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Abstract

Just-in-time adaptive interventions (JITAIs) are time-varying adaptive interventions that use 

frequent opportunities for the intervention to be adapted—weekly, daily, or even many times a day. 

The micro-randomized trial (MRT) has emerged for use in informing the construction of JITAIs. 

MRTs can be used to address research questions about whether and under what circumstances 

JITAI components are effective, with the ultimate objective of developing effective and efficient 

JITAI.

The purpose of this article is to clarify why, when, and how to use MRTs; to highlight elements 

that must be considered when designing and implementing an MRT; and to review primary and 

secondary analyses methods for MRTs. We briefly review key elements of JITAIs and discuss a 

variety of considerations that go into planning and designing an MRT. We provide a definition 

of causal excursion effects suitable for use in primary and secondary analyses of MRT data to 

inform JITAI development. We review the weighted and centered least-squares (WCLS) estimator 

which provides consistent causal excursion effect estimators from MRT data. We describe how 

the WCLS estimator along with associated test statistics can be obtained using standard statistical 

software such as R (R Core Team, 2019). Throughout we illustrate the MRT design and analyses 

using the HeartSteps MRT, for developing a JITAI to increase physical activity among sedentary 

individuals. We supplement the HeartSteps MRT with two other MRTs, SARA and BariFit, 

each of which highlights different research questions that can be addressed using the MRT and 

experimental design considerations that might arise.

Translational Abstract

With the development of smartphone and wearable sensors, we have unprecedented opportunity to 

use mobile devices to facilitate healthy behavior change. Mobile health interventions, such as push 

notifications containing helpful suggestions have the potential to make an impact as people go 

about their day-to-day lives. However, delivering too many push notifications or delivering these 

notifications at the wrong time could be irritating and burdensome, making the intervention less 

effective. Therefore, it is crucial to find out when, in what context, and what intervention content 

to deliver to each person to make the intervention the most effective.

In this paper we review the micro-randomized trial (MRT), a study design that can be used to 

improve mobile health interventions by answering the above questions. In an MRT, each person 

is repeatedly randomized to receive or not receive an intervention, often hundreds of thousands of 

times throughout the trial. We review the key elements of MRTs and provide three case studies 
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of real-world MRTs in various application realms including physical activity and substance abuse. 

We also provide an accessible review of data analysis methods for MRTs..

Keywords

Micro-randomized trial (MRT); health behavior change; digital intervention; just-in-time adaptive 
intervention (JITAI); causal inference; intensive longitudinal data

Just-in-time adaptive interventions (JITAIs), which are receiving a tremendous amount of 

attention in many areas of behavioral science (Nahum-Shani et al., 2018), are time-varying 

adaptive interventions delivered via digital technology. JITAIs use a high intensity of 

adaptation; in other words, there are frequent opportunities for the intervention to be 

adapted (i.e., to change based on information about the individual)—weekly, daily, or even 

many times a day. This high intensity of adaptation is facilitated by the ability of digital 

technology to continuously collect information about an individual’s current context and 

use this information to make treatment decisions. A JITAI may constitute an entire digital 

intervention, or it may be one of multiple components in an intervention.

JITAIs typically include “push” intervention components, in which the intervention content 

is delivered to individuals via system-initiated interactions, such as push notifications via 

a smartphone or smart speaker or haptic feedback on a smart watch. In addition to push 

components, digital interventions may also include “pull” intervention components, which 

provide content that individuals can access any time, at will. The effectiveness of pull 

components rests on the assumption that the individual will recognize a need for support 

and actively decide to access the pull component (Nahum-Shani et al., 2018). By contrast, 

push intervention components do not require that the participant recognize when support is 

needed— or even remember that support is available on the digital device. Instead, sensors 

on smart devices continuously monitor an individual’s context, enabling intervention content 

to be delivered when needed, irrespective of whether the individual is aware of this need.

Push components are a potentially powerful and versatile intervention tool, but they have an 

inescapable downside: they may interrupt individuals as they go about their daily lives. If 

these interruptions become overly burdensome or irritating, there is a risk of disengagement 

with the intervention (Rabbi et al., 2018). Furthermore, repeated notifications used to 

provide push interventions can lead to habituation (Dimitrijević et al., 1972)—the reduced 

level of responsiveness resulting from frequent stimulus exposure. When habituation occurs, 

the individual’s attention to the push stimulus deteriorates, possibly to the point at which the 

individual no longer notices the stimulus. Thus, it is good practice to limit content delivered 

by push intervention components to the minimum needed to achieve the desired effect. 

This can be accomplished by strategically developing JITAI push components that deliver 

content only in the contexts in which they are most likely to be effective and eliminating 

any low-performing push components that do not result in enough behavior change to 

compensate for the effort required by the participant.

The above considerations justify optimizing, that is, developing effective and efficient 

JITAI components prior to evaluation in an RCT and subsequent implementation. The 
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micro-randomized trial (MRT; Klasnja et al., 2015; Liao et al., 2016) has emerged for 

use in informing the construction of JITAIs. MRTs operate in, and take advantage of, 

the rapidly time-varying digital intervention environment. MRTs can be used to address 

research questions about whether push intervention components are effective and in which 

time-varying states they are effective, with the ultimate objective of developing effective and 

efficient JITAI components.

The purpose of this article is to clarify why, when, and how to use MRTs; to highlight 

elements that must be considered when designing and implementing an MRT; to review 

the data analysis methods for conducting primary and secondary analyses using data from 

MRTs; and to discuss the possibilities this emerging optimization trial design offers for 

future research in the behavioral sciences, education, and other fields. Throughout we 

use the HeartSteps project, in which an MRT was conducted to inform the design of a 

JITAI aimed at increasing physical activity among sedentary individuals, to illustrate the 

MRT design and the data analysis methods. This is supplemented with two other case 

studies, SARA and BariFit, each of which highlights different research questions that can 

be addressed using the MRT and experimental design considerations that might arise. This 

article lies in between the high-level overview of the MRT for health scientists provided 

by Klasnja et al. (2015) and the statistical articles, by Liao et al. (2016) and Boruvka et 

al. (2018) that are primarily focused on methods for primary and secondary analyses and 

sample size calculations. As compared to these articles, this one provides a more in-depth 

and updated discussion of considerations that inform the design of an MRT based on our 

experiences conducting MRT studies, along with a more detailed and accessible review of 

the data analysis methods.

Elements of Just-in-Time Adaptive Intervention Components

To consider the experimental MRT design it is necessary to first consider the design 

elements of JITAI components1. While reading this article one should be mindful of the 

distinction between experimental design and intervention design. For example, the MRT is a 

type of experimental design, and the JITAI is a type of intervention design. Here we briefly 

review key elements of the JITAI design (in italics) that will be discussed in more detail 

later.

Like most interventions, digital interventions are typically developed with the objective of 

improving one or more long-term health outcomes, which we will call distal outcomes. 
The strategy for improving the distal outcomes involves the provision of one or more 

intervention components (or components for short). We focus on JITAIs here, but we 

emphasize that digital interventions may be a mix of JITAI components and other types of 

components, such as components that might be delivered to all individuals. Each JITAI may 

have two or more component options (e.g., deliver an SMS message saying “The weather 

forecast says it will be a beautiful day for a walk!” or do not deliver an SMS message). 

Ideally the components and component options of all evidence-based interventions are 

1As described below, these design elements may be considered components of a JITAI if they are separated out for study; see Collins 
(2018). Thus, in this article we are using the term component broadly.
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conceived based on a conceptual model that has been informed by theory and empirical 

evidence (Collins, 2018; Nahum-Shani et al., 2018). A conceptual model specifies how each 

component of an intervention is designed to affect distal outcomes via one or more specific 

mediators, or proximal outcomes, that are part of the hypothesized causal process through 

which the intervention is intended to work. These proximal outcomes may, in turn, directly 

affect the distal outcomes; or they may be part of a longer causal chain in which proximal 

outcomes affect subsequent proximal outcomes until the distal outcome is reached.

The high intensity of adaptation that characterizes JITAI components means interventions 

may be varied frequently by providing individuals with different component options at 

prespecified times called decision points; decision points are pre-determined times at 

which it might be useful to deliver a component option. Tailoring variables, which are 

observations of context such as aspects of the individual’s current external and intrapersonal 

environments and the individual’s history, are often used to decide which component options 

to deliver. Note that the component options themselves may include content that is tailored 

to observations of context (e.g., an SMS message would present different content depending 

on the weather or the person’s location). However, here, the term tailoring variable is used 

to describe observations of context which are used to decide which component option to 

deliver to an individual. At each decision point, a decision rule links the tailoring variables 

with the component options, specifying which component option to provide based wholly or 

partially on observations of context available to the smart device.

Introduction to the MRT

The MRT is an optimization trial design that can be used to assess the performance of 

JITAI components and component options. For example, an MRT can be used to address 

questions, such as in which time-varying context each component option is best and in 

which time-varying context it is best to provide no intervention. In short, an MRT is used 
to optimize the JITAI decision rules, with the ultimate goal of developing an effective and 
efficient JITAI. Below we review the essential features of an MRT. In the section that 

follows we will illustrate these features through three case studies.

Components and component options:

An MRT can be used to investigate one or more components, each of which includes two 

or more options. Not all JITAI components are necessarily investigated in a single MRT. 

Components that are included in the intervention, but are not randomized in an optimization 

trial, are called constant components2 (Collins, 2018).

Decision points:

In an MRT the decision points may be specific to a particular JITAI component; that is, 

each component may have its own set of decision points. The discussion of the case studies 

highlights that this specification must be made carefully because the frequency and timing of 

decision points can be critical for intervention effectiveness.

2The term “constant” means the options of a component are not being manipulated in the trial; constant does not refer to time-
invariant. A constant component may or may not be time-varying and may or may not be adaptive.
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Randomization facilitates the estimation of causal effects. A primary rationale for 

randomization in any experimental design is that it enhances balance in the distribution 

of unobserved variables across groups receiving different treatments, reducing the number 

of alternative explanations for why a group assigned one treatment has better outcomes than 

a group assigned a different treatment. In an MRT participants are sequentially randomized 
to the different component options at hundreds or even thousands of decision points over 

the course of the experiment. These repeated randomizations in an MRT play essentially 

the same role: the randomization enhances balance in the distribution of unobserved 

variables between decision points assigned to different intervention options. This enables the 

investigator to use the results as a basis for answering causal questions concerning whether 

a component option has the desired effect on the proximal outcome and whether this effect 

varies with time and context.

Randomization probabilities:

These are the pre-specified probabilities of randomly assigning participants to the options 

of a particular component. As will be shown in the case studies, the randomization 

probabilities associated with the component options in an MRT (unlike most classical 

factorial experiments) are not necessarily equal. For example, because participant burden 

is an important consideration when selecting randomization probabilities, burden may be 

reduced strategically by assigning larger randomization probabilities to less burdensome 

options.

Observations of context:

These can be variables of practical or scientific interest recorded at a particular decision 

point, or summaries of variables observed prior to the decision point. Observations of 

context may be gathered by means of self-report measures; recorded as part of the treatment 

(e.g., number of coaching sessions attended in the past week); or captured by mobile devices 

(e.g., location, weather, movement), wearable sensors (e.g., heart rate, step count), and other 

electronic devices (e.g., wireless scales participants use to weigh themselves). In the design 

of an MRT, observations of context play two key distinct roles.

First, observations of context may serve to restrict feasible intervention component options 

to contexts in which the component options are appropriate based on scientific grounds, 

practical and ethical considerations. For example, the scientific team may decide a priori 

that in certain contexts (e.g., when the person is driving a car) deployment of a specific 

component option, such as a push notification suggesting physical activity, would be unsafe 

for the participant. Hence, randomization to component options in an MRT, such as a push 

notification vs. “do nothing”, will not occur when the participant is driving a car, and the “do 

nothing” option will be selected automatically. In this case, the resulting MRT data will only 

inform the development of future JITAIs in which information about driving is a tailoring 

variable in the JITAI—namely, JITAIs in which if observations of context indicate that the 

individual is driving a car, only the “do nothing” option will be possible.

Second, observations of context may be collected in an MRT because they are potential 

moderators that can be used to identify which option performs best in which context, thus 
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informing the development of decision rules in the optimized JITAI. We will illustrate a few 

moderation analyses in the section “Illustrative Analysis for the HeartSteps MRT.”

Case Studies

In this section, we review three case studies of MRTs; each case study highlights research 

questions that can be addressed using the MRT and experimental design considerations 

that might arise. Case Study 1 describes HeartSteps. The goal of the HeartSteps project 

was to develop JITAI components to increase physical activity among sedentary individuals 

(Klasnja et al., 2015, 2018). This case study will be used to illustrate the essential features 

of an MRT reviewed above as well as the data analysis. Case Study 2 describes the 

Substance Abuse Research Assistant (SARA), a project to develop an app to collect data 

on substance use and related factors among at-risk adolescents and young adults. This case 

study highlights how MRTs can be used to optimize a JITAI aimed at improving data 

collection (Rabbi et al., 2018). Case Study 3 describes BariFit, an intervention to support 

weight maintenance for individuals who have undergone bariatric surgery (Ridpath, 2017). 

This case study demonstrates how it can be appropriate to include both baseline-randomized 

components and micro-randomized components in an optimization trial. Figures giving 

gestalt overviews of each study can be found at http://people.seas.harvard.edu/~samurphy/

JITAI_MRT/mrts4.html.

Case Study 1: HeartSteps

The long-range objective of the HeartSteps project is to improve the outcome of heart health 

in adults by helping individuals with heart disease achieve and maintain recommended levels 

of physical activity.

Intervention Components and Their Options.—The HeartSteps intervention included 

several components. Here we focus on two push components investigated by the MRT. 

Figure 1 provides the conceptual model for how the two components should impact the 

distal outcome, long-term physical activity, through impacting proximal outcomes.

The first component, Activity Suggestions, consisted of contextually tailored suggestions 

intended to increase opportunistic physical activity, in which brief periods of movement or 

exercise are incorporated into daily routines. Activity suggestions were provided as push 

notifications delivered to the participant’s smartphone. There were three different options for 

this component: participants could receive either a walking suggestion (instructing a walking 

activity) that took 2-5 minutes to complete, an anti-sedentary suggestion (instructing brief 

movements) that took 1-2 minutes to complete, or no suggestion. HeartSteps illustrates that 

intervention components can, and in fact often do, include an option of “do nothing.”

The second component, Planning Support, consisted of support for planning how to be 

active the next day. This component had three options. Participants could receive either a 

prompt asking them to select a plan from a list containing their own past activity plans 

(structured planning); a prompt asking them to type their plan into a text box (unstructured 

planning); or no prompt.
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HeartSteps project also included several constant components, for example a self-monitoring 

component that assisted participants in tracking their activity and a library of previously sent 

activity suggestions. Thus, HeartSteps illustrates how it is possible to select only a subset of 

the components in a digital intervention for experimentation in an MRT.

Decision Points.—Originally the investigative team planned to have a decision point 

every minute of the waking day to allow the Activity Suggestions component to arrive 

in real time. However, prior data on employed individuals indicated that the greatest within-

person variation in step counts occurred around the morning commute, lunch time, mid-

afternoon, evening commute, and after dinner times (Klasnja et al., 2015), indicating that 

at these times there is greater potential to increase activity. In HeartSteps, the actual times 

of these decision points were specified by each individual at the start of the study, and thus 

varied by participant. These five times were the decision points for the Activity Suggestions 

component. On the other hand, because the Planning Support component involved planning 

the following day’s activity, the natural choice of a decision point was every evening at a 

time specified by each participant at the beginning of the study.

The HeartSteps Optimization Trial.

This 42-day MRT focused on investigating the Activity Suggestions and the Planning 

Support components. Each component included three options.

Proximal Outcomes.—Both components focused primarily on increasing daily physical 

activity through walking; therefore, step count was used to form the proximal outcomes. 

Minute-level step counts were passively recorded using a wristband activity tracker. The 

proximal outcome for the Planning Support component was the total number of steps 

taken on the subsequent day because the planning was for the next day’s physical 

activity. Deciding how to operationalize the proximal outcome for the Activity Suggestions 

component was more challenging. A 5- or even 15-minute duration for the total step count 

following a decision point would be too short, as the individual might not have enough time 

to act on the suggestion. On the other hand, since some activity suggestions only asked 

participants to engage in a short bout of activity to disrupt their sedentary behavior, the 

research team was concerned that a proximal outcome that was longer, like an hour, would 

be too noisy to detect the impact of the anti-sedentary suggestions. Ultimately, the team 

settled on the total number of steps taken in the 30 minutes following each decision point.

Observations of Context.—In HeartSteps, several observations of context were used to 

restrict the feasible options of the Activity Suggestions component. First, the “do nothing” 

option was always employed if sensors on the phone indicated that the individual might 

be operating a vehicle. Second, because the contextually tailored activity suggestions asked 

participants to walk, the research team felt it would be inappropriate to send one of these 

suggestions if sensors indicated that the participant was already walking or running or just 

finished an activity bout in the previous 90 seconds. Third, participants could turn off the 

activity notifications for 1, 2, 4, or 8 hours, to enable them to exert some control over the 

delivery of the suggestions.
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Several additional observations of context were collected in HeartSteps for exploratory 

moderation analyses after study completion. For example, current location, weather, and 

number of days in the study were potential moderators for use in understanding when and in 

which context it is best to provide an activity suggestion in a future HeartSteps JITAI.

Further HeartSteps illustrates how observations of context can inform the content of 

an intervention component: the content of the suggestion in the Activity Suggestions 

component was tailored according to the participant’s current location, current weather 

conditions, time of day, and day of the week. This was intended to make the suggestions 

immediately actionable and more easily incorporated into a participant’s daily routine 

(Rabbi et al., 2018).

Primary and Secondary Research Questions.—The HeartSteps MRT was conducted 

to address the following primary research question:

1. Is there an overall effect of Activity Suggestions? On average across time, does 

delivering activity suggestions increase physical activity in the 30 minutes after 

the suggestion is delivered, compared to no suggestion?

a. If so, does the effect deteriorate with time (day in study)?

Examples of secondary research questions include

2. Is there an overall effect of Planning Support? On average across time, does 

delivering a daily activity planning support prompt increase physical activity the 

following day compared to no prompt?

a. If so, does the effect deteriorate with time (day in study)?

3. Concerning the Activity Suggestions component: On average across time, is 

there an overall difference between the walking activity suggestion and the 

anti-sedentary activity suggestion on the subsequent 30-minute step count?

Additional exploratory analyses were planned with the objective of understanding whether 

context moderated the effects of either of the components. For example, the team was 

interested in whether location moderated the effectiveness of the Activity Suggestions 

component and whether day of week moderated the effectiveness of the Planning Support 

component. These moderation analyses are for use in developing decision rules informing 

the delivery of the components (e.g., perhaps the activity suggestion is effective only when 

the individual is at home or work, indicating that the next iteration of HeartSteps should 

deliver the activity suggestions only in these locations).

Randomization.—Figure 2 provides a schematic to illustrate the randomization for the 

Activity Suggestions component. During pilot testing to prepare for the HeartSteps MRT, the 

randomization probabilities for the Activity Suggestions component were initially selected 

to deliver an average of two activity suggestions per day across the five decision points. 

Two suggestions per day was deemed the appropriate frequency to minimize burden and 

reduce the risk of habituation. However, it became clear that, on average, approximately 

one suggestion per day was never seen because individuals left their phones in a bag 
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or coat pocket. The investigators decided that to increase the likelihood of at least two 

activity suggestions being seen, it was necessary to deliver more than two suggestions. 

Therefore, the randomization probabilities were adjusted before beginning the MRT so that, 

on average, three activity suggestions would be delivered per day. As Figure 2 illustrates, the 

randomization probabilities assigned to the options of the Activity Suggestions component 

were walking activity suggestion, 0.3; anti-sedentary suggestion, 0.3; no suggestion, 0.4. 

Thus the probability of receiving a suggestion (as opposed to no suggestion) was 0.6, 

resulting in an expected average of three suggestions delivered per day, with two out of the 

three seen per day.

Because for the Planning Support component there was one decision point per day, in the 

evening, at a convenient time selected by the participant, the feasible options of the Planning 

Support component were not restricted based on observations of context; the randomization 

probabilities assigned were structured planning prompt, .25; unstructured planning prompt, 

.25; no prompt, .5.

Case Study 2: Substance Abuse Research Assistant (SARA)

The goal of the Substance Abuse Research Assistant (SARA) project is to develop a mobile 

application to collect self-report data about the time-varying correlates of substance use 

among youth reporting recent binge drinking and/or marijuana use. Every day between 6 pm 

and midnight, participants were to complete a survey to report their feelings and experiences 

for that day. On Sundays, the survey included additional questions about their substance use 

that week, such as frequency of use.

The prospect of using mobile technology for this type of data collection is exciting. Most 

youth own smartphones, so mobile technology can be a powerful tool to collect data on the 

moment-to-moment influences on their substance use. However, this technology is useless 

if they will not enter data. The aim of the SARA MRT was to examine several engagement 

components designed to sustain or improve rates of self-reporting via the SARA app (distal 

outcome).

Intervention Components and Their Options.—Here, we focus on two of the four 

components aimed at increasing and maintaining engagement in the SARA MRT (Rabbi 

et al., 2018). The Reciprocity Notification component consisted of a push notification sent 

2 hours before the daily data collection period (6pm to 12 midnight). There were two 

component options: a reciprocity notification containing an inspirational message in the 

form of youth-appropriate song lyrics or celebrity quote, or no notification. The Post-Survey 

Reinforcement component was delivered immediately after completion of the survey. The 

two component options were a notification containing a reward in the form of a meme or gif 

or no post-survey reinforcement. Only individuals who completed the survey were eligible 

to receive the reward.

Decision Points.—The two components had one decision point per day. For the 

Reciprocity Notification component decision points were daily at 4 pm, after school but 

before the data collection period. Post-Survey Reinforcement decision points immediately 

followed completion of the survey.
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The SARA Optimization Trial.

This 30-day MRT investigated multiple components including Reciprocity Notification and 

Post-Survey Reinforcement. Each component had two options.

Measures of Proximal Outcomes.—Because the Reciprocity Notification component 

was intended to impact that evening’s data collection, the proximal outcome was whether or 

not participants completed either the survey on that same day. By contrast, the Post-Survey 

Reinforcement was intended to increase data collection on the following day; therefore, the 

proximal outcome for this component was whether or not participants completed the survey 

on the next day.

Observations of Context.—In SARA, there was no practical or scientific justification 

for using observations of context to restrict the feasible options of the Reciprocity 

Notification component. This notification was programmed to be available for participants 

to read any time between delivery and midnight and hence could be attended to at the 

participant’s convenience. However, feasible options of the Post-Survey Reinforcement 

component was restricted based on scientific grounds. Specifically, because this component 

was intended to reward self-reporting via the mobile app, participants were randomized to 

options of these components only if they completed the survey.

Observations of context were also collected in the SARA MRT for exploratory moderation 

analyses after study completion. These observations included the day of the week, the prior 

day’s self-reporting, as well as use of the SARA app unrelated to survey completion.

Primary and Secondary Research Questions.—Research questions motivating the 

SARA MRT included:

1. Is there an overall effect of Reciprocity Notification? On average across time, 

does providing an inspirational message two hours before data collection result 

in increased completion of the daily survey on that same day compared to no 

inspirational message?

2. Is there an overall effect of Post-Survey Reinforcement? On average across time, 

does providing a reward in the form of a meme or gif to those who completed 

the survey increase their survey completion on the next day compared to not 

providing a reward?

Additional exploratory analyses were planned with the objective of understanding whether 

effects varied over time and whether observations of context, such as weekend/weekday or 

rating of a meme or life insight, moderated effects.

Randomization.—For both components, the randomization probabilities were .5 for 

deploy notification and .5 for do not deploy notification.

Case Study 3: BariFit

The goal of the BariFit project is to develop a digital intervention to provide low-burden 

lifestyle change support to facilitate ongoing weight loss following bariatric surgery. The 
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distal outcome was achievement and maintenance of weight loss after bariatric surgery. 

As will be shown below, the BariFit trial includes both micro-randomized and baseline-

randomized components and, therefore, is a hybrid of the classical factorial experiment and 

the MRT.

Intervention Components and Their Options.—Four components of BariFit were 

examined in the trial. The first two, Rest Days and Adaptation Algorithm, pertain to adaptive 

daily step goals. Part of the BariFit intervention involved texting a suggested step goal for 

the day to each participant each morning to provide guidance for progressively increasing 

physical activity. The Rest Days component had two options: to have a day without a step 

goal on average one day per week, or to have no rest days and receive the goal every 

day. The Adaptation Algorithm component concerned how the suggested step goal was 

computed each day. The options of this component were two different adaptation algorithms 

based on a participant’s recorded daily step count over the previous ten days: one, the fixed 

percentile algorithm, provided less variability in the goal suggestions, and the other, the 

variable percentile algorithm, provided more.

The remaining two components were Activity Suggestions and Reminder to Track 

Food. The Activity Suggestions component was similar to that described above in 

HeartSteps, except that the suggestions were delivered via text messages instead of 

smartphone notifications. As in HeartSteps, there were three component options for the 

Activity Suggestions: walking suggestion; anti-sedentary suggestion; or no suggestion. The 

Reminder to Track Food component consisted of a text message, delivered at the start of 

the day, reminding participants to record their food intake. This component had two options: 

send the reminder text message or do not send the text message.

Decision Points.—The Adaptation Algorithm and Rest Days components have one 

decision point at the beginning of the use of the intervention. For Activity Suggestions, 

there were five daily decision points, pre-specified by participants as times they thought they 

would be most likely to have opportunities to be physically active. For Reminder to Track 

Food, there was one decision point every morning.

The BariFit Optimization Trial.

The 120-day BariFit optimization trial investigated the four intervention components 

described above; the Rest Days, Adaptation Algorithm, and Reminder to Track Food 

components had two options, and the Activity Suggestions component had three options. 

This trial used a hybrid experimental design that included two baseline-randomized 

components, in which randomization occurred once at the outset, and two micro-

randomized components. The Rest Days and Adaptation Algorithm components were 

baseline-randomized, and the Contextually Tailored Activity Suggestions and Reminder to 

Track Food components were micro-randomized.

The decision about whether to use baseline randomization or micro-randomization for a 

particular component depends on the research question being addressed. For the Rest Days 

and Adaptation Algorithm components, the research question concerned which strategy for 

delivering a time-varying treatment produced the better outcome; here the strategy was used 
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from the beginning and implemented in the same manner across the entire study. For the 

Rest Days component, the investigators wanted to learn whether a strategy that involved 

having an occasional rest from receiving the daily goal suggestion, as opposed to receiving 

the suggestion daily, would result in a higher step count across the entire four-month study. 

Because the two strategies were fixed across the entire study—in other words, a participant 

either received the suggestions daily across the entire study or had an occasional rest 

day across the entire study— baseline randomization was called for. For the Adaptation 

Algorithm component, the research question concerned comparison of two different JITAIs 

for step goals. Each JITAI represents a different component option. Thus, participants were 

randomized at baseline between the two options.

Measures of Proximal Outcomes.—For the Adaptation Algorithm and Rest Days 

components, the proximal outcome was average daily step count across the 120-day study. 

For Contextually Tailored Activity Suggestions, the proximal outcome was number of steps 

participants took in the 30 minutes following randomization. For Reminder to Track Food, 

the proximal outcome was the use of the Fitbit application to record food intake at any time 

on that day.

Observations of Context.—In this study, there were no scientific or practical grounds 

to restrict the feasible component options based on observations of context. The activity 

suggestions and reminders were delivered via text message, which then remained on the 

participant’s phone indefinitely and could be attended to at the participant’s convenience.

Observations of context were collected primarily for use in subsequent exploratory 

moderation analyses. Variables included time of day, daily weather conditions at the home 

location, and prior step counts.

Primary and Secondary Research Questions.—The research questions motivating 

the BariFit MRT included:

1. Is there an overall effect of Adaptation Algorithm? Does delivering a step goal 

computed using a variable percentile algorithm result in a greater average daily 

step count, compared to the fixed percentile algorithm?

2. Is there an overall effect of Contextually Tailored Activity Suggestions? On 

average across time, does delivering a text message with an activity suggestion 

tailored to the user’s context increase physical activity in the 30 minutes after the 

suggestion is delivered compared to no suggestion?

In addition, exploratory analyses were planned to examine how contextual variables, such as 

time of day or prior step count, might moderate any observed effects.

Randomization.—Randomization to options of the Adaptation Algorithm and Rest 

Days components occurred once, before the start of the experiment, using randomization 

probabilities of .5 for each of the two component options. For Contextually Tailored Activity 

Suggestions the randomization probabilities were walking suggestion, .15; anti-sedentary 
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suggestion, .15; no suggestion, .70. For Reminder to Track Food the randomization 

probabilities were .5 for each of the two component options.

Key Considerations When Planning and Designing an MRT

In this section we discuss a variety of considerations that go into planning and designing an 

optimization trial that involves micro-randomization, using the case studies as examples. A 

summary of the key considerations is included in Table 1.

Importance of a Conceptual Framework

Creation of a scientifically sound and well-specified conceptual model of an intervention 

is an essential foundation for selection of both the intervention components and their 

respective proximal outcomes (Collins, 2018; Nahum-Shani et al., 2018). Evaluation of 

a component in terms of a proximal outcome rests on the assumption that success in 

affecting the proximal outcomes will translate into success in affecting the distal outcomes. 

In other words, digital interventions, like most interventions, are based on mediation models, 

in which proximal outcomes mediate the effect of the intervention components on distal 

outcomes. The idea is that these proximal outcomes either directly affect the distal outcome 

(e.g., Planning Support leads to increased activity in the form of the next day’s step-count, 

which leads to higher daily average steps over the study duration) or form part of a causal 

chain in which proximal outcomes affect subsequent proximal outcomes until the distal 

outcome is reached (e.g., Reminder to Track Food leads to tracking food intake, which 

leads to better control of caloric intake, which leads to weight maintenance). Therefore, the 

conceptual model must articulate all hypothesized mediated paths.

Note, however, that it is possible for an intervention component to be effective at changing 

its intended proximal outcome, yet this change in the proximal outcome may not lead to 

a desired change in a distal outcome. This can happen for a number of reasons, including 

that the achieved effect on the proximal outcome is too weak to alter the distal outcome; the 

hypothesized causal path was incorrectly specified; or the conceptual model is incomplete, 

for example, it fails to specify that change in the proximal outcome can lead to some form 

of compensatory behavior (e.g., a person who walked in response to Activity Suggestions 

walked less at other times) that offsets its effect on the distal outcome.

Deciding Which Components to Examine Experimentally

An investigator designing an MRT can broadly define the term “intervention component” 

to suit the research questions at hand (Collins, 2018). In both BariFit and HeartSteps, the 

intervention components were designed to have a health benefit, whereas in SARA the 

intervention components were strategies to improve engagement in data collection. Note 

that an intervention component might represent any aspect of an intervention that can 

be separated out for study, such as the delivery mechanism (e.g., delivering a message 

via a notification on smartwatch or via a SMS text). There are limits on the number of 

intervention components that can be experimentally examined due to (i) the likelihood that 

app software development cost increases with the number of intervention components and 
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(ii) the importance of ensuring that combinations of intervention components and their 

options make sense from the participant’s point of view.

The case studies demonstrate that when conducting an optimization trial, it is not always 

necessary or advisable to examine every component experimentally. Some components 

may be considered necessary to implement the rest of the intervention. Examples include 

components that provide foundational information or maintain interest in the intervention. 

Others may already be supported by a sufficient body of empirical evidence or represent 

current standard of care, so that further experimentation is unnecessary. Such components 

may be treated as constants in the optimization trial; that is, they are provided to all 

participants in the same manner. For example, in the SARA app involved a game-like 

aquarium environment, which in the SARA MRT was a constant component. A constant 

component may in fact be a JITAI; the aquarium environment is adaptive—badges and 

rewards are adapted to the participant’s adherence over time. When constant components 

are included in an optimization trial, any results concerning experimental components are 

conditional on the presence of the constant components. Therefore, it is necessary to assume 

that any constant components are “givens” in the intervention.

Approach to Randomization

A decision requiring careful consideration on the part of the investigator is whether a 

particular intervention component should be examined via micro-randomization or baseline 

randomization. As the BariFit case study illustrates, the MRT and the factorial experiment 

are not mutually exclusive; an optimization trial can use hybrid designs that include a mix of 

micro-randomized components and baseline randomized components. Each of these forms 

of randomization addresses different kinds of research questions.

The motivation for micro-randomizing an intervention component is to gather information 

needed to optimize the design of a JITAI component. For example, the investigator may 

wish to assess whether specific options of a component are more effective in some contexts 

(where context includes recent exposure to the same or other push components), while 

other options are more effective in other contexts. Micro-randomization is suitable only 

for a component for which the goal is to develop a JITAI component. By contrast, 

baseline randomization maybe used for all types (JITAI, non-adaptive, time-varying, non-

time-varying) of components. Indeed, baseline randomization of JITAI components can 

make practical sense if the investigator is trying to choose between two well defined JITAI 

options for a component. For example, recall that the Adaptation Algorithm component of 

BariFit involved two options. The two options are both JITAIs that differ with respect to 

how the treatment would be varied across time. Scientific interest lay in ascertaining which 

of the two pre-specified, fixed decision rules for adapting step goals over time was more 

effective, not in developing the decision rules. Thus the Adaptation Algorithm component 

was randomized at baseline. Unlike micro-randomization, baseline randomization is not 

intended to enable causal inferences about how the relative effects of intervention options 

vary by time-varying context.

Once an investigator has decided to use micro-randomization with a particular component, 

it is necessary to identify how often randomization can occur and to determine the 
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randomization probabilities. Taken together, these are an important determinant of 

participant burden. To obtain the most helpful scientific information, the investigator should 

do everything possible to ensure that the level of burden associated with being a participant 

in the MRT does not appreciably exceed that associated with the final design of the JITAI. 

In contrast to other optimization trial experimental designs such as the factorial, in which 

randomization probabilities are typically kept equal across all component options (i.e., if 

there are two options, probabilities of .5 are used), in an MRT randomization probabilities 

often differ across options of a component. This is because thoughtful selection of the 

randomization probabilities assigned to each option is one way to minimize burden and 

habituation. For example, in BariFit the expectation for the Activity Suggestions component 

was that participants would tolerate approximately 1.5 activity suggestions per day. To 

achieve this rate, randomization probabilities of .15 were used for each of the two activity 

suggestions and .7 for the option of no suggestion. On the other hand, the two options for 

the Reminder to Track Food component were randomized with probability .5 because an 

average of one reminder over each two-day period was seen as tolerable.

How MRT Design Can Impact JITAI Design

Any observations of context used to restrict the randomization will constrain the design 

of the resulting JITAI. Recall that based on scientific and/or practical considerations the 

MRT may be designed such that randomizations to specific component options occur only 

in pre-specified contexts in which these component options are considered appropriate. For 

example, given ethical and practical considerations, the HeartSteps MRT was designed such 

that in a particular context (e.g., when the person is driving a car) only the do-nothing option 

is appropriate. Hence, the experimental data from this trial will not provide information on 

the effect of the Activity Suggestions component options in this context and consequently 

decision rules in the JITAI developed based on this MRT will provide only the do-nothing 

option in this context. Similarly, based on scientific grounds, the SARA MRT was designed 

such that the randomization to the options of the Post-Survey Reinforcement component did 

not occur if the individual did not complete the daily survey. It follows that the decision 

rules in the JITAI developed based on this MRT will provide only the do-nothing option if 

individuals did not complete the survey.

Which and how many decision points are selected for randomization in an MRT also may 

have an impact on the design of the intervention. Sometimes it is not necessary to use an 

MRT to establish the time of a decision point. For example, in SARA the decision point for 

the Reciprocity Notification component was daily at 4 pm, as adolescents would likely be 

out of school by then and this time is prior to the data collection period. Existing data can be 

informative in identifying decision points; in HeartSteps and BariFit, this approach was used 

to identify time points at which adults might be more responsive to an activity suggestion. 

Sometimes, however, there are neither natural decision points nor indications from existing 

data. In this case it may make sense to establish decision points as frequently as possible 

for the purpose of the MRT, paired with low randomization probabilities to keep the overall 

number of provided interventions manageable. Then, the resulting data can be analyzed to 

inform selection of a subset of decision points for the intervention.
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Measurement of Outcomes

As the case studies illustrate, in an MRT the components are typically evaluated in terms 

of time-varying proximal outcome variables. Different components in an intervention will 

likely target different proximal outcomes, even though the distal outcome is the same for 

all components in a particular digital intervention. Sometimes the proximal outcome is a 

short-term measure of the distal outcome. For example, in SARA the distal outcome was 

overall survey completion during the 30-day study. The proximal outcomes were short-term 

measures of survey completion. For the Post-Survey Reinforcement component, this was 

completion on the same day, and for the Reciprocity Notification component, this was 

completion on the next day. Other times the proximal outcome is not a short-term measure 

of the distal outcome, but a different variable entirely. In BariFit the distal outcome is 

weight loss, but the proximal outcome for the Activity Suggestions component is the number 

of steps participants took in the 30 minutes following randomization, and the proximal 

outcome for the Reminder to Track Food component is use of the Fitbit application to record 

food intake. Because in an MRT the effectiveness of intervention components is typically 

expressed in terms of measures of impact on proximal outcomes, different components can 

be evaluated in terms of different outcomes, which represent the mediators through which 

those components are hypothesized to influence the distal outcome.

In any MRT it is necessary to determine not only how each outcome will be measured, but 

when. If several components are being examined in a single MRT, this may differ across 

components. It is necessary to select the timing of measurement of each outcome carefully 

because effect size can vary over time. For example, in HeartSteps the Activity Suggestions 

component was expected to have its greatest effect in the 30 minutes immediately following 

the prompt, whereas the Planning Support component was expected to have its greatest 

effect over the next 24 hours. Choosing the time frame for measuring the proximal outcome 

in an MRT can be challenging and requires careful thought because a poor choice of timing 

of outcome measurement has consequences for the scientific results. MRTs are conducted as 

individuals go about their lives, and the complexities and contingencies of life can introduce 

noise. If an outcome is measured too early, the effect may not yet have reached a magnitude 

that is detectable against this noisy background. If it is measured too late, any effect may 

have decayed to an undetectable level. In either case, the investigator may mistakenly 

conclude that an effective component was ineffective. It should be noted that the general 

issue of measurement timing is not specific to MRTs; it arises in all longitudinal research, 

even panel studies (Collins, 2006; Collins & Graham, 2002).

Decisions about the timing of measurement in the case studies reported here were 

based primarily on domain expertise. Although behavioral theory could help inform 

such decisions, at this writing it is largely silent on behavioral dynamics, such as the 

timing and duration of effects on time-varying variables. More detailed, comprehensive, 

and sophisticated theories about behavioral dynamics, informed by empirical intensive 

longitudinal data, are urgently needed in behavioral science. Until such theories are available 

to provide guidance, we recommend measuring the proximal outcome as close to the 

delivery of a component, as often, and for as long a duration as is reasonable without 

being overly burdensome; for example, in HeartSteps a minute level step count is obtained, 
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enabling exploratory analyses examining the choice of 30-minute duration for the proximal 

outcome. Frequent measurement affords the best chance of observing time-varying effects 

when they are at their peak.

Sample Size for an MRT

When planning any experiment, it is necessary to identify which research questions are 

primary and which are secondary, and then make the primary research questions the 

priority when sizing the study. The case studies illustrate that sometimes a research 

question directly addressed by one of the components in the experiment is considered 

secondary. For example, in HeartSteps, the question of whether Planning Support has 

an overall effect is considered secondary. In many traditional factorial designs, power 

is identical for all components under investigation with a given expected effect size, 

making it common for all components to correspond to primary research questions. By 

contrast, even with alternatives that assume the same expected effect size, it is not 

unusual for power to vary considerably among components in an MRT, because different 

components may have different numbers of decision points, randomization probabilities, and 

restrictions to feasible component options. Furthermore, it is common to consider alternative 

hypotheses with different expected effect sizes for different components, as informed by 

the domain science. Finally, baseline components may have lower power compared to 

micro-randomized components due to the inability to take advantage of alternatives that 

permit accumulation of information within a person across time. Thus, when planning an 

MRT to investigate multiple components, it is often convenient to size the study based 

on one or two primary research questions and consider the remaining research questions 

secondary. For detailed information on power, sample size calculation and MRTs, see 

Liao et al. (2016); Qian et al. (2021). Sample size calculators can be accessed online 

at https://statisticalreinforcementlearninglab.shinyapps.io/mrt_ss_continuous/ for continuous 

outcomes and https://tqian.shinyapps.io/mrt_ss_binary/ for binary outcomes.

Causal Effects

In this section, we define the causal excursion effect, a causal effect useful in the 

optimization of JITAI components (e.g., Klasnja et al., 2018; Rabbi et al., 2020). We relate 

these causal effects to potential primary and secondary hypotheses using HeartSteps.

Causal Excursion Effect

The causal excursion effect can be precisely stated using the potential outcomes framework 

(Robins, 1986, 1987; Rubin, 1978). For expositional clarity, we focus on the effect of a 

single intervention component with two intervention options, denoted by treatment 1 and 

treatment 0. For the activity suggestions component in the HeartSteps MRT, they would be 

delivering activity suggestion (treatment 1) and not delivering activity suggestion (treatment 

0). First, we briefly review the definition of a causal effect using a hypothetical setting with 

a single time point treatment. Then we define the causal excursion effect of a time-varying 

intervention component on a time-varying outcome. Throughout, upper case letters denote 

random variables and lower case letters denote particular values of the random variables.
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In the potential outcomes framework for the setting where there is only a single time point 

for possible treatment (see review by Rubin (2005)), the ideal but usually unattainable 

goal is to determine the individual-level causal effect; that is, the difference between the 

outcome under treatment 1 [denoted by Y(1)] and the outcome under treatment 0 [denoted 

by Y(0)] for each individual. As an illustration, consider the first decision point in the 

HeartSteps MRT. At this decision point individuals are randomly assigned to receive an 

activity suggestion or no suggestion. The step count in the 30-minute window following this 

decision point is the outcome. For each individual, the treatment effect at this decision point 

is the difference between (a) the 30-minute step count had treatment been assigned to the 

individual (Y(1)) and (b) the 30-minute step count had the treatment not been assigned to 

the individual (Y(0)). Y(1) and Y(0) are called potential outcomes, because only one of the 

potential outcomes can be observed on each individual, as both treatment and no treatment 

cannot be assigned to an individual at the same time—this is the “fundamental problem of 

causal inference” (Holland, 1986). That is, for A denoting the treatment assignment (A = 1 if 

treatment 1; A = 0 if treatment 0) only Y = AY(1) + (1 – A)Y(0) is observed.3

A widely adopted solution to this fundamental problem is to estimate either an average 

causal effect (i.e., E[Y(1)] – E[Y(0)]) or the average effect conditional on a pre-treatment 

variable S. The latter effect is defined as the difference between the expected outcome for 

those with S = s had they received the treatment (E[Y(1)∣S = s]) and the expected outcome 

for those with S = s had they not received the treatment (E[Y(0)∣S = s]), namely, E[Y(1)∣S 
= s] – E[Y(0)∣S = s]. In the example for the first decision point in the HeartSteps MRT, S 
might be the individual’s current location (home, work or other), current weather, gender, 

and/or baseline activity level. An interesting scientific question would be whether the value 

of S modifies the treatment effect. If A is randomized, then the above difference in terms of 

potential outcomes can be written in terms of expectations with respect to the distribution of 

the observations (S, A, Y). In particular, if treatment is randomly assigned with a probability 

depending at most on S, the causal effect, E[Y(1)∣S = s] – E[Y(0)∣S = s], is equal to E[Y∣A = 

1,S = s] – E[Y∣A = 0, S = s] (see Rubin (2005)).

To define the causal excursion effect of a time-varying intervention component on a time-

varying outcome, notation is needed to accommodate time. Consider HeartSteps. Recall the 

HeartSteps MRT is a 42-day study and there are 5 decision points per day for the activity 

suggestion component; thus, there are T = 210 decision points overall. Let Xt represent all 

observations of context from decision point t – 1 up to and including decision point t.4 

In HeartSteps, Xt includes time in treatment, location, minute by minute step count after 

decision point t – 1 and prior to decision point t, and whether planning support was provided 

on the prior evening. Let It be the indicator of whether feasible options at decision point 

t are restricted due to the observations of context: It = 1 means that the feasible options 

are not restricted—i.e., both the “do nothing” option and the activity suggestion option 

3This equality holds under the causal consistency assumption often made in causal inference literature, which essentially requires 
that there are not multiple “versions” of the same treatment. In the example of activity suggestions, to properly define “delivering 
an activity suggestion” as treatment 1 and “not delivering an activity suggestion” as treatment 0, one would consider the walking 
suggestion and the anti-sedentary suggestion, as well as various framings and contents of the suggestions, as a “compound treatment.” 
However, if one wishes to distinguish between the effect of different versions of the suggestions in the analysis, then instead it would 
be necessary to define the treatment to have more than two levels.
4For simplicity, we omit the subscript i for the ith individual in Xit and in all other variables unless necessary.

Qian et al. Page 19

Psychol Methods. Author manuscript; available in PMC 2022 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



are appropriate; It = 0 means the feasible options are restricted—i.e., the only component 

option to be employed at that decision point is “do nothing”. Let At represent the treatment 

indicator at decision point t, where At = 1 means treatment is delivered and At = 0 means 

treatment is not delivered (i.e., “do nothing” is employed). Let Yt+1 represent the proximal 

outcome—here, the number of steps in the 30 minutes after decision point t. Denote by 

Ht the individual’s history of data observed up to decision point t (excluding At): Ht = 

(X1,I1,A1,Y2, … ,Xt–1,It–1, At–1,Yt,Xt,It). We denote potential moderators by St, which may 

be a subset of Ht or summaries of variables in Ht. In HeartSteps, a potential moderator of 

the effect of the activity suggestion is the number of days in treatment. As in the single 

time point setting, the inclusion of potential moderators, St, means that the desired causal 

excursion effect is conditional on these variables.

To define the causal excursion effect, we use an extension of the potential outcomes 

framework to the setting of intensive longitudinal data (Robins, 1986, 1987). Lower case 

letters such as at represent particular values of a random variable, here a possible value 

of the treatment At. We use the overbar to represent present and past values, that is, 

Āt = (A1, …, At) and āt = {a1, a2, …, at}5. The potential outcomes for Yt+1,Xt,It,Ht,St are 

Y t + 1(āt),Xt(āt − 1),It(āt − 1),Ht(āt − 1),St(āt − 1), respectively. For example, Y t + 1(āt) is the 

30-minute step count outcome after decision point t that would have been observed if 

the individual had been assigned treatment sequence Āt = āt. (For binary treatments, there 

could be 2t different potential outcomes, Y t + 1(āt).) This notation encodes the reality that 

an individual’s 30-minute step count outcome after decision point t may be impacted by all 

prior treatments, as well as the current treatment. Note that unlike the potential proximal 

outcome Y t + 1(āt), potential outcomes for Xt,It,Ht and St are indexed only by treatments, 

āt − 1, prior to decision point t. This is because they are observed prior to At.

The causal excursion effect of activity suggestions on subsequent 30-minute step count for 

individuals with St = s at decision point t is defined as (Boruvka et al., 2018; Liao et al., 

2016)

β(t, s) = E[Y t + 1(Āt − 1, 1) − Y t + 1(Āt − 1, 0) ∣ It(Āt − 1) = 1, St(Āt − 1) = s] . (1)

This formula contains the following information.

1. The effect, β(t, s), is causal because it is the expected value of the contrast 

in step counts in the 30 minutes following a decision point t if the treatment 

were delivered at t (i.e., the potential outcome Y t + 1(Āt − 1, 1), where 1 inside the 

parentheses denotes At = 1) versus if treatment were not delivered at t (i.e., the 

potential outcome Y t + 1(Āt − 1, 0), where 0 inside the parentheses denotes At = 0).

2. The effect, β(t, s), is conditional. This effect is only among decision points 

at which the feasible component options are not restricted (It(Āt − 1) = 1) and 

5Note that the overbar in Āt is not an abbreviation for the average; rather, it stands for the entire vector of treatment assignment (A1, 

… , At) and similarly for āt. We use this notation to main consistency with the causal inference literature (e.g., Robins, 1986, 1987).
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among individuals for whom the potential moderators take on the value of 

(St(Āt − 1) = s) at decision point t.

3. The effect, β(t, s), is marginal in the following sense. In HeartSteps, the effect of 

the activity suggestions component at decision point t is marginal (i.e., averaged) 

over potential moderators not contained in St, the effects of interventions from 

prior decision points, observations from prior decision points, and the planning 

support component. This is especially important when interpreting the excursion 

aspect of the causal excursion effect; see the next bullet point. A special case, 

which is commonly encountered in practice, is that β(t, s) will be replaced by 

β(t) if estimation of the average causal effect of delivering an activity suggestion 

compared to no activity suggestion is desired; in this case St(Āt − 1) is omitted 

from (1), that is, St is an empty set.

4. The effect, β(t, s), is an excursion from the “treatment schedule” prior to t. 
In an MRT the treatment schedule prior to t is a set of probabilistic decision 

rules for treatment assignment at all decision points from the beginning of the 

intervention up to the previous decision point; that is, for assignments of A1, …, 

At–1. In the case of an MRT, the treatment schedule will always involve some 

randomization, but may include non-random assignment as well. For example, 

in the HeartSteps MRT the treatment schedule included, at five decision points 

per day, the following: if observations of the context indicate that the feasible 

options are not restricted, deliver an activity suggestion with probability .6 

and no suggestion with probability .4; otherwise, do not deliver an activity 

suggestion. Suppose the HeartSteps intervention also included a component that 

was not examined in the MRT—for example, a brief motivational video sent to 

all individuals every Monday morning at 8 am. In this case, although there is no 

experimentation on this component, this component would be considered as part 

of the treatment schedule when interpreting the excursion.

The causal excursion effect concerns the effect if the intervention delivery followed the 

current treatment schedule up to time t – 1 and then deviated from the schedule to assign 

treatment 1 at decision point t, versus deviated from the schedule to assign treatment 0 

at decision point t. In other words, the definition of β(t, s) implicitly depends on the 

schedule for assigning A1, …, At–1. Technically this excursion can be seen from (1), in 

that the expectation, E, is averaging over all prior treatments not contained in St(Āt − 1). For 

example, if St(Āt − 1) contains only current weather, then the excursion effect is averaging 

over all the variables other than current weather, including the schedule for assigning the 

prior treatments, A1, …, At–1, as well as all prior treatments for other components such as 

the planning component.

To understand the excursion effect better, consider two very different treatment schedules. In 

the first schedule, the treatment is provided on average once every other day; in the second 

schedule, the treatment is provided on average 4 times per day. Excursions from these two 

rather different schedules could result in very different effects, β(t, s). Indeed, in the latter 

schedule individuals may experience a great deal of burden and disengage with the result 
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that β(t, s) would be close to 0, whereas in the former schedule individuals may still be 

very engaged, resulting in a larger β(t,s). This dependence on the schedule for treatment 

assignment is different from the types of effects typically discussed in the causal inference 

literature (e.g., Robins, 1994; Robins, Hernán, & Brumback, 2000).

A primary hypothesis test might focus on inference about the average excursion effect, 

that is, (1) with St(Āt − 1) equal to an empty set. A secondary analysis might consider 

treatment effect moderation by including in St(Āt − 1) potential moderators, such as location, 

or number of days in treatment. Note that St(Āt − 1) does not need to include all true 

moderators for (1) to be a scientifically meaningful causal effect; instead, it is appropriate 

to choose any St(Āt − 1) (or set it to be the empty set), provided that (1) is interpreted as 

the causal excursion effect marginal over all variables in Ht(Āt − 1) that are not included in 

St(Āt − 1).

Under the assumptions that (i) the treatment is sequentially randomized (which is guaranteed 

by the MRT design) and (ii) the treatment delivered to one individual does not affect another 

individual’s outcome6, the causal excursion effect β(t, s) in (1) can be written in terms of 

expectations over the distribution of the data as (proof in Boruvka et al., 2018)

β(t, s)
= E[E( Y t + 1 ∣ At = 1, Ht, It = 1 ) − E( Y t + 1 ∣ At = 0, Ht, It = 1 ) ∣ It = 1, St
= s] .

(2)

As equation (2) connects the causal excursion effect defined through potential outcomes 

with the observed outcomes from an MRT, it provides the foundation for statistical methods 

such as the WCLS estimator described in the estimation section below.

A Primary Research Question for HeartSteps

As discussed above, a natural primary research question that can be addressed in the 

HeartSteps MRT is whether there is an average causal excursion effect of delivering an 

activity suggestion on the subsequent 30-minute step count of the user, compared to not 

delivering any message. To express this average causal excursion effect, let St be an empty 

set in (2) so that

β(t)
= E[E( Y t + 1 ∣ At = 1, Ht, It = 1 ) − E( Y t + 1 ∣ At = 0, Ht, It = 1 ) ∣ It = 1] . (3)

The outer expectation on the right-hand side in (3) represents an average across all possible 

values of Ht across individuals (except that it is still conditional on It = 1). For example, β(t) 
is averaged over weather on that day and on previous days, and over all previous treatment 

6This assumption is part of the commonly used SUTVA (Stable Unit Treatment Value Assumption) and is sometimes called 
“non-interference” in causal inference. If there are social network components in the digital intervention, this assumption may be 
violated and an extension of the potential outcomes framework to incorporate interference is needed (Hong & Raudenbush, 2006; 
Hudgens & Halloran, 2008).
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assignments. The average causal excursion effect, β0, is the average of β(t) over t with 

weights equal to P(It = 1):

β0 =
∑t = 1

T P(It = 1)β(t)
∑t = 1

T P(It = 1)
. (4)

Here P(It = 1) denotes the probability of the feasible options being not restricted—i.e., 

both an activity suggestion and “do nothing” are appropriate at decision point t. Thus β0 

is a weighted average (over time) of the average effects, β(t), in which the weights are 

the probabilities of both options being appropriate at each decision point. In the section 

“Illustrative Analysis for the HeartSteps MRT,” we will conduct inference about a variety of 

causal excursion effects including this average causal excursion effect, β0.

A Selection of Secondary Research Questions for HeartSteps

Secondary research questions may concern moderation of the causal excursion effect (by 

a non-empty St). For example, one question might be whether the causal excursion effect 

deteriorates with day in the MRT. In this case St would include dayt, the number of days 

in the MRT for the decision point t. An example of a linear model for the causal excursion 

effect in terms of how β (t, dayt) is related to t and dayt is:

β(t, dayt) = E[E( Yt + 1 ∣ At = 1, Ht ) − E( Yt + 1 ∣ At = 0, Ht ) ∣ It = 1, dayt] = βint1 + βdaydayt .

Note that it is helpful to code dayt = 0 for all decision points t on the first day of MRT, in 

which case βint1 represents the causal excursion effect on the first day and βday represents 

the change in the causal excursion effect with each additional day.

Other examples of secondary research questions might be whether there is effect moderation 

by other time-varying observations such as the current location of the user, or by 

another intervention component being examined in the MRT such as the planning support 

component in HeartSteps. In the latter example, let St denote the indicator of whether a 

planning support prompt was delivered on the evening prior to decision point t (St = 1 if 

delivered, St = 0 if not). (At still denotes the assignment of activity suggestion at decision 

point t.) A linear model for the effect moderation by a planning support prompt on the 

previous evening is:

β(t, St) = E[E( Yt + 1 ∣ At = 1, Ht ) − E( Yt + 1 ∣ At = 0, Ht ) ∣ It = 1, St]
= βint2 + βprior−day − planningSt .

Here βint2 represents the causal excursion effect (of the activity suggestion) when 

the individual did not receive planning support on the prior evening, and βint2 + 

βprior–day–planning represents the causal excursion effect (of the activity suggestion) when 

the individual received planning support on the prior evening.
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We can also include multiple moderators in St at the same time. For example, if St =(St,1, 

… , St,m) is a vector consisting of m variables, a linear model on the effect moderation 

would be

β(t, St) = βint + β1St, 1 + ⋯ + βmSt, m .

One may also include interaction terms between different entries of St.

Additional Types of Causal Effects

This paper focuses on the immediate causal excursion effect of a time-varying digital 

intervention (“immediate” in the sense that the treatment, At, and the corresponding 

proximal outcome of interest, Yt+1, are temporally next to each other without additional 

treatments in between). One may also be interested in inference about a delayed causal 

excursion effect. For example, when assessing the effect of the planning support component, 

it may be of interest to assess the effect of a planning support prompt on the total step count 

over the next x days with some x value chosen by the researcher. The generalization of the 

WCLS estimation method to assess such delayed effects is given in Boruvka et al. (2018). 

This delayed causal excursion effect averages over, in addition to the history information 

observed up to that decision point, future treatments and future covariates up to when the 

corresponding outcome of interest is observed.

Other more familiar causal effects might also be estimated, but additional assumptions are 

necessary. For example, suppose it can be safely assumed that the treatments prior to the 

current decision point will not impact subsequent outcomes (i.e., these prior treatments 

do not have delayed positive or negative effects). Then the potential outcomes such as 

It(āt − 1), St(āt − 1), Y t + 1(āt)  are actually (It(at−1), St(at−1), Yt+1(at)) and inference might 

focus on the effect E[Yt+1(1) − Yt+1(0)∣ It(At−1) = 1, St(At−1)]. In terms of the primary 

analysis of data from an MRT, we opt to make inference about causal excursion effects 

due to both its interpretation and the minimal causal inference assumptions it requires. Of 

course, in secondary and hypothesis-generating analyses, a variety of statistical assumptions 

would be made to draw inferences about other causal effects.

Methods for Estimating Causal Excursion Effects from MRT Data

Generalized estimating equations (GEE; Liang & Zeger, 1986) and multi-level models 

(MLM; Laird & Ware, 1982; Raudenbush & Bryk, 2002) have been used with great success 

to analyze data from intensive longitudinal studies; at first glance they appear to be a 

natural choice for conducting primary and secondary data analysis for MRTs. However, 

these methods can result in inconsistent7 causal effect estimators for the causal excursion 

effect when there are endogenous time-varying covariates—covariates that can depend on 

previous outcomes or previous treatments (Qian et al., 2020). For example, in HeartSteps, 

7An estimator is consistent if, roughly speaking, with large sample size it is very close to the true parameter value. Even with a large 
sample size, an inconsistent estimator can be very different from the true parameter value. A precise definition can be found in, for 
example, Lehmann & Casella (1998).
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the prior 30-minute step count is likely impacted by prior treatment and is thus endogenous. 

We illustrate this inconsistency in Appendix A.

Here we review the WCLS estimator, developed by Boruvka et al. (2018), that provides 

a consistent estimator for the causal excursion effect, β (t, s). For clarity, we provide an 

overview of the estimation method used when the randomization probabilities are constant 

over time, as is the case in HeartSteps, SARA, and BariFit. Recall that in HeartSteps a 

primary analysis might be an assessment of the marginal causal excursion effect of the 

activity suggestions on the subsequent 30-minute step count. Below we use the superscript T 

to denote the transpose of a vector or a matrix.

Suppose the model for the causal excursion effect is linear: β(t, s) = sTβ with β(t, s) defined 

in (2) and for possibly vector-valued s and β. For notational clarity, we always include an 

intercept in sTβ, thus for a scalar St, β(t, St) = β0 + β1St, and β = (β0, β1). When St in (2) is 

the empty set, β(t, s) = β0, in which case β = β0. The goal is to make inference about β. Note 

that the model for β(t, s) characterizes the treatment effect (i.e., how the difference between 

two potential proximal outcomes depends on St).

The WCLS estimation procedure also requires a model for the main effect, E(Yt+1∣It = 

1, Ht), which characterizes the conditional mean of Yt+1 among individuals given history 

Ht and It = 1. For concreteness, suppose the proposed model on the main effect is of the 

form Zt
Tα, where Zt is a vector of summaries of the observations made prior to decision 

point t (i.e., summaries constructed from Ht), which are chosen by the researcher. We 

call Zt
Tα a working model8, as it will turn out that the estimator for β will be consistent 

regardless of how good (or bad) the proposed model for the main effect is (i.e., how well 

Zt
Tα approximates the true, unknown E(Yt+1∣It = 1, Ht)). See Remarks 1 and 2 below.

With a model for the causal excursion effect, β(t, s) = sTβ, and a working model for the main 

effect, Zt
Tα, the WCLS estimator is calculated as follows. Suppose (α, β) is the (α, β) value 

that solves the following estimating equation

1
n ∑

i = 1

n
∑
t = 1

T
Iit[Y i, t + 1 − Zit

Tα − (Ait − p)Sit
Tβ]

Zit
(Ait − p)Sit

= 0, (5)

where 0 < p < 1 is the constant randomization probability and i is the index for the i-th 

participant. The resulting β  is the WCLS estimator for β. Its standard error can be obtained 

through standard software that implements GEE, as we will see in the next subsection.

Remarks.

1. Even though it might appear to be so based on (5), the consistency 

of the WCLS estimator β  actually does not rely on a model such as 

E( Y t + 1 ∣ At, It = 1, Ht ) = Zt
Tα + (At − p)St

Tβ being correct. Apart from a few 

8A working model is a model that is adopted “for particular purposes with the knowledge that it may be flawed in some other aspects” 
(Meng, 2016). Here we will not assume that the working model is the correct model that generates the data.
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technical assumptions, the primary requirement needed for the consistency of β , 

as shown in Boruvka et al. (2018), is that the causal excursion effect model is 

correct; i.e., β(t, s) = sTβ holds for some β. This property is a robustness property 

of the WCLS estimator, and it justifies the statement earlier that the choice of 

the working model Zt
Tα does affect the validity of the inference. In the digital 

intervention context, this is of practical importance because vast amounts of data 

(i.e., high-dimensional Ht) on the participant have usually been collected prior 

to later decision points t. As a result, it is virtually impossible to construct a 

correct working model for E(Yt+1∣It = 1, Ht). For example, in HeartSteps there 

are 210 decision points (210 = 42 days × 5 times/day) for each participant; 

Ht can include the outcome, treatment, and covariates from all the past t − 1 

decision points, which means hundreds of variables at a later decision point t. In 

addition, E(Yt+1∣It = 1, Ht) may depend on variables in Ht in a nonlinear way that 

is unknown to the researcher. Therefore, it is reassuring that the validity of the 

analysis result does not rely on the correctness of a model for a term, namely, 

E(Yt+1∣It = 1, Ht) that does not involve the treatment effect.

2. While the choice of Zt does not affect the consistency of β , a better working 

model for E(Yt+1∣It = 1, Ht) has the potential to reduce the variance of β . 

We recommend including in Zt variables from Ht that are likely to be highly 

correlated with Yt+1. In HeartSteps a natural variable to include in Zt is the step 

count in the 30 minutes prior to the decision point, as it is likely highly correlated 

with Yt+1. In Appendix C we illustrate through a simulation study that including 

variables in Zt that are correlated with Yt+1 can reduce the variance of β .

3. The estimation procedure produces an α in addition to the WCLS estimator β . 

We recommend not interpreting α, unless it is safe to assume that Zt
Tα is a 

correct model for E(Yt+1∣It = 1, Ht).

4. For clarity we have focused on the setting where the randomization probability, 

p, is constant over time and across individuals. There are also practical settings 

where the randomization probability may change over time. For example, in 

a stratified micro-randomized trial, different micro-randomization probabilities 

are used depending on a time-varying variable such as a prediction of risk. 

If a prediction of high-risk occurs much less frequently than a prediction of 

low-risk, and the scientific team aims to provide an equal number of treatments 

at high-risk and low-risk times, then a higher randomization probability may be 

used when the individual is categorized as high-risk, and a lower randomization 

probability may be used when the individual is categorized as low-risk. See 

Dempsey, Liao, Kumar, & Murphy (2019) for details. The WCLS estimator 

presented here can be generalized to this setting and was studied in Boruvka 

et al. (2018). We include in Appendix B a generalized version of the WCLS 

estimator that allows the randomization probability to depend on the individual’s 

history, Ht.
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5. The term (Ait − p) in (5) is a centered treatment indicator, where Ait is centered 

by p, the known randomization probability. One can show that as long as p 
does not depend on Ht, the same estimator β  results regardless of centering; in 

particular, centering is not necessary for providing the robustness described in 1. 

above. In the more general setting in which the randomization probability can 

be time-varying and dependent on an individual’s past, the centering provides 

this robustness (Boruvka et al., 2018). We included centering here to ease the 

transition to the general setting.

Estimating the WCLS β Using Standard Statistical Software

When the randomization probabilities are constant, standard statistical software that 

implements GEE (Liang & Zeger, 1986), such as SAS (SAS Institute Inc., 2019), Stata 

(StataCorp, 2019), and SPSS (IBM Corp., 2019), can be “tricked” into providing the WCLS 

estimator β  and its standard error. Consider the SAS procedure PROC GEE (SAS Institute 

Inc., 2019) and suppose the assumed causal excursion effect model is (6) and the working 

model for E(Yt+1∣It = 1, Ht) is Zt
Tα. Then the WCLS estimator β  and its standard error 

can be obtained by the following steps: (i) set It as the “weight,” (ii) choose a working 

independence correlation structure, and (iii) fit GEE with dependent variable Yt+1 and 

independent variables Zt and (At − p)St. Then the estimated coefficient for (At − p)St is 

the WCLS estimate β . Note that Zt should contain the variables in St. See Appendix F for 

example SAS code.

This estimation procedure uses the GEE software to output the WCLS estimator, and, as 

noted in the previous subsection, the WCLS estimator has the robustness property that 

a GEE estimator does not typically have. Technically, this procedure works because the 

estimating equation used by the GEE under (i), (ii), (iii) above is algebraically equivalent 

to (5), the estimating equation of WCLS. To obtain appropriate standard errors for the 

estimator β  through the above GEE fit, one needs to use the robust standard error (in 

SAS this is called “empirical standard error” (SAS Institute Inc., 2019) and is the default 

output of PROC GEE). The robust standard error accounts for the correlations among the 

proximal outcomes, Y2, Y3, … , YT+1, even though we are using a working independence 

correlation structure. When the sample size is small (e.g., n < 50), we recommend the 

additional use of small sample corrections for both the standard error and the degrees of 

freedom in the critical value for constructing confidence intervals (Boruvka et al., 2018). 

R code (R Core Team, 2019) for the implementation with the small sample correction 

is available at https://github.com/StatisticalReinforcementLearningLab/HeartstepsV1Code/

blob/master/xgeepack.R. See Appendix E for a synthetic data set for use in trying out R 

code for the WCLS estimator.

Illustrative Analysis for the HeartSteps MRT

Recall that the HeartSteps project involved a 6-week MRT for optimizing JITAI components 

of a digital intervention to promote physical activity (n=37; Klasnja et al. (2018)). In 

the illustrative analysis below, we focus on the activity suggestion component, which was 

randomized at 5 decision points each day. We first address the primary research question 
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by estimating the marginal causal excursion effect of an activity suggestion versus no 

suggestion. The primary analysis for HeartSteps is published in Klasnja et al., (2018); for 

completeness we include this analysis as well as results of additional secondary analyses. 

As discussed before, secondary research questions might include how the excursion effect 

changes over time and whether the excursion effect is moderated by current location. We use 

the following variables in the analysis:

• Yt+1: log-transformed 30-minute step count following decision point t. This is 

the proximal outcome.

• At: indicator of whether an activity suggestion is delivered at decision point 

t. The randomization probability is .6 at decision points where delivering an 

activity suggestion is appropriate/feasible.

• Xt,1: log-transformed 30-minute step count preceding decision point t. Because 

this variable is expected to be correlated with Yt+1, we will include Xt,1 in Zt to 

reduce noise.

• Xt,2: day in the study, coded as 0, 1, 2, …, 41.

• Xt,3: participant’s location at decision point t; coded as 1 if at home or at work, 

and 0 if at any other location.

• It: indicator of whether at decision point t the feasible component options are 

restricted; It = 1 if delivering an activity suggestion is appropriate/feasible and 0 

otherwise.

Step count data are highly skewed; the log-transformation is used to make its distribution 

more symmetric (and we added .5 to the step count before taking log to avoid 

log(0)). Although the consistency of the WCLS estimator does not require Yt+1 to be 

symmetrically distributed, symmetry improves the accuracy of the Normal approximation to 

the distribution of the test statistic in small samples. R code (R Core Team, 2019) for the 

analysis can be downloaded at https://github.com/tqian/paper_mrt_PsychMethods.

Question 1: On average across time, does delivering activity suggestions increase 
physical activity in the 30 minutes after the suggestion is delivered, compared to no 
suggestion?

We address this question using the WCLS estimator with St equal to the empty set, β(t, s) 

= β0, working model α0 + α1Xt,1, and weight It. Table 2 lists the results. The causal effect 

of delivering an activity suggestion versus no suggestion on the log-transformed subsequent 

30-min step count, averaged over all decision points and all covariates, is β0 = 0.131 (p = 

0.060, 95% CI = −0.006 to 0.268). This corresponds roughly to a 14% (= e0.131 − 1) increase 

in the average 30-minute step count (on its original scale), for sending an activity suggestion 

versus no sending an activity suggestion.
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Question 2: Does the effect of activity suggestions change with each additional day in 
treatment?

This question is motivated by the hypothesis that the longer a person is in treatment, the 

more they may habituate to the suggestions or become overburdened, leading them to 

become less responsive. We set St = Xt,2 (day in study), β(t, s) = β0 + β1Xt,2, working model 

α0 + α1Xt,1 + α2Xt,2, and weight It. Xt,2 is included in St to assess the effect moderation by 

day in the study. Because Xt,2 is coded to start from 0, β0 represents the causal excursion 

effect on the first day. Table 3 lists the results. There is a significant interaction between 

the activity suggestion and day in the study: the causal effect of the activity suggestion 

changes by β1 = − 0.018 with each additional day in the study (p = 0.005, 95% CI = −0.031 

to −0.006). Combining this with β0 = 0.507, the analysis indicates that sending an activity 

suggestion results in about 66% (= e0.507 − 1) increase in the 30-minute step count on the 

first day of the study and only a 16% (= e0.507–0.018×20 − 1) increase by midway through 

the 6 week study. A sensitivity analysis to the linearity assumption (that the causal excursion 

effect changes linearly by day in the study) is provided in Appendix D.

Question 3: Does the effect of delivering each type of activity suggestion versus no 
suggestion depend on the individual’s current location (home/work, or other)?

The activity suggestion involves suggestions for new physical activities; therefore, it is of 

interest to examine whether its effect depends on the individual’s location, which might 

be a proxy for interruptibility. Recall that on average half of the activity suggestions are 

walking suggestions (instructing a walking activity that took 2-5 minutes to complete) 

and the remaining half are anti-sedentary suggestions (instructing brief movements, such 

as stretching one’s arms). Suppose we conjecture that effect moderation by location may 

differ between walking suggestions and anti-sedentary suggestions. Therefore, here we 

assess whether the effect of delivering each type of activity suggestion versus no suggestion 

is modified by the individual’s current location (home/work or other). We set St = Xt,3 

(indicator of being at home or work), working model α0 + α1Xt,1 + α2Xt,3, and weight It. 

We use two treatment indicators (indicator of whether a walking suggestion is delivered, 

and indicator of whether an anti-sedentary suggestion is delivered). In particular, the causal 

excursion effect for the walking suggestion is modeled as β0 + β1Xt,3, and the causal 

excursion effect for the anti-sedentary suggestion is modeled as β2 + β3Xt,3. Table 4 lists 

the result. The causal excursion effect moderation by location (home/work or other) is 

statistically significant for walking suggestions (β1 = 0.377, p = 0.049, 95% CI = 0.001 to 

0.753). The effect moderation is not statistically significant for anti-sedentary suggestions 

(β3 = − 0.142, p = 0.472, 95% CI = −0.540 to 0.256).

Discussion

MRTs and the Meaning of Optimization

MRTs fit naturally within the multiphase optimization strategy (MOST; e.g., Collins 

(2018)), a framework for development, optimization, and evaluation of behavioral, 

biobehavioral, and biomedical interventions. Collins (2018) defined intervention 

optimization as “the process of identifying an intervention that provides the best expected 
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outcome obtainable within key constraints imposed by the need for efficiency, economy, 

and/or scalability” (p. 12). In optimization of JITAI components, the key constraints 

typically are centered on efficiency, which Collins defined as “the degree to which 

the intervention produces a good outcome while avoiding wasting money, time, or any 

other valuable resource” (p. 14). Here efficiency primarily means conserving participant 

time, energy, and attention and minimizing intrusiveness and burden. An efficient JITAI 

component has a detectable effect in the desired direction, while demanding the least of 

participants.

MOST is made up of three phases: preparation, optimization, and evaluation. The 

optimization phase includes one or more optimization trials that are conducted to assess 

the performance of components and component options. This information is used to choose 

the best components and component options and to eliminate those that perform poorly. The 

term optimization trial does not refer to a single experimental design; instead, any of a wide 

variety of experimental designs may be used for an optimization trial, including, in addition 

to the MRT, the factorial (e.g., Collins, 2018); fractional factorial (e.g., Collins, 2018); the 

sequential, multiple assignment, randomized trial (SMART; Nahum-Shani et al., 2012); and 

the system identification experiment (Rivera et al., 2018). The selection of the design of the 

optimization trial, like the selection of the design of any experiment, is driven by the nature 

of the scientific questions to be addressed and the level and type of resources available to 

support experimentation. Once the optimization phase of MOST has been completed, the 

investigator may move to the evaluation phase, in which the performance of the digital 

intervention involving JITAI components is compared to that of a suitable control treatment 

in an RCT.

Inference concerning causal excursion effects fits naturally within the overall conceptual 

framework of MOST. In this framework optimization is an ongoing process of intervention 

improvement, in which each optimization trial provides information useful in generating 

hypotheses about how to improve the intervention further and, therefore, informs the design 

of the next optimization trial. For example, the following question can be characterized 

by the causal excursion effect: If the treatment schedule for the activity suggestions were 

altered to use individuals’ current location, would this improve subsequent 30-minute step 

count? In digital interventions this inferential goal makes sense even in implementation as 

the team must continually monitor and update the digital application software. Similarly, 

continually monitoring performance and assessing how to best improve the current schedule 

for assigning treatments is natural. The causal excursion effect is useful for this purpose.

The Efficiency of MRTs

MRTs offer considerable efficiency for two reasons. First, because each individual is 

repeatedly randomized, statistical tests can trade bias and variance to test for treatment 

effects based on a combination of between-person contrasts and within-person contrasts. 

This usually enables statistical power to be maintained using far fewer subjects than 

would be needed in a completely between-subjects experiment. Second, as the case 

studies illustrate, MRTs can be (although are not necessarily) used to manipulate multiple 

components simultaneously, enabling examination of several components in one efficient 
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experiment. In this case, just as in the traditional factorial experiment, a given level of 

statistical power can be maintained with a much smaller sample size than would be required 

if a separate individual trial were conducted to examine each component (Collins et al., 

2009).

Using Moderation Effect Analysis to Inform JITAI Development

Conducting moderation analyses, as well as exit interviews with participants, can be useful 

both in formulating decision rules and in generating hypotheses to be tested in subsequent 

optimization trials. For example, exit interviews might reveal that participants found that the 

activity suggestions begin to appear similar as the trial progressed. This combined with the 

evidence of moderation by day in study might motivate the development of different types of 

activity suggestions that could be introduced after, say, intervention week 3. The moderating 

effect of location is an early indication that the decision rules might specify no delivery of 

activity suggestions when an individual is at the “other” location. In the case of HeartSteps, 

findings from analyses such as those above, along with other moderation analyses and exit 

interviews, informed a second MRT in which a personalization algorithm was used to reduce 

the probability of receiving an activity suggestion when there is evidence of a decreasing 

effect. The conjecture is that intervention effects will stop decaying if the probability of 

delivering an activity suggestion to an individual is decreased whenever this individual is 

showing evidence of a decreasing effect. This algorithm also used location as a moderator.

Internal and External Validity in MRTs

Internal validity concerns the ability of the MRT to provide evidence for attributing the 

estimated effects to the manipulation of the intervention component and not some systematic 

error (Jüni et al., 2001). It is well known that in a two-arm randomized controlled trial, 

internal validity may be harmed if the randomization, by chance, did not achieve balance 

in baseline covariates between the two arms. One way to check for deviations that indicate 

a lack of internal validity is to check whether the distribution of the baseline variables is 

dissimilar across the two arms. For the MRT, because the randomization occurs sequentially 

over time, to check internal validity one can check for balance in any covariates occurring 

prior to each decision point. In the HeartSteps example, one can check whether, for 

participants at decision point t at which the feasible component options are not restricted 

(It = 1), the fraction of participants who are at home (St = 1) is roughly the same among 

those randomized to an activity suggestion (At = 1), compared to those randomized to no 

activity suggestion (At = 0). Other time-varying variables observed prior to decision point t 
besides location might be considered as well.9 Because the causal excursion effect is defined 

only for individuals at decision points where both “deliver a suggestion” and “do nothing” 

options are appropriate, these checks concern only these decision points.

External validity concerns the extent to which the estimated causal excursion effect in the 

MRT provides a basis for generalization to a target population (Jüni et al., 2001). As is well 

known, in randomized controlled trials external validity is enhanced by striving to enroll 

9Note that this only applies to MRTs with constant randomization probability (such as the HeartSteps MRT). For MRTs where the 
randomization probability may change depending on the individual’s history information, the aforementioned covariate imbalance 
may no longer be indicative of lack of internal validity.
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participants who are representative of the target population. The same considerations hold in 

an MRT. One way to assess the extent of external validity (to a defined target population) 

is to check whether the distribution of the baseline variables is similar or dissimilar to that 

in the target population. If some baseline variables are likely prognostic for the outcome or 

predictive for the causal excursion effect, then a distributional imbalance in these variables 

between the target population and the MRT sample raises concerns that the causal excursion 

effect estimated from the MRT might not generalize to the target population. If such 

imbalances are not evident, then greater confidence in the generalizability of the estimated 

causal excursion effect is justified. In addition to the proximal outcome, Yt+1, an MRT can 

involve other outcomes, such as the indicator of when only the “do nothing” intervention 

option is appropriate, It, and the potential moderators, St. Therefore, any baseline variable 

that might be related to any of these outcomes should be considered in checking for 

imbalance.

The “excursion” aspect of the causal excursion effect is also important when considering 

generalizability of the findings. The excursion aspect explicitly acknowledges that, prior to 

decision point t, the individual was provided a particular treatment schedule as used in the 

MRT (rather than some other fixed treatment assignment); the interpretation of the causal 

excursion effect is the causal effect of excursions from the existing treatment schedule. 

In the case of the HeartSteps MRT, the existing treatment schedule is “deliver activity 

suggestion with probability 0.6, if the feasible component options are not restricted at 

the current decision point” and the excursion effect is a contrast between sending activity 

message now and not sending activity message now, assuming the user had experienced 

the existing treatment schedule up to now. The excursion aspect makes it overt that the 

comparison of two excursions at time t might depend on how treatments were assigned 

prior to that time, which, in turn, depends on the treatment schedule of the MRT. Therefore, 

the causal excursion effect estimated from an MRT with one treatment schedule may differ 

from the causal excursion effect estimated from an MRT with a different treatment schedule. 

Recall that the main goal of an MRT is to inform intervention development by identifying 

ways to improve the existing treatment schedule (see the subsection “Using Moderation 

Effect Analysis to Inform JITAI Development”); focusing on the causal excursion effect 

allows the investigator to do exactly that.

Another consideration related to generalizability is due to the rapid evolution of sensors. 

For example, HeartSteps application was designed so that if the tracker indicated that the 

individual is moving rapidly (thus the individual might be operating a vehicle) at a decision 

point, the only feasible component option is “do nothing”. The rationale was to avoid 

distracting the individual and potentially causing an accident. However, it might be that 

the individual is in the passenger seat or is in a bus, in which case it may have been 

acceptable to send an activity suggestion. As sensors improve, we may eventually be able to 

discriminate between instances in which the individual is operating a vehicle and instances 

in which this is not the case. The HeartSteps MRT data does not provide information about 

the usefulness of the activity suggestions in this latter case.
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Limitations and Future Directions

More work is needed to integrate MRTs into the general MOST framework. In this 

article we discussed the role of the MRT in optimization of decision rules for individual 

components of a digital intervention. However, in MOST the ultimate goal is optimization of 

the intervention as a whole, rather than optimization of individual intervention components 

(although the latter may be a useful step along the way). This is because the costs and 

effects associated with individual intervention components may not be strictly additive. For 

example, there may be economies of scale that provide cost savings when two components 

are delivered together; or the combined effect of two components may be less than the sum 

of their individual effects. Further research is needed to determine how best to use the results 

of an MRT in optimization of the whole intervention.

One principle of the MOST framework is continual optimization (Collins, 2018), which 

states that optimization is an ongoing process of continual improvement of interventions. 

In the ever-changing digital environment, particularly when the intervention goes to scale, 

continual optimization on a rapid timetable is essential. One way to accomplish this would 

be to conduct MRTs on one or more experimental components in a digital intervention 

in deployment, in much the same way experimental items are included in each graduate 

record exam (Educational Testing Service, 2017) to inform development of future exams. As 

new knowledge is gained, the digital intervention will incrementally improve, and updated 

versions can be pushed out to users. We see this as an intriguing idea that has the potential 

to maintain and increase the effectiveness of a digital intervention in an efficient and 

economical manner.

In the introduction to this article, we mentioned that MRTs are predominantly used to 

examine push intervention components, but they could be used to examine pull components 

as well. For example, consider the setting in which an individual requests content to help 

manage a cigarette craving; in this case the device could respond in a variety of ways, such 

as providing different ordered lists of strategies. It might be useful to experiment with the 

different orderings of the list so that individuals can more quickly access a strategy that is 

useful in their current context. In this case, the decision point for the intervention is the 

user’s request for craving strategies, which then, in an MRT, leads to the randomization of 

the order in which those strategies are presented.

In the three case studies presented here, the objective of the study was to inform the 

development of decision rules; once formed these decision rules would be constant across 

individuals. Thus, although the intervention options delivered to different individuals at 

different times and in different contexts varies, the way the decision is made about which 

intervention option to deliver is identical for all participants. An exciting future direction 

is personalized interventions, in which the decision rules are person-specific. Personalized 

interventions have the potential to be highly engaging, responsive, and effective. Currently, 

methods for developing personalized interventions are being developed in the reinforcement 

learning field (Liao et al., 2020; Zhou et al., 2018).
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Conclusions

Digital interventions, which offer the potential to reach unprecedented numbers of 

individuals with convenient and engaging behavioral interventions, represent an exciting 

new direction in intervention science. The MRT is an optimization trial design that is 

particularly useful for JITAIs because it operates in, and takes advantage of, the rapidly 

changing environments in which JITAIs are implemented. The MRT fits well within the 

MOST framework, which calls for conducting one or more optimization trials to obtain 

the information needed to optimize an intervention prior to evaluation. In this article, 

we reviewed three case studies to illustrate a number of considerations that arise when 

planning and implementing MRTs. MRTs are a rigorous and efficient way to gain the 

scientific information needed to select the right tailoring variables, decision rules, and 

decision points to make up a JITAI. Using the potential outcomes framework, we defined 

the causal excursion effect for use in optimizing a JITAI component. We discussed primary 

and secondary hypotheses concerning causal excursion effects based on MRT data. We 

reviewed the WCLS estimator, which is a consistent estimator for the causal excursion 

effect, and we describe how to obtain the WCLS estimator via standard statistical software. 

We illustrated WCLS by analyzing the marginal and moderated causal excursion effects 

using data from the HeartSteps MRT and discussed how the results of these analyses can 

inform the optimization of a JITAI intervention component. We hope this article will be 

a helpful resource for investigators who are developing digital interventions that involve 

JITAIs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A conceptual model for the two push components in HeartSteps: Activity Suggestions and 

Planning Support.
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Figure 2. 
Schematic of randomization for the Activity Suggestions component in the Heart Steps 

micro-randomized trial (MRT). In each of the 42 days of the experiment, at each 

prespecified time of randomization, tm, where m = 1 to 5, an assessment was made 

of whether the intervention was disabled, or the participant was driving or walking. If 

any of these was “yes,” no randomization was performed. Otherwise, the individual was 

randomized to be shown a walking activity suggestion (p=.30), anti-sedentary suggestion 

(p=.30), or no suggestion (p=.40).
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Table 1.

Key Considerations When Designing an MRT.

Conceptual framework:

• Specify how each intervention component is designed to affect distal outcomes via the proximal outcomes; the proximal 
outcomes are part of the hypothesized causal process through which the intervention is intended to work.

Components to Examine Experimentally:

• An experimental component can represent any aspect of an intervention that can be separated out for study.

• Constant components are components that do not require experimentation.

Randomization:

• Micro-randomization. Suitable when the goal is to optimize a JITAI (construct decision rules, ascertain tailoring variables).

– Randomization probabilities may reflect burden considerations. For example, in implementation over x months, if 
around y push interventions per day/month would constitute an acceptable level of burden for individuals, then the 
choice of the randomization probability will be informed by this consideration.

• Baseline randomization. Suitable for already constructed component options of all types (JITAI, non-adaptive, time-varying, 
non-time-varying). For example, randomization at baseline between two well defined JITAI options (each with prespecified 
decision rules and tailoring variables).

MRT Design Impacts JITAI Design:

• If observations of context are used to restrict the feasible intervention component options (e.g., if the individual is driving, then 
the only feasible option is “do nothing”) then data from the MRT is only useful for developing JITAIs that incorporate the same 
restrictions.

• The decision points in the MRT should include all possible decision points considered in the JITAI design.

Measurement of Outcomes:

• The duration over which the proximal outcome is measured is an important consideration: too long a duration and the effect of 
the options will have decayed; too short a duration and the effect may not have yet occurred.

Sample size:

• Size the study according to the primary research questions.

• Sample size calculator can be accessed online at https://statisticalreinforcementlearninglab.shinyapps.io/mrt_ss_continuous/ for 
continuous outcomes and https://tqian.shinyapps.io/mrt_ss_binary/ for binary outcomes.
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Table 2.

Estimated main effect of activity suggestions on proximal outcome

Variable Estimate 95% LCL 95% UCL SE Hotelling t p

Intercept α0 1.783 1.537 2.029 0.121 217.3 <0.001

Past 30-min step count α1 0.414 0.351 0.476 0.031 181.2 <0.001

Activity suggestion β0 0.131 −0.006 0.268 0.067 3.79 0.060

Note. LCL (UCL) represents lower (upper) confidence limit. SE represents standard error. LCL, UCL, SE, and p are corrected for small sample size 
using method in (Liao et al., 2016; Mancl & DeRouen, 2001). The degrees of freedom for the Hotelling t test is (1, 34).
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Table 3.

Estimated effect of activity suggestion on proximal outcome as a linear function of time in study

Variable Estimate 95%
LCL

95%
UCL SE Hotelling t p

Intercept α0 2.003 1.765 2.240 0.117 294.7 <0.001

Past 30-minute step count α1 0.412 0.351 0.473 0.030 189.6 <0.001

Time (in days) α2 −0.011 −0.020 −0.001 0.005 5.09 0.031

Activity suggestion β0 0.507 0.201 0.814 0.151 11.37 0.002

Activity suggestion x Time (in days) β1 −0.018 −0.031 −0.006 0.006 9.19 0.005

Note. LCL (UCL) represents lower (upper) confidence limit. SE represents standard error. LCL, UCL, SE, and p are corrected for small sample size 
using method in (Liao et al., 2016; Mancl & DeRouen, 2001). The degrees of freedom for the Hotelling t test is (1, 32).
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Table 4.

Estimated effect of walking suggestion / anti-sedentary suggestion on proximal outcome, moderated by 

location (home/work or other)

Variable Estimate 95% LCL 95% UCL SE Hotelling t p

Intercept α0 1.715 1.461 1.968 0.124 191.3 <0.001

Past 30-minute step count α1 0.414 0.351 0.477 0.031 182.0 <0.001

At home/work α2 0.143 −0.083 0.368 0.110 1.67 0.205

Walking Suggestion β0 0.050 −0.167 0.267 0.106 0.22 0.640

Walking Suggestion x At home/work β1 0.377 0.001 0.753 0.184 4.18 0.049

Anti-sedentary Suggestion β2 0.092 −0.166 0.351 0.127 0.53 0.472

Anti-sedentary Suggestion x At home/work β3 −0.142 −0.540 0.256 0.195 0.53 0.472

Note. LCL (UCL) represents lower (upper) confidence limit. SE represents standard error. LCL, UCL, SE, and p are corrected for small sample size 
using method in (Liao et al., 2016; Mancl & DeRouen, 2001). The degrees-of-freedom for the Hotelling t test is (1, 30).
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Table 5.

Estimated effect of activity suggestion on proximal outcome, moderated by whether activity planning support 

was received on previous evening

Variable Estimate 95% LCL 95% UCL SE Hotelling t p

Intercept α0 1.764 1.511 2.017 0.124 201.3 <0.001

Past 30-minute step count α1 0.414 0.351 0.476 0.031 180.5 <0.001

Planning on previous day α2 0.050 −0.106 0.205 0.076 0.43 0.518

Activity suggestion β0 0.113 −0.035 0.261 0.073 2.43 0.129

Activity suggestion x Planning on previous day β1 0.046 −0.228 0.320 0.134 0.12 0.734

Note. LCL (UCL) represents lower (upper) confidence limit. SE represents standard error. LCL, UCL, SE, and p are corrected for small sample size 
using method in (Liao et al., 2016; Mancl & DeRouen, 2001). The degrees-of-freedom for the Hotelling t test is (1, 32).
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