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ARTICLE OPEN

Evaluation of an artificial intelligence-based medical device for
diagnosis of autism spectrum disorder
Jonathan T. Megerian1,2, Sangeeta Dey3,4, Raun D. Melmed5, Daniel L. Coury6,7, Marc Lerner1,2, Christopher J. Nicholls8,9,
Kristin Sohl 10, Rambod Rouhbakhsh11,12, Anandhi Narasimhan13, Jonathan Romain1,2, Sailaja Golla14, Safiullah Shareef15,
Andrey Ostrovsky 16,17, Jennifer Shannon18, Colleen Kraft18, Stuart Liu-Mayo18, Halim Abbas 18, Diana E. Gal-Szabo18,
Dennis P. Wall18,19 and Sharief Taraman 1,2,18,20✉

Autism spectrum disorder (ASD) can be reliably diagnosed at 18 months, yet significant diagnostic delays persist in the United
States. This double-blinded, multi-site, prospective, active comparator cohort study tested the accuracy of an artificial intelligence-
based Software as a Medical Device designed to aid primary care healthcare providers (HCPs) in diagnosing ASD. The Device
combines behavioral features from three distinct inputs (a caregiver questionnaire, analysis of two short home videos, and an HCP
questionnaire) in a gradient boosted decision tree machine learning algorithm to produce either an ASD positive, ASD negative, or
indeterminate output. This study compared Device outputs to diagnostic agreement by two or more independent specialists in a
cohort of 18–72-month-olds with developmental delay concerns (425 study completers, 36% female, 29% ASD prevalence). Device
output PPV for all study completers was 80.8% (95% confidence intervals (CI), 70.3%–88.8%) and NPV was 98.3% (90.6%–100%). For
the 31.8% of participants who received a determinate output (ASD positive or negative) Device sensitivity was 98.4% (91.6%–100%)
and specificity was 78.9% (67.6%–87.7%). The Device’s indeterminate output acts as a risk control measure when inputs are
insufficiently granular to make a determinate recommendation with confidence. If this risk control measure were removed, the
sensitivity for all study completers would fall to 51.6% (63/122) (95% CI 42.4%, 60.8%), and specificity would fall to 18.5% (56/303)
(95% CI 14.3%, 23.3%). Among participants for whom the Device abstained from providing a result, specialists identified that 91%
had one or more complex neurodevelopmental disorders. No significant differences in Device performance were found across
participants’ sex, race/ethnicity, income, or education level. For nearly a third of this primary care sample, the Device enabled timely
diagnostic evaluation with a high degree of accuracy. The Device shows promise to significantly increase the number of children
able to be diagnosed with ASD in a primary care setting, potentially facilitating earlier intervention and more efficient use of
specialist resources.

npj Digital Medicine            (2022) 5:57 ; https://doi.org/10.1038/s41746-022-00598-6

INTRODUCTION
Autism spectrum disorder (ASD) is one of the most common
developmental disorders, with a US prevalence of 1.9%1. The
importance of timely ASD diagnosis, possible as early as
18 months, is underscored by studies linking earlier intervention
during the critical neurodevelopmental window to enhanced
long-term outcomes. These include greater improvements in
social and communication skills2,3, cognitive abilities4,5, verbal
abilities3,6, and adaptive behavior7,8. Despite documented benefits
of early intervention, the mean age of ASD diagnosis in the US
remains high at over 4 years1,9–11. The estimated three-year delay
between initial caregiver concern and an ASD diagnosis is even
longer for children who are non-white, female, of lower socio-
economic status, or rural residing12–15. Roughly 27% of children
with ASD remain undiagnosed at age 815.
One factor contributing to diagnostic delay is the rapid increase

in demand for ASD evaluations that has outpaced specialist

capacity and led to prolonged wait times16–19. Gender, race, and
socioeconomic biases in access and diagnosis have also created
additional delays for certain subpopulations1,14. ASD diagnostic
practices in the US are currently fragmented and heavily reliant on
a limited number of pediatric subspecialists and team-based
behavioral evaluations20. These assessments are time-intensive,
and families may wait as long as 18 months between initial
screening by their healthcare provider (HCP) in the primary care
setting and final diagnosis by the specialist16.
Low levels of ASD diagnosis in primary care settings present

another barrier to timely ASD diagnosis and initiation of
interventions. Currently, only ~1% of patients with ASD are
diagnosed by primary care HCPs in the US21,22. The American
Academy of Pediatrics (AAP) recommends that upon a failed ASD
screen in primary care, providers comfortable with the Diagnostic
and Statistical Manual of Mental Disorders, 5th edition (DSM-5)
criteria diagnose ASD or refer to a specialist for further
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evaluation18. Yet, ~60% of children who fail screenings are neither
referred to a specialist nor diagnosed in the primary care setting22.
Common barriers to primary care diagnosis include low con-
fidence in using ASD diagnostic tools due to lack of specialist
training and/or lack of time to administer, lack of perceived self-
efficacy in making the diagnosis, and lack of time to properly
review results with caregivers and discuss treatment recommen-
dations23–25. In addition, common screening tools used in primary
care settings may miss many cases of ASD. For example, in a
cohort of over 20,000 children with ASD outcome data, 61% (278/
454) of children who received an outcome diagnosis of ASD
screened negative on a common screener26.
The complexity of making an accurate ASD diagnostic

determination may also add to primary care HCP reluctance to
diagnose. ASD has varied clinical presentations and heteroge-
neous etiology20. Additionally, ASD can co-occur with and/or share
many overlapping features of other disorders diagnosed in
childhood such as attention deficit hyperactivity disorder (ADHD),
intellectual disability, speech and language delay, or a variety of
psychiatric conditions27. Providers are also tasked with making an
assessment within a time-constrained clinical encounter where
the child may not display behavior characteristic of that seen in
the home environment or may become newly behaviorally
reactive due to change in environment28. These complexities
underscore the importance of tailored diagnostic aids to support
primary care HCPs in making timely and accurate diagnoses when
the diagnosis is straightforward, and to advise further evaluation
when the presentation is complex or unclear. However, prior to 2
June 2021, no diagnostic devices had market authorization from
the Food and Drug Administration (FDA) to aid in the diagnosis of
ASD in the primary care setting29.
Existing ASD diagnostic tools20,30,31 are used almost exclusively

in specialty care settings in the US. Several of these tools, especially
when used in combination, have shown good diagnostic
accuracy20 and consistent performance across trained exami-
ners32,33. However, specialized training requirements, the time
needed to administer, and insufficient reimbursement rates to
justify primary care HCP effort34 make them challenging for use in
primary care settings. Overdiagnosis can also occur in populations
with a lower prevalence of ASD, as is the case in primary care35.
Reliability may also be reduced if an ASD diagnostic tool intended
for combination use is instead used as a stand-alone instrument by
time-pressured clinicians35. In addition, many of these tools were
not designed for remote administration. Geographic and logistical
hurdles to finding a trained healthcare professional and appro-
priate clinical setting may contribute to an imbalance in coverage
for some populations15.
In order to increase primary care HCP's capacity to promptly

diagnose ASD and/or refer complex cases for specialist review,
innovative diagnostic aids suitable for use in the primary care
setting are urgently needed. Recent research has highlighted the
potential for artificial intelligence-based tools to augment various
aspects of ASD care36. The objective of this study was to test the
accuracy of one such tool, an artificial intelligence-based Device
that produces recommendations for the HCP after analyzing
behavioral features from three distinct inputs: a caregiver
questionnaire, an analysis of two short home videos, and an
HCP questionnaire.
The Device is a Software as a Medical Device (SaMD)37 that

deploys a gradient boosted decision tree algorithm. The algorithm
uses behavioral features selected through machine-learning
techniques as maximally predictive of ASD across a variety of
phenotypic presentations38–43. The device’s underlying machine
learning algorithm was initially developed using patient record
data from thousands of children with diverse conditions,
presentations, and comorbidities who were either diagnosed with
ASD or confirmed not to have ASD based on standardized
diagnostic tools and representing both genders across the

supported age range. The algorithm was iteratively improved,
supplemented with ASD-expert input, and prospectively validated
for 7 years prior to this study38–43. Use of multimodular Device
inputs is consistent with current guidelines and recommendations
for an evaluation of ASD that include having both caregiver and
clinician input, as well as a structured observation of the child44.
Previously published analysis of earlier algorithm iterations
demonstrated that combining inputs significantly improved the
performance of the algorithm38.
The Device reports that a subject is positive for ASD, negative for

ASD, or “indeterminate” (Fig 1). An indeterminate output is given
when Device inputs are insufficiently granular for the algorithm to
render a highly predictive output. For example, a patient may
exhibit an insufficient number and/or severity of features to be
confidently classified by the algorithm as being either ASD
negative or ASD positive. The Device’s indeterminate output also
referred to in the literature as an “abstention” or “no result” output,
is a standard method of risk control in machine-learning
algorithms45,46. We worked in conjunction with the FDA to
establish minimum thresholds for PPV and NPV, which were the
primary endpoints for this pivotal study. Once established, we used
these values (PPV greater than 65% and NPV greater than 85%) as
the boundaries to govern the model’s range of acceptable
outcomes during model hyperparameter tuning. We tuned on
training/testing data to evaluate combinations of PPV and NPV at
or above the FDA thresholds with variable abstention rates. We
used cross-validation to maintain the PPV and NPV minimums and
to arrive at the current Device abstention thresholds. Abstention in
cases of high clinical uncertainty provides a safeguard against
known machine-learning failure modes, fosters clinician trust
through model transparency, and helps flag cases where additional
human expertise or data may be needed46. In the primary care
setting, and specifically in relation to neurodevelopmental

Fig. 1 Graphical representation of the Device and its major
components. a Caregiver uses a smartphone to answer a brief
questionnaire in approximately 5 min, b Caregiver uploads two
short (1 min, 30 s up to 5min) home videos of their child to be
scored by trained video analysts, and c their primary care physician
(or other qualified healthcare provider) independently answers a
short clinical question set in approximately 10min. These inputs are
securely transmitted to the d trained analysts where video features
are extracted in approximately 11 min. e The caregiver, healthcare
provider, and video analyst inputs are combined into a mathema-
tical vector for machine-learning analysis and classification. f The
Device provides an “ASD positive” or “ASD negative” or “no result
(indeterminate)” output. The indeterminate output indicates infor-
mation was insufficiently granular to make a determination at
that time.
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disorders and ASD where symptoms appear on a spectrum and
may co-occur with multiple other phenotypically overlapping
conditions27, ambiguous and complex presentations are expected.
In this double-blinded, active comparator cohort study

conducted across six states, we evaluated the ability of the
Device to aid in the diagnosis of ASD in children aged

18–72-months for whom a caregiver or HCP had a concern for
developmental delay, but were not yet diagnosed. We com-
pared the Device output to the clinical reference standard,
consisting of a diagnosis made by a specialist clinician, based on
DSM-5 criteria and validated by one or more blinded reviewing
specialist clinicians.

RESULTS
Subject enrollment
A total of 711 participants were enrolled and 425 completed the
study between August 2019 and June 2020. Completers and non-
completers were similar in terms of demographics (See Table 1). In
March 2020, when a national state of emergency was declared
in response to COVID-19, a total of 711 participants had enrolled in
the study; 585 participants had completed all Device inputs, and
328 of these participants had also completed the specialist
evaluation. COVID-19 control measures led to changes in study
visit schedules, missed visits, patient discontinuations, and site
closures (9 out of 14 sites). Sites that remained open did so with
reduced availability to see participants. We estimate that
100 specialist clinician visits could not be completed due to
COVID-19. Following the introduction of COVID-19 measures, an
additional 97 specialist evaluations were carried out at the sites
that remained open. In total, 425 participants completed both the
Device input and specialist evaluation component of the study
and were included in the final analysis. Data from participants who
did not complete both study components were not included in
the final analysis. The estimated drop-out rate without the impact
of COVID-19 is 26.2% (Fig. 2).

Baseline characteristics and demographics
Participants. The mean age of all study participants was 3.36
years (SD= 1.19) and of completers was 3.33 years (SD= 1.15).
The mean age of study completers with ASD was 2.96 years (SD=
1.06) and the mean age of completers for whom the Device
rendered an ASD positive result was 2.81 years (SD= 0.94).
Additional participant baseline characteristics and demographics
are presented in Table 1. Among the study completers, specialist
clinicians determined that 61.9% (263/425) had one or more non-
ASD developmental or behavioral conditions, 28.7% (122/425)
were ASD positive, and 9.4% (40/425) were ASD negative and
neurotypical. Table 2 shows all behavioral and developmental
concerns for each completer, as listed by caregivers at study

Table 1. Baseline characteristics and demographics.

Characteristic Among
completers
(N= 425)

Among all
enrolled
(N= 711)

% (n/N) % (n/N)

Age

18 months–2 years 13.2% (56/425) 13.6% (97/711)

2–3 years 30.4% (129/425) 28.7% (204/711)

3–4 years 24.2% (103/425) 24.2% (172/711)

4–5 years 21.2% (90/425) 20.7% (147/711)

5 years 11.1% (47/425) 12.8% (91/711)

Sex

Female 36.2% (154/425) 36.1% (257/711)

Male 63.8% (271/425) 62.9% (447/711)

Unknown 0.0% (0/425) 1.0% (7/711)

Race/ethnicity

American
Indian only

0.0% (0/425) 0.0% (0/711)

Asian only 4.2% (18/425) 4.4% (31/711)

Black only 13.2% (56/425) 11.4% (81/711)

Hawaiian or Pacific
Islander only

0.2% (1/425) 0.4% (3/711)

Hispanic or
Latino only

11.5% (49/425) 10.4% (74/711)

Multiple races and/
or ethnicities
indicated

13.4% (57/425) 13.0% (92/711)

Non-Hispanic
White only

53.9% (229/425) 49.0% (349/711)

Other races
indicated only

1.2% (5/425) 1.0% (7/711)

Unknown 2.4% (10/425) 10.4% (74/711)

Parental level of education

Some high school 3.1% (13/425) 2.3% (16/711)

High school 10.4% (44/425) 8.4% (60/711)

Some college 22.6% (96/425) 20.1% (145/711)

Associate degree 12.5% (53/425) 11.1% (79/711)

Bachelor’s degree 32.0% (136/425) 30.0% (213/711)

Graduate degree 18.4% (78/425) 18.6% (132/711)

Unknown 1.2% (5/425) 9.3% (66/711)

Parental income

<$25,000 8.7% (37/425) 7.5% (53/711)

$25,000–<$50,000 20.0% (85/425) 17.2% (122/711)

$50,000–<$75,000 19.5% (83/425) 17.7% (126/711)

$75,000–<$100,000 18.8% (80/425) 17.4% (124/711)

$100,000–<$150,000 14.6% (62/425) 14.9% (106/711)

≥$150,000 9.4% (40/425) 8.9% (63/711)

Don't know/not
sure/decline to state

8.2% (35/425) 7.6% (54/711)

No record 1.0% (3/425) 8.9% (63/711)

Fig. 2 Participant flowchart. A total of 711 participants enrolled in
the study between August 2019 and June 2020. Of these
participants, 126 dropped out prior to completing all Device inputs.
A further 160 dropped out after completing all Device inputs but
prior to completing the specialist evaluation. In total, 425
participants completed all Device inputs and the specialist evalua-
tion and were counted as study completers.
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commencement, and key comorbidities, as determined by the site
specialist as part of their assessment.

HCPs. The HCPs who completed input 3 (n= 15) were physicians
who completed residency training in either general pediatrics or
family medicine. They worked across a variety of primary care
settings and represented both genders (males 47%). Years in
practice post-residency ranged from 1 to 38 with a mean of 16
years in practice. HCPs were not recruited on the basis of any
special interest or experience of ASD diagnosis, beyond what was
delivered as part of their standard training.

Device output summary
The Device provided a determinate output (ASD positive or
negative) for 31.8% (135/425) of participants. In other words,

approximately 1 in 3 subjects received a determinate result
from the Device. Of the participants who received an ASD
diagnosis by a clinical specialist, 52.5% (64/122) received a
determinate result and all were correctly classified by the
Device with the exception of a single false negative. Among
participants given an ASD negative and neurotypical diagnosis
by a clinical specialist, 35.0% (14/40) received an ASD negative
Device result and none were misclassified as ASD positive. If the
indeterminate safety mechanism were removed, the sensitivity
for all study completers would fall to 51.6% (63/122) (95% CI
42.4%, 60.8%) and specificity would fall to 18.5% (56/303) (95%
CI 14.3%, 23.3%), due in part to the high number of participants
with other neurodevelopmental conditions. Table 3 compares
Device output to clinical reference standard diagnosis for all
study completers.

Table 2. Participant’s clinical profiles- caregiver and specialist reported.

Developmental delay concerns: caregiver reported Participant’s clinical profiles as diagnosed by specialist clinicians

Caregiver concerns Among completers % (n/N) Condition Among completers % (n/N)

Prior developmental evaluation 65.0% (160/245) Language disorder 57.4% (244/425)

Easily frustrated 63.3% (269/425) Global developmental delay 31.1% (132/425)

Short attention span/distractible 53.4% (227/425) Attention deficit hyperactivity disorder (ADHD) 24.9% (106/425)

Sensitive to noises/lights/textures 50.0% (212/425) Phonological disorder 16.0% (68/425)

Impulsive/overactive 48.2% (205/425) Anxiety disorder 8.2% (35/425)

Doesn’t follow directions 45.2% (192/425) Oppositional defiant disorder (ODD) 3.8% (16/425)

Requires a lot of parental attention 44.2% (188/425) Stereotypic movement disorder 3.1% (13/425)

Oppositional/defiant 37.9% (161/425) Mood disorder 1.9% (8/425)

Overreacts when faced with a problem 37.4% (159/425) Separation anxiety disorder 1.6% (7/425)

More interested in things than in people 34.3% (146/425) Intellectual disabilities (ID) 1.4% (6/425)

Poor eye contact 33.0% (140/425) Learning disorder 1.4% (6/425)

Eats or mouths non-food items 32.7% (139/425) Selective mutism 0.9% (4/425)

Aggressive 32.5% (138/425) Other developmental disorder 0.7% (3/425)

Rocking/spinning/hand flapping 29.4% (125/425) Tic disorder 0.5% (2/425)

Is easily overstimulated in play 27.8% (118/425) Schizophrenia 0.2% (1/425)

Destructive 27.1% (115/425)

Need for sameness 27.1% (115/425)

Unable to separate from the parent 25.6% (109/425)

Wetting pants/bed 23.8%(101/425)

Self-injurious (headbangs, bites/hits self ) 23.5% (100/425)

Isolated/withdrawn 21.6% (92/425)

Difficulty making or keeping friends 21.4% (91/425)

Obsessions or compulsions 19.1% (81/425)

Daydreams 18.8% (80/425)

Bowel accidents 17.4% (74/425)

Plays with toys abnormally 15.3% (65/425)

Classroom disruption 15.1% (64/425)

Excessive worry/fears 15.1% (64/425)

Individualized education plan 14.8% (63/425)

Does not show much emotion 8.0% (34/425)

Psychiatric/emotional problems 4.0% (17/425)

Sexualized behavior 4.0% (17/425)

Low self-esteem 3.5% (15/425)

Sad or depressed 3.1% (13/245)

Suicidal thoughts 0. (1/425)

Some participants had multiple caregiver concerns or comorbidities listed thus totals add up to >100%.
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Determinate category analysis
For participants for whom the Device rendered a determinate
output, 18.4% (78/425) were classified ASD positive and 13.4%
(57/425) ASD negative. The Device yielded these ASD positive or
negative results with a PPV of 80.8% (95% CI, 70.3%–88.8%), NPV
of 98.3% (95% CI, 90.6%–100%), sensitivity of 98.4% (95% CI,
91.6%–100%), and specificity of 78.9% (95% CI, 67.6%–87.7%).

Indeterminate category analysis
Specialist diagnosis found 91.0% (264/290) of this group had at
least one neurodevelopmental disorder. Specifically, 71.0% (206/
290) were ASD negative and had at least one other non-ASD
neurodevelopmental or behavioral condition, 20.0% (58/290) were
ASD positive, and the remaining 9.0% (26/290) received no
developmental delay diagnosis.

Covariate analysis
Race and ethnicity covariate analysis was based on non-exclusive
categories. Therefore, participants who reported multiple races or
ethnicities (13.4% of study completers) were included in each race
or ethnicity category they identified. While the study was not
powered for statistical inference on covariates, we detected no
difference in Device performance across participants’ sex, race/
ethnicity, income, or education level as determined by examining
the overlap of corresponding 95% CIs (see Table 4). The Device
provided a higher determinate rate for participants under 3 years
old (39%) compared to participants 3 years and over (26%; p=
0.006) and higher specificity for participants 3 years and over
(88%) compared to participants under 3 years old (67%; p= 0.03).
Severity scores for both the “social communication” and the

“restricted and repetitive behavior” categories for all children who
received a positive ASD reference diagnosis were recorded by
diagnosing specialists per the DSM-5 criteria (Level 3: “Requiring
very substantial support”; Level 2: “Requiring substantial support”;
Level 1: “Requiring support”). We break these scores down by
Device output (positive, indeterminate, negative) in Table 5.
Table 6 shows the frequency of key comorbidities across Device

outputs.

In-person vs remote HCP questionnaire assessment
Of the study completers, 366 (86.1%) of the HCP assessments
(Device input 3) were completed via an in-person visit, while 59
(13.9%) were completed via a remote visit. No evidence of
performance degradation was found when assessments were
performed remotely.

Time associated with Device use
Completion of input 1 (the caregiver questionnaire) took a median
time of 4 min and 56 s. Input 2, completion of video analyst
scoring, took a median time of 10min and 54 s from the time
video review began to submission of scores. Input 3 time is self-
reported since the HCPs completed a hardcopy of the

questionnaire that was only later uploaded to the portal.
Qualitatively, HCPs involved in the study reported it took roughly
10min to complete input 3. Upon completion of inputs, results
were immediately produced (Fig 1).

Diagnostic certainty—agreement amongst clinicians
A diagnosing specialist clinician completed the patient assessment.
The patient's case was then independently assessed by a reviewing
specialist clinician. If these two specialists disagreed about the ASD
diagnosis, then the case was referred to a second reviewing
specialist. The first reviewing specialist agreed with the diagnosing
specialist 79% of the time. The remaining 21% of subjects required
a review by a second independent specialist clinician, of which
43% of the time, they agreed with the diagnosing specialist, and
57% of the time, they agreed with the first reviewing specialist. Of
the 425 study completers, the diagnosing specialist was either
“somewhat” or “completely certain” of the diagnosis 95% of the
time. The diagnosing specialist clinician was “completely certain”
67% of the time when diagnosing ASD, 74% of the time when
ruling out ASD and suspecting another non-ASD condition, and
95% of the time when ruling out ASD and when the subject was
neurotypical (without ASD or other non-ASD condition suspected).
In subjects with ASD, when the Device was positive for ASD, the
diagnosing specialist clinician was “completely certain” of the
diagnosis 71% (95% CI 59–82%) of the time. In subjects with ASD,
when the Device abstained from rendering a diagnostic output,
the diagnosing specialist clinician was “completely certain” 64%
(95% CI 50%–76%) of the time. A test of the significance of the
difference between those two proportions returns a p value of 0.40.

DISCUSSION
The Device evaluated in this study was designed to aid HCPs to
diagnose ASD in 18–72-month-olds flagged by clinicians or
caregivers as having a potential developmental delay. The
Device’s user-friendly inputs, timely result provision, and indeter-
minate output were all designed to maximize its utility, safety, and
trustworthiness in the primary care setting. Compared to
assessment tools currently available in specialty settings20,30,31,
the Device tested in this study requires less time to administer and
less specialty training. It also captures video data that provides
rich insight into the child’s natural behavior outside of the clinic
setting. Of note, as a mobile system, the Device is amenable to
administration via telemedicine, making it adaptable for use in
remote and rural settings as well as during public health
emergencies such as the current COVID-19 pandemic.
For nearly a third of this primary care study sample, the Device

supported efficient and highly accurate diagnostic evaluations in
conjunction with clinical judgment. This is significant since, currently,
only ~1% of children with ASD in the US are diagnosed in primary
care21,22. Of the children for whom the Device made a determinate
diagnostic evaluation, 98.4% with ASD received an ASD positive
Device result and 78.9% without ASD received an ASD negative
Device result. Moreover, 80.8% of children who received an ASD

Table 3. Confusion matrix showing Device output compared to clinical reference standard diagnosis.

Device output Clinical reference standard output

ASD positive ASD negative, other non-ASD
neurodevelopmental condition

ASD negative and
neurotypical

Total

ASD positive 63 (14.82%) 15 (3.53%) − 78 (18.35%)

Indeterminate 58 (13.65%) 206 (48.47%) 26 (6.12%) 290 (68.24%)

ASD negative 1 (0.24%) 42 (9.88%) 14 (3.29%) 57 (13.41%)

Total 122 (28.71%) 263 (61.88%) 40 (9.41%) 425 (100.00%)

J.T. Megerian et al.

5

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2022)    57 



Table 4. Device performance metrics by covariate.

Covariate n PPV %(n/N) NPV %(n/N) Indeterminate rate %(n/N) Sensitivity %(n/N) Specificity %(n/N)

(95% CI) (95% CI) (95% CI) (95% CI) (95% CI)

Age

18 months–3 years 185 80% (41/51) 95% (20/21) 61% (113/185) 98% (41/42) 67% (20/30)

Median age (years): 2.67 (67%, 90%) (76%, 100%) (54%, 68%) (87%, 100%) (47%, 83%)

3–6 years 240 81% (22/27) 100% (36/36) 74% (177/240) 100% (22/22) 88% (36/41)

Median age (years): 4.62 (62%, 94%) (90%, 100%) (68%, 79%) (85%, 100%) (74%, 96%)

Sex

Female 154 60% (12/20) 96% (24/25) 71% (109/154) 92% (12/13) 75% (24/32)

(36%, 81%) (80%, 100%) (61%, 78%) (64%, 100%) (57%, 89%)

Male 271 88% (51/58) 100% (32/32) 67% (181/271) 100% (51/51) 82% (32/39)

(77%, 95%) (89%, 100%) (61%, 72%) (93%, 100%) (66%, 92%)

Race/ethnicity

American Indian 4 100% (1/1) − 75% (3/4) 100% (1/1) −

(3%, 100%) (19%, 99%) (3%, 100%)

Asian 27 100% (2/2) 100% (6/6) 70% (19/27) 100% (2/2) 100% (6/6)

(16%, 100%) (54%, 100%) (50%, 86%) (16%, 100%) (54%, 100%)

Black 77 95% (19/20) 100% (7/7) 65% (50/77) 100% (19/19) 88% (7/8)

(75%, 100%) (59%, 100%) (53%, 75%) (82%, 100%) (47%, 100%)

Hawaiian or Pacific Islander 2 − − 100% (2/2) − −

(16%, 100%)

Non-Hispanic White 259 73% (27/37) 97% (37/38) 71% (184/259) 96% (27/28) 79% (37/47)

(56%, 86%) (86%, 100%) (65%, 76%) (82%, 100%) (64%, 89%)

Hispanic or Latino (any race) 75 74% (14/19) 100% (10/10) 61% (46/75) 100% (14/14) 67% (10/15)

(49%, 91%) (69%, 100%) (49%, 72%) (77%, 100%) (38%, 88%)

Multiple races and/or ethnicities indicated 57 73% (8/11) 100% (8/8) 67% (38/57) 100% (8/8) 73% (8/11)

(39%, 94%) (63%, 100%) (53%, 79%) (63%, 100%) (39%, 94%)

No race or ethnicity indicated 10 100% (4/4) − 60% (6/10) 100% (4/4) −

(40%, 100%) (26%, 88%) (40%, 100%)

Parental level of education

Some high school 13 100% (3/3) − 77% (10/13) 100% (3/3) −

(29%, 100%) (46%, 95%) (29%, 100%)

High school 44 91% (10/11) 100% (5/5) 64% (28/44) 100% (10/10) 83% (5/6)

(59%, 100%) (48%, 100%) (48%, 78%) (69%, 100%) (36%, 100%)

Some college 96 71% (15/21) 100% (12/12) 66% (63/96) 100% (15/15) 67% (12/18)

(48%, 89%) (74%, 100%) (55%, 75%) (78%, 100%) (41%, 87%)

Associate degree 53 78% (7/9) 100% (6/6) 72% (38/53) 100% (7/7) 75% (6/8)

(40%, 97%) (54%, 100%) (58%, 83%) (59%, 100%) (35%, 97%)

Bachelor’s degree 136 77% (20/26) 94% (16/17) 68% (93/136) 95% (20/21) 73% (16/22)

(56%, 91%) (71%, 100%) (60%, 76%) (76%, 100%) (50%, 89%)

Graduate degree 78 100% (7/7) 100% (16/16) 71% (55/78) 100% (7/7) 100% (16/16)

(59%, 100%) (79%, 100%) (59%, 80%) (59%, 100%) (79%, 100%)

Parental income

<$25,000 37 92% (11/12) 100% (2/2) 62% (23/37) 100% (11/11) 67% (2/3)

(62%, 100%) (16%, 100%) (45%, 78%) (72%, 100%) (9%, 99%)

$25,000–<$50,000 85 81% (13/16) 100% (10/10) 69% (59/85) 100% (13/13) 77% (10/13)

(54%, 96%) (69%, 100%) (58%, 79%) (75%, 100%) (46%, 95%)

$50,000–<$75,000 83 89% (8/9) 91% (10/11) 76% (63/83) 89% (8/9) 91% (10/11)

(52%, 100%) (59%, 100%) (65%, 85%) (52%, 100%) (59%, 100%)

$75,000–<$100,000 80 71% (12/17) 100% (12/12) 64% (51/80) 100% (12/12) 71% (12/17)

(44%, 90%) (74%, 100%) (52%, 74%) (74%, 100%) (44%, 90%)

$100,000–<$150,000 62 70% (7/10) 100% (13/13) 63% (39/62) 100% (7/7) 81% (13/16)

(35%, 93%) (75%, 100%) (50%, 75%) (59%, 100%) (54%, 95%)

>= $150,000 40 67% (2/3) 100% (4/4) 82% (33/40) 100% (2/2) 80% (4/5)

(9%, 99%) (40%, 100%) (67%, 93%) (16%, 100%) (28%, 99%)
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positive Device result were true positives and 98.3% of children with
an ASD negative Device result were true negatives. None of the 15
children who received a false-positive Device result were clinically
assessed as being neurotypical (without ASD or other non-ASD
conditions suspected) and all had a non-ASD developmental-
behavioral pediatric condition that could potentially benefit from
similar early interventions as ASD. A third of these false-positive cases
had one specialist clinician determine that they met diagnostic criteria
for ASD. The Device was designed to minimize false negatives to

safeguard against missing a diagnosis of ASD, which could have
profound consequences such as delayed treatment initiation. There
was only a single false negative in this study.
The results of this double-blind active comparator study are

promising for future clinical practice and timely in light of the
most recent AAP clinical report that advocates for the develop-
ment of tools to aid in the diagnosis of ASD18. Replication and
follow-on work are needed, but study results support the potential
of the Device to enable a larger portion of children to be
diagnosed in a primary care setting than is currently occurring22.
The Device also has the potential to reduce the mean age of
diagnosis and time to diagnosis for a subset of children. For
example, the mean age of completers for whom the Device
rendered an ASD positive result was 2.81 years, which is 1.5 years
earlier than the current average age of diagnosis1,9,10. Time
burden associated with Device use was also considerably lower
than that of existing assessment tools, making it potentially more
practical to deploy in time-pressured primary care environments.
The finding of Device performance consistency across sex, race/

ethnicity, income, and parental education level is also encoura-
ging, providing preliminary evidence for the Device’s potential to
address some well-known ASD diagnostic disparities. When the
Device provided a result, for example, it correctly identified 92.3%
of girls with ASD. This finding is important given that gender and
racial/ethnic biases exist in the current standard of care, such that
females, African American, and Hispanic children are less often
diagnosed, misdiagnosed more often, and when diagnosed, are
diagnosed later on average47–50. There was also no evidence of
performance degradation when the HCP questionnaire assess-
ments were performed remotely versus in-person. This study
finding is reassuring and speaks to the potential for the Device to
reduce lags in diagnosis for some vulnerable populations. For
example, those who live in rural and remote areas, or low-income
families for whom taking time off work to bring their child to in-
person assessments may prove challenging.
Although the sample population was ethnically and racially

diverse, the study was not powered for statistical inference on
covariates such as comorbidities, gender, race/ethnicity, education
level, or income level. Future studies that include larger samples of
subpopulations are needed to build upon the initial finding of
consistent Device performance across these covariates. Formal IQ

Table 5. ASD severity level scores—social communication and
restricted and repetitive behavior by device output.

Device output

Social
communication
severity score1

Positive ASD Indeterminate Negative ASD Total

1 1 4 − 5

2 18 32 1 51

3 44 21 − 65

Total 63 57 1 1212

Restricted and
repetitive
behavior score1

Positive ASD Indeterminate Negative ASD Total

1 1 4 − 5

2 18 32 1 51

3 44 21 − 65

Total 63 57 1 1212

1In cases where the site specialist scores and the central and reviewing
specialist scores differed, the maximum severity score was used.
2Due to a data monitoring error, severity scores are only available for 121 of
the 122 ASD positive clinical reference standard group.
Level 1 score: “Requiring support”.
Level 2 score: “Requiring substantial support”.
Level 3 score: "Requiring very substantial support”.

Table 6. Specialist diagnosed comorbidities broken down by device output.

Comorbidity Device output

Positive ASD Indeterminate Negative ASD

% n 95% CI % n 95% CI % n 95% CI Total

Language disorder 25.4% 62 (20.1%, 31.4%) 62.7% 153 (56.3%, 68.8%) 11.9% 29 (8.1%, 16.6%) 244

Global developmental delay 40.9% 54 (32.4%, 49.8%) 53.8% 71 (44.9%, 62.5%) 5.3% 7 (2.2%, 10.6%) 132

Attention deficit hyperactivity disorder (ADHD) 17.9% 19 (11.1%, 26.6%) 74.5% 79 (65.1%, 82.5%) 7.5% 8 (3.3%, 14.3%) 106

Phonological disorder 4.4% 3 (0.9%, 12.4%) 82.4% 56 (71.2%, 90.5%) 13.2% 9 (6.2%, 23.6%) 68

Anxiety disorder 5.7% 2 (0.7%, 19.2%) 74.3% 26 (56.7%, 87.5%) 20.0% 7 (8.4%, 36.9%) 35

Oppositional defiant disorder (ODD) 6.3% 1 (0.2%, 30.2%) 81.3% 13 (54.4%, 96.0%) 12.5% 2 (1.5%, 38.3%) 16

Stereotypic movement disorder 38.5% 5 (13.9%, 68.4%) 61.5% 8 (31.6%, 86.1%) 0.0% 0 (0.0%, 24.7%) 13

Mood disorder 0.0% 0 (0%, 36.9%) 100.0% 8 (63.1%, 100%) 0.0% 0 (0%, 36.9%) 8

Separation anxiety disorder 0.0% 0 (0%, 41.0%) 100.0% 7 (59.0%, 100%) 0.0% 0 (0%, 41.0%) 7

Intellectual disabilities (ID) 66.7% 4 (22.2%, 95.7%) 33.3% 2 (4.3%, 77.7%) 0.0% 0 (0%, 45.9%) 6

Learning disorder 16.7% 1 (0.4%, 64.1%) 66.7% 4 (22.2%, 95.7%) 16.7% 1 (0.4%, 64.1%) 6

Selective mutism 0.0% 0 (0%, 60.2%) 75.0% 3 (19.4%, 99.4%) 25.0% 1 (0.6%, 80.6%) 4

Other developmental disorder 33.3% 1 (0.8%, 90.6%) 66.7% 2 (9.4%, 99.2%) 0.0% 0 (0%, 70.1%) 3

Tic disorder 0.0% 0 (0%, 84.2%) 100.0% 2 (15.8%, 100%) 0.0% 0 (0%, 84.2%) 2

Schizophrenia 0.0% 0 (0%, 97.5%) 100.0% 1 (2.5%, 100%) 0.0% 0 (0%, 97.5%) 1

J.T. Megerian et al.

7

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2022)    57 



testing was not conducted as part of the study as a large portion
of participants were below the age threshold where non-verbal
cognitive abilities can be reliably tested with traditional measures
of intelligence51. Appropriately powered follow-up studies are
needed to confirm Device performance across a range of
intellectual levels. Additionally, the Device is currently available
only in the English language, and non-English speaking families
were excluded from the study. In order to address this bias,
multiple language options for non-English speakers are currently
in development including Mandarin and Spanish. Compared to
the general US population the study cohort also had a higher level
of parental education, which is common among clinical trials52,
and a lower household income. Lower-income may reflect
reduced parental participation in the workforce as a result of
participants’ developmental delays53.
Cost and reimbursement data are also needed to clarify the

extent to which the Device could be utilized equitably by primary
care HCPs in practice. In light of growing pressures on Medicaid
programs to cover the early diagnosis of ASD and concurrent
budgetary challenges, better use of existing primary care
infrastructure, such as that offered by this Device, may support
Medicaid programs to remain financially sustainable while
adhering to laws and regulations. Additional costing data are
needed, however, to fully understand the likelihood of the Device
being widely adopted in US primary care settings, and the extent
to which it would be accessible to low-income families or families
without health insurance. Additionally, Device use requires access
to a smartphone which not all low-income American families may
have54.
As a risk control measure to minimize the likelihood of false

negatives, an indeterminate output that sacrificed coverage was
built into the Device. Given the often complex presentation of
ASD in primary care settings, including multiple phenotypically
overlapping comorbidities and behavioral features that may
unfold over time, the finding that the Device abstained from
making a recommendation for two out of every three children in
this cohort is unsurprising. ASD has degrees of diagnostic
complexity that depend on the presentation. Even among
experienced specialists, considerable diagnostic uncertainties
persist, for example, when diagnosing girls55 or children with
moderate (vs high or low) levels of observable ASD symptoms56.
Many children with developmental delays are not autistic or have
co-occurring conditions which confound the diagnosis. The drop
in sensitivity and specificity that would have been observed in this
study were the indeterminate output removed, highlights the
importance of abstention as a safety mechanism when deploying
AI within complex clinical scenarios46. The goal of the Device is not
to enable diagnosis of all presentations of ASD, but to aid primary
care HCPs to diagnose the subset of children the Device can
confidently determine a recommendation for, potentially preclud-
ing the need to refer all children for tertiary center evaluation.
Reducing tertiary referral loads by even a third could significantly
shorten wait times for interventions to begin.
Feasibility data57 suggest the indeterminate rate will also vary

depending on the makeup of the population the Device is being
applied to. In our study population, there was a high rate of
complex determinations and a relatively low neurotypical rate
(9.4%). In a more neurotypical population, we would anticipate
seeing fewer Device abstentions and higher Device specificity. In
populations with a higher ASD prevalence than that observed in
the study cohort, we would also expect fewer abstentions.
Areas of focus for future research include improving the

scalability of the video component of the Device by decreasing
reliance on human video analysts in subsequent generations of
the algorithm. Research exploring the training and education
requirements of HCPs in primary care settings such that they
would feel confident using the Device as a diagnostic aid in
practice is also needed. Future Device studies currently planned

include a registrational study to monitor the stability of Device
results as compared to diagnosis over time, including establishing
a diagnosis later in children who at the time of initial evaluation
did not meet diagnostic criteria for ASD.
Reducing the age of ASD diagnosis and time to diagnosis is

essential if early intervention is to commence in the window of
brain development where it is most effective. Limited diagnostic
capacity in primary care settings, including a lack of tailored
diagnostic aids, together with long wait times for specialist
evaluations, contribute to current diagnostic bottlenecks. In this
double-blind active comparator study of 18–72-month-olds with
identified developmental delay concerns, the accuracy of a Device
designed to aid HCPs to diagnose ASD was assessed. The AI-based
Device was found to facilitate timely and accurate ASD diagnostic
evaluation in nearly a third of children in the clinical trial setting
while minimizing false negatives across the cohort to maintain
clinical safety. While future research is needed, the Device shows
the potential to expand primary care diagnostic capacity, thereby
enabling earlier intervention for a subset of children and more
efficient use of limited specialist resources.

METHODS
This double-blinded active comparator cohort pivotal study was con-
ducted to support the FDA Market Authorization for the Device, a novel
ASD diagnosis aid designed for use in primary care settings.

Clinical trial registration
This study was registered on ClinicalTrials.gov (NCT04151290) prior to
study initiation.

Ethics
The study protocol and informed consent forms were reviewed and
approved by a centralized Institutional Review Board (IntegReview IRB).
Protocol Number: Q170886. IntegReview IRB granted approval of the study
(protocol version 1.0) on 19 July 2019. IntegReview was subsequently
purchased by Advarra IRB. Informed consent was obtained from all
caregivers whose children participated in the study.

Recruitment and screening
Children 18–72 months old with identified concerns for developmental
delay by an HCP or caregiver were recruited for the study from 14 sites
across six US states. Participants represented a population of patients that
HCPs would see in their primary care practice. All participants had a
caregiver with functional English capability. Caregiver-reported demo-
graphic data in the form of participant age, sex, race/ethnicity, and
parental education and income were collected to evaluate performance
variability among subgroups due to well-documented disparities in ASD
diagnosis14.

Device description
The diagnosis aid is a SaMD that uses a machine learning algorithm
modeled after standard medical evaluation methodologies. The Device
comprises the following: a caregiver-facing mobile application, a video
analyst portal, a healthcare provider portal, the underlying machine
learning algorithm that drives the Device outputs, and several supporting
software and backend services and infrastructure, including privacy and
security encryption and infrastructure in compliance with HIPAA and other
best practices.
Device interfaces were designed to be user-centric and easy-to-navigate.

Relevant Apple, Google, and general Web content accessibility guidelines
were followed across all Device interfaces to maximize user inclusivity.
Human factors and usability validation testing were conducted throughout
the Device design process to ensure external users were able to interact
with the Device interfaces without use errors or patterns of use errors that
could lead to harm to a patient. Additionally, a risk management process
was utilized to identify potential use errors and ensure they were
adequately mitigated to a safe and acceptable level. The Caregiver-facing
app functions across both iOS and Android platforms. The HCP portal
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supports the most recent and previous versions of Chrome and Safari
browsers running on the most recent and previous versions of Mac and
Windows operating systems. The Video Analyst Portal supports the most
recent Safari browser running on the most recent iPad operating systems
(Fig. 1).
Each Device input has two age-dependent questionnaire versions

(18–47 months or 48–71 months). Versions are tailored to reflect
developmentally relevant features. The child is automatically assigned
the relevant version based on their age. Across the three inputs, each of
the two age groups receives 64 questions, however, the breakdown of the
number of questions per input varies (number of questions for 18–47-
month-olds: input 1 = 18 questions, input 2 = 33 questions, input 3 = 13
questions. Number of questions for 48–71-month-olds: input 1 = 21
questions, input 2 = 28 questions, input 3 = 15 questions). The Device was
trained to handle this variation and perform with equal accuracy for both
age groups.
Questionnaire content stems from feature ranking experiments

conducted previously to identify behavioral, executive functioning,
and language and communication features that are maximally
predictive of an ASD diagnosis38–43. Input questions elicit information
about these core behaviors. Behavioral features used by the classifiers
vary only slightly between the two age groups. For example, a few
questions seek different information in the domains of social interaction
and communication in order to best capture the ASD phenotype among
children based on developmental trajectories. Core behaviors probed
by Device questionnaires are as follows: the ability to integrate different
forms of communication, joint attention, pretend play with toys, anger
or aggression, language and communication (non-verbal, expressive,
receptive and speech), quality of social responses, anxiety level, range
and amount of facial expressions, appropriate play, reciprocal commu-
nication, appropriateness of eye contact, repetitive mannerisms,
creative play, level of engagement, responsive smile, directed gaze,
negative response to stimuli, self-injury, group play, obsessive-
compulsive, sensory interests, hyperactivity, offering comfort to others,
shared interests, imitation, overall developmental challenges/delays,
socially directed smile, initiation of activities or interactions, overall
quality of interactions with others, unusual interests, interest in others,
pretend play with others.

Study flow
Study treatment (ASD assessment using the device). After providing written
informed consent, subject caregivers used the Device Application on their
smartphone to complete the caregiver assessment (Device input 1) and
record two brief videos of their child (to be used in completion of Device
input 2). A HCP completed Device input 3. Results were rapidly available

upon completion of the three inputs. The caregivers, video analysts, and
HCPs were blinded to each other’s input to the Device and to the Device
output (Fig. 3).

● Device input 1: Caregivers completed an 18 or 21-item age-dependent
questionnaire via a mobile application.

● Device input 2: Caregivers used the mobile application to upload two,
short videos of their child interacting, playing, or talking in natural
settings. Videos must be a minimum of 1 min and 30 s, up to 5min
each. The application instructed caregivers on how to take high-
quality videos (e.g., showing child’s hands and face with sufficient
lighting). In order to ensure strong inter-rater reliability, all video
analysts received standardized training, performance analysis, and on-
going performance reviews during the study. Prior to receiving video
analyst certification, all video analysts were tested on a set of
previously unseen training video submissions. These submissions
represented a mix of each age group. Analyst performance was
required to meet or exceed the operational minimum performance
guarantees for PPV, NPV, as well as the abstention rate in order for
them to receive certification. In addition to rigorous testing and
training standards, all video analysts involved in the study had to meet
stringent educational and clinical eligibility requirements. These
requirements included: at least a master’s degree from professional
backgrounds including psychology, occupational therapy, physical
therapy, speech-language pathology, special education, or a related
field with specific training in ASD diagnosis and/or treatment, and; at
least 5 years of professional and/or clinical experience working with
children with ASD. The video analyst scores served as input 2 to the
Device.

● Device input 3: A HCP met with the caregiver and child during a 30-
min in-person or virtual visit and completed a 13 or 15-item age-
dependent questionnaire. Remote visits using a telemedicine platform
were held in a manner equivalent to those done in-person, while
protecting the subject’s safety and privacy. There was oversight to
ensure the methods and conduct of remote assessments were
consistent across sites and study subjects to minimize variability in
the data.

Time burden associated with Device use was captured electronically
for inputs 1 and 2. As HCPs completed a paper version of their
questionnaire that was later uploaded to the portal, the time burden
associated with input 3 was obtained qualitatively by asking HCPs to
estimate the number of minutes questionnaires took to complete. After
the caregiver assessment was completed and scorable videos sub-
mitted, the caregiver was contacted by a research coordinator to
schedule an appointment for a diagnostic evaluation by the diagnosing
specialist clinician.

Fig. 3 Study flow. Consenting participants meeting inclusion criteria will complete both the Device inputs and the clinical reference standard
evaluation.
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Specialist diagnostic assessments. Specialist assessments were conducted
by board-certified child and adolescent psychiatrists, child neurologists,
developmental-behavioral pediatricians, or child psychologists with more
than five years of experience diagnosing ASD. Specialists used structured
clinical observation, clinician interview and examination, medical/devel-
opmental review, and standardized assessment instruments to provide a
diagnosis based on DSM-5 criteria. The structured observational assess-
ment included conversation or free play, symbolic interactive play, and
sensory stimulation components. This robust diagnostic process is aligned
with best practice recommendations for ASD evaluation44. Standardized
medical history, physical examination findings, and a video recorded
portion of the initial specialist’s assessment were provided to a blinded
reviewing specialist clinician who independently evaluated whether DSM-5
criteria for ASD were met. When the first two specialists disagreed, a third
specialist was consulted, and the majority decision determined the clinical
reference standard diagnosis. Blinded consensus diagnosis introduced an
additional level of rigor to the study design, reducing risks associated with
confirmation bias, deindividuation, and homogenized group thinking 35.
If a specialist clinician: (1) diagnosed co-morbid conditions, (2)

determined that the patient was negative for ASD and provided a
diagnosis other than ASD, or (3) determined that the patient was
neurotypical, those data were also captured. Diagnosis of ASD alone or
ASD plus co-morbid condition(s) constituted a positive ASD clinical
reference standard diagnosis. Clinicians were also asked to self-report
their degree of certainty of the ASD diagnostic conclusion on a Likert scale,
with 1 being, “completely uncertain”, 2 being “somewhat uncertain”, 3
being “somewhat certain”, and 4 being “completely certain”.

Statistical analyses
Statistical analyses were conducted using R 4.0.2 with the PropCIs and
Exact packages. Endpoints (PPV, NPV, sensitivity, specificity, and determi-
nate result rate) were evaluated using contingency tables. The selection of
predictive values as primary endpoints reflects the utility of the Device in a
broad spectrum of subjects, as these values measure how often in the
study population the Device correctly identifies a patient with ASD and
how frequently it correctly determines that a patient does not have ASD.
The Clopper-Pearson interval was used to calculate two-sided 95% CI. The
descriptive statistics for sex, race/ethnicity, income, and education were
tabulated separately; Device performance was reported for each group
and separate two-sided 95% CI were computed. For age analyses,
Boschloo’s Exact Test was used to examine statistical differences in
performance among subgroups.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
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