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Host–guest molecular recognition at the liquid–liquid interface endows the interface with unique
properties, including stimuli-responsiveness and self-regulation, due to the dynamic and reversible
nature of non-covalent interactions. Increasing research efforts have been put into the preparation of
supramolecular interfacial systems such as films and microcapsules by integrating functional compo-
nents (e.g., colloidal particles, polymers) at the interface, providing tremendous opportunities in the areas
of encapsulation, delivery vehicles, and biphasic reaction systems. In this review, we summarize recent
progress in supramolecular interfacial systems assembled by host–guest chemistry, and provide an
overview of the fabrication process, functions, and promising applications of the resultant constructs.

� 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Supramolecular chemistry, which is based on non-covalent
interactions, has attracted a considerable amount of attention in
recent years [1–4]. Robust supramolecular systems, including com-
plexes and assemblies constructed by electrostatic interactions,
host–guest interactions, van der Waals forces, hydrogen bonds,
p–p interactions, and hydrophobic–hydrophilic interactions, have
provided a range of potential applications in fields such as self-
healing materials, biosensors, and drug nanocarriers [5–7]. Among
various non-covalent interactions, host–guest molecular recogni-
tion has exhibited fascinating characteristics in the introduction
of different host–guest pairs. In general, a host–guest pair includes
a macrocyclic host unit as the receptor and a guest unit as the
ligand. The receptor and ligand interact with each other via non-
covalent bonding, similar to the relationship between a ‘‘lock”
and ‘‘key” [5]. Large host units with a hydrophobic or hydrophilic
cavity can recognize guest units specifically, allowing the direct
embedment of guest units such as organic compounds, macro-
molecules, metal ions, and even nanoparticles (NPs) [8,9]. There
are many advantages in using macrocycle-based host–guest inter-
actions. The host or guest molecules can be tailored with specific,
targeted functional groups. Moreover, the highly selective, robust,
and dynamic host–guest interaction can be exploited to fabricate
hierarchical structures that can assemble and disassemble reversi-
bly with external stimuli, including light, redox, and chemical
stimuli [5,8]. To date, various synthetic host units, such as crown
ethers, cucurbit[n]uril, cyclodextrins, pillar[n]arenes, and calixare-
nes, have been used as molecular receptors for the preparation of
supramolecular objects, enabling many fascinating applications
in intelligent self-assembling structures, supramolecular polymer-
ization, and molecular machines/switches [10–16].

A liquid–liquid interface, such as an oil–water interface, pro-
vides an attractive platform for the assembly of various materials
and the construction of interfacial assemblies [17]. By assembling
different building blocks at the interface, the interface can be
endowed with unique properties, allowing the fabrication of inter-
facial systems with novel functionalities that can be used in encap-
sulation, reactive liquid systems, and delivery vehicles [18–23].
Numerous studies have been devoted to the construction of
supramolecular interfaces via electrostatic interactions or hydro-
gen bonding, and considerable advances have been achieved [24–
30]. On the other hand, by taking advantage of host–guest chem-
istry, a versatile strategy to construct dynamic interfacial systems
with multiple stimuli-responsiveness can be provided.

In recent years, colloidal particles and polymers grafted with
host or guest units have been exploited to form supramolecular
systems at the oil–water interface, leading to the successful
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preparation of interfacial films, microcapsules, and structured liq-
uids, which display potential applications in many areas including
material engineering and life sciences [31–33]. Here, we briefly
summarize the current development in supramolecular interfacial
systems constructed by host–guest molecular recognition,
including the preparation, characteristics, and applications of
supramolecular colloidal interfaces, supramolecular polymeric
interfaces, and supramolecular colloidal jammed interfaces that
have recently emerged.
2. Supramolecular colloidal interfaces

Ramsden [34] and Pickering [35] were the first to identify and
describe Pickering emulsions. Generally, for a typical oil–water
Pickering emulsion system, colloidal particles tend to migrate to
the interface, forming either water-in-oil (w/o) or oil-in-water
(o/w) emulsions, in order to minimize the interfacial energy of
immiscible liquids [36]. According to the theoretical model
established by Pieranski [37], with a single particle at the oil–water
interface, the reduced interfacial energy, DE, can be described by
the following formula:

DE ¼ � pr2

cO=W
cO=W � cP=W � cP=O

���
���

� �2
ð1Þ

where r is the effective radius of the particle, and cO=W, cP=W, and cP=O
represent the interfacial tensions that arise from the oil–water
interface, particle–water interface, and particle–oil interface,
respectively. Eq. (1) shows that DE is highly correlated to the parti-
cle size. The interfacial energy decreases less for small particles than
for large particles. This effect is more significant when using NPs,
where DE is comparable to thermal energy. As a result, thermal fluc-
tuations can easily weaken the confinement of NPs at the interface
and lead to the eventual detachment of NPs from the interface [38].

To realize the stable assembly of NPs at the oil–water interface,
as well as the generation of macroscopic assemblies, it is both cru-
cial and challenging to suppress the thermally activated desorption
of NPs. The crosslinking of interfacial NPs by covalent bonds, such
as ring-opening metathesis polymerization, ‘‘click” chemistry, and
coordination chemistry, provides a feasible strategy to achieve this
purpose [39–43]. Given the dynamic nature of assemblies at the
interface, the non-covalent-interaction-mediated interfacial
assembly of NPs based on host–guest interactions can be used as
an alternative strategy that provides a promising pathway to gen-
erate novel functional materials.
Fig. 1. (a) Schematics of the formation and size tunability of the microcapsules fabrica
ligands and the host–guest interactions in the system. (c) Disassembly and coalescence
Ref. [47] with permission of American Chemical Society, � 2009.
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In earlier work, Wang et al. [31] reported the fabrication of
macroscopic NP monolayers at the interface using b-cyclodextrins
(b-CDs) or their derivatives dissolved inwater and CoPt3 NPs capped
with 1-adamantylcarboxylic acid dispersed in oil. Furthermore, by
introducing functional groups onto b-CDs, macroscopic heteroge-
neousNPmultilayerswere generated in a stepwisemanner. In com-
parison with two-dimensional (2D) films, muchmore attention has
been focused on the construction of dynamic three-dimensional
(3D) colloidal microcapsules, which have broad application poten-
tial in biomedicine, cargo release, andmicroreactors [44–46]. In this
section,wewill introduce two approaches for fabricating robust col-
loidal microcapsules using host–guest interactions at the oil–water
interface.

2.1. Microcapsules fabricated by classical emulsion templates

With Pickering emulsions as templates, Patra et al. [47]
reported the fabrication of stimuli-responsive colloidal microcap-
sules via the recognition of b-CD and adamantane (ADA) at the
toluene–water interface. Robust and stable microcapsules
were generated by vigorously shaking an aqueous solution of
b-CD-functionalized gold (Au) NPs and a toluene solution of
ADA-functionalized Au NPs, forming a crosslinked NP layer as the
shell of microcapsules at the interface (Figs. 1(a) and (b)). Unlike
microcapsules fabricated using covalent crosslinking, the host–
guest interaction endows the microcapsules with size tunability,
which can be triggered by introducing the external competing
guest ligand adamantane tetraethylene glycol (ADA-TEG-OH) to
the system. As shown in Fig. 1(c), with the addition of ADA-TEG-
OH, partial disassembly of the interface is observed, resulting in
the coalescence of small microcapsules and the eventual formation
of larger microcapsules.

In addition to cyclodextrins, cucurbit[n]urils (CB[n], n = 5–8,
10), a large family of macrocyclic molecules, are popular as hosts
and have attracted a great deal of attention. CB[n] are macrocyclic
oligomers of glycoluril with a hydrophobic cavity, and the portals
are surrounded by carbonyl groups. Taking advantage of the
discrimination originating from different portal and cavity sizes,
specific host–guest complexation can be achieved between CB[n]
and different guests [1,9]. Meethal et al. [38] reported a method
to generate a colloidal film and control-released microcapsules
by using cucurbit[7]uril (CB[7])-mediated host–guest interactions
at the chloroform–water interface. In their study, aminohexyl-
terminated Au NPs (Hex-AuNPs) dispersed in chloroform and
complementary CB[7] dissolved in the aqueous phase interacted
at the interface, significantly enhancing the interfacial binding
ted using classical emulsion templates. (b) NP structures modified with different
of microcapsules after adding the competing guest ADA-TEG-OH. Reproduced from



B. Wang, H. Chen, T. Liu et al. Engineering 7 (2021) 603–614
energy of the NPs and forming stable microcapsules, which could
be used to encapsulate cargo (Fig. 2(a)). In addition, due to the
cationic Hex-AuNPs at the interface, macromolecules with
negative charge could be immobilized on the surface of the
microcapsule. Fig. 2(b) shows dual cargo loading in which the
fluorescein-conjugated bovine serum albumin (BSA) proteins are
selectively absorbed onto the shell of the microcapsule, while the
hydrophobic Nile red are encapsulated inside. Microcapsules with
a dynamic nature can be achieved by introducing a competing ADA
guest that has a higher affinity with CB[7] than Hex-AuNPs. Using
hydrophilic doxorubicin as a model cargo, the microcapsule struc-
ture is disturbed by the addition of ADA, triggering the release of
doxorubicin (Figs. 2(c)–(e)).

Using specific host–guest chemistries, the mechanical strength
of NP films assembled at the microdroplet surface can also be
effectively controlled. Jeong et al. [48] reported the fabrication of
buckled microparticles using three different guest linkers dissolved
in chloroform and b-CD-functionalized Au NPs dispersed in water
(Fig. 3). Guest linkers in oil, taking AB-Hex-AB as an example,
crosslink the interfacial NPs via the host–guest interaction,
producing stable microcapsules with a robust NP membrane shell
(Fig. 3(d)). When the oil phase is replaced with a mixture solution
of the linker, dicyclopentadiene, and catalyst, the dicyclopentadi-
ene in the inner phase is polymerized, generating stable micropar-
ticles with measurable buckled surfaces (Fig. 3(c)). The surface
buckling of microparticles is the result of the contraction of the
oil phase, which is caused by the removal of chloroform and the
reduced volume of the polymer relative to its monomers (Fig.
3(e)). Finally, the researchers demonstrated that the characteristic
lengths of periodic buckling, which can be used to estimate the
elastic modulus by means of numerical simulations and experi-
mental observation, are related to the binding affinities between
the host NPs and the guest linkers, making manipulation of the
mechanical strength of NP films possible.

2.2. Microcapsules fabricated by microfluidic devices

In general, colloidal microcapsules made by classical
emulsification approaches tend to have a fairly broad size range
distribution [49]. To decrease the size distribution, many investiga-
tors have begun to use microfluidics to generate microcapsules
Fig. 2. (a) Schematics of the preparation of microcapsules using interfacial molecular reco
(c–e) Disassembly of microcapsules and release of cargo after adding the competing gue
� 2018.

605
[50–52]. Zhang et al. [32] reported a one-step method to generate
hollow and uniformmicrocapsules using host–guest chemistry and
a four-channel microfluidic device (Fig. 4). In their study, micro-
capsules were produced when the oil phase sheared off the water
phase, which contained three materials: CB[8], methyl viologen
(MV)-functionalized Au NPs, and naphthol-functionalized
polymers (Fig. 4(a)). Au NPs tend to segregate to the water–oil
interface, directing host–guest recognition with the complemen-
tary polymers and resulting in the formation of the microcapsule
membrane. The monodispersed microcapsules can be easily
separated after the water droplets evaporate, and maintain a
spherical shape in the subsequent rehydration process (Figs. 4(e)
and (f)). During the formation of the microcapsules, the high-
yield encapsulation of different cargos can be easily achieved
(Figs. 4(b)–(d)). Also, due to the dynamic nature of the host–guest
interactions, the supramolecular interface can be disrupted by
external stimuli, and the on-demand release of cargos can be
triggered.

Subsequently, the same group [53] extended this method to a CB
[8]-mediated supramolecular system, in which MV-functionalized
NPs were reversibly crosslinked via a naphthol-functionalized
polyacrylamide linker at the oil–water interface to produce
stimuli-responsive microcapsules. Water-soluble cargo could be
encapsulated during the formation of microcapsules, which could
be triggered to release by adding a competitive guest to disrupt
the supramolecular shell. The researchers also prepared
dual-responsive supramolecular colloidalmicrocapsules in a similar
way [54]. In that study, the shell of the microcapsules was a
CB[8]-mediated complex consisting of thermo-responsive particles
functionalized with MV (MCP) and photoresponsive azobenzene
(Azo)-functionalized poly(vinyl alcohol) (AP) (Fig. 5(a)). Poly
(N-isopropylacrylamide) (PNIPAM), which is responsive to temper-
ature, was used to form the shell of the particles. Above the lower
critical solution temperature (LCST) of PNIPAM, the shell of the
particles collapsed with increasing temperature, introducing larger
gaps between particles and leading to the release of the encapsu-
lated cargo (Fig. 5(b)). Moreover, AP imparted the microcapsules
with photoresponsiveness. Upon exposure to ultraviolet (UV) light,
the photoisomerization of Azo units caused the dissociation of
supramolecular complexes at the interface, and a light-triggered
release of the cargo was achieved (Fig. 5(c)). This bottom-up
gnition between CB[7] and Hex-AuNPs. (b) Dual cargo loading of the microcapsules.
st ADA. Reproduced from Ref. [38] with permission of American Chemical Society,



Fig. 3. (a) Schematics of the formation of microcapsules. (b) Structures of b-CD-functionalized Au NPs and different guest linkers. (c) Fabrication of microparticles with
buckled surfaces by polymerizing the inner phase. (d) Optical images of the microcapsules before (top) and after (bottom) drying in chloroform. (e) Scanning electron
microscopy (SEM) images of microparticles with specific bulking patterns when using different guest linkers (top: AB-Hex-AB; middle: AB-Hex-AD; bottom: AD-Hex-AD).
AB: azobenzene; AD: 1-adamantyl methyl ketone; DCPD: dicyclopentadiene; pDCPD: poly(dicyclopentadiene); Ef ; Es: E = E/(1 � m2), E is the elastic modulus, m is the Poisson’s
ratio, and the subscripts f and s represent film and substrate, respectively; liq.: liquid; cat.: catalyst. Reproduced from Ref. [48] with permission of WILEY-VCH Verlag GmbH &
Co. KGaA, � 2014.
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assembly approach for fabricating microcapsules makes it possible
to obtain a wide range of uniform and intelligent microencapsula-
tion materials.
3. Supramolecular polymeric interface

The unique properties of polymers and the rapid progress that
has been achieved with them have promoted the emergence of
hollow structures formed by polymer-only materials. Layer-by-
layer (LbL) self-assembly provides a successful strategy to con-
struct polymeric microcapsules with multilayers utilizing particles
as templates, driven by electrostatic interaction, hydrogen bond-
ing, base-pair interactions, or host–guest interactions [55–60].
However, the typical LbL method is usually procedurally complex
and time consuming, as polymers is sequentially deposited onto
a sacrificial template. Zheng et al. [61] reported the interfacial
self-assembly of two copolymers functionalized with different
guest groups and the generation of multilayer supramolecular
microcapsules by taking advantage of host–guest interactions
mediated by CB[8] and microfluidic devices (Fig. 6). In their study,
P1(MV-containing copolymer) and CB[8] were dissolved in the
water phase, while P2 (naphthol-containing copolymer) was dis-
solved in chloroform, forming the ternary supramolecular complex
at the interface, and leading to the production of microcapsules
within a microfluidic device (Figs. 6(a) and (b)). Microcapsules
can be generated using either chloroform-in-water or water-in-
chloroform droplets. Fluorescein-labeled P1 (green fluorescence)
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and Rhodamine B-labeled P2 (red fluorescence) assemble at the
interface of the microdroplet to form the double layer of microcap-
sule shell (Fig. 6(d)). In addition, when replacing P2 with highly
branched H1 during the formation of microcapsules, the microcap-
sules produced can be used to encapsulate hydrophilic small mole-
cules due to the unique 3D and dendritic nanoscale structure of H1
(Fig. 6(c)). Under UV irradiation, the multilayer microcapsule skin
is disassembled by the photoisomerization of Azo units, triggering
the release of small molecule cargo. Owing to the diversity of syn-
thetic polymer materials, the properties and functions such as shell
thickness, permeability, and the restriction of molecular weight for
cargos can be well controlled. More importantly, the double-layer
microcapsules provide a powerful way to quantitatively under-
stand the mechanism and kinetics of the molecular recognition
of prefabricated polymers at the interface, which is of great
significance in the chemical or biological fields.

Parker et al. [62] reported another strategy to construct the
supramolecular polymeric shell of microcapsules, in which
the microcapsule-forming materials are directly segregated to the
oil–water interface by electrostatic interactions. In their study,
aqueous microdroplets were fabricated using a microfluidic device.
The continuous oil phase contained a charged surfactant and the
dispersed aqueous phase consisted of two complementary charged
copolymers functionalized with guests and CB[8] (Figs. 7(a) and
(b)). The low concentration of the copolymer solution prevents
gelation of the aqueous phase after adding CB[8]. Charged surfac-
tants assemble at the oil–water interface first, making the interface
positively charged or negatively charged. Then, copolymers with



Fig. 4. (a) Schematics of the formation of microdroplets using microfluidic devices. (b) Laser scanning confocal microscope images of empty microcapsules with 2b assembled
at the interface. Laser scanning confocal microscope images of (c) microcapsules with fluorescein isothiocyanate labeled dextran (FITC-dextran) or (d) Escherichia coli cells
encapsulated inside. (e) Optical images of microcapsules. (f) The dehydration process for microcapsules. UVA: ultraviolet A. Reproduced from Ref. [32] with permission of
American Association for the Advancement of Science, � 2012.

Fig. 5. (a) Schematics of the generation of CB[8]-mediated supramolecular microcapsules and structures of MCP, AP, and CB[8]. (b) Thermal-controlled cargo release.
(c) Photo-controlled cargo release. FC40: flouriner FC-40 (3M, USA). Reproduced from Ref. [54] with permission of the Royal Society of Chemistry, � 2016.
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complementary charges are attracted to the interface due to
electrostatic interactions, forming robust interfacial host–guest
complexes that lead to the generation of supramolecular microcap-
607
sules (Fig. 7(c)). With only anionic copolymer 1A(�) dissolved in the
aqueous phase, as the concentration of the positively charged
surfactant K(+) increases, more 1A(�) segregates to the interface.



Fig. 6. (a) Schematics of microcapsule generation. (b) Structures of the P1, P2, and CB[8]. (c) Schematics of microcapsules prepared using dendritic copolymer H1 as one of
the interfacial components. (d) Laser scanning confocal microscope images of the monodisperse microdroplets generated using either chloroform-in-water or
water-in-chloroform droplets. Reproduced from Ref. [61] with permission of Springer Nature, � 2014.
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However, when using a negatively charged surfactant K(�), 1A(�)

tends to be uniformly dissolved in the droplet, demonstrating that
the interfacial assembly of the copolymer is driven by electrostatic
interactions (Figs. 7(d) and (e)). With CB[8], 1A(�), and 1B(�) dis-
solved in the aqueous phase, as the concentration of the positively
charged surfactant K(+) increases, a morphology variation from
microparticles to robust microcapsules can be achieved during
the evaporation of microdroplets (Fig. 7(e)). Moreover, with a mix-
ture of competing copolymers dissolved in the aqueous phase,
more complex architectures can be obtained. As shown in Fig.
7(f), with 1A(�), 1B(�), 2A(+), 2B(+), and CB[8] dissolved in water,
only homogenous microparticles can be obtained with a neutral
surfactant dissolved in the oil. With K(+) dissolved in the oil, micro-
capsules with a 1A(�)–CB[8]–1B(�) shell and a 2A(+)–CB[8]–2B(+)

hydrogel core can be generated. Microcapsules with an inverted
structure can also be produced by replacing K(+) with K(�).
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Using a similar strategy, Yu et al. [63] reported the generation of
polymeric microcapsules with UV-controlled permeability by
means of host–guest and electrostatic interactions, and cargo
release was triggered from the microcapsules when a competitive
ADA guest was added (Figs. 8(a)–(d)). In general, the permeability
of an interfacial shell after microcapsule generation is unchange-
able. However, in this study, the researchers overcame this obsta-
cle by regulating the covalent crosslinking degree of the guests
inside the CB[8]. Upon exposure to UV light, two anthracene
groups (guests) embedded in the CB[8] transformed to a [4 + 4]-
photo-dimer, providing a strategy to manipulate the permeability
of the microcapsule shell. As shown in Figs. 8(e) and (f), the release
rate of cargo can be significantly reduced during longer UV
irradiation.

Charged polymer micelles and supramolecular hyperbranched-
like polymers (SHPs) were also used to locate materials at the



Fig. 7. (a) Optical image of the generation of microdroplets using a microfluidic device. (b) Schematics of the prepared microcapsules. (c) Optical image of microcapsules after
drying. (d) Structures of functionalized copolymers and charged surfactants. (e) Laser scanning confocal microscope images (top) of aqueous microdroplets containing 1A(�)

with the increasing concentration of K(+); optical images (bottom) of evaporated aqueous microdroplets containing 1A(�), 1B(�), and CB[8] with the increasing concentration of
K(+). (f) Distribution of functional polymers with different fluorescence in microdroplets (left), with the aqueous phase containing 1A(�), 1B(�), 2A(+), 2B(+), and CB[8] and the oil
phase dissolving different surfactants; resultant microdroplet morphology during evaporation (right). Reproduced from Ref. [62].
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interface of a microdroplet directed by electrostatic interactions,
forming a non-covalently crosslinked interfacial layer via CB[8]-
mediated host–guest interaction [64,65]. Yu et al. [64] fabricated
novel hierarchical microcapsules made by polymer micelles self-
assembled from linear amphiphilic block copolymers (Fig. 9(a)).
For the prepared microcapsules, the ability of dual cargo loading
is quite attractive, and can be achieved in two steps. The first step
is the fabrication of micelles in water, where the hydrophobic
cargo (Nile red, red fluorescence) is loaded within the hydrophobic
core of the micelles. The second step is the assembly of microcap-
sules, where a water-soluble cargo (fluorescein isothiocyanate
609
labeled dextran (FITC-dextran), green fluorescence) is encapsu-
lated into the microcapsules (Figs. 9(b)–(d)). This strategy allows
the microcapsules to load hydrophobic cargo in the shell and
encapsulate hydrophilic cargo in the core simultaneously, and
release the cargos synergistically under external multi-stimuli.

Groombridge et al. [65] reported the preparation of aqueous
interfacial gels based on SHPs. The cationic SHP is prepared from
small molecules by supramolecular polymerization, which is dual
responsive, exhibiting dynamic properties upon exposure to UV
light or the addition of competitive guests. Also, no supramolecular
precipitation can be observed at low concentrations of SHP. Using



Fig. 8. (a) Schematics of the generation of microcapsules via microfluidic devices and the structure of the supramolecular polymeric shell at the interface (anthracene-
functionalized hydroxyethyl cellulose (Ant-HEC)). (b) Optical images of dried microcapsules with cargo encapsulated inside. (c) Optical and (d) fluorescent images of
rehydrated microcapsules in ADA solution. (e) Schematics of the disassembly of supramolecular assembly upon the addition of ADA and the [4 + 4]-photo-dimerization of
anthracene groups in the cavity of CB[8]. (f) Release rate of cargo at different UV irradiation times. Reproduced from Ref. [63] with permission of the Royal Society of
Chemistry, � 2015.

Fig. 9. (a) Schematics of supramolecular microcapsules with hierarchical structure. (b) Fluorescent image of hierarchical microcapsules with hydrophobic cargo (Nile red)
loaded in the shell and water-soluble cargo (FITC-dextran) encapsulated in the core. (c) Optical image of dried microcapsules and (d) fluorescent image of rehydrated
microcapsules. Reproduced from Ref. [64].
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microfluidic devices, interfacial gels of SHP can be generated in
the presence of an anionic surfactant dissolved in the oil
(Figs. 10(a)–(d)). Measurements investigated using a pendant drop
demonstrated that the interfacial system undergoes a gel transfor-
mation within a very short time (~2 s) (Fig. 10(e)). The buckled
interface recovers to a smooth shape within a minute due to the
self-healing property of the supramolecular interfacial gel. In addi-
tion, buckling is not observed after adding ADA as a competitive
guest to disassemble the supramolecular polymers. This work pre-
sented a method to synthesize stimuli-responsive SHPs and con-
struct a dynamic interfacial gel that can be used as a barrier to
suppress the coalescence of microdroplets. Furthermore, Salmon
et al. [66] confirmed that phase transformation (gelation) occurred
610
under compression, leading to the buckling at the interface. During
evaporation, the density and thickness of the interfacial film
increase until the critical density is reached.

Engineered patterned surfaces provide an attractive pathway
for self-assembly, due to characteristics such as high specificity,
controlled affinity, and reversibility [67,68]. Recently, Zhang et al.
[69] presented a method to generate patterned microcapsule
arrays with a supramolecular shell, which can be used for delivery
systems and sensors. In this study, a positively charged
supramolecular complex consisting of CB[8]-threaded highly-
branched polyrotaxanes (HBP-CB[8]) and hydroxyethyl cellulose
with naphthyl moieties (HEC-Np) was formed initially by host–
guest interaction in the sessile droplet. When a layer of oil



Fig. 10. (a) Schematics of the preparation of dual-responsive SHP. (b) Schematics of
the assembly process from dilute A2–B3–CB[8] solution to an interfacial
supramolecular gel, directed by electrostatic interaction. (c) Schematics of the
generation of monodisperse microdroplets via microfluidic devices. (d) Optical
image of the dried microdroplets. (e) Morphology evolution of the pendent droplet
under compression. UVA: ultraviolet A. Reproduced from Ref. [65] with permission
of the Royal Society of Chemistry, � 2017.
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containing a complementary charged surfactant covered the surface
of the microdroplet, the complex was drawn to the oil–water inter-
face, driven by electrostatic interactions. A robust hydrogel shell
formed at the interface, which could be used to encapsulate cargo
(Figs. 11(a)–(c)). Taking the linear analogue poly(N-hydroxylethyl
acrylamide-co-methyl viologen-styrene) as a control, it was found
that microcapsule patterns made by highly branched HBP-CB[8]
had a better sustained release effect under the external stimulus
(Fig. 11(d)). Moreover, when Au NPs were loaded, the prepared
microcapsule substrates could be used for surface-enhanced Raman
spectroscopy sensing. The microcapsule arrays fabricated by this
simple self-assembly can be responsive tomultiple stimuli including
competitive guests, light, and temperature.
4. Supramolecular jammed colloidal interface

Interfacial jamming, which is caused by the increased density of
colloidal particles at the liquid–liquid interface, generates crowded
interfacial assemblies with a loss of mobility [26]. In the jammed
state, NPs are densely aggregated at the interface, transforming
the interface monolayer from ‘‘liquid-like” to ‘‘solid-like,” accom-
panied by increased mechanical properties [70–74]. Using the
interfacial jamming of nanoparticle surfactants (NPSs), which are
formed via cooperative assembly between NPs and polymer
611
ligands at the oil–water interface, a strategy to structure liquids
was reported [24,75,76]. Tremendous applications of structured
liquids in encapsulation, delivery systems, and all-liquid chemical
reactors have been explored in recent years [77–81]. At present,
however, electrostatic interaction has been the dominant force
used for the formation and assembly of NPSs. As a result, only
pH-, ionic strength-, and temperature-responsiveness can be
achieved.

Recently, Sun et al. [33] reported a new type of photoresponsive
NPSs based on host–guest chemistry at the oil–water interface and
realized the construction of photoresponsive structured liquids. In
this study, a-CD-functionalized Au NPs are dispersed in water and
Azo-terminated polystyrene (Azo-PS) or Azo-terminated poly(L-
lactide) (Azo-PLLA) are dissolved in oil, forming NPSs at the inter-
face (Fig. 12(a)). In comparison with the system using Azo-PS as
the ligand, the Azo-PLLA-based NPSs are more interfacially active
due to the hydrogen bonding interaction between poly(L-lactide)
(PLLA) and water/a-CD. The hydrogen bonding locates NPs and
ligands at the interface, increasing the probability of collision
between host and guest units, which leads to an enhanced binding
energy of NPs at the interface (Fig. 12(b)). With photoresponsive
NPSs at the interface, the jamming and unjamming of NPSs can
be reversibly controlled using light as the trigger, which can be
demonstrated by the morphology change of the pendant drop with
jammed NPSs at the interface. As shown in Figs. 12(c) and (d),
under visible light, no morphology changes of the wrinkled droplet
are observed. Under UV irradiation, the wrinkles on the droplets
disappear, and the droplet shape returns to spherical (an
unjammed state of NPSs), which can be re-jammed under visible
light. Photoresponsiveness of structured liquids can also be
achieved using a droplet with a more complex shape (Fig. 12(e)).
5. Conclusion and outlook

In this review, we summarized recent developments in
host–guest chemistry at liquid–liquid interfaces, provided a brief
overview of the self-assembly strategy of various supramolecular
interfaces, including colloidal and polymeric interfaces, described
the unique properties of these interfaces, and emphasized applica-
tions in encapsulation and cargo release. Host–guest molecular
recognition provides a powerful approach for the construction of
a dynamic interface, allowing the resultant assemblies to be struc-
turally manipulated in size and shape; thus, it opens up a pathway
to construct smart supramolecular systems with interfacial multi-
responsiveness.

In comparison with numerous studies on supramolecular sys-
tems related to host–guest chemistry, studies focused on liquid–
liquid interfaces are much sparser, leaving a large workspace that
can be exploited. Fabricating supramolecular interfacial systems
with well-defined structures, permeability, and mechanical
strength is still challenging. The size of the microcapsules
fabricated using either Pickering emulsions or the microfluidic
technique is usually large, which limits their efficiency when used
for cargo delivery. Future studies need to focus on producing
microcapsules with exceptionally small sizes, down to the nanos-
cale. In addition to oil–water systems, host–guest molecular recog-
nition can be extended to aqueous two-phase systems (ATPSs),
which show promising applications in areas including biology, cos-
metics, and food. By using the interfacial jamming of colloidal par-
ticles and host–guest chemistries, it should be possible to produce
structured all-liquid systems by means of 3D printing or all-liquid
molding, which can be used to prepare complex microfluidics and
biphasic reaction systems. Solving these issues will be beneficial
for the production of next-generation dynamic soft materials with
novel functions.



Fig. 11. (a) Schematics of the generation of patterned microcapsule arrays. (b) Structures of HBP-CB[8], HEC-Np, CB[8], and anionic surfactant. (c) Optical and fluorescent
images of cargo-loaded microcapsules in a bright field. (d) The cargo release profiles of microcapsule arrays. Reproduced from Ref. [69].

Fig. 12. (a) Schematics of the formation of photoresponsive NPSs. (b) Assembly kinetics of photoresponsive NPSs using either Azo-PS or Azo-PLLA as the ligand.
(c, d) Morphology evolution of the pendent droplet with jammed NPSs at the interface under different light (visible light or UV light). (e) Morphology evolution of the highly
deformed microdroplet under visible light or UV light. a-CD-SH: thiolated a-cyclodextrin. Reproduced from Ref. [33] with permission of American Chemical Society, � 2020.
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