
UC Irvine
ICS Technical Reports

Title
The programming language Lagoona : a fresh look at object-orientation

Permalink
https://escholarship.org/uc/item/3pw2p1wq

Author
Franz, Michael

Publication Date
1996-09-11
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3pw2p1wq
https://escholarship.org
http://www.cdlib.org/


Notice; This Material
may be protected
by Copyright Law
(Title 17U.S.C.)

The Programming Language Lagot^na:
A Fresh Look at Object-Orientation

Michael Franz

Technical Report 96-40

Department of Information and Computer Science

University of California, Irvine, CA 92697-3425

nth September 1996

SL I&/VR



The Programming Language Lago<7na:
A Fresh Look at Object-Orientation

Michael Franz

Department ofInformation and Computer Science

University ofCalifornia

Irvine, CA 92697-3425

Abstract

Lagoona is a strongly-typed object-oriented programming language based on Oberon.

Lacking the class construct found in traditional object-oriented languages, Lagoona

separates many of the concerns usually subsumed by classes, such as encapsulation^

structure^ and behavior^ turning them into independent language constructs. A rich data

model is provided that can express the difference between specialization and

combination, two relations that are otherwise often both mapped onto subtyping.

In contrast to most strongly-typed object-oriented languages, Lagoona*s messages

are not subordinate to classes, but are stand-alone entities that can be combined with

arbitrary objects. A delegation mechanism is provided, by which objects can forward

received messages even if they do not "understand" their contents. Lagoona's particular
message-send semantics make the construction of extensible systems simple and elegant.

Keywords: programming languages, extensible programming, object-orientation,

specialization vs. combination, stand-alone messages, Lagoona, Oberon

1 Introduction

The programming language Lagoona is a general-purpose programming language with

capabilities for extensible object-oriented programming. It is a direct descendant of the
language Oberon [Wir88a] and continues a family line that has led from Algol [Nau60] to
Pascal [Wir7Ib], onwards to Modula-2 [Wir82] and then to Oberon. At first sight,
Lagoona doesn't differ much from Oberon, just as Oberon didn't appear to differ much
from Modula-2 when it first arrived. Beneath the surface, however, Lagoona provides



powerful new abstraction mechanisms that, hopefully, will make the construction of large
software systems easier and safer.

When compared to other object-oriented programming languages, the most
conspicuous characteristic of Lagoona is that it lacks a class mechanism. Instead, it offers
two separate mechanisms for classifying objects, the type construct and the category
construct. Categories are less concrete than types, as they specify only a protocol of
interaction that has to be followed by clients, rather than prescribing an actual

implementation. Types, on the other hand, reify data abstractions to the level of explicit
storage layouts and statement-by-statement specifications of algorithms. By offering a
choice between these two structuring mechanisms, Lagoona permits the decoupling of
sub-systems (with category-based interfaces between them) while simultaneously
providing for the efficient integration (using type-based interfaces) of the components
that comprise such a sub-system.

Categories are similar to protocols in Objective-C [Nex92] and interfaces in Java
[AG96]. However, like most object-oriented programming languages, Objective-C and
Java both use classes as the primary structuring mechanism, providing encapsulation and
defining both an object's structure and its behavior, Lagoona's approach is very different,
in that it models each of these concerns by a separate language element. In Lagoona,
encapsulation is the domain of the module mechanism, structure is supplied by a strong

type system that supports type extension [Wir88b], while behavior is provided by
dynamically-bound procedures {methods) that are executed in reaction to messages sent
to objects. Categories add a further dimension to this matrix, allowing to statically
express a constraint relationship involving otherwise self-sufficient messages, types, and
variables.

Lagoona's messages are wholly self-contained entities that are not associated with
any particular object, type, or category by default. Instead, any message can be sent to

any arbitrary object. This has an effect only if the receiver object has declared a

corresponding method. Static typing in Lagoona can be used to guarantee that a particular

receiver object will understand a certain message, but it cannot exclude that the object
will also understand further messages not statically visible at compilation time. It is
exactly this extensibility that is lacking in most statically-typed object-oriented
languages, in which the definitive message protocol must be specified already for the
abstract receiver type.

The remainder of this paper is organized as follows: The next section starts out by
discussing two different uses of inheritance in object-oriented languages that are mutually

incompatible. This incompatibility provided the initial motivation for the category

concept in Lagoona. Subsequent sections of the paper then introduce Lagoona's two key

concepts of coexisting types and categories and stand-alone messages^ before presenting

a more systematic overview of the language's features. Some familiarity with the general

concepts of Oberon, particularly the type extension concept, is assumed. The language



overview is followed by a discussion centered around a large example. A review of

related programming languages and a short section on implementation conclude our

paper.

2 Specialization vs. Combination

Object-oriented programming languages such as C++ [Str87] use inheritance to express

structural and behavioral object commonalities. Two mutually incompatible kinds of

relationships among objects can be expressed by inheritance in this manner;

- Specialization: an object of a specialized type hasfewer degrees offreedom than
objects of the base (parent) type. Hence, such an object can be used wherever the

specification mentions only the base type; this is the principle of substitutability

[WZ88]. The relationship between the specialized type and its parent is also called

the "is-a" relationship; any object of the specialized type is simultaneously also an
object of the base type. For example, the type RedCar can be modeled as a

specialization of the type Car: every red car is a car, but not every car is red.

Specialization is typically associated with a top-down design activity. The
well-known technique of stepwise refinement [Wir71a] naturally starts off with
general descriptions of data structures and keeps getting more specific as it makes

progress towards the actual implementation.

- Combination : an object of a combination class has more degrees offreedom than
objects of the component (parent) classes. Combination assembles new classes by
inheriting traits from parent classes; an object of a class that has been constructed

in this manner can perform every service of each of its parent classes. For
example, the class RedCarClass could combine the traits of CarClass and those of

RedObjectClass. Red cars share the "being red" characteristic with other red
objects, and simultaneously also share the characteristics of cars - hence, objects
of the class RedCarClass have more functionality than those of either CarClass or
RedObjectClass.

Combination is a bottom-up activity; before one can combine parts, one needs
to construct the parts. Combination is typically used in conjunction with
applicationframeworks. These provide a cast of ready-made building blocks from
which programmers assemble their own. The less overlap there is among the
ready-made components, the more beneficial will the effect of combination be -

combining independent features is simpler than dealing with hidden dependencies.

The difference between specialization and combination is sometimes misunderstood, and
often ignored due to the fact that most current languages cannot express the distinction.



Concurrent use of the two conflicting meanings of inheritance in the same program may
jeopardize maintainability or even lead to errors. Some language designers avoid this
dilemma by ruling out multiple inheritance and thereby also combination.

The programming language Lagoona employs two different language constructs in
order to keep specialization and combination independent of each other. Specialization is
modeled by type extension and combination by category inclusion, and the type and
category hierarchies are separate. Our treatment of specialization and combination above
almost adopts Lagoona's nomenclature already, except that the term "class" needs to be
replaced by "category".

Note that aggregation, also called the "has-a" relationship, is a concept disjoint from
both specialization and combination. In Lagoona, it is modeled by a reference from the
owning to the owned object. We mention this because the "has-a" relationship is
sometimes given a name similar to "combination". Whenwe speak of combination in this
paper, we mean the integration of inherited traits from multiple parent categories into an
independent new category.

3 Coexisting Types and Categories

In Lagoona, types and categories coexist, providing a richer data model than is offered by
other languages. Every object in Lagoona has a type, which may take part in a type-
extension hierarchy satisfying the substitutability relationship (just like in Oberon). In

this type extension hierarchy, every type has at most one direct base (parent) type, from
which it inherits its structure. No type has more than one direct parent.

On the other side, we have the category inclusion hierarchy. Categories describe

minimal sets of traits that member objects are guaranteed to provide. Inheritance of

category traits is additive and objects can belong to several categories simultaneously.

They must then offer every service mandated by every category they belong to, which
can be verified statically by the compiler. Typically, categories describe relatively small
service protocols; the expressive power of the category construct stems from the
combination of orthogonal traits.

The separation of the category and type hierarchies affords a polymorphism that

cannot be expressed in Lagoona's ancestor language, Oberon. Lagoona allows the

declaration of variables not only by their type, but alternatively also by their category.

Such a category variable is assignment-compatible with all objects that belong to the

category, even if the objects among themselves are not substitutable because they

originate in different type hierarchies and therefore have completely different internal

structures.



As an example of the additional semantic meaning that can be expressed by
separating categories and types, consider an object-oriented environment that provides a
graphical editor as well as an electronic mail system. Clearly, these two applications arc

fairly separate; there is no need for their object types to be derived from a common
ancestor - or is there? Imagine that the graphical editor provides iconized clocks that

permanently display the correct time on the screen. Hence, all clock-objects need to

receive update messages at regular intervals (an alternative architecture, by which clocks
have separate processes associated to them, consumes considerable processor resources

and may not be suitable for every platform). Similarly, the mailbox needs to check for the
arrival of new mail items periodically, which are then displayed in a scrolling directory
window. Might it not be sensible to make clocks and mail directories compatible with
each other in some way, so that the same mechanism can be used for controlling their
periodic updates?

In Lagoona, there is an easy answer by the definition of a category Active(providing
a message Tick). The types of the graphical editor and those of the electronic mail system
can then be constructed independently of each other up to the point at which they need
the common behavior of being able to receive Tick messages. This common behavior is
injected into both type hierarchies by membership in the category Active (Figure 1).
Because of their common category membership, arbitrary instances of Clock and
MailDirectory can then be assigned to ^chve-categorized variables and passed as actual
parameters to suitable procedures (with formal parameters of category Active), in spite of
the fact that theyhaveno common type-ancestor^

TypeHierarchy ofGraphics Editor TypeHierarchy ofElectronic Mail System

Circle Clock

Active

DialogElem

ListView

MailDirectory

Active

Figure 1: Two Separate Type Hierarchies ThatShare Behavior in LeafNodes

' In Lagoona, objects in fact do not belong to categories individually, but whole types are associated with
categories; this is explained below.



As the example illustrates, categories allow to introduce common behavior into separate

type hierarchies in a consistent manner while preserving static verifiability. Membership
in the category Active guarantees that objects understand a message Tick. Hence, if the

procedures of the tasking mechanism have formal parameters of category Active, then

only "compatible" objects can be passed to them - but these objects need not be derived
from just a single type. The latter is important, because it enables the independent

construction of applications that can nevertheless access common services. It makes the
re-use of existing libraries much simpler than would be the case if type-structure needed

to be inherited.

4 Stand-Alone Messages

In most object-oriented languages that provide static typing and checking as their leading
principles, messages belong to the scopes of classes and are intimately boimd to them.
This facilitates the efficient implementation of message dispatch using virtual function

tables [ES90] and related techniques. Lagoona, on the other hand, treats messages as

independent language elements. It also has weaker compatibility rules for message-sends
than for typing, which makes extensible programming particularly simple and elegant.

In Lagoona, messages are not associated a priori with any particular type or
category, and any message can be sent to any object in principle. The effect of sending a
message to an object is governed by the presence or absence of a method that associates a

certain behavior with a specific combination of receiver object and message being sent;
when there is no such method, the message is simply ignored. Many weakly-typed
object-oriented programming languages, such as Smalltalk [GR83] have similar message
semantics, but in Lagoona, more information is statically available about the receiver
object.

Just as in other statically-typed languages, the type declaration of a receiver variable
can be used in Lagoona to guarantee that a certain message protocol will be understood

by every dynamic instantiation of that variable. What cannot be ruled out, however, is
that the same receiver will also understand additional messages that are not part of the
statically visible message protocol. This becomes particularly important in combination
with Lagoona's resend mechanism that allows objects toforward messages they have
received to other objects. In Lagoona, an object forwarding a message need not be able to
"understand" it at all.

Stand-alone messages and the resend mechanism can be applied together to
implement generic iteration over compound data structures. For example, an object
representing an abstract "container" data structure (such as a linked list or a tree) can be
sent messages destined for one or more of its elements. In Lagoona, it is simple to



program the container to accept arbitrary messages and distribute them to its elements. In

most other statically-typed languages, the set of messages that such a container can
receive and forward would have to be specified already in the interface of the container.

For the purpose of statically guaranteeing message comprehension, categories play

an important role. A category may be associated with a message protocol, i.e., with a
number of messages that together as a group form an interface. Every object that belongs

to the category must then provide the corresponding methods, and this is verified by the
compiler. Hence, when objects are passed as parameters to sub-systems whose interfaces

specify categories rather than types, there are statically verifiable minimal guarantees as

to which message protocols the actual parameter objects understand.

By turning messages into independent elements of the language (which are

completely unrelated to each other per se) rather than subjugating them under classes,

Lagoona also avoids the repeated inheritance dilemma that has plagued the designers of
object-oriented programming languages. This dilemma arises when a class C inherits

fi-om two parent classes P and Q, which in turn have a common ancestor class R: does C

then inherit the common elements ofP and 0 twice (once via each path), or only once (in
which case one would have to specify a precedence for inherited methods). This question

is resolved differently in different programming languages; there is no consensus as to

which solution is preferable. Instead of multiple inheritance, Lagoona offers multiple
category membership. Category membership merely specifies a minimum functionality
that each category member has pledged to provide, it has nothing to do with inheritance.

Hence, the protocols of individual categories may overlap without any conflict.

5 Elements of the Programming Language Lagoona

In the following, we will introduce Lagoona as a variant of Oberon [Wir88a]. A basic
familiarity with the syntax of Oberon and the concept of type extension [Wir88b] is
assumed.

5.1 Objects and Object Types

An object is an instance of an object type. Each object type is based on a record type that
describes the internal structure ofobjects, and may additionally be associated with one or

more categories. Object types are similar to pointer types, except that the variables

declared in this manner gain the added capability of being able to receive messages. In
Lagoona, just as in Oberon, exported identifiers are marked in the source text by a
trailing asterisk; for emphasis, they are also rendered in boldface here.



Example:
TYPE

Figure* = OBJECT FigureCategory BASED ON FigureDesc;
FigureDesc* = RECORD

X*, y*» w*, h*: INTEGER; (* bounding box *)
link: Figure

END;

The type Figure in the example above (that we imagine to lie in a module called

Graphics) has been declared as an object type associated with the category
FigureCategory; we also say it belongs to the category. Each object of this type will have

five instance variables, namely four integers representing the bounding box of its
graphical representation, and a hidden (i.e., non-exported) reference to another object.

Oberon's type-compatibility rules for pointer types can be extended to object types

in a straightforward manner. Hence, in Lagoona, type-compatibility between variables of

different object types is established by the compatibility of the underlying record-types.

An additional requirement needs to be imposed, however: an object type E is an

extension ofanother object type B only if E belongs to all of the categories that B belongs

to; it may also belong to additional ones.

In the following example, the object type Circle (in a different module Circles) has

been declared as an extension of the object type Figure above. The extension relationship
between the two object types is established via the base types CircleDesc and

FigureDescj and is validated by the fact that Circles.Circle/yisX like Graphics.Figure^

belongs to the category Graphics.FigureCategory. In addition, circles also belong to the

category CircularCategory declared in module Shapes.

Example:
TYPE

Circle* = OBJECT Graphics.FigureCategory, Shapes.CircularCategory
BASED ON CircleDesc;

CircleDesc* = RECORD (Graphics.FigureDesc)
r*: INTEGER

END;

5.2 Messages

Messages are signals that can be sent to objects. A message consists of a name and a

formal-parameter-list signature. Messages are not associated a priori with any particular
object type; in Lagoona, any message can be sent to any object. Sending a message has
an effect only if the receiving object possesses a corresponding method for the message.
Such a method is guaranteed to exist when the receiving object belongs to a category that



lists the message in its protocol. Lagoona does not allow the overloading of message

names (with different parameter lists) within the same module.
Message declarations form a separate section of Lagoona programs, on the same

level as constant declarations, type declarations, variable declarations and category
declarations. The example below shows the declaration of four different messages.
Although these messages have been declared with the application of a graphical editor in
mind, they are completely non-specific and may be used also by unrelated client
modules.

Example:
MESSAGE

Draw*();
Selectable*(x, y: INTEGER): BOOLEAN;
Read*(VAR R: Files.Rider);
Wnte*(VAR R: Files.Rider);

5.3 Categories

Messages can be grouped together in a category to form a consistent interface. Every
object type that belongs to a certain category musthave methods for every message of the
category; this condition is verified by the compiler. Hence, membership of a receiver
object in a certain category provides the guarantee that all messages declared in the
category will be understood by the object.

In our example below, membership in the previously mentioned category

Graphics.FigureCategory is revealed to mandate the implementation of the methods
Graphics.Draw, Graphics.Selectable, Graphics.Read, and Graphics. Write.

Example:
CATEGORY

FigureCategory*= (Draw, Selectable, Read, Write);

Note that the protocols mandated by different categories can overlap. For example, a

completely unrelated category UnrelatedCategory might also be using the message
Graphics.Draw in its protocol. An object type that is a member of both FigureCategory

and UnrelatedCategory still only requires a single method implementing the message

Graphics.Draw, there are no resulting name conflicts (as are possible with some

implementations of multiple inheritance).
Also note that each object type can belong simultaneously to arbitrarily many

categories, and that every category can have arbitrarily many member types. Two object

types that are both members of the same category can be completely disjoint, i.e. they
don't need a common structural ancestor in order to implement the same category



protocol. This is the key to the loose coupling of sub-systems possible in the Lagoona
language.

5.4 Methods

A method specifies the actions that are performed when a message is received by an
object of a certain object type. Each method is associated with exactly one message and

exactly one object type, and must be declared in the same module as the receiver type it is
associated with. There is no automatic method inheritance in Lagoona.

The example below shows an implementation sketch of the message Graphics.Read

for the object type Circles.Circle. Since circles belong to the category
Graphics.FigureCategory, the compiler will output an error message if no such
implementation is present in module Circles.

Example:
METHOD Graphics.Read(VAR r; Files.Rider) -> c: Circle;
BEGIN (* read the parameters c.x, c.y, and c.rfrom rider r *)
END Graphics.Read;

5.5 Variables: Typed vs. Categorized

Objects can be assigned to suitable variables. In Lagoona, such variables can be declared
not only by the type of object that is assignable, but alternatively also by a category. In

the following, we will refer to the first kind as object-typed variables and to the second
one as categorized variables.

Example:
VAR

fig: Figure; (* object-typed variable *)
grafobj: FigureCategory; (* categorized variable *)

Lagoona's object-typed variables are similar to pointer variables in Oberon, except that
one can also send messages to them. More interesting are categorized variables ywhich

can represent objects of any type that belongs to a certain category. Just as with typed

variables, messages can be sent to objects represented by categorized variables. Both

kinds of variables can be compared to NILy and the value NIL can be assigned to them.
The operation NEW can be performed only on pointer variables and object-typed
variables, but not on categorized variables.

Categorized variables are assignment-compatible among each other only within the
same category. Assignments from typed variables to categorized variables are legal if the



type of the typed variable belongs to the category of the categorized variable. To enable

type-safe execution of assignments in the reverse direction, categorized variables can be

subjected to Type Guards, by which operation they become typed. This allows to recover

the type information of an object assigned to a categorized variable.

Categorized variables introduce a kind of polymorphism into the Lagoona language

that isn't available in Oberon, as they enable the programmer to concentrate on an

object's behavior without having to deal with structural aspects. They also allow to
express commonality of behavior across type hierarchies. Any object that may be

assigned to a certain categorized variable has pledged to fulfill the contract stipulated by

the interface of the category, but it need not have been derived from a common ancestor

type. This enables the black-box reuse of existing sub-systems using different, but

protocol-compatible types. For an extended example, see the module PriorityQueues

below.

5.6 Message Dispatch

The phrase "sending a message to an object" means the invocation of the method
associated with the combination of dynamic receiver type and message being sent. If no

such method exists, the send operation is ignored. Syntactically, sending of a message is

denoted by a message activation designator. This consists of the name of the message,

the formal parameters (if any), the send arrow and a (categorized or object-typed)
receiver designator.

Example:
Graphics.Read(rO) -> fig;

Note that the message designator appears before the receiver designator; this reflects the
fact that (unlike in other object-oriented languages) messages are completely independent

of objects and do not belong to their scopes.

5.7 Message Forwarding

Sometimes, a message cannot be handled by its original receiver, but needs to be
forwarded to one or more other objects. For this purpose, every method in Lagoona can
forward its current message using the keywords RESEND TO, This is equivalent to
sending the original message again explicitly, passing the current values of the original
parameters in the original order. An example for this feature is provided in the next
paragraph.



Unlike super-calls in other languages, in which the self-reference remains bound to
the original receiver object, resending a message establishes a new receiver. If the
original receiver needs to be preserved along the calling chain, it can simply be passed as
an explicit parameter of the message. The semantics of resend are easier to understand
than those of super-calls, and more localized in the source text, leading to programs that
are simpler to maintain.

5.8 Default Methods

An object type may specify a default method that is executed whenever no specific

method is defined for a particular arriving message. The default method has no
parameters, but can replace proper methods with arbitrary parameter lists. Default

methods do not apply to functional methods that return a result value. By providing a
default method, a type is relieved from the requirement to supply a separate method

implementation for every message in the categories that it belongs to; it then needs to

implement only the functional methods. Default methods are also a convenient feature for
debugging.

The following example comes from the Oberon System [WG89, WG92]. In this

system, objects of type Viewer represent display windows. Whenever such a Viewer
receives a message that it doesn't understand, it simply forwards it to the two sub-frames
that represent its menu bar and content area.

Example:
METHOD DEFAULT -> v: Viewer;
BEGIN

RESEND TO v.menuFrame

RESEND TO v.contentFrame

END DEFAULT;

This programming style, in which messages "trickle down" a structural hierarchy until
they are finally understood at some level, has been employed with great success in the

Oberon System. Conversely, in conventional object-oriented systems, messages typically

only "trickle down" an inheritance hierarchy, using the super-call mechanism. The
scheme used in the Oberon System, which is given added language support in Lagoona,

is more flexible. At the same time, it avoids the intricate self-recursion patterns of

inheritance that can make program comprehension very difficult.



5.9 Generic Broadcast

Default methods, along with RESEND, also make possible an elegant generic broadcast

mechanism. Imagine that the display sub-system offers a mechanism, by which a

message can be sent to all of the viewers on the screen. The list of viewers is maintained

by the display sub-system and is considered private to it. In the example below, the
display system exports a distributor object Viewers,all that will broadcast any method
sent to it to the whole private display data structure.

MODULE Viewers;

TYPE

Viewer* = OBJECT BASED ON ViewerDesc;
ViewerDesc* = RECORD

state*: INTEGER;

link: Viewer

END;

Distributor - OBJECT BASED ON RECORD

root: Viewer;
END;

VAR

all*: Distributor;

METHOD DEFAULT -> d: Distributor;
VAR v: Viewer;

BEGIN V := d.root;
WHILE v#NIL DO

RESEND TO v;
v := v.link

END

END DEFAULT;

END Viewers.

Note that this style of programming is aesthetically consistent with the "trickle down"
approach of message distribution (as in the example above), in which the same message
is distributed to several recipients if an object has multiple descendants. In this respect,
the approach of Lagoona is preferable over one in which messages can be passed as
explicit parameters to proper procedures that then perform the distribution (as
implemented in the Oberon System without specific languagesupport for messages).

Also, the Viewers.all object is now tangible, which opens the path to novel software
architectures. For example, consider the following change to the module above:



CATEGORY

DistributorCategory* = Q;

TYPE

Distributor = OBJECT DistributorCategory BASED ON RECORD ... END;

It now becomes possible to parametrize a whole sub-system by the distributor object

required for notification, using a categorized variable of category DistributorCategory.
This provides a unprecedented flexibility. For example, in the Oberon System's
implementation of the Model-View-Controller [KP88] triplet, models notify the viewer
hierarchy by "up-calling" an ordinary procedure. This procedure is installed during
creation of the model-object, leading to an unnatural distinction between displayable

models (e.g. in the Oberon System, Texts created using the procedure TextFrames. Text)

and non-displayable ones. Using the above mechanism, distributor objects can be passed
downwards to a model object with every message. If the model changes in response to

the message it has received, it notifies the distributor contained in the message.

5.10 The Category ANY

Every object type belongs to the predefined category ANY. Apart from the fact that object

types need not explicitly mention that they belong to it, ANY behaves just like categories
declared by the programmer. ANY is useful for programming completely generic

algorithms. Note that is not an unsafe feature, unlike mechanisms in other

programming languages that allow to circumvent the type system, such as the

SYSTEM.PTR construct of Oberon-2 [MW91].

The fundamental problem of the type SYSTEM.PTR in Oberon-2 (and similar
loopholes in many other languages) lies in the fact that all pointers are compatible with
variable parameters of this type. The type of a pointer-variable bound to such a VAR-

parameter can be changed inside of a procedure (by an assignment), and the changed

value be passed back outside in violation of the type system. In Lagoona, on the other

hand, the type compatibility rules apply also to the category ANY. These rules mandate

that the type of the formal parameter and that of the actual parameter must be identical

for call-by-reference (but not for call-by-value). Hence, if an object is passed into a
procedure as ANY, it must also be passed out as ANY. Before it can be further assigned to
a typed variable, it must always be subjected to a type guard.



6. Discussion

The following section elaborates on the usefulness of novel aspects of the Lagoona

language and relates them to other work.

6.1 Locality of Method Implementations

Lagoona has no automatic method inheritance; the association between methods that can

be sent to objects and the actions that are performed in response have to be provided

explicitly by the programmer. The compiler is merely able to inform the programmer if

he omits any such association that is mandated by category membership. The visibility

rules of Lagoona make it possible to hide a message and all of the corresponding methods

wholly within a module. However, if a message is exported, then all types that implement

a method for it (even those in other modules) must advertise this fact in their public

interface. Hence, the clients of an object type can see "from the outside" if it will react to
some specific message, unless also the method is invisible to them.

The exclusion of method inheritance from Lagoona is in acknowledgement of the

fact that it can lead to loss of locality, forcing the programmer to "browse" through
inheritance hierarchies to gather information about an object's behavior. In many

languages, the specification of a class always includes the full specification of all of its
super-classes (not just of their interfaces); some language definitions, for example that of
Sather [SOM94], go as far as to define inheritance to be equivalent to textual inclusion of

source code. In Lagoona, a conscientious decision has been made to implement all object
behavior explicitly in the same module that contains the type declaration. Of course, this

does not rule out code reuse by way of ordinary procedure activation across module

boundaries. A related gain of locality is achieved by replacing the semantics of super-call

by the much simpler ones of resend.
Lagoona also does not provide "friend functions" [Str87], i.e. procedures that can

access the private details of objects although they lie in another scope. Visibility in
Lagoona is controlled strictly by the module mechanism; if a type hides some of its data

fields, then even the extensions of that type lying in other modules will not be able to

access the fields directly. If these invisible fields need to be manipulated by extensions in
any way, then the module hiding them must provide procedures for this purpose. This is

the only way to guarantee the invariants of the hidden data structure, and a necessary
prerequisite for black-box reuse (i.e. without access to the source text) of existing object
types. "Friend functions" are necessary only in languages without proper modularization
facilities.



6.2 An Example for the Use of Categories

Lagoona offers the system designer a choice whether an interface should specify a type or
a category. The former leads to a tight coupling between modules, and to efficient code.

The latter, on the other hand, provides the necessary flexibility to structure complex
software systems into long-lived and independently maintained sub-systems. Since no

storage representation is assumed in this interface, each of the sub-systems can be
considered an independent "black box", with the contract between sub-systems consisting
solely of the category interface. An object type can belong to several categories

concurrently and thereby be combined with several sub-systems.

For example, the following module PriorityQueues implementsan abstract data type
(object type) Queue that parametrizes its elements by a category-based definition. Any
object that belongs to the category PriorityQueues.ElemCategory can be put into such a
queue. The category-based interface serves a dual purpose here: It establishes type safety,

by requiring every queue-element to posses a method Priority that is invoked for
inserting the object at the correct position. But furthermore, membership in

PriorityQueues.ElemCategory also serves as a valuable documentation aid to the
programmer, because it expresses information about the intended uses of an object type.
This makes the resulting program much more transparent than any inheritance of a
"priority-queueable" trait from a "generalobject" type couldever be.

MODULE PriorityQueues;

CATEGORY

ElemCategory* = (Priority);

MESSAGE
(* element messages *)

Priority*(): LONGINT;

(* queue messages *)
Init*;
Put*(elein: ElemCategory);
Get*(): ElemCategory;

TYPE

Link - POINTER TO LinkDesc;
LinkDesc = RECORD

link: Link;
elem: ElemCategory

END;

(* every element-type must provide
a Priority method *)

(* note that this is NOT an object type
and that it is NOT exported *)



Queue* = OBJECT BASED ON QueueDesc;
QueueDesc = RECORD

first: Link

END;

Sentinel = OBJECT ElemCategoiy BASED ON RECORD END;

METHOD PriorityO: LONGINT -> s: Sentinel;
BEGIN RETURN MAX(LONGINT)
END Priority;

METHOD Init* -> q: Queue;
VAR s: Sentinel;

BEGIN NEW(s); NEW(q.first); q.firstelera := s; q.firstlink := q.first
END Init;

METHOD Put*(elera: ElemCategory) -> q: Queue;
VAR cur, new: Link;

BEGIN cur := q.first;
WHILE (Priority -> cur.link.elem) < (Priority -> elem) DO cur := cur.link END;
NEW(new); new.elera := elem; new.link :== cur.link; cur.link := new

END Put;

METHOD Get*(): ElemCategory -> q: Queue;
VAR cur: Link;

BEGIN

IF q.first.link = q.first THEN RETURN NIL
ELSE cur := q.first.link; q.firstlink := cur.link; RETURN cur.elem
END

END Get;

END PriorityQueues.

The module PriorityQueues is completely self-contained and can be used without

knowledge of its implementation. Programmers wishing to use its services need to derive
their objects from PriorityQueues.ElemCategory, which means that they have to supply a

Priority method, but they don't need to inherit any structure and thereby become
dependent on changes in the implementation of PriorityQueues. The coupling between

PriorityQueues and its clients is only as strong as necessary for guaranteeing proper
interaction. Also note that the module PriorityQueues implements an internal object type
Sentinel that is not visible on the outside. Sentinels belong to ElemCategory and hence

require a Priority method.

Taken together, categories and types give programmers a choice of abstraction level

to base their interfaces on. The more general the interface, the easier the re-use of the
component without access to the implementation, but in general also the less efficient.

For example, if we had known that every object could appear in at most one priority



queue at a time, we might have used a type-based interface in which the link field was

part of the objects themselves.

MODULE RestrictedPriorityQueues;

TYPE

Elem* = POINTER TO ElemDesc;
ElemDesc* = RECORD

link: Elem

END;

Queue* = Elem;

END RestrictedPriorityQueues.

Clients of the simpler module RestrictedPriorityQueues would need to define their

objects as extensions of the type RestrictedPriorityQueues.Elem, so that they would
inherit the field link. They would also need to know enough about the implementation to
take into account that objects can belong to only one queue at a time. Note however that

the link field in the example below is not exported; object types that are derived fi"om
RestrictedPriorityQueues.Elem will inherit it, but they cannot manipulate it directly. This
serves to guard the invariants of RestrictedPriorityQueues.

63 Applications for Category-Based Interfaces

The loose coupling between sub-systems that is afforded by Lagoona's category interface

is particularly beneficial in conjunction with run-time-extensible systems based on
compound-document component architectures. A compound document is a container that
seamlessly integrates various forms of user data, such as text, graphics, and multimedia.
These various kinds of content are supported by independent content editors ("applets")
that cooperate in such a way that they appear to the end-user as a single application
program.

In order to maintain the illusion of a united application, the various applets need to
interact closely. They have to negotiate the use of shared resources, such as the display
space (which can become non-trivial in the case of overlapping objects and irregular
shapes), and hence need to be able to communicate with each other and with the

application controlling the container document. On the other hand, applets need to be
self-sufficient enough that they can be developed and distributed independently of each
other.



Lagoona's differentiation between categories and types fits this situation well.
Category-based interfaces can be used to describe the interactions between applets, while
each individual applet provides its own unique type hierarchy that is disjoint from all the

others. Categories represent the interfaces between applets; they are general and long-
lived. Types instantiate these interfaces and can be defined and re-defined in a flexible

manner.

6.4 Related Work on Programming Languages

As early as 1986/87, Snyder [Sny87] and Liskov [Lis87] have differentiated between

implementation hierarchies and type hierarchies^ and advocated the use of separate
mechanisms in programming languages to model the two. In her paper, Liskov presents a
strong argument in favor of multiple implementations of the same category by different
(disjoint) types. We also note that both papers use the term class in the same meaning as
we use type^ while they use type where we use category. Lagoona's particular
nomenclature has historical reasons, as it continues the Algol-Pascal-Modula-Oberon
lineage in which the term type has a well-understood meaning.

The programming language Emerald [RTL91] has similarities with Lagoona, in that
it also doesn't provide automatic code inheritance, but onlystructure inheritance by way
of type extension. Emerald stresses the conceptof locality (which its authors call object
autonomy) by forcing all behavior to be encapsulated within the definition of each
individual object type. In Emerald, the domain of encapsulation is the type; there is no
separate module concept (which would have aided the construction of larger systems).
Emerald also has a type ANY with similar properties to its counterpart in Lagoona. An
interesting aspect of Emerald is the fact that it bases object substitutability on interface
conformity (rather than common type-ancestry); hence multiple implementations of the
same category (by our nomenclature) are possible.

The language Objective C [Nex92] offers a construct called protocol that is similar
to the category mechanism of Lagoona. Protocols declare methods that are not associated
with a fixed class, but which any class, and perhaps many classes, might implement.
However, messages are not separate stand-alone entities in Objective C as they are in
Lagoona; if a method is shared between two protocols, this can be expressed only by
providing two textually equal definitions. Hence, the orthogonal structure of Lagoona
that allows to assemble arbitrary messages originating in different modules into new
protocols carmot be duplicated so easily. Objective C provides (single-parent) method
inheritance. The programming language Java [AG96] adopts the protocol concept of
Objective-C under the new name interface.

The language Sather [SOM94] differentiates between a subtyping relationship and a
code inheritance relationship, which can form separate hierarchies. The idea of a code



inheritance hierarchy is interesting (albeit dangerous), as it allows the construction of
classes whose methods can be "mixed into" several different type hierarchies
simultaneously. Recall that inheritance in Sather is defined as being equal to source code
inclusion: several disjoint types that simply happen to use instance variables of the same
names can then share some "mix-in" methods by inheriting from the corresponding class.
Note that the "mixed-in" methods have full access to the internal state of an object: in this
respect they are similar to thefriend functions of C++ [Str87].

Sather also has the interesting property that only variables of abstract types can be

polymorphic. Hence, in some respect, Sather's abstract types are similar to Lagoona's
categories: both represent unions of object types without having concrete instances of
their own. Unfortunately, however, abstract types in Sather follow the normal rules of
subtyping (in fact: multiple subtyping, with all the associated problems) and don't
represent an orthogonal hierarchy as the categories of Lagoona do. In general, Sather is a
much more complex language than Lagoona.

We know of no existing language that separates all three concepts of structure,
behavior, and messages in the same way as Lagoona does. There are, however, other
languages that turn messages into separate stand-alone entities; these are the languages
offering generic functions (sometimes also called multi-methods). Generic functions
originated in the realm of functional programming, for example, they are the basis of the
Common Lisp Object System (CLOS) [DG87]. A generic function is a group of methods
implementing a certain behavior for different types of receiver. In order to activate a
desired behavior, one invokes the corresponding generic function, which autonomously

chooses one of its constituent methods, for example, based on the types of the specified
arguments. Hence, while in traditional object-oriented languages methods are grouped
together by the classes to which they apply, generic functions group them together by the
operations they perform. Lagoona's messages represent the same mechanism as generic

functions that type-dispatch on their first argument, in a context of strong typing and
category-based classification.

The work of Harrison and Ossher [HO90] on subdividedprocedures is also similar

to Lagoona's messages and generic functions. Their system providesfunctional extension
by the addition of alternate procedure bodies to a procedure, which are selected based on
criteria specified by the programmer. The addition of methods to an existing message

(with a new type of receiver argument) can be viewed as a specialization of the
subdivided procedure mechanism with regard to the subdivision criterion (dispatch on
type only).



6.5 Implementation

In adapting an existing Oberon compiler for Lagoona, only the method dispatch

mechanism requires changes in the back-end and in the linker. All other features of

Lagoona can be handled locally in the front-end of the compiler. There is no need to add

any run-time support for the category mechanism, since Oberon already provides run

time type information for its polymorphic variables and parameters. Note that Lagoona
doesn't offer an explicit mechanism for testing category membership, but merely proper

type tests (which already exist in Oberon).
In Lagoona, methods are bound to (pointer-valued) object types, and not to the

underlying record-types. Hence, two different object types that are based on the same

record can provide their object instances with different behavior. Binding methods to

object types requires a separate descriptor for every object type. In contrast, in the

language Oberon-2 [MW91], methods (called type-bound procedures in the defining
report) are bound to record types.

Two different ways of implementing Lagoona's method dispatch mechanism
immediately come to mind. The straightforward, albeit inefficient solution is based on the

programming technique of message handlers that is widely employed in the Oberon

System; in fact, this programming technique inspired some of the features of Lagoona
(which are safer and more descriptive than those of its precursor language). Using this
technique, each message is assigned an arbitrary unique identifier and the different

methods that apply to a single object type are strung together in a single piece of code
that tests for the different cases explicitly. Every object type has such a message handler
associated with it; it forms part of its type descriptor.

Example:
(* implementation ofall methodsfor object type T *)
BEGIN

IF message = M1 THEN codefor method Ml *)
ELSIF message = M2 THEN f* codefor method M2 *)

ELSE (* codefor default method, ifone exists *)
END

END

An alternative, more efficient solution uses a method table for dispatch (Figure 2). Such a
table provides a direct reference to the implementing method for every combination of
message and type. Hence, it can become quite large, although only a small fraction of the
entries are used. Rather than maintaining one large system-wide method table,
implementations are therefore likely to store the table as a number of separate rows, each
of which is associated with a particular type, or a number of separate columns, each of
which is associated with a specific message. The first of these organizations is similar to



the well-known virtual function tables [ES90], while the second comes closer to

understanding messages as type-dispatched generic functions. Since types and messages
are both stand-alone entities of the Lagoona language, both alternatives have

straightforward implementations. The size of the method table represents a challenge, but
fortunately the compression of sparse dispatch tables is an active area of research that has
promising results [AGS94, DH95].

Messages

Types

Method

implementing
message m for
type t

Method

implementing
message n for
type u

Figure 2: Message Tablefor Type-Dispatch

An added complication arises when Lagoona is used in an environment supporting
dynamic loading. This means that further modules can be added to a running system at
any time. As a result, message and type numbers (i.e., the indices into the method table)
cannot be assigned statically by the compiler, but only at the time of loading. A previous
paper by the author [Fra95] explores the resulting problems in some detail and describes
an implementation that solves them. Note that the language presented in the earlier paper
went even further than Lagoona, allowing the addition of further methods to existing
types by external modules, and also supporting code inheritance. These features have
been discarded in Lagoona in favor of locality.

7. Conclusion

Lagoona is a simple, object-oriented language that continues the tradition of Pascal,
Modula-2 and Oberon. Rather than providing a class construct, Lagoona adds messages
and methods to the type extension mechanism already present in Oberon. Further,
Lagoona offers categories that facilitate a weaker coupling between sub-systems than



possible with types. Its innovative language features make Lagoona an attractive tool for

developing extensible object-oriented systems.

Acknowledgement

The author would like to thank Martin Reiser, who commented thoroughly on this paper
and provided valuable criticisms that helped to improve the presentation of this material

considerably. Thanks are also due to Mark Hamburg for his thoughtful comments on
many aspects of Lagoona.

References

[AG96] K. Arnold and J. Gosling; The Java Programming Language; Addison-
Wesley, 1996.

[AGS94] E. Amiel, O. Gruber, E. Simon; "Optimizing Multi-Method Dispatch
Using Compressed Dispatch Tables"; in OOPSLA '94 Proceedings,
published as ACMSigplan Notices, 29:10, 244-258; 1994.

[DG87] L. G. DeMichiel and R. P. Gabriel; "The Common Lisp Object System:
An Overview"; in ECOOP '87 Proceedings, Springer Lecture Notes in
Computer Science, No. 276,151-170; 1987.

[DH95] K. Driesen and U. Holzle; "Minimizing Row Displacement Dispatch
Tables"; in OOPSLA '95 Proceedings, published asACM Sigplan Notices,
30:10,141-155; 1995.

[ES90] M. A. Ellis and B. Stroustrup; The Annotated C++ Reference Manual,
ANSI Base Document; Addison-Wesley; 1990.

[Fra95] M. Franz; "Protocol Extension: A Technique for Structuring Large
Extensible Software-Systems"; Software-Concepts and Tools, 16:2, 86-94;
1995.

[GR83] A. Goldberg and D. Robson; Smalltalk-80: The Language and its
Implementation; Addison-Wesley; 1983.



W. Harrison and H. Ossher; "Subdivided Procedures: A Language

Extension Supporting Extensible Programming"; in Proceedings of the
1990 International Conference on Computer Languages, IEEE Computer

Society Press, 190-197; 1990.

G. E. Krasner and S. T. Pope; "A Cookbook for using the Model-View-
Controller User Interface Paradigm in Smalltalk-89"; Journal of Object-
Oriented Programming, 1:3,26-49; 1988.

B. Liskov; "Data Abstraction and Hierarchy"; in OOPSLA '87Addendum
to the Proceedings, published as ACMSigplan Notices, 23:5,17-34; 1988.

H. Mossenbock and N. Wirth; "The Programming Language Oberon-2";
Structured Programming, 12:4,179-195; 1991.

P. Naur (Editor); "Report on the Algorithmic Language Algol 60";
Communications ofthe ACM, 3:5, 299-314; 1960.

The Objective CLanguage, Release 3.0\ NeXT Computer, Inc.; 1992.

R. K. Raj, E. Tempero, H. M. Levy, A. P. Black, N. C. Hutchinson, and E.

Jul; "Emerald: A General-Purpose Programming Language"; Software-
Practice and Experience, 2\:\, 91-118; I99I.

B. Stroustrup; The C++ Programming Language', Addison-Wesley,

Reading; 1987.

A. Snyder; "Inheritance and the Development of Encapsulated Software

Components"; in Research Directions in Object-Oriented Programming;
The MIT Press; 1987.

C. Szyperski, S. Omohundro, and S. Murer; "Engineering a Programming
Language: The Type and Category System of Sather"; in Programming
Languages and System Architectures, Springer Lecture Notes in Computer

Science, No. 782, 259-281; 1994.

P. Wegner and S. B. Zdonik; "Inheritance as an Incremental Modification

Mechanism, or, What Like Is and Isn't Like"; ECOOP'88 Proceedings,
Springer Lecture Notes in Computer Science, No. 322,55-77; 1988.

N. Wirth; "Program Development by Stepwise Refinement";
Communications ofthe ACM, 14:4,221-227; 1971.

N. Wirth; "The Programming Language Pascal"; Acta Informatica, 1:1,
35-63; 1971.

N. Wirth; Programming in Modula-2; Springer; 1982.



N. Wirth; "The Programming Language Oberon"; Software-Practice and
Experience^ 18:7, 671-690; 1988.

N. Wirth; "Type Extensions'*; ACM Transactions on Programming
Languages and Systemsy 10:2,204-214; 1988.

N. Wirth and J. Gutknecht; "The Oberon System"; Software-Practice and
Experience, 19:9, 857-893; 1989.

N. Wirth and J. Gutknecht; Project Oberon: The Design ofan Operating
System and Compiler, Addison-Wesley; 1992.




