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METHODOLOGY Open Access

Combining multivariate analysis and
monosaccharide composition modeling to
identify plant cell wall variations by Fourier
Transform Near Infrared spectroscopy
Andreia M Smith-Moritz1,2, Mawsheng Chern1,3, Jeemeng Lao1,3, Wing Hoi Sze-To1,3, Joshua L Heazlewood1,2,
Pamela C Ronald1,2,3 and Miguel E Vega-Sánchez1,3*

Abstract

We outline a high throughput procedure that improves outlier detection in cell wall screens using FT-NIR
spectroscopy of plant leaves. The improvement relies on generating a calibration set from a subset of a mutant
population by taking advantage of the Mahalanobis distance outlier scheme to construct a monosaccharide range
predictive model using PLS regression. This model was then used to identify specific monosaccharide outliers from
the mutant population.

Keywords: near infrared spectroscopy, cell wall, hemicellulose, multivariate analysis, mutant screen, pls modeling

Background
Plant cell walls are a complex mixture of polysacchar-
ides, proteins and the phenolic polymer lignin that have
been recently targeted as possible sources of fermentable
sugars for the production of biofuels and other bio-
materials [1]. The development of a lignocellulose bio-
mass-based biofuels industry is partly dependent on
genetic engineering and breeding of the next generation
of crops containing, among other traits, easily extracta-
ble cell wall sugars. Thus, a better understanding of how
plants synthesize, deposit and modify their cell walls is
necessary for the selection of traits important for biofuel
crop improvement [2].
The identification of plants with altered cell wall com-

position or structure can prove useful in the discovery
of novel genes involved in the biosynthesis and modifi-
cation of the cell wall. Such plants can be isolated using
genome-wide association mapping of diverse popula-
tions or can be isolated from forward genetic screens,
where a subset sample population with the desired traits
is selected from a large pool of mutagenized individuals.

However, the identification of these select samples
requires a well-constructed screening process that is
both robust and, due to the large sample population,
high-throughput. Several successful plant cell wall
mutant screens have been described over the years that
make use of different screening methodologies. These
include: acid hydrolysis and monosaccharide composi-
tion using gas-liquid chromatography [3], microscopic
observation of xylem stem sections [4,5], seedling
growth on medium containing cell wall hydrolyzing
enzymes [6] and Fourier-Transform Infrared (FT-IR)
microspectroscopy [7,8]. Most of these approaches
either required at least some kind of sample processing
or were not amenable to high-throughput screening,
especially when dealing with, in some cases, thousands
of mutagenized plant samples. In addition, most of
these screens have been performed on the model species
Arabidopsis thaliana, a dicot, which is known to have a
different cell wall type than grasses [9].
Recently various infrared spectroscopy techniques

such as Fourier Transform Mid-Infrared (FT-MIR) have
been used to characterize plant cell wall model com-
pounds and mutants [7,8,10-16]. Due to the chemical
specificity of this infrared region (400 to 4000 cm-1),
one can directly identify certain peaks related to cell
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wall components. However, the use of FT-MIR in these
studies involved careful plant cell wall extraction and/or
probing of individual plant cells with a FT-MIR micro-
scopy objective. Though very effective and informative,
the use of FT-MIR as a high throughput cell wall
screening technique for a large population is not practi-
cal due to the need for meticulous sample handling.
Significantly, another region of the infrared spectrum,

the near-infrared (NIR), has shown promise in the clas-
sification and characterization of plant material in a
more rapid manner. In contrast to MIR, the NIR region
(12000 to 4000 cm-1) does not reveal discrete signature
peaks, but it excites several harmonic overtones of
methyl, aromatic CH-OH, with minor features in meth-
oxy and carbonyl CH bonds, generating spectra that
have no easily distinguishing chemical features [17].
However, with the help of multivariate analysis to
deconvolve the spectrum, FT-NIR has been successfully
applied to rapidly quantify and classify numerous known
components in complex mixtures [18-20]. In this man-
ner, cell wall components such as carbohydrates, ash
content, and lignin have been successfully modeled and
cross-validated from a defined plant set of various tissue
types [21-27]. In order to correlate NIR spectra to che-
mical features and eventually quantify individual compo-
nents in a mixture, a robust training set containing NIR
spectra of a range of known concentrations is required.
Using Partial Least Squares (PLS) regression, a model
can then be developed to determine the concentration
of these components in unknown mixtures, within the
same range, by using NIR spectra alone [28]. Successful
applications of FT-NIR techniques for fast chemical
characterization involve acquiring accurate sample spec-
tra, applying robust chemometric/multivariate analysis
for spectra processing and obtaining reliable calibration
sets for modeling. Recently, FT-NIR and linear discrimi-
nate analysis (Mahalanobis distance) were used to screen
a mutant maize population to identify putative mutants
[29,30]. In this study, approximately 1.8% of the samples
were identified as putative mutants and 6 of these (17%
validation rate) were confirmed by pyrolysis-molecular
beam mass spectrometry. While highlighting the effec-
tiveness of FT-NIR analysis in the discrimination of
plant samples, the procedures outlined in these publica-
tions [30,31] were limited in application details and no

chemometric analysis (e.g. PLS modeling) were
performed.
The non-destructive, fast and quantitative nature of

NIR spectroscopy makes it a very attractive option to
use for screening samples in large plant populations.
This study outlines a detailed process for the applica-
tion of fast scanning of intact plant leaves by NIR spec-
troscopy followed by an outlier detection scheme
combining linear discriminate analysis and PLS model-
ing. The approach was validated on known cell wall
mutants of rice and Arabidopsis and then applied to a
rice mutant collection consisting of thousands of
uncharacterized samples. The technique involves first
nonspecific outlier detection using Mahalanobis distance
analysis of NIR spectra followed by the development of
a predictive model that could be readily implemented
for a variety of analyses and applied to any collection of
plant mutants or variants. We show that this approach
significantly improves outlier detection over the Maha-
lanobis distance alone, as well as allowing the identifica-
tion of specific cell wall variants in the mutant
population.

Results
FT-NIR analysis of Arabidopsis cell wall mutants
In order to evaluate the effectiveness of FT-NIR in clus-
tering different plant populations without the need of
cell wall extraction or processing, various characterized
Arabidopsis cell wall mutants were analyzed (Table 1).
Whole Arabidopsis rosettes were dried and used for
subsequent analysis by FT-NIR. A portion of each whole
rosette was placed directly on the 1 cm diameter sample
window of a FT-NIR MPA and three separate measure-
ments were taken at random locations on the rosette,
including both the adaxial and abaxial sides. A total of
six to eight individual rosettes were measured in this
way for each plant line. A representation of pre-pro-
cessed and area-normalized NIR spectra from cell wall
mutants in the Columbia (Col-0) genetic background is
outlined in Figure 1a (inset). Due to a lack of chemical
specificity inherent to FT-NIR, there were no obvious
differences that could be visually discerned between the
spectra of the cell wall mutants when compared to wild-
type (WT) rosettes, and thus required additional data
processing.

Table 1 Arabidopsis thaliana mutants used in this study.

Mutant Phenotype Mutated gene Background Reference

irx10-L non-discernible At5g61840 Col-0 [35,36]

irx14 irregular xylem, xylan-deficiency At4g36890 Col-0 [33]

rsw1 primary cell wall cellulose deficiency At4g32410 (AtCesA1) Col-0 [34]

arad1 pectic arabinan deficiency At2g35100 qrt [32]

xgd1-1 xylogalacturonan deficiency At5g33290 qrt [31]
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Principal component analysis (PCA) has been widely
demonstrated to be an effective data compression tech-
nique where a new basis set (principal components
axes) representing the maximum variance across the
whole sample set is calculated. For data compression,
PCA was performed on pre-processed and area-normal-
ized NIR spectra of Arabidopsis WT (Col-0) and cell
wall mutants irregular xylem 10-Like (irx10-L), irregular
xylem 14 (irx14) and radially swollen 1 (rsw1). This was
followed by calculation of the Mahalanobis distance, a

linear discriminate analysis (LDA) technique, to identify
outliers when compared to the WT background Col-0.
The 10 principal component scores (accounting for 90%
of the variability in the entire population) for the Col-0
rosettes were used as the reference set to calculate a sin-
gle Mahalanobis distance for cell wall mutant rosettes
(Figure 1a). An analysis of the cell wall mutants arabi-
nan deficient 1 (arad1) and xylogalacturonan deficient 1
(xgd1-1) in the quartet (qrt) background was also under-
taken using the same process outlined above (Figure 1b).
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Figure 1 FT-NIR and multivariate analysis of Arabidopsis rosettes. (a) Mahalanobis distance calculated from FT-NIR spectra of the cell wall
mutant plants irx10-L, irx14, rsw1 with spectra from wildtype (Col-0) as the reference. Inset is an example of area-normalized and baseline
corrected FT-NIR spectra for cell wall mutants. (b) Mahalanobis distance calculated from FT-NIR spectra of the cell wall mutant plants arad1 and
xgd1-1 with the qrt background plants as the reference.
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In both these examples, any data point greater than the
largest Mahalanobis distance for the corresponding WT
background was considered outside the biological var-
iance and therefore identified as an outlier. This process
demonstrates that, although we had randomly scanned
whole rosettes comprising of various leaf developmental
stages, half of the measurements from known cell wall
mutants were identified as outliers. We surmised that
even though only a portion of the mutants were identi-
fied, it was possible to use NIR and subsequent multi-
variate data analysis of unprocessed plant material as a
first pass outlier detector scheme in a rapid manner.
In order to correlate the FT-NIR analysis with actual

changes in the cell wall, we performed monosaccharide
composition analysis of extracted cell wall material fol-
lowing trifluoroacetic acid (TFA) hydrolysis and high
performance anion exchange chromatography (HPAEC).
The TFA treatment mainly hydrolyses the matrix poly-
saccharides in the plant cell wall (pectin and hemicellu-
loses). We must point out here that the HPAEC
protocol that we have used fails to resolve xylose and
mannose efficiently. For Arabidopsis, mannose repre-
sents between 5-10% of the primary cell wall [10] and
thus we have labeled it as the mannose/xylose value in
the figure. When we refer to mol% values, these only
represent the TFA hydrolysate component of the cell
wall (hemicelluloses and pectin fractions).
Cell wall mutants irx14 (Additional file 1: Figure S1a),

arad1 and xgd1-1 (Additional file 1: Figure S1b) clearly
showed a decrease in xylose, arabinose and xylose,
respectively, as has been reported previously [31-33].
Although not showing significant differences in matrix
polysaccharide sugar composition, cell wall mutants
rsw1 which is impaired in cellulose accumulation [34]
and irx10-L [35,36] can also be identified as outliers
using FT-NIR and multivariate analysis (compare Fig-
ures 1 and Additional file 1: Figure S1). FT-NIR analysis
coupled to Mahalanobis distance analysis thus shows
that it can discern more than just differences in cell wall
composition.

FT-NIR analysis of rice mutants
In order to test the viability of reducing the number of
measurement scans to a single scan of a single tissue
type and developmental stage, a known rice cell wall
mutant and its corresponding WT were analyzed. A rice
mutant line containing a transposon insertion in the
CELLULOSE SYNTHASE A7 (OsCESA7) gene has pre-
viously been shown to cause the brittle culm phenotype
due to a dramatic reduction in secondary cell wall cellu-
lose deposition [37]. We performed FT-NIR scanning of
3-week-old leaves from four WT rice plants (cultivar
Nipponbare) and the brittle culm mutant Oscesa7. The
WT samples were randomly assigned into two groups;

one was used as a reference set and the other as a vali-
dation set. After preprocessing, area normalization and
taking the PCA of the spectra, WT1 and WT2 were
employed as the reference set to determine the Mahala-
nobis distance for the other two WT samples (WT3 and
WT4) and all the brittle culm samples (BC1-4) samples
(Figure 2). Due to the fact that only two samples were
used as controls, a single principal component score was
used in the calculation, accounting for 60% of the varia-
bility. The largest Mahalanobis distances corresponded
to the four brittle culm mutant samples while the vali-
dating WT samples clustered with the reference set
(Figure 2). This demonstrates that the first principal
component score based on a single FT-NIR scan has the
ability to distinguish differences between biological
replicates of rice mutants and WT in whole rice leaves,
and that the technique could be used to analyze samples
in a high-throughput manner (1 scan per sample).

Utilizing the Mahalanobis distance to determine outliers
in a rice mutant population
We were interested in assessing the feasibility of this
strategy to identify outliers in a rice mutant population
consisting of thousands of unknown samples. We used a
mutant population that was generated by fast neutron
bombardment of the rice line Kitaake-Ubi-Xa21 (Chern
and Ronald, unpublished). We devised a pilot study con-
sisting on the analysis of 3 week-old leaf samples col-
lected from 550 mutant lines (segregating, M2
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Figure 2 FT-NIR and multivariate analysis of rice. Mahalanobis
distance analysis of the rice brittle culm (bc) mutant and wildtype
(WT, cultivar Nipponbare). The distance was based on the first
principal component score of the FT-NIR spectra with WT1 and WT2
used as the reference set against all BC samples with WT3 and WT4
employed as the test set.
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generation). Because the plants were grown in a green-
house in batches of 50 lines, our experimental unit was
defined as a batch of 50 lines, with each line consisting
of 8 independent leaf samples (approximately 400 leaf
samples per batch). This was done to control for varia-
tions in environmental conditions between the 11 pilot
batches grown at different times in the greenhouse. In
addition, batch specific references were required to
account for biological variability. A single leaf sample
was randomly chosen from the batch and was scanned
five times at various locations on the leaf. This sample
and its corresponding replicate scans were then desig-
nated as one of the NIR reference sets specific for that
batch. We reasoned that it was highly unlikely that a
randomly selected leaf in this population was a cell wall
mutant, but would be a most probable representative of
WT lines. Each of the leaves in the entire batch were
then placed on the FT-NIR sample window and scanned
once. Mahalanobis distance was subsequently deter-
mined for all samples based on the first 4 principal
component scores of a FT-NIR leaf spectrum and the
defined NIR reference set. An example of a Mahalanobis
distance result is shown in Figure 3a, where all samples

in a batch are listed in descending Mahalanobis distance
from the NIR reference set (0810-4). The top 5% (~ 20
samples) representing the largest Mahalanobis distances
from the reference set were identified and recorded.
This process was repeated four more times with other
randomly selected samples from the batch to serve as
reference sets for analysis. The leaf samples that
appeared repeatedly as the top 5% of outliers over all
five iterations of the Mahalanobis distance calculations
were then identified as candidates and set aside for
monosaccharide composition analysis (Figure 3b). From
this particular example (batch number 800), 10 outliers
out of 370 leaf samples were selected for HPAEC
analysis.
Using the criteria defined above, we analyzed 11

batches in this manner to serve as our pilot study. In
summary, the pilot study consisted of 550 mutant lines
(3590 leaf samples), resulting in a set of 235 leaf samples
that were determined to be Mahalanobis outliers. A
total of 145 of these outliers and 73 references (Mahala-
nobis distance references as well as more arbitrarily cho-
sen samples) were analyzed for cell wall monosaccharide
composition. The reference samples were used to define
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Figure 3 Example of screening process using Mahalanobis distance. Mahalanobis distance outlier screening of a single batch (370 leaf
samples) of the rice mutant population. (a) A single iteration of the Mahalanobis distance analysis for batch 0800-0850 based on one randomly
chosen reference sample (sample 0810-4). The rest of the samples (x-axis) were sorted in descending order of their distance (y-axis) compared to
the reference sample. (b) Summary of outliers based on five iterations of Mahalanobis distance calculations using randomly selected reference
sets from the same batch.
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cell wall percentage monosaccharide variation in the
population relative to their batch. Unlike Arabidopsis,
the xylose detection is not a problem with rice samples
since we know that mannose is not detected in rice
leaves at that stage of development (Ronald et al,
unpublished results). Across references from the 11
batches, the relative percent variability for major cell
wall monosaccharides was found to be 3.3 ± 2.3% for
Arabinose (Ara), 12.5 ± 8.5% for Galactose (Gal), 14.2 ±
9.2% for Glucose (Glc) and 4.8 ± 3.0% for Xylose (Xyl).
Minor cell wall monosaccharides (Rhamnose [Rha],
Fucose [Fuc], Glucuronic Acid [GlcA], and Galacturonic
Acid [GalA]) were excluded from further analyses due
to large variations. In order to determine significant
changes in cell wall sugar composition, we calculated
the relative percent monosaccharide differences outside
4 standard deviations (μ ± 4s; 99.99% confidence inter-
val) for each of the major sugars based on the references
and used these values as monosaccharide outlier identi-
fication criteria. Of the 145 outliers analyzed by
HPAEC, a total of 48 (33% validation rate) had a signifi-
cant sugar composition difference (> 4s) in one or more
of the major cell wall monosaccharides (Additional file
2: Table S1). Significant variations range from a single
sugar difference (e.g. 0373-3, 0826-7, 1533-4 and 1784-
8) up to variations in 3 major monosaccharides (e.g.
0230-3, 0352-2, 1536-1, 2258-2). These variations
encompass both deficiencies as well as relative abun-
dance changes among the monosaccharides analyzed.

Modeling monosaccharide composition from FT-NIR
spectra
A major advantage in using FT-NIR is the ability to
derive quantitative information by means of PLS model-
ing. This is done by correlating known biochemical
values (e.g. monosaccharide composition) of a calibra-
tion set (e.g. cell wall mutants) with the respective FT-
NIR spectra. However, with the exception of Arabidop-
sis, no extensive and readily available collection of well
documented cell wall mutants exists that could be used
to develop a calibration set of varying biochemical char-
acteristics. Consequently, for our rice mutant popula-
tion, we reasoned that the set of Mahalanobis outliers
that have been already identified and characterized in
the pilot study would constitute a robust calibration set.
Because these outliers span multiple batches grown at
different times, they provide a range of cell wall mono-
saccharide compositions. Additionally, modeling of
monosaccharides can allow us to make targeted detec-
tions of specific cell wall changes, which is not possible
by using the Mahalanobis distance approach alone.
The Mahalanobis outliers and respective references

varied by up to 3 mol% for Fuc, Rha, GlcA and GalA,
while the more abundant sugars showed a larger

variation spanning 5 mol% for Ara, 10 mol% for Glc and
nearly 20 mol% percent for Xyl (Additional file 3: Figure
S2). A majority of these samples (206) were selected as
a calibration set for monosaccharide modeling of FT-
NIR spectra. A model was constructed for each of the
major sugars to correlate monosaccharide composition
with FT-NIR spectra by PLS modeling. K-fold cross vali-
dation was used to assess the accuracy of the predictive
model. This was done in an iterative manner by first,
randomly dividing the calibration set into subsets (train-
ing and test set), second, constructing a model based on
the training set, and finally validating the model with
the test set. An analysis of predicted versus experimental
mol% data for each sugar demonstrated the robustness
of the calibration set in developing a predictive model
with a correlation coefficient (R2) of 0.98 (Figure 4).
This predictive test indicated that cell wall monosac-
charide composition could be confidently predicted
from FT-NIR spectra of an unprocessed rice leaf tissue.
Based on the PLS model constructed from the calibra-
tion set, the cell wall sugar composition for all the sam-
ples in the pilot set (550 lines) was predicted. The
differences in predicted Ara, Xyl, Glc and Gal, repre-
senting the most abundant monosaccharides, were then
used as new criteria for a re-analysis of outlier detection
in the pilot study. For a given batch, the averages for
the major sugars were determined based on predicted
values for all the samples in the batch. Next, percent
differences for an individual sample in the batch were
calculated based on these batch averages and the pre-
dicted sugars for that particular sample. We employed
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the confidence interval threshold defined above (±4 s;
>99.99% confidence interval) for determining predicted
significant sugar composition variants (Ara; ≥ Δ 9.1%,
Gal; ≥ Δ 34.0%, Glc; ≥ Δ 36.6%, and Xyl; ≥Δ12.1%).
Based on these criteria, 75 samples were predicted to
have changes in cell wall composition and a randomly
selected subset of 30 was analyzed for monosaccharide
composition. A total of 18 samples were experimentally
confirmed with significant sugar composition differences
(Additional file 4: Table S2). This constitutes a 60% vali-
dation rate for the PLS model with regard to sugar com-
position. The model identified an additional seven
outliers, bringing the total number to 55 total outliers
out of a population of 3590 samples. This constitutes a
rate of 1.3% outlier confirmation rate for the pilot study
of 550 lines when both the Mahalanobis distance and
model outliers are considered. Out of these 55, 11 were
identified by both the Mahalanobis distance and the
model.
A set of 6 samples (outlined in Additional file 4: Table

S2) was randomly selected to illustrate the predictive
value of the model for identifying significant and inher-
ent variations in sugar composition. The predicted and
experimentally determined values for Ara, Gal, Glc, and
Xyl for each of the six sample outliers are shown in Fig-
ure 5. All six outliers showed at least a 30% experimen-
tal Gal content variation compared to reference samples,
and all had significant decreases in xylose content. For
example, as can be seen in sample 0376-6, the model
predicted a decrease in Xyl as well as increase in Gal
and Glc contents, relative to the predicted reference
values for all these sugars (Figure 5, red symbols). Bio-
chemical analysis of this sample by HPAEC (experimen-
tal), confirmed the predicted changes in sugar
composition for Gal, Glc and Xyl, but not as well for
Ara (Figure 5, blue symbols). Overall, the majority of
the predicted changes in sugar content were confirmed
experimentally, with the highest success of prediction
for changes in Gal and Xyl.

Discussion
We have outlined a detailed application for FT-NIR in a
plant cell wall composition screen that can be used in a
non-destructive and rapid manner. We have shown that
outlier identification performed by multivariate analysis
of FT-NIR spectra using PCA and Mahalanobis distance
has approximately a 30% validation rate for monosac-
charide composition. Additionally, we have taken advan-
tage of the quantitative nature of NIR to develop a
process to derive a calibration set based on Mahalanobis
distance outliers to create a model to predict monosac-
charide composition from FT-NIR spectra alone. By
incorporating PLS modeling into the screening metho-
dology, the outlier detection rate was significantly

improved to 60% compared to the Mahalanobis distance
approach. These processes can be applied to any large
population of plant samples without the need for a
known or previously characterized collection of variants
by following a multistep process (outlined in Figure 6).
This allows for experimental validation on a subset of
carefully selected candidates in a mutant or natural var-
iant population, greatly increasing throughput and
efficiency.

Outlier detection by Mahalanobis distance
While data acquisition is straight forward, the quantita-
tive examination of the FT-NIR spectra can only be
achieved using robust multivariate analysis such as PCA
and Mahalanobis distance. In previous studies with FT-
MIR microspectroscopy, the Mahalanobis distance was
successfully applied to the identification of putative cell
wall mutants in flax [8] and in Arabidopsis [9]. Although
a recent report briefly mentions the use of FT-NIR and
Mahalanobis distance for the identification of maize cell
wall mutants [30], neither validation nor a detailed ana-
lysis on the application of the method is provided.
Although PCA by itself can be used to show clustering
or outlier identification [30], this can only be done
when the majority of the variances (90% or more) can
be accounted for by the first few principal component
scores, and if prior knowledge is available to determine
which scores represent the variation of interest. In our
study, we were unable to see any discrete clustering of
mutants by plotting the first 2 principal component
scores (e.g. Arabidopsis cell wall mutants Additional file
5: Figure S3). This was most likely due to the large bio-
logical variation between samples where more than 10
principal component scores were required to account
for 90% of the variation. Consequently, in our study,
PCA was only used as a data compression technique
and required a linear discriminate technique (Mahalano-
bis distance) to serve as a metric to determine outlier
classification from a reference. A requirement for using
the Mahalanobis distance after PCA is that a reference
set is needed to account for biological and technical
variability to identify outliers from a defined population.
The applicability of the FT-NIR and Mahalanobis dis-

tance approach to identity cell wall composition differ-
ences was initially demonstrated using known cell wall
mutants in both Arabidopsis and rice. While this initial
study showed the validity of the approach, application of
this technique is problematic when faced with biological
variation prevalent in large-scale screening and with no
defined reference set. Because plants grown at different
times have been exposed to differing growth conditions,
these would likely be reflected in the structure and com-
position of the cell wall. Therefore each batch in the
pilot study using the rice population was treated
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separately and reference sets specific to the batch were
required to account for variability unique to that batch.
Using this approach, we demonstrated that it is possi-

ble to identify outliers with one FT-NIR scan. Not all
outliers identified by the Mahalanobis distance analysis
proved to show significant monosaccharide composition
differences discernible by HPAEC analysis of TFA
hydrolysates. These most likely represent outliers for
different reasons, for example changes in lignin, starch,
cellulose content or could constitute developmental

stage differences. This has been shown in previous stu-
dies that utilize Mahalanobis distance as the outlier
detecting scheme. In a forward-genetic screen of maize
mutants, 33 out of the 39 NIR Mahalanobis distance
outliers showed no differences in cell wall composition
and were identified as nir mutants with “invisible” phe-
notypes [30]. This was highlighted in our study of the
Arabidopsis cell wall mutant analysis where irx10-L, a
known xylan biosynthesis mutant that fails to show a
clear morphological or sugar phenotype [35,36], but was
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an FT-NIR outlier in the Mahalanobis analysis. Simi-
larly, the Arabidopsis cellulose deficient mutant rsw1
[34] and the rice brittle culm mutant (deficient in sec-
ondary cell wall cellulose deposition) were also found as
outliers in the Mahalanobis distance analysis without
showing changes in matrix polysaccharide sugar compo-
sition. It is known that rsw1 is a temperature-condi-
tional mutant [34]. We grew rsw1 at the non-
permissible temperature and still showed that it could
be identified as an outlier compared to WT Col-0. We
measured cellulose content in rsw1, irx10-L and irx14
and we could not find significant differences between
wild type Col-0 and these mutants (Additional file 6:
Figure S4). This underscores the possibility that addi-
tional changes, not previously reported in rsw1, account
for the spectral differences shown here. While the corre-
lation of FT-NIR with monosaccharide composition in
this study only provides an insight into matrix polysac-
charides, this approach could easily be broadened by
correlating other cell wall components with FT-NIR
spectra [38]. Therefore, other robust biochemical

methods that can probe the content of other compo-
nents in the sample could help to account for a propor-
tion of other outliers we identified. It is then clear that
FT-NIR can identify a range of changes in biological
samples, in addition to variations in cell wall composi-
tion. In support of this hypothesis, a combination of FT-
NIR and GC-TOF/MS profiling was recently applied to
identify Arabidopsis mutants with changes in seed meta-
bolite fingerprints [39].

Predictive modeling of sugar composition
By incorporating predictive modeling of monosaccharide
composition in a mutant screen, a more targeted outlier
detection scheme can be implemented; however this can
only be achieved after a robust calibration set is
obtained. To generate calibration sets that encompass
large variability for modeling, previous applications for
biomass characteristics using NIR have used various
plant tissue types [23,40]. That approach to modeling is
not feasible in a mutant screen dealing with variability
associated with a single tissue type. In order to derive a
calibration set spanning a varied range of cell wall sugar
compositions, we used the set of outliers determined by
Mahalanobis distance analysis of the rice mutant popu-
lation. We constructed a PLS model from the calibration
set to correlate FT-NIR spectra with sugar composition,
which allowed the prediction of sugar composition of
every leaf sample (3590) that was scanned by FT-NIR.
The power of this technique in a large population
screen is that the model can be continuously improved
upon as more candidates are identified and added to the
calibration set. We chose to scan a rice leaf only once
and therefore only a single scan is correlated to experi-
mental monosaccharide composition. This initial step
could be improved by undertaking multiple scans at var-
ious locations on the leaf that could improve both the
Mahalanobis and PLS model outlier validation rate but
will be time-consuming. In addition, other improve-
ments in the model can be made by how the spectra is
preprocessed [41]. The modeling process is limited by
the quality of the biochemical method, thus if monosac-
charide composition analysis by HPAEC contains inac-
curacies, the prediction model error will also increase.
For these reasons, low abundant sugars in the cell walls
of rice samples such have Fuc, Rha, GalA and GlcA had
a higher degree of associated prediction error. Conse-
quently, for this study we focused our comparative ana-
lyses on Xyl, Ara, Gal and Glc.
Even though not all of the predicted Xyl, Ara, Glu and

Gal differences correlated with experimental values for
some of the mutants we discovered, at least one of the
predicted monosaccharide changes from each sample
would identify it as an outlier for further analysis. This
is evident with mutant 2073-3 which was set aside as
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Figure 6 Process schematic. Outline of FT-NIR scanning and
subsequent data processing involved in generating outliers
followed by a calibration set for modeling. This illustrates the
iterative process that can be implemented to improve outlier
detection.
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Gal outlier based on sugar prediction, but experimental
monosaccharide composition analysis showed it to have
significant changes in other sugars as well (Figure 5 and
Additional file 4: Table S2). Once measured and con-
firmed, these samples would then serve as additional
data points in the calibration set, and an improved
model can be developed.
Confirmed outliers were detected using both the

Mahalanobis distance as well as PLS modeling but with
different rates of validation. Out of the total analyzed
rice leaf samples, 33% of the Mahalanobis outliers were
confirmed to have large variation in the major cell wall
monosaccharides versus 60% validation rate for the
smaller population of PLS model outliers. The largest
variations in Ara (0230-3), Glc (0376-6) and Xyl (0352-
4) were found using both Mahalanobis and PLS model-
ing, with the exception of the largest Gal variant (2073-

3) which was predicted only by the PLS model. In an
analysis of the population distribution of all Mahalano-
bis distance and PLS model outliers versus the percent
sugar difference, we can see a shift towards larger sugar
variation for the PLS model outlier population than for
the Mahalanobis population (Figure 7). This is most
dramatic for Glc and Xyl showing almost a 2-fold
increase in the median for the PLS model compared to
Mahalanobis distance. Outlier confirmation for Ara,
however, showed no significant improvement by PLS
modeling compared to the Mahalanobis distance (Figure
7). In addition to improving the detection of confirmed
sugar composition outliers, the model allows for the
selection of defined sets of candidates for experimental
validation, reducing the amount of samples to process
biochemically. This model can potentially be used on
plant materials that have the same range of
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monosaccharide composition as suggested by Liu et al
[40]. Therefore a large mutant population can serve two
purposes: one of providing a set of potential mutants,
and the other as source of information that can be
exploited to create a broad base model using NIR.

Conclusion
This study has demonstrated a robust high-throughput
application for FT-NIR on a single tissue type to identify
cell wall composition changes. This approach is applic-
able to large-scale mutant and population analyses, as it
requires minimal sample handling and additional well-
established methods for data processing. The procedure
can be done in a two-step process by first identifying
outliers by Mahalanobis distance analysis, followed by a
more targeted screen using a PLS model for monosac-
charide composition. Additionally, this procedure can be
continually improved upon during the screening process
when more candidates are identified and confirmed. We
identified 55 confirmed outliers with significant cell wall
monosaccharide composition changes in this pilot study
using a subset of a rice mutant population. After screen-
ing the entire population by Mahalanobis distance ana-
lysis or by sugar modeling of NIR spectra, all candidates
will need to be validated by detailed segregation analyses
in subsequent segregating generations.

Methods
Fourier Transform Near-Infrared Spectroscopy
A MPA FT-NIR Spectrometer (Bruker Optics) was used
to measure samples. Spectral absorbance covering a
range from 38000 to 12000 cm-1 was taken at a spectral
resolution of 8 cm-1. Spectra were collected in diffuse
reflectance mode. A total of 32 scans were taken and
co-added for each sample (10 seconds). Whole and
dried Arabidopsis rosettes and rice leaves were placed
directly on the sampling window for measurements.

Data Preprocessing
Preprocessing of absorption spectra was done using
Opus software (Bruker Optics). Absorption spectra were
first cropped to 3800 cm-1 to 9000 cm-1, smoothed
using 25 points then baseline corrected.

Statistical analysis and modeling
Statistical analysis was undertaken using the Statistical
toolbox in Matlab (Mathworks). After pre-processing of
the spectra, the data set was area-normalized then mean
centered. Principal component analysis was used for data
compression [42]. Mahalanobis distance is expressed as
(
dij

)2
=

(
ūi − ūj

)TS−1 (
ūi − ūj

)
where ūi and ūj are the

group means for 2 groups and S is the covariance matrix.
A mathematical constraint in calculating the

Mahalanobis distance forces that the number of variables
(pc scores) cannot equal or exceed the number of obser-
vations (controls). Taking the inverse of a covariance
matrix with fewer observations than the number of vari-
ables is not recommended therefore forcing the con-
straint that there cannot be more principal component
scores (variables) than references (observations) when
calculating the Mahalanobis distance. Calibration set: 12
samples were dropped from the 218 samples that were
measured by HPAEC due to error in the FT-NIR spectra
upon closer inspection. The remaining 206 files were
subsequently used as the calibration set. PLS was per-
formed using in-house programming using the plsregress
function in matlab. Each monosaccharide was modeled
individually with different number of fitting components
to avoid overfitting of data (Arabinose: 8 components,
Galactose: 7 components, Glucose: 11 components,
Xylose: 10 components). A K-fold cross validation was
used to validate our sugar prediction model and involves
removing a randomly selected subset of data and assign-
ing it as a test group then creating a model based on the
remaining data. Values of the test group are then pre-
dicted and compared to real values [43]. This is repeated
K times (K = 10 times) and a Root Mean Square Error of
Prediction (RMSEP) was calculated for all 10 times and
used as a metric to refine the partial least squares model
and determine fitting parameters.

Arabidopsis and rice growth conditions
Arabidopsis plants were grown in a growth chamber
maintained at 22°C with 8 h photoperiod for 4 weeks
after 2 days stratification at 4°C. Whole rosettes were
harvested, sandwiched between filter paper (Whatman)
and immediately placed in a 40°C oven to dry for 2
days. A total of 5 to 8 biological replicates were used for
each analysis. Wild type plants were Col-0 or qrt,
depending on the mutant background. Rice plants were
grown as described in [44].

Monosaccharide composition of cell wall material
Plant material (approximately 60 mg) was oven dried at
40°C and ground in a bead beater (Retsch) to a fine
powder. Preparation and hydrolysis of alcohol-insoluble
residues were prepared from five to eight replicates
from Arabidopsis rosettes and individual rice leaves
according to previous procedures [32]. Monosaccharide
composition was measured by high-performance anion
exchange chromatography with pulsed amperometric
detection (HPAEC-PAD) (Dionex) using a CarboPac
PA20 column using established procedures [32].

Cellulose content determination
We used the Updegraff method for cellulose content
estimation [45]. Briefly, samples are first hydrolyzed
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with acetic acid/nitric acid solution to remove matrix
polysaccharides and amorphous cellulose. The remain-
ing sample is digested with 67% sulfuric acid and glu-
cose content is measured using the anthrone reagent
method [46].

Additional material

Additional file 1: Figure S1 Monosaccharide composition analysis of
Arabidopsis cell wall mutants. (a)HPAEC analysis of Col-0 (wt) and cell
wall mutants (irx10-L, irx14 and rsw1). (b) HPAEC analysis of cell wall
mutants arad1 and xdgl-1 compared to corresponding background qrt.

Additional file 2: Table S1 Monosaccharide composition of
Mahalanobis distance rice outliers. Samples from the rice mutant
population with significant variation in one or more major cell wall
monosaccharide identified by Mahalanobis distance and confirmed by
biochemical analysis (HPAEC). Values are show as percentage variation
from the reference values for each batch. Sugar changes greater than 4
standard deviations from the relative mean of reference samples (μ ± 4s)
were employed to determine outliers. The sugars outside the 99.99%
confidence interval for each major sugar are shown underlined with
variations exceeding Ara (± 9.1%), Gal (± 34.0%), Glc (± 36.6%) or Xyl (±
12.1%) for any sugar.

Additional file 3: Figure S2 Monosaccharide composition range of
rice samples identified by Mahalanobis distance. Cell wall sugar
composition of Mahalanobis sample outliers and references showing the
range of sugar composition that were generated. This then served as the
calibration set of the PLS model.

Additional file 4: Table S2 Monosaccharide composition range of
rice samples identified by PLS modeling of NIR spectra. Samples
from the rice mutant population with significant variation in one or
more major cell wall monosaccharide identified by the PLS model and
confirmed by biochemical analysis (HPAEC). Values are show as
percentage variation from the reference values for each batch. Sugar
changes greater than 4 standard deviations from the relative mean of
reference samples (μ ± 4s) were employed to determine outliers. The
sugars outside the 99.99% confidence interval for each major sugar are
shown underlined with variations exceeding Ara (± 9.1%), Gal (± 34.0%),
Glc (± 36.6%) or Xyl (± 12.1%) for any sugar.

Additional file 5: Figure S3 Principal component analysis of
Arabidopsis cell wall mutants. PC1 versus PC2 plot on area-normalized
and baseline corrected FT-NIR spectra of Arabidopsis cell wall mutants
and corresponding background. There is no clear segregation between
wildtype (Col-0) and mutants that would aid in the identification of
outliers.

Additional file 6: Figure S4 Cellulose content of Arabidopsis cell
wall mutants. Cellulose content determined by Updegraff method.
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