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Abstract

Topology and electronic properties of low-dimensional carbon materials

by

Jingwei Jiang

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Steven G. Louie, Chair

In recent times, there has been a significant interest in low-dimensional materials due to
their unique electronic, optical, magnetic, and topological properties that differ from 3D
bulk materials. This dissertation focuses on a specific class of 1D carbon structures known as
graphene nanoribbons (GNRs), which can be synthesized atomically with precision through
a bottom-up method. The theoretical tools employed in this study are primarily topological
theory and quantum many-body first-principles calculations.

Chapter 1 introduces some basics about density functional theory, GW many-body pertur-
bation theory and the Belthe-Salpeter equation. Chapter 2 of this dissertation delves into
the topology of GNRs when chiral symmetry is approximately maintained. Building on
this theory and in collaboration with experimentalists, Chapter 3 explores a metallic 1D
nanowire known as saw-tooth GNRs, while Chapter 4 investigates various quantum dot sys-
tems with unique bonding and anti-bonding characters. In Chapter 5, a different type of
metallic GNRs is studied using zero-mode (topologically protected in-gap electronic states)
engineering. Chapter 6 takes the study beyond the Hermitian Hamiltonian and introduces
the non-Hermitian skin effect. When 1D or 0D structures are interconnected, nanoporous
graphene is formed. Its electronic properties are studied in Chapter 8. Furthermore, Chapter
9 examines a carbon kagome lattice’s excitonic properties. The content of each Chapter is
elaborated as the following:

• Chapter 1 provides a foundational understanding of density functional theory (DFT)
for ground state properties by introducing the Kohn-Sham equation and different func-
tionals. We also discuss the GW perturbation theory, which allows us to incorporate
many-body effects into our calculations of excited-state properties. Specifically, we
explore how the GW method can be utilized to calculate quasi-particle excitations.
To study the two-particle excitation problem for optical properties, we introduce the
Bethe-Salpeter equation (BSE) method. This equation provides a framework for calcu-
lating the interaction between an excited electron and the hole it leaves behind, which
is crucial for understanding optical properties such as absorption and emission spectra.
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• In Chapter 2, we examine GNR structures under the first nearest neighbor tight-
binding model, assuming chiral symmetry holds. In this scenario, we utilize the first
Chern number to obtain a Z index for general 1D materials. From the general Z
index formula, we derive the Chiral phase index in vector form, which enables us to
obtain the analytic Z index formula for all types of unit cells in GNRs. Finally, we
explore a spin-chain formed by topological junction states that exhibit strong spin-spin
interactions.[1]

• Chapter 3 builds on the chiral classification theory introduced in Chapter 2 by utilizing
the topological junction states as building blocks and connecting them in a symmetric
manner to form a 1D metallic nanowire. We use first-principles DFT calculations to
study the electronic bandstructure, local density of states (LDOS), and mapping of
wavefunctions. Our results are then compared with experimental STM measurements,
and we achieve good agreement. In addition, we also investigate the topological prop-
erties of asymmetrically connected structures, and the predicted junction/end state
matches well the corresponding experimental evidence.[2]

• In Chapter 4, we employed the topological junction states that arise from the con-
nection between 7-armchair graphene nanoribbons (7AGNR) and 9-armchair graphene
nanoribbons (9AGNR) to construct topological quantum dots. We investigated two
distinct types of quantum dots by means of DFT calculations, with the aim of studying
their electronic properties, such as the bonding and anti-bonding traits of their valence
and conduction states. In addition, we devised a tight-binding theory to elucidate the
underlying factors contributing to the characteristics of the wavefunctions.[3]

• In Chapter 5, we focus on a different variety of metallic graphene nanoribbon (GNR)
called Olympicene GNRs that does not exhibit the Stoner instability, which was ob-
served in the sawtooth GNRs presented in Chapter 3. This new GNR features cove-
shaped edges, and its low-energy behavior is governed by zero modes. The most notable
distinction between this GNR and the sawtooth GNR is that the nearest zero modes
localize on different sublattices, leading to a significant increase in electron hopping
and precluding any magnetic instability. To verify this, we conduct DFT calculations
and compare our findings with experimental observations.

• In Chapter 6, we explore the topology of 1D non-Hermitian systems, extending our
analysis beyond Hermitian topological classification. Specifically, we investigate a 1D
non-Hermitian system with no symmetry constraints, and use a Z index that can
be employed to classify such systems. We examine the well-known skin effect for
non-trivial non-Hermitian topological models and identify a promising GNR material,
Co-4AGNR, which could potentially be realized in experiments. By conducting first-
principles DFT and full-frequency GW calculations, we establish that the material
exhibits non-trivial topology. Lastly, we present evidence of the asymmetric transport
properties in this material by calculating the Green’s function for a finite segment of
this system.

• In Chapter 7, we examine the 2D carbon structure that results from linking 1D metallic
GNRs. To accomplish this, we created a theoretical model with low energy states
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using modes that are found in the pentagons located at the edge of GNRs as the
bases. This effective tight-binding model provides a description of a unique, distorted
super-graphene. We also conducted DFT calculations and compared our findings with
experimental results provided by our colleagues.[4]

• Chapter 8 focuses on the examination of a kagome lattice that is formed by linking
triangulene building blocks. This unique structure was predicted to exhibit excitonic
insulator (EI) behavior. In partnership with experimentalists, we conducted an inves-
tigation of the electronic properties of this structure using multiple levels of theory,
such as DFT, GW-BSE, and Bardeen-Cooper-Schrieffer (BCS) theory. Our research
revealed that DFT based single-particle theory was insufficient for accurately capturing
the features of the LDOS map observed in STM measurements. By incorporating a
BCS-like theory for condensation of excitons, we were able to provide an explanation
for the experimental observations.[5]

In addition to the projects above, I was also involved in 3 other projects, including one
studying the color center in twisted BN [6], one studying the kondo effect in magnetic N-
doped chevronGNR [7], one studying the pseodo-atomic orbitals in graphene nanoribbons [8].
These research projects are also very interesting, but beyond the scope of this dissertation.
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2.1 AGNR on the backbone of graphene. The darken vertices and lines correspond to
carbon atoms and bonds of the AGNR, respectively. The atoms in an AGNR unit
cell that are commensurate to a bearded termination (red dashed-line rectangle)
are labeled 3 to 16, and the lattice vectors of pristine graphene are also shown.
The unit cell of graphene is shown by the red-shaded region. . . . . . . . . . . 14

2.2 The property of ϕ(k) along kx with different given ky. Plotted in each panel is
the value of hx(k) + ihy(k) in Eq. (2.14) in the complex plane. In the plot, the
parameter kx goes from 0 to 4π/(

√
3a) rather than 2π/(

√
3a). In this way, we

obtain the change in value of 2ϕ(k) used in Eq. (2.19) and explicitly see the
winding of the function hx(k) + ihy(k) around the origin. When (kya)/2 < π/3
or (kya)/2 > 2π/3, the change in 2ϕ(k) is 2π, and the winding number of the
function hx(k) + ihy(k) around the origin is one. When π/3 < (kya)/2 < 2π/3,
the change in 2ϕ(k) is 0 and the winding number is zero. When (kya)/2 = π/3
or 2π/3, the change in 2ϕ(k) depends sensitively on any possible perturbation. . 16

2.3 Armchair graphene nanoribbon (AGNR) is specified by the number of carbon
rows N forming its width, labeled as N-AGNR. (a) Structure of 7-AGNR (bold
region) from the graphene backbone background. a is the length of the lattice
vector of graphene. The σ bond of the edge atoms of GNRs are typically passi-
vated by hydrogen atoms in experiment. (b) Unit cell of a 7-AGNR with zigzag
termination, the rows with two carbon connected by a σ bond within the unit
cell (connected carbons), and the rows with two carbon not connected by a σ
bond within the unit cell (not connected carbons) are indicated. This case corre-
sponds to having 3 rows of not connecting pairs, Nnotco = 3. (c) An asymmetric
junction of 7-AGNR and 9-AGNR with bearded termination. The corresponding
commensurate bulk unit cells for the two segments are shown on the sides, and
the 5% isosurface of the wavefunction square (blue color) of the in-gap junction
state from DFT-LDA calculation is shown in the middle. . . . . . . . . . . . . . 18
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2.4 (a) Left: a 7-AGNR with zigzag termination is shown; the unit cell commensurate
with the termination has 3 rows of unconnected carbons pairs and Z = 1. Right:
a “bullet” termination of 9-AGNR is shown. Its commensurate unit cell has 2
rows of unconnected carbons pairs and Z = −1. (b) Joining the two structures in
(a) results in a junction with ∆Z = 2, giving rise to two in-gap junction states.
The 5% isosurface of the wavefunction square of the two junction states from a
DFT-LSDA calculation are shown in blue. Here only the occupied spin-up states
are shown. One state localizes in the 7-AGNR region; the other localizes in the
9AGNR region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 (a) Computed DFT-LSDA band structure of a periodic GNR spin chain structure
(unit cell shown by insert). Top of the occupied bands is set at zero. The
in-gap bands (in window -0.1 to 0.3 eV) are nearly flat, indicating negligible
hopping between neighboring junction states. A spin-splitting of 0.2 eV occurs
between oppositely oriented spin bands; the two majority-spin (spin-up) bands
are occupied, leaving their spin-down counterparts empty. Each unit cell has two
Bohr magnetons of magnetization. (b) The isosurface at 5% of the wavefunction
square of the two occupied junction states at k = Γ is shown (blue color). One is
localized in the 9-AGNR region while the other is localized in the 7-AGNR region. 21

2.6 (a) Schematic of a 1D GNR spin chain (Fig. 2.5) and exchange interactions (J1
and J2). (b) Three different spin configurations are considered in first-principles
DFT-LSDA calculations to extract the exchange coupling parameters. (c) Spin-
spin correlation length (in unit of lattice vector and log scale) as a function of
temperature from a classical canonical ensemble of 1D Ising model. . . . . . . . 22

2.7 The band structure of the in-gap spin-polarized states of a sawtooth AGNR
(composed of segments of AGNRs in a superlattice with a periodic spin chain
structure) in the DFT-LSDA approximation under different level of doping. The
spin-splitting of the bands is seen up to more than one electron or hole doping
per unit cell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Bottom-up synthesis of sawtooth GNRs. (A) Schematic representation of bottom-
up growth of both sGNRs and 5-sGNRs from molecular precursor 1. Inset: STM
topograph of two isolated monomers of 1 deposited on Au(111). (B) STM to-
pograph of a segment of a sGNR. (C) Larger-scale image of sGNRs. (D) STM
topograph of a segment of a 5-sGNR. (E) Large-scale image of 5-sGNRs. . . . . 29

3.2 Electronic structure of sGNRs. (A) dI/dV point spectroscopy of a sGNR/Au(111)
performed at the position shown in the inset (spectroscopy parameter: VAC =
10 mV. Imaging parameters: It = 80 pA, Vs = 0.006 V). (B) Constant-height
dI/dV maps of 5-sGNRs conducted at the biases indicated in (A) (spectroscopy
parameters: VAC = 20 mV for States 1 and 3, VAC = 4 mV for State 2). Constant-
height dI/dV maps were subjected to background subtraction of substrate LDOS.
(C) DFT-LDA calculated DOS of the sGNR (spectrum broadened by 10 meV
Gaussian). Van Hove singularities near E–EF = 0 are merged because of gaussian
smearing. (D) DFT-calculated LDOS of an sGNR at energies shown in (C)
(LDOS sampled at a height of 3.5 Å above the plane of the sGNR). . . . . . . . 30
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3.3 Electronic structure of 5-sGNRs. (A) dI/dV point spectroscopy conducted on
5-sGNR/Au(111) at the armchair (blue) and zigzag (red) positions marked in
the inset (spectroscopy parameter: VAC = 10 mV. Imaging parameters: It = 60
pA, Vs = – 0.100 V). (B) Constant-height dI/dV maps of 5-sGNRs conducted at
the biases indicated in (A) (spectroscopy parameter: VAC = 20 mV). Constant-
height dI/dV maps were subjected to background subtraction of substrate LDOS.
(C) DFT-LDA calculated DOS of the 5-sGNR (spectrum broadened by 10 meV
Gaussian). (D) DFT-LDA calculated LDOS of a 5-sGNR at energies shown in
(C) (LDOS sampled at a height of 3.5 Å above the plane of the 5-sGNR). . . . . 32

3.4 Zero-mode band structure. Schematic representation of inter- and intracell hop-
ping between localized zero-modes embedded in (A) sGNRs and (B) 5-CGNRs.
(C) Left panel: DFT-LDA calculated band structure for sGNRs. Frontier bands
are labelled VB, ZMB, and CB. Right panel: tight-binding fit (red) to DFT-LDA

band structure yields hopping parameter t
(c)
1 = t

(c)
2 = 5.2meV . (D) The same

as (C) but for 5-sGNRs. Hopping parameter for 5-sGNR (and corresponding
bandwidth) is 23 times larger than for sGNR. . . . . . . . . . . . . . . . . . . . 33

3.5 DFT Calculations for head-to-tail sGNRs in the local spin-density approximation
(LSDA). (A) Sketch of sawtooth GNR structure (sGNR). (B) LDA calculation for
free-standing sGNR shows a metallic ground state. (C) LSDA calculation for free-
standing sGNR shows a gapped ferromagnetic ground state. (D) The magnetic
gap of the sGNR is seen to close when substrate doping and polarization effects
are taken into account (the sGNR is assumed to be doped by ∼0.4e+ / unit cell
by the Au). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6 DFT Calculations of metallic 5-sGNRs in the local spin-density approximation
(LSDA). (A) Sketch of head-to-tail 5-sawtooth GNR structure (5-sGNR). (B)
LDA calculation for free-standing 5-sGNR shows a metallic ground state. (C)
LSDA calculation for free-standing 5-sGNR shows a non-magnetic metallic ground
state. (D) LSDA calculations of the 5-sGNR band structure when substrate dop-
ing and polarization effects are taken into account (the sGNR is assumed to be
doped by ∼0.4e+ / unit cell by the Au). The 5-sGNR band structure is essentially
unaffected by substrate doping and screening. . . . . . . . . . . . . . . . . . . . 36

3.7 Zero-mode engineering in GNRs. (A) Diagram of effective hopping teff between
two localized states (labeled Ψ0) embedded in graphene. Inset: schematic rep-
resentation of the first (t) and second (t′) nearest-neighbor hopping parameters
of graphene. (B) DFT-calculated wavefunction 5% density isosurface of a sGNR
for states near E = 0. (C) Same for 5-sGNRs. Different sublattices are denoted
with different colors (A sublattice in red and B sublattice in blue). The sGNR
wavefunction is completely sublattice polarized, while the 5-sGNR wavefunction
is sublattice mixed and more delocalized. . . . . . . . . . . . . . . . . . . . . . 39
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3.8 Sublattice polarization/mixing of GNR zero-modes. (A) DFT calculated 3%
charge density isosurfaces of a structure exhibiting an isolated zero-mode (the
purpose of this is to provide insight into the sublattice polarization of sGNR
zero-mode bands (ZMBs)). Different sublattices are denoted with different col-
ors (A sublattice is red, B sublattice is blue). The sGNR structure leads to a
sublattice-polarized zero-mode since the intact cove preserves bipartite lattice
symmetry. (B) Same as (A), but for an isolated 5-sGNR zero-mode. Here there
is no sublattice polarization of the zero-mode since the bipartite lattice symmetry
is broken by the pentagonal ring. . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.9 Theoretical electronic structure of head-to-head sGNR. (A) Schematic represen-
tation of inter- and intracell hopping between localized zero-modes embedded in
head-to-head sGNRs. (B) DFT-LDA calculated band structure for head-to-head
sGNRs (black) overlaid with a tight-binding fit (red) to the OZB/UZB bands
(the tight-binding fit yields hopping parameters t1 = 310meV and t2 = 33meV ).
(C) DFT-LSDA calculated band structure for head-to-head sGNRs shows a non-
magnetic ground state. Lieb’s theorem raises the possibility of antiferromag-
netism, but the relatively large overlap between adjacent zero-modes pushes this
GNR into a non-magnetic ground state. . . . . . . . . . . . . . . . . . . . . . . 41

3.10 Electronic structure of head-to-head sGNR topological homojunction. (A) dI/dV
point spectroscopy performed on bare gold (dotted black curve) and on a head-
to-head sGNR topological homojunction in the bulk (blue curve) and at the
junction interface (red curve) as marked in (B). (B) Topographic image of head-
to-head sGNR topological homojunction overlaid with the corresponding chemical
structure (It = 150 pA, Vs = –1.10 V). The topological invariant Z2 on either
side of the junction (dotted white line) is indicated based on the terminating
unit cells shown in (D) and (E). (C) Constant-current dI/dV maps of a head-to-
head sGNR topological homojunction conducted at the biases indicated in (A)
(It = 150 pA, VAC = 10 mV for OZB and UZM maps and It = 80 pA, VAC

= 10 mV for the topological interface state (TIS) map). (D) Band structure of
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4.1 On-surface synthesis of AGNR topological quantum dots. (A) The topological
invariants Z2 and Z for the depicted AGNRs are determined by the terminating
unit cell with mirror/inversion symmetry and chiral symmetry, respectively. The
zigzag’ termination of 7-AGNRs (dashed box, left panel) possesses topological
invariants Z2 = 0 and Z = 2, while the zigzag termination of 9-AGNRs (solid
box, right panel) possesses topological invariants Z2 = 1 and Z = 1. Cross-
ing an interface as depicted by the structure in (C) and (D) between these two
unit cells corresponds to a change in both topological invariants. Therefore, such
an interface is expected to host one topological zero-mode state. (B) Molecular
precursors 1 and 3 generate extended sections of 7-AGNRs and 9-AGNRs, re-
spectively. (C) The structures of the 7/9/7 and (D) 9/7/9 topological quantum
dots superimposed on the corresponding STM topographic images. . . . . . . . 46

4.2 Electronic structure of 7/9/7 topological quantum dot. (A) Inset: STM topo-
graphic image of the 7/9/7 topological quantum dot (Vs = –0.10 V, It = 90 pA).
dI/dV point spectroscopy conducted on the 7-AGNR bulk and the 7/9/7 TQD
are plotted in red and blue, respectively, as indicated in the inset. The dashed
black curve corresponds to a reference spectrum conducted on bare Au(111). For
all point spectra, VAC = 10 mV. (B) dI/dV maps of the 7/9/7 TQD conducted at
the indicated biases corresponding to peaks in (A) (It = 90 pA, VAC = 20 mV).
(C) DFT-LDA calculated LDOS for the theoretical 7/9/7 TQD structure shown
in Fig. 4.5(A). The blue and red curves correspond to LDOS sampled over the
region indicated by the blue and red crosses in the inset, respectively (spectrum
broadened by 10 meV Gaussian). (D) DFT-calculated LDOS map of the 7/9/7
TQD at each of the four peak energies indicated in (C). LDOS is sampled 4 Å
above the GNR plane. T = 4 K for all measurements. . . . . . . . . . . . . . . . 48

4.3 Electronic structure of 9/7/9 topological quantum dot. (A) Inset: STM topo-
graphic image of the 9/7/9 topological quantum dot (Vs = 0.20 V, It = 3 nA).
dI/dV point spectroscopy conducted on the 9-AGNR bulk and the 9/7/9 TQD
are plotted in red and blue, respectively, as indicated in the inset. The dashed
black curve corresponds to a reference spectrum conducted on bare Au(111). For
all point spectra, VAC = 10 mV. (B) dI/dV maps of the 9/7/9 TQD conducted
at the indicated biases corresponding to peaks in (A) (State 5: It = 8 nA, VAC =
20 mV; States 6–8: It = 3 nA, VAC = 20 mV). (C) DFT-LDA calculated LDOS
for the theoretical 9/7/9 TQD structure shown in Fig. 4.5(B). The blue and red
curves correspond to LDOS sampled over the region indicated by the blue and red
crosses in the inset, respectively (spectrum broadened by 10 meV Gaussian). (D)
DFT-calculated LDOS map of the 9/7/9 TQD at each of the four peak energies
indicated in (C). LDOS is sampled 4 Å above the GNR plane. T = 4 K for all
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4.4 Emergence of quantum dot states from topological zero modes. (A) Left and right
topological zero-mode basis states (|ψL

0 ⟩ and |ψR
0 ⟩ in the top and bottom panels,

respectively) superimposed on the 7/9/7 TQD chemical structure. Color indicates
the sign of the phase factor. (B) Symmetric (bottom panel) and antisymmetric
(top panel) linear combinations of zero-mode states shown in (A) correspond to
the OT1 and UT1 states in the 7/9/7 TQD. (C) The DFT-LDA energy level
diagram associated with a superlattice of a finite length theoretical 7/9/7 TQD
structure (detailed structure in Fig. 4.5(A)). The frontier energy levels originating
from the 7-AGNR bulk are labeled 7-CB and 7-VB and the quantum dot states
are UT1 and OT1. The energy splitting between UT1 and OT1 is equal to
twice the electron hopping amplitude t1 between |ψL

0 ⟩ and |ψR
0 ⟩. (D) Same as

(A) but for the 9/7/9 TQD. Here the left and right zero-mode basis states are
labeled |ψ′L

0 ⟩ and |ψ′R
0 ⟩ as shown in the top and bottom panels, respectively. (E)

Same as (B) but for the 9/7/9 TQD. In contrast to the states shown in (B),
the symmetric linear combination of zero-mode states has a higher energy than
the antisymmetric linear combination. (F) Same as (C) but for the 9/7/9 TQD
from a superlattice of the finite length structure shown in Fig. 4.5(B). Here the
electron hopping amplitude t2 between |ψ′L

0 ⟩ and |ψ′R
0 ⟩ is negative as dictated by

the energy ordering of the symmetric and antisymmetric linear combinations of
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4.5 Model GNR TQDs used for DFT calculations. (A) Model unit cell of the 7/9/7
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4.6 (A) Schematic plot of a 7/9-AGNR topological junction showing the phase factor
on each of the π orbitals forming the zero-mode wavefunction |ψL

0 ⟩ near the edge
carbon atoms (red represents a positive phase factor, blue a negative phase fac-
tor). The zero mode can be written as a linear combination of atomic π-orbitals,
or |ψL

0 ⟩ =
∑

iC
L
i ϕi. The sum of the amplitudes of the zero-mode wavefunction

on sites 2, 3 and 4 is zero. (B) Schematic of the 7/9/7 TQD with the phase factor
on each π-orbital of the left and right zero-mode wavefunctions (|ψL

0 ⟩ and |ψR
0 ⟩)

indicated by colored circles and squares, respectively. The gray bonds indicate
those which are removed when generating the 7/9/7 TQD. The hopping ampli-
tude t1 between |ψL

0 ⟩ and |ψR
0 ⟩ is composed of terms such as t × CR

1 (C
L
2 + CL

3 ).
From the diagram, it is clear that CL

1 > 0, and one can infer that CL
2 + CL

3 > 0
since CL

2 + CL
3 + CL

4 = 0 and CL
4 < 0. Together, these imply that t1 > 0 (C)

Similar schematic plot as shown in (A) of 9/7-AGNR topological junction. The
phase factor on atomic site 5 is positive. (D) Same schematic plot as in (B) for
9/7/9 TQD. The gray bonds indicate those which are added when generating the
9/7/9 TQD. The hopping amplitude t2 between |ψ′L

0 ⟩ and |ψ′R
0 ⟩ is composed of

terms such as t × C
′R
6 (C

′L
5 + C

′L
7 ). From the diagram, it is clear that C

′R
6 < 0,

C
′L
5 > 0, and C

′L
7 = 0. Therefore, the hopping amplitude t2 < 0. . . . . . . . . . 55
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4.7 Spatial dependence of LDOS in 7/9-AGNR junction and TQD states. (A) The
LDOS of the 7/9-AGNR zero-mode state integrated over the GNR width. The
inset shows a top-down view of isosurfaces of constant LDOS for the same state.
The state decays rapidly on the 7-AGNR side of the junction and gradually on
the 9-AGNR side of the junction. (B) The same as (A) but for UT1, (C) OT1,
(D) UT2 and (E) OT2. Due to the gradual decay of the single junction state into
the 9-AGNR region as shown in (A), the interface states have a higher LDOS in
the intermediate 9-AGNR region for UT1 and OT1 compared to the LDOS in
the 7-AGNR region for UT2 and OT2. This indicates a larger overlap and thus a
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with a zigzag terminus on the right. The A-sublattice is indicated with black cir-
cles. Here, βk−1A

(j)
i represents the amplitude of a generic A-sublattice-polarized
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4.10 Boundary conditions on topological interface states (A) Schematic of the zigzag’/zigzag
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circles. Here, βk−1B
(j)
i and βk−1C

(j)
i represent the amplitudes of a generic B-

sublattice-polarized state in the jth column and ith row of the kth unit cell from
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side of the interface compared to the 7-AGNR side. (B) Same as (A) but the
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Chapter 1

Introduction

1.1 Density Functional Theory

Kohn-Sham Equation

The Hohenberg-Kohn theorem forms the basis of the density-functional theory (DFT),
which asserts that the electron density of a ground-state system determines its ground-state
wavefunction and the expectation value of any observable physical quantity. The minimum
value of the total energy functional of the density corresponds to the true ground-state
density. However, this theorem only establishes the existence of such an energy functional,
without providing any information about its actual form. Different approximations have
been made to address this issue. The Kohn-Sham approach furthers the practicality of the
approach by utilizing a single-particle potential VKS(r) that can be tailored to generate the
same ground-state electron density for an effective one-body problem[9]. This allows for the
creation of a self-consistent procedure to determine the ground-state energy and density.

A single-particle Schrödinger equation [10][11] can be used to describe a noninteracting
auxiliary problem, expressed as

[− h̄2

2me

∇2 + VKS(r)]ψi(r) = ϵiψi(r) (1.1)

where me represents the electron mass. This auxiliary problem is associated with an electron
density given by

ne(r) =
occ∑
i

|ψi(r)|2 (1.2)

where the summation is taken over all the occupied states. The many-body wavefunction
for this noninteracting system is a Slater determinant formed by all the single-particle wave-
functions ψi. The exchange-correlation energy Exc[ne(r)] is introduced as a functional of ne,
which accounts for all the corrections beyond the Hartree approximation to the many-body
problem. The exchange-correlation potential is defined as the derivative of Exc with respect
to the variation of electron density, i.e., Vxc[ne(r)] =

δExc

δne(r)
.
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Taking external field and Hartree potential into account, we can derive the well-known
Kohn-Sham equation

[− h̄2

2me

∇2 + VH(r) + Vxc[ne(r)]]ψi(r) = ϵiψi(r) (1.3)

where VH(r) =
∫ n(r′)e2

4πϵ0|r−r′|dr
′ represents the Hartree potential and Vext is the external po-

tential [10]. With knowledge of the form of Vext(r), such as ionic potentials or external
electromagnetic fields, and the exchange-correlation potential, we can self-consistently cal-
culate the ground-state density and energy using Eq. 1.2 and Eq. 1.3. This procedure
is theoretically exact when we acquire the exact Vxc. In reality, an approximate Vxc[ne(r)]
is required to begin with. In the local-density approximation (LDA), we assume that the
exchange-correlation potential V LDA

xc can be approximated as a function of only the local
electron density, leading to the exchange potential with the form:

V LDA
x (r) = −q2e(

3

π
)1/3n1/3

e (r) (1.4)

for slowly varying ne(r) [12]. Various parameterized analytical forms have been used for
the correlation part, such as the Ceperley-Alder data with Perdew-Zunger parametrization
[13][14]. In the generalized gradient approximation (GGA), the exchange-correlation energy
is written as a function of both the density and the gradient of the density [14][15][16]. So far,
we have only considered non-magnetic systems, where the density of spin-up and spin-down
states are degenerate. In magnetic systems, both the densities of spin-up and spin-down
are required to evaluate Kohn Sham equation. Under local spin approximation (LSDA), the
Kohn-Sham equation could be written as:

[− h̄2

2me

∇2 + VH + Vxc[n↑(r), n↓(r)]−
1

2
geµBσB]ψiσ(r) = ϵiσψiσ(r) (1.5)

Under this case, both the energies and the wavefunctions can be different for each spin.
These features are all implemented in Quantum ESPRESSO package [17][18] which we will
use to perform DFT calculations introduced in later chapters.

1.2 Many-Body Problem

The electronic structure in solids is a complex problem that involves a vast number of
electrons, ions, and interactions with external environment. Due to the form of Coulomb
interaction, it is a many-body problem, with the number of particles involved being around
the Avogadro’s constant. To address this problem, quantum field theory and many-body
perturbation theory (MBPT) are used, which are based on the Green’s function method.
The GW and GW-BSE methods are derived from MBPT, and they are considered powerful
and versatile formalisms in physics. This section presents essential concepts and conclusions
relevant to the development of these methods, focusing only on the Green’s function for-
malism for electrons. More information and other topics related to MBPT can be found in
various textbooks and reviews[10][19][20]. The starting point is a general Hamiltonian Hexact
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under second quantization that describes a system of interacting electrons under an external
potential (Vext(r)).

Ĥexact =

∫
c†r[−

h̄2

2me

∇2 + Vext(r)]crdr +

∫
Vcoul(r, r

′)c†rc
†
r′crcr′drdr

′ (1.6)

where Vcoul(r, r
′) = e2

4πϵ0|r−r′|2 is the Coulomb interaction. cr and c†r are the field operator
annilating and creating an electron at position r, respectively. The second term in Eq. 1.6 is
a two-body operator. This triggers the difficulties of solving the eigenstate and eigen energies
of this Hamiltonian, as the bases size grows with the system size as power law (∼ 2N where
N is the number of electrons). Most of the time, people are interested in the excitation
properties, but not the ground state properties. However, DFT is a ground state theory and
does not describe the excited state accurately. To touch the excited state properties, a new
tool has to be used here, which is the many body Green’s function theory.

The time-ordered Green’s function at zero-temperature is defined as

G(rt, r′t′) = −i⟨0|T [cr(t)c†r′(t
′)]|0⟩ (1.7)

Here, T is the time-ordered operator. cr(t) and c
†
r′(t

′) are the field operators in Heisenberg
picture. and |0⟩ is the ground state of the system. To expand the Green’s function explicitly:

G(rt, r′t′) = −i⟨0|cr(t)c†r′(t
′)|G⟩θ(t− t′) + i⟨G|c†r′(t

′)cr(t)|0⟩θ(t′ − t) (1.8)

On the other hand, the Green’s function that directly connects with the experimental mea-
surment if the retarded Green’s function:

G(rt, r′t′) = −i⟨G|cr(t)c†r′(t
′) + c†r′(t

′)cr(t)|G⟩θ(t− t′) (1.9)

Next, we will derive the Dyson’s equation using functional derivatives. By adding an external
time-dependent perburbation to Eq. 1.6:

H = Ĥexact +H ′(t) (1.10)

where

Ĥ ′ =

∫
c†rφ(r, t)crdr (1.11)

Note that H ′ depends on t even in the Schrödinger picture. From now on, we combine the
position and time index into one uniform index: 1 → {r1, t1}. By definition, the susceptibility
is the density response to the external potential, defined as:

χ(1, 2) =
⟨δn(1)⟩
φ(2)

(1.12)

and the inverse dielectric function is the change of total classical potential with respect to
the external field:

ϵ−1(12) =
δVtot(1)

δφ(2)
=
δ(φ(1) + VH(1))

δφ(2)
= δ(12) +

∫
Vcoul(13)χ(32)d3 (1.13)
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The screened Coulomb interaction W (12) could be written as:

W (12) =

∫
ϵ−1(13)Vcoul(32)d3 (1.14)

If we define irreducible susceptibility as

χ∗(12) =
⟨δn(1)⟩
Vtot(2)

(1.15)

W (12) could be rewritten as

W (12) = Vcoul(12) +

∫
Vcoul(13)χ

∗(34)W (42)d34 (1.16)

Until this point, we haven’t seen any connection between the quantities we defined above
and the Green’s function. From the equation of motion, we could derive that the Green’s
function satisfies:

(ih̄
∂

∂t1
+

h̄2

2me

∇2
1)G(12)−

∫
Σ(13)G(32)d3 = δ(12) (1.17)

where the self-energy Σ(12) is defined as

Σ(12) = ΣH(12) +M(12) (1.18a)

ΣH(12) = δ(12)

∫
Vcoul(12)⟨n(2)⟩d2 (1.18b)

M(12) = ih̄

∫
Vcoul(13)

δG(14)

δφ(3)
G−1(42) (1.18c)

With the help of non-interacting Green’s function G0(12) corresponding to Hamiltonian
without the Coulomb interaction.

G(12) = G0(12) +

∫
G0(13)Σ(34)G(42)d34 (1.19)

To evaluate self-energy Σ(12), we define irreducible vertex function as

Γ∗(123) = −δG
−1(12)

δVtot(3)
= δ(12)δ(23) +

∫
δM(12)

δG(45)
G(46)G(75)Γ∗(673)d4567 (1.20)

This helps us to rewrite M(12) as

M(12) = ih̄

∫
G(13)W (41)Γ∗(324)d34 (1.21)

The irreducible susceptibility χ∗ is also related to the irreducible vertex function Γ∗ by

χ∗(12) = −ih̄
∫
G(13)G(41)Γ∗(342)d34 (1.22)
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Combining the above equation, we have 5 variables: G, W , χ∗, Γ∗, M and 5 equations:

G(12) = G0(12) +

∫
G0(13)(ΣH(34) +M(34))G(42)d34 (1.23a)

W (12) = Vcoul(12) +

∫
Vcoul(13)χ

∗(34)W (42)d34 (1.23b)

χ∗(12) = −ih̄
∫
G(13)G(41)Γ∗(342)d34 (1.23c)

Γ∗(123) = δ(12)δ(23) +

∫
δM(12)

δG(45)
G(46)G(75)Γ∗(673)d4567 (1.23d)

M(12) = ih̄

∫
G(13)W (41)Γ∗(324)d34 (1.23e)

This series of equations are called Hedin’s equations.[19][21]

1.3 GW Approximation

The 5 Hedin’s equations shown in the last section could be used to solve Green’s function,
self-energy, screened Coulomb interaction and so on self-consistently. But require challenging
computational power. A common approximation used is to take the first order of the vertex
function, namely:

Γ∗(123) = δ(12)δ(13) (1.24)

This reduces the Hedin’s equations to 4 self-consistent equations:

G(12) = G0(12) +

∫
G0(13)(ΣH(34) +M(34))G(42)d34 (1.25a)

W (12) = Vcoul(12) +

∫
Vcoul(13)χ

∗(34)W (42)d34 (1.25b)

χ∗(12) = −ih̄G(12)G(21) (1.25c)

M(12) = ih̄G(12)W (21) (1.25d)

This is called GW approximation because of the form of the self-energy M(12).
In practice, we start with Green’s function from DFT level:

G0(r1, r2;ω) = limη→0

∑
nk

ψDFT
nk (r)ψDFT∗

nk (r′)

ω − ϵDFT
nk + iη ∗ sgn(ϵDFT

nk − ϵF )
(1.26)

We use Eq. 1.25c to evaluate χ∗. The dielectric function could be calculated as

ϵ(12) = δ(12)−
∫
Vcoul(13)χ

∗(32)d3 (1.27)
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inverse the dielectric function, we obtain screened Coulomb interaction:

W (12) =

∫
ϵ−1(13)Vcoul(32)d3 (1.28)

Using Eq. 1.25d, we get the self-energy M(12), substitute into Eq. 1.25a, we complete the
self-consistent cycle and obtain the Green’s function for the next iteration(G1(12)). When
the self-consistent evaluation is converged, we obtain the final Green’s function, inversing it
gives us the quasi-particle Hamiltonian.

This quasiparticle Hamiltonian corresponds to the effective Hamiltonian of single-particle
excitations. It can be directly linked to experiments such as scanning tunneling microscope
measurements (STM), angle-resolved photoemission spectroscopy (ARPES), and others. All
of these measurements involve tunneling or extracting single electrons/holes from the system,
which is precisely the phenomenon that the above theory is designed to be applied to.

In reality, instead of doing fully self-consistent calculation, the most common practice is to
do a one-shot G0W0 calculation. That is to stop the evaluation after we obtain G1(12). The
GW method we will use in the later chapter is calculated via BerkeleyGW package [22][23].
For convenience, the package calculates each quantity in the reciprocal and frequency domain.

1.4 Bethe-Salpeter Equation

In the last section, we discussed about GW approximation to calculate quasi-particle
excitation which is inferred from single particle Green’s function. The result is generally used
to compare with experiment such STM and ARPES. Other experimental measurements such
as optical absorption introduce two particle excitation to the system. Namely, the electron
of the system absorbs the light and is excited to a higher energy state, leaving a hole behind.
The electron-hole interaction binds them together and an exciton is formed. The light excited
the system, creating a hole and an electron at the same time. This phenomenon is related
to two-particle correlation function:

L(1234) = −G2(1234) +G(12)G(34) (1.29)

where G(1234) is the two-particle Green’s function defined as

G2(1234) = (
−i
h̄
)2⟨0|T [cr1(t1)cr2(t2)c†r3(t3)c

†
r4
(t4)]0⟩ (1.30)

Using the L0 = G0(14)G0(32) for non-interacting system:

L(1234) = L0(1234) +

∫
L0(1265)K(5678)L(8734)d5678 (1.31)

where the kernel function K is defined as:

K(5678) =
δΣ(56)

δG(87)
=
δ(ΣH(56) +M(56))

δG(87)
(1.32)



CHAPTER 1. INTRODUCTION 7

Under GW approximation, and ignoring δW/δG:

K(5678) = ih̄
δ(ΣH(56) +G(56)W (65))

δG(87)
= −ih̄δ(56)δ(78)Vcoul(58) + ih̄δ(58)δ(67)W (65)

(1.33)
The kernel function could be constructed after the GW calculation, with screened Coulomb
interaction. To obtain the excitonic wavefunction and excitonic level, We expand L by [24]:

L(121′2′;ω) = i
∑
S

χS(r1, r
′
1)χ

∗
S(r

′
2, r2)

ω − ΩS
− χS(r2, r

′
2)χ

∗
S(r

′
1, r1)

ω + ΩS
(1.34)

where
χS(r, r

′) = −⟨0|c†r′cr|S⟩ (1.35)

|S⟩ is the two-particle excited state and ΩS denotes the excitonic energy level. If we assume
the ground state is single-particle DFT ground state, then χS(r, r

′) could be expanded by
single particle eigenstate from DFT calculation:

χS(r, r
′) =

occ∑
v

unocc∑
c

AS
vcψc(r)ψ

∗
v(r

′) (1.36)

We call AS
vc as the envelop function of the excitonic state. Using Tamm-Dancoff approxima-

tion (TDA) [25]-[26], the BSE equation using DFT results could be written as:

(ϵDFT
ck − ϵDFT

vk )AS
vck +

∑
v′c′

Kvck,v′c′k′A
S
v′c′k′ = ΩSAS

vck (1.37)

This equation is also implemented in BerkeleyGW package [24].
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Chapter 2

Topology Classification using Chiral
Symmetry and Spin Correlations in
Graphene Nanoribbons

In this chapter, we apply the topological classification theory using chiral symmetry to
graphene nanoribbons (GNRs). This approach eliminates the requirement of time-reversal
and spatial symmetry in previous Z2 topology theory, resulting in a Z classification with the
conventional Z index in a new vector-formed expression called “chiral phase index” (CPI).
Our approach is applicable to GNRs of arbitrary terminations and any quasi-one-dimensional
chiral structures, including magnetism. It naturally solves a recent experimental puzzle of
junction states at a class of asymmetric GNR junctions. We moreover derive a simple analytic
formula for the CPI of armchair GNRs. Since this approach enables access to electron spin
behavior, based on the CPI, we design a novel GNR with periodic localized moments and
strong spin-spin exchange coupling.

2.1 Introduction

Topology classification theory has broadly been applied to explain many physical phe-
nomena such as quantum Hall insulators,[27]-[28] quantum spin Hall insulators,[29],[30]
topological insulators, and superconductors.[31]-[32] However, the power of topology theory
has not been as widely used in quasi one-dimensional (1D) systems. The recently devel-
oped bottom-up molecular precursors technique enables the synthesis of atomically precise
graphene nanoribbons (GNRs).[33]-[34] These structurally precise 1D materials, with differ-
ent structures, have been predicted to possess band gaps due to quantum confinement and
interaction effects,[35],[36] while graphene is a semimetal. Since the discovery of distinct
topological phases in GNRs,[37] topology classification in GNRs has proven to be highly
successful in predicting the emergence of topological in-gap states localized at the bound-
aries and junctions of such GNRs.[37]-[38] However, for example, the topological origin of
the observed robust junction states between a bearded termination of armchair GNRs[39]
(AGNRs) and of the formation of a metallic 5-sawtooth-GNRs (5-sGNRs) based on in-gap
states[2] between segments of AGNRs is still unclear. In the former kind of junctions [Fig.
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2.3(c)], as spatial symmetry in the commensurate unit cell on both sides of the junction does
not exist, the previous Z2 topology theory based on spatial symmetry[37] loses its predictive
power. To overcome this conceptual issue, we utilize the topology classification theory using
chiral symmetry[40],[32],[41],[42] and apply this approach to GNRs.

2.2 Chiral Symmetry Topology Classification

Chiral symmetry generally exists in a honeycomb structure of similar atoms if the second-
nearest-neighbor interaction can be neglected. As discussed below, we note that spatial
and time-reversal symmetries can exist exactly in many 1D structures (even with a strong
second-nearest-neighbor interaction); however, chiral symmetry can be used as an excellent
approximate symmetry for GNR structures, especially when other symmetries do not ex-
ist. Mathematically, chiral symmetry for a system with Hamiltonian H refers to having an
operation Γ satisfying[40]

H = −ΓHΓ−1,ΓΓ† = 1,Γ2 = 1 (2.1)

The operation Γ does not depend on any specific spatial coordinates, and thus it can easily
be preserved when a crystal system is terminated at a boundary. Chiral symmetry exists in
bipartite lattices, in which the system can be divided into two sublattices, A and B, such that
after an appropriate energy shift there are only nonzero interaction matrix elements between
basis functions on the different sublattices. For such a system, Eq. (2.1) is satisfied by using
an atomic-site orbital basis and setting Γ to a diagonal matrix with matrix elements equal
to 1 for the A sublattice part and -1 for the B sublattice part. Graphene is a bipartite lattice
system within a tight-binding formalism, with only first-nearest-neighbor hopping included.
Within this spirit, we may analyze the electron topological properties of GNRs or any other
approximate bipartite 1D structures, using chiral symmetry, and treat subsequently small
second-nearest-neighbor or other chiral-symmetry-breaking effects perturbatively. To derive
the bulk index for the GNRs and other bipartite quasi-1D systems, we use a first-nearest-
neighbor tight-binding model and follow the standard Fermion-projector method.[40],[32]
The Fermion projector is a Hermitian operator defined as

Qk =
Nunocc∑

n

|ψnk⟩⟨ψnk| −
Nocc∑
n

|ψnk⟩⟨ψnk| (2.2)

where |ψnk⟩ stands for Bloch states of band n and wavevector k. Nunocc is the number of
unoccupied bands, and Nocc = Nunocc is the number of occupied bands. Qk can be understood
as a continuous deformation of the original Hamiltonian in k-space Hk, which has a gapped
spectrum around the charge-neutrality energy, by moving energies of the occupied bands
to -1 and unoccupied ones to 1, while keeping the eigenvectors unchanged. Under chiral
symmetry, Qk could be brought into an off-diagonal form using localized site basis. In the
case of GNRs, we use the π orbitals of the carbon atoms. Under such basis, Qk could be
written in the matrix form

Qk =

[
0 Uk

U †
k 0

]
(2.3)
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Combined with the above properties, it was proved that Uk belongs to a unitary group
U(Nocc); the classification is given by the homotopy group π1(U(Nocc)) = Z, and the bulk
index is the first odd Chern number written as [38], [42]

Ch1(U) =
−i
2π

∫
1DBZ

Tr(U †
k∂kUk)dk (2.4)

2.3 Chiral Phase Index

Although Eq. 2.4 has been broadly used in mathematics, it is inconvenient to use the
matrix form to evaluate physical quantities. Here, we use the properties of the wave functions
under chiral symmetry to bring the bulk index given in Eq. 2.4 equivalently into a vector
form, which we shall call such bulk index for reasons below as a chiral phase index (CPI).

From Eq. 2.1, We know that Hamiltonian Hk anti-commute with the chiral operator Γ,
that is HkΓ = −ΓHk. This gives us the following properties in the eigen-wavefunctions

HkΓ|ψnk⟩ = −ΓHk|ψnk⟩ = −EnkΓ|ψnk⟩ (2.5)

Written in the atomic base, we have

Γ

(
αnk

βnk

)
=

(
αnk

−βnk

)
=

(
αmk

βmk

)
(2.6)

where the eigen-energy Em and En satisfy Em = −En. αnk and βnk are vectors representing
the A sublattice components and the B sublattice components, respectively. I will show in
the following that Eq. (2.4) could be brought into vector form

Z =
−i
π

∑
n∈occ

inter(

∫
1DBZ

⟨unk|Γ∂k|unk⟩dk) (2.7)

Here inter means taking only the intercell part of the above expression.[43] unk is the periodic
part of the Bloch states. Using expression in Eq. (2.6), We could rewrite the matrix Uk as

Uk =
Nunocc∑

n

αnk ⊗ β†
nk −

Nocc∑
m

αmk ⊗ β†
mk = −2

Nocc∑
n

αnk ⊗ β†
nk (2.8)

For convenience, we define the band index to start with -Nocc and end at Nunocc. Now the
positive index denotes the unoccupied bands and the negative index denotes the occupied
bands. With this labeling, we could rewrite the relation in Eq. (2.6) as Γunk. Before
deriving Eq. (2.7), We need some useful identities. Noting that the wavefunctions from
different bands can be made orthogonal at the same k points, unk is orthogonal to umk and
u−mk if n ̸= m. This yields:∑

i

αi∗
nkα

i
mk + βi∗

nkβ
i
mk = 0 (for n ̸= m) (2.9a)

∑
i

αi∗
nkα

i
nk + βi∗

nkβ
i
nk = 1 (2.9b)
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i

αi∗
nkα

i
mk − βi∗

nkβ
i
mk = 0 (2.9c)

where i labels the basis index in the unit cell, and subsequently we have:∑
i

αi∗
nkα

i
mk = 0 (for n ̸= m) (2.10a)

∑
i

αi∗
nkα

i
nk =

1

2
(2.10b)

∑
i

βi∗
nkβ

i
mk = 0 (for n ̸= m) (2.10c)

∑
i

βi∗
nkβ

i
nk =

1

2
(2.10d)

Substitute Eq. (2.8) into Eq. (2.4) and use the relations in Eq. (2.10), we have:

Ch1 (U) =
−i
2π

∫
1D BZ

Tr
(
U †
k∂kUk

)
dk (2.11a)

=
−i
2π

∫
1D BZ

∑
i,j

Nocc∑
n,n′

4
(
αj
nkβ

i∗
nk

)∗
∂k
(
αj
n′kβ

i∗
n′k

)
dk (2.11b)

=
−i
2π

∫
1D BZ

dk 4
∑
i,j

Nocc∑
n,n′

αj∗
nkβ

i
nk∂k(α

j
n′k)β

i∗
n′k + αj∗

nkβ
i
nk∂k

(
βi∗
n′k

)
αj
n′k (2.11c)

=
−i
2π

∫
1D BZ

dk 2
∑
i

Nocc∑
n

αi∗
nk∂k(α

i
nk) + βi

nk∂k
(
βi∗
nk

)
(2.11d)

=
−i
2π

∫
1D BZ

dk 2
∑
i

Nocc∑
n

αi∗
nk∂k(α

i
nk)− βi∗

nk∂k
(
βi
nk

)
(2.11e)

Eq. (2.11e) can be derived using relation
∑

i ∂k (β
i∗
nkβ

i
nk) = 0. This thus proves Eq. (2.7), or

alternately

Z =
−i
π

∫
1D BZ

dk
∑
n∈occ

(
α†
nk∂kαnk − β†

nk∂kβnk

)
(2.12)

Eq. (2.12) requires only the knowledge of the occupied wavefunctions, rather than full
information of the Hamiltonian matrix, and is very convenient in calculating the bulk-index
analytically We want to point out that the CPI is very different from that of an index
obtained with the intercell part of the Zak phase used in the previous work[37],[44],[45] ,
namely, the intercell Zak phase is given by

∑
n∈occ inter

(∫
1DBZ

⟨unk |∂k|unk⟩ dk
)
. The CPI

is determined by the difference between the intercell part of the Zak phase contributed by
the A sublattice and that contributed by the B sublattice rather than the sum of these two
parts, and yields a Z classification rather than a Z2 classification.



CHAPTER 2. TOPOLOGY CLASSIFICATION USING CHIRAL SYMMETRY AND
SPIN CORRELATIONS IN GRAPHENE NANORIBBONS 12

An important general consequence of Eq. (2.7) is that the CPI is fully gauge-invariant.
Applying a gauge transformation to the wavefunction, αnk → αnke

ifn(k) and βnk → βnke
ifn(k),

from Eq. (2.7), the CPI changes to:

Z =
−i
π

∫
1DBZ

dk
∑
n∈occ

(
α†
nk∂kαnk − β†

nk∂kβnk

)
+

1

π

∫
1D BZ

dk
∑
n∈occ

(
α†
nkαnk∂kfn (k)− β†

nkβnk∂kfn (k)
) (2.13a)

=
−i
π

∫
1D BZ

dk
∑
n∈occ

(
α†
nk∂kαnk − β†

nk∂kβnk

)
+ 0 (2.13b)

From Eq. (2.13a) to Eq. (2.13b), we have used the relation given by Eq. (2.10). This
gauge-invariant property is an essential character of the CPI, leading to its value being an
integer number of any value, in contrast with the Zak phase which could only be 0 or π(i.e.,
Z2 = 0 or 1). We would also like to address that chiral phase index is only defined for the
charge neutrality gap since chiral symmetry in the form of Eq. (2.3) has been used.

As a gauge-invariant quantity, the CPI is expected to be a measurable quantity. While the
Zak phase in 1D connects with the modern theory of polarization[46], the CPI can be related
to the difference between the electric dipole moments per unit cell of the two sub-lattices.
However, a most straightforward way of measuring CPI would be counting the number of
topological end states at the end of the system with vacuum. This quantity is connected to
the bulk-index (of a unit cell commensurate to the boundary termination) by using the bulk-
boundary correspondence as given in [42]: Zbulk = N+ −N− for a system that is terminated
to the right. N+(−) is the number of zero-mode with positive (negative) chirality. States
with positive (negative) chirality localize only on the A (B) sublattice. (For an AGNR, the
convention used here is that, along a zigzag chain of atoms traversing across the width of the
ribbon, the atom on the right is denoted as sublattice A and that on the left is denoted as
sublattice B. See Fig. 2.3(b)). The number of protected in-gap end states would be equal to
the number of mid-gap states of one chirality in excess over the other chirality, since pairs of
states of opposite chirality can interact through perturbations at the end and move out of the
bulk gap. In short, through the bulk-boundary correspondence, the CPI contains two pieces
of important information at the termination of the system. Firstly, |Z| gives the number of
end states that are protected by chiral symmetry; and secondly, sgn(Z) gives the chirality
of the end states[42]. Moreover, the bulk-boundary correspondence applies when two such
bulk materials with distinct CPIs are joined and topological-protected junction states are
formed. One can show that the number of topological junction states, as two bulk structures
with bulk index Z left

bulk and Zright
bulk are joined, is N+ −N− = Z left

bulk − Zright
bulk .

2.4 General Z Index for AGNRs

We now obtain an explicit expression for the CPI of AGNRs with different widths and
end terminations using Eq. (2.12). The tight-binding wavefunctions of the GNRs may be
analytically calculated from a linear combination of graphene’s wavefunctions with proper
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boundary conditions[37]. To get an analytic form of the CPI or Z index of an armchair
graphene nanoribbon (AGNR) for a specific unit cell, we evaluate the orbital wavefunctions
of the nanoribbons from those of graphene within a first-nearest-neighbor interaction model,
namely:

HGr
k =

(
0 −t− te−ikx

√
3a
2

+iky
a
2 − te−ikx

√
3a
2

−iky
a
2

−t− teikx
√
3a
2

−iky
a
2 − teikx

√
3a
2

+iky
a
2 0

)

Diagonalizing this matrix, we get the periodic part of the Bloch wavefunction:

u±Gr (k) =
1√
2

(
e−iϕ(k)

∓1

)
(2.14)

where + and - sign denotes the unoccupied and occupied π bands of graphene, and

e−iϕ(k) =
hx (k)− ihy (k)√
h2x (k) + h2y (k)

(2.15)

where

hx (k) = 1 + 2 cos

(
kya

2

)
cos

(√
3kxa

2

)
,

hy (k) = 2 cos

(
kya

2

)
sin

(√
3kxa

2

) (2.16)

Here, the x-direction is taken along the armchair direction (see Fig. 2.1), a is the length
of the lattice vector of graphene, k is the wavevector measured from the Dirac point in the
graphene Brillouin zone, and we have expressed all energies in units of the first-nearest-
neighbor hopping energy t. The unit cell and lattice vectors of graphene are shown in
Fig. 2.1. Within this model and assuming that the hopping parameter does not change in
forming the AGNR, the wavefunctions of the AGNR can be obtained by a linear combination
of graphene’s wavefunctions with proper boundary conditions.

To begin our analysis, we first consider an AGNR with a specific unit cell that is com-
mensurate to a bearded termination at the end of the nanoribbon as illustrated in Fig. 2.1.
(A bearded termination at an AGNR end is defined to be one with a structure similar to the
unit cell edge shown in Fig. 2.3(c) of the main text. Such an end termination has every pair
of horizontal carbon atoms connected.) Within the tight-binding formalism, the appropri-
ate boundary condition is that the amplitude of the wavefunction on the site of the virtual
atoms beyond the nanoribbon side edge has zero magnitude (e.g., on atom 1 and atom 2 in
Fig. 2.1). From the expression of hx (k) and hy (k), we have ϕ (kx, ky) = ϕ(kx, −ky). This
symmetry, along with the standing wave condition [37] (defining N to be the number of rows
of carbon atoms forming the AGNR’s width)

kya (N + 1)

2
= nπ (2.17)
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Figure 2.1: AGNR on the backbone of graphene. The darken vertices and lines correspond
to carbon atoms and bonds of the AGNR, respectively. The atoms in an AGNR unit cell
that are commensurate to a bearded termination (red dashed-line rectangle) are labeled 3
to 16, and the lattice vectors of pristine graphene are also shown. The unit cell of graphene
is shown by the red-shaded region.
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with n = 1, 2 . . . N , ensures that, for any kx, a symmetric combination of graphene states
at ky and −ky (with ky satisfying Eq. (2.17)) will satisfy the required boundary condition.
Thus, for each kx, and each band of graphene, we have N pairs of (ky,−ky) forming N AGNR
bands. From the orthogonalization of the graphene wavefunctions, the AGNR’s eigenstates
as constructed are also orthogonal to each other. Since in total we have 2N bands (equal to
the number of atoms in a N-AGNR’s primitive unit cell), they are also complete within the
defined Hilbert space.

Since the wavefunction of the empty states of a bipartite system is related to those of
the occupied states, we may also use the empty states to evaluated the CPI from Eq. (2.7).
The wavefunction of the empty bands of the AGNR with a unit cell consistent with bearded
termination can now be written as a 2N column vector in the basis of π orbitals on the
atoms (for the specific case of N = 7, on atoms 3 to 16 as shown in Fig. 2.1):

uky (kx) =
i√

(N + 1)



e
ikx

√
3

2
asin(kya

2
)e−iϕ(k)

−e ikx
√
3

2
asin(kya

2
)

sin(kya)e
−iϕ(k)

−sin(kya)
.
.
.

e
ikx

√
3

2
asin(ky(N−1)a

2
)e−iϕ(k)

−e ikx
√
3

2
asin(ky(N−1)a

2
)

sin(kyNa

2
)e−iϕ(k)

−sin(kyNa

2
)



(2.18)

Substitute it into Eq. (2.7), we have:

Z =
∑
ky

N∑
m=1

−1

2π(N + 1)

(
1− cos (kyma)

2

)[
2ϕ

(
2π√
3a
, ky

)
− 2ϕ (0, ky)

]
(2.19)

To derive an analytic formula for the value of Z of the AGNRs, we need to investigate
the change of the phase 2ϕ(k) as one scans through the range of distinct kx for a given ky.
From the expression of hx(k) and hy(k), we could see that the value of 2ϕ(k) depends on
the value of ky. As shown in Fig. 2.2, for the bearded termination, if kya/2 resides in the
range

(
1
3
π, 2

3
π
)
, the change in 2ϕ(k) along kx is zero, corresponding to a winding number of

zero around the origin for the function hx(k) + ihy(k) in the complex plane. If it resides in
(0, 1

3
π) ∪ (2

3
π, π), the change in 2ϕ(k) is 2π, corresponding to a winding number of 1. If the

width of the AGNR is N = 3p+ 2, with p an integer, kya/2 = 1
3
π or 2

3
π is possible. In this

case, the winding is ambiguous and our näıve tight-binding model suggests that this type of
AGNR is a metal. We will first focus on the case of N = 3p or 3p + 1, and later treat the
special case of N = 3p+ 2.

For N = 3p or 3p + 1, and using Eq. (2.17) which gives kya

2
= nπ

N+1
, n = 1, 2 . . . N , the

number of kya

2
that contribute to nonzero winding is

⌊
N+1
3

⌋
∗ 2. Now Eq. (2.19) becomes:

Z = −
⌊
N + 1

3

⌋
(2.20)
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Figure 2.2: The property of ϕ(k) along kx with different given ky. Plotted in each panel is
the value of hx(k)+ ihy(k) in Eq. (2.14) in the complex plane. In the plot, the parameter kx
goes from 0 to 4π/(

√
3a) rather than 2π/(

√
3a). In this way, we obtain the change in value

of 2ϕ(k) used in Eq. (2.19) and explicitly see the winding of the function hx(k) + ihy(k)
around the origin. When (kya)/2 < π/3 or (kya)/2 > 2π/3, the change in 2ϕ(k) is 2π,
and the winding number of the function hx(k) + ihy(k) around the origin is one. When
π/3 < (kya)/2 < 2π/3, the change in 2ϕ(k) is 0 and the winding number is zero. When
(kya)/2 = π/3 or 2π/3, the change in 2ϕ(k) depends sensitively on any possible perturbation.
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We have used the relation:
∑N

m=1 cos
(
2nmπ
N+1

)
= −1. As stated above, the specific unit cell of

the AGNR that we considered so far is the one with the bearded termination. The CPI or
Z index for other nanoribbon end terminations (and hence having different shapes of bulk
commensurate unit cells) can be obtained starting from the bearded termination analysis
plus a gauge change. By choosing a different unit cell, we will have new wavefunctions
with some components differed by a phase factor e±ikx

√
3a. These phases contribute an extra

term to the chiral phase index, making the value of the Z-index to be different for different
terminations. Taking this extra phase into consideration, we arrive at the general formula:

Z = Nnotco −
⌊
N + 1

3

⌋
(2.21)

where Nnotco is defined as the number of rows of atoms with carbon pairs not connected by
σ bonds within the unit cell as defined in Fig. 2.3.
Next, we investigate the special case of N = 3p + 2 for the bearded termination in some

details. Although the simple tight-binding model predicts this class of AGNRs to be metals,
DFT and other higher-level calculations have shown that this type of AGNRs is insulating
due to structural relaxation of the atoms (and hence their hopping parameters) at the side
edge [35]. The edge modification can be considered in the tight-binding model by adding
a perturbation on the hopping parameter of the edge atoms. Without the perturbation,
the band gap is closed at the Fermi level at kx = 0 and kx = π√

3a
. The two degenerate

wavefunctions at the Γ point (kx = 0) in the basis of π orbitals are:

u+kya

2
= 2π

3

(kx = 0) =
i√

(N + 1)


−

√
3
2

−
√
3i
2

.

.

.



u−kya

2
= 2π

3

(kx = 0) =
i√

(N + 1)


−

√
3
2√
3i
2

.

.

.

 (2.22)

Due to a shorter bond length found in previous studies, the atoms at the edge (atoms 3
& 4 and atoms 15 & 16) have slightly bigger hopping parameters, which can be considered
through a perturbation matrix:

0 −∆t 0 . . .
−∆t 0 0 . . .
0 0 0 . . .
...

...
...

. . .

0 0 0 −∆t
0 0 − ∆t 0


(2.23)
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Figure 2.3: Armchair graphene nanoribbon (AGNR) is specified by the number of carbon
rows N forming its width, labeled as N-AGNR. (a) Structure of 7-AGNR (bold region) from
the graphene backbone background. a is the length of the lattice vector of graphene. The σ
bond of the edge atoms of GNRs are typically passivated by hydrogen atoms in experiment.
(b) Unit cell of a 7-AGNR with zigzag termination, the rows with two carbon connected by a
σ bond within the unit cell (connected carbons), and the rows with two carbon not connected
by a σ bond within the unit cell (not connected carbons) are indicated. This case corresponds
to having 3 rows of not connecting pairs, Nnotco = 3. (c) An asymmetric junction of 7-AGNR
and 9-AGNR with bearded termination. The corresponding commensurate bulk unit cells
for the two segments are shown on the sides, and the 5% isosurface of the wavefunction
square (blue color) of the in-gap junction state from DFT-LDA calculation is shown in the
middle.

This perturbation breaks the energy degeneracy of the two wavefunctions in Eq. (2.22).
Using degenerate perturbation theory, the new conduction band minimum wavefunction is
approximately equal to, in the lowest order:

u+kya

2
= 2π

3

(kx = 0) =
i√

(N + 1)


√
3i
2

−
√
3i
2

.

.

.

 (2.24)

Compared to Eq. (2.18), the new wavefunction equals to the old conduction band minimum

wavefunction after changing from ϕ
(
kx = 0, kya

2
= 2π

3

)
= −π

2
to 0. Thus, the trajectory in

Fig. 2.2(e) will change. The starting point that originally at (0, 0) shifts to the right slightly
to (ϵ, 0), making the change in 2ϕ (k) vanish for kya

2
= 2π

3
. A similar phenomenon happens
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for the X point (kx = π√
3a
). The change in 2ϕ (k) vanishes for kya

2
= π

3
. In conclusion, the

number of kya

2
that contribute to nonzero winding is (

⌊
N+1
3

⌋
− 1) ∗ 2 for N = 3p + 2. It

is also straightforward to show that the number of nonzero winding contributions, which is
(
⌊
N+1
3

⌋
− 1) ∗ 2 for N = 3p + 2 and

⌊
N+1
3

⌋
∗ 2 for N = 3p, 3p + 1, can now be unified into

a single expression
⌊
N
3

⌋
∗ 2 for an arbitrary integer N , leading to the chiral phase index for

any AGNR with arbitrary width N and arbitrary end termination to be equal to:

Z = Nnotco −
⌊
N

3

⌋
(2.25)

Here N is the total number of rows of carbon atoms forming the width of the AGNR[35]
and Nnotco is the number of rows of atoms with carbon pairs not connected by σ bonds
within the specific unit cell that is commensurate to an anticipated termination. The topless
brackets denote the floor function which takes the largest integer less than or equal to the
value within the brackets. The definition of connected carbon pairs (with distance close to
a/

√
3) and unconnected pairs (with distance close to

√
3a/2) are shown in Fig. 2.3(b). Eq.

(2.25) is deceptively compact and simple, as well as easy to evaluate, yet an essential finding
of the analysis.

With the Z classification using chiral symmetry, the in-gap junction states localized at
the asymmetric junction in Fig. 2.3 formed by bearded termination of 7-AGNR and 9-AGNR
observed in experiment[39][2] could now be well explained. The bearded 7-AGNR unit cell
has Z = 2, while the bearded 9-AGNR unit cell has Z = −3, giving rise to one protected
in-gap state at the junction as confirmed by our explicit density functional theory (DFT)
calculations within the local-density approximation (LDA) as implemented in the Quantum
Espresso package[17]. Since Z left

bulk − Zright
bulk = +1, the junction state has amplitudes only on

the A sublattice (Fig. 2.3(c)).

2.5 Topological Spin Chains

Eq. (2.25) can be applied to AGNRs of any general termination types that preserve chiral
symmetry, not limited to the common studied zigzag, zigzag’, or bearded types[37]. As shown
in Fig. 2.4(a), the zigzag termination of 7-AGNR has Z = 1 and the “bullet” termination of
9-AGNR has Z = −1. When terminated to the vacuum, one in-gap end state exists at the
termination of each structure. Nevertheless, the two corresponding bulk structures belong
to different classes because of the opposite sign of the CPI. Two topologically protected
junction states should occur when these two structures are joined, as confirmed by DFT-
LDA calculation (Fig. 2.4(b)). A simple physical understanding of why these two in-gap
localized states do not hybridize significantly with each other at the junction and move out of
the gap is that they are localized on the same sublattice. Any interaction allowing hopping
between the same sublattice would have to break chiral symmetry. In principle, for physical
AGNR junctions, there may be a small energy splitting between the two junction states due
to second-nearest-neighbor hopping. Our DFT-LDA results show that such splitting due to
the breaking of chiral symmetry is minimal in this case. Remarkably, if the electron spin
degree of freedom is considered, the junction states depicted in Fig. 2.4(b) would couple to
each other ferromagnetically if one can arrange for the atomic structure of such a junction
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Figure 2.4: (a) Left: a 7-AGNR with zigzag termination is shown; the unit cell commensurate
with the termination has 3 rows of unconnected carbons pairs and Z = 1. Right: a “bullet”
termination of 9-AGNR is shown. Its commensurate unit cell has 2 rows of unconnected
carbons pairs and Z = −1. (b) Joining the two structures in (a) results in a junction with
∆Z = 2, giving rise to two in-gap junction states. The 5% isosurface of the wavefunction
square of the two junction states from a DFT-LSDA calculation are shown in blue. Here
only the occupied spin-up states are shown. One state localizes in the 7-AGNR region; the
other localizes in the 9AGNR region.
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Figure 2.5: (a) Computed DFT-LSDA band structure of a periodic GNR spin chain structure
(unit cell shown by insert). Top of the occupied bands is set at zero. The in-gap bands (in
window -0.1 to 0.3 eV) are nearly flat, indicating negligible hopping between neighboring
junction states. A spin-splitting of 0.2 eV occurs between oppositely oriented spin bands;
the two majority-spin (spin-up) bands are occupied, leaving their spin-down counterparts
empty. Each unit cell has two Bohr magnetons of magnetization. (b) The isosurface at 5% of
the wavefunction square of the two occupied junction states at k = Γ is shown (blue color).
One is localized in the 9-AGNR region while the other is localized in the 7-AGNR region.

to have locally a sublattice imbalance of two carbon atoms, according to Lieb’s theorem[47].
And if such junctions were repeated into a 1D superlattice, a 1D ferromagnetic spin chain
would form. The insert in Fig. 2.5(a) illustrates the unit cell of such a superlattice we
designed. Since each superlattice unit cell has a sublattice imbalance of two atoms, we
have a net magnetization of two Bohr magnetons per unit cell. We have confirmed this
prediction by performing a DFT-LSDA calculation, and the magnetization is found to be
mainly contributed by the two occupied symmetry-protected junction states (Fig. 2.5), in
agreement with the conclusion of our topology theory and Lieb’s theorem. Since the direct
exchange coupling J between two electron spins is proportional to their wavefunction overlap,
having the two states mainly localized near the same junction is expected to give rise to a
strong exchange coupling. To analyze the magnetic properties of such a chain, we map the



CHAPTER 2. TOPOLOGY CLASSIFICATION USING CHIRAL SYMMETRY AND
SPIN CORRELATIONS IN GRAPHENE NANORIBBONS 22

Figure 2.6: (a) Schematic of a 1D GNR spin chain (Fig. 2.5) and exchange interactions (J1
and J2). (b) Three different spin configurations are considered in first-principles DFT-LSDA
calculations to extract the exchange coupling parameters. (c) Spin-spin correlation length
(in unit of lattice vector and log scale) as a function of temperature from a classical canonical
ensemble of 1D Ising model.

LSDA results to those of a 1D Ising model Hamiltonian with two spins per unit cell:

H =
∑
i

J1ŝi,1z ŝi,2z + J2ŝi,2z ŝi+1,1z (2.26)

where i denotes the unit cell index. To extract the coupling strengths, J1 and J2, from
first-principles calculations, we consider three different spin configurations shown in Fig.
2.6(b) and performed DFT-LSDA studies. The three configurations correspond to states
with total energy/unit cell of 1

4
J1 +

1
4
J2 , −1

4
J1 − 1

4
J2, and

1
4
J1 − 1

4
J2, respectively. Using

the total energy differences from our first-principles calculations under constrained LSDA,
we obtain J1 = −87meV/h̄2 and J2 = −30meV/h̄2, making them parameters for a stronger
ferromagnetic (FM) 1D systems compared to what has been achieved before[48]. Since
exchange coupling decays exponentially with distance[37], we estimate the second nearest
neighbor exchange to be around −6meV/h̄2 and can be ignored in our model.

Due to thermal fluctuation effects, it is known that there is no long-range magnetic
order at finite temperature in 1D structures with isotropic spin interactions, according to
the Mermin-Wagner theorem[49]. Thus, the meaningful quantity one should consider is the
spin-spin correlation length. As a rough estimate of this quantity, we may use a canonical
ensemble of 1D Ising model with partition function:

Z =
∑
{sαi}

e−βH({sαi}) (2.27)
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The spin-spin correlation length, defined as a = −R/ln⟨sαisα,i+R⟩, where R is the distance
between two spins, can be calculated analytically by treating the spins classically. Evalu-
ating the expectation value and expressing it as a function of the coupling strengths and
temperature, we have[50]:

a = − 2

ln(|tanhβJ1|) + ln(|tanβJ2|)
(2.28)

where β = 1/kBT . The temperature dependence of the correlation length in this model is
plotted in Fig. 2.6(c). At 3K (at which low-temperature STM measurements typically are
done), the spin correlation length is expected to be at the tens-of-nanometers scale. The
strong coupling strength and long correlation length of such designed GNRs should open up
applications to spin qubits[51] and spin-dependent transport[52] through nanostructures.

2.6 Stability of the Electronic Structure upon Doping

In practice most GNRs are synthesized on a gold substrate; doping and hybridiza-
tion/screening effects of gold tend to reduce the magnetic order [38]. We found that, within
LSDA at T = 0, the FM order remains stable up to a transfer of 1.5 electrons per unit cell
into the system. Fig. 2.7 shows the doping dependence of the band structure of the periodic
spin chain discussed in the main text. The spin-splitting character of the topological bands
is well established up to one electron or one hole doping per unit cell, while the spin-up and
spin-down bands start to merge if 1.5 electrons or 1.5 holes per unit cell are doped into the
system. As a final remark, we would like to point out that the present classification theory,
together with our simple analytic expression for Z of AGNRs, could be applied generally to
generate a variety of spin configurations. One could design junctions with arbitrary numbers
of coupled localized spin states; and by controlling how the junctions are connected, either
FM or AFM coupling between junctions could be realized. The theory may also be applied
to other 1D chiral structures, such as the 1D chiral GNRs which could be synthesized[53].
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Figure 2.7: The band structure of the in-gap spin-polarized states of a sawtooth AGNR
(composed of segments of AGNRs in a superlattice with a periodic spin chain structure)
in the DFT-LSDA approximation under different level of doping. The spin-splitting of the
bands is seen up to more than one electron or hole doping per unit cell.
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Chapter 3

Inducing Metallicity in Graphene
Nanoribbons via Zero-Mode
Superlattices

In this chapter, we introduce the application of the topological states in graphene nanorib-
bons in building metallic nanowires. The design and fabrication of robust metallic states
in graphene nanoribbons (GNRs) is a significant challenge since lateral quantum confine-
ment and many-electron interactions tend to induce electronic band gaps when graphene is
patterned at nanometer length scales. Recent developments in bottom-up synthesis have en-
abled the design and characterization of atomically-precise GNRs, but strategies for realizing
GNR metallicity have been elusive. Here we demonstrate a general technique for inducing
metallicity in GNRs by inserting a symmetric superlattice of zero-energy modes into oth-
erwise semiconducting GNRs. We verify the resulting metallicity using scanning tunneling
spectroscopy as well as first-principles density-functional theory and tight- binding calcula-
tions. Our results reveal that the metallic bandwidth in GNRs can be tuned over a wide
range by controlling the overlap of zero-mode wavefunctions through intentional sublattice
symmetry-breaking.

3.1 Introduction

Extended two-dimensional (2D) graphene is renowned for being a gapless semimetal, yet
when it is laterally confined to nanometer-scale one-dimensional (1D) ribbons a sizable energy
gap emerges[35], [36]. Unlike carbon nanotubes (which can exhibit metallicity depending on
their chirality), isolated armchair and zigzag graphene nanoribbons (GNRs) always feature
a band gap that scales inversely with the width of the ribbon[36]. This is a selling point for
GNRs since it makes them attractive as transistor elements for logic devices at the ultimate
limits of scalability[54]. But it is also a limitation since metallic GNRs would be valuable
as device interconnects and could create new opportunities for exploring novel 1D phenom-
ena such as Luttinger liquids [55][56][57], plasmonics [58]-[59], charge density waves [60][61],
and superconductivity[62][63]. Thus far, the finite band gaps of GNRs synthesized using
atomically-precise bottom-up fabrication techniques [33]-[34] have been consistent with semi-
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conducting theoretical predictions. New opportunities for achieving GNR metallicity arise
from emergent topological concepts that allow the placement of topologically-protected junc-
tion states at predetermined positions along the GNR backbone[37][64][38][39][44]. These
localized states each contribute a single unpaired electron at mid-gap to the electronic struc-
ture (i.e., at E = 0) and so judicious placement of such zero-mode states raises the possibility
of creating new metallic and magnetic configurations. Thus far, however, only semiconduct-
ing GNRs have been fabricated and theoretically studied using this technique[38][39].

3.2 Design 1D Metallic GNRs

Here we demonstrate a general approach for designing and fabricating metallic GNRs us-
ing the tools of atomically-precise bottom-up synthesis. This is accomplished by embedding
localized zero-mode states in a symmetric superlattice along the backbone of an otherwise
semiconducting GNR. Quantum mechanical hopping of electrons between the adjacent zero-
mode states results in a metallic band as predicted by elementary tight-binding electronic
structure models[65]. Using scanning tunneling spectroscopy (STS) and first-principles theo-
retical modeling, we find that zero-modes confined to only one of graphene’s two sublattices
(i.e., sublattice-polarized states) result in narrow-band metallic phases that reside at the
border of a magnetic instability. The metallic bandwidth of these GNRs, however, can be
increased by more than a factor of 20 by intentionally breaking the GNR bipartite symmetry,
thus resulting in robust metallicity. This is accomplished by inducing the formation of just
two new carbon-carbon bonds per GNR unit cell (each unit cell contains 94 carbon atoms in
the bottom-up synthesized GNRs presented here). This dramatic change in electronic struc-
ture from a seemingly minor chemical bond rearrangement arises from the loss of sublattice
polarization that accompanies broken bipartite symmetry. This concept provides a useful
new tool for controlling GNR metallicity and for tuning GNR electronic structure into new
physical regimes.

Our strategy for designing metallic GNRs is based on a simple theorem: if a piece of
graphene has a surplus of carbon atoms (∆N) on sublattice A versus sublattice B, then
this results in a minimum of ∆N = NA–NB eigenstates localized on the A sublattice at E
= 0 (“zero-modes”) that are each occupied by one electron. Here NA (NB) is the number
of atoms residing on sublattice A (B) This can be derived from 1st nearest neighbor tight-
binding model. Within this model, the π-orbitals of carbon atoms of a single-layer graphene-
based materials possess a bipartite lattice. The Hamiltonian of a bipartite lattice has chiral
symmetry and thus can be written as

Ĥ1st =

(
0 H†

nm

Hnm 0

)
(3.1)

Where m and n are the number of atoms belonging to the A and B sublattices, respectively,
and N = m+ n is the total number of atoms in the unit cell. Here we are only considering
π orbitals so Ĥ1st is an N × N matrix and Hnm is an n × m matrix. For the sGNR,
∆N = m − n = 2 within the unit cell. We want to find the zero-modes of the sGNR
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Hamiltonian. This means we need to find eigenvectors ψ0 satisfying:(
0 H†

nm

Hnm 0

)
ψ0 = 0 (3.2)

ψ0 can be expressed using an atomic π-orbital basis:

ψ0 =



A1

.

.
Am

B1

.

.
Bn


(3.3)

The first m components represent the magnitude of the projection of ψ0 onto the atomic
orbitals belonging to the A sublattice and the remaining n components correspond to the B
sublattice amplitudes. Substituting Eq. (3.3) into Eq. (3.2) and setting all n coefficients on
the B sublattice basis to zero (i.e. looking for A sublattice-polarized zero-modes), we have:

Hnm


A1

.

.
Am

 = 0 for any n (3.4)

With m variables and only n constraints (∆N = m − n > 0), this under-constrained set of
homogeneous linear equations must have at least ∆N non-trivial solutions. In other words,
there will be at least ∆N completely flat zero-mode bands (ZMBs) at EF that possess
states that are polarized to the A sublattice. This demonstrates that the chiral symmetry
of the GNR bipartite lattice can be exploited to produce ∆N sublattice-polarized flat bands
by introducing a sublattice imbalance ∆N within the GNR unit cell. For the sGNR, we
therefore expect there to be two ZMBs.

Within this framework, second nearest-neighbor hopping acts as a perturbation on the
original Hamiltonian (3.1), introducing a small dispersion to the sGNR ZMBs. For the 5-
sGNR, the formation of five-membered rings disrupts the bipartite lattice since two carbon
atoms from the same sublattice are connected. This can be seen as a perturbation to (3.1)
on the order of the first nearest-neighbor hopping, causing a much larger dispersion for the
5-sGNR ZMBs compared to those of the sGNRs.

Expanding this idea to 1D GNR systems with a periodic sublattice imbalance, one can
construct a low-energy effective tight-binding model to describe the resulting electronic bands
by introducing a parameter, t, that represents electron hopping between adjacent zero-modes.
This concept can be used to design metallic GNRs by providing them with a unit cell that
contains a surplus of two carbon atoms on sublattice A (∆N = 2). Under this construction,
there are two relevant hopping amplitudes, the intra-cell hopping amplitude (t1) and the
inter-cell hopping amplitude (t2). A tight-binding analysis of this situation leads to the
well-known Su-Schrieffer-Heeger (SSH)[65] dispersion relationship for the zero-mode bands:

E±(k) = ±
√

|t1|2 + |t2|2 + 2|t1||t2|cos(k + δ) (3.5)
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where δ is the relative phase between t1 and t2 (which in general are complex). Two bands
result here since there are two zero-mode states per unit cell and the energy gap between
them is ∆E = 2||t1|–|t2||. If the two hopping amplitudes are identical, |t1| = |t2|, then the
energy gap is reduced to zero and the resulting 1D electronic structure should be metallic.

Using this idea as a guide for creating metallic GNRs, we designed the GNR precursor
molecule 1 (Fig. 3.1(A)). A graphene honeycomb lattice superimposed onto this molecule
reveals that under cyclodehydrogenation the methyl group carbon atom attached to the cen-
tral tetracene (highlighted grey in Fig. 3.1(A)) will fuse and provide one surplus carbon
atom on sublattice A over sublattice B per monomer. Previous step-growth polymeriza-
tions of structurally related molecules[39] suggest that the surface polymerization of 1 will
place the central tetracene unit in an alternating pattern on either side of the GNR growth
axis. If polymerization proceeds in a head-to-tail configuration then the resulting GNRs
feature two additional carbon atoms on sublattice A per unit cell (Fig. 3.1(A)). Follow-
ing cyclodehydrogenation the anticipated GNR structure is comprised of short zigzag edges
and prominent cove regions (reminiscent of a saw blade) and will herein be referred to as
the sawtooth-GNR (sGNR). Based on the symmetry of the sGNR unit cell one anticipates
that the hopping amplitudes t1 and t2 will be equal (Fig. 3.1(A), red arrows) resulting in
a metallic band structure for the sGNR. A caveat to this approach is the limited control
over head-to-tail surface polymerization since head-to-head and tail-to-tail polymerizations
place the extra carbon atoms on opposite sublattices and are expected to lead to gapped
semiconductors.

3.3 STM Measurement and DFT Calculations

In order to experimentally determine GNR metallicity, the electronic structure of sGNRs
was characterized using STM spectroscopy. Fig. 3.2(A) shows a typical dI/dV point spec-
trum obtained on a sGNR (dI/dV spectroscopy provides a measure of the local density of
states (LDOS) located beneath the STM tip). Distinctive features associated with valence
band (VB) and conduction band (CB) edges can be seen at V = –1.07 ± 0.03 V (State 1)
and V = 1.36 ± 0.03 V (State 3), respectively. Most prominent, however, is the sharp peak
in LDOS (State 2) that is centered near V = 0 (EF ) (0.02 ± 0.02 V). This peak continuously
spans energies both below and above EF , a clear signature of a gapless, metallic density of
states. dI/dV imaging of the wavefunction of these metallic sGNR states shows a charac-
teristic serpentine pattern that snakes back and forth across the sGNR width (Fig. 3.2(B)).
The valence and conduction band edge states, in contrast, have their highest intensity along
the armchair edges of the GNR (Fig. 3.2(B)), consistent with previous measurements of
conventional semiconducting GNRs under similar conditions[66][67]. A similar experimental
analysis was also performed on the fused 5-sGNRs as depicted in Fig. 3.3(A). The point
spectroscopy of 5-sGNRs was seen to be quite different from that of sGNRs. While features
associated with the valence band edge (V = –1.12 ± 0.03 V, State 1) and conduction band
edge (V = 1.64 ± 0.09 V, State 3) of 5-sGNRs are observed at similar energies compared to
sGNR states, the 5-sGNR spectrum does not feature a central peak at V = 0 (Fig. 3.3(A)).
Instead it exhibits a shallow dip at V = 0 and a broad density of states (DOS) feature that
spans an energy range above and below EF . The electronic wavefunctions corresponding to
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Figure 3.1: Bottom-up synthesis of sawtooth GNRs. (A) Schematic representation of
bottom-up growth of both sGNRs and 5-sGNRs from molecular precursor 1. Inset: STM
topograph of two isolated monomers of 1 deposited on Au(111). (B) STM topograph of a
segment of a sGNR. (C) Larger-scale image of sGNRs. (D) STM topograph of a segment of
a 5-sGNR. (E) Large-scale image of 5-sGNRs.
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Figure 3.2: Electronic structure of sGNRs. (A) dI/dV point spectroscopy of a
sGNR/Au(111) performed at the position shown in the inset (spectroscopy parameter: VAC

= 10 mV. Imaging parameters: It = 80 pA, Vs = 0.006 V). (B) Constant-height dI/dV maps
of 5-sGNRs conducted at the biases indicated in (A) (spectroscopy parameters: VAC = 20
mV for States 1 and 3, VAC = 4 mV for State 2). Constant-height dI/dV maps were sub-
jected to background subtraction of substrate LDOS. (C) DFT-LDA calculated DOS of the
sGNR (spectrum broadened by 10 meV Gaussian). Van Hove singularities near E–EF = 0
are merged because of gaussian smearing. (D) DFT-calculated LDOS of an sGNR at energies
shown in (C) (LDOS sampled at a height of 3.5 Å above the plane of the sGNR).
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States 1-3 in 5-sGNRs are similar to the corresponding features in sGNRs except for the
lack of periodic bright spots associated with the non-planar cove edges (Fig. 3.3(B)). For
example, dI/dV images performed at biases near the conduction and valence band edges
show the LDOS concentrated at the GNR edges while near V = 0 we observe a serpentine
pattern (Fig. 3.3(B)) very similar to the metallic state seen in sGNRs. This implies that
5-sGNRs are also metallic and that the LDOS dip observed near V = 0 is not an energy gap
but rather a metallic density-of-states feature.

We further explored the apparent metallicity of sGNRs by using ab initio density func-
tional theory (DFT). Fig. 3.4(C) shows the resulting band structure calculated for an isolated
sGNR using the local density approximation (LDA). Two narrow bands (denoted zero-mode
bands (ZMBs)) are observed bracketing EF , while CB and VB edges can be seen at much
further energies. The two bands bracketing EF have no bandgap and are fit well by the
SSH expression (Eq. 3.5) with t1 = t2 = 5.2meV and δ = 0 (Fig. 3.4(C), red dashed lines),
and are also stable against Peierls distortion[68] (as confirmed via supercell calculations).
The resulting theoretical density of states (Fig. 3.2(C)) shows a single peak centered at EF

as well as VB/CB peaks at lower/higher energies, in good agreement with the STM point
spectroscopy for sGNRs (Fig. 3.2(A)). The theoretical wavefunction maps (Fig. 3.2(D))
also match the experimental dI/dV maps obtained at EF and at the band edge energies,
providing further evidence of metallicity in sGNRs.

While our sGNRs clearly match the metallic predictions of the symmetric SSH model,
a potential complication is the very narrow metallic sGNR bandwidth (∼21 meV). Metals
with high DOS at EF are often unstable to Mott insulator transitions or magnetic phase
transitions as dictated by the Stoner criterion[69][70]. The metallic behavior here may be
due to the fact that spin polarization is not accounted for in our simplified tight-binding or
LDA-based calculations. To test for this type of magnetic instability in sGNRs, we calculated
the sGNR band structure using the local spin density approximation (LSDA) for an isolated
sGNR. The result (Fig. 3.5) shows that the sGNR electronic structure does, in fact, undergo
a ferromagnetic phase transition which opens a 200 meV energy gap about EF . We show that
the reason we do not see a gap experimentally is due to a combined effect of p-doping and
surface electric fields induced by the underlying Au(111) substrate. When these are properly
accounted for in our DFT calculation, the gap does, indeed, vanish at the LSDA level, and
the metallic result is recovered (Fig. 3.5(D)). Therefore, while it is technically correct to
say that sGNR/Au(111) is metallic, our DFT calculation predicts that a significant energy
gap will open up and metallicity will be lost due to a magnetic phase transition as soon as
this sGNR is removed from the Au(111) surface. While this represents an interesting and
potentially useful 1D magnetic phase transition, the question remains whether it is possible
to engineer a sGNR with more robust metallicity that would not suffer this fate.

This question can be answered by looking no further than the 5-sGNR whose metallic
DOS features are much wider in energy than the narrow peak at EF seen for sGNRs (Figs.
3.2, 3.3). To clarify the robustness of 5-sGNR metallicity we also analyzed its electronic
structure via ab initio DFT calculations. At the LDA level, the 5-sGNR band structure does,
indeed, show a much wider metallic band than the corresponding sGNR band structure (Figs.
3.4(C), (D)). When the SSH expression (i.e., the tight-binding result from Eq. 3.5) is fit to
the 5-sGNR DFT-LDA band structure, we find a hopping amplitude of t1 = t2 = 480meV ,
which corresponds to a bandwidth 23 times larger than the sGNR DFT-LDA bandwidth (Fig.
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Figure 3.3: Electronic structure of 5-sGNRs. (A) dI/dV point spectroscopy conducted on
5-sGNR/Au(111) at the armchair (blue) and zigzag (red) positions marked in the inset
(spectroscopy parameter: VAC = 10 mV. Imaging parameters: It = 60 pA, Vs = – 0.100
V). (B) Constant-height dI/dV maps of 5-sGNRs conducted at the biases indicated in (A)
(spectroscopy parameter: VAC = 20 mV). Constant-height dI/dV maps were subjected to
background subtraction of substrate LDOS. (C) DFT-LDA calculated DOS of the 5-sGNR
(spectrum broadened by 10 meV Gaussian). (D) DFT-LDA calculated LDOS of a 5-sGNR at
energies shown in (C) (LDOS sampled at a height of 3.5 Å above the plane of the 5-sGNR).
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Figure 3.4: Zero-mode band structure. Schematic representation of inter- and intracell
hopping between localized zero-modes embedded in (A) sGNRs and (B) 5-CGNRs. (C)
Left panel: DFT-LDA calculated band structure for sGNRs. Frontier bands are labelled
VB, ZMB, and CB. Right panel: tight-binding fit (red) to DFT-LDA band structure yields

hopping parameter t
(c)
1 = t

(c)
2 = 5.2meV . (D) The same as (C) but for 5-sGNRs. Hopping

parameter for 5-sGNR (and corresponding bandwidth) is 23 times larger than for sGNR.
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Figure 3.5: DFT Calculations for head-to-tail sGNRs in the local spin-density approximation
(LSDA). (A) Sketch of sawtooth GNR structure (sGNR). (B) LDA calculation for free-
standing sGNR shows a metallic ground state. (C) LSDA calculation for free-standing sGNR
shows a gapped ferromagnetic ground state. (D) The magnetic gap of the sGNR is seen to
close when substrate doping and polarization effects are taken into account (the sGNR is
assumed to be doped by ∼0.4e+ / unit cell by the Au).
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3.4(D), red dashed lines). This is also reflected in the calculated DOS (Fig. 3.3(C)) which
shows a broad U-shaped feature (with peaks characteristic of 1D van Hove singularities),
consistent with the experimental dip in LDOS observed at V = 0 for 5-sGNRs (Fig. 3.3(A)).
The theoretical LDOS patterns calculated for the 5-sGNR band edge and metallic states (Fig.
3.3(D)) also correspond well to the 5-sGNR experimental dI/dV images (Fig. 3.3(B)). Our
DFT calculations of the 5-sGNR at the LSDA level additionally show no signs of magnetism
and are identical to the LDA-based results (Fig. 3.6). We conclude that 5-sGNRs exhibit
robust metallicity with a much wider bandwidth than sGNRs, both experimentally and
theoretically, and are not expected to undergo a magnetic phase transition upon transfer
from Au(111) to an insulator.

3.4 The Role of Chiral Symmetry Breaking

The last question that we address is how the seemingly small structural difference between
5-sGNRs and sGNRs leads to such a large difference in their electronic behavior. The
dramatic increase in bandwidth observed for 5-sGNRs can be understood as a result of the
loss of sublattice polarization of the electron wavefunction induced via the disruption of
the graphene bipartite lattice symmetry due to the new five-membered ring bonds (which
bridge what were previously open coves). This can be understood by remembering that the
two extra atoms added to the sGNR unit cell on sublattice A result in two new E = 0
eigenstates (zero modes) per unit cell whose wavefunctions are also confined to sublattice
A. This sublattice polarization is preserved in the sGNR Bloch waves for the two in-gap
bands (Fig. 3.7(B)), and the sGNR bandwidth is determined by the effective amplitude
(teff ) for an electron to hop between adjacent zero-modes (Fig. 3.7(A)). Because the zero-
modes are all on the same sublattice it can be shown that teff ∝ t′ where t′ is the second-
nearest-neighbor hopping amplitude of graphene (since there is no zero-mode state density
on sublattice B). In the case of 5-sGNRs, however, the bipartite lattice is disrupted by the
bond that closes the coves; the zero-modes are thus no longer sublattice polarized (Fig.
3.8). Consequently, the resulting Bloch waves are no longer sublattice polarized (i.e., both
sublattices now exhibit state density (Fig. 3.7(C)) and so teff ∝ t where t is the nearest-
neighbor hopping amplitude of graphene (Fig. 3.7(A)). To explicitly show this, we model
the frontier band structure formed by a zero-mode superlattice using an effective two-band
tight-binding model. By expressing the new effective hopping between local zero-modes in
terms of the graphene hopping parameters, we show that sublattice polarization and mixing
of zero-mode wavefunctions leads to narrow and dispersive zero-mode bands, respectively.

As discussed above, the DFT-calculated ZMBs for both the sGNR and the 5-sGNR are
well-captured using a simple two-band tight-binding model. With two zero-modes per unit
cell, the resulting dispersion relation can be expressed in terms of complex-valued inter- and
intracell hopping terms t1 and t2 and their relative phase δ (Eq. 3.5). For both GNRs
presented in the text, t1 and t2 are equal in magnitude and real-valued so δ = 0. The
resulting ZMB bandwidth W is proportional to the effective hopping t1 = t2 = teff between
the two zero-modes within the GNR unit cell, ψ1

0 and ψ2
0. These two states can be expressed
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Figure 3.6: DFT Calculations of metallic 5-sGNRs in the local spin-density approximation
(LSDA). (A) Sketch of head-to-tail 5-sawtooth GNR structure (5-sGNR). (B) LDA calcu-
lation for free-standing 5-sGNR shows a metallic ground state. (C) LSDA calculation for
free-standing 5-sGNR shows a non-magnetic metallic ground state. (D) LSDA calculations
of the 5-sGNR band structure when substrate doping and polarization effects are taken into
account (the sGNR is assumed to be doped by ∼0.4e+ / unit cell by the Au). The 5-sGNR
band structure is essentially unaffected by substrate doping and screening.
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as linear combinations of atomic π-orbitals ϕπ,i within the GNR unit cell:

ψ1
0 =

m∑
i=1

a1iϕπ,Ai
+

n∑
i=1

b1iϕπ,Bi
(3.6)

ψ2
0 =

m∑
j=1

a2jϕπ,Aj
+

n∑
j=1

b2jϕπ,Bj
(3.7)

Where we have explicitly broken summations into its A and B sublattice components for
clarity. The effective hopping between these states can be expressed in terms of the GNR
Hamiltonian H:

teff = ⟨ψ1
0|H|ψ2

0⟩ (3.8)

Combining Eq. 3.6 and Eq. 3.7 with Eq. 3.8, we get:

teff =
∑

i,j;AtoB

a1i b
2
j t

AB
ij +

∑
i,j;BtoA

b1i a
2
j t

BA
ij +

∑
i,j;bothA

a1i a
2
j t

AA
ij +

∑
i,j;bothB

b1i b
2
j t

BB
ij (3.9)

For brevity’s sake we have used tij to represent the hopping between atomic orbitals lying
on the ith and jth lattice site within the GNR unit cell:

tSS
′

ij = ⟨ϕπ,Si
|H|ϕπ,S′

j
⟩ (3.10)

Where S and S’ can be substituted by A or B and indicate the sublattice on which i and j lie.
We note that the first two terms in Eq. 3.9 account for hopping between orbital components
of ψ1

0 and ψ2
0 on different sublattices, while the second two terms account for hopping on

the same sublattice. Given that ψ1
0 and ψ2

0 lie on a bipartite lattice, the lowest order tij for
the first two terms is t (the nearest-neighbor hopping of graphene), while that of the second
two terms is t′ (the second nearest-neighbor hopping of graphene). Here, we set the onsite
energy of π-orbitals to zero. Writing this explicitly, we find:

teff = t

(
1st n.n.∑

i,j

a1i b
2
j +

1st n.n∑
i,j

b1i a
2
j

)
+ t′

(
2nd n.n∑

i,j

a1i a
2
j +

2nd n.n∑
i,j

b1i b
2
j

)
+O(3rd n.n.) (3.11)

The form of Eq. 3.11 is convenient because it expresses the effective hopping between two
graphene-supported zero-modes in terms of the lowest-order graphene hopping parameters
t and t′. It also shows that if ψ1

0 and ψ2
0 are both polarized on the same sublattice (both A

or both B), then the effective hopping between the two states will be less than the second
nearest-neighbor hopping of graphene, t′ (i.e. the nearest-neighbor hopping terms will be
exactly zero). On the other hand, if ψ1

0 and ψ2
0 are either polarized on opposite sublattices

(one on A and one on B) or are both sublattice-mixed (both on A and B), then the effective
hopping will be constrained by the first nearest-neighbor hopping of graphene, t.

This reveals the mechanism by which the zero-mode hopping (re: bandwidth) was in-
creased by more than an order of magnitude between the sGNR and 5-sGNR. The prior
is composed entirely of zero-modes polarized on the same sublattice, whereas those of the
latter are sublattice mixed as a result of the pentagonal bond closure (Fig. 3.8). Hence,
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the effective hopping in the sGNR is constrained by the second nearest-neighbor hopping of
graphene, while that of the 5-sGNR is constrained by the first nearest-neighbor hopping of
graphene.

This explanation is consistent with the ratio of the bandwidths of the two GNRs (∼ 23)
which falls within the range of accepted values for t/t′[71]. The key insight here is that the
loss of sublattice polarization (i.e., through intentional fusion of five-membered rings along
the cove edges) greatly increases the effective overlap of adjacent localized zero-mode states
and strongly enhances the metallic bandwidths. This provides a useful new design criterion
for engineering robust metallic systems from zero-mode superlattices in carbon networks.

3.5 Head to Head Structure and Topology

Besides to head to tail connections analyzed in details. It is also possible to see head to
head, or tail to tail structures. These structures turn out to be insulators with nontrivial
topology. The DFT-LSDA, and DFT-LDA bandstructures are shown in Fig. 3.9. A tight-
binding model is fitted to the DFT bandstructure as well. This structure yields insulators
that give potential topology characterized by Z2 index. We calculate Z2 index for this partic-
ular structure. The result shows Z2 = 1 when the tail to tail unit cell is chosen, and Z2 = 0
when the head to head unit cell is chosen. This theoretical prediction is further confirmed
by STM measurement on a head-to-head/tail-to-tail junction (Fig. 3.10), the topological
junction state is measured at near-zero bias, consistent with the theoretical prediction.

3.6 Conclusion

In conclusion, we have successfully demonstrated the ability to rationally design 1D
metallic GNRs by embedding symmetric zero-mode superlattices into otherwise semicon-
ducting GNR backbones. Our results provide a general strategy for introducing zero-modes
into graphene-based materials, and also reveal the hidden role of sublattice polarization in
controlling the emergent band structure of these systems. This general approach provides
new opportunities for creating nanoscale electrical devices, and for exploring novel electronic
and magnetic phenomena in a new class of 1D metallic systems.
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Figure 3.7: Zero-mode engineering in GNRs. (A) Diagram of effective hopping teff between
two localized states (labeled Ψ0) embedded in graphene. Inset: schematic representation of
the first (t) and second (t′) nearest-neighbor hopping parameters of graphene. (B) DFT-
calculated wavefunction 5% density isosurface of a sGNR for states near E = 0. (C) Same
for 5-sGNRs. Different sublattices are denoted with different colors (A sublattice in red and
B sublattice in blue). The sGNR wavefunction is completely sublattice polarized, while the
5-sGNR wavefunction is sublattice mixed and more delocalized.
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Figure 3.8: Sublattice polarization/mixing of GNR zero-modes. (A) DFT calculated 3%
charge density isosurfaces of a structure exhibiting an isolated zero-mode (the purpose of
this is to provide insight into the sublattice polarization of sGNR zero-mode bands (ZMBs)).
Different sublattices are denoted with different colors (A sublattice is red, B sublattice is
blue). The sGNR structure leads to a sublattice-polarized zero-mode since the intact cove
preserves bipartite lattice symmetry. (B) Same as (A), but for an isolated 5-sGNR zero-
mode. Here there is no sublattice polarization of the zero-mode since the bipartite lattice
symmetry is broken by the pentagonal ring.
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Figure 3.9: Theoretical electronic structure of head-to-head sGNR. (A) Schematic represen-
tation of inter- and intracell hopping between localized zero-modes embedded in head-to-head
sGNRs. (B) DFT-LDA calculated band structure for head-to-head sGNRs (black) overlaid
with a tight-binding fit (red) to the OZB/UZB bands (the tight-binding fit yields hopping
parameters t1 = 310meV and t2 = 33meV ). (C) DFT-LSDA calculated band structure for
head-to-head sGNRs shows a non-magnetic ground state. Lieb’s theorem raises the possi-
bility of antiferromagnetism, but the relatively large overlap between adjacent zero-modes
pushes this GNR into a non-magnetic ground state.
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Figure 3.10: Electronic structure of head-to-head sGNR topological homojunction. (A)
dI/dV point spectroscopy performed on bare gold (dotted black curve) and on a head-to-
head sGNR topological homojunction in the bulk (blue curve) and at the junction interface
(red curve) as marked in (B). (B) Topographic image of head-to-head sGNR topological
homojunction overlaid with the corresponding chemical structure (It = 150 pA, Vs = –1.10
V). The topological invariant Z2 on either side of the junction (dotted white line) is indicated
based on the terminating unit cells shown in (D) and (E). (C) Constant-current dI/dV maps
of a head-to-head sGNR topological homojunction conducted at the biases indicated in (A)
(It = 150 pA, VAC = 10 mV for OZB and UZM maps and It = 80 pA, VAC = 10 mV for
the topological interface state (TIS) map). (D) Band structure of the indicated head-to-
head sGNR for nontrivial topology (as determined by the unit cell commensurate with the
GNR terminus) and for (E) trivial topology (as determined by a different unit cell). The Z2

invariants associated with each unit cell are labelled in the corresponding band structures,
showing that the UZB/OZB gap should host a TIS, as confirmed experimentally in (A).
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Chapter 4

Rationally-Designed Topological
Quantum Dots in Bottom-up
Graphene Nanoribbons

In this chapter, we show that the topological states could be utilized to form 1D topologi-
cal quantum dots. The topological control was achieved through the synthesis and on-surface
assembly of three distinct molecular precursors designed to exhibit structurally-derived topo-
logical electronic states. We perform DFT and tight-binding (TB) calculations, revealing
that the magnitude and sign of orbital hopping between topological zero-mode states can be
tuned based on the bonding geometry of the interconnecting region. Using a combination
of low-temperature scanning tunneling microscopy and spectroscopy (STM/STS), we have
characterized two GNR topological quantum dot (TQD) arrangements synthesized under
ultrahigh vacuum (UHV) conditions. The STM measurement agrees with theoretical calcu-
lations. These results demonstrate the utility of topological zero modes as building blocks
for designer quantum dots that promise new functionality for future advanced electronic
devices.

4.1 Introduction

The advent of atomically-precise bottom-up growth of graphene nanoribbons (GNRs)[72]
has enabled realization of numerous well-defined GNR structures possessing a wide range
of material and electronic properties originating from the rational design of molecular pre-
cursors. For example, this approach has been broadly applied to successfully synthesize
tailored GNRs with a variety of widths,[33][34][73] edge structures,[74][53][75] and het-
eroatom dopants[76][77]-[78] at the atomic scale. Multiple synthetic strategies for achiev-
ing GNR heterostructures from monomeric precursors have been demonstrated, including
the introduction of ancillary chemical reactions to GNRs derived from a single molecular
precursor[79][80][81]-[82] and copolymerization of distinct but chemically compatible pre-
cursor monomers.[39][67][83]-[84] GNR heterostructures have also been exploited to create
quantum dots[67][85][86][87] that possess electronic structures dependent on the size and
shape of constituent GNR segments (i.e., where the behavior is determined by randomly
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connected segments of arbitrary length). Hierarchical growth[88] and sterically-enforced
selective co-polymerization[38], on the other hand, represent viable routes for creating de-
terministic GNR quantum dots, but have not yet been explored in this context.

The discovery of distinct topological phases[37] in the GNRs and new experimental[38][39]
and theoretical[1][37][64][44] developments in engineering GNR topology have recently prompted
a paradigm shift in the design and fabrication of GNR electronic structure. From this per-
spective, every periodic GNR structure possesses an invariant topological classification that
is characteristic of its terminating unit cell and associated symmetries (e.g., a Z2 invari-
ant for time reversal and spatial symmetries[37][64][44] and a Z invariant for chiral symme-
try[1]). The bulk-boundary correspondence principle then dictates that an interface between
two GNRs possessing different topological invariants will host a topological zero mode: a
symmetry-protected state that lies energetically at or near midgap and may be associated
with a localized spin under suitable conditions[37][1][89]. The creation and controlled hy-
bridization of neighboring zero modes[37] has been validated as a viable strategy for ex-
perimentally realizing small-gap semiconducting [38][39]and metallic[2] GNRs, as well as
nanoporous graphene[4] wherein the frontier electronic structure is composed of topological
zero-mode bands. By extension, isolated topological zero modes should provide a well-defined
basis for realizing topological quantum dots (TQDs) embedded in extended GNR structures
that are potentially suitable for applications such as tunneling field-effect transistors.[90]

Here we report the deterministic growth and electronic structure characterization of GNR
quantum dots composed of pairs of topological zero-mode states that appear at the interfaces
between seven- and nine-atom-wide armchair GNRs (7-AGNRs and 9-AGNRs, respectively)
as predicted theoretically in ref. [37]. We make novel use of a bifunctional molecular linker
previously used to generate 7/9-AGNR superlattices[38] and discover that it is syntheti-
cally compatible with specific 7- and 9-AGNRs precursors. The latter 9-AGNR precursor
was specifically designed for this study to permit viable copolymerization with the bifunc-
tional linker into ordered nanostructures. The resulting GNRs are characterized by pristine
segments of 7- and 9-AGNRs connected by a well-defined interface. These reproducible
heterojunctions are separated by a fixed distance ensuring the creation of topological zero
modes that hybridize across short AGNR segments with predetermined electron hopping
amplitudes. Since the low-energy spectra of quantum dots defined by coupled zero modes
is ultimately determined by this hopping amplitude, all TQDs synthesized through this re-
producible methodology possess the same electronic structure, in contrast to the random
GNR quantum dot structures realized previously through nondeterministic synthetic ap-
proaches[85][67]. Experimental characterization of two varieties of GNR TQDs using scan-
ning tunneling microscopy and spectroscopy (STM/STS) reveal a systematic dependence of
the TQD zero-mode splitting on the width of the intermediate GNR segment. These results
are supported by first-principles DFT and TB calculations which provide additional insight
into the physical origins of the magnitude and sign of the hopping terms that encode the
energetic splitting and wavefunction character of the topological quantum dot states. These
results provide groundwork for achieving magnetic spin centers with deterministic coupling
using similar synthetic approaches.
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4.2 Comparison of Theoretical and Experimental

Results

Our design for GNR quantum dots is based on a topologically nontrivial junction[37]
that enables controlled bridging between 7-AGNR and 9-AGNR segments. To achieve this,
we selected interfacial unit cells for the adjacent GNR segments that correspond to different
topological classifications. The two unit cells are based on the zigzag’ (for 7-AGNRs) and
zigzag (for 9-AGNRs) terminating unit cells,[37] which both possess mirror and inversion
symmetry and can therefore be classified with a Z2 invariant (Fig. 4.1(A)). In addition to
the Z2 classification scheme, the approximate chiral symmetry of all periodic graphene-based
materials also permits assignment of a Z invariant to these structures[1] (also shown in Fig.
4.1(A)). While a difference in the value of Z2 across an interface in one-dimension (1D)
indicates the presence of an odd number of topological interface states, a difference in Z
provides the exact number of such interface states. As seen in Fig. 4.1(A), predictions based
on both of these topological classification schemes are consistent with one zero-mode state
at the interface of the 7-AGNR and 9-AGNR unit cells whose structure is shown in Fig. 4.1.

In order to generate the specific 7/9-AGNR interface that is predicted to give rise to this
zero-mode state[1][37] (Fig. 4.1(C),(D)), we employed a stepwise synthesis based on the co-
deposition of the bifunctional linker with either monomer for 7- or 9-ANGRs on a Au(111)
surface under ultrahigh vacuum (UHV) conditions (Fig. 4.1(B). In the first step, dilute
quantities of the bifunctional linker 2 are deposited onto a clean Au(111) surface along with
an excess of either precursor 1 or 3 (which constitute the 7- and 9-AGNR bulk, respectively).
During radical step-growth polymerization of these mixtures, polymerization of bulk 7- or
9-AGNR precursors is the dominant process since they are present in much higher quantities
than the bifunctional linker. Concurrently, dilute quantities of the bifunctional molecular
linker 2 co-deposited on the same surface dimerize. If we designate the side featuring the
bromoanthracene group as the A side of the bifunctional linker and the bromobiphenyl
group the B side, then the dimerization of 2 can lead to two possible structures featuring
an AB–BA bond (dimers are linked by the biphenyl groups) or a BA–AB bond (dimers are
linked by the bromoanthracene groups). The unreacted ends of these dimers can continue to
bond with bulk 7- or 9-AGNR proto-polymer segments (Fig. 4.1(B)), respectively. Further
annealing results in fully graphenized pairs of GNR topological interfaces, where monomer 1
(3) bonds with the AB–BA (BA–AB) dimers to yield extended 7-AGNR (9-AGNR) segments
interrupted by a segment of three 9-AGNR (7-AGNR) unit cells (Fig. 4.1(C),(D)). We refer
to these structures as 7/9/7 and 9/7/9 TQDs, respectively. While the syntheses and on-
surface polymerization of precursors 1 and 2 have been reported previously,[72][38] molecular
precursor 3 was designed specifically for this study.

STM topographic images of both 7/9/7 TQDs (Fig. 4.1(C)) and 9/7/9 TQDs (Fig.
4.1(D)) show characteristic width modulations along the GNR axis consistent with short
segments of three-unit-cells of either 9-AGNR (in the case the 7/9/7 TQD) or 7-AGNR (in
the case of the 9/7/9 TQD).

In order to probe the electronic properties of GNR TQDs, we performed STS point
spectroscopy measurements and differential conductance (dI/dV) mapping on both types
of GNR TQDs. These measurements directly probe the energy- and spatial-dependence
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Figure 4.1: On-surface synthesis of AGNR topological quantum dots. (A) The topological
invariants Z2 and Z for the depicted AGNRs are determined by the terminating unit cell with
mirror/inversion symmetry and chiral symmetry, respectively. The zigzag’ termination of
7-AGNRs (dashed box, left panel) possesses topological invariants Z2 = 0 and Z = 2, while
the zigzag termination of 9-AGNRs (solid box, right panel) possesses topological invariants
Z2 = 1 and Z = 1. Crossing an interface as depicted by the structure in (C) and (D) between
these two unit cells corresponds to a change in both topological invariants. Therefore, such an
interface is expected to host one topological zero-mode state. (B) Molecular precursors 1 and
3 generate extended sections of 7-AGNRs and 9-AGNRs, respectively. (C) The structures
of the 7/9/7 and (D) 9/7/9 topological quantum dots superimposed on the corresponding
STM topographic images.
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of the local density of states (LDOS) of each GNR structure. Fig. 4.2(A) shows that
point spectra collected on the bulk 7-AGNR segment of 7/9/7 TQDs exhibit two prominent
features at –0.8 V and 1.6 V (features 1 and 4; red curve) that are consistent with previously
reported STS measurements of the valence and conduction band edges of pure 7-AGNRs.[66]
In contrast, point spectra collected in the 7/9/7 TQD junction region show two low-energy
states at –0.1 V and 0.6 V (features 2 and 3; blue curve) that appear within the bulk 7-
AGNR energy gap. dI/dV maps collected at the energies associated with these features
demonstrate that states at 1 and 4 are localized mainly on the bulk 7-AGNR segments
while states at 2 and 3 are localized to the 7/9-AGNR junction (Fig. 4.2(B)). The LDOS
for the lower energy state 2 shows a uniform high intensity throughout the short 9-AGNR
segment (i.e., an antinode) linking the two topological interface states, while state 3 shows a
diminished intensity in the same region (i.e., a node). The energetic alignment and spatial
characteristics of states 2 and 3 suggest that they arise from hybridization between the
two topological junction states. Simple quantum mechanical reasoning implies that the
magnitude of the splitting between states 2 and 3 (Eg1) yields an experimental measure of
the electron hopping amplitude (t1) between the two topological junction states across the
9-AGNR segment: Eg1 = |2t1| = 0.7eV .

We performed analogous STS measurements on a 9/7/9 TQD, which features the same
7/9 topological junctions as the 7/9/7 TQD, but with an inverted geometry (i.e. hybridiza-
tion across a 7-AGNR segment). As before, four features can be observed in the point
spectroscopy (features 5–8 in Fig. 4.3A). States associated with features 5 and 8 are most
prominent when the STM tip is placed above the bulk 9-AGNR segment (red curve), while
states at 6 and 7 only appear in spectra collected in the region of the 7/9-AGNR junctions
(blue curve). The energy gap between states 5 and 8 is consistent with previous STS mea-
surements of pristine 9-AGNRs2, and dI/dV maps obtained at these energies show LDOS
predominantly localized to the bulk 9-AGNR segments (Fig. 4.3B). Conversely, dI/dV maps
obtained at biases associated with in-gap states at 6 and 7 show localization to the 7/9-
AGNR junction regions (Fig. 4.3(B)), suggesting that states at 6 and 7 are associated with
topological zero modes coupling through the short 7-AGNR segment. In this case, the lower
energy state 6 features a node across the 7-AGNR segment while the higher energy state 7
shows the characteristics spatial LDOS associated with an antinode. This pattern of bond-
ing and antibonding linear combinations is inverted when compared to the nodal patterns
observed for the in-gap states 2 and 3 associated with the 7/9/7 TQD (Fig. 4.2(B)). The en-
ergy gap between in-gap states 6 and 7 implies that the electron hopping amplitude between
topological junction states across the short 7-AGNR segment is roughly one-seventh of that
across the 9-AGNR segment: Eg2 = |2t2| = 0.1eV . The values of both t1 and t2 obtained on
these two TQDs are consistent with the measured band gap of a 7/9-AGNR superlattice.[38]

4.3 Theretical Analysis

To better understand the wavefunction characteristics and energetic alignment of TQD
states, we compute the electronic states in our TQDs using first-principles DFT calculations.
GNR point spectra collected on the 7/9/7 TQD were modeled by evaluating the DFT local
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Figure 4.2: Electronic structure of 7/9/7 topological quantum dot. (A) Inset: STM topo-
graphic image of the 7/9/7 topological quantum dot (Vs = –0.10 V, It = 90 pA). dI/dV
point spectroscopy conducted on the 7-AGNR bulk and the 7/9/7 TQD are plotted in red
and blue, respectively, as indicated in the inset. The dashed black curve corresponds to a
reference spectrum conducted on bare Au(111). For all point spectra, VAC = 10 mV. (B)
dI/dV maps of the 7/9/7 TQD conducted at the indicated biases corresponding to peaks in
(A) (It = 90 pA, VAC = 20 mV). (C) DFT-LDA calculated LDOS for the theoretical 7/9/7
TQD structure shown in Fig. 4.5(A). The blue and red curves correspond to LDOS sampled
over the region indicated by the blue and red crosses in the inset, respectively (spectrum
broadened by 10 meV Gaussian). (D) DFT-calculated LDOS map of the 7/9/7 TQD at each
of the four peak energies indicated in (C). LDOS is sampled 4 Å above the GNR plane. T
= 4 K for all measurements.
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Figure 4.3: Electronic structure of 9/7/9 topological quantum dot. (A) Inset: STM to-
pographic image of the 9/7/9 topological quantum dot (Vs = 0.20 V, It = 3 nA). dI/dV
point spectroscopy conducted on the 9-AGNR bulk and the 9/7/9 TQD are plotted in red
and blue, respectively, as indicated in the inset. The dashed black curve corresponds to a
reference spectrum conducted on bare Au(111). For all point spectra, VAC = 10 mV. (B)
dI/dV maps of the 9/7/9 TQD conducted at the indicated biases corresponding to peaks
in (A) (State 5: It = 8 nA, VAC = 20 mV; States 6–8: It = 3 nA, VAC = 20 mV). (C)
DFT-LDA calculated LDOS for the theoretical 9/7/9 TQD structure shown in Fig. 4.5(B).
The blue and red curves correspond to LDOS sampled over the region indicated by the blue
and red crosses in the inset, respectively (spectrum broadened by 10 meV Gaussian). (D)
DFT-calculated LDOS map of the 9/7/9 TQD at each of the four peak energies indicated
in (C). LDOS is sampled 4 Å above the GNR plane. T = 4 K for all measurements.
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density-of-states (LDOS) located in the 7-AGNR bulk as well as at the 7/9-AGNR junction
(as indicated by the crosshairs in the inset in Fig. 4.2(C)). The LDOS sampled in the 7-
AGNR bulk resulted in a prominent occupied-state peak associated with the bulk valence
band (labeled 7-VB) and an unoccupied-state peak associated with the conduction band
(labelled 7-CB), in reasonable alignment with experimental features 1 and 4. The LDOS
sampled in the 7/9-AGNR junction region is dominated by two low-energy states that gap
symmetrically about EF (labeled occupied topological state 1 (OT1) and unoccupied topo-
logical state 1 (UT1) and is in good agreement with experimental states 2 and 3. Fig. 4.2(D)
shows the theoretical LDOS maps for the 7-VB, OT1, UT1, and 7-CB states. The theoretical
LDOS maps mirror most of the salient features seen in the experimental data in Fig. 4.2(B),
including the extending of the 7-VB and 7-CB states throughout the 7-AGNR bulk region
and confinement of the OT1 and UT1 states to the topological junctions. Notably, the nodal
structure of the theoretical OT1 and UT1 LDOS mirrors that of experimental states 2 and 3.
These theoretical results support the conclusion that the four experimental peaks observed
in the 7/9/7 TQD correspond to bulk 7-AGNR band edge van Hove singularities along with
two in-gap topological states.

Theoretical analysis of the 9/7/9 TQD yields similar good physical understanding of the
experimental data. Specifically, the LDOS in the 9-AGNR bulk shows peaks associated with
the pristine 9-AGNR top valence and bottom conduction bands (9-VB and 9-CB of Fig.
4.3(C); red curve), while the LDOS in the 7/9 junction region reveals a pair of in-gap states
(occupied and unoccupied topological state 2 (OT2 and UT2) of Fig. 4.3(C); blue curve).
The theoretical LDOS maps for these four states (Fig. 4.3(D)) show again agreement with
the experimental dI/dV maps for features 5–8 (Fig. 4.3(B)). For example, OT2 has a nodal
line at the center of the 7-AGNR segment (similar to state 6 in Fig. 4.3(B)), while UT2 shows
an antinode (similar to state 7 in Fig. 4.3(B)). We note that states 6 and 7 both appear
at positive bias (rather than gapping symmetrically about V = 0) due to charge transfer
with the underlying Au(111) surface as observed previously for AGNR-supported zero-mode
states.[38][39][91] These theoretical results demonstrate that our experimental observations
reflect the intrinsic topologically-based electronic behavior of both 9/7/9 and 7/9/7 TQDs.

A useful analysis can be used to deconvolute the TQD states in the two quantum dots
(QDs) in order to gain further insight into their energetic alignment and physical origin.
We accomplish this by calculating the interface state for an isolated 7/9-AGNR topological
junction (characterized by a zero mode at EF ) and using it as a basis state to build up the
TQD in-gap state eigenfunctions. The top panel of Fig. 4.4(A) shows the wavefunction
for such an isolated zero mode with a 7/9 orientation (denoted |ψL

0 ⟩) which has a 7-AGNR
segment on the left and a 9-AGNR segment on the right and is overlaid on the left junction
of a 7/9/7 TQD. The bottom panel of Fig. 4.4(A) shows an isolated zero mode with the
opposite 9/7 orientation overlaid on the right 7/9/7 junction (denoted |ψR

0 ⟩). If these states
interact via an electron hopping amplitude t1, then the effective Hamiltonian is diagonalized
by states of antisymmetric and symmetric linear combinations of |ψL

0 ⟩ and |ψR
0 ⟩ (Fig. 4.4(B))

that possess eigenenergies ±t1 relative to EF . These states are analogous to the UT1 and
OT1 states shown in the 7/9/7 TQD ab initio energy level diagram (energies reproduced in
Fig. 4.4(C)). For a positive t1, the symmetric state 1√

2
[|ψL

0 ⟩+|ψR
0 ⟩] (which has zero nodes)

is lower in energy than the antisymmetric state 1√
2
[|ψL

0 ⟩-|ψR
0 ⟩] (which has one node) (Fig.
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Figure 4.4: Emergence of quantum dot states from topological zero modes. (A) Left and right
topological zero-mode basis states (|ψL

0 ⟩ and |ψR
0 ⟩ in the top and bottom panels, respectively)

superimposed on the 7/9/7 TQD chemical structure. Color indicates the sign of the phase
factor. (B) Symmetric (bottom panel) and antisymmetric (top panel) linear combinations
of zero-mode states shown in (A) correspond to the OT1 and UT1 states in the 7/9/7 TQD.
(C) The DFT-LDA energy level diagram associated with a superlattice of a finite length
theoretical 7/9/7 TQD structure (detailed structure in Fig. 4.5(A)). The frontier energy
levels originating from the 7-AGNR bulk are labeled 7-CB and 7-VB and the quantum dot
states are UT1 and OT1. The energy splitting between UT1 and OT1 is equal to twice the
electron hopping amplitude t1 between |ψL

0 ⟩ and |ψR
0 ⟩. (D) Same as (A) but for the 9/7/9

TQD. Here the left and right zero-mode basis states are labeled |ψ′L
0 ⟩ and |ψ′R

0 ⟩ as shown
in the top and bottom panels, respectively. (E) Same as (B) but for the 9/7/9 TQD. In
contrast to the states shown in (B), the symmetric linear combination of zero-mode states
has a higher energy than the antisymmetric linear combination. (F) Same as (C) but for the
9/7/9 TQD from a superlattice of the finite length structure shown in Fig. 4.5(B). Here the
electron hopping amplitude t2 between |ψ′L

0 ⟩ and |ψ′R
0 ⟩ is negative as dictated by the energy

ordering of the symmetric and antisymmetric linear combinations of zero-mode states.
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Figure 4.5: Model GNR TQDs used for DFT calculations. (A) Model unit cell of the 7/9/7
TQD used for DFT-LDA calculations presented in Fig. 4.2, 4.4(A), (B), and (C). (B) Model
unit cell of the 9/7/9 TQD used for the DFT-LDA calculations presented in Fig. 4.3, 4.4(D),
(E), and (F).

4.4(B)). This is consistent with the experimental observation of Fig. 4.2 that the TQD
state with a central antinode (state 2) is lower in energy than the nodal state (state 3), and
demonstrates that t1 ¿ 0.

When we repeat this process for the 9/7/9 TQD, we get a somewhat different result. Here
we label the left- and right-hand topological zero modes as |ψ′L

0 ⟩ and |ψ′R
0 ⟩ (Fig. 4.4(D)), and

once again introduce an electron hopping amplitude t2 between them which causes splitting
of the energy of the states around EF and formation of symmetric and antisymmetric linear
combinations (Fig. 4.4(E)). As expected, the symmetric state (top panel, Fig. 4.4(E))
shows an antinode whereas the antisymmetric state has a central node. In contrast to the
7/9/7 case, however, the antisymmetric state 1√

2
[|ψ′L

0 ⟩-|ψ′R
0 ⟩] (which corresponds to OT2) is

a lower-energy eigenstate than the symmetric state 1√
2
[|ψ′L

0 ⟩+|ψ′R
0 ⟩] (which corresponds to

UT2) in both DFT and experiment. Hence, the electron hopping amplitude in this case is
negative (t2 ¡ 0).

The fact that the hopping amplitudes of the 9/7/9 and 7/9/7 cases are opposite in sign is
a consequence of the phase structure of the zero-mode wavefunction and the contrasting edge
structures of the two TQDs (i.e., wide-narrow-wide versus narrow-wide-narrow, respectively).
To show this, one can write an explicit expression for the hopping amplitudes between the
junction states in both TQDs in a π-orbital basis.

First, we consider the left zero mode of the 7/9/7-AGNR junctions (|ψL
0 ⟩) shown in Fig.

4.6(A). We can represent the Hamiltonian of the single junction system within a tight-binding
framework with 1st nearest neighbor hopping on a π-orbital basis as:

H79 =
∑

<i,j>n.n.

tij|ϕj⟩⟨ϕi| (4.1)

where tij = t within a nearest-neighbor hopping framework and |ϕi⟩ is the atomic π-orbital
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state associated with atomic site i. The following is true of the zero mode |ψL
0 ⟩ by definition:

H79|ψL
0 ⟩ = 0 (4.2)

Writing the zero mode as a linear combination of atomic π-orbitals |ϕi⟩ for all sites i:

|ψL
0 ⟩ =

∑
i

CL
i |ϕi⟩ (4.3)

where CL
i is the amplitude of the wavefunction |ψL

0 ⟩ on site i. Taking Eq. 4.1, 4.2, and 4.3
together, it follows that: ∑

{i|⟨i,j⟩n.n}

tjiC
L
i |ϕi⟩ = 0 ∀j (4.4)

Therefore, for all sites j with nearest neighboring sites i, the sum of the amplitudes CL
i is

zero. For example, if we consider site 1 in Fig. 4.6 with nearest neighbor sites 2, 3, and 4,
Eq. 4.4 implies that

t(CL
2 + CL

3 + CL
4 ) = CL

2 + CL
3 + CL

4 = 0 (4.5)

Now, we will consider the behavior of |ψL
0 ⟩ within the 7/9/7 TQD structure described by a

new Hamiltonian H797. While the general form is similar to Eq. 4.1, we have now removed
certain carbon sites compared to the system described by H79, so |ψL

0 ⟩ is no longer a zero
mode of the new Hamiltonian H797.

H797|ψL
0 ⟩ ≠ 0 (4.6)

Therefore, Eq. 4.4 no longer holds in the new system. On the other hand, Eq. 4.5 is a
property of |ψL

0 ⟩ and would still be valid. |ψR
0 ⟩ is simply a mirrored state of |ψL

0 ⟩ as a zero
mode of Hamiltonian H97. An explicit expression can be written for the hopping amplitude
t1 between |ψL

0 ⟩ and |ψR
0 ⟩:

t1 = ⟨ϕL
0 |H797|ϕR

0 ⟩ =
∑

<i,j>n.n.

CL
i C

R
j ⟨ϕi|H797|ϕj⟩ (4.7)

where by definition
⟨ϕi|H797|ϕj⟩ = t (4.8)

is the nearest neighbor hopping of graphene. Therefore

t1 = t
∑

<i,j>n.n.

CL
i C

R
j (4.9)

Any term in Eq. 4.9 associated with site j where CR
j ̸= 0 in the 7/9/7 TQD and all adjacent

sites i are also present in the single-junction structure will be exactly zero since all nearest
neighbor CL

i sum to zero according to Eq. 4.5. This is true of all interior carbon atoms.
However, if site j in the 7/9/7 TQD does not possess the same nearest neighbors i as in
the single-junction structure, equation 4.9 will have a non-zero term. This is true only for
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the edge carbon atoms. For instance, consider site 1 in Fig. 4.6(A) and (B) with nearest-
neighbor sites 2, 3, and 4. Site 4 is removed when generating the 7/9/7 TQD from H79, and
so one ends up with a non-zero term in Eq. 4.9, namely

t× CR
1 (C

L
2 + CL

3 ) (4.10)

Based on Eq. 4.5 and the fact that CL
4 < 0 as shown in Fig. 4.6(B), it can be inferred

that CL
2 +CL

3 > 0. Since CR
1 > 0, this means the typical non-zero term shown in Eq. 4.10 is

positive. It can be shown exhaustively that all such non-zero terms are similarly positive, and
t1 is therefore positive. One can infer from this argument that for any TQD with the same
edge shape, a wider interconnecting region requires the removal of lattice sites compared to
the single-junction case, and so will have a positive hopping term.

For the 9/7/9 TQD, the situation is slightly different (Fig. 4.6(C) and (D)). Here, after
substituting H79 by H97, the zero mode on the left side of the junction, |ψ′L

0 ⟩, obeys Eq.
4.1 – 4.4 like |ψL

0 ⟩. As before, we can represent the zero mode as a linear combination of
π-orbitals |ϕi⟩ for each site i with amplitudes C

′L
i . The hopping amplitude t2 can be written

in terms of the new Hamiltonian H979 and the π amplitudes of |ψ′L
0 ⟩ and |ψ′R

0 ⟩:

t2 = ⟨ϕ′L
0 |H979|ϕ

′R
0 ⟩ =

∑
<i,j>n.n.

C
′L
i C

′R
j ⟨ϕi|H979|ϕj⟩ = t

∑
<i,j>n.n.

C
′L
i C

′R
j (4.11)

By the same argument as in the 7/9/7 TQD case, all interior lattice sites will be associated
with terms that are exactly zero, while only the edge sites contribute non-zero terms. Unlike
in the 7/9/7 case, the formation of the 9/7/9 TQD is associated with the addition (rather
than the subtraction) of lattice sites as compared to H97 on the right junction as indicated
in Fig. 4.6(D). For example, consider the non-zero term associated with site 6:

t× C
′R
6 (C

′L
5 + C

′L
7 ) (4.12)

Here, C
′R
6 < 0 and C

′L
5 > 0 as indicated in Fig. 4.6(D). Since lattice site 7 does not exist in

the unperturbed left-hand junction shown in Fig. 4.6(C), C
′L
7 = 0 and the term shown in Eq.

4.12 is negative. It can also be shown exhaustively that all such non-zero terms are similarly
negative and t2 is therefore negative. Since any TQD with a narrow interconnecting region
is generated by adding lattice sites to the unperturbed Hamiltonian, one can infer that all
such TQDs with the same interfacial edge shape will have a negative hopping term.

Thus, by tracking the spatial variation of the phase on the π-orbitals of the zero-mode
wavefunctions along the junction edge, it can be seen that all non-zero terms in the analytical
expression for t1 are positive, whereas all non-zero terms for t2 are negative. This is a general
property of all topologically non-trivial junctions formed between coaxial n- and n+2-AGNRs
with zigzag’/zigzag junctions where the middle segment is either an n+2 segment (resulting
in teff > 0) or an n segment (resulting in teff < 0) under the constraint that n is odd.
Hence, the sign of the TQD junction-state hopping amplitude and likewise the symmetry
of the associated topological quantum dot states can be tuned based on the width of the
interconnecting region relative to the GNR bulk region.

The smaller energy splitting for the 9/7/9 TQD compared to the 7/9/7 TQD can be
understood by inspecting the zero-mode wavefunction and noticing that its amplitude de-
cays more rapidly in the central 7-AGNR regions compared to the decay of the wavefunction
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Figure 4.6: (A) Schematic plot of a 7/9-AGNR topological junction showing the phase factor
on each of the π orbitals forming the zero-mode wavefunction |ψL

0 ⟩ near the edge carbon
atoms (red represents a positive phase factor, blue a negative phase factor). The zero mode
can be written as a linear combination of atomic π-orbitals, or |ψL

0 ⟩ =
∑

iC
L
i ϕi. The sum

of the amplitudes of the zero-mode wavefunction on sites 2, 3 and 4 is zero. (B) Schematic
of the 7/9/7 TQD with the phase factor on each π-orbital of the left and right zero-mode
wavefunctions (|ψL

0 ⟩ and |ψR
0 ⟩) indicated by colored circles and squares, respectively. The

gray bonds indicate those which are removed when generating the 7/9/7 TQD. The hopping
amplitude t1 between |ψL

0 ⟩ and |ψR
0 ⟩ is composed of terms such as t×CR

1 (C
L
2 +C

L
3 ). From the

diagram, it is clear that CL
1 > 0, and one can infer that CL

2 +C
L
3 > 0 since CL

2 +C
L
3 +C

L
4 = 0

and CL
4 < 0. Together, these imply that t1 > 0 (C) Similar schematic plot as shown in (A)

of 9/7-AGNR topological junction. The phase factor on atomic site 5 is positive. (D) Same
schematic plot as in (B) for 9/7/9 TQD. The gray bonds indicate those which are added when
generating the 9/7/9 TQD. The hopping amplitude t2 between |ψ′L

0 ⟩ and |ψ′R
0 ⟩ is composed

of terms such as t × C
′R
6 (C

′L
5 + C

′L
7 ). From the diagram, it is clear that C

′R
6 < 0, C

′L
5 > 0,

and C
′L
7 = 0. Therefore, the hopping amplitude t2 < 0.
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amplitude in the 9-AGNR (Fig. 4.4(A),(D), 4.7). Therefore, the relative overlap between
|ψ′L

0 ⟩ and |ψ′R
0 ⟩ across the 7-AGNR segment will be less than the overlap between |ψL

0 ⟩ and
|ψR

0 ⟩ across the 9-AGNR segment, causing a reduction in the magnitude of t2 compared to
t1. As expected, all four hybrid states in both TQDs possess a larger DOS in the 9-AGNR
regions compared to the 7-AGNR regions (Fig. 4.7). This suggests that the necessary condi-
tions for hosting magnetic states should be more readily achievable using the 9/7/9 scheme
since the hopping amplitude is inherently smaller than in the 7/9/7 case. Since the hopping
parameter should decay exponentially with the distance between topological interface states,
one could realize a magnetic ground state by simply further separating the topological in-
terface states. Indeed, first-principles calculations show that the 9/7/9 structure possesses
an antiferromagnetic ground state with just five unit cells in the central segment, while the
7/9/7 structure requires 12 unit cells (Fig. 4.8). It is evident that the ability to control the
energy splitting and emergence of magnetic properties in GNR TQDs is ultimately dictated
by the relative decay length of the constituent zero-mode wavefunctions at either side of
a topological heterojunction. Intuition based on perturbation of bulk wavefunctions would
suggest that the zero-mode decay length is inversely proportional to the intrinsic gap of the
supporting GNR. At first glance, this phenomenology appears to bare out in our experiment
since the topological junction state extends further into the 9-AGNR regions compared to the
7-AGNR regions (the latter of which has a band gap more than twice the prior). However,
closer scrutiny of this and related structures reveals that such intuition does not generally
hold for all types of terminations and junctions of GNRs, where small changes in the atomic-
scale interfacial structure can have a substantial impact on the resultant spatial distribution
of topological zero-modes.

Origin of Zero-Mode Decay Length: End States

In Fig. 4.4 and 4.7, it is shown that the topological zero-mode state formed at the junction
of the zigzag’ 7-AGNR and zigzag 9-AGNR decays much more rapidly in the 7-AGNR
region compared to the 9-AGNR region. In order to explain the origin of this behavior,
we have developed a procedure for extracting the decay length of topological zero-modes
for topologically non-trivial AGNR junctions and end states. While arguments based on
perturbation of bulk wavefunctions would suggest that the zero-mode decay length should
scale inversely with the intrinsic gap of the host GNR, this behavior is not observed to
hold for several counter examples shown in Fig. 4.9 and 4.10. In particular, when forming
a vacuum interface, the 7-AGNR end state decay length is actually longer than that of
the 9-AGNR end state, despite the latter possessing a smaller intrinsic gap. Moreover, an
alternative topologically non-trivial 7/9-AGNR junction can be chosen which shows more
rapid decay in the 9-AGNR compared to the 7-AGNR (i.e., the opposite behavior for the
zigzag/zigzag’ junction explored experimentally) (Fig. 4.10(B–D)). Therefore, it appears
that the zero-mode decay length depends not only on the width of the host GNR, but the
boundary conditions enforced at interfaces with other GNRs or vacuum.

We systematically explore this behavior by first considering end states on zigzag termini
of odd-width AGNRs (Fig. 4.9(A)). Here we only need to consider sublattice-polarized states
that are localized on the graphene sublattice associated with the outer most carbon atoms
of the zigzag edge (herein called the A-sublattice) from the chiral symmetry classification
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Figure 4.7: Spatial dependence of LDOS in 7/9-AGNR junction and TQD states. (A) The
LDOS of the 7/9-AGNR zero-mode state integrated over the GNR width. The inset shows a
top-down view of isosurfaces of constant LDOS for the same state. The state decays rapidly
on the 7-AGNR side of the junction and gradually on the 9-AGNR side of the junction. (B)
The same as (A) but for UT1, (C) OT1, (D) UT2 and (E) OT2. Due to the gradual decay
of the single junction state into the 9-AGNR region as shown in (A), the interface states
have a higher LDOS in the intermediate 9-AGNR region for UT1 and OT1 compared to the
LDOS in the 7-AGNR region for UT2 and OT2. This indicates a larger overlap and thus a
larger hopping between states in the 7/9/7 TQD compared to those in the 9/7/9 TQD.
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Figure 4.8: Conditions for magnetic ground states in AGNR TQDs. (A) Schematic repre-
sentation of a 7/9/7 TQD with an interconnecting 9-AGNR central segment possessing a
variable length of n unit cells. Using the tight-binding self-consistent field (SCF) method we
determine that a minimum length n =12 is required for the 7/9/7 TQD to host an antifer-
romagnetic ground state. (B) Schematic of a 9/7/9 TQD with an interconnecting 7-AGNR
central segment possessing a variable length of n unit cells. SCF calculations determine that
for lengths n ≥ 5 this structure hosts an antiferromagnetic ground state.

theory[1].Within the terminal unit cell, the amplitude of the wavefunction on the A-sublattice

in the first column is labelled A
(1)
i while those in the second column are labelled A

(2)
i . For an N

carbon wide AGNR, the index i ranges from 1 to n = (N−1)/2 for the first column and ranges
from 1 to n+ 1 = (N + 1)/2 for the second column. We then introduce the parameter β to
represent the decay factor of the wavefunction from the terminal unit cell to the neighboring
unit cell, whose first and second columns now possess wavefunction amplitudes of βA

(1)
i and

βA
(2)
i , respectively. In general, these amplitudes become βk−1A

(1)
i and βk−1A

(2)
i for the kth

unit cell from the terminal unit cell.
Based on the derivation in the previous section, we have shown that in addition to being

sublattice polarized, a zero-mode state behaves such that for a given atomic site, the sum
of the amplitudes of the wavefunction on all nearest neighboring sites must add to zero.
Enforcing this rule at the four locations circled in Fig. 4.9(A), we can derive the following
constraints on the wavefunction amplitudes:

A
(1)
1 = −A(2)

1 (4.13)
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Figure 4.9: Decay length of topological end states. (A) Schematic of N-atom-wide AGNR
with a zigzag terminus on the right. The A-sublattice is indicated with black circles. Here,
βk−1A

(j)
i represents the amplitude of a generic A-sublattice-polarized end state in the jth

column and ith row of the kth unit cell from the end, where β is the characteristic end
state decay length. The sum of all nearest-neighbor amplitudes for any atomic site is zero.
Applying this rule to the atomic sites circles in red provides the necessary constraints to
solve for β. (B) Local density of states for a 7-AGNR zigzag end state showing exponential
decay from the GNR terminus. The inset shows isosurfaces of constant LDOS for the same
state with the red and blue colors indicating the phase factor. (C) Same as (B) but for the
9-AGNR zigzag end state. The 9-AGNR end state decays more rapidly than the 7-AGNR
end state.
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Figure 4.10: Boundary conditions on topological interface states (A) Schematic of the
zigzag’/zigzag 7/9-AGNR junction explored in experiment. The B-sublattice is marked by

black circles. Here, βk−1B
(j)
i and βk−1C

(j)
i represent the amplitudes of a generic B-sublattice-

polarized state in the jth column and ith row of the kth unit cell from the interface on the
9-AGNR and 7-AGNR side of the junction, respectively. A topological interface state in
this junction will extend further into the 9-AGNR side of the interface compared to the
7-AGNR side. (B) Same as (A) but the connection between the 7-AGNR and 9-AGNR has
been shifted laterally by two rows. As a result of this shift, the topological interface state
extends further into the 7-AGNR compared to the 9-AGNR. (C) A hypothetical topological
7/9-AGNR interface in which the boundary conditions associated with the interfacial ge-
ometries causes the topological interface state to be essentially completely localized on the
7-AGNR side of the interface. (D) The local density of states for the topological interface
state associated with the junction shown in (C). The inset shows isosurfaces of constant
LDOS for the same state with the red and blue colors indicating the phase factor.
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A
(2)
i+1 = −βA(1)

i − A
(2)
i (4.14)

A
(1)
i+1 = −A(1)

i − A
(2)
i+1 = A

(2)
i + (β − 1)A

(1)
i (4.15)

(β − 1)A(1)
n + A(2)

n = 0 (4.16)

Eq. 4.14 and 4.15 can be summarized as a matrix equation(
A

(1)
i+1

A
(2)
i+1

)
=M

(
A

(1)
i

A
(2)
i

)
; M =

(
β − 1 1
−β −1

)
(4.17)

Applying Eq. 4.17 recursively across the width of the GNR, we find(
A

(1)
n

A
(2)
n

)
=M

(
A

(1)
1

A
(2)
1

)
(4.18)

Combining Eq. 4.16 with 4.18, we get

(
β − 1 1

)(A(1)
n

A
(2)
n

)
=
(
β − 1 1

)
Mn−1

(
A

(1)
1

A
(2)
1

)
= 0 (4.19)

Without loss of generality, we can assign A
(1)
1 = 1 (i.e., the wavefunction can be normalized

later solving for β). Combining Eq. 4.13 and 4.19 and using the definition n = (N − 1)/2,
we find (

β − 1 1
)
M

N−3
2

(
1
−1

)
= 0; M =

(
β − 1 1
−β −1

)
(4.20)

Thus, in order to determine the decay length β for a topological zigzag end state of an odd
N-width AGNR, one need only solve Eq. 4.20 for β. While Eq. 4.20 may yield multiple
solutions, only those for which |β| ≤ 1 are valid. Here it should be stressed that the form
of Eq. 4.20 is completely determined by the bonding geometry of the terminating unit cell
(i.e., zigzag) and the choice of sublattice (i.e., those of the outermost carbon atoms on the
zigzag edge, herein called the A-sublattice). Determining the decay length of topological
end states for arbitrary terminating geometries and sublattice polarization would modify
the constraints in Eq. 4.13-4.16, and ultimately change the form and power of the matrix
M in Eq. 4.20.

Two concrete applications of Eq. 4.20 are shown in Fig. 4.9(B), (C). The case of the
7-AGNR zigzag end state is shown in Fig. 4.9(B), where plugging in N=7 in Eq. 4.20 gives
only one valid solution: β = 0.586. On the other hand, plugging in N=9 yields β = 0.382
(Fig. 4.9(C)). Hence, the 9-AGNR zigzag end state decays more rapidly than the 7-AGNR
end state, despite the latter possessing a larger bulk band gap. This can be seen explicitly
in the calculated LDOS for both states shown in Fig. 4.9(B), (C).

Origin of Zero-Mode Decay Length: junction States

Having established a procedure for determining the decay length of topological end states,
we now turn to the task of finding the relative decay lengths of topological zero-modes in
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AGNR heterojunctions. This approach will mirror the steps used for end states, where the
geometry of interfacial unit cells along with a specific sublattice polarization will define a
matrix equation to be solved for the decay length β. However, in the following examples, we
will show that when multiple solutions for β are found, one must apply additional constraints
based on the interfacial boundary conditions to determine the correct average value of β for
either side of the junction.

Starting with the 7/9-AGNR heterojunction explored in this manuscript as well as [53]
(Fig. 4.10(A)), we derive two matrix equations to solve for the decay lengths on either side
of the interface. On the 9-AGNR side of the junction, the terminating unit cell is zigzag
(as it was with the end state in the previous section). However, here the interface state is
actually localized on the B-sublattice based on chiral classification theory (using the same
convention defined above). Therefore, a new matrix equation will have to be derived for the
9-AGNR side of the interface. The zero-mode amplitude on carbon atoms in the first and
second column of the interfacial unit cell are labelled B

(1)
i and B

(2)
i . Equivalent locations k

unit cells from the junction interface are labelled βk−1B
(1)
i and βk−1B

(2)
i . Once again, for

any given atomic site, the sum of the amplitudes of on all nearest-neighboring sites must
add to zero. This yields the following constraints

B
(1)
1 = −B(2)

1 (4.21)

B
(1)
i+1 +B

(2)
i +B

(2)
i+1 = 0 (4.22)

B
(2)
i + βB

(1)
i + βB

(1)
i+1 = 0 (4.23)

B
(2)
4 + βB

(1)
4 − βB

(2)
4 = 0 (4.24)

Using Eq. 4.22 and 4.23 to solve for B
(1)
i+1 and B

(2)
i+1 yields

B
(1)
i+1 = −B(1)

i − 1

β
B

(2)
i (4.25)

B
(2)
i+1 = B

(1)
i +

1− β

β
B

(2)
i (4.26)

Eq. 4.25 and 4.26 can be written as a matrix equation(
B

(1)
i+1

B
(2)
i+1

)
=M

(
B

(1)
i

B
(2)
i

)
; M =

(
−1 − 1

β

1 1−β
β

)
(4.27)

Applying recursively across the width of the GNR, Eq. 4.27 becomes(
B

(1)
4

B
(2)
4

)
=M3

(
B

(1)
1

B
(2)
1

)
(4.28)

Without loss of generality, we can set B
(1)
1 = 1. Rewriting Eq. 4.28 using Eq. 4.21, we get(

1 1−β
β

)(B(1)
4

B
(2)
4

)
=
(
1 1−β

β

)
M3

(
1
−1

)
= 0; M =

(
−1 − 1

β

1 1−β
β

)
(4.29)
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Solving Eq. 4.29 for β yields three possible solutions: β1 = 0.382, β2 = 0.276, and β3 =
0.724. Additional constraints are required to determine which of the valid β is representative
of the heterojunction in question. First, we will need to solve for the decay length on the
7-AGNR side of the junction.

For the 7-AGNR side of the interface, we have a zigzag’ terminating unit cell with the
zero-mode being polarized to the sublattice associated with the terminal carbon atoms.
The amplitude of the wavefunction in the first and second column of carbon atoms in the
interfacial unit cell are C

(1)
i and C

(2)
i with an added factor of βk−1 for the kth unit cell beyond

the terminal unit cell. Following the same rationale for the previous zero-mode states, these
amplitudes are constrained as follows:

C
(2)
1 = −βC(1)

1 (4.30)

C
(1)
i+1 = −C(1)

i − C
(2)
i (4.31)

C
(2)
i+1 = −βC(1)

i+1 − C
(2)
i = βC

(1)
i + (β − 1)C

(2)
i (4.32)

Eq. 4.31 and 4.32 can be written as a matrix equation(
C

(1)
i+1

C
(2)
i+1

)
=M

(
C

(1)
i

C
(2)
i

)
; M =

(
−1 −1
β β − 1

)
(4.33)

Eq. 4.33 tells us (
C

(1)
3

C
(2)
3

)
=M2

(
C

(1)
1

C
(2)
1

)
(4.34)

Without loss of generality, we can set C
(1)
1 = 1. Again applying boundary conditions we get

(
β β − 1

)(C(1)
3

C
(2)
3

)
=
(
β β − 1

)
M2

(
1
−β

)
= 0; M =

(
−1 −1
β β − 1

)
(4.35)

Solving Eq. 4.35 for β yields one valid solution: β4 = 0.586, which is the same value obtained
for the 7-AGNR zigzag end state. Hence, the decay length of the topological interface on
the 7-AGNR side of the heterojunction is known. The final step is then to derive the correct
value for the decay length in the 9-AGNR section based on the three possible solutions
derived previously.

In general, the zero-mode present at the 7/9-AGNR zigzag’/zigzag interface shown in
Fig. 4.10A should be a linear combination of the four zero mode solutions derived in the
preceding section (three on the 9-AGNR side and one on the 7-AGNR side):

|ψ0⟩ = K1|ψ1
0⟩+K2|ψ2

0⟩+K3|ψ3
0⟩+K4|ψ4

0⟩ (4.36)

Where |ψi
0⟩ is the zero-mode with the corresponding decay length βi defined above. In order

to determine the four linear weights Ki, we must derive four independent equations on Ki.
The first of these is the normalization condition:

K2
1 +K2

2 +K2
3 +K2

4 = 1 (4.37)
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The remain three constraints come from boundary conditions at the junction interface that
relate the wavefunction amplitudes on the 7-AGNR side of the interface to those on the
9-AGNR side of the interface. Once again, these follow from the constraint that the sum of
all nearest neighbor amplitudes must add to zero:

C
(1)
1 +B

(1)
1 +B

(1)
2 = 0 (4.38)

C
(1)
2 +B

(1)
2 +B

(1)
3 = 0 (4.39)

C
(1)
3 +B

(1)
3 +B

(1)
4 = 0 (4.40)

C
(1)
3 +B

(1)
3 +B

(1)
4 = 0 (4.41)

The amplitude of the wavefunction on the ith atomic site on the 9-AGNR side of the interface
B

(1)
i can be written as a linear combination the three possible solutions:

B
(1)
i = K1B

(1)
i,1 +K2B

(1)
i,2 +K3B

(1)
i,3 (4.42)

where B
(1)
i,j is the amplitude of the jth solution on the ith atomic site. Similarly

C
(1)
i = K4C

(1)
i,4 (4.43)

Thus, Eq. 4.42 and 4.43 can be used to rewrite the constraints of Eq. 4.38 – 4.41 in terms
of the four linear weights Ki:

K4C
(1)
1,4 +K1(B

(1)
1,1 +B

(1)
2,1) +K2(B

(1)
1,2 +B

(1)
2,2) +K3(B

(1)
1,3 +B

(1)
2,3) = 0 (4.44)

K4C
(1)
2,4 +K1(B

(1)
2,1 +B

(1)
3,1) +K2(B

(1)
2,2 +B

(1)
3,2) +K3(B

(1)
2,3 +B

(1)
3,3) = 0 (4.45)

K4C
(1)
3,4 +K1(B

(1)
3,1 +B

(1)
4,1) +K2(B

(1)
3,2 +B

(1)
4,2) +K3(B

(1)
3,3 +B

(1)
4,3) = 0 (4.46)

K4C
(1)
4,4 +K1(B

(1)
4,1 +B

(1)
5,1) +K2(B

(1)
4,2 +B

(1)
5,2) +K3(B

(1)
4,3 +B

(1)
5,3) = 0 (4.47)

Since all B
(1)
i,j and C

(1)
i,j are known based on the solutions derived in the preceding section,

further applying the constraints from Eq. 4.37 and Eq. 4.44-4.47 determines all Ki : K1 ≈ 0,
K2 ≈ 0.04,K3 ≈ 0.72, andK4 ≈ 0.70. Hence, the characteristic decay length on the 9-AGNR
is predominantly defined by β3 which is greater than β4 on the 7-AGNR side of the interface.
Therefore, the topological interface state extends further into the 9-AGNR side than the
7-AGNR side. It is worth emphasizing at this point that at no point are the intrinsic gaps
of the host GNRs invoked to determine the decay lengths on either side of the 7/9-AGNR
junction. These were determined purely by the specific bonding geometry of the interfacial
region along with the sublattice to which the zero-modes are polarized.

Finally, it is instructive to consider a counterexample for which the topological interface
state at a 7/9-AGNR heterojunction possesses a larger decay length in the 7-AGNR region
compared to the 9-AGNR region. To demonstrate the importance of the interfacial boundary
conditions, we consider another zigzag’/zigzag 7/9-AGNR interface where the registry is
shifted compared to that shown previously (Fig. 4.10(B)). Here, the linear weights Ki shift
significantly: K1 ≈ 0.36, K2 ≈ −0.25, K3 ≈ −0.34, and K4 ≈ 0.83. The net result is a
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topological interface state that decays more rapidly in the 9-AGNR section compared to
the 7-AGNR section. In principle, GNR TQDs constructed with these alternative junctions
would have a larger hoping parameter across the 7-AGNR sections than the 9-AGNR sections.

One can also consider scenarios in which the interfacial bonding geometry and boundary
conditions conspire to completely localize topological interface states to the 7-AGNR side
of a 7/9-AGNR junction (Fig. 4.10(C),(D)). GNR TQDs constructed from these elements
would essentially have a vanishing wavefunction amplitude across the 9-AGNR segment while
maintaining a non-zero wavefunction amplitude across the 7-AGNR segment.

Thus, the topological end states found at zigzag termini of 7-AGNRs and 9-AGNRs have
the opposite behavior, with the shorter decay length being found in the small band gap
9-AGNRs (Fig. 4.9(A–C)). Furthermore, if the registry of the zigzag’/zigzag 7/9-AGNR
interface is shift laterally, the resultant topological interface state will decay more rapidly
on the 9-AGNR side of the interface compared to the 7-AGNR side (Fig. 4.10(A),(B)).
The above approach reveals that the decay lengths of topological zero-mode states do not
depend on the bulk band gap of the host GNR, but are instead determined by the interfacial
geometry and the sublattice on which the topological zero-mode resides. Indeed, these
structural factors can even conspire to completely localize topological interface states on the
7-AGNR side of a 7/9-AGNR heterojunction (Fig. 4.10(C),(D)).

4.4 Conclusion

We have developed an explicit protocol for generating rationally designed bottom-up
GNR quantum dots based on topological boundary states, resulting in QD states of tunable
hybridization and symmetry. The sterically-selective on-surface copolymerization strategy
used in this work allows for the development of new GNR heterojunctions with customized
interfacial geometries and tailored segment-lengths through use of a bifunctional linker. We
also demonstrate the ability to generate interfacial zero modes between GNRs derived from
synthetically orthogonal molecular precursors using this specialized linker monomer. These
results show that zero-dimensional topological states embedded in GNRs provide a new
platform for investigating quasi-1D topological behavior and quantum magnetism, and thus
create new opportunities for future nanoelectronics applications including sensors, transis-
tors, and qubits.
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Chapter 5

Engineering Robust Metallic
Zero-Mode States in Olympicene
Graphene Nanoribbons

Metallic graphene nanoribbons (GNRs) represent a critical component in the toolbox
of low-dimensional functional materials technology serving as 1D interconnects capable of
both electronic and quantum information transport. The structural constraints imposed
by on-surface bottom-up GNR synthesis protocols along with the limited control over the
orientation and sequence of asymmetric monomer building blocks, as shown in the sawtooth
GNRs plagued the design and assembly of metallic GNRs. In this chapter, we introduce a new
type of GNR hosting robust metallic states by embedding a symmetric zero-mode superlattice
along the backbone of a GNR. Tight-binding electronic structure models predict a strong
nearest-neighbor electron hopping interaction between adjacent zero-mode states resulting
in a dispersive metallic band. First principles DFT-LDA calculations confirm this prediction
and the robust, metallic zero-mode band of olympicene GNRs (oGNRs) is experimentally
corroborated by scanning tunneling spectroscopy.

5.1 Introduction

Graphene nanoribbons (GNRs) are representatives of an emerging class of bottom-up syn-
thesized designer quantum materials whose electronic structure can be tuned with atomic
precision by deterministic chemical design. Their structures exhibit unusual and some
never before realized physical properties that extend far beyond the parent 2D graphene.
Highly tunable band gaps,[33][72][35] photoemission,[92] magnetic spin chains,[93] and even
symmetry-protected topological states[1][37][38][39] can all be tailored by real space struc-
tural parameters including among others width, symmetry, edge termination, and substi-
tutional doping.[74][36][94][7] A dominant electronic feature common to almost all GNRs
is the opening of a sizeable band gap imposed by laterally confining 2D graphene sheets
to a quasi-1D GNR (width < 2 nm). This quantum confinement effect has emerged as a
veritable challenge to the design of intrinsically metallic band structures. Bottom-up access
to a family of robust metallic GNRs not only represents a critical component in the de-
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velopment of advanced nanographene-based logic circuits,[95] e.g. as covalent inter-connects
capable of electronic and quantum transport, but could serve as a versatile and highly tunable
platform to explore emergent physical phenomena such as Luttinger liquids,[55][56][57][96]
plasmonics,[58][97][59][98] charge density waves,[60][61][99][100] and superconductivity in
1D.[101][102][62][63]

We recently reported a general approach for accessing metallic GNRs by embedding
a superlattice of localized zero-mode states along the backbone of a bottom-up synthesized
sawtooth GNR (sGNR).[2][84] A key ingredient to this approach was the design of a molecular
building block, 6,11-bis(10-bromoanthracen-9-yl)-1-methyltetracene (BAMT in Fig. 5.1),
that introduces a sublattice imbalance (∆N = NA −NB) between carbon at-oms occupying
the A and the B sublattice sites of graphene, respectively. The concept is reminiscent of Lieb’s
theorem,[47] a surplus of carbon atoms on sublattice A versus sublattice B will lead to ∆N
eigenstates at E = 0 eV, or zero-modes, localized on the majority sublattice. Application
of a simple tight-binding model, the Su-Schrieffer-Heeger (SSH) dispersion relationship,[103]
that describe the interaction between these local zero-mode states gave rise to two distinctive
bands defined by an intracell hopping amplitude t1 and an intercell hopping amplitude t2.
The energy gap enclosed by these bands is ∆E = 2||t1| − t2||. If the absolute magnitudes of
the two hopping amplitudes are equal, i.e. |t1| = |t2|, as illustrated for the evenly spaced zero-
mode states in sGNR (Fig. 5.1(A) the energy gap vanishes and the 1D electronic structure
becomes metallic.[65][71] The presence of a metallic zero-mode band at the Fermi level (EF )
in sGNRs could be visualized by scanning tunneling spectroscopy (STS) and was further
corroborated by DFT-LDA calculations. This method, however, suffered from a Stoner-type
instability for narrow bands that could open up a spin-splitting gap. To overcome this, we
had to introduce an effective sublattice mixing (e.g. introduction of 5-membered-rings in
5-sGNRs) to facilitate the hopping between the localized zero modes.

A major shortcoming inherent to the design of 5-sGNRs is the requirement that all bonds
formed between molecular precursors as part of the on-surface radical step-growth polymer-
ization have to follow a strict head-to-tail pattern (-AB-AB-AB- in Fig. 5.1(A) to ensure
the intracell hopping amplitude |t1| remains equal in magnitude to the intercell hopping am-
plitude |t2|. The statistical probability that this specific arrangement is adopted for a single
C-C bond-forming step on the surface is only ∼50%. Were the molecular building blocks
to fuse in the undesirable head-to-head (-BA-AB-) or tail-to-tail (-AB-BA-) configuration
the zero-mode bands would split (|t3| ≠ |t4|) and give rise to a semiconductor rather than
a metal.[2][84] The probability of producing a metallic sGNR segment from n monomers is
therefore P (n) = (0.5)n or less than 1% for n > 7, severely limiting the use of metallic sGNRs
at length scales necessary for applications as device interconnects. While sGNRs served as
a successful proof-of-concept for our general approach to access metallic phases in GNRs,
designs that ensure regioregularity and an efficient sublattice mixing of zero-mode states are
needed to obtain uni-form samples of extended GNRs with persistent, intrinsically metallic
zero-mode bands.
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5.2 Experimental Result Summary

Samples of 5-oGNRs are synthesized via bottom-up techniques, Topographic images of
a high and low coverage sample, Fig. 5.2(B) and Fig. 5.2(C), respectively, reveal extended
GNRs featuring a characteristic alternating pattern of protrusions along the backbone of
the GNR and lengths ranging up to 30 nm. Bond-resolved STM (BRSTM) with CO-
functionalized tips reveals that following the initial radial step growth polymerization at
180 °C the [4]-helicene fragments lining the edges of oGNRs have partially fused to form
5-membered rings (Fig. 5.2(E)). The second annealing step (350 °C for 15 min) merely com-
pletes the process giving access to a uniform edge termination in 5-oGNRs (Fig. 5.2(D)).
Having resolved the chemical structure of 5-oGNRs we shifted our focus to the characteri-
zation of its local electronic structure using differential tunneling spectroscopy. Fig. 5.3(A)
shows typical dI/dV point spectra for a 5-oGNR recorded with a CO-functionalized STM tip
at the positions highlighted in the inset. Three spectral features can clearly be seen in the
range of −2.00V < Vs < +1.80V . Two shoulders at Vs = +1.60V (Peak 1) and Vs = −0.75V
(Peak 3) dominate the spectrum, along with a broad peak centered at Vs = −0.90V (Peak
2). The signal intensities of Peaks 1 and 3 are strongest when the STM tip is placed close
to the convex protrusions lining the edge of the ribbon (blue line in Fig. 5.3(A)), whereas
Peak 2 is prominently featured in both spectra recorded above the center of an olympicene
unit (red line in Fig. 5.3(A)) and along the edge of the ribbon. Fig. 5.3(B) shows a mag-
nification of the dI/dV spectra taken over a narrower bias range −0.20V < Vs < +0.20V .
Most prominent here is a U-shaped feature anchored by two peaks in the differential con-
ductance spectrum at Vs = −0.10V and Vs = +0.10V when the STM tip is placed above the
center of the ribbon. Differential conductance maps recorded over a continuous bias range
of Vs = +0.10V to Vs = −0.10V (Fig. 5.3(D-J)) show that the same state, associated with a
distinctive wavefunction pattern of a zero-mode, spans across EF . The peak at Vs = −0.10V
can thus be assigned to the bottom edge of the lower (LZM) of two zero-mode (ZM) bands
contributing to the metallic state in 5-oGNRs, while the peak at Vs = +0.10V captures the
top edge of the upper zero-mode (UZM) band. The U-shaped LDOS spanning across EF is
the signature of van Hove singularities associated with the flat band edges of the LZM and
UZM bands.

5.3 First-principles Result of the 5-oGNR

We further explored the metallic band structure of 5-oGNRs using ab initio density
functional theory (DFT). Fig. 5.3(M) and Fig. 5.3(N) show the theoretical DOS and the
band structure of a 5-oGNR calculated using a local density approximation (LDA) to the
exchange-correlation potential. Two highly dispersive bands, labeled LZM and UZM, span
across the energy scale from E − EF = −0.25eV to E − EF = 0.25eV . The LZM and
UZM bands cross EF at k = X giving rise to a robust metallic band with a width of EZM
∼ 0.5 eV. Both the upper and lower edges of the ZM bands show a flattening as they
approach k = Γ. The corresponding calculated DOS (Fig. 5.3(M)) faithfully reproduces
the U-shaped signature of the metallic band identified in the experimental LDOS (Fig.
5.3(A),(B)). DFT-LDA LDOS maps evaluated at the energy position of the UZM and LZM
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Figure 5.1: Bottom-up design and zero-mode engineering of metallic GNRs. (A) The metallic
band in 5-sGNRs emerges only if the orientation of the monomers along the axis of poly-
merization (x-axis) follows a regioregular -AB-AB-AB- pattern. (B) The presence of a σyz
mirror plane in 1a/b normal to the axis of polymerization (x-axis) ensures that either of two
possible orientations of a monomer during the radical step-growth polymerization gives rise
to a metallic zero-mode band in oGNRs.

edges (Fig. 5.3(P),(Q)) show the characteristic nodal pattern observed in the corresponding
dI/dV maps (Fig. 5.3(D-J)). At energies above and below E−EF = ±0.25eV the calculated
metallic ZMB gives way to mini-gaps, narrow regions of vanishing DOS that span the energy
window separating the ZMB from the bottom of the CB and the top of the VB, located at
E −EF = 0.80eV and E −EF = −0.75eV , respectively. Both LZM and UZM bands can be
fit to an SSH tight-binding model

E±(k) = ±
√
|t1|2 + |t2|2 + 2|t1||t2| cos(k + δ) (5.1)

with the intra- and intercell hopping amplitudes |t1| = |t2| = 111meV , and δ = 0 (δ is the
relative phase between t1 and t2). Supercell calculations further show that the rigid GNR
backbone renders oGNR virtually impervious to mechanical deformations usually associated
with strong electron-phonon coupling along the main x-axis of the ribbon that would oth-
erwise induce spontaneous metal-insulator transitions (i.e. Peierls distortion). Besides the
decisive structural advantage over the first generation metallic sGNRs, the Cs symmetric
molecular precursor 1b features a σyz mirror plane perpendicular to the axis of polymer-
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ization that gives rise to uniformly predictable monomer sequences that exclusively yield
metallic band structures, the family of oGNRs has one last trick up its sleeve.

Unlike sGNRs, where a fusion of the [4]helicene fragment along the sawtooth edge proved
critical to induce mixing of the sublattice spin-polarized zero-mode states that led to a broad-
ening of the metallic ZMB (i.e. a reduced DOS at EF ) sufficient to circumvent Mott insulator
or Stoner magnetic phase transitions, an efficient hopping between zero-mode states localized
on A and B sites in oGNRs is built into our design. The -AA-BB-AA- polymerization places
zero-mode states on alternating sublattice sites ensuring that the hopping amplitudes t1 and
t2 between adjacent states are dominated by the nearest neighbor hopping term rather than
the much smaller second nearest neighbor hopping (Fig. 5.1(B). This is reflected in band
structure calculations using the local spin density approximation (LSDA) that show no sign
of magnetic phase transitions for the disperse metallic ZM bands in 5-oGNRs (Fig. 5.4).

Figure 5.2: Bottom-up synthesis of 5-oGNRs. (A) STM topographic image of a self-
assembled island of molecular precursor 1b on Au(111) (Vs = 0.05V , It = 20pA). (B)
STM topographic image of a high coverage sample of 5-oGNRs following annealing to 350
°C (Vs = 0.05V , It = 20pA). (C) STM topographic image of a low coverage sample of
5-oGNRs following annealing to 350 °C (Vs = 0.05V , It = 20pA). (D) BRSTM image of
a 5-oGNR segment showing the 5-membered rings resulting from the fusion of [4]helicene
groups along the oGNRs edges (Vs = 0.01V , It = 400pA). (E) Schematic representation of
the stepwise thermally induced cyclodehydrogenation that gives rise to 5-oGNRs.



CHAPTER 5. ENGINEERING ROBUST METALLIC ZERO-MODE STATES IN
OLYMPICENE GRAPHENE NANORIBBONS 71

Figure 5.3: Electronic structure of 5-oGNRs. (A-B) STS dI/dV spectra recorded on a 5-
oGNR at the positions marked in the inset STM topo-graphic image with a red and blue
cross (spectroscopy: Vac = 11mV , f = 455 Hz; imaging: Vs = 50mV , It = 20pA, CO-
functionalized tip). (C-L) Constant height dI/dV maps recorded at the indicated biases
(spectroscopy: Vac = 11mV , f = 455 Hz). (M) DFT-LDA calculated DOS of 5-oGNR
(spectrum broadened by 10 meV Gaussian). Features associated with the CB, UZM, LZM,
and VB are indicted by arrows. (N) DFT-LDA calculated band structure of a freestanding
5-oGNRs. A tight binding fit to DFT-LDA band structure yields the hopping parameters
|t1| = |t2| = 111meV . (O-R) Calculated DFT-LDA LDOS maps evaluated at the edge of
the bulk conduction band, at the UZM and LZM bands, and at the edge of the bulk valence
band.

5.4 Conclusion

We herein demonstrate the versatility of zero-mode engineering for introducing robust
metallicity in 1D GNRs. A Cs symmetric molecular building block undergoes a regiocon-
trolled on-surface polymerization to yield homogenous samples of 5-oGNRs featuring a sym-
metric super-lattice of zero-mode states along the GNR backbone. Guided by elementary
tight-binding analysis we pioneer the design of 5-oGNRs around a strong nearest-neighbor
hop-ping interaction between electrons in adjacent zero-mode states giving rise to a large
zero-mode bandwidth that is insensitive to Peierls and Stoner metal-insulator transitions.
First-principles DFT-LDA calculations and scanning tunneling spectroscopy corroborate the
emergence of metallic zero-mode bands in 5-oGNRs. The design and synthesis of robust,
metallic GNRs paves the way towards the realization of energy-efficient integrated circuit



CHAPTER 5. ENGINEERING ROBUST METALLIC ZERO-MODE STATES IN
OLYMPICENE GRAPHENE NANORIBBONS 72

Figure 5.4: (a) The proposed anti-ferromagnetic states in the DFT-LSDA calculation, this
configuration is set as the initial condition for the magnetization. (b) The converged DFT-
LSDA calculated band structure for 5-oGNRs shows the same ground state as in LDA cal-
culation. Even though Lieb’s theorem does not rule out the possibility of antiferromagnetic
ordering, the large overlap between adjacent zero-mode states favors a non-magnetic ground
state in oGNRs. The magnetic property shown in (a) is absent after the convergence.

architectures based on low-dimensional carbon materials that are capable of high-speed elec-
tronic[104][105] and quantum information processing.[106][107]
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Chapter 6

Non-Hermitian Topology Induced
Unidirectional Electron Transport in
Graphene Nanoribbons

We show that a 4-armchair graphene nanoribbon with cobalt (Co) adatoms (Co-4AGNR)
manifests non-Hermitian topology. The non-Hermitian nature arises from the self-energy of
the quasiparticle states due to many-electron interactions. Spin-orbit coupling of the Co
atoms breaks symmetries that map states from k to -k, which is necessary for nontrivial
topology. The complex-energy bands of the periodic system from ab initio GW calculations
yield non-trivial Z indices – first such realization in an electronic material. The Green’s
function of a segment exhibits strong asymmetric behavior in real space, giving rise to novel
unidirectional transport properties.

6.1 Introduction

Topological classification in non-Hermitian systems is significantly different from their
Hermitian counterparts [108][109]. It has triggered much interest recently in optical systems
[110] and other open systems [111][112]. A distinct phenomenon is the non-Hermitian “skin
effect” (NHSE) in topological one-dimensional (1D) non-Hermitian systems where a macro-
scopic number of wavefunctions localize at one end of a finite segment [113][114]. However,
this phenomenon has not been realized in realistic electronic condensed matter systems so
far. Graphene nanoribbons (GNRs), a 1D crystalline material [35][36] that could be syn-
thesized with atomic precision [33]-[34], have attracted many interests for their fundamental
properties and potential applications. Recently, GNRs have been proven to possess non-
trivial topology [37] when time-reversal and inversion symmetries are present in a unit cell
commensurate with the geometry of its termination, based on Hermitian topology classifica-
tion theory. The topological states in the bulk gap at the junction of two GNRs of distinct
topologies have been predicted to have novel properties and promising applications[37]-[64],
and many of them have been realized in experiments[4][38][7][8]. A generalization to clas-
sification theory using chiral symmetry [1] further explains the formation of asymmetric
junction topological states [39][2][3] and predicts the spin physics in the GNRs.
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Previous topological theories for electronic systems, such as those above for the GNRs, are
basically restricted to systems in which the electronic states are assumed to be derived from
a Hermitian Hamiltonian. However, in many experiments and situations such as scanning
tunneling microscopy (STM), angle-resolved photoemission spectroscopy (ARPES), etc., the
spectral and transport data measured correspond to quasiparticle excitations that may have
a significant finite lifetime due to many-body interactions; this gives rise to an imaginary
part to the quasi-particle energy. When such many-body effect is considered, the Dyson’s
equation for the quasiparticle states may be mapped to an effective Hamiltonian that is
naturally non-Hermitian; it falls into the class of non-Hermitian 1D classification and an
analysis of its topological properties may lead to discovery and deeper understanding of in-
teresting novel phenomena. Here we perform ab initio GW calculations [22] on an armchair
graphene nanoribbon (AGNR) with width of four carbon rows (4AGNR) and a cobalt atom
on top in each unit cell (Fig. 6.2(a)), and find that the Co-4AGNR manifests a nontriv-
ial non-Hermitian topology at point gaps (described below) for electronic states near the
Fermi energy (EF ). We further construct a tight-binding Hamiltonian based on parameters
obtained from Wannierization of the GW results, and unveil the NHSE for finite segments
of the Co-4AGNR. As an important consequence, this effect makes the electronic Green’s
function G(r, r′, ω) of the system asymmetric in real space. Many physical quantities such
as transport coefficients and tunneling amplitude are proportional to the magnitude of the
off-diagonal part of the real-space Green’s function. The asymmetric Green’s function causes
the electron transport unidirectional, making the material acts as an ideal 1D “p-n” junction
or diode. A key factor and a necessary condition behind this novel phenomenon is the bro-
ken symmetries (time-reversal symmetry, spatial symmetry, spin-rotational symmetry, etc.)
resulted from the ferromagnetic order and spin-orbit coupling (SOC) effect induced by the
cobalt atoms.

6.2 Non-Hermitian Topology Classification Theory

For a 1D electronic system with no symmetry, the non-Hermitian classification yields a
Z index, rather than the trivial classification in the Hermitian case [108][109]. The distinct
properties of a non-Hermitian topological 1D system can be seen from a simple example of
a linear chain with one site per unit cell, known as the Hatano-Nelson model [115][116]:

HHN =
∑
i

t1c
†
i+1ci + t2c

†
i−1ci (6.1)

Here i denotes the atomic site, t1 = t+ g is the forward hopping amplitude, and t2 = t− g is
the backward hopping amplitude (Fig. 6.1(a)). Both t and g are real numbers. For g ̸= 0, the
Hamiltonian is non-Hermitian. If periodic boundary condition is imposed, the spectrum can
be obtained by doing a Fourier transform and solving for the eigenenergies of the system in
the reciprocal (k) space. The spectrum (the complex eigenvalue as a function of wavevector
k, E(k)) forms a closed path in the complex energy plane, as shown as the black curve
in Fig. 6.1(b). However, the numerical solution for the spectrum Ei of a finite segment
of this model is completely different, which are given by the red lines in Fig. 6.1(b) that
form a line enclosed by the black curve. The difference between the finite segment spectrum
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Figure 6.1: (a) Hatano-Nelson model with asymmetric hoppings between neighboring sites
on a chain that make the Hamiltonian non-Hermitian. (b) Black curve: energy spectrum
(E(k)) in the complex plane for g/t = 0.5 under periodic boundary conditions. E is in units
of the hopping parameter t. Red dots: energy spectrum under open boundary conditions
for a segment of 40 sites. (c) Example of right eigenvector and left eigenvector for the
E = −0.066t state of the non-Hermitian Hamiltonian in (a) of a segment of 40 sites. Both
eigenvectors are localized on just one end of the finite chain.

and periodic one roots in the sensitive dependence of the quantum states on the boundary
condition for a non-Hermitian system. All of the eigenvectors of a finite segment are localized
on just one end of the chain, as shown in Fig. 6.1(c) for the right and left eigenvectors. The
right eigenvector is defined as the wavefunction ψR that satisfies HψR = EψR, and the left
eigenvector satisfies ψLH = ψLE. This phenomenon of macroscopic localization is known as
the skin effect. In non-Hermitian classification theory for a 1D system with no symmetry,
the Z index for a point gap is defined as a topological invariant for a chosen point E in the
complex energy plane given by [117]-[118]:

Z =

∫ π

−π

∂kln(det(H(k)− E))
dk

2πi
(6.2)

The physical meaning of the Z index is the winding number of the periodic spectrum,
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as k goes across the 1D Brillouin zone (BZ) (e.g., from X to Γ and then from Γ to X)
around a chosen energy E in the complex plane. Whenever the winding number is non-
zero, the NHSE arises [119]. To have a nontrivial non-Hermitian topology like the one in
the Hatano-Nelson model, we first would like to have an asymmetric bandstructure in DFT
so that the real part of the energy is asymmetric. To achieve this, we have to break any
symmetry that relates states at k to −k, such that the spectrum E(k) for a given energy band
goes along a different path in the complex energy plane as k goes from X to Γ, compared
to the path as k goes from Γ to X in the BZ.To fulfill this requirement, we start with a
4-AGNR as a backbone, and add a cobalt atom in each unit cell as an adatom as shown
in Fig. 6.2(a). Because GNRs can be synthesized with atomic precision, for example via
the bottom-up molecular precursor method [72], this proposed material has the potential
to be realized in the experiment. The cobalt atoms bring strong spin-orbit coupling (SOC)
as well as ferromagnetism into the system, which breaks time-reversal symmetry, spatial
symmetries, and collinear spin time-reversal symmetry defined as TS, where T is the time-
reversal operator and S is the spin-flip operator. The symmetry breaking is a necessary but
not sufficient condition to have an asymmetric bands, we searched for a variety of materials
satisfying this requirement and found that this particular structure manifests an asymmetric
bands under DFT, as shown in the following section.

6.3 Full Frequency GW Calculation

We first perform ab initio density functional theory (DFT) calculation on Co-4AGNR
using the QuantumESPRESSO package [17]. As was shown in Chapter 1, the Hamiltonian
in DFT can be written as

H = T + Vion + VH + Vxc([n(r),∇n(r)]) (6.3)

Here the exchange-correlation potential Vxc is given by the PBE approximation. We solved
the Hamiltonian self-consistently to obtain the band structure, as shown in Fig. 6.2(b). The
collinear LSDA result shows a ferromagnetic ground state, whereas noncollinear calculation
with SOC already shows an asymmetric band structure at the DFT level (see band 1 and
band 2 in Fig. 6.2(b)).

To include quasiparticle self-energy effects on top of the DFT energy bands, we perform
a full frequency G0W0 calculation using the BerkeleyGW package [22][23][23][24]. The
quasiparticle Hamiltonian used in G0W0 calculation reads

HGW (E) = T + Vion + VH + Σ(E) = HDFT + (Σ(E)− Vxc) (6.4)

Here Σ(E) is the electron self-energy within the GW approximation, and the complex spec-
trum E(k) is obtained by solving Dyson’s equation:

HGW (E)ψ = Eψ (6.5)

Since the full frequency self-energy operator is non-Hermitian, the energies obtained from
Eq. 6.5 have both real and imaginary parts. Re(E(k)) corresponds to the quasiparticle
excitation energy, and Im(E(k)) is related to the lifetime of the quasiparticle excitation with
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Figure 6.2: (a) Atomic structure of Co-4AGNR. The cobalt atoms are adsorbed at the center
of the lower benzene rings. (b) DFT band structure in the local spin density approximation
(left), and full-spinor DFT band structure including spin-orbit coupling (right). The SOC
effect perturbs band 1 and band 2 and makes them asymmetric in k-space as shown on the
right panel. (c) DFT bands (dashed lines) and real part of the full frequency GW bands
(solid lines) of the two asymmetric bands near EF shown in (b). (d) Complex spectrum of
the full-frequency GW calculations of the two asymmetric bands in (c). The existence of
some areas enclosed by the energy spectrum under periodic boundary conditions is indicative
of nontrivial topology.

wavevector k in the BZ. Since performing a full frequency GW calculation for a 1D metallic
system with full spinor wavefunctions is computationally challenging, we use wavefunctions
from the collinear calculation instead and treat SOC as a perturbation. Fig. 6.2(c) shows
the GW band structure (solid lines), i.e., the real part of E(k) vs. k, as compared to the
DFT band structure (dashed lines) for the two asymmetric bands identified in Fig. 6.2(b).
Fig. 6.2(d) shows the complex spectrum of the two corresponding bands. Given that we have
already broken all the symmetries to achieve asymmetry in the real component of energies,
it is to be expected that the imaginary part of energies will also exhibit asymmetry. It is
clear that the two bands have nontrivial non-Hermitian topology as they enclose some areas
in the complex energy plane. From Eq. 6.2, we obtained Z = −1 and Z = 1 for any complex
E inside the spectral loop of band 1 and band 2, respectively.
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Figure 6.3: (a) Wannier interpolation of the two asymmetric bands of Co-4AGNR within
DFT. Dashed lines are the Wannier interpolated bands and solid lines are the original DFT
calculated bands, showing excellent agreement. (b) Isovalue plots (at value of 5%) of the
five dominated Wannier functions (center around the cobalt atoms) for interpolating the two
bands.

6.4 Finite Segment Spectrum

To explicitly show the properties of a large finite chain of Co-4AGNR, we first per-
form a Wannier interpolation [120] of the DFT band structure for the periodic system (Fig.
6.3(a)) and obtain its maximally-localized Wannier functions (Fig. 6.3(b)). We then use
these Wannier functions as basis functions to construct a non-Hermitian tight-binding model
Hamiltonian that fits our complex energy GW band structure using regression with L2 loss
function:

L =
∑
nk

|ETB
nk − EGW

nk |2 (6.6)

Here ETB
nk is the eigenenergy obtained from the non-Hermitian tight-binding model, EGW

nk

is the complex eigenenergy from our ab initio GW calculation. After obtaining the tight-
binding parameters, we apply the non-Hermitian tight-binding model to solve for the prop-
erties of the finite segments. The finite segment spectrum for a Co-4AGNR composed of 200
unit cells is shown in Fig. 6.4 (a). The dashed lines denote the eigenenergies of the finite
segment and they are enclosed by the periodic spectrum (dark blue and orange lines). As a
result of nontrivial non-Hermitian topology, the wavefunction of all the eigenmodes localizes
on just one of the ends of the finite segment. (See Fig. 6.4(c)). With the solutions to Eq.
6.5, we may evaluate the single-particle Green’s function for the electron that is given by:

G(r, r′;ω) = Σi
ψi
R(r)ψ

i,∗
L (r′)

ω − Ei

(6.7)



CHAPTER 6. NON-HERMITIAN TOPOLOGY INDUCED UNIDIRECTIONAL
ELECTRON TRANSPORT IN GRAPHENE NANORIBBONS 79

ψi
R(r) andψ

i
L(r) are the right and left eigenvector for the ith eigenenergy, respectively and

Ei is the complex eigenenergy of the finite segment. The macroscopic localization of the
wavefunctions of the finite segment leads to a distinct Green’s function G(l,m) matrix in
real space, where l,m denote the unit cell index. As shown in Fig. 6.4 (b) for ω = 0.83eV ,
since Z = −1, ψR(r) localizes on the right end and ψL(r) localizes on the left end. This makes
|G(ω = 0.83eV, 200, 0)|2 several orders of magnitude bigger than |G(ω = 0.83eV, 0, 200)|2, as
opposed to that of a Hermitian system in which the Green’s functions are symmetric.

Transport of electrons, within a single-particle picture, at a given energy is in general
proportional to the magnitude of the off-diagonal elements of the Green’s function. According
to the Buttiker formula[121], the transmission probability from the left lead to the right lead
connected to a 1D segment is given by TL→R = Tr[Γ(lL)G(lL, lR)Γ(lR)G

†(lR, lL)] where lL and
lR are unit-cell index of the left and right end of the finite segment, respectively, and Tr stands
for tracing over a matrix. Γ(lL/R) is the coupling matrix between the Co-4AGNR segment and
the left/right leads, defined as i(Σ(lL/R)−Σ†(lL/R)). Here Σ(lL/R) = TL/RgL/RTL/R is the self-
energy of the lead, where TL/R is the hopping matrix between the lead and left/right end of
the Co-4AGNR segment, and gL/R is the Green’s function for the semi-infinite leads. The net
transimission at energy E is proportional to TL→RfL(E)−TR→LfR(E) where fL/R(E) is the
Fermi distribution of the left/right leads. Since |G(lR, lL)|2 is much larger than |G(lL, lR)|2,
the net current under positive bias (fL < fR ) is much larger than that under negative bias
(fR < fL). If Z changes from −1 to +1, the right eigenvectors would now localize on the
left end of the finite segment and the preferred current direction would also be reversed.
Thus, a finite segment Co-4AGNR manifests asymmetric conducting behavior, just like a
p-n junction, despite the fact that the system has apparent mirror symmetry. The key here
is that SOC (along with a ferromagnetic ground state) implicitly breaks this symmetry; this
combining with the many-electron self-energy gives rise to the non-trivial non-Hermitian
topology in this 1D material.

6.5 Conclusion

We propose a non-trivial non-Hermitian 1D system based on a graphene nanoribbon – a
Co-4AGNR that possesses Z = ±1 winding numbers in the complex energy plane for energies
near the Fermi level. In the finite segment form, its energy spectrum and eigenfunctions
become vastly different from that of the periodic system. We explicitly show these findings
by performing ab initio GW calculations including SOC and self-energy effects. The full-
frequency GW calculation shows a non-trivial winding character for the Fermi-level bands of
the periodic system, which leads to localization of the electron wavefunctions at one of the
ends of a finite segment. A striking phenomenon predicted from our ab initio calculations
is a large asymmetric electron transmission through the segment due to a distinct character
of its electron Green’s function matrix, leading to novel unidirectional transport properties.
This work demonstrates that nontrivial non-Hermitian topology and NHSE may be achieved
in practical electronic material systems, and paves a new way for the design of unidirectional
transport properties in 1D materials at the nanoscale.
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Figure 6.4: (a) Dark blue and orange lines are Wannier interpolated GW complex bands of
Co-4AGNR with periodic boundary conditions for the two asymmetric bands in Fig. 6.2(d).
The dashed red and light blue lines are the finite segment spectra. (b) The logarithm of the
absolute amplitude of the Green’s function matrix as a function of the unit-cell site positions
is shown for a finite segment with 200 unit cells for energy ω = 0.83eV . (c) Squared norm of
the left and right eigenmodes of the non-Hermitian finite segment tight-binding Hamiltonian
at eigenenergy of 0.83 − 0.006j eV. Since Z = −1 at this energy, the right eigenmode is
localized at the right end of the finite segment and the left eigenmode is localized at the left
end.
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Chapter 7

Bottom-up Assembly of Nanoporous
Graphene with Emergent Electronic
States

The incorporation of nanoscale pores into a sheet of graphene allows it to switch from an
impermeable semimetal to a semiconducting nano-sieve. Nanoporous graphenes are desirable
for applications ranging from high-performance semiconductor device channels to atomically
thin molecular sieve membranes, and their performance is highly dependent on the period-
icity and reproducibility of pores at the atomic level. Achieving precise nanopore topologies
in graphene using top-down approaches has proven to be challenging due to poor structural
control at the atomic level. Alternatively, atomically precise nanometer-sized pores can be
fabricated via lateral fusion of bottom-up synthesized graphene nanoribbons. Here we uti-
lize the bottom-up approach to synthesize novel nanoporous graphene. We find emergent
interface-localized electronic states within the bulk band gap of the graphene nanoribbon that
hybridizes to yield a dispersive two-dimensional low-energy band of states. The low energy
states give rise to an effective distorted super-graphene. We also show that this low-energy
band can be rationalized in terms of edge states of the constituent single-strand nanoribbons.
The localization of these 2D states around pores makes this material particularly attractive
for applications requiring electronically sensitive molecular sieves.

7.1 Introduction

Nanoporous graphene (NPG) is unique in that it exhibits both electronic functional-
ity as a tunable semiconductor and mechanical functionality as a tunable molecular filter
membrane. Combining these properties into a single atomically-thin and robust platform
makes NPG an excellent candidate for electronically active nanosieve applications such as
sequencing, sensing, ion transport, gas separation, and water purification.[122]-[123] The
utility of this material, however, hinges on the ability to induce periodic, atomically-precise
nanopores and to tailor their precise dimensions and electronic properties. Top-down meth-
ods have so far been limited in this regard because they typically produce random, imprecise
pores within a material that remains semimetallic.[122][124][125] By contrast, bottom-up
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approaches offer atomic precision in NPG synthesis through rational design of molecular
precursors.[126][127] This has been demonstrated recently through cross-dehydrogenative
coupling of bottom-up synthesized graphene nanoribbons (GNRs) featuring periodic bay
regions along the edges.[126][128]-[129] A disadvantage of the few reported bottom-up syn-
thesized NPGs fabricated in this way is that the constituent nanoribbons are wide gap
semiconductors. Electronic coupling upon lateral extension results in, at most, a modest
decrease in the overall band gap compared to that of the constituent one-dimensional (1D)
ribbons. In addition, the linkages between ribbons up to now are unable to host low-energy
frontier states around the pores as required for possible electronic sieving applications.

Here we present a surface-mediated approach to creating NPG by utilizing a novel
crosslinking handle that yields a fully conjugated linkage between constituent nanoribbons
and results in a new low-energy band of extended states but with much of their wavefunctions
localized along the periphery of the pores. We have designed two molecular precursors (1 and
2 in Scheme 1) functionalized with thermally labile methyl and methylene groups that serve
as crosslinking handles. The respective C–H bond dissociation energies (BDE) are similar
to that of the Caryl–H bond cleaved during the thermally induced cyclodehydrogenation of
the GNR backbone.[130] The geometry of these chevron-type precursors defines the pore
shape and size whereas the reactivity of the crosslinking handles allows for the formation
of benzene-fused linkages and facilitates two-dimensional extension of the structure. Our
approach is high-yielding and selectively produces rubicene-type interfaces (highlighted in
red in Scheme 1) by laterally fusing benzene rings through 5-membered rings along either
side of an extended acene. The resulting NPG features interface-localized frontier electronic
states that emerge upon formation of these interfaces. The emergence of these states can be
understood as linear combinations of molecular orbitals localized on the 5-membered rings
lining the edges of fluorene-chevron GNRs that couple into a two-dimensional (2D) super-
lattice geometry. We have experimentally characterized these electronic features using STS
for both the final fused 2D nanopore states as well as isolated 5-membered-ring localized
states in 1D fluorene-chevron GNRs. The novel crosslinking handle utilized here represents
progress toward creating electronically useful NPG, thus opening the door to exploring its
potential in nanosieving and semiconductor device applications.

7.2 Experimental Result Summary

To resolve the atomic structure of this C-NPG, we performed bond-resolved scanning
tunneling microscopy (BRSTM) using a carbon monoxide-passivated tip.[79][131][132] Fig.
7.2(D) shows the BRSTM image of three interconnected ribbons over a 4 nm × 4 nm area.
The ribbons are fused by rubicene-type linkages giving rise to a nanoporous structure con-
taining parallelogram-shaped pores that are ∼ 0.5 nm wide in the short direction and ∼1
nm wide in the long direction. The orientation of the pores shown in Fig. 7.2(D) alternates,
resulting in a herringbone pattern with a unit cell that has screw symmetry in the ribbon
axis. In the following discussion this lateral fusion pattern will be referred to as anti. An
alternative coupling yielding aligned pores with inversion symmetry points in the ribbon
axis will be referred to as syn. A higher-resolution BRSTM image around one of the in-
terfaces in the anti-configuration provides an unambiguous assignment of the covalent bond
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Figure 7.1: The structures of molecular precursors 1 and 2 functionalized, respectively.
Deposition of precursors 1 or 2 onto a Au(111) surface held at T1 = 180 ◦C and subse-
quent annealing to T2 = 400 ◦C yields two-dimensionally extended chevron-type nanoporous
graphene (C-NPG).

structure of the lateral fusion product leading to C-NPG. The interface originates from a
cross-dehydrogenative coupling that leads to the formation of two new C–C bonds that define
the central benzene ring of the rubicene core (highlighted in red in Fig. 7.2(F)). Another mo-
tif that emerges from the lateral fusion is a nonacene core where the newly created benzene
ring represents the central ring (highlighted in blue in Fig. 7.2(F)).[133] The fusion process
ensures that carbon atoms at the apices of the five-membered rings adopt a trigonal planar
conformation, thus contributing a singly occupied p-orbital to the aromatic framework.

7.3 Electronic Structures of Nanoporous Graphene

Having established the chemical structure of the C-NPG, we shift our focus to its elec-
tronic structure. Since the C-NPG is laterally fused through an extended acene, the elec-
tronic coupling between neighboring nanoribbons can be expected to be large. In addition,
rubicene is known to be an electron acceptor and so it is reasonable to expect C-NPG to
exhibit accessible frontier states.[134] We perform DFT calculation to analyze the electronic
structure and compare with the STM measurement.

Fig. 7.3(A) shows the energy-dependent local density of states (LDOS) recorded by
measuring the differential conductance (dI/dV) of the STM tunnel junction while holding
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Figure 7.2: Synthesis of C-NPG. (A) STM topographic image of 0.25 monolayer coverage of
C-NPG on Au(111) after deposition of 2 onto Au(111) held at T1 = 180◦C and subsequent
annealing to T2 = 400◦C (V = 1.2 V, I = 50 pA). (B) STM topographic image of 0.75
monolayer coverage of C-NPG on Au(111) after deposition of 1 onto Au(111) held at 24◦C
and subsequent annealing to T2 = 400◦C (V = –1.2 V, I = 50 pA). (C) STM topographic
image of 0.75 monolayer coverage of C-NPG on Au(111) after deposition of 2 onto Au(111)
held at T1 = 180◦C and subsequent annealing to T2 = 400◦C (V = 1.2 V, I = 50 pA). (D)
Bond-resolved STM image of a region containing three fused ribbons (V = –50 mV, I =
200 pA, Vosc = 15 mV, f = 620 Hz). (E) High-resolution bond-resolved STM image of the
region indicated in (D) (V = 20 mV, I = 250 pA, Vosc = 10 mV, f = 620 Hz). (F) Schematic
representation of the rubicene-type interface imaged in (D,E).
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the tip above the interface region of the C-NPG shown in the inset (position indicated by
the red cross). Valence band (VB) and conduction band (CB) onsets are observed at –0.9
V and 1.6 V, respectively, reflecting a bulk GNR band gap of 2.7 eV (similar to previously
measured values for chevron GNRs on Au(111)).[79][83][135][80] A pronounced resonance,
however, is observed at 0.72 V that has a distinct shoulder at a higher bias. Because this
resonance lies inside the bulk chevron GNR energy gap, we herein refer to this new feature
as the in-gap band (IGB). Fig. 7.3(B) shows energy-resolved dI/dV maps corresponding
to the LDOS of the CB onset, the 0.72 V resonance feature, and the VB onset (top to
bottom). We observe that the electronic wavefunctions corresponding to the band onsets
are delocalized over the entire structure (i.e., all interfaces and edges light up) whereas the
0.72 V feature is localized exclusively at the pore interfaces. The resonances observed in
the dI/dV point spectra and the patterns observed in dI/dV mapping can be reasonably
reproduced by ab initio electronic structure calculations. Fig. 7.3(D) shows the C-NPG
density of states (DOS) calculated using DFT while Fig. 7.3(C) shows the calculated LDOS
maps corresponding to the CB onset, the IGB, and the VB onset for three fused ribbons
having the same geometry as seen experimentally. The theoretical bulk CB and VB band
edge states extend throughout the C-NPG structure whereas the calculated IGB localizes at
the pore interface with small wavefunction overlap with neighboring pores, in good agreement
with the STM measurement. The peak shape of the IGB, including the distinct high-energy
shoulder, is also accurately reproduced by the calculation. These results demonstrate that
C-NPG is a new 2D electronic material with low-energy electronic states deep within the
bulk band gap of the constituent GNRs that are primarily localized on the rubicene interfaces
adjacent to pores. Furthermore, even though a defect is clearly present in the bottom-left
corner, the electronic structure remains unaffected, with the IGB uniformly distributed over
the interfaces, and in good accordance with theory.

Since the interfaces define a superlattice, it is expected that the electronic states localized
on them should give rise to 2D dispersing features in the C-NPG band structure.[136]-
[137][1][37][38][39] It is useful to analyze this interface behavior in more depth in order to
gain insight into how to tune the electronic structure of NPG. This is not only relevant to
the specific C-NPG synthesized here, but in general to other possible C-NPG varieties that
may be designed through functional analogs of monomers 1 and 2. We start by considering
a hypothetical isolated fluorenyl-chevron GNR exhibiting evenly spaced sp2-hybridized π-
radicals at the apices of fluorenyl groups lining both edges of the ribbon (Fig. 7.4(A)). This
structure was chosen as a C-NPG building block because the fluorenyl groups along the edges
(highlighted in red) constitute one-half of the rubicene interface structure found in C-NPG.
Furthermore, this structure represents the GNR expected to arise from precursors 1 and 2.
Fig. 7.4(B) shows the DFT calculated band structure of this GNR while Fig. 7.4(C) shows
the local (red) and total (black) DOS (the LDOS here is obtained by projecting band states
onto the fluorenyl groups highlighted in red in Fig. 7.4(A)). The 1D GNR band structure
shows bulk VB and CB band edges as well as an IGB. The projected LDOS (Fig. 7.4(C))
indicates that the IGB arises from atoms lining the convex edge of fluorenyl-chevron GNRs.
A significant difference between this isolated GNR and C-NPG is that the isolated GNR is
metallic due to the in-gap band straddling the Fermi level.[2]

The semiconducting band structure of 2D C-NPG (shown in Fig. 7.4(E)), by contrast,
shows a higher energy IGB that lies ∼0.5 eV above the Fermi level. Close inspection shows
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Figure 7.3: Electronic structure of the C-NPG. (A) STS dI/dV spectrum recorded on the
rubicene interface of C-NPG. The inset shows a constant current STM topograph (V = 0.7
V, I = 50 pA) with the point spectroscopy location marked by a red cross (same region of
C-NPG as shown in Fig. 7.2(D)). (B) Differential conductance maps of the valence band
(VB) (–0.90 V), in-gap band (IGB) (0.72 V), and conduction band (CB) (1.60 V). (C) DFT
simulated LDOS maps of the structure shown in the inset of (A). The maps are calculated
by integration over an energy window of 10 meV from the band edge. (D) DFT simulated
density of states.

another difference between the 2D C-NPG DOS (Fig. 7.4(F)) and the isolated 1D GNR DOS
(Fig. 7.4(C)): the localized interface states for C-NPG appear at two energies, not just one.
One band of states is the familiar in-gap band (IGB) above the Fermi energy, but the other
occurs much lower in energy and appears below the VB edge. Formation of C-NPG is thus
seen to cause the edge states of isolated GNRs (Fig. 7.4(B, C)) to split in order to yield two
sets of C-NPG interface bands. Here, fusion of each fluorenyl pair shared between adjacent
GNRs into a single rubicene moiety causes the fluorenyl orbitals to hybridize and split
energetically into bonding/anti-bonding pairs. The anti-bonding states combine to form the
C-NPG IGB at higher energy while the bonding states form the lower energy C-NPG band.
This picture is supported by analysis of the wave functions, where the bonding (antibonding)
2D interface states can be recognized as an antisymmetric (symmetric) combination of 1D
edge states (see Fig. 7.5). Edge hybridization thus causes what would otherwise be isolated
1D metallic GNRs to evolve (at least conceptually) into a semiconducting 2D nanopore mesh.

These ab initio DFT electronic structure results can be more intuitively understood using
an effective tight-binding model. Here we consider the edge orbitals localized on the fluorenyl
groups as effective basis states that link up to form a 1D electronic network for the isolated
GNR (Fig. 7.4(A)) and a 2D electronic network for the C-NPG (as shown by the red circles
in Fig. 7.4(G)). In the 1D case, the electronic dispersion can be found by assuming that
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Figure 7.4: Electronic structure of the 1D chevron GNR and 2D C-NPG. (A) Structure of
an isolated fluorenyl-chevron GNR with the edge fluorenyl groups highlighted in red and the
quasi 1D unit cell indicated by a rectangle. (B) Electronic dispersion of fluorenyl-chevron
GNR. The black bands are predicted by DFT calculations while the red, dashed bands are
those of an effective tight-binding model (with parameters fit to DFT results) described in
the text. (C) Local (red) and total (black) density of states of fluorenyl-chevron GNR. (The
LDOS is obtained by projecting states onto the π-orbitals of the fluorenyl groups.) (D)
Structure of the C-NPG anti configuration with the interface (rubicene) groups highlighted
in red and the 2D unit cell indicated by a rectangle. (E) Electronic dispersion of C-NPG.
The black bands are the DFT result while the red, dashed bands are those of an effective
tight-binding model (with parameter fit to DFT results) described in the text. (F) Local
(red) and total (black) density of states of C-NPG. (The LDOS is obtained by projection
onto the π-orbitals in the pentagon region.) (G) Effective tight-binding model using basis
states that represent the fluorenyl groups (red circles) coupled via nearest neighbor electronic
hopping parameters t1 (black) and t2 (blue), and next-nearest-neighbor hopping parameters
t3 and t4 (green and red, respectively).
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Figure 7.5: Hybridization of 1D GNR edge-states into 2D C-NPG interface states. (A)
Crystal orbitals corresponding to bonding (bottom panel) and antibonding (top panel) in-
terface states, as well as the edge state for a 1D fluorenyl-chevron GNR (middle panel). All
crystal orbitals are calculated using DFT and drawn at the Γ-point. (B) Schematic process
of hybridization of 1D edge band states from an initial energy (red horizontal lines) into
energy-split 2D bonding and anti-bonding interface bands (blue horizontal lines). The hy-
bridization/splitting is characterized by an effective tight-binding hopping parameter t1.
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an electron placed on one edge orbital has an amplitude t2 to hop along the ribbon to an
adjacent orbital. In the 2D case, the edge orbital network has an even stronger coupling
t1 between edge orbitals within a single rubicene moiety that is responsible for splitting
them into bonding and anti-bonding interface states (weaker next-nearest-neighbor coupling
is described by hopping amplitudes t3 and t4). The 1D GNR thus has two basis states
per unit cell with one hopping parameter t2, and so results in two bands that fit well to
the GNR DFT band structure for t2 = –65meV , as shown by the two dashed lines in Fig.
7.4(B). The 2D C-NPG, on the other hand, has four basis states per unit cell which result
in four bands as shown by the dashed lines in Fig. 7.4(E). These bands fit well to the
interface bands of the 2D C-NPG DFT band structure after optimization of the hopping
amplitudes (t1 = 645meV , t2 = –23meV , t3 = –22meV , t4 = –20meV ). These interface
states form a distorted honeycomb lattice with distinct hopping parameters compared to a
normal graphene lattice. The C-NPG bands are split into an upper pair that lies in the bulk
gap and a lower pair that are resonant with the valence band complex. These are precisely
the bands that arise from hybridization-induced splitting of orbitals or modes localized in
the fluorenyl edge groups of the isolated GNR in Fig. 7.4(A–C). The electronic behavior of
the 2D C-NPG pore states is thus encoded in the edge-states engineered for the constituent
1D building block GNRs through the rational design of the molecular precursor.

A remaining question is whether the C-NPG GNR building block, the fluorenyl-chevron
GNR shown in Fig. 7.4(A), can actually exist in a laboratory rather than simply being a
useful construct for understanding C-NPG electronic structure. The answer here is mixed.
We do observe isolated, unlinked GNRs in lower-coverage samples, but their structure is not
identical to Fig. 7.4(A). A typical example is shown in Fig. 7.6(A) which shows a BRSTM
image of an isolated GNR derived from precursor 1. Close-up images of the edges of this GNR
in Fig. 7.6(B) and Fig. 7.6(C) show two different edge-structures. The edge-structure shown
in Fig. 7.6(B) features a hydrogen-saturated five-membered ring within a fluorene group and
is by far the dominant edge structure (80% of edge segments). The edge-structure in Fig.
7.6(C) is seen much less frequently (5% percent of edge segments) but is highly reproducible.
The apex of the edge-structure in Fig. 7.6(C) extends further than the edge-structure in
Fig. 7.6(B) and also appears to be pulled closer to the surface (i.e., it has darker contrast
in the BRSTM image).

STM spectroscopy helps us to better understand the nature of these different GNR edge-
structures. 7.6(D) shows a dI/dV spectrum (blue curve) obtained with the STM tip held over
the dominant edge-structure shown in 7.6(B). Valence and conduction band peaks are clearly
visible and result in a bandgap of 2.4 eV, consistent with previous spectroscopy of conven-
tional chevron GNRs lacking the five membered ring of the fluorenyl group.[79][83][135] No
signs of in-gap states are seen for this edge-structure.

7.4 Conclusion

We found a novel nanoporous 2D graphene that could be synthesized with atomic pre-
cision. Bond-resolved scanning tunneling microscopy reveals that internal interfaces within
this 2D pore network exhibit rubicene-type linkers that arise from the lateral fusion of par-
tially dehydrogenated fluorene-chevron GNRs. The resulting C-NPG exhibits a novel in-gap
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Figure 7.6: Edge electronic structure of isolated fluorene-chevron GNR. (A) Bond-resolved
STM image of an isolated fluorene-chevron GNR using CO-tip (V = –50 mV, I = 180 pA,
Vosc = 20 mV). (B) Bond-resolved STM image of the segment indicated in (A) containing
a methylene edge group (V = 15 mV, I = 200 pA, Vosc = 10 mV). (C) Bond-resolved STM
image of the neighboring segment indicated in (A) (V = 20 mV, I = 250 pA, Vosc = 10 mV).
Possible chemical structures are depicted below. (D) Scanning tunneling spectroscopy of an
isolated fluorene-chevron GNR (Vosc = 4 mV, f = 620 Hz). The red and blue spectra are
recorded at the positions indicated in the inset (Vosc = 20 mV, f = 620 Hz). The inset shows
a constant height dI/dV scan of the GNR obtained at V = –0.7 V for the same nanoribbon
shown in panel (A). Location of the radical state is marked by an arrow (same edge element
as shown in (C)).
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band localized on the rubicene interfaces around the pores. These features are reproduced
by both DFT and coarse-grained tight-binding calculations which show that the electronic
structure of this new 2D material may be understood in terms of the edge modes of 1D
GNR building blocks. The fully-linked 2D behavior is also consistent with the experimental
properties of isolated GNRs where sp2-hybridized π-radicals exist due to spurious dehydro-
genation of the fluorenyl groups lining the edge. This novel materials pave the way to study
distorted super-graphene and electronic engineering of low-dimensional structures.
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Chapter 8

Evidence for flat band induced
excitonic insulator ground state in
[4]triangulene Kagome lattice

Electron-hole pair excitations in semiconductors have been predicted to be able to give
rise to a highly correlated many-body ground state, the excitonic insulator (EI)[138][139].
Under appropriate conditions below a critical temperature (Tc), strongly bound electron-hole
pairs spontaneously form and undergo a phase transition from a normal band insulator into
an exciton condensate, transforming the parent material into a novel correlated insulator.
Despite recent advances in spectroscopic tools, clear direct experimental evidence for the EI
state has been elusive and is often obfuscated by accompanying electronic effects[140]-[141].
Here we present the reticular bottom-up synthesis of a Kagome lattice of [4]triangulene[142],
a two-dimensional (2D) covalent organic framework (COF) imbued with a deliberate exci-
tonic instability[143] — excitons with binding energies larger than the bandgap — arising
from a pair of flat bands (FBs). Theoretical analyses based on first-principles calculations
and scanning tunnelling spectroscopy (STS) reveal quasiparticle spectral signatures mixing
valence (VB) and conduction (CB) characteristics of the FBs along with a non-trivial semi-
conducting gap that can only be explained by invoking many-body theory.[144][145] Our
findings spectroscopically corroborate the nature of a FB induced exciton insulator ground
state and provide a robust yet highly tuneable platform for the exploration of correlated
quasi-boson physics in quantum materials.

8.1 Introduction

A distinguishing characteristic of strongly correlated phases of matter is that the behav-
ior of their constituent electronic excitations can no longer be described as a non-interacting
renormalized Fermi gas. It is these correlated phases that have given rise to some of the
most exciting quantum phenomena in materials. Excitonic insulators (a condensed phase
of electron-hole pairs) is a correlated many-body ground state predicted in the 1960’s that
can arise in appropriate semimetals or narrow gap-semiconductors below a critical temper-
ature (Tc)[138][139][143][146]. Whereas the high charge carrier density associated with the
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overlapping conduction and valence band (i.e., a negative band gap (Eg)) in semimetals
effectively screens the electron-hole (e− − h+) interaction depressing Tc, an intrinsic insta-
bility in the single-particle (quasiparticle) band structure of a semiconductor can induce
the spontaneous condensation of excitons – the electron-hole pairs – provided the exciton
binding energy (Eb) exceeds the magnitude of the gap in the conventional band insulator
phase[144][146]-[147]. While the underlying principle has been understood for more than 50
years[138][139], exercising a deterministic control over subtle many-body interactions repre-
sents a veritable challenge and could imbue otherwise ordinary materials with truly exotic
electronic phases[140]-[148][144][145][149]-[150]. The realization of an EI could expand the
boundaries of tailor-made quantum materials, providing deeper insight into strongly corre-
lated phenomena, e.g. the crossover between Bardeen Cooper-Schrieffer (BCS) and BEC
theory[151][152][153].

8.2 Flat Bands and Excitonic Effect

Favourable conditions for the realization of an EI ground state (Eb > Eg) not only
call for small gap semiconductors, but for an increase in the quasiparticle masses and a
reduction in the screening of the Coulomb potential binding the e− − h+ pairs — thus
maximizing Eb. Layer materials herein represent privileged scaffolds as the 2D confinement
intrinsically lowers the screening of charge carriers when compared to a 3D crystal lattice.
The correlation between e− and h+ can further be augmented by applying the tools of
zero-mode engineering[2] to give rise to topological flat bands featuring charge carriers with
huge effective masses and a greatly enhanced localization of the exciton wavefunction[154]-
[155]. Our strategy for engineering a robust EI ground state follows the design of a diatomic
Kagome lattice of triangulenes – nanoscale equilateral triangles of graphene cut along the
a1 and a2 lattice vectors – proposed by Sethi et al.[143][146]. Fig. 8.1a shows a valence
bond model for the open-shell S = 3/2 ground state of an isolated [4]triangulene arising
from a sublattice imbalance ∆N = NA − NB = 3, where NA and NB are the number of
A and B sublattice sites of graphene, respectively. Nearest-neighbour analyses reveal three
states (zero-modes) at the Fermi level. These three zero-modes unique to [4]triangulene are
reminiscent of the orbital coordination number of a site in a diatomic Kagome lattice and
when fused along the three vertices give rise to an orbital valence bond solid depicted in Fig.
8.1b (b1 and b2 are the lattice vectors of the diatomic Kagome lattice unit cell containing a
pair of [4]triangulene superatoms). The corresponding tight-binding (TB) Hamiltonian can
be expressed as

Ĥ = t1
∑
⟨ij⟩,α

c†iαcjα + t2
∑

⟨⟨ij⟩⟩,α

c†iαcjα + t3
∑

⟨⟨⟨ij⟩⟩⟩,α

c†iαcjα (8.1)

where t1, t2, and t3 are the hopping amplitudes defined in Fig. 8.1b (t2 is expected to be
small due to sublattice polarization of the zero-modes). c†iα and cjα are the creation and
annihilation operators of the zero-mode at site i and j with spin . The TB Hamiltonian
gives rise to six bands, with a pair of valence (VB) and conduction (CB) FBs (blue and red
bands in Fig. 8.1c, respectively) flanked on either side by pairs of comparatively dispersive
bands. The large effective masses of and the overlap between e− and h+ wavefunctions
associated with the FBs in 2D increases the Eb while a large exchange interaction raises the
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Figure 8.1: Flat-band induced triplet excitonic insulator ground state in a [4]triangulene
Kagome lattice. a, Valence bond model representation of the quartet (S = 3/2) ground-state
of [4]triangulene. Unit-cell and lattice vectors (a1, a2) of spin-polarized bipartite lattice of
graphene is provided for reference. b, Diatomic Kagome lattice spanned by [4]triangulene
dimers (unit-cell shaded in grey, lattice vectors b1, b2). Filled and open circles represent excess
up or down electron spins arising from the lattice imbalance at each [4]triangulene superatom
site ∆N = NA − NB. t1, t2, and t3 are tight-binding hopping amplitudes. c, Schematic
representation of the band structure of a flat-band conventional semiconductor ground-state.
d, Schematic representation of the band structure of a triplet excitonic insulator ground-state.
Eg, E

EI
G , and Eex are the semiconducting band gap, the new quasiparticle gap in the EI

state, and the exciton energy, respectively. Colour gradient inuV B− vCB and vCB+ uV B
represents the mixing of characters of the valence (blue) and conduction (red) flat-bands
(of the conventional band insulator) in the excitonic insulator quasiparticle states (u and
v are the respective mixing coefficients). BEC formed by triplet excitons shaded in orange
indicates the EI ground state and should not be viewed as a part of the quasiparticle band
structure.

singlet-triplet splitting energy (∆EST ) favouring the formation of a robust triplet EI ground
state[24][154]-[156], which are confirmed by our ab initio GW-BSE calculations[157] and in
agreement with Ref. [143].

8.3 Experimental Result Summary

Guided by this idea we designed two competent molecular precursors for the reticular
growth of a [4]triangulene COF ([4]TCOF), the benzo[c]naptho[2,1-p]chrysenes. The synthe-
sis is depicted in Fig. 8.2a. The local electronic structure of isolated crystalline domains of
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Figure 8.2: Bottom-up synthesis of [4]TCOF Kagome lattice. a, Schematic representation
of the bottom-up synthesis and on-surface growth of [4]TCOFs from molecular precursors.
b, STM topographic image of 2D covalent network of [4]triangulenes on Au(111) (Vs = 200
mV, It = 20 pA). c, STM topographic image of a segment of the Kagome lattice of [4]TCOF
(Vs = 50 mV, It = 20 pA). d, BRSTM topographic image of fully cyclodehydrogenated
[4]TCOF segment showing the C-C bonding between vertices of triangulenes along with the
characteristic zigzag edges of [4]triangulene building blocks (Vs = 10 mV, It = 400 pA). All
STM experiments performed at T = 4 K.

[4]TCOF was characterized by differential tunnelling (dI/dV) spectroscopy. A typical dI/dV
point spectrum recorded at a position corresponding to the center and the zigzag edge (see
BRSTM image in Fig. 8.3c) of a [4]triangulene subunit are depicted in Fig. 8.3a,b. While
dI/dV point spectra recorded near the center of a triangulene are featureless, besides a char-
acteristic signature assigned to the Au(111) surface state, dI/dV spectra recorded along the
zigzag edges show eight prominent features in the range between −2.0V < Vs < +2.0V .
Two broad peaks centered at Vs = −1.55±0.02V (Peak 1) and Vs = +1.05±0.02V (Peak 8)
bracket EF and can be assigned to deep-lying (i.e. energetically remote from EF ) states in
the bulk VB and CB, respectively (Fig. 8.3d). Fig. 8.3b shows a magnification of the dI/dV
point spectra taken over a narrower bias range of −0.6V < Vs < +0.6V . Spectra recorded
along the zigzag edge show a distinctive pattern of five peaks (Peaks 2, 3, 4, 6, and 7) flank-
ing a sharp dip in the differential tunnelling current centred at Vs = 0.00±0.05V (Feature 5).
dI/dV maps collected at an imaging bias close to Vs = 0.00V (Fig. 8.3g) reveal the struc-
ture of a featureless network with contrasts rising barely above the Au(111) background,
punctuated only by a bright zero-mode state emanating from a local defect in the [4]TCOF
lattice. Above and below the semiconducting gap (Eexp ∼ 0.20eV ) the dI/dV signal rises
sharply towards two steps centered at Vs = +0.10± 0.05V (Peak 6) and Vs = −0.10± 0.05V
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(Peak 4). dI/dV imaging of the spatial distribution of the LDOS at energies close to Peak 6
(Vs = +0.15V in Fig. 8.3f) reveals a highly diffuse state at the center of the [4]triangulene
superimposed by dark shaded lobes along the zigzag edges. The unusually diffuse nature of
the state around Vs = +0.15V coincides with a characteristic peak in the Au(111) spectrum
suggesting the observed LDOS is a superposition of [4]TCOF and Au states dominated by
the background. dI/dV imaging at the corresponding negative bias Vs = −0.15V (Peak
4, Fig. 8.3h) instead reveals a pattern of four bright lobes lining the zigzag edges of each
[4]triangulene subunit. The last lobe on either side is shared between zigzag edges and,
together with the last lobe of its neighbor [4]triangulene forms the junction between adja-
cent building blocks. Beyond these two steps the dI/dV signal continues to rise steeply and
peaks at Vs = +0.30 ± 0.02V (Peak 7), and Vs = −0.30 ± 0.02V (Peak 3) respectively. The
unusually narrow peak shape and the large signal intensity at Vs = ±0.30V suggest the fea-
tures represent the signature of van Hove singularities in the quasiparticle density of states.
Differential conductance maps recorded at the corresponding biases show clearly distinctive
patterns. At Vs = +0.30V (Peak 7) the LDOS is most intense at the lobes coinciding with
the junction between covalently linked [4]triangulenes while the signal along the zigzag edges
is only slightly weaker. At Vs = −0.30V (Peak 3) the signal intensity almost uniformly dis-
tributed along the four lobes lining the zigzag edge. The last notable feature is a peak at
Vs = −0.52V (Peak 2). The corresponding differential conductance maps are reminiscent
of the spatial LDOS distribution associated with Peak 3 and are likely associated with the
same band. dI/dV point spectra recorded directly above the C-C bond linking two adjacent
[4]triangulene subunits qualitatively mirror the number and position of peaks recorded along
the zigzag edges.

8.4 Theoretical Analysis

To explore theoretically the electronic ground state of [4]TCOFs we evaluated two dis-
tinct models. First, we attempt to describe the electronic structure of a [4]TCOF using
conventional ab initio density functional theory (DFT) in the local density approximation
(LDA). In a second approach, we consider a correlated ground state of e−−h+ pairs within a
BCS-like framework, thus allowing for a mixing of VB and CB wavefunction characters in the
quasiparticle states of an EI. The DFT-LDA quasiparticle band structure for the six bands
closest to the band gap along with the calculated density of states (DOS) of the [4]TCOF
are depicted in Fig. 8.4a and 8.4b, respectively. Two narrow bands (denoted CFB and VFB)
bracket EF , enclosing a conventional semiconducting gap of Eg ∼ 200mV . Both bands are
virtually dispersionless. The two FBs and the other two dispersive band complexes can be
fit by a TB model (Eq. 1) with t1 = -0.132 eV, t2 = -0.013 eV t3= -0.016 eV (Fig. 8.4a,
dashed lines). Above and below the conduction and valence FBs, the two pairs of dispersive
bands complete the TB picture of a ying-yang Kagome superlattice. On either side of EF ,
the DFT-LDA DOS shows the onset of two sharp features centred at E−EF = ±0.10eV that
extend into a series of smaller peaks at higher and lower energy for the CB and VB complex,
respectively. Fig. 8.4c,d show the square of the theoretical wavefunction amplitude maps at
a distance of 4 Å above the plane of a freestanding [4]TCOF at energies corresponding to the
valence and the conduction FB edges. Both LDOS maps show distinctive nodal patterns,
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Figure 8.3: Electronic structure of [4]TCOF. a-b, dI/dV point spectra of [4]TCOF/Au(111)
recorded at the position marked in (c) (Au(111) surface state, black; centre of [4]triangulene,
orange; zigzag edge of [4]triangulene, red; junction between two [4]triangulene units, blue;
Vac = 10 mV, f = 455 Hz, CO-functionalized tip). c, Constant-height BRSTM image of
[4]TCOF/Au(111) segment (Vs = 0 mV, Vac = 10 mV, f = 455 Hz, CO-functionalized tip).
Crosses mark the position of where dI/dV point spectra were recorded. d-j, Constant-current
dI/dV maps recorded at a voltage bias of Vs = +1050 mV, Vs = +300 mV, Vs = +150 mV,
Vs = +0 mV, Vs = -150 mV, Vs = -300 mV, and Vs = -520 mV (Vac = 10 mV, It = 400 pA,
f = 455 Hz, CO-functionalized tip). All STM experiments performed at T = 4 K.

two bright spots lining the zigzag edges for the CB (Fig. 8.4c) and two bright spots at
the position of the junction between two [4]triangulenes for the VB (Fig. 8.4d). The cor-
responding experimental dI/dV maps (Fig. 8.4e,f) recorded on pristine [4]TCOF domains
at Vs = ±0.10V instead both show a uniform distribution of the wavefunction amplitude
shared along the zigzag edges and the junction interface. The obvious mismatch between
DFT-LDA LDOS predictions for CB and VB edge states (Fig. 8.4c,d) and the experimental
STS mapping (Fig. 8.4e,f) suggests that a conventional band insulating ground state given
by DFT-LDA is insufficient to describe the electronic structure of [4]TCOF.

In formal analogy to the BCS theory of superconductivity, following Kohn1, we derive a
second model that describes the transition from a band insulator to an EI for the [4]TCOF
ground state and arrive at a theory for the quasiparticle spectrum that is measured in STS.

Starting from the gap equation of an EI[138]

∆cvk = −
∑

cvkv′c′k′

Vcvk,c′v′k′
∆c′v′k′

2Ec′v′k′
(8.2)

where c, v, c′, v′ are the CB and VB indexes, k, k′ indicate the k-points, and V is the screened
Coulomb attraction potential between electron and hole in a triplet exciton state. Since the
CFB and VFB have little dispersion near the EF, we can drop the c, v, k dependence of the
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Figure 8.4: Quasiparticle states from DFT and BCS-EI calculations in [4]TCOFs. a, DFT-
LDA band structure for six bands near EF of a freestanding [4]TCOF. Valence (VB) and
conduction (CB) flat-bands are indicated by arrows. b, Calculated DFT-LDA LDOS at 4 Å
above a freestanding [4]TCOF (spectrum broadened by 10 meV Gaussian). The experimental
dI/dV point spectrum recorded along a zigzag edge is overlaid in grey. c, Calculated DFT-
LDA LDOS map evaluated at the edge of the conduction flat-band (CFB). d, Calculated
DFT-LDA LDOS map evaluated at the edge of the valence flat-band (VFB). e, Experimental
constant-current dI/dV maps recorded at a voltage bias of Vs = +100mV (Vac = 10mV ,
It = 400pA, f = 455 Hz, CO-functionalized tip). f, Experimental constant-current dI/dV
maps recorded at a voltage bias of Vs = −100mV (Vac = 10mV , It = 400pA, f = 455 Hz,
CO-functionalized tip). g, Calculated LDOS map resulting from a BCS-like 1:1 mixing of
character of the VB and CB flat bands for quasiparticles in the EI phase. h-i, Calculated
EI quasiparticle LDOS map resulting from a BCS-like 2:3 and 3:2 mixing of character of the
VB and CB flat bands, respectively. All STM experiments performed at T = 4 K.

order parameter and study the averaged effect across the gap. Ecvk → E =
√
ξ2 + |∆2| with

ξ = 1/2(ϵCB − ϵV B) where ϵCB and ϵV B are the CB and VB energies of the band insulator
state, respectively. The effective quasiparticle gap EEI

G in the EI state is given by EEI
G = 2E

. With ∆
EEI

G
defined as χ, we can rewrite equation 8.2 as:

EEI
G χ = −

∑
cvkc′v′k′

Vcvk,c′v′k′χ (8.3)

From the Bethe-Salpeter equation (BSE)[24] for excitons from flat bands we have

(2ξ − Eex)A = −
∑

cvkc′v′k′

Vcvk,c′v′k′A (8.4)

where Eex is the exciton eigenenergy. Comparing equation 8.3 and 8.4, we arrive at:

EEI
G = (2ξ − Eex) (8.5)
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This means that only if Eex < 0, a nonzero solution for ∆ is possible. During the STS
experiment, the [4]TCOF Kagome lattice is adsorbed on a gold substrate. Since the exciton
eigenenergy is relatively insensitive to screening by the environment, we can approximate Eex

from calculations on an isolated [4]TCOF Kagome lattice. GW -BSE gives an exciton eigenen-
ergy of Eex = -0.17 eV[143]. Given the experimental semiconducting gap Eexp determined by
the peak-to-peak distance in the STS experiments, we can substitute EEI

G = Eexp ∼ 0.20eV .
Equation 8.5 then gives an effective band gap in the band insulator phase of the [4]TCOF
Kagome lattice of 2∆ = 0.03eV . This yields a |∆| = 0.1eV and |u| ∼ |v| in the BCS ground
state:

|G⟩ =
∏
vck

(u+ vc†ckcvk)|Φ⟩ (8.6)

Here |Φ⟩ is the normal ground state with all VBs occupied and CBs empty, with |u|2 =
1
2
(1 + ξ

E
),|v|2 = 1

2
(1 − ξ

E
) obtained from the BCS-like theory. The quasiparticle excitation

then results in an almost equal mixing of both CB and VB characters, which agrees well
with our experimental findings.

Given a semiconducting gap Eexp 0.20 eV (derived from STS) and a triplet exciton
eigenenergy Eex = −0.17eV (derived from GW -BSE)[143], a resulting finite order parameter
|∆| ∼ 0.1eV gives rise to a EI ground state at finite temperatures T < Tc. The corresponding
quasiparticle excitations yield in a nearly equal contribution in orbital character from both
the conventional VB and CB states. Fig. 8.4g shows the calculated LDOS map arising from a
1:1 (VB:CB) mixing. The characteristic nodal pattern — four bright lobes lining the zigzag
edges, the first and last lobe are shared between adjacent [4]triangulenes — is consistent
with the experimental differential conductance maps recorded at Vs = ±0.10V (Fig. 8.4e,f),
corroborating the emergence of an EI ground state. Even for minor changes in the BCS order
parameter |∆|, i.e. a slightly reduced contribution to the mixing of VB and CB in Fig. 8.4h
(2:3) and 8.4i (3:2), the quasiparticle LDOS continue to return a better correspondence to
the experimental dI/dV maps of [4]TCOF (Fig. 8.4e and 8.4f, respectively) than the band
insulator results that do not account for strong e− − h+ correlations.

8.5 Conclusion

Our experimental and theoretical results thus provide strong evidence for the emergence
of a flat-band induced EI ground state in a [4]TCOF Kagome lattice at T = 4 K and are
based on a detailed investigation of the quasiparticle spectral features in both energy and
space. Reticular bottom-up approaches not only provide a general strategy for accessing
and exploring other strongly correlated phenomena, but give rise to an expanding class of
engineered quantum materials that can deliver further and deeper insights into the crossover
between BCS and BEC theory.
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[155] Andrés Granados Del Águila et al. “Effect of electron-hole overlap and exchange
interaction on exciton radiative lifetimes of CdTe/CdSe heteronanocrystals”. In: ACS
nano 10.4 (2016), pp. 4102–4110.

[156] David J Norris et al. “Size dependence of exciton fine structure in CdSe quantum
dots”. In: Physical Review B 53.24 (1996), p. 16347.

[157] Manoj Nirmal et al. “Observation of the” dark exciton” in CdSe quantum dots”. In:
Physical review letters 75.20 (1995), p. 3728.


