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Performance Analysis
Using Timed Petri Nets

by
Rami R. Razouk

Charles V. Phelps

ABSTRACT

Petri Nets have been successfully used to model and evaluate the perfor
mance of distributed systems. Several researchers have extended the basic Petri
Net model to include time, and have demonstrated that restricted classes of Pe
tri Nets can be analyzed efficiently. Unfortunately, the restrictions prohibit the
techniques from being applied to many interesting systems, e.g. communication
protocols. This paper proposes a version of timed Petri Nets which accurately
models communication protocols, and which can be analyzed using Timed
Reachability Graphs. Procedures for constructing and analyzing these graphs
are presented. The analysis is shown to be applicable to a larger class of Timed
Petri Nets than previously thought. The model and the analysis technique are
demonstrated using a simple communication protocol.

Introduction

As distributed computer systems have become more widely used, interest has increased
in techniques and tools which can be used to evaluate their correctness and estimate their per
formance. Petri Net models have been recommended by many researchers as useful tools for

modeling and evaluating real-time systems, distributed systems and communication protocols.
The basic Petri Net model, first discussed in [Petri C. 65], is a general model of computation
which can be used to model flow of control, concurrency, and synchronization. This basic
model can be analyzed to determine if the system being modeled contains deadlocks or un
desirable states. Analysis of Petri Nets using reachability graphs, has been used to verify
"safeness" issues in communication protocols, e.g. deadlock freeness. The weakness of the

basic model is its inability to model data transformations and timing relationships between
events. Several extensions have been proposed which model data transformations [Razouk R.
80, Symons F. 80, Berthelot G. 82]. These extensions have been primarily used to ease the
task of verifying partial correctness. Other extensions have been proposed which introduce
the notion of time. Much of this later work [Merlin P. 76, Ramchandani C. 74, Ramamoorthy

C. 80, Sifakis J. 77, Zuberek W. 80] has focussed on analyzing system performance. The suc
cess of performance analysis work has been limited to a small class of systems which can be
modeled using restricted classes of Petri Nets. Timed Petri Nets (and related models ) have
also been used as the basis for simulation environments [Razouk R. 79, Vernon M 83].
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This paper introduces yet another form of Timed Petri Nets which draws from work by
other researchers. Our Timed Petri Nets can be used to model communication protocols

elegantly, and can yield interesting performance estimates. In section 1 we remind the reader
of the basic Petri Net model and we review past work on Timed Petri Nets. Section 2 intro

duces the Timed Petri Net model used in this work, and demonstrates the usefulness of the ex

tensions in modeling communication protocols. Section 3 presents procedures for constructing

and analyzing Timed Reachability Graphs. Finally, section 4 demonstrates the model and the
analysis technique by applying them to a simple communication protocol.

1. Petri Nets and Timed Petri Nets

Since many authors have presented formal definitions of Petri Nets, we dispense with

much of the formalism and concentrate on giving the reader an intuitive understanding of the

model. For a more formal description of Petri Nets, the reader is referred to [Peterson J. 81].

Petri Nets consist of transitions (bars) which model events, and places (circles) which
model conditions. Edges which connect places to transitions describe the conditions under
which an event can occur (a transition may fire ). Edges which connect transitions to places
describe the conditions which result from the firing of a transition. The instantaneous state of

a net is called a marking and consists of a distribution of tokens (black dots) on places. When

all the input places of transitions hold at least one token each, the transition is said to be en
abled (it may fire). After a transition fires, it places tokens on all its output places, thereby
enabling other transitions.

A Petri Net can be analyzed by constructing a reachability graph (also called computa
tion flow graph or reachability tree). This graph consists of all the states (markings) which
can be reached from the initial state (initial marking) by any sequence of transition firings.
Reachability graphs are often very large, and are sometimes infinite. However, for many in
teresting systems, the graph is finite and even small. In such cases, deadlocked states (those
with no successors) and critical transitions between states (transitions which eventually lead to
deadlock) can be identified [Razouk R. 80]. It should be noted that the reachability graph is
independent of any notion of time: It yields results about time-independent sequences of
events. If the system being modeled has time dependencies, many of the markings in the
reachability graph may not, in fact, be reachable. Time-independent reachability analysis can
therefore only be used to detect potential deadlocks. If the time-independent reachability
graph is found to be deadlock-free, we can assume that no time dependencies (short of an in
finite delay for a transition) can introduce a deadlock.
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Since many interesting concurrent systems have timing dependencies (e.g. real-time
systems and communication protocols), it is necessary to introduce the notion of time into Pe-
tri Nets. Merlin and Farber [Merlin P 76] extended Petri Nets to include Min times and Max
times associated with transitions. Min times define delays during which transitions must
remain enabled before they can fire. Max times define maximum delays before a transition
must fire. While a transition is enabled, tokens remain on its input places. This permits other
transitions, with shorter delays, to rob the transition of its enabling token. This mechanism is
particularly useful in modeling timeouts in communication protocols. Merlin and Farber used
their Time Petri Nets to design recoverable systems (systems which can recover from transient
failures).

Ramchandani [Ramchandani C. 74] introduced time by associating simple delays with
transitions in a Petri Net. Ramamoorthy and Ho [Ramamoorthy C 80] then used this Extend
ed Timed Petri Net model to analyze system performance. For a restricted dass of systems
which can be modeled using dedsion-free nets, Ramamoorthy showed that performance can
be analyzed effidently. Dedsion-free nets are a very restricted class of nets which involve
neither dedsions nor non-determinism. In dedsion-free nets, each place can be connected to
the input of no more than one transition and to the output of no more than one transition. By
pladng this restriction on the nets, the issue of whether the tokens remain on the input places
during thefiring delay of a transition becomes moot. Unfortunately, the dedsion-free restric
tion is particularly bothersome in modeling communication protocols where dedsion places are
common (See model of transmission medium in figure 1). Ramamoorthy's work also showed
that performance analysis ofgeneral Petri Nets is NP-complete. This is indeed a discouraging
result, but it has not (nor should it) discourage further work in the area, since many cases
have been shown to be easily analyzable.

send transmit

packet packet

lose

packet

Figure 1. Petri Net of lossy transmission medium



Zuberek [Zuberek W. 80] also used timing delays associated with transitions. The res
trictions on Petri Nets were relaxed to permit decisions to be modeled. The Nets were, how
ever, limited to free-choice nets. In a free-choice net, only one place can be involved in any
decision. Zuberek's extensions also required that each transition enabled by a free-choice

place be assigned a firing probability. This extension permits the construction of elegant
models of lossy transmission media. Zuberek's free-choice limitation remains overly restrictive
in modeling communication protocols. Figure 2 shows a typical model of a process waiting for
a message with a sequence count of 0 or 1. Depending on the sequence count, the message is
processed differently. The resulting net is not free-choice. In fact, if only one message can ex
ist at any time, the net involves no conflicts since at most one of the two transitions will ever
be enabled.

*1 *2

Figure 2. Non-free-choice Petri Net

Zuberek's definition of time assumes that when a transition is enables it immediately

starts firing by absorbing its input tokens. A transition then continues tofire during its defined
delay, and thenfinishes firing. This is a subtle point which differs from the Merlin and Farber
definition of time. Zuberek also introduced an analysis technique based on a Timed Reacha

bility Graph (which is referred to as a GRID). The Timed Reachability Graph (TRG) differs
from a reachability graph in one key aspect: Time is introduced as part of the definition of the
state of a net. If absolute times are used to describe each state, the reachability graph be

comes infinite. Zuberek reduced the state space by using the remaining firing time of currently

firing transitions as part of the state component. Therefore, a state in the TRG consists of:

1. a marking

2. a vector of remaining firing times (one for each transition)

A state containing a non-zero remaining firing time (RFT) indicates that the transitions
in question are firing while the modeled system is in that state. The TRG can be constructed
by systematically calculating the successors of each state, starting from the initial state. For a
given state, a successor is reached as the result of a transition beginning to fire or, if there are
no enabled transitions, as the result of a transition finishing firing (thereby changing the
marking and possibly enabling some transitions). In the later case, time must elapse. This is



accomplished by reducing the remaining firing time of currently firing transitions until one or
more transitions finish firing.

This is a simple procedure which is essentially identical to the basic algorithm for a
Timed Petri Net discrete event simulator. The only difference is that a simulator builds one
successor state while an analyzer mustbuild all successor states. Multiple successors only exist
when a free-choice place holds a token. In such cases the analyzer must determine all the pos
sible sets of transition which can be fired simultaneously. Zuberek calls these sets selectors.

The probability associated with each selector is the product of the probabilities of the free-
choice transitions in each selector.

Figure 3a shows a free-choice Timed Petri Net. Each transition t has a firing time t^.
Figure 3b shows the Timed Reachability Graph while figure 3c shows the description of each
state, including the current marking and the remaining firing times of the transitions. For a
comparison, figure 3d shows the standard reachability graph of theun-timed Petri Net. While
the timed version contains more states in this example, this is not always the case. In the ex
ample in figure 3, probabilities assigned to transitions and t^ are used to determine the pro
babilities associated with each edge out of states 1 and 7 in the timed reachability graph.
These probabilities, combined with using time delays as edge weights, can be used to calculate
cycle times and to derive resource utilizationmeasures.

Figure 3a. Example of free-choice net



Figure 3b. Timed Reachability Graph

State Marking RFT

P\ Pi Pi P* 'i '2 '3 u

1 10 0 1 0 0 0 0

2 0 0 0 0 110 0

3 0 0 0 0 0 13 0

4 0 110 0 0 0 0

5 0 0 0 0 0 0 0 2

6 0 0 10 0 0 2 0

7 10 10 0 0 0 0

8 0 0 10 0 0 3 0

9 0 0 10 10 0 0

Figure Sc. Descriptions of Reachable States

The work discussed above deals with deterministic times associated with transitions.

Molloy [Molloy M. 81] has shown that by assuming exponential distributions of delays, Mar
kov Chain analysis can be used to obtain performance measures. The analysis requires that
the un-timed reachability graph be constructed. While this work is particularly well suitedfor
modeling systems at a high level of abstraction, it cannot handle fixed timing constraints.
Molloy's analysis is based on constructing the un-timed reachability graph and is therefore dif
ficult to use when the graph is large or infinite. In the case of infinite graphs (such as those
resulting from models of timeouts), the Petri Net model must be artificially altered to guaran
tee the reachability graph is finite.



Figure3d. Un-Timed Reachability Graph

Section 2 of the paper presents a version ofTimed Petri-Nets which combines Merlin's
Min/Max times with Zuberek's transition delays. Zuberek's restriction regarding free-choice
nets is relaxed using the concept of conflict sets. Section 3 then shows how Zuberek's Timed
Reachability Graph can be constructed using the more general model. A procedure for
analyzing the graph is then used to deriveperformance measures.

2. Yet another version of Timed Petrl Nets

Our version of Timed Petri Nets relies on two concepts: 1) enabling times and firing
times, and 2) conflict sets

2.1 Enabling times and flring times

Each transition in the net must remain enabled for a time period f, (its enabling time)
before it can fire. A transition is then said to hefirable, and immediately begins firing by ab
sorbing tokens from its input places. The transition continues to fire for a period tj (its firing
time). The transition then finishes firing and places tokens on its output places. Enabling
times are exactly Merlin's Min times. Firing times are exactly Zuberek's transition delays.
Combining the two solves several problems:

1. Timeouts can be modeled elegantly. A timeout transition is one with a non-zero ena
bling time. Although the transition is enabled, it cannot fire. The counting of ena
bling time starts from the point when a transition first becomes enabled. For the sake
of simplicity, we assume that the transition cannot be enabled a second time. This res
triction can be achieved by requiring the net to be safe (no place can ever hold more
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than one token).

Transitions cannot be dissabled after they start firing. In our opinion, this is a more ac

curate model of timing delays. In Merlin's definition of time, a transition can be dis
abled at any time during its period of activity. Merlin's approach has the advantage of
modeling ranges of time delays. However, our model can also be extended to describe
ranges of delays while retaining the assumption that transitions cannot be terminated
once they start firing. For the purpose of this paper, we assume fixed delays to simpli
fy the analysis.

r = timeout

Figure 4. Model of Timeout

Figure 4 shows an example of using enabling times to model timeouts. Transition t^
models a transmitter sending a message (place P^„,) and waiting for an acknowledgment
(place Transition t^ has an enable time equal to the timeout period, while transition t^
has a zero enabling time. As soon as an acknowledgment is received (place P,^t), the token is
removed from place P^^„, thereby disabling the timeout. The issue of which transition fires if
the acknowledgment arrives exactly when the enable time has elapsed, is discussed in section
3.

2.2 Conflict Sets

Zuberek's analysis was restricted to free-choice nets in order to simplify the derivation
of branching probabilities associated with edges in the reachability graph. By limiting the
analysis to free-choice nets, every node in the reachability graph with more than one outgoing
arc (decision vertex) corresponds to one or more free-choice place. If only one free-choice
place is involved in the decision, then the probabilities assigned to its output transitions can be



used directly to label the edges of the graph. There isnever any concern that an output transi
tion of a free-choice place may not be enabled. Before we canrelax the free-choice restriction
to allow for modeling of communication protocols, a method must be defined to derive the
branching probabilities.

In this work, we partially relax the free-choice restriction. We allow places other than
the decision place, to be involved in the firing of a decision transition. We retain the restric
tion that all conflicting transitions must be mutually disabling, e.g. firing one is guaranteed to
disable all the others. This restriction cannot be easily formulated as a restriction on the struc
ture of the net. Whether a net meets this condition or not must be determined during the
analysis. It should be noted that free-choice places and their output transitions always meet
the above condition.

We refer to each set of potentially conflicting transitions as a conflict set. More for
mally, every transition belongs to exactly one conflict set C such that:

C = {rJ 7np(r^)n/np(rp^0}, where Inp(t) is thi set of input places of transition t

The above definition implies that conflict sets cannot overlap. With each transition in
a conflict set, the user mustdefine a relative firing frequency/. A firing frequency of zero in
dicates that other transitions, if firable, always have priority. When a decision vertex is
reached in constructing the TRG, the probability of firing a firable transition r,, belonging to a
conflict set C, is calculated as follows:

fi

2 ft
J\tj i C flrablt

If only one transition is firable, then the probability of firing it is 1, regardless of firing
frequency. If all the transitions in a conflict setare firable, then thefiring frequencies are the
branching probabilities.

Conflict sets are illustrated in figure 5. The conflict set {r^: 0.8, tji 0.1, 0.1} indi
cates that when all transitions are firable, should fire 8 times as frequently as r, or ty If, in
some state, f, is not firable but and r, are, the ratio remains constant, yielding a probability
of 0.888 that will fire.
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t 1 '2 '3

Figure 5. Example of Conflicting Transitions

3. Performance Analysis Using Timed Reachability Graphs

In order to derive performance measures, timed reachability graphs must be built and
analyzed. In the next two sections we discuss how Zuberek's Timed Reachability Graphs
(TRG) can be extended to include enabling times, and how they can be systematically
analyzed to derive performance measures.

3.1 Timed Reachability Graph

In order to incorporate enabling times into TRG's, we must add an additional state
component. A state must now include a vector of remaining enable times (RET). As soon as a
transition becomes enabled, the corresponding RET must be set to the transition's enable time

(r^). In calculating successor states it is no longer sufficient to determine enabled transitions.
In order to fire, a transition must be ftrable. A transition is firable if, and only if, it is en
abled and its RET is zero. If an enabled transition is disabled by the firing of another transi

tion, its RET must be reset to zero. If no transitions are firable, both the RET's and RFT's
must be decremented until an enabled transition becomes firable and/or a transition finishes

firing. Figure 6 shows a more detailed procedure for constructing the Timed Reachability
Graph. This procedure is illustrated in the example below.

Figure 7 shows a portion of a safe Timed Petri Net. Place PI is a free-choice place and
enables transitions and t^. The resulting conflict set is {t3: 0.1, f^: 0.9}. Place P2 is not a
free-choice place and can enable transitions t^ and t^. Transition actually models a timeout.
The resulting a conflict set is 0, t^: 1}. By associating a zero probability with t^ we ensure
that if, at some point, both transitions are firable, that fj has priority over f^. If, however, t^
alone is firable, then it will fire. Since t^ is the only timeout transition, the enable times for
transitions fj - fj are zero. We assume that the firing times for t^ -1^ are < 1,2,2,4,4>.

Starting from the marking shown in figure 7, the initial state of the TRG is
Sg = {marking = <1,1,0,0,0,1,0>, RET = <2,0,0,0,0>, RFT = <0,0,0,0,0> }

At this point, transitions t^, fj, t^ and tj are enabled, but only transitions r,, and r, are fir-

10



Given State S

Let F be the set offirable transitions
ifF'0

Let Tmin • smallest non-zero RET or RFT inS
Generate state S' from S by subtracting Tmin from all

non-zero RET and RFT in S
For all transitions whose RFT > 0 in S and RFT • OinS'

add tokens to output placescft^
For all transitions t. which become enabled in S'

set RET pft,lot inS'
JAssign Tmin as the time delay for the edge between S andS'

Else

Partition F intofirable conflict sets
Let the set erf selectorsSel " crossproductqffirable conflict sets
Calculate theprobability of using eachselectors in Sel
For every selector s in Sel

generate a successor state S' from S
Remove tokensfrom input places of transitions in s.
Set the RFT of each transition in s.
For every transition which becomes disabled, in S' reset its RETto 0.
Assign a zero time delay to the edgefrom S to S'

endif

Figure 6. Procedure for generating TRG

©

© © ©

Figure 7. Example Petri Net

able. We partition these firable transitions intofirable conflict sets : {fj, r^}, {tj}. These fir-
able conflict sets indicate that t^ and t^ cannot both fire since firing one disables the other.
The cross product of these two sets yields the set ofselectors to be used inconstructing succes
sor states.

Sel= {<f3, r5>,<r4. t5>}

The probabilities associated with the two selectors are 0.1 and 0.9 respectively. Selector <t^.

11



r,> yields the successor state
{ marking = <0,1,0,0,0,0,0>, RET = <2,0,0,0,0>, RFT = <0,0,2,0,4> }

Selector yields the successor state

Sj = {marking = <0,1,0,0,0,0,0>, RET = <2,0,0,0,0>, RFT = <0,0,0,4,4> }

Since there are no other firable transitions, successors of S^ and 5, are obtained by de
crementing the RET and RFT vectors by 2. In state the result is that terminates, and
that both and fj become firable (but will fire with probability 1). In stateSj, the result is
that r, becomes firable, and that both and r, continue firing.

The above procedure is easy to automate and is the basis of an analysis tools currently
beingdeveloped. The procedure will also be used as the basis for a TPN simulator.

3.2 Analysis of Timed Reachability Graphs

Zuberek's work demonstrated a method of analyzing Timed Reachability Graphs

which yields useful resource utilization measures. If an assumption is made that each transi
tion in the net corresponds to some activity of interest, or requires the use of some resource,
then resource utilization measures can be obtained by calculating the fraction of the total time

that at least one transition of interest is firing. In [Zuberek W. 80], Zuberek presented two

examples of reachability graphs derived from nets that model simplified computer architec
tures. The graphs were used to calculate average instruction times and average memory unit
utilization. The method Zuberek presented can be applied directly to the more general Timed
Reachability Graph presented above. Since Zuberek did not present a general procedure for.
deriving the utilization measures, such a procedure is discussed below. The algorithm is
shown in figure 8. In the discussion, we assume that the system to be analyzed is well
behaved. The issues of incorrect behavior (e.g. deadlocks) are beyond the scope of this paper.

Construct the decision graph from the reachability graph

Since we are considering only cyclic nets, every vertex in a reachability graph has ei
ther one edge leading from it or more than one edge leading from it. Vertices that fall into
the latter category are refered to as decision vertices. Each edge leading away from a decision
vertex defines a single path to another decision vertex. That is, if we traverse an edge e from
a decision vertex, and continue traversing edges until the next decision vertex is reached, we
have ho choice as to which edges are traversed. The idea of a decision graph is that all the in
termediate vertices between the decision vertices are ignored, and the edges between decision

vertices are coalesced into one edge.

12



Construct the decision graph and calculate for
each edge in the graph a resource busy time

Compute relative edge traversal frequencies r^for each edge.
Obtain weighted time " ''j •
Compute the fraction the total time spent on each edge.

Pi =

•II)

Compute fraction of total time during which resource is used.

resource utilization = 2 Pfit

ell I

Figure 8. Algorithm for analyzing TRG.

More precisely, to construct a decision graph, start with a set of vertices {D^,D^,...Dj
which are in one-to-one correspondence with the set of decision vertices in the
reachability graph. Each R, has a set leading away from it. For every

for every R,, follow edges leading away from R^, starting with until another decision
vertex Rj is reached (Possibly i = j). Add an edge (D,, Dj) to the decision graph, and assign a
time equal to the sum of the times of the edges traversed, and a probability equal to the pro
bability of These quantities will be called t^ andpr,, respectively. Since paths between de
cision vertices may converge, a more efficient implementation would be to traverse edges in
reverse order, summing times along the way, and recursively computing new paths when con
vergence points are encountered. This would save the cost of traversing the common edges
and summing their times more than once.

Another quantity necessary to measure performance is the proportion of time on each
edge of the decision graph during which a particular resource is used, or an activity of interest
occurs (i.e. the fraction of time during which at least one of a set of designated transitions is
firing). The fraction for edge e, will be called i, (for busy). These values can be obtained by
marking edges on the TRG during which the resource is used, and then computing the h/s as
the decision graph is constructed.

Since we are interested in cyclic processes, every vertex in the decision graph should be
reachable from every other vertex; i.e., the vertices should form a knot. Possible anomalies
include vertices that are not part of a knot, and more than one knot. If an anomaly exits, it
indicates either an error in the net, or that the behavior of the process being modeled is not
appropriate for this technique. We shall not discuss methods of detecting whether or not a
single knot which includes every vertex in the graph exists. It should be noted that if there is
no anomaly, then the method described for constructing the decision graph automatically

13



disregards vertices in the reachability graph that correspond to initial start-up states.

Below is a summary of the notation introduced in this section. All values are associat

ed with the decision graph.

time to traverse edge

pr^\ probability for edge e^
b^: fraction of time on edge that resource

is used

Compute relative edge traversal frequencies

In order to compute resource utilization we must find out the fraction of the total time
during which the resource is being utilized. To do this, we must find out the fraction of time
spent traversing each edge of the decision graph, if we traverse edges endlessly. Since a deci
sion as to which edge to choose has no relation to the time delays, we first calculate relative
edge traversals frequencies. The relative number of edge traversals is related to the branching
probabilities. Given a decision vertex i, the relative number of traversals of a particular out
going edge is a fraction of the total number of times the incoming edges are traversed.

These relationships can be described as a set of equations, one for each edge. The
equations can be constructed as follows:

For each edge do
Set up equations r=pr^ 2 0

J € /(O

where I(i) = {j 1 can be traversed immediately after e^}.

Compute fraction of time spent on each edge

Given the relative number of edge traversals we can compute the relative amount of

time spent traversing each edge: = r^t^. To derive the fraction of time p^ spent traversing
each edge e^:

For all i do

Pi = 1
^Wj

*11 i

14
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Compnte the nnal result

Given the fraction of time spent traversing each edge, we can derive resource utiliza

tion measures as follows:

final result = 2 2

mU I

4. Analysis of Performance of Communication Protocol

In this section we demonstrate the modeling approach and the analysis technique using

a simple communication protocol. The protocol in question is modeled in figure 9. The

sender sends a packet (transition t^) and waits for an acknowledgement. A timeout (transition

fj) is used to recover from lost packets. The receiver waits for a message and sends an ack

nowledgement immediately (transition t^). The medium can lose packets (transition and

acknowledgements (transition r,). In its design, this protocol assumes that timeouts are only

triggered if the packet or its acknowledgement have been lost. We assume that the receiver

can detect a duplicate message, but that the sender cannot detect a duplicate acknowledge

ment. This is a trivial protocol, which can be easily extended to be more robust by using alter

nating bits for message and acknowledgement sequencing. For the sake of brevity, we have

opted for the simpler, less robust, protocol.

Our objective in the performance analysis is to calculate the utilization of the sending

channel and the effective throughput of the protocol. We assume the transmission medium

loses 5% of transmitted packets and acknowledgements. In order to validate the analysis tech

niques, we have chosen values for delays which are consistent with those chosen by Molloy in

[Molloy M. 81]. We are therefore assuming a 9600 baud link, transmitting 1024-bit packets.

We assume that acknowledgment packets are also 1024 bits long. In order to calculate peak

throughput, we assume that packets are made available for transmission as soon as the previ

ous packets was successfully sent. We only introduce a minor delay to model overhead (1 mil

lisecond). We assume a 1 second timeout and a 13.5 millisecond delay for processing of a re

ceived message or acknowledgment. Figure 10 shows how the above measures translate into

enabling and firing times of the transition in the net.

15
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Figure 9. Model of Simple Protocol

Transition Enable Time
(milliseconds)

Firing Time
(millisecondsj^

0 1

0 1

u 1000 1

0 106.7

0 106.7

0 13.5

0 13.5

0 106.7

0 106.7

Figure 10. Enabling and Firing Times

The net contains 3 conflict sets containing more than one transition: {f^r 0.05, 0.95},

{rji 0, f,: 1}, and {fgi 0.95, f,: 0.05}.

The Timed Reachability Graph for this net, starting from the initial marking <

P,>, is shown in figure 11. The description of each state is shown in figure 12. The Deci-
o

sion Graph is shown in figure 13. The values for the h/s are derived by calculating the frac

tion of each edge during which either transition or f, are firing. From the Decision Graph,

we can derive the following equations for the relative number of edge traversals:
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Figure 13. Decision Graph

pr^-.95
t,- 122.2
\-0

fi = -OSC Tj + rJ , Tj = .95( r, )

= .95( r, + = .05( )

We then solve for the r's by setting to 1. The resulting values are:

= 1, = 19, = 20, = 1. Using equation 1, we calculate the fraction of time spent on

each edge to be:

Pi =

P5 =

1002 2322
—.152 , P2 — — -351

6610 6610

2404 882
= .364 , Pj = = .133

6610 6610

Using equation 2 we calculate the utilization of the medium to be .339.

In order to calculate the effective throughput of the protocol we note that one the aver

age it takes 6.610 seconds (the total time in the graph) to transmit 19 messages (traverse edge

#2 ^2 times). The throughput is therefore 2.87 messages per second. This compares to the
maximum throughput of 2.75 messages per second calculated by Molloy [Molloy M. 81].
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Conclusions

This paper has presented a new extension of the basic Petri Net model. The introduc
tion of enabling times and firing times allows designers to accurately model timeouts and pro
cessing delays. Limitations previously placed on an analysis technique have been relaxed
thereby allowing interesting models of communication protocols to be constructed. Algo
rithms for constructing and analyzing timed reachability graphs were presented. The algo

rithms can be easily automated and are expected to be useful in simulating as well as analyz

ing systems modeled by TimedPetri Nets.

Some restriction on the Petri Net models remain. We have assumed that nets are safe.

We conjecture that this restriction can be relaxed. Methods for calculating branching proba
bilities and for calculating enable times for unsafe nets are currently being investigated. We
are also currently investigating the relationship between verifying the correctness of protocols
and evaluating their performance.
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