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ABSTRACT: This perspective encompasses a focused review of
the literature leading to a tipping point in electroanalytical
chemistry. We tie together the threads of a “revolution” quietly
in the making for years through the work of many authors. Long-
held misconceptions about the use of background subtraction in
fast voltammetry are addressed. We lay out future advantages that
accompany background-inclusive voltammetry, particularly when
paired with modern machine-learning algorithms for data analysis.

■ INTRODUCTION
Background subtraction for bioanalytical voltammetry was first
reported in the 1980s.1,2 Its purpose, as originally described,
was to increase the signal-to-noise ratio or otherwise aid in
visualizing small faradaic currents (tens of nanoamperes (nA)
or less) produced by neurotransmitter release associated with
biological stimulus events. Small, analyte-related currents occur
amid large capacitive currents (hundreds of nA) produced by
the high scan rates used in fast-scan cyclic voltammetry
(FSCV). For almost four decades, background subtraction has
been de rigueur in fast voltammetry (e.g., FSCV,3,4 FSCAV,5

FCSWV6). Today, even the smallest stimulus peaks associated
with endogenous transients can be readily identified by fast
voltammetry and related techniques with modern data
acquisition and analysis capabilities.7−10

While often discarded, background currents can be sources
of electrochemical information for analyte identification.11−15

Moreover, retaining background currents overcomes a pitfall
associated with fast voltammetry�the inability to use the same
waveform to measure basal neurotransmitter levels and
stimulus-related events contemporaneously.

“The study of basal levels of neurotransmitters and their
dynamics requires a means of isolating the portion of the
background current arising from neurotransmitter redox
reactions.”�Johnson et al. 201816

In this perspective, we delve into the practice of background
subtraction, developed during a period when electronic
sampling and computational capabilities were less advanced.
We outline the advantages of forgoing background subtraction,

at least under some circumstances. While we frame this
perspective in the context of neurochemical detection, the
ideas developed are relevant to voltammetry for other types of
analytes.

Background currents are composed of faradaic and non-
faradaic contributions and noise (e.g., electrical, environ-
mental). In neurochemical studies, the background current is
represented by a voltammogram relative to a paired
experimental stimulus event and is commonly determined
within a 30−90 s recording window immediately before event
recording. Background voltammograms are often averages of
consecutive prestimulus scans (e.g., 5−10 voltammograms),
which improve the signal-to-noise ratio for background-
subtracted traces. The process of background subtraction
produces differential measurements (i.e., determinations of
current after vs before a defined time point). The applicability
of the defined background current relative to the length of the
recording window depends on signal stability and other factors
discussed below.

Seminal papers on background subtraction explicitly stated
that its purpose was to facilitate peak visualization and
calibration when manual peak selection and integration were
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often required.1 Based on its original purpose, we suggest
background subtraction may no longer be needed. Moreover,
in some cases, information inherent in background currents
can be used to improve analyte identification and quantitation,
particularly for multianalyte detection.

■ PITFALLS ASSOCIATED WITH BACKGROUND
SUBTRACTION

We suspect that background subtraction remains prevalent
partly because the term is somewhat of a misnomer. That is,
background subtraction is not background correction. Back-
ground subtraction cannot remove dynamic nonspecific
current contributions. Thus, it may not result in selective
analyte current. Nonetheless, background subtraction is often
employed with the underlying implication that analyte-specific
faradaic current changes remain after stimulus events.17 During
the recording period after a stimulus, however, the
concentrations of nontarget analytes (i.e., interferents) and
ions at the electrode surface change in response to the
stimulus. Some of these species are redox active (e.g.,
neurotransmitter metabolites). As such, they contribute to
nonspecific changes in faradaic current. Other species, while
not electrochemically active, affect electrical double-layer
behavior and thus contribute to changes in nonfaradaic
current. While noncharged, nonelectroactive species (e.g.,
glucose) do not directly affect current responses in
physiological media,18 such species can impact electrode
surface accessibility.

In neurochemistry, any type of stimulus contributes to
nonspecific current changes, including stimuli delivered in vivo
(e.g., behavioral stimuli), ex vivo (e.g., tissue slice electrical or
optical stimulation), or in vitro (e.g., single-cell analyses
involving spritzing with secretagogues). Changes in the
concentrations of charged molecules and ions, whether
electroactive or not, affect capacitive currents due to
uncompensated resistance. Fluctuations occur in the concen-
trations of ions inherent in the processes underlying neuro-
transmitter release and reuptake (e.g., pH shifts and ion
changes tied to action potentials, Na+/K+ ATPase activity, and
active transport). Background subtraction cannot correct for
the effects of these dynamic processes.19 A few clever yet
cumbersome approaches to correct partially for nonspecific
current dynamics exist, as studied by Johnson and colleagues.20

“FSCV data analysis typically employs digital subtraction of
the background using the current measured before the
neurobiological phenomena of interest. This method is
effective for signal isolation given background stability.
However, if neurotransmitter release is accompanied by
factors that affect the background, the subtracted data
contain artifacts.”�Johnson et al. 201720

In best-case scenarios, background subtraction preserves
much of the poststimulus neurotransmitter-related data.
However, background subtraction can remove relevant, or
even introduce irrelevant, features. Wosiak and co-workers
have investigated these effects.17

“Due to the existence of induced charging currents, the
capacitive contribution to the total current is different from
the capacitive current measured in the absence of
electroactive species...Consequently, the conventional back-
ground subtraction method may be inaccurate in these
situations.”�Wosiak et al. 202017

Additionally, background subtraction cannot correct for
drift, which is dynamic during FSCV recording periods.21

Several papers address the drift that remains after background
subtraction.22,23 While background subtraction can improve
temporal current responses for short recording periods (e.g.,
<90 s), this approach assumes that drift is due solely to
capacitive current instability that does not change measurably
after the background is determined and over the recording
period.24 Newer, more effective approaches to deal with drift
are aimed at extending the time frame of FSCV record-
ings.22,23,25,26 However, as also noted by Johnson, the
chemistry at the electrode surface is complicated and
dependent on the surrounding microenvironment.20

“Interactions with the carbon surface, through either
adsorption or involvement in surface reactions, may alter
these responses and contribute to the background-subtracted
voltammograms. Indeed, nonfaradaic and faradaic currents
have been seen in background-subtracted voltammograms
taken during pH changes.”�Johnson et al. 201720

Background currents in voltammetry are inherently dynamic,
which is at the root of these misconceptions. Changes occur in
the background signal, defined as the current generated by
everything except the analyte of interest, even on the time scale
that background subtraction is employed. Background signals
are impacted by changes in electrode surface chemistries (e.g.,
analyte or interferant adsorption, electrode surface group
oxidation, biofouling) and by changes in ion concentrations
associated with action potentials, transporter-mediated reup-
take ([Na+], [K+]), and exocytosis ([H+], [Ca2+]). Subtracting
the background preceding stimulus events, although previously
useful for improving peak identification, ignores these dynamic
processes by incorrectly assuming a static microenvironment
during the user-defined recording periods typical in FSCV
(e.g., 30−90 s). As we propose, background subtraction can
also reduce predictive accuracy in certain cases. Indeed,
previous studies have shown that background changes can lead
to misinterpretations of biological findings.27,28

This is not to say that all voltammetry studies using
background-subtracted approaches are invalid, nor that
background-inclusive data are superior in all cases. Voltam-
metry would not have advanced without background
subtraction. There is likely a “Goldilocks zone” where
background-subtracted and nonbackground-subtracted inter-
pretations largely agree.

We simply advocate reconsidering the significant informa-
tion included in the background current. Data analyses using
background subtraction vs. background inclusion are not
mutually exclusive; one can analyze and compare both
approaches using the same data. However, as background-
inclusive fast voltammetry has emerged relatively recently in
neuroscience compared to its predecessor, few studies have
compared these approaches directly.11,29 Regardless of the
approach employed, data must always be interpreted with
caution. For in the words of statistician George Box, all models
are wrong, but some are useful.30

Regardless of whether background subtraction is used or
not, there are pervasive issues for in vivo voltammetry. Perhaps
the most significant is the difficulty in generalizing in vitro
calibration data, including calibration parameters estimated by
machine learning models, to in vivo data. Here, we refer to
machine learning models as those performing multivariate
calibration�a supervised regression model (e.g., principal
components regression (PCR), partial least-squares regression
(PLSR), elastic net, artificial neural network) is trained on
voltammograms of known concentration to predict voltammo-
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grams of unknown concentration.31 The inability to deploy
background-subtracted models trained in vitro (i.e., FSCV-
PCR) to give consistent and reliable in vivo results has been
demonstrated.32−34 This failure is, in part, thought to be due to
the adsorption of interferents, especially metal cations and
electro-inactive species such as proteins, which are rarely
accounted for.19 No training paradigm can yet mimic the
complex environment in the brain. However, even for a single
analyte such as dopamine, a voltammetry technique paired
with a suitable machine learning model that better bridges this
in vitro−in vivo “generalization gap” would be extremely
powerful; the state-of-the-art model in the field is moving
toward this approach.13,35−40 Background-inclusive models
appear to be a critical step in reducing the generalization gap
due to the underutilized information content in background
currents, as discussed by Movassaghi and co-workers.11

“As such, differences in the Helmholtz double layer, mass
transport, analyte concentrations and adsorption, and other
dynamic electrode surface properties occurring during an
applied pulse are considered potential sources of analyte-
specific information. This information is encoded in the
transient responses of faradaic and non-faradaic currents.
By including faradaic and non-faradaic current responses as
input to the model (i.e., not background subtracting), the
[model] selects aspects of the current response that covary
with analyte identity and concentration. This is opposed to
background-subtracted methods, where some information is
discarded prior to model input to increase signal-to-noise.
Potentially relevant information in the background is then
lost.”�Movassaghi et al. 202111

Statistical approaches to domain generalization, adaptation,
and transfer learning offer promising improvements over
classical chemometric validation techniques such as residual
analysis.31,37,38,41,42 Nonetheless, some consider a barrier to the
use of machine learning models in voltammetry the fact that
the predictions can only be considered estimates until methods
of ground-truth validation are possible. For neurochemical
studies, in vivo experimental checks can inform predictive
model selection and increase confidence and generalizability.11

These include confirming how analyte concentrations correlate
with stereotaxic electrode positioning, stimulation frequency,
pharmacology, behavior, and comparisons with other in vivo
neurochemical methods, e.g., microdialysis.
Dealing with Dynamics�Let the Machines Learn.

Given the shortcomings of background subtraction described
above, how should chemists and neuroscientists deal with
background signal dynamics that impede generalization? A
logical solution is background correction. However, back-
ground correction methods assume a temporally based
parametric relationship within the signal that has the same
issues of masking chemically interesting dynamics and can
suffer similar pitfalls as background subtraction. A different
approach to dealing with dynamic backgrounds is simply to
train analysis models with the background current included
(i.e., do not background subtract). Meunier et al. have shown
several demonstrations.15,23

“The model, validated both in adrenal slice and live brain
tissue, enables information encoded in the shape of the
background voltammogram to determine electrochemical
parameters that are critical for accurate quantification.”�
Meunier et al. 201715

Can machine learning models be effectively and accurately
trained with dynamic backgrounds included? Or do dynamic

backgrounds preclude the ability to obtain specific (i.e.,
trainable) electrochemical information? In machine learning
terms, we aim to find a low-dimensional yet generalizable
representation of the analytes, interferents, background
current, irrelevant capacitive interference, etc. in the model.
Sombers and co-workers have shown this is indeed possible,
reporting a drift-prediction model that generalized across
multiple electrodes (Figure 1).23

“Thus, it is clearly possible to develop effective models for
subtraction of drift from fast voltammetric data that are not
specific to any given electrode, to reveal both rapid and
gradual changes in analyte concentration over time.”�
Meunier et al. 201923

Due to the prevalence of background subtraction for over
three decades, suggesting its abstinence may seem contro-
versial. Yet, in the past few years, avoiding background
subtraction has been shown to be more reliable and robust for
dopamine predictions than background-subtracted FSCV in
the hands of experienced users.11,29 This is due to the
application of modern machine learning methods that negate
the need to use background subtraction to increase the signal-
to-noise ratio. These pattern recognition algorithms are
advanced enough to be trained on and to predict raw data
extraordinarily accurately.

To lend additional credence to the idea of forgoing
background subtraction, we point to studies in the mechanistic
electrochemistry field. As opposed to using background-
subtracted voltammograms to train machine learning models
to predict analyte identity and concentration, fundamental
electrochemistry studies use background-inclusive voltammo-
grams to fit simulated and experimental data, including
nonfaradaic current.43−45 These reports further demonstrate
the utility of nonfaradaic information in models of electro-
chemical processes beyond concentration quantification. For
example, areas of voltammograms not typically used in the
manual assignment of electrochemical reaction mechanisms

Figure 1. Predictive drift modeling generalizes in vivo. Reproduced
from Meunier, C. J.; McCarty, G. S.; Sombers, L. A. Anal. Chem.
2019, 91, 7319−7327 (ref 23). Copyright 2019, American Chemical
Society.
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are now being used by deep learning classifiers for automated
mechanistic assignment.46 Similar reports have emerged for
fast voltammetry in terms of analyte quantification; vide inf ra.

The combined use of suitable supervised regression models
and nonbackground-subtracted voltammograms as training
data has been demonstrated repeatedly in recent literature to
be more powerful than using background-subtracted data. For
example, Kishida et al. showed that conventional background-
subtracted FSCV-principal components regression (PCR)
predictions were both unreliable for dopamine at low
concentrations and confused changes in pH for dopamine,
when compared to an elastic net model trained with the same
nonbackground-subtracted data (Figure 2).29 Here, a pH
change of 0.2 units resulted in a 250 nM dopamine prediction
error (0 nM dopamine was present but 250 nM was
predicted). Meanwhile, the nonbackground-subtracted data,
when modeled, not only increased dopamine sensitivity (S/N
ratio) but also did not confound pH for dopamine (roughly 0
nM dopamine was predicted for the same 0.2-unit pH change).

Importantly, a “good” signal-to-noise ratio as defined by the
human eye, for example, following background subtraction, is
not directly comparable to a “good” signal-to-noise ratio for a
machine learning model where the signal-to-noise ratio is not
based on the single-point, amplitude-based metric used for
classical calibration curves. For machine learning models,
entire voltammograms, each described by thousands of data
points, are now being analyzed. The impact is demonstrated by
nonbackground-subtracted data yielding higher sensitivity than
background-subtracted data. Movassaghi et al. recently
reported findings on the improved performance of back-
ground-inclusive models when compared directly to back-

ground-subtracted models.11 Further, Kishida et al. and
Movassaghi et al. demonstrated that their models were using
areas of the voltammograms normally discarded during
background subtraction (i.e., nonfaradaic areas; Figure 3).11,29

Background subtraction can be thought of as a form of
manual feature engineering useful for identifying oxidation and

Figure 2. (A) Test set performance using an FSCV-PCR model trained on background-subtracted voltammograms for varying dopamine
concentrations at pH 7.4 and (B) versus varying pH at constant dopamine (0 nM). (C,D) The same test set performance using an FSCV-elastic net
model trained on nonbackground-subtracted data. Reproduced from Kishida, K. T.; Saez, I.; Lohrenz, T.; Witcher, M. R.; Laxton, A. W.; Tatter, S.
B.; White, J. P.; Ellis, T. L.; Phillips, P. E. M.; Montague, P. R. Proc. Natl. Acad. Sci. U.S.A. 2016, 113, 200−205 (ref 29). https://creativecommons.
org/licenses/by/4.0/.

Figure 3. Model loadings analysis by analyte for rapid pulse
voltammetry. Large loadings for dopamine and serotonin in the
early portions of specific steps indicate the model is gaining analyte-
specific information from portions of the current traces dominated by
capacitive current. Reproduced from Movassaghi, C. S.; Perrotta, K.
A.; Yang, H.; Iyer, R.; Cheng, X.; Dagher, M.; Fillol, M. A.; Andrews,
A. M. Anal. Bioanal. Chem. 2021, 413, 6747−6767 (ref 11). http://
creativecommons.org/licenses/by/4.0/.
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reduction peak currents for univariate linear regression, while
multivariate models essentially perform automatic feature
engineering. Thus, machine learning has overcome and
surpassed the need for background subtraction as originally
proposed. Rather than focusing on a small subset of the
information in voltammograms, we can now utilize all
voltammogram information.

One question is why nonbackground-subtracted techniques
were not focused on sooner? For one, the resolution of
previous generations of data acquisition cards was an
impediment to approaches aimed at deconvoluting varying
contributions of faradaic and nonfaradaic current.2 Data
sampling speeds available today are an order of magnitude
faster (i.e., <100 kHz vs >1 MHz). The increases in data
density mean processes previously seen at 10-μs intervals are
now captured at 1-μs intervals�the time scale of resolvable
adsorptive/capacitive charging processes at carbon fiber
microelectrodes (i.e., RC equivalent circuit-time constants of
∼4−40 μs have been demonstrated both empirically and
theoretically).20

Moreover, large-scale and chemically diverse training sets
were not and, generally, are still not utilized. Early reports of
supervised regression models for background-subtracted fast
voltammetry were trained solely on dopamine over a handful
of concentrations and occasionally, a couple of metabolites at
single concentrations, across dozens of voltammograms.47 The
most advanced models today consist of far more robust
experimental designs with training sets containing multiple
concentrations of analytes, metabolites, H+ and other ions,
multiple electrodes, and so on, across thousands of voltammo-
grams.38,48 As state-of-the-art (i.e., deep learning) models are
developed,35,37,39,46 electrochemists will also likely find greater
success in maximizing the information content of data
acquisition. Examples include the fusing of multiple data
sources,45 the ability to perform inference on out-of-
distribution data,38 and the use of physics-informed43 and
probabilistic49 models. These areas are likely to yield
complementary advances for machine learning and voltamme-
try that extend beyond neurochemical detection toward
electroanalytical chemistry writ large.

While previous work has shown there is important
information in the capacitive/nonfaradaic/background current,
few methods have capitalized on background-inclusive models
to improve analyte predictions. We surmise the future of fast
voltammetry will rely increasingly on background-inclusive
machine learning models because of the marked increases in
performance associated with utilizing capacitive (nonfaradaic)
current information. The latter is especially useful as an
additional source of information for discriminating highly
overlapping electrochemical signals, as shown for serotonin
and dopamine (Figure 3).11,48 Adsorption, interfacial surface
chemistry, drift, and other contributions all affect capacitive, in
addition to faradaic currents. Subtracting the background
removes relevant information that mathematical algorithms
can use for more robust training and thus more accurate
predictions. In addition to improvements in sampling, better
digital electronics and data acquisition cards can now be used
to drive more rapid potential changes with high slew rates.
Waveform Woes: Powerful Pulses or Skillful Sweeps?

The pulse versus sweep waveform debate has permeated the
history of voltammetry (much like an earlier debate between
the “sparks” and the “soups” regarding the nature of
communication at synapses50). Osteryoung advocated as

early as 1993 for a “pulse revolution”, suggesting that progress
in electronics and computing would advance pulse voltamme-
try in a postmodernist era.51 Ironically, prior to FSCV
adoption, electroanalytical chemists avoided fast cyclic
voltammetry because of the large background currents
generated by fast sweeps. Once background subtraction
appeared to alleviate issues associated with large and
temporally evolving background currents in FSCV, the use of
pulse techniques fell by the wayside because of their slow
temporal resolution (associated with differential sampling
between nonfaradaic and faradaic currents and slow
electronics).2 However, if the background current is indeed
no longer an issue and is a rich source of information, then
electroanalytical chemists are free to explore the use of pulse
waveforms 30 years after Osteryoung’s prediction.

“Although the principles of capacitive and faradic current
had already been widely known, the straight nature of
[pulse voltammetry], where it is easy to separate capacitive
and faradic current, has been overlooked, and not utilized
for voltammetric recordings in the brain.”�Yoshimi et al.
201452

Both sweep and pulse waveforms enable users to customize
start and stop potentials for different waveform segments.
Sweep techniques offer customizable scan rates, whereas pulse
techniques allow customizable step potentials and hold times.
In fact, a digitally generated sweep signal is a series of small
pulses. One argument against sweep voltammetry is that
variable scan rates do not provide a different type of
fundamental chemical information. That is linear scans
(sweeps) inextricably link time with potential and faradaic
with capacitive current. In any case, variable scan rates,53

multiple scan rates,54 and multisweep voltammetry meth-
ods55−58 have been developed.

In theory, pulsed voltammetry provides fundamentally
distinguishable faradaic and nonfaradaic information, whereas
fast-sweep voltammetry does not. In the latter, the capacitive
current is rapidly evolving throughout the waveform, making it
difficult to separate faradaic from nonfaradaic current
contributions. Nonetheless, these different sources of current
need not be separated to be practically accurate or useful for
quantifying an analyte (although, formally modeling these
separate contributions can be useful for other tasks, such as
equivalent circuit models59). In step potentials, even for fast
steps, the full capacitive decay profiles (change in current over
the step time) provide information to parse capacitive and
faradaic current contributions. Yoshimi et al. were one of the
first to demonstrate that a single rectangular pulse could
differentiate dopamine and pH, even in the presence of
serotonin and ascorbate, solely by changes in the capacitive
current response, without explicit training sets.52 Meanwhile,
dopamine and pH predictions were confounded in FSCV.

Following this work, Wightman and co-workers, who
originally promulgated background subtraction in FSCV,
reported a convolution-removal technique for the oft-ignored
contributions from monovalent ions (K+, Na+),20 and extended
this thinking to divalent cations (Mg2+, Ca2+).16 For example,
background-subtracted FSCV-PCR confused a 120 mM
change in [K+] as a 1.5 μM change in dopamine, when no
actual change in dopamine occurred.20 Only when the PCR
model was trained across [K+] or when the deconvolution
technique was used did the model not confuse K+ for
dopamine (Figure 4). However, training a model across [K+]
requires repeating the original training set while varying [K+],
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increasing in training times and samples. The deconvolution
technique required another computation step and augmenta-
tion of the waveform and has only been tested for the case of a
single analyte. Interestingly, this deconvolution method relies
on a small amplitude pulse integrated with the FSCV sweep to
separate the expected capacitive ionic current.

Sweep waveforms remain widely used. Sweeps contain
important information in their backgrounds, as shown for
nonbackground-subtracted elastic net FSCV.13 Nonback-
ground-subtracted FSCV paired with elastic net analysis has
been used to decode dopamine and serotonin signaling in
human striatum involved in decision making.9,29,48 Moreover,
deep learning algorithms have been used with nonbackground-
subtracted FSCV to determine subsecond norepinephrine
signals in human amygdala associated with the emotional
regulation of attention.40 Sombers and co-workers have not
only reported on the ability of FSCV with machine learning to
predict voltammetric drift23 and the usefulness of background
voltammograms as accurate experimental parameter predic-
tors,60 they explored the impedance (i.e., capacitive) character-
istics of electrodes and analyte-containing solutions through
electrochemical impedance spectroscopy (EIS).61,62 Similarly,
later work by the Jang group advocated for modeling analyte-
specific equivalent circuit parameters (Figure 5) and utilizing
double-layer capacitance as a feature to improve biofouling

robustness.14 This work used a novel pulse voltammetry
technique.

Using only square wave voltammetry (SWV), Cobb and
Macpherson showed that circuit parameters can be extracted
directly from the nonfaradaic regions in SWV, circumventing
the need for EIS.63 Circuit parameters can then be used to
differentiate responses unique to electrolyte vs. analyte
concentration dynamics or serotonin biofouling. In vivo
voltammetry experiments are plagued by the confounding
factors of unknown electrolyte composition dynamics and
surface biofouling. The nonfaradaic information contained
within pulses has direct utility in addressing this aspect of the
generalization gap (vide supra).

“The SWV capacitance data can be used to provide real
time monitoring on whether a changing faradaic signal is
due to concentration changes of the electrochemically active
analyte or fouling of the electrode.”�Cobb and Macpherson
201963

The studies discussed above advocate for the utility of pulse
voltammetry, beyond its being complementary to FSCV.
Moreover, two methods to date on background-inclusive,
customized, rapid or “burst” pulses have both achieved
detection of notoriously difficult analyte mixtures, i.e.,
codetection of dopamine and serotonin,11 and dopamine and
norepinephrine (Figure 6).64,65 Rapid pulse voltammetry was
also used to demonstrate the first evidence of combined
measurements of basal neurotransmitter levels and stimulated
release via a single technique.11 Outside of bioanalytical
voltammetry, the usefulness of pulse-induced capacitive
current has been demonstrated repeatedly and is becoming
more commonplace as advanced data acquisition and analysis
speeds enable its exploration. The voltammetric electronic
tongue community has recognized the importance of modeling
information contained in nonfaradaic current, in addition to
faradaic current, for decades, especially in complex environ-
ments.66−69 The high information content of pulses and their
accessible capacitive currents is also gaining attention for
electrochemical measurements in other fields.70,71

For neurochemical analyses, the debate on pulse versus
sweep waveforms is expected to continue. While neuro-
chemical fast voltammetry has been tailored toward sweeps,
pulses offer relatively unexplored information and use cases.
Some have advocated for the complementary use of separate
pulse and sweep waveforms (i.e., data fusion),52 while the

Figure 4. Dopamine (DA) predictions from FSCV data containing
120 mM K+ for an actual value of 500 nM dopamine. Reproduced
from Johnson, J. A.; Hobbs, C. N.; Wightman, R. M. Anal. Chem.
2017, 89, 6166−6174 (ref 20). Copyright 2017, American Chemical
Society.

Figure 5. Analyte-specific equivalent circuit voltammograms for dopamine (DA), norepinephrine (NE), and epinephrine (EP). Reproduced from
Park, C.; Hwang, S.; Kang, Y.; Sim, J.; Cho, H. U.; Oh, Y.; Shin, H.; Kim, D. H.; Blaha, C. D.; Bennet, K. E. Anal. Chem. 2021, 93, 15861−15869
(ref 14). Copyright 2021, American Chemical Society.
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Heien, Jang, and Lee groups have pioneered techniques that
combine sweeps and pulses into single waveforms.6,72−74

Others have concatenated pulse and sweep waveforms for a
variety of electrochemical detection purposes.75,76 Approaches
outside of the DC-realm (i.e., AC-voltammetry)77 are also
garnering a resurgence of interest when combined with
machine learning.44,78 Regardless of waveform type, we
propose that nonbackground-subtracted approaches are well
suited to facilitate the union of voltammetry and machine
learning due to the importance of including the capacitive
current in the training sets.

To extract maximal neurochemical information from the
brain, we recommend that voltammetry practitioners extract
maximal information from their data to provide information on
absolute vs relative changes in stimulated neurotransmitter
levels, basal neurotransmitter levels, and simultaneous analyte
monitoring. Based on the publications reviewed here on the
importance of nonfaradaic information and the versatility of
waveforms (sweeps and pulses) in voltammetry, the next major
advances for in vivo voltammetry appear likely to come from
background-inclusive approaches paired with machine learn-
ing. There are many recent examples of movement in this
direction inside and outside of the chemical neuroscience
community.11,14,16,20,44−46,64,65,71,72,74,79

If there is a solution to the pervasive problems that have
plagued voltammetry for decades preventing the full electro-
chemical exploration of the chemical communication systems
of the brain and beyond, recent evidence points to a need to
reconsider the use of background subtraction. Broadly
speaking, all practitioners of voltammetry should consider
maximizing the information inherent in their experimental data

and complementing domain knowledge with their analysis
toolkit of choice.

“There is scientific value to capturing more current data
generated during square wave voltammetry...it contains
valuable information about the double layer charging and
interfacial processes occurring at short time scales. More
specifically...analyzing the current-time data from the non-
Faradaic region of the potential pulse can provide crucial
information.”�Abeykoon et al. 202371
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