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US Electric Distribution
system has about 60,000
substations and roughly

“ 500,000 circuits with 6 million A
miles of wire and cable




Diversity of US distribution circuits:
500,000 circuits, but no two are exactly alike

Differences within and among utilities are

* historical ¢ geographic climate
topography
population density
SOCio-economics

Differences drive load characteristics, system design and
operation — many local idiosyncracies...

— Distribution systems are extremely data-rich
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Power System Structure
with typical voltage levels
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Distribution System Architecture

radial vs. networked
designed for one-way power flow

Power System Structure
with typical voltage levels
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Distribution System Design

Typical Distribution System Layout
with radial topology & power flow
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Old design paradigm:
If it works at peak load, it always works.

Radial Distribution System
with Distributed Generation

Potentially bi-directional
«—p power flow
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Distribution Protection

Substation 1

* * * Other Feeders

A Protective Devices

X

B >

Key aspect of radial architecture:

Coordination of circuit protection

Loads T c
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Distribution Protection

Substation 1

+ ** Other Feeders
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Distribution Protection

Substation 1

+ * * Other Feeders
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Distribution Protection

Substation 1

+ * * Other Feeders
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Distribution Protection

Substation 1

+ * * Other Feeders
E’ﬂ--_ _Protective Devices
¢”’ ~‘“\\
e l/’——-~§s\
~ B »\\
/’ / \\$
/’ L ZoneB A,
/ A2 i “\
/ Same " .
/] Zone .
\
! \
! \
I 1
I \
! 1
]
| i
“ 1
\ l'
\  Loads [ 1O ;
\ _ - ,,/ ~§~~\\\\ II
N .- D |- ’\Q} Y,
A4
N7 X ,/
%, ZoneC \ ZoneD
N AN ,é/
NN \\ ’;}
T S==ca
Qh--~_ ———__— 7
~ ~~.¥- _____ i ——” P d

California Institute for

Energy and Environment



Distribution Protection with DER

Substation 1

+ ** Other Feeders
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Distribution Engineering:
Variation of circuits creates engineering challenges with DER

Distribution circuit design challenges:
Less help from statistics
— Irregularities play a greater role

* load (real power)

e power factor (reactive power)
* voltage drop

* phase imbalance

* generation

16



Distribution System Loading:
Micro View on feeder w/DER

Graphs courtesy of Tom Bialek, SDG&E
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Voltage regulation

Voltage
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Voltage regulation

[¢}]
g
(=]
>
+ 5% Conservation
- I Voltage
Reduction
N
Last customer

Distance along feeder

3
o

S I
!

Substation
Service drop

California Institute for

C I e e Energy and Environment



Voltage

violation

g

Distance

b

Load tap changer at

substation transformer

Voltage

Voltage regulation

Substation transformer allows adjustment
of initial voltage level through moveable
connection (load tap changer, LTC).

If feeder is long and voltage drop is too steep
to stay within range throughout, further
adjustments are made along the way
(voltage regulators or capacitors).

Voltage

Profile without

regulator violation
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California Institute for
Energy and Environment

Profile without
capacitor

violation

Distance

3

Substation ~— Capacitor



Real vs Reactive Power

Voltage
Voltage

Current associated with real power (watts)

Current associated with real power (watts)

Current associated with reactive power (VAR) Current associated with
reactive power (VAR)
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Real vs Reactive Power w/DER
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Distribution Reliability:

Aging infrastructure compounding traditional reliability management

* External influences are always
nearby

weather
trees
animals
Vehicles

o ?

* Aginginfrastructure is increasingly
a major factor

Average age of systems are increasing

Individual components are operating
beyond expected life

Dynamic operating conditions may
accelerate failures of older equipment

California Institute for

Energy and Environment

U.S. Distribution Equipment Age

H Beyond Expected Life
B Near Expected Life
W Within Expected Life

Source: Black & Veatch 2008 Electric Utility Survey
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EXCERPT

Future of U.S. Distribution System

EEI Webinar
July 18, 2012 B 2:00 — 3:30pm EDT
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Webinar Objectives

Discuss the evolution of the distribution systems thru 2030

Discuss growing use of distribution system for DER within an
operational, reliability and cyber security context

Discuss key technologies and their development/adoption

Highlight key strategic issues to consider in 2012-15 to enable
longer term success

Presenters:

Paul De Martini Managing Director, Newport Consulting

Alexandra von Meier Co-Director, Electric Grid Research, Calif. Inst. for Energy &

Environment

Jared Green Project Manager, Smart Grid, Electric Power Research Institute

Barbara Tyran Director, Washington & State Relations, Electric Power Research Institute




Wind Variability

Today's Wind Current Wind: 1043.80 MW

1:00 3:00 5:00 7:00 9:00 11:00 13:00 15:00 17:00 19:00 21:00 23.00
Hour~ Begirming

This graph shows the aggregated output from the wind generation connected directly to the California ISO Balancing Area

California Institute for Copyrlght 2012 UC/C'EE uc-ciee.org
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DER Driven Distribution Feeder
Volatilitv

Power 1 Second Data
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Time Scales in Electric Operations

hour-ahead scheduling and
resolution of most renewables

one a.c. cycle AGC signal integration studies

dynamic
synchro-phasors system wind and solar
_ protective relay response output variation service T&D planning
high-frequency operation (stability) restoration carbon emission
switching devices, day-ahead goals
inverters demand scheduling
response
T T [ I [ I [ I [ I I 1 T T I [
106 103 100 103 106 109 seconds
millisecond second minute hour day

year decade
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Distance Scales in Electric Operations

distance to premium
renewable resources

stability problems
oscillations

DG interconnection
criteria transmission

o distribution congestion
feeder

harmonic

effects WECC
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Coordination challenges in time

* Matching P = P, on different scales
e Constrained by ramp rates (dP/dt) of resources
 Maintaining stability on the scale of seconds, cycles

* Impact of switch-controlled generators (inverters) on
angle stability not yet well understood

Requires management at the sub-second level:

phasor measurement units °
chopping up waveform
with solid-state technology

ac-dc-ac conversion

power flow control devices



Today’s Grid
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Today’s Grid

bulk generation scheduling
frequency regulation

X

voltage regulation

ﬁqﬁ)ﬁﬁﬁﬁ </</ load shedding
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Supple Grid?
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generation intelligent switching:

coordination
responsive
loads oNEL o
conditioning

California Institute for
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Supple Grid?




Supple Grid?

bulk generation scheduling
frequency regulation

QQ 4 Q A\variable

|J_-| IJ__|I£ connectivity

T

e Q
\oad cooraeaton % £ 1200 Q

voltage regulation ﬂ-l EI ﬁh&] IJ__I |J_'| ﬂ] |:||J_-| |J_-| |J_-| ﬁ




Supple Grid?
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A taxonomy of electric grid subsets

physically co-
located

power island
microgrid v
balanced |

v
cluster
virtual power |
plant |
RESCO v

ableto matches coordinates
: . . Crosses
disconnect generation diverse SR
from grid & load resources S
v v (v/)
v v v
v v v v
v v



Future Directions

Refined observation and control in time and space

* driven by the need to mitigate pre-existing vulnerabilities of the
legacy system, much amplified by intermittent renewable resources

e providing the means to observe, communicate and control at
higher resolution while maintaining large-scale awareness

Trend toward adding new capabilities on the grid’s periphery

* resonant with philosophical and aesthetic preferences of many
ratepayers who embrace “going local, going green”

* may enable more local diversity, flexible management options and
more systemic value derived from renewable and distributed
resources



Technologies under development

for refined observation and control

four-quadrant (P,Q) inverters
volt-VAR control

advanced inverters
harmonic cancellation
transient mitigation
distributed storage
micro-synchrophasors
power routers
solid-state transformer
responsive loads

communication networks

N

distributed resources
& coordination tools

increasingly provide the
capability to balance power
and manage power quality
& reliability locally





