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Abstract

Several benchmarks for measuring the memory per-
formance of HPC systems along dimensions of spa-
tial and temporal memory locality have recently been
proposed. However, little is understood about the
relationships of these benchmarks to real applica-
tions and to each other. We propose a methodol-
ogy for producing architecture-neutral characteriza-
tions of the spatial and temporal locality exhibited
by the memory access patterns of applications. We
demonstrate that the results track intuitive notions
of locality on several synthetic and application bench-
marks. We employ the methodology to analyze the
memory performance components of the HPC Chal-
lenge Benchmarks, the Apex-MAP benchmark, and
their relationships to each other and other bench-
marks and applications. We show that this analy-
sis can be used to both increase understanding of the
benchmarks and enhance their usefulness by mapping
them, along with applications, to a 2-D space along
axes of spatial and temporal locality.

1 Introduction

Machine performance in the arena of supercomputing
has traditionally been tracked by The Top500 List
[2], a ranking of the world’s fastest supercomputers
based on the peak floating point operations per sec-
ond that each can achieve on the LINPACK bench-

mark [17]. This ranking system has dominated per-
formance comparisons of supercomputers for over a
decade and today serves as a unique historical record
of the technological evolution of supercomputing.

Despite its longevity, the Top500 list has garnered
an increasingly vocal and growing set of critics who
justifiably protest that the LINPACK benchmark
only stresses machines in a very limited and unre-
alistic manner, that is, by measuring the peak float-
ing point rate on a compute bound code. Since 1993
when the Top500 project was established, the expo-
nentially widening gap between processor and mem-
ory speeds has only exacerbated the problem. Ap-
plication runtimes today are increasingly dominated
by memory operations, a phenomenon that the LIN-
PACK benchmark has failed to capture.

To provide a more complete understanding of com-
parative machine performance, particularly mem-
ory subsystem performance, several new benchmarks
have been proposed including components of the
HPC Challenge (HPCC) Benchmarks [1] and Apex-
Map [30]. A guiding principle in the design of these
benchmarks is that the memory subsystem should be
stressed along two dimensions, representing various
degrees of spatial and temporal memory locality. The
HPCC benchmark suite addresses this requirement
with multiple memory benchmarks, each of which
presumably represents extreme combinations of spa-
tial and temporal locality in its memory access pat-
terns. Apex-MAP is a synthetic probe that directly
tackles the locality concept by performing data move-
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ment operations in accordance with parameterized
degrees of spatial and temporal locality.

These benchmarking efforts represent important
progress towards the establishment of performance
probes that more accurately mimic the behavior of
today’s applications. Ironically, little is known con-
cretely of the relationships between these probes and
the applications they are intended to help us un-
derstand. While some components of the HPCC
benchmark suite are intended to exhibit “low” spa-
tial locality and another “high”, we cannot quantify
“how much” each exhibits or how that quantity com-
pares to a real application of interest. While Apex-
MAP can hypothetically be parameterized to imitate
the spatial and temporal locality of any application,
no satisfactory method exists for easily determining
what those parameters might be for a given code.
The ability to measure the degree of spatial and tem-
poral locality exhibited by an application or a bench-
mark, and to relate that to these benchmarks, could
go a long way towards understanding these relation-
ships and making the benchmarks more practically
useful.

In addition to enabling benchmark evaluation,
measurable metrics of spatial and temporal locality
can have much to offer the greater understanding
of application performance, particularly with respect
to the deep memory hierarchies of today’s machines
[4, 3, 7, 25]. Such analysis can lend insight into the
memory requirements of given applications as input
parameters or processor counts scale, be used as part
of a performance model to predict memory subsys-
tem performance, or even expose load imbalance is-
sues with respect to workload difficulty on parallel
codes.

Section 2 of this paper proposes quantifications of
spatial and temporal locality scores whereby we start
with classic definitions and arrive at concrete metrics
that can be measured of real parallel applications.

Section 3 describes how we actually measure the
locality of applications using the Metasim tracer and
describes the performance of these techniques.

Section 4 displays results from our locality analy-
sis performed on several application-based and syn-
thetic benchmarks; included are spatial and tempo-
ral scores for memory benchmarks from HPCC and
then a “recipe” for finding the mapping between an
arbitrary HPC program and Apex-MAP input para-
meters.

Section 5 explores additional uses for locality mea-
surement of HPC applications.

Section 6 reviews and summarizes the area’s rich

literature on which we have built. Finally, we discuss
our conclusions and ongoing work.

2 Quantifying Locality

To analyze applications for memory locality, we desire
simple, measurable, and architecture-independent
metrics for quantifying both spatial and temporal
locality. Locality is well defined as a notion in the
computer architecture literature. Bunt recently sum-
marized findings from his 20- year career [12], during
which he and colleagues have defined locality met-
rics and also proposed ways to measure them. We
start from these definitions and are guided by much
previous work further described in the related work
section. Nevertheless, it will become apparent that
some concrete and arbitrary choices have to be made
when implementing the formal definitions about how
to count locality statistics, and some approximations
have to be made to make the data acquisition process
tractable for HPC applications. We work through
those details.

In our study of parallel applications, we are fo-
cused on the memory reference patterns of individ-
ual processors to their local memory (addresses sent
through the load-store units). It is true that spatial
and temporal locality exist in messages and inter-
processor communication and some components of
the HPCC test these. We do not treat that here,
although a straightforward extension can be consid-
ered for future work.

After gathering detailed statistics about spatial
and temporal locality, there is a temptation to re-
duce this information into a single score per-loop or
even per application so that one can make broad com-
parisons such as “application A has more temporal
locality than B”. This reduction can be useful but
may potentially oversimplify things and throw infor-
mation away. We propose single-number spatial and
temporal locality scores and show their uses and lim-
itations in what follows.

Philosophically, we think it is important to sup-
press the urge to customize these metrics to pro-
portionately track some observable phenomena such
as application performance or theoretical cache hit
rates. This sort of mapping between locality and ob-
servable phenomena on a particular machine can be
performed more effectively at a later stage; the met-
rics need only track intuitive notions of locality in an
internally consistent fashion. We explore the impli-
cation below.
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2.1 Spatial Locality

Spatial locality is the tendency of applications to ac-
cess memory addresses near other recently accessed
addresses [11, 19]. We use a definition similar to
Bunt’s [11] to define a spatial locality metric based
on the average length of non-zero strides performed
by an application. The first practical, choice we have
to make stems from the interleaved nature of address
streams under dynamic execution. For example, a
loop could have a stride 1 reference to an index ar-
ray followed by a random access (indirect) reference
to another array using the index; if we only look at
two consecutive dynamic addresses for spatial local-
ity, we may miss the fact that the stride 1 address
stream (every-other address) has spatial locality. We
therefore define the stride of a memory access to be
the minimum absolute distance, in 64-bit words, of
that memory reference to its nearest neighbor among
the W previously accessed addresses. The “look back
window” that contains these previous W addresses
should be sized large enough to capture the memory
behavior of most reasonably sized application loops
but small enough that we can search it with each
new reference in a reasonable amount of time. In our
study, we have chosen to set W = 32. This choice is
admittedly arbitrary and small but improves the per-
formance of our data collection methods described in
section 3.

Once we have defined stride, we can formulate the
following simple summation to represent a single-
number spatial locality score where stridei denotes
the fraction of total dynamic memory operations that
are of stride length i:

∞∑

i=1

stridei/i (1)

The idea is simply to generate a normalized score
in the range [0,1] that is inversely proportional to
the average stride length. An application that per-
forms only stride 1 references receives a score of 1,
an application that performs only stride 2 references
receives a score of .5, an application whose memory
references are evenly split among stride 1 and 2 re-
ceives a score of .75, and so forth. An application
without any strided references receives a score of 0.

Notice that the summation does not include stride
0 references. By this definition, spatial locality is
the tendency of an application to reference memory
addresses near other recently referenced addresses,
not the same ones. We consider stride 0’s to be the
simplest case of temporal locality, not a degenerate

case of spatial. This is another concrete but arbitrary
choice.

Even though there is technically no termination for
the series, it should converge at some i where all sub-
sequent terms in the series are zero for real applica-
tions. In practice, the summation can actually be
terminated within any number of terms if we accept
that the value calculated is within U/i of the actual
score, where U is the fraction of memory operations
that are unstrided. The choice of termination point
is therefore dictated by the degree of accuracy de-
sired. However, there is little point in choosing very
large values with this scoring definition because the
maximum size of each successive element decreases
by harmonic series. Further, in our experience, few
real codes regularly exhibit much longer strides. For
the studies presented in this paper, we have chosen
to terminate the summation at i=8, an admittedly
arbitrary value with whose error bound we are com-
fortable.

2.2 Temporal Locality

Temporal locality is the tendency of an application
to reference the same memory addresses that it ref-
erenced recently [19]. Many memory locality stud-
ies, further detailed in the related work section, have
focused on this type of locality by analyzing statis-
tics related to reuse distance. The reuse distance of
some reference to memory address A is the number
of unique memory addresses that have been accessed
since the last access to A.

We begin our analysis by collecting information
about the distribution of reuse distances in an ap-
plication run. We graph this distribution in what we
call the application’s temporal reuse function. The
reuse function plots reuse distances against the per-
centage of an application’s dynamic memory opera-
tions with reuse distances less than or equal to that
distance. Section 4 contains several examples of such
graphs, such as Figure 2.

Producing a single score from this data is less
straightforward than is the case for spatial locality.
While in the spatial case the arrangement of mem-
ory suggests intuitive meanings and consequently a
natural weighting for “nearest-neighbor” and “next-
nearest neighbor”, no such natural meaning attaches
to reuse distance bins. One approach is to choose a
point on the graph that corresponds to a particular
size of cache and formulate the temporal score as the
fraction of total memory accesses with reuse distance
less than that size. However, we would then be bound
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to a specific architecture and forced to always qual-
ify an application’s temporal score with a cache size.
This may be of some limited use for predicting cache
hit rates [22] but does not adequately summarize the
whole distribution. Further, such a metric is difficult
to apply to cache-less, vector-based machines.

An application’s reuse function contains informa-
tion that is inevitably lost if that function is summa-
rized into a single score. This is certainly also true of
stride information with spatial locality scoring, but in
that case, we can utilize a natural weighting to sum-
marize the information intuitively. In the absence
of such a natural weighting, we have generally cho-
sen to maintain the entire distribution. However, in
the interest of a single normalized metric for com-
paring reuse functions, we formulate a metric similar
to that of spatial locality where the cumulative frac-
tion of memory operations at each reuse distance is
scaled by some increasing function of that reuse dis-
tance and summed. For illustrative purposes, one
can visualize this as the area under the temporal
reuse function, plotted on some scale, and normal-
ized by total area on the graph. The fundamental
idea here is that since the reuse function is monoton-
ically increasing, each memory access increases the
application’s total score in a manner inversely pro-
portional to its reuse distance. The result is a metric
that recognizes more temporal locality as an appli-
cation contains more memory references with lower
reuse distances. Again the range of these scores is
[0,1] with 0 indicating no temporal locality and 1 in-
dicating that all memory references are within the
shortest reuse distance measured.

An important parameter is the weighting to as-
sign to memory references at each reuse distance.
As discussed earlier, a best weighting is not imme-
diately obvious. There are many intriguing choices
for this scale, including one that scales references at
each reuse distance by its respective expected or typ-
ical cache latency. Our goal however, need not be to
create metrics that proportionately track some ob-
servable phenomenon like performance or cache hits,
but ones that simply track our intuitive perceptions
of locality. The mapping onto observable phenom-
ena can always be performed at a later stage. For
simplicity this initial study employs a log scale where
each memory reference is weighed by the log of its
reuse distance with respect to the largest distance
considered. A simple mechanism for visualizing this
is the space under the reuse curve, where the reuse
distance axis is plotted on a log scale. Again, this
choice is subjective and we have provided full tempo-

ral analyses should the reader choose to investigate
an alternative scale.

The other variable we must consider before prac-
tically measuring or approximating such a metric is
the size of the largest reuse distance to include. This
choice will affect the scoring because it dictates the
normalizing value, i.e. the total area on the graph.
We must choose to integrate from 0 to some reuse dis-
tance N, where there is no compelling value at which
to standardize N. This consideration is of only limited
concern when we compare applications on the same
graph, but it does preclude our using the metric as
an unqualified application attribute if no standard
exists.

We consequently formulate the following summa-
tion, where reusei denotes the fraction of dynamic
memory operations with reuse distance less than or
equal to i.

∑log(N)−1
i=0 ((reuse2(i+1) − reuse2i) ∗ log2(N)− i)

log2(N)
(2)

One factor to remember is that this metric does not
necessarily track memory subsystem performance. It
is indeed possible for two applications to yield identi-
cal temporal scores but perform very dissimilarly on
a particular machine. For example, on a cache-based
machine, the application whose reuse function has a
higher value at the reuse distance corresponding to
the machine’s cache size would have a performance
edge. To predict performance on a known cache-
based architecture, a better approach might be to
examine the value of each application’s reuse curve at
the point corresponding to that architecture’s cache
size [22].

3 Measuring Locality

We gather memory access characteristics using the
Metasim tracer [27], a tool for dynamic analysis of
a program’s memory references, developed as part
of a framework for memory-centric performance pre-
diction. The tracer collects statistics about memory
strides and simulates cache behavior as the program
runs.

In Metasim,instrumentation is added around each
memory reference using a binary rewriting tool such
as Atom [29] or Dyninst [10]. The instrumentation is
automated and requires only a few seconds for smaller
codes. For larger codes, we create multiple binaries
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with instrumentation on different phases of the pro-
gram so that runtimes more readily fit in a batch
queueing system.

As the instrumented binary runs, the tracer com-
pares each address in a basic block to a window of
previous addresses to capture stride information. The
stride of an address is defined as in section 2.1. The
size of the look-back window, W, is configurable.

Metasim produces a detailed report of the collec-
tive stride information in each basic block. We use
this count to generate the spatial locality score as
discussed in section 2.1 for each basic block in the
program. The score for the whole program is a sum
of each block’s score, weighed by the percentage of
dynamic memory references the block had generated.

In addition to the stride calculation described
above, Metasim runs each address through a set of
cache simulators as each is encountered. For perfor-
mance prediction, this is used to generate cache sta-
tistics for each target architecture. We exploit this
feature to collect reuse distance distributions by sim-
ulating a series of variously sized temporal caches,
caches with a 1-word block size. The percentage of
memory operations with reuse distance less than or
equal to N is the hit rate in an N-line temporal cache.
One should note that our implementation is some-
what inexact because Metasim simulates caches with
a random replacement policy instead of LRU (Least
Recently Used). This may create some small noise in
the data, i.e. it is possible that an address is evicted
before N memory references to other addresses have
transpired. Practically however, we observed the hit
rates of these caches are not very different on real ad-
dress streams whether LRU or random replacement
policy is used while random is faster and uses less
memory in our simulations.

The slowdown yielded by the Metasim tracer has
been shown to be within two orders of magnitude
of the original code [26]. We benefit from exist-
ing work done to improve tracing speed in Metasim
via sampling methods that reduce the overhead of
memory instrumentation [13]. Current research on
Metasim performance enhancement is continually
lowering tracing time and today, traces are usually
within a single order of magnitude. The Performance
Modeling and Characterization (PMaC) group reg-
ularly employs Metasim to trace large-scale, highly
parallel, scientific codes [14].

4 Results

To evaluate the methodology, we have applied it to
the analysis of relevant serial benchmarks from the
HPCC and Apex-MAP. We used an Atom version
of Metasim to instrument all binaries and performed
the traces on Lemieux, an Alpha SC45 machine at
the Pittsburgh Supercomputer Center. To obtain
the following results, we configured Metasim to use
a look back window of size W=32 and a maximum
detectable stride length of S =8. For our tempo-
ral analysis, we measure reuse distances from N in
the range 16 to 131072 8- byte words by doubling,
distances that correspond to temporal cache sizes of
128Bytes to 1MB. When we present an application’s
temporal score, we refer to the integral of its logscaled
locality curve from 0 to 131072, normalized as a per-
centage of total area as given by Formula 2. We ap-
proximate this integral using a right Riemann Sum
approximation using all measured data points. We
performed no custom tuning on any of the bench-
marks.

4.1 HPCC

To analyze the spatial and temporal locality exercised
by the HPCC benchmarks, we examine the following
four benchmarks from the suite:

STREAM - a simple synthetic benchmark program
that measures sustainable memory bandwidth
and the corresponding computation rate for a
vector kernel

RandomAccess (GUPS) - measures the rate of
integer random updates of memory

FFT - measures the floating point rate of execu-
tion of double precision complex one-dimensional
Discrete Fourier Transform.

HPL - the Linpack TPP benchmark that measures
the floating point rate for solving a linear system
of equations.

Figure 1 shows the locality scores of the four ap-
plications and Figure 2 displays their temporal reuse
functions. To place these scores within some con-
text, we have performed a similar analysis on CG
and MG, two of the NAS Parallel Benchmarks [8].
These benchmarks were run at problem class A and
S respectively.

Notice that STREAM and GUPS are scored intu-
itively. GUPS performs random updates to a large
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00.10.20.30.40.5
0.60.70.80.91

0 0.2 0.4 0.6 0.8 1Temporal Score
Spatial Score

FFTGUPSStreamHPLCG.A.1MG.S.1
Figure 1: Locality Scores of the HPCC and NPB
Benchmarks

00.10.20.30.40.50.60.70.8
16 64 256 1024 4096 16384 65536Reuse DistanceFraction of Mem

Ops GUPSFFTStreamHPL CG.AMG.S
Figure 2: Temporal Locality Functions of HPCC and
NPB Benchmarks

memory and therefore displays neither spatial nor
temporal locality. STREAM on the other hand, per-
forms only regularly strided memory access to a large
memory and therefore displays a great degree of spa-
tial locality but very little temporal. STREAM’s
access pattern exemplifies the motivation for dif-
ferentiating locality along these dimensions. If we
were to predict a cache hit rate for STREAM based
on reuse distance alone [22], then we would under-
predict, having not accounted for cache hits induced
by prefetching.

HPL and FFT are both meant to represent
compute-bound codes and are therefore expected to
exhibit high degrees of locality. The results bear this
out with HPL exhibiting especially high levels of tem-
poral locality while FFT does similarly with spatial
locality.

The end result is that these metrics allow us to
compare benchmarks via two single-number scores
and make comparisons such as “STREAM has more
spatial locality than CG” or “FFT has lower tem-
poral locality than HPL” in a straightforward and
meaningful way.

4.2 Apex-MAP

Apex-MAP [30] is a synthetic benchmark that
stresses a machine’s memory subsystem according to
parameterized degrees of spatial and temporal local-
ity. Along with other parameters, the user speci-
fies L and K, parameters related to spatial locality
and temporal reuse respectively. Apex- MAP then
chooses a configurable number of indices into a data
array that are distributed according to K, using a
non-uniform random number generator. The indices
are most dispersed when K=1 (uniform random dis-
tribution) and become increasingly crowded as K ap-
proaches 0. Apex-MAP then performs L stride 1 ref-
erences starting from each index. This process is re-
peated a configurable number of times.

Parameter sweeps of Apex-MAP have been used to
map the locality space of certain systems with respect
to L and K. Figures 3 and 4 show how performance
in cycles per memory operation varies as a function
of L and K on two very different architectures. 1

There has been some effort to determine the L and
K values of certain applications using back fitting
[30]. Theoretically, if we could more easily obtain
the L and K value of some application, we could use
Apex-MAP as a lightweight probe to mimic the mem-
ory access behavior of that application and give some

1The parameter K is sometimes referred to as alpha.
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Figure 3: Apex-MAP Performance Surface on a Su-
perscalar Machine

Figure 4: Apex-MAP Performance Surface on a Vec-
tor Machine

indication of its possible memory performance on a
target architecture.

4.2.1 Locality Scoring of Apex-MAP

Our first results aim to determine the extent to which
the locality parameters of Apex-MAP actually affect
the benchmark’s memory behavior. To determine
this, we performed a parameter sweep of Apex-MAP,
tracing all combinations of K and L formed from the
sets {.001, .01, .05, .1, .5, 1} and {1, 2, 4, 8, 16, 32,
64, 128, 512, 1024} respectively.

Figure 5 plots the temporal reuse functions of all
combinations of K while L is held constant at 1 (i.e.
no runs of stride 1). The results clearly indicate that
our metrics track the temporal locality of Apex-MAP
as a monotonic function of K. The smaller K is, the
faster a larger fraction of memory operations falls into
smaller temporal caches due to small reuse distances.

00.10.20.30.40.50.60.70.80.91
16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072Reuse DistanceFraction of Mem

Ops k=.001k=.01k=.05k=.1k=.5k=1
Figure 5: As K Increases, the Temporal Locality of
Apex-MAP Decreases

Figure 6 plots the mapping functions between K
and our temporal scores for each value of L. The rea-
son that different values of L yield separate functions
is that as L increases, it introduces more strided, non-
temporal, references which in turn lower the percent-
age of total memory operations that the temporal hits
constitute at each point on the curve. This phenom-
enon is most clear in the case of K=1 where tem-
poral scores are in proportion to 1/L. As the value
of K increases however, the relationship between the
curves is blurred, which could indicate some interde-
pendence between L and K with respect to temporal
reuse.

Figure 7 charts the mapping function between L
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0.00.10.20.30.40.50.6
1 0.5 0.1 0.05 0.01 0.001KTemporal Score

L=1L=2L=4
Figure 6: Mapping of K to Temporal Score

0.00.10.20.30.40.50.60.70.80.91.0
1 2 4 8 16 32 64 128 512 1024L

Spatial Score
k=.001k=.01k=.05k=.1k=.5k=1

Figure 7: Mapping of L to Spatial Score

and our spatial score under various assumptions for
K. These results indicate that the spatial score is, for
the most part, an increasing function of L that as-
ymptotically approaches a value near .9, chiefly inde-
pendent of K. The sporadically anomalous behavior
starting at L=8 stems from a compiler optimization
that begins to exercise a new basic block only when
L grows larger than four.

Based on these results, Apex-MAP covers a spatial
score range of approximately .35-.85 and a temporal
score range of approximately .02-.55. It is possible
that the high end of the temporal score could be in-
creased using yet smaller values of K with which we
have not experimented.

Figure 8 plots the performance of Apex-MAP on
the SC45 as a function of its spatial and temporal
scores. We interpolate this surface using results from
Apex-MAP runs parameterized by all combinations
of L={1, 2, 4} and K={.001, .01, .05, .1, .5, 1}. The
surface confirms that our spatial and temporal scores
relate intuitively to the performance of Apex-MAP
and its notions of locality.

Figure 8: Locality scores track performance on Apex-
MAP

4.2.2 Apex-MAP To Other Codes

In the previous section, we developed a mapping be-
tween the abstract spatial and temporal parameters
of Apex-MAP and our observable locality metrics.
These mappings enable us to measure the locality
score of a given application and find the correspond-
ing values of L and K. To find the L and K values
for an application of interest:

1. Use Metasim on the code of interest to trace and
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S,
T

L,
K

Apex-MAP
Performance
(memOps/s)

CG.A.1 Per-
formance
(memOps/s)

Error

.68,

.33
3,
.01

3.25x108 3.75x108 7.5%

Table 1: Mapping Apex-MAP to CG.A Yields Simi-
lar Performance

calculate its temporal and spatial locality scores.

2. Consult the interpolations of Figure 7 to find
the L value corresponding to the application’s
spatial score.

3. Select the curve on Figure 6 that corresponds to
the L value derived in the previous step. To find
K, select the point on the curve that corresponds
to the application’s temporal score.

Using the above procedure, we can configure Apex-
MAP to perform memory accesses with the locality
of an application of interest, creating a lightweight
memory performance probe to represent it.

The tracer code for Metasim, and instructions for
running it, along with source code and instructions
for Apex-MAP are at www.sdsc.edu/pmac.

One should not assume that an application will get
the same performance in memory operations per sec-
ond as its Apex-MAP representative. This may be
true though if memory performance is the limiting
factor.

Table 1 displays an analysis of CG.A, a serial
benchmark we assume may be memory bound, using
Apex-MAP. The spatial and temporal scores of this
application are .68 and .33 respectively, as displayed
in Figure 1. Using the linear interpolation shown in
Figure 7, we can interpolate a spatial score of .68 to
map to an L-value of 3. Based on the L=2 and L=4
curves presented in Figure 6, we could choose K=.01
as the approximate value for K. On our test system,
a single 1-GHz Alpha processor completed CG.A at
a memory operation rate of 3.75x108 operations per
second. Apex-MAP at L=3 and K=.01 performs at
a rate of approximately 3.25x108 operations per sec-
ond, a 7.5% discrepancy.

The end-result of this section is that we now have
a recipe for determining L and K parameter settings
for Apex-MAP that should cause it to mimic the tem-
poral and spatial locality behavior of a chosen appli-
cation.

5 Other Uses

The presented methodology for locality analysis has
many potential uses for helping us understand appli-
cation performance. One example is using the analy-
sis to understand how applications scale as problem
size or processor counts grow. Figure 9 plots the lo-
cality scores of CG as the problem size scales between
classes S, W, and A. The graph also shows the aver-
age spatial and temporal locality of the memory work
assigned to each processor as processor counts scale.

00.10.20.30.40.50.60.70.80.91
0 0.2 0.4 0.6 0.8 1Temporal Score

Spatial Score
CG.S.1CG.W.1CG.A.1CG.A.8

Figure 9: Locality Scoring Captures How the Mem-
ory Work of CG Changes with Problem Size

We see that as input size increases, temporal score
decreases, because the array sizes and size of the
working set increases. At the same time, spatial score
increases with long runs of stride 1 references through
bigger arrays. In this simple case, everything matches
intuition although the behavior of large applications
could be less intuitive.

Splitting the CG class A problem across 8 CPUs
(comparing CG.A.1 to CG.A.8) reduces the size of
the working set per-processor and thus increases the
temporal score while spatial score drops due to di-
minishing array/loop bounds.

6 Related Work

Temporal locality, perhaps because it is a little subtle
to reason about, has a rich history in the literature.
In 1970, Mattson et al. studied stack algorithms in
cache management and defined the concept of stack
distance [1]. Reuse distance is simply the same as
LRU stack distance or stack distance using LRU re-
placement policy. In particular, Bunt has produced
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a host of publications studying both kinds of local-
ity ranging from his seminal papers [11, 24, 23] to
various investigations of metrics and measurement
techniques. He recently summarized his work [12],
20 years after first publishing in the area [23]. Our
approach is to adapt these ideas and make them prac-
tical and suitable for analysis of HPC parallel appli-
cations via dynamic tracing.

In the early 1980s Smith’s seminal work points out
the opportunities for cache to take advantage of both
kinds of locality [25]. This either presaged or, to some
extent, sparked the cache-based system revolution.
Subsequently, in the late 1980s Agarwal and Snir
published several papers modeling deepening memory
hierarchies using metrics of locality [4, 3]. Likewise,
Carter and Alpern [7] made contributions in this area
around the same time. We reviewed those works and
consulted with Carter in adapting those ideas to this
work.

Trace-driven simulation and analysis has its own
rich literature; Uhlig and Mudge provide a good sum-
mary up progress until late 1990s [32]. Our work has
leveraged and extended the state-of-the-art to make
parallel HPC applications tracing fast enough to be
practical [27].

Concepts of temporal and spatial locality are now
so well developed they are taught to undergraduates
in the classic Hennessy and Patterson text [19]. Nev-
ertheless, as mentioned, the details of exactly how to
measure them are left to the reader. We drew on more
detailed ideas as of Bunt, Agarwal, Carter etc. above
to devise metrics that are concrete and practical to
measure for HPC applications.

Using reuse distance to reason about and improve
performance is a well developed area [9, 16] and there
is also work in exploiting spatial locality for perfor-
mance as in the work of Torellas [31], Johnson [20],
and Kumar [21]. From the standpoint of this work
these provide more evidence that the capability of
measuring and benchmarking locality of HPC appli-
cations is important.

Work such as Song’s [28] is representative of a
whole area that uses compilers to improve code lo-
cality, especially temporal locality, to improve perfor-
mance. We refer the reader to Allen and Kennedy’s
work [5] for more in depth background on this area;
there simply is not room here to cite all the good
compiler analysis for locality papers.

Darema et al. characterized a scientific workload
with respect to memory access patterns in 1987 [15].
This work aims to update that kind of capability.
Harrison did similar work on pointer-chasing and nu-

meric programs of the day [18]. Ding et al. predict lo-
cality based on reuse distance [16]; our focus is rather
to measure locality directly.

Almasi et al. have proposed ways to calculate stack
distance efficiently [6]. Our approach is somewhat
similar in spirit; we propose a tractable approxima-
tion.

7 Conclusions and Future
Work

We have proposed and implemented a concrete
methodology whereby benchmarks and applications
can be scored for spatial and temporal locality. We
used it to confirm that the HPC Challenge Bench-
marks cover an interesting space along these dimen-
sions. We provided a recipe for tracing an arbitrary
application and determining the L and K values that
can be used to configure Apex-MAP into a succinct
benchmark proxy for the spatial and temporal char-
acteristics of the application. The tracer and Apex-
MAP are available at www.sdsc.edu/pmac.

This coming year we are commissioned by the DoD
HPC Modernization Program to acquire memory sta-
tistics on the following full-scale applications and in-
puts.

AVUS - The Air Force Research Laboratory
(AFRL) developed AVUS to determine the fluid flow
and turbulence of projectiles and air vehicles.

HYCOM - The Naval Research Laboratory (NRL),
Los Alamos National Laboratory (LANL), and the
University of Miami developed HYCOM as an up-
grade to MICOM (both well known ocean modeling
codes). HYCOM’s standard test case models all of
the world’s oceans as one global body of water at a
resolution of one-fourth of a degree when measured
at the Equator.

OVERFLOW-2 - NASA Langley and NASA Ames
developed this application to solve CFD equations
on a set of overlapping, adaptive grids, such that the
grid resolution near an obstacle is higher than that
of other portions of the scene.

RFCTH - Sandia National Laboratories (SNL) de-
veloped CTH to model complex multidimensional,
multiple-material scenarios involving large deforma-
tions or strong shock physics. RFCTH is a non-
export-controlled version of CTH.

As part of that work we will provide spatial and
temporal locality scores for these strategic codes, plot
them on axes of spatial and temporal locality, and
explore the benchmarking implications of represent-

10



ing them by Apex- MAP. Potentially, benchmarking
for procurement could be much cheaper and easier
if, instead of deploying all these codes on prospec-
tive machines, one could run Apex-MAP with a few
judicious parameters and get the same performance
information concerning the memory subsystems.

With regard to methodology enhancements, we
are currently experimenting with a spatial scoring
methodology that folds the size of the look back win-
dow into an application’s spatial score in much the
same manner as reuse distance is folded into its tem-
poral score. Scoring each memory reference as a func-
tion of both its stride length and the size of the look
back window required to identify such lengths would
allow us to plot spatial reuse functions in a manner
very much analogous to the temporal reuse functions
we have presented here. We can modify Metasim to
collect this information without noticeable slowdown
in the tracing performance.
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