for very efficient approximation.

We will neglect the Trotter error and focus on the noise inherent in the sampling

and reconstruction process. We also assume that the gate error and decoherence

rate of the quantum hardware is negligible.

The real or imaginary part of the Green’s function can then be estimated by a

one-bit phase estimation algorithm, see Appendix D. A real-part measurement of

G(t) has result of a Bernoulli distribution with p = 1+ℜ(G(t))
2

, resp. the imaginary

part. The Green’s function obeys |G(t)| ≤ 1, so this probability is always in the

range [0, 1]. Other measurements are possible: |G(t)|2 can be estimated by undo-
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ing the preparation of the state |ψ⟩, or more accurate estimates of the phase G(t)

through more quantum phase estimation. These are typically less informational

however, so we concentrate on direct measurements of the real and imaginary

parts of G(t).

5.3 Simple Reconstruction Methods

We start by discussing baseline methods for reconstructing G. We will then

move on to Gaussian process regression and Fourier-constrained fitting.

5.3.1 Simple Baseline

Given the ability to sample ℜ(G(t)) and ℑ(G(t)), we would like to estimate

G(t) so that we can numerically integrate against it; the importance of G(t) at a

particular t falls off exponentially with t. In the simplest approach, we discretize

time to N points tn, sample each S many times in the real and imaginary parts,

and estimate that G(tn) is given by the sample mean at that point:

G(tn) ≈
kℜ,pos − kℜ,neg

S/2
+ i

kℑ,pos − kℑ,neg
S/2

The uncertainty at each point will be approximately ∼
√

1/3S. The exact con-

stant depends on prior distribution of G(t). The sample points tn can then be
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used to build a proxy G(t) for all t ≥ 0, for example by linear interpolation, which

is then integrated to compute G̃(t). This will form our baseline method.

The sample points tn can also be used directly as the sample points for the

numerical integration. As nearly all non-adaptive quadrature methods derive their

weights by first fitting a function to several points, this is merely offloading the

construction of the G(t) to the quadrature algorithm. We can frame the problem

entirely in terms of estimating G(t), then, and this allows us to compare other

reconstruction approaches on equal footing. In [17] for instance, the authors

used Simpson’s rule for integration, which is equivalent to piecewise quadratic

interpolation.

It can be shown that the optimal allocation of S samples for piecewise linear

interpolation has a density of O(S1/5) different t values, and the average L2 error

will scale as S−0.4, assuming bounded first derivatives of G(t).

5.3.2 Per-Point Bayes

The first improvement is to look at each point G(t) more intelligently. Each

sample tells us about ℜ(G(t)) or ℑ(G(t)) individually, but they are not indepen-

dent. Since |G(t)| ≥ 1, these two components must lie in a unit disk; we can take

some Bayesian prior over this disk, such as the uniform prior, to account for this

relationship. The resulting estimator does not have a closed form and requires
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numerical integration. In the typical case where |G(t)| ≠ 1 however, this estima-

tor provides no asymptotic advantage, as the real and imaginary parts converge

independently as quickly as they do together.

5.4 Gaussian Processes and BLUPs

The first asymptotic sampling advantage we can gain comes from the fact that

G(t) is a smooth function, so that our prior expects the values G(t) and G(t+ δt)

to be highly correlated. If the sampled times are significantly denser than the

scale over which G varies, 1/|G′(t)|, then this can reduce our sample complexity

by a corresponding factor.

Effectively using this information requires a prior over the possible functions

G. Although at each point G(t) there is one true complex value, we can associate

to it a pair of Bernoulli random variablesX(t) and Y (t), such that G(t) = ⟨X(t)⟩+

i ⟨Y(t)⟩. By some abuse of notation, we will use G(t) to also represent the variable

X(t) + iY(t). Then the problem of reconstructing G is equivalent to building a

good estimator for the mean of the associated random variable, G.

In general, any stochastic process X(t) has some mean M(t) = ⟨X(t)⟩ and

covariance K(t1, t2) = CoV(X(t1),X(t2)). If we assume (or know) the functions

M and K, we can compute the Best Linear Unbiased Predictor (BLUP), which
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produces the optimal prediction of the form

X̃(t) = c0 +
∑

cikti ,

where kti are the sampling results and the ci depend only on the sampling times

{ti}. Gaussian processes [105] are the special case where all finite marginals of

X(t) are multivariate Gaussian distributions. In this case, the prior is completely

determined byM andK, and the BLUP is also the optimal predictor (even among

nonlinear predictors).

5.4.1 Ordinary Kriging

A reasonable approach is to then approximate G(t) with a Gaussian process

and use the BLUP; this technique is also known as ”Kriging”. The two complex

components, ℜ(G(t)) and ℑ(G(t)) become two separate random variables, that

can have zero covariance (in which case the real and imaginary parts can be

estimated separately) or nonzero (resp. jointly), depending on the form of K.

This approximation makes some drastic concessions: for one, G(t) has bounded

support on the complex unit disk, quite different from a Gaussian. Second, G(t)

has nonlocal constraints on its functional form, such as analyticity, that cannot

be captured in two-site correlations K. Nonetheless, this approach can be proven

to asymptotically improve sample efficiency. The standard equations for ordinary

kriging in a single variable are reviewed in Appendix E.
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When our function G(t) has separate real and imaginary parts, it is easier to

express the kriging process in terms of the two correlated functions X(t) and Y (t).

The covariance function K now has four components, indicating which pairs of

observations we’re comparing:

K(x, y) =

K1,1(x, y) K1,2(x, y)

K2,1(x, y) K2,2(x, y)


If we have a phase-invariant prior (that is, a prior that assigns an equal likelihood

to a function f(x) as to eiθf(x)), we must have

K1,1(x, y) = K2,2(x, y)

K1,2(x, y) = −K2,1(x, y).

The second equation implies that K1,2(x, x) = 0. If furthermore the prior is

stationary, then

K1,1(x, y) = K2,2(x, y) = K1(|x− y|)

K1,2(x, y) = −K2,1(x, y) = sign(x− y)K2(|x− y|)

Ordinary kriging allows a nonzero mean, which now means the two values cre

and cim. For Green’s functions as in Eq. 5.1, one can show that cim = 0. The

resulting unbiasedness condition actually cannot be correctly handled as a par-

ticular case of ordinary kriging. In the real-valued, single-function setting, the

unbiasedness condition gives the constraint that the sum of weights
∑
wi = 1.

154



Chapter 5. Green’s Function Estimation

In this complex-valued setting, when we producing a prediction for the real part

X(t), the weights on our real measurements must sum to one, but the weights on

imaginary measurements are not constrained. When producing a prediction for

the imaginary part Y (t), the weights on real measurements must instead sum to

zero.

The resulting augmented kernel K, and weights w, are

Kaug =



K(x1, x1) · · · K(x1, xn) s1

...
. . .

...

K(xn, x1) · · · K(xn, xn) sn

s1 · · · sn 0


w = K−1

aug



K(x1, x
∗)

...

K(xn, x
∗)

s∗


.

Here si is 1 if the sample xi is real, and 0 otherwise; and s∗ is 1 if the value

being predicted at x∗ is real, and 0 otherwise. It is understood that each K(·, ·)

is taking the correct component Ka,b depending on the type of measurements at

each argument.

5.4.2 Complex Kernels

It remains to choose an appropriate kernel function K. In univariate (i.e.

real) kriging, typical kernels are things like K(x) = a exp(−x2/b), a/(b + x2),

a exp(−|x|/b), or even aδ(x) + b. In general, a continuous (resp, differentiable)

kernel is appropriate if the underlying function is expected to be continuous (resp,
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differentiable). Not all differentiable, monotonic, symmetric functions are ap-

propriate, as the K matrices should be positive definite; for instance, K(x) =

{1 if |x| < 1; else 0} produces indefinite matrices, and so is inappropriate.

Gaussian kernels, a exp(−x2/b), can be motivated with a model where the true

function is a mixture of sines and cosines of different frequencies. The standard

modelling is to assume

f(t) =
M∑
j=1

wj,1 sin(fjt) + wj,2 cos(fjt)

with some 2M unknown Gaussian weights wj,1 and wj,2, and some randomly

selected frequencies fj. The frequencies are chosen from a normal distribution

N(0, ρ2), setting a characteristic length scale on t of 1/ρ. If M → ∞ while the

weights w decrease as 1/
√
M to compensate, the resulting model has a simple

covariance function

K(x, y) =

∫ +∞

−∞

exp(−f 2/2ρ2)√
2πρ

[sin(fx) sin(fy) + cos(fx) cos(fy)]

= exp(−ρ2(x− y)2/2).

This pleasing model adapts naturally to the complex setting, where we replace

sin and cos with complex exponentials:

f(t) =
M∑
j=1

wj exp(ifjt)
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so that

C1,2(x, y) =

∫ +∞

−∞

exp(−f 2/2ρ2)√
2πρ

[sin(fx) cos(fy)− cos(fx) sin(fy)] = 0

and, in fact, the real and imaginary parts are entirely uncorrelated. This is also

immediate through the fact that our model of f(t) has conjugacy symmetry, fj →

−fj. In fact, correlations will only appear if our frequencies fj are chosen from

an asymmetric distribution, rather than a normal distribution.

This asymmetric distribution happens naturally when computing Green’s func-

tions of excitations around an (approximate) ground state, as all frequencies

fj ≥ 0. A few possible distributions of frequencies include:

1. A normal distribution constrained to be positive. In this case,

C1,2(x) =
2√
π
F (x) = exp(−x2)erfi(x)

using the Dawson F function or the imaginary error function erfi(z) =

−i erf(iz). Then C2,2(x) = exp(−x2).

2. A normal distribution constrained to be greater than f0. Then C1,2(x) =

exp(−x2)(i erf(f0 − ix)− i erf(f0 + ix)).

3. A Cauchy disribution constrained to be positive. Then C1,2(x) = xG2,1
1,3

 0

0, 0,−1
2

∣∣∣∣∣∣∣∣ x
2

,

where G is the Meijer G function.
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4. A distribution p(f) = 4f
π(1+f2)2

on f ≥ 0. Then C1,2(x) = x exp(−x), which

is simple to compute, but C1,1(x) =
2√
π
G2,1

1,3

 0

0, 1, 1
2

∣∣∣∣∣∣∣∣
x2

4


5. A distribution p(f) = f

2
√
π
exp

(
−f2
4

)
on f ≥ 0. Then C1,2(x) = x exp(−x2),

but C1,1(x) =
1−2xF (x)√

π
again involving the Dawson F function.

6. An exponential distribution. Then C1,2(x) =
x

1+x2
, and C1,1(x) =

1
1+x2

.

All of these have the desired odd symmetry K(x) = −K(−x). With the exception

of the second one, all are unimodal on x ≥ 0. The sixth option is the easiest to

evaluate, but has very long tails for the correlations, which may be an unreasonable

prior or could make it harder to approximate K by a sparse matrix. The first

option reproduces the Gaussian correlation K(x) = exp(−x2) on the real-real

parts, which makes it attractive provided that an implementation of the F , erfi,

or the complex erf function is available. All of these functions can of course be

arbitrarily scaled in width and height, K(x) = aK0(x/b), to fit the variance and

length scales appropriate to the problem.

In terms of fixing the magnitude on the covariance, e.g. the a parameter in

a exp(−(x − y)2/b2), we know that X(t) lies in the range [−1, 1]. If we take a

uniform prior over this interval, we would have an variance of 1/3. Interpreting

this value too seriously is impossible, as we have already approximated X(t) by a
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Gaussian distribution. A choice of timescale b is inherently tied to the timescale of

the dynamics of the underlying quantum system; if typical excitations have energy

∆E, then a choice of b = ℏ/∆E is reasonable. Having some rough estimate of

b is not a new requirement of this method, as it was already required that G(t)

should be sampled with a spacing ≪ b.

We report the performance of ordinary kriging in the results section below.

5.5 Gaussian Processes as Classifiers

Approximating the marginals of G(t) by multivariate Gaussians is drastic.

Luckily, we can go beyond this. Gaussian processes have been frequently applied

to classification problems, where an unknown probability π(t) ∈ [0, 1] is to be

estimated. π(x) is reparameterized by π(x) = σ(f(x)), where σ is a link function

(e.g. logistic or probit), and the nuisance function f is instead given the Gaussian

process prior [105].

5.5.1 Real Classifiers

Given the earlier data points, computing the prediction E[π(x∗)] = Ef [σ(f(x∗))]

at a new point is intractable analytically, which has led to the development of

several approximate computations. The maximum likelihood estimator (MLE)
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simplifies computing Ef [π(x∗)], an integral over all f , by instead computing the

the most likely likelihood f . This is the f̂ which most plausibly explains the obser-

vations under the Gaussian prior. The function f̂ is represented by its estimated

values f(xi) at the location of each sample xi. At a new point to evaluate, these

stored values can be used to compute a maximum likelihood f̂(x∗), and then

σ(f̂(x∗)) is interpreted as a prediction.

A next-order approximation is the Laplacian regression, which takes into ac-

count not only the maximum likelihood f̂ , but also the Hessian of the likelihood

around f̂ . This Hessian is used to approximate the variance in f(xi); the true

distribution of f conditioned on the samples is not Gaussian, but the second-

order Taylor expansion lets us fit an approximation at the peak. The resulting

Gaussian distribution over possible f ’s marginalizes to a Gaussian distribution on

f(x∗), which is integrated to approximate E[π(x∗)].

Finding the maximum likelihood estimator is typically done by gradient ascent

or, more commonly, Newton iteration. In this context it is referred to as Iteratively

Reweighted Least Squares (IRLS) [105], with the iteration defined by

f̂new = f̂ + (K−1 −∇2
fπ(f))

−1(∇fπ(f)−K−1f).
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5.5.2 Complex Classifiers

We can use the methods above to estimate the real and imaginary parts sep-

arately, treating each as a Bernoulli variable 1+X(t)
2

and 1+Y (t)
2

. While this works

fine, this does discard the fact that |G(t)| ≤ 1, and any correlations between

real and imaginary parts at different times. We can repair this with a com-

plex link function σC : C → D1, that will map a complex-valued link function

f(x) = fR(x) + ifI(x) to the unit disk.

If our prior is to be phase-invariant, our link function should be rotationally

symmetric, not giving higher prior to α than to some other eiθα. For example,

this would be a problem with σC(fR, fI) = logit(fR) + i
√

1− logit(fR)2 logit(fI).

This means we can think of the link function as acting only on the magni-

tude of the complex vector fR + ifI , leaving the phase unchanged: σC(fR, fI) =

fR+ifI
|fR+ifI |

(2σ(|fR + ifI |)− 1). Then the magnitude link function σ can be a logit

or probit model, such as σ(x) = (1 + exp(−x))−1. Given a +1 observation of the

real part at xi, this contributes to the log-likelihood with a term

L = log

(
1 + ℜ[σC(xi)]

2

)
= log

(
1

2
+

fR(xi)

|fR(xi) + ifI(xi)|

(
σ(|fR(xi) + ifI(xi)|)−

1

2

))

which produces a nonzero gradient (and Hessian) in both fR and fI . “−1” ob-

servations are identical but with the 1
2
+ replaced by 1

2
−, and measurements of

fI have the real and imaginary parts exchanged. With a logit link function, the
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derivatives are all rational functions of fR, fI ,
√
f 2
R + f 2

I , and σ(
√
f 2
R + f 2

I ), a

useful fact for fast numerics.

The likelihood contribution from the Gaussian prior on fR and fI is an un-

changed K−1 from univariate regression, and Newton iteration can then be per-

formed to find the maximum likelihood f . The Hessian ∇2
fπ(f) was originally

a diagonal matrix; it is now a 2x2 block diagonal, as it connects the real and

imaginary f values at each point to each other. Otherwise, the IRLS iteration to

find the maximum likelihood estimator is unchanged.

5.5.3 Complex Laplacian Approximation

With the maximum likelihood f̂ , the Laplacian approximation consists of find-

ing the mean and covariance of fR and fI at a new point x∗ to be predicted, and

integrating that Gaussian distribution. The means are given by normal Gaussian

prediction,

E[f ∗
R] = f̂⊤K−1kR(x

∗), E[f ∗
I ] = f̂⊤K−1kI(x

∗)

where K is the covariance matrix of the observations and k is the covariance

vector between the observations and the new point.

In Rassmussen and Williams [105], equation (3.24) gives the variance in f ∗ in

the univariate case. In our bivariate case where we need the 2x2 covariance matrix
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of fR and fI , the computations are similar except that our covariance vectors k

are replaced with 2xN matrices, one row for each prediction:

Var[f ∗
R,I ] = k(x∗, x∗)− kR,I(x

∗)⊤(K +W−1)−1kR,I(x
∗)

=

C11(x
∗, x∗) C11(x

∗, x∗)

C21(x
∗, x∗) C22(x

∗, x∗)

−
kR(x∗)⊤
kI(x

∗)⊤

 (K +W−1)−1

[
kR(x

∗) kI(x
∗)

]

Then the expected value of the true complex function at the point x∗ is given by

integrating over the possible fR(x
∗) and fI(x

∗) values, multiplied of their likelihood

of coming from our estimated Gaussian distribution:

E[z∗] =
∫
fR,fI∈R2

σC(fR, fI) p
(
(fR, fI) ∼ N (E[f ∗

R,I ], Var[f
∗
R,I ])

)
With the maximum likelihood f̂ , the Laplacian approximation consists of find-

ing the mean and covariance of fR and fI at a new point x∗ to be predicted, and

integrating that Gaussian distribution. The means are given by normal Gaussian

prediction,

E[f ∗
R] = f̂⊤K−1kR(x

∗), E[f ∗
I ] = f̂⊤K−1kI(x

∗)

where K is the covariance matrix of the observations and k is the covariance

vector between the observations and the new point.

In Rassmussen and Williams, equation (3.24) gives the variance in f ∗ in the

univariate case. In our bivariate case where we need the 2x2 covariance matrix of
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fR and fI , the computations are similar except that our covariance vectors k are

replaced with 2xN matrices, one row for each prediction:

Var[f ∗
R,I ] = k(x∗, x∗)− kR,I(x

∗)⊤(K +W−1)−1kR,I(x
∗)

=

C11(x
∗, x∗) C11(x

∗, x∗)

C21(x
∗, x∗) C22(x

∗, x∗)

−
kR(x∗)⊤
kI(x

∗)⊤

 (K +W−1)−1

[
kR(x

∗) kI(x
∗)

]

Then the expected value of the true complex function at the point x∗ is given by

integrating over the possible fR(x
∗) and fI(x

∗) values, multiplied of their likelihood

of coming from our estimated Gaussian distribution:

E[z∗] =
∫
fR,fI∈R2

σC(fR, fI) p
(
(fR, fI) ∼ N (E[f ∗

R,I ], Var[f
∗
R,I ])

)

5.6 Fourier Constrained Methods

Setting aside the Gaussian process approach, there is a different powerful prior

we can put on G. In the L∞ norm, ||G||∞ = 1. Its Fourier transform, Ĝ, must then

also be bounded by 1 in the dual L1 norm. As mathematicians, this is a result

from harmonic analysis; as physicists, this is time evolution exp(iHt) splitting

|ψ⟩ into several components with different frequencies and then adding them back

together. For a finite quantum system, this means that Ĝ is a sum of finitely
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many frequencies adding to 1:

Ĝ(ω) =
∑
k

mkδ(ω − ωk),
∑
k

|mk| = 1.

Since our form of Green’s functions in Eq. 5.1 also has G(0) = 1, we know that

the mk are purely real and positive. This is a significant advantage of focusing on

Green’s functions of inverse operators as in Eq. 5.1, as opposed to a more general

form ⟨ψ| exp(−iHt)U2 exp(iHt)U1|ψ⟩ with U2U1 ̸= 1.

Knowing that Ĝ must be of this form, we know G(t) takes the form2

G(t) =
∑
k

mk exp(iωkt),
∑

mk = 1, 0 ≤ mk ≤ 1 (5.2)

The oscillatory nature of exp(iωt) makes this a highly nonlinear regression problem

in mk and ωk, and any local search in those variables will invariably get trapped in

bad local minima. There is also the issue that we do not know how many different

values of k – how many different frequencies – are meaningfully contributing. A

simple solution is to fix a large set of frequencies ωk, and then regress only on the

mk. If the frequencies are dense compared to the largest sampling time, and the

frequencies extend high enough to the largest excitations (or alternately, smallest

timescales) we expect, then the reconstruction should be good. Fixing a minimum

time scale tmin and latest sampling time tmax, we take the set ωk to range from

−1/tmin to +1/tmin, in equally spaced intervals of 1/tmax. Once we have restricted

2 We note that the mk ≤ 1 constraint is, strictly speaking, redundant. In practice, many convex
optimizers may benefit from having a restricted interval for each variable.
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to this search space as our prior, this already imposes the smoothness constraints

that we had in the Gaussian process prior.

With this set Nω many frequencies fixed, the search space is reduced to mk,

which lie in an (Nω − 1)-dimensional simplex. The function G(t) is a linear

function of the coordinates, and the likelihood of a given observation is linear in

G(t). Unfortunately, integrating the full posterior over the simplex is intractable,

so we are again led to approximation such as the maximum likelihood estimator.

The MLE asks for the mk that minimize the log-likelihood

L =
∑
xi∈obs

log

(
1± P(G(xi))

2

)
=
∑
xi∈obs

log

(
1±

∑
kmktrig(iωkxi)

2

)
,

where the sign in ± is chosen depending on the sign of the observation, the func-

tion P is either ℜ or ℑ part depending on the type of the observation xi, and

the trig function is correspondingly either sin or cos. This resulting function is

nonlinear, but is convex, and can be optimized quite efficiently. Newton iteration

performs poorly due to the linear inequality constraints, but general convex op-

timizers converge well. This optimization problem finds the maximum-likelihood

estimator.

5.6.1 Uncertainty

A next-order improvement over the MLE is, again, incorporating a likelihood-

weighted average over possible models for a better mean estimate. This gives
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us two benenfits: one, we have a better estimator for the underlying model –

including covariance in estimated points, which may be useful to carry forward to

the final estimated G̃(iω). Second, by knowing which points t have the greatest

uncertainty G(t), we can perform adaptive sampling. Due to the very nonlinear

interaction between different samples, ideal sampling distributions may different

significantly from uniform.

Once we have our MLE, it is straightforward to compute a Hessian of the

likelihood function, H = ∇2L. The
∑
mk = 1 constrained is easily dealt with

by projecting this Hessian onto a subspace of one less dimension. The 0 ≤ mk

constraints cause much greater difficulty however. Typically the vast majority of

mk,MLE variables are exactly equal to 0 at the MLE, and estimating the variation

in these variables depends not only on the Hessian but on the gradient as well.

Even among the active variables (those with mk,MLE ̸= 0), the Hessian greatly

overestimates the uncertainty: it will typically have eigenvalues λi ≪ 1, suggest-

ing directions in which the mk can be adjusted by quantities λ−1
i ≫ 1 without

appreciably reducing the likelihood. This is incorrect, as motion in this direction

will ’hit’ the mk ≥ 0 constraint much earlier. This problem does eventually disap-

pear in the very high sampling limit, where the active variables are conclusively

determined and the uncertainty is sufficiently small compared to the MLE values,

∥H−1∥2 < mink:[mk>0](mk). In reality, this only occurs fast past the accuracy
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thresholds that we care about, where G(t) has been determined to good accuracy.

This is because H is a very poorly conditioned matrix.

Using the Hessian ∇2L and gradient ∇L to build an approximation for the

likelihood function is not a problem in itself. The approximation to the likelihood

function by a Gaussian is generally good. The difficulty arises from the interac-

tion between the Gaussian and the simplex region we allow. As we described,

the constraints of the simplex cannot be neglected. The problem of integrat-

ing Gaussians (or equivalently, normal distributions) over simplices has been well

studied [84, 55, 3], however these approaches largely focus on spaces of small di-

mension ([3, 55] only examine N ≤ 10), and give prohibitively long runtimes for

the cases of interest to us, N ≈ 1000. At the same time, we do not need a high

accuracy in our estimates: any sampling beyond the MLE will give us some mod-

est improvements to our estimates. For this reason, the most viable algorithm

seems to be Metropolis-Hastings based algorithms, which provide a simple and

efficient sampling approach for log concave distributions. Metropolis-Adjusted

Langevin Algorithm (MALA) [21] performed poorly, apparently due to the sharp

constraints and discontinuous probability density, which is not reflected in the

gradient-based Langevin dynamics. The Robust Adaptive Metropolis algorithm

of [124] (implementation [10]) performed favorably.
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5.7 Adaptive Sampling

Besides a better estimate of G(t), one benefit an improved reconstruction al-

gorithm is that after some initial sampling, we can choose more valuable points

to sample subsequently – if we have information on the sensitivity of the recon-

struction to additional samples.

5.7.1 Per-Point Adaptivity

For the simplest per-point reconstruction methods, adaptive reconstruction

becomes very simple. For the simple frequentist estimate Ĝ(t) = n+−n−
ntot

, the

uncertainty at a given point t should scale as 1/
√
ntot, so that we are led to

sample each point equally. With a Bayes approach (or, alternately, a frequentist

estimate of sample variance), there is less need to sample points where |G(t)| is

close to 1, as the observed variance is lower. This means we can focus more of our

samples at the points with G(t) closer to zero.

In practice, the benefit here is minimal. For a point t with k samples and a

proportion x of positive samples (resp. 1 − x negative samples), then expected

decrease in uncertainty with one additional sample scales as k−3/2
√
x(1− x), or

that the number of samples should at a given point should scale as 3
√
x(1− x).

This comes out to 25% more samples on a balanced point G(t) ≈ 0, x ≈ 0.5 than
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an extreme point G(t) ≈ 0.7, x ≈ 0.85 – or a 10% reduction in overall samples

needed by the algorithm, for only a very modest speedup.

The Gaussian Process setting offers more information than a strict per-point

reconstruction. For one, we already have estimates of the uncertainty at any

given point we choose to query, including those we have not yet sampled. As

the Gaussian process is an inherently local process, however, it suffers from the

same issue of only giving slightly more samples to a particular region before the

uncertainty equilibrates. The extra sample efficiency of adaptive sampling was

minimal, less than 30%, and we did not use it in our final evaluations.

5.7.2 Fourier Adaptivity

In the Fourier basis, adaptive measurements seemed more useful, as all ob-

servations interact nonlocally, and some positions could be considerably more or

less useful than others. For a greedy adaptive measurement scheme, we can use

mutual information between the distribution of mk and a given sample as a figure

of merit for picking the next point(s). To compute the mutual information for a

real-value sampling at t, first we produce a series of S samples ms ∈ RNk from the

Markov chain modeling the posterior distribution, and take their mean m̂. Then
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the mutual information I is calculated as,

H(p) = p log(p) + (1− p) log(p)

G(m; t) =

Nk∑
k

mk exp(iωkt)

p1(m; t) =
1 + ℜG(m; t)

2
, p0(m; t) =

1−ℜG(m; t)

2

p̂1(t) = p1(m̂; t), p̂0(t) = p0(m̂; t)

I(t) =
1

s

∑
s

H(p1(ms; t))− p0(ms; t)) log(p̂0(t))− p1(ms; t)) log(p̂1(t)) (5.3)

For imaginary-part measurements, p1 and p0 use the imaginary part of G instead.

As sampling the Markov chain requires ∼ N2
k samples, and I needs to be

computed separately for each possible place to sample, this approach should not

be used after each sample. The rough reconstruction for mutual information can

use a much smaller (sparser) set of frequencies k. Once the mutual information

is computed at many points t, this can be used for a large number of subsequent

samples. The final reconstruction can use the full range of frequencies k.

5.8 Results

We tested our methods on spin-1 Heisenberg chain, with Hamiltonian H =∑
i S⃗i · S⃗i+1. Our system has length L = 6 and periodic boundary conditions. Our
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state of interest is the unique ground state |ψ0⟩ of H, with energy E = −8.617

and a gap of ∆ = E2 − E = 0.721. Our perturbation was an X flip at site 1, so

that

G(t) = ⟨ψ0| exp(iHt)X exp(−iHT )X|ψ0⟩ .

This function has 30 different frequency components, from a lowest frequency

component of fmin = 2.156 to a highest-frequency component of fmax = 11.865.

The 0.721 component does not appear as the ψ0 → ψ1 transition is forbidden

under a single X perturbation. This frequency information was not provided to

any algorithms, and the Fourier algorithm used a frequency range of ω ∈ [0, 10]

with steps of 0.2. This was chosen to provide a realistic guess for what a physicist

who does not know the full spectrum may hope to search, and despite losing

a small part ( 2 × 10−5) of the spectrum, the Fourier reconstruction is able to

perform well.

We evaluated each method by their ability to reconstruct a given interval of G

from a given number of samples, with accuracy graded as L2 error over the interval.

For simple methods such as a linear interpolation, this includes the L2 error at

unsampled points, otherwise they could game the metric by only reconstructing

their sampled points. As the Fourier method has the fact that G(0) = 1 fixed in,

essentially giving it free samples, we focused on intervals that did not include t = 0,

to give it a fair starting point. We initially tested each method at logarithmically
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spaced sample counts from S = 30 up to 1800, reconstructing the interval t ∈

[2, 42]. The Gaussian Process method became unreasonably slow at S = 1800,

and it was clear that the Fourier method was significantly outperforming, so we

then continued comparing only the interpolation method and Fourier method up

to S = 51200 points.

For the traditional method, we chose the theoretically optimal relation Npts =

S1/5 to choose how many distinct points to reconstruct within our sample budget

S. We observed a scaling of Err = 3.11 × S−0.351, with a confidence interval

[−0.361,−0.342] on the exponent.

For the Fourier method, we observed a scaling of Err = 2.49× S−0.405, with a

confidence interval [−0.412,−0.397] on the exponent. For an average L2 accuracy

on this interval of 10−4, this translates to a difference between 6 × 1012 samples

with a linear interpolation, or 7 × 1010 samples with the Fourier method, nearly

two orders of magnitude in sample complexity.
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Figure 5.1: Comparison of three methods discussed in text, and best-fit polyno-
mial scaling laws.
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Conclusion

This thesis reviewed four separate questions related to quantum information

and optimization theory. Before we close the work out, it will be good to review

once what work awaits.

6.1 Frustration-Free Hamiltonians

From the perspective of structural complexity theory, we examined the prob-

lem of whether local Hamiltonian terms frustrate one another. We were able to

grow the list of candidate complexities from 4 to 7:

1. P: Classical, no proof, deterministic checks.

2. coRP: Classical, no proof, probabilistic checks.
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3. NP: Classical, classical proof, deterministic checks.

4. MA: Classical, classical proof, probabilistic checks.

5. BQP1: Quantum, no proof, probabilistic checks.

6. QCMA: Quantum, classical proof, probabilistic checks.

7. QMA1: Quantum, quantum proof, probabilistic checks.

The most interesting question is whether this list is complete, or if we can put

any sort of bounds on what other classes could occur. Given structural operations

such as pairwise intersection, which are very hard to reason with without knowing

the relationships between basic classes, it’s likely that any proofs will require a

long list of hypotheses, such as that P=coRP̸=NP=MA ̸=BQP1 ̸= QCMA=QMA, a

reasonably popular view of the world. A reasonable shorter goal could be classi-

fying Hamiltonians on qubits of locality at most k, or arbitrary qudits of locality

at most 2. As we proved in the chapter, merely limiting to qubits is not sufficient

itself, as dimensionality can be reduced to 2 at the price of locality.

Another enticing work would be cleaner constructions of the cases shown in

this work. A purely classical description of coRP could be useful in giving new

complete problems for the class.
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6.2 Permanents and Tomography

The main theorem was that PSD permanents, or quantum states, are hard

to compute, even approximately. In particular, they are NP-hard within any

subexponential factor. For a fixed rank d (or, a fixed dimension Hilbert space Cd),

they are slicewise polynomial - XP - meaning they can be computed in time O(nd).

In a forthcoming work I will prove that they are in fact W[1]-hard to estimate,

a type of hardness from parameterized complexity suggesting that O(f(d)nC) is

impossible. This leaves open a question of whether O(n
√
d) or similar should be

possible.

The interplay between rank (or more generally, eigenvalues) of PSD matrices

and they permanents is promising, with much work. In all likelihood, perturbing

the difficult matrices constructed this work will also give lower bounds on difficulty

for matrices of full rank but high spectral radius.

Regarding quantum state tomography, there are a variety of questions, such

as average-case hardness, or what subsets of observations admit an efficient recon-

struction algorithm. Separately there are questions about how this fits together

with shadow tomography, and how much accuracy can improve with time-intensive

postprocessing of sampled data.
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6.3 Quasi-1D generalized Hartree-Fock

The generalized Hartree-Fock method, as we showed, can be efficiently applied

to Gaussian Matrix Product States. Besides merely finding ground states, there

could be room for exploring excitations, spectra, or thermal states in the same

systems. By focusing on quasi-1D Hubbard models, we had a toy model of super-

conductivity in which we were able to reason and test our method’s convergence

– and we showed that finite-size effects stay relevant out to thousands of sites,

especially in certain tunings of parameters. Testing and quantifying the finite-

size effects in other classical systems could capture other interesting physics, as

the consequences of finite-size effects are often poorly captured in theory with

numerics as an important tool.

6.4 Green’s Function Estimation

We showed that higher statistical reconstruction methods, such as Gaussian

processes or sparse signal reconstruction, can improve the sample efficiency, both

by a large constant factor and improving the asymptotic scaling. We also de-

termined that adaptive sampling is of little use when using Gaussian Processes,

or any other local reconstruction method, as the differences in uncertainty are

quickly dominated by sampling density. Although the Gaussian process helped, it
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was frustratingly slow due to the large covariance matrices involved. One major

question is whether the Gaussian process could be accelerated to give a practical

algorithm for large systems. This would likely involve specializing the linear alge-

bra routines for banded matrices, or using the Toeplitz structure of the covariance

matrices when points are uniformly spaced.

A satisfactory adaptive sampling algorithm was never possible for the Fourier

reconstruction, because estimating the relevant marginals became costly. This

is a question of estimating the marginals of a logconvex distribution, a problem

which is receiveing steady interest and work today. It is likely that a better

choice of Langevin damping, hierarchical sampling techniques, or some analytic

methods could lead to usefully fast approaches for adaptive sampling. A useful

measure of uncertainty and information is necessary as well, and at the moment

it is not clear what the correct expression should be. Finally, it would be nice

to have a theoretical analysis on the performance of the Fourier reconstruction:

at the moment our results are entirely empirical, and analytical predictions of

the convergence rate (perhaps as a function of the spectrum sparsity, frequency

range, and maximum sampled time) would provide useful insight as to improving

the algorithm further.
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[2005], The One-Dimensional Hubbard Model, Cambridge University Press.

184



BIBLIOGRAPHY

[49] Evenbly, G. and Vidal, G. [2010], ‘Entanglement renormalization in nonin-
teracting fermionic systems’, Physical Review B 81(23), 235102.

[50] Evenbly, G. and White, S. R. [2016], ‘Entanglement renormalization and
wavelets’, Phys. Rev. Lett. 116, 140403.
URL: https://link.aps.org/doi/10.1103/PhysRevLett.116.140403

[51] Fannes, M., Nachtergaele, B. and Werner, R. F. [1992], ‘Finitely correlated
states on quantum spin chains’, Communications in Mathematical Physics
144(3), 443–490.
URL: https://doi.org/10.1007/BF02099178

[52] Fishman, M. T. and White, S. R. [2015], ‘Compression of correlation matri-
ces and an efficient method for forming matrix product states of fermionic
gaussian states’, Phys. Rev. B 92, 075132.
URL: https://link.aps.org/doi/10.1103/PhysRevB.92.075132

[53] Folland, G. B. [2001], ‘How to integrate a polynomial over a sphere’, The
American Mathematical Monthly 108(5), 446–448.
URL: https://doi.org/10.1080/00029890.2001.11919774

[54] Fujii, K., Kobayashi, H., Morimae, T., Nishimura, H., Tamate, S. and Tani,
S. [2018], ‘Impossibility of classically simulating one-clean-qubit model with
multiplicative error’, Phys. Rev. Lett. 120, 200502.
URL: https://link.aps.org/doi/10.1103/PhysRevLett.120.200502

[55] Gessner, A., Kanjilal, O. and Hennig, P. [2019], ‘Integrals over gaussians
under linear domain constraints’.

[56] Gosset, D. and Nagaj, D. [2013], Quantum 3-sat is qma1-complete, in ‘Pro-
ceedings of the 2013 IEEE 54th Annual Symposium on Foundations of Com-
puter Science’, FOCS ’13, IEEE Computer Society, USA, p. 756–765.
URL: https://doi.org/10.1109/FOCS.2013.86

[57] Grier, D. and Schaeffer, L. [2018], New hardness results for the permanent
using linear optics, in ‘Proceedings of the 33rd Computational Complexity
Conference’, CCC ’18, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, DEU.

[58] Gurvits and Samorodnitsky [2002], ‘A deterministic algorithm for approxi-
mating the mixed discriminant and mixed volume, and a combinatorial corol-
lary’, Discrete & Computational Geometry 27(4), 531–550.
URL: https://doi.org/10.1007/s00454-001-0083-2

185



BIBLIOGRAPHY

[59] Haegeman, J., Osborne, T. J., Verschelde, H. and Verstraete, F. [2013], ‘En-
tanglement renormalization for quantum fields in real space’, Phys. Rev. Lett.
110, 100402.
URL: https://link.aps.org/doi/10.1103/PhysRevLett.110.100402

[60] Haegeman, J., Swingle, B., Walter, M., Cotler, J., Evenbly, G. and Scholz,
V. B. [2018], ‘Rigorous free-fermion entanglement renormalization from
wavelet theory’, Phys. Rev. X 8, 011003.
URL: https://link.aps.org/doi/10.1103/PhysRevX.8.011003

[61] Harrow, A. W., Mehraban, S. and Soleimanifar, M. [2020], Classical algo-
rithms, correlation decay, and complex zeros of partition functions of quan-
tum many-body systems, in ‘Proceedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing’, STOC 2020, Association for Comput-
ing Machinery, New York, NY, USA, p. 378–386.
URL: https://doi.org/10.1145/3357713.3384322

[62] Hartree, D. R. and Hartree, W. [1935], ‘Self-consistent field, with ex-
change, for beryllium’, Proceedings of the Royal Society of London. Series
A-Mathematical and Physical Sciences 150(869), 9–33.

[63] Hejazi, K., Chen, X. and Balents, L. [2021], ‘Hybrid wannier chern bands
in magic angle twisted bilayer graphene and the quantized anomalous hall
effect’, Phys. Rev. Research 3, 013242.
URL: https://link.aps.org/doi/10.1103/PhysRevResearch.3.013242

[64] Hohenberg, P. and Kohn, W. [1964], ‘Inhomogeneous electron gas’, Phys.
Rev. 136, B864–B871.
URL: https://link.aps.org/doi/10.1103/PhysRev.136.B864

[65] Holzhey, C., Larsen, F. and Wilczek, F. [1994], ‘Geometric and renormalized
entropy in conformal field theory’, Nuclear Physics B 424(3), 443 – 467.

[66] Huang, H.-Y., Kueng, R. and Preskill, J. [2020], ‘Predicting many prop-
erties of a quantum system from very few measurements’, Nature Physics
16(10), 1050–1057.
URL: https://doi.org/10.1038/s41567-020-0932-7

[67] Huang, Y. [2015], ‘Computing energy density in one dimension’, arXiv
preprint arXiv:1505.00772 .

186



BIBLIOGRAPHY

[68] Huszár, F. and Houlsby, N. M. T. [2012], ‘Adaptive bayesian quantum to-
mography’, Phys. Rev. A 85, 052120.
URL: https://link.aps.org/doi/10.1103/PhysRevA.85.052120
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[100] Orús, R. [2014b], ‘A practical introduction to tensor networks: Matrix
product states and projected entangled pair states’, Annals of Physics
349, 117 – 158.
URL: http://www.sciencedirect.com/science/article/pii/S0003491614001596
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Appendix A

Reducibility of QCSPs to Qubits

Consider the following Hamiltonian on 4 qubits:

H4→2 = 1− |ψ1⟩ ⟨ψ1| − |ψ2⟩ ⟨ψ2| − |ψ3⟩ ⟨ψ3| − |ψ4⟩ ⟨ψ4| (A.1)

|ψ1⟩ =
1

2

(
3

5
|0000⟩ − 4

5
|0001⟩+ |0100⟩+ |1010⟩+ 8

17
|1100⟩+ 15

17
|1111⟩

)
|ψ2⟩ =

1

2

(
4

5
|0000⟩+ 3

5
|0001⟩ − |0110⟩+ |1001⟩+ 20

29
|1101⟩+ 21

29
|1110⟩

)
|ψ3⟩ =

1

2

(
5

13
|0010⟩+ 12

13
|0011⟩ − |0111⟩+ |1000⟩ − 21

29
|1101⟩+ 20

29
|1110⟩

)
|ψ4⟩ =

1

2

(
−12
13
|0010⟩+ 5

13
|0011⟩ − |0101⟩+ |1011⟩ − 15

17
|1100⟩+ 8

17
|1111⟩

)
Each |ψi⟩ is orthonormal, soH4→2 has a nullspace of dimension four. By inspecting
the 840 distinct ways to apply two copies ofH4→2 to seven qubits, it can be checked
that each sum will have a ground state above zero, except for the case where they
are applied in the same way. This is a kind of “uniqueness” property that could
be very loosely interpreted as monogamy for whole subspaces, instead of just one
state.

By counting dimensions, one can check that this property is generic: it would
hold almost always for any four random vectors. Unfortunately, for any simple
and clean expressions one would write down, it would lack this property by one
symmetry or another. This is why the simplest construction readily available,
given above, is actually quite ugly.

Given a problem on 4-qudits, we can replace each 4-qudit with a collection
of four qubits. Each clause is modified to act on the |ψi⟩ basis of qubits instead
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of |i⟩ basis of the 4-qudits. Then, for each 4-qudit that the clause acted on, we
add a copy of H4→2. The above uniqueness property ensures that no other clause
can act on the same qubits in any other order, or mix them with any other set of
qubits.

Since each other clause acts on the same 4-dimensional induced subspace, this
lets us rewrite any QCSP on d = 4 qudits into one on qubits. Together with the
result in the text that 4-qudits suffice, we can Theorem 2.
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Review of Gaussian States and
Hartree-Fock

B.1 Majorana form of Hamiltonians

In standard creation and annihilation operators, a quartic Hamiltonian is writ-
ten

Ĥ =
∑

tij âiâ
†
j +
∑

uijkℓâiâj â
†
kâ

†
ℓ + h.c. (B.1)

This can be expanded in terms of Majorana operators,

âi →
1

2
(ĉ2i−1 + iĉ2i) (B.2)

â†i →
1

2
(ĉ2i−1 − iĉ2i) (B.3)

Then any term from t becomes

tij âiâ
†
j =

1

4
tij(ĉ2i−1ĉ2j−1 + iĉ2iĉ2j−1 − iĉ2i−1ĉ2j + ĉ2iĉ2j) (B.4)

Its Hermitian conjugate is

t∗ij âj â
†
i =

1

4
t∗ij(ĉ2j−1ĉ2i−1 + iĉ2j ĉ2i−1 − iĉ2j−1ĉ2i + ĉ2j ĉ2i)

=
1

4
t∗ij(−ĉ2i−1ĉ2j−1 + iĉ2iĉ2j−1 − iĉ2i−1ĉ2j − ĉ2iĉ2j + 4δi,j

where {ĉi, ĉj} = 2δij was used. The δij’s that arise can be discarded, as they
only add some constant shift to the Hamiltonian. Adding (B.4) to its Hermitian
conjugate yields

tij + t∗ij
4

(iĉ2iĉ2j−1 − iĉ2i−1ĉ2j) +
tij − t∗ij

4
(ĉ2i−1ĉ2j−1 + ĉ2iĉ2j) (B.5)
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=
iℜ[tij]

2
(ĉ2iĉ2j−1 − ĉ2i−1ĉ2j) +

iℑ[tij]
2

(ĉ2i−1ĉ2j−1 + ĉ2iĉ2j) (B.6)

This shows that the resulting expansion has only imaginary coefficients on the
quadratic terms. The anticommutation of the Majorana operators lets us rewrite
any ĉiĉj → δij +

1
2
(ĉiĉj − ĉj ĉi). And then, again, we can neglect the δij terms that

lead to a constant offset in the Hamiltonian. In this way, the quadratic terms
tij âiâ

†
j can always be transformed into

C +
∑
ij

iTij ĉiĉj (B.7)

with T antisymmetric and real, and some constant shift C. If we apply the same
substitution and expansion to the quartic terms∑

ijkℓ

uijkℓâiâj â
†
kâ

†
ℓ,

we will obtain additional constant terms (from e.g. ĉ1ĉ2ĉ1ĉ2 = −1), quadratic
terms (ĉ1ĉ2ĉ3ĉ2 = −ĉ1ĉ3), and new quartic terms (ĉiĉj ĉkĉℓ, all indices distinct).
When this is combined with its Hermitian conjugate, the terms combine and
antisymmetrize as before, and the constant and quadratic terms are again of the
form

C +
∑
ij

iT ′
ij ĉiĉj

which can be absorbed into our other earlier quadratic term. The quartic terms
remain where all indices are distinct, and the sum with the Hermitian conjugate
is

U ′
ijkℓĉiĉj ĉkĉℓ + U ′∗

ijkℓĉℓĉkĉj ĉi (B.8)

= U ′
ijkℓĉiĉj ĉkĉℓ + (−1)6U ′∗

ijkℓĉiĉj ĉkĉℓ (B.9)

= (U ′
ijkℓ + U ′∗

ijkℓ)ĉiĉj ĉkĉℓ = Uijkℓĉiĉj ĉkĉℓ (B.10)

The (−1)6 arises from the 6 swaps necessary to reorder the ĉ’s, and the resulting
U is completely real. Because all four ĉ’s anticommute, this U can be taken
completely antisymmetric.

In general, a term with k-fermion interactions can be written with a totally
antisymmetric rank-k tensor. Since it will introduce k-choose-2 swaps when taking
the Hermitian conjugate, it will be real when k is a multiple of 4, and completely
imaginary otherwise.
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B.2 Fermionic Parity

A Majorana operator ĉi has a spectrum of ±1. The +1 (resp −1) eigenspace
corresponds to the 0 (resp 1) eigenspace of â†i âi, so∏

i

ĉi =
∏
i

(
eiπn̂i

)
(B.11)

Then, since the number operators n̂i all pairwise commute, they behave as c-
numbers and ∏

i

(
eiπn̂i

)
= eiπ

∑
i n̂i = eiπ

∑
i â

†
i âi (B.12)

which is the common form of the fermionic parity operator.

B.3 GFMPS techniques

The covariance matrix γ on the i’th site of a GFMPS is written as a block
matrix

γ =

γpp γpℓ γpr
γℓp γℓℓ γℓr
γrp γrℓ γrr

 , (B.13)

where the subscript labels p, ℓ, r denote the physical, left auxiliary, and right
auxiliary modes, respectively. The γpp block describes covariance with the p sites,
while γpℓ describes covariance between the p and ℓ sites. The contraction be-
tween two such tensors is most easily illustrated for two states where the modes
are arranged in two groups each; the generalization to three or more groups is
straightforward. Consider two covariance matrices given, in block-form, by

G =

[
Gaa Gac

−GT
ca Gcc

]
, H =

[
Hbb Hbc′

−HT
c′b Hc′c′

]
(B.14)

with a common subsystem c = c′. They can be contracted into the ab covariance
matrix

G ▷ H =

[
Gaa 0
0 Hbb

]
+[

Gac 0
0 Hbc′

] [
Gcc 1
−1 H ′

c′c

]−1 [
Gac 0
0 Hbc

]T (B.15)

The other crucial step in DMRG is the Schmidt decomposition, where a state
is split into two blocks (two physical subsystems), as accurately as possible, given
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the limited entanglement between the two. In a standard MPS, this is achieved by
a singular value decomposition |ψ⟩ = UDV † =

∑
|ℓk⟩λk |rk⟩; the smallest λk are

discarded in order to meet the bond dimension limit. The analogous operation for
fermionic Gaussian states was first derived by Botero and Reznik [24]. It proceeds
by an SVD of the submatrix γℓr, which contains the correlations between the two
halves (but not their internal correlations):

OγabQ
T =

⊕
k

[
µk 0
0 µk

]
(B.16)

This necessarily produces paired singular values µk and real orthogonal matrices O
and Q. These are related to the symplectic eigenvalues λk of γaa by µk =

√
1− λ2k.

The Schmidt decomposition of γ is then given by

(O ⊕Q)γ(O ⊕Q)T =
⊕
k


0 λk µk 0
−λk 0 0 µk
−µk 0 0 −λk
0 −µk λk 0

 (B.17)

and can be split into

γ = Lac|ac ▷ Rbc|bc =

[
0 OT

−O 0

]
▷

[
0 Q
−QT 0

]
(B.18)

The modes where λ = 1 are fully decoupled modes, and can be omitted from the c
index to reduce the bond dimension without altering the underlying γ. Truncating
the bond dimension is achieved by setting the largest several λk to 1 and discarding
them, keeping only the modes with smaller λk (and thus higher entanglement).

The final ingredient to reconstruct most standard algorithms for MPS in the
Gaussian context is a canonical form of the GFMPS. This can be constructed in
an analogous fashion to standard MPS using the SVD decomposition described
above; in the case of GFMPS, it turns out that the canonical form is essential in
order to make the computation of the total energy as well as the local effective
Hamiltonian in the DMRG iteration efficient. For technical details of this, we
refer to Ref. [108]. With these tools in hand, one can perform the conventional
single- and two-site DMRG algorithms to find the lowest-energy GFMPS for a
given quadratic fermionic Hamiltonian.
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Appendix C

GFMPS DMRG: Extended
Pseudocode

Algorithm 2 Extracting blocks of Γ

function ExtractGamma(gfmps)
Move gfmps to canonical form at block 0;
Γresult ← sparseZeros();
carriedBlocks← [];
for i← 1 to numBlocks do

Add the Γir to carriedBlocks;
Move gfmps to canonical form at block i;
for Γjr in carriedBlocks do

if block Γji is needed by T or U then
Use Γjr to compute Γji;
Γresult[j, i]← Γji;
Move the 2nd index of Γjr from i− 1 to i;

else
Remove Γji from carriedBlocks;

end if
end for

end for
Return Γresult

end function
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Appendix C. GFMPS DMRG: Extended Pseudocode

Algorithm 3 GFMPS DMRG

function GfmpsDmrg(F ,gfmps)
for s← 1 to maxSweeps do

Initialize effective potential H0 to 0;
for i← 1 to numBlocks do

Move gfmps to canonical form at block i;
Update effective potential H0 using F and block i of gfmps;
Gaussian SVD to optimize block i;

end for
If |∆E| < 10−3, break;

end for
end function

201



Appendix D

Quantum Phase Estimation

This explains how to estimate the real part of G = ⟨ψ|U |ψ⟩. The unitary U
applied to |ψ⟩ prepares a state U |ψ⟩ = α |ψ⟩+

√
1− |α|2 |ϕ⟩, so that the desired

value is α.

1. Prepare state |ψ⟩

2. Prepare ancilla qubit |0⟩ and apply Hadamard gate, |0⟩+|1⟩√
2

3. Apply controlled unitary U on |ψ⟩, controlled by ancilla. The system is now

in the state 1√
2

(
|ψ⟩ |0⟩+ α |ψ⟩ |1⟩+

√
1− |α|2 |ϕ⟩ |1⟩

)
4. Apply Hadamard again on the ancilla and measure. We measure |0⟩ with

probability |(1 + α)|2/4 + (1− |α|2)/4 = 1+ℜ(α)
2

.

This produces a Bernoulli measurement with the desired outcome. To measure
the imaginary part of ⟨ψ|U |ψ⟩, simply measure the real part of ⟨ψ|iU |ψ⟩.

This procedure is in fact just the Quantum Phase Estimation algorithm applied
to single-bit precision in phase.
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Appendix E

Ordinary Kriging Equations

For a translationally invariant (or “stationary”) prior, C(x, y) = C(y, x) =
C(|y − x|)

Ordinary kriging allows the mean µ(x) to take a nonzero (Gaussian) prior.
Then instead the weights are computed together with a Lagrange multiplier c,
which enforces that

∑
wi = 1, so that that any prediction is a weighted mean of

the samples. This contrasts with simple kriging, where a prediction far away from
all the samples will regress to zero, even if all the samples are large and positive.

Given a kernel function C(x, y), expressing the covariance between values
ℜG(x) and ℜG(y), and a set of samples at points x1 . . . xn, the kernel matrix
K is formed by

K =

C(x1, x1) · · · C(x1, xn)
...

. . .
...

C(xn, x1) · · · C(xn, xn)

 .
For prediction at a new point x∗, the optimal weights w and constant c are given
by 

w1
...
wn
c

 =

[
K 1
1T 0

]−1


C(x1, x

∗)
...

C(xn, x
∗)

1


for prediction

G̃(x∗) = c+
∑

wizi

where zi are the previous samples.
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