
UC Merced
UC Merced Electronic Theses and Dissertations

Title
Mathematical Investigations of Heritable Microbial Phenotypes

Permalink
https://escholarship.org/uc/item/3px1z3vz

Author
Santiago, Fabian S

Publication Date
2021
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3px1z3vz
https://escholarship.org
http://www.cdlib.org/


Mathematical Investigations of Heritable
Microbial Phenotypes

UNIVERSITY OF CALIFORNIA, MERCED

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy in Applied Mathematics

Fabian Santiago

Committee in charge:

Professor Suzanne S. Sindi, Chair
Professor Miriam Barlow
Professor Camille Carvalho
Professor Erica Rutter

2021



Chapter 3 © 2021 Illinois State University, Normal, IL USA

All other material © Fabian Santiago, 2021

All rights reserved.



The dissertation of Fabian Santiago is approved,
and it is acceptable in quality and form for publi-
cation on microfilm and electronically:

(Professor Miriam Barlow)

(Professor Camille Carvalho)

(Professor Erica Rutter)

(Professor Suzanne S. Sindi, Chair)

University of California, Merced

2021

iii



DEDICATION
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This dissertation presents mathematical models, numerical methods, and data driven
investigations of heritable cellular phenotypes. First, mathematical models and nu-
merical methods for the dynamics of protein misfolding (prions) in yeast cells are
presented (Chapters 2 and 3). This prion phenotype, in Saccharomyces cerevisiae
yeast cells can be inherited by daughter cells through transmission of protein ag-
gregates during cell division, a non-Mendelian form of inheritance. Prions are not
harmful to yeast; this allows for their use as a biological model to gain insight into
the mechanisms that govern prion replication and transmission. Second, data driven
mathematical approaches to evaluate new biological techniques used to study the evo-
lution of bacterial antibiotic resistance are presented (Chapters 4 and 5). Bacterial
antibiotic resistance is a global human health problem. In the U.S. more than 35,000
people die from antibiotic-resistant infections and around 3 million get an antibiotic-
resistant infection every year [30]. In this work, we used two repositories of infectious
isolates collected from patients at Dignity Health Mercy Medical Center in Merced,
California, USA, and a nationwide database compiled from clinical isolate genomes
reported by the National Center for Biotechnology Information since 2013.
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Chapter 1

Introduction and Organization of
the Dissertation

The dissertation consists of two parts: in part one we investigate a misfolded
protein based heritable phenotype found in yeast cells (Chapters 2 and 3), and in
part two we investigate bacterial antibiotic resistance and the genetic heritability of
resistance (Chapters 4 and 5). Together with biological experimentation, mathematics
plays a critical role in understanding these biological phenomena (See Figure 1.1). The
following provides an introduction for each part of the dissertation and summarizes
the work in each chapter.

Figure 1.1: Experimentation and Mathematical Modeling Workflow. The
flow diagram (adapted from [115]) shows that mathematical modeling, model analysis,
and data analysis are critical components to understanding biological phenomena.

1
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Part 1: Yeast Prion Proteins

There are many neurodegenerative diseases that affect humans and animals that
are due to misfolded (abnormal) proteins called prions [36, 113]. Alzheimer’s disease,
the sixth-leading cause of death in the United States and the fifth-leading cause of
death for people that are 65 and older [6], is an example of such a disease. In 2019 it
was reported that approximately 55 million people in the US had Alzheimer’s disease,
and it is projected that this number almost double by 2050 [6]. This type of protein
misfolding disorder has also been observed in animals such as scrapie in sheep, chronic
wasting disease in deer and Bovine Spongiform Encephalopathy in cattle [126, 112].
These diseases are difficult to treat and their progression is fatal. While the details
differ, all share two key commonalities: (1) a misfolded form of a protein appears in
an otherwise healthy cell; (2) this misfolded form of the protein spreads to other cells.

Figure 1.2: Normal Protein, Protein Misfolding, and Yeast Colony Pheno-
type. DNA encodes for the three-dimensional structure of proteins. Top: most of the
time protein folds into its normal form which results in a red yeast colony. Bottom:
protein misfolding occurs when a misfolded form of a protein appears and spreads to
other cells by acting as a catalyst on normally folded protein to create the misfolded
protein form and leads to the formation of a white colony. The scale is 2.75mm.

In order to better understand prions and their aggregation, biologists have turned
to the yeast Saccharomyces cerevisiae as a biological model for studying prion dis-
ease (See Figure 1.2). In yeast, various harmless but heritable phenotypes have been
identified that are transmitted by highly stable prion aggregates [135, 136]. Prion
aggregates are harmless to the yeast cells, this allows researchers to study the ef-
fects of the protein dynamics in the absence of harming the host [74]. Intracellular
aggregation and fragmentation dynamics of prion aggregates have been well studied
[126, 49, 43, 44], however one of the challenges of working with yeast as a model sys-
tem is that cells divide during the course of the experiment. Therefore, the number
of aggregates in a cell will decrease when the cell divides as any aggregates will be
separated between the resulting mother and daughter cells [126]. This means that
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for meaningful quantitative comparisons between mathematical models and experi-
mental systems, care must be taken to understand the population averages but also
heterogeneity amongst cells in the same population (Chapter 2). Without cell divi-
sion, we know that the number of aggregates in a cell will increase until a steady-state
concentration is reached, where the aggregate number is in balance with the soluble
protein level [120, 124, 60, 114] (Chapter 3).

Chapter 2: A Structured Population Model and Likelihood
Approach to Estimate Propagon Replication Rates and Their
Asymmetric Transmission from Propagon Recovery Experi-
ments in Saccharomyces Cerevisiae

We present a structured population model describing the distribution and repli-
cation of yeast prion propagons in an actively dividing population of cells. We then
develop a likelihood approach for estimating the propagon replication rate and their
transmission bias during cell division. We first demonstrate our ability to correctly
recover known kinetic parameters from simulated data, then we apply our likeli-
hood approach to estimate the kinetic parameters for six yeast prion variants using
propagon recovery data. We find that, under our modeling framework, all variants
are best described by a model with an asymmetric transmission bias. This demon-
strates the strength of our framework over previous formulations that assume equal
partitioning of intracellular constituents during cell division by characterizing the
heterogeneity in cell division.

Chapter 3: Numerical Approaches to Division and Label Struc-
tured Population Models

In this work, we develop a novel theoretical and numerical framework involving a
recursive formulation for a class of division and label structured population models
(DLSPMs). We develop this framework for a population of dividing cells with an
arbitrary functional form describing the intracellular dynamics. We found that, com-
pared to previously used numerical methods, our recursive framework enables faster
and more accurate numerical solutions to DLSPMs. We apply our numerical frame-
work to three common models for intracellular dynamics (exponential, logistic, and
constant synthesis growth models) and discuss the potential impact of our findings in
the context of combining it with data-driven methods for parameter estimation and
uncertainty quantification.

Part 2: Bacterial Antibiotic Resistance

The emergence of bacterial resistance to established antibiotics is a major world
health crisis that leads to over 700,000 deaths globally each year, and by the year 2050
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it is estimated that antibiotic resistant infections will lead to around 10 million deaths
per year [101]. Bacterial resistance has appeared to nearly every antibiotic that has
been deployed [33]. Figure 1.3, adapted from information available in [30], presents
a timeline that illustrates examples of antibiotic release and resistance identification.
Controlling the spread of resistance is complicated by the multiple ways in which
bacteria are able to share beneficial genes, including through cell division to resulting
daughter cells (vertical transfer of genetic material) and by sharing genetic material
with distantly related bacteria (lateral transfer of genetic material) [80]. These forms
of gene transfer lead to quick dissemination of resistance phenotypes [41, 131, 67]. It
should be noted that the appearance of resistance does not imply that an antibiotic
no longer has clinical use, but instead that its use should be targeted to infections
that remain susceptible to that antibiotic.

Figure 1.3: Timeline of Antibiotic Approval (or Release) and First Resis-
tance Detection. Each line in resistance identified indicates detection of resistance
in a different bacterial species.

The development of new antibiotics is complicated by both technical difficulties
and the lack of economic incentive. Since resistance can emerge quickly, developers
know a new antibiotic will have only a limited number of years of clinical effective-
ness. Based on these observations, new views in combating antibiotic resistance have
emerged: the development of faster and more robust biological and mathematical
methods for assessing resistance to particular antibiotics (Chapter 4), and reliable
surveillance of antibiotic resistance (Chapter 5), in order to determine effective ways
to use the antibiotics currently available.

In this work, antibiotic resistance is investigated through statistical analyses of
infectious isolates selected for containing extended spectrum β-lactamases (ESBLs),
which are enzymes that confer resistance to β-lactam antibiotics. Since 2013 infec-
tious isolates mostly consisting of E. coli from urinary tract infections (UTIs) have
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been collected from patients through a partnership with Dignity Health Mercy Med-
ical Center (DHMMC) in Merced, CA. This work focuses on β-lactamase genes due
to their prevalence in reducing the effectiveness of the most common antibiotic treat-
ments used to treat UTIs [77, 1, 119, 70].

Chapter 4: Growth rate assays reveal fitness consequences of
β-lactamases

An alternative approach for measuring fitness of microbes in the presence of an
antibiotic is the use of growth rates. They are a highly sensitive approach for mea-
suring bacterial fitness effects from antibiotics and resistance genes. Growth rates
use a single concentration of antibiotic where as in clinical susceptibility testing a
bacterial isolate is exposed to a range of concentrations of an antibiotic to determine
a minimum inhibitory concentration (MIC) [5]. The range for determining the MIC
depends on both the antibiotic and concentration levels deemed safe for the patients.

In this work we analyze isolate growth rates determined during the exponential
growth phase of bacterial growth in the presence of a particular antibiotic. We first
performed a statistical analysis of the growth rate estimates, under different antibiotic
conditions of interest, for deviations from normality using the Shapiro-Wilk test [73],
then we compared differences in growth rates by antibiotic conditions using Welch’s
t-test [118]. We set α = 0.01 as the significance level, and performed a post hoc
Bonferroni-type multiple testing procedure [21] with a false discovery control level of
q = 0.05, to control the false positive rate in performing multiple statistical test.

We show that despite the key difference of only using one concentration of antibi-
otic, the use of growth rates correlate well with clinical determination of resistance
by MIC while providing the sensitivity required for direct input as fitness values into
mathematical models.

Chapter 5: Distribution of β-Lactamase Genes in Clinical Iso-
lates from California Central Valley Hospital Deviates from
the United States Nationwide Trends

In this work, we used two repositories of ESBL-producing isolates collected since
2013 from patients at DHMMC and a nationwide database compiled from clinical
isolate genomes reported by the National Center for Biotechnology Information since
2013 [98]. We first show that average resistance gene frequencies over consecutive
years are statistically stable using a Z-test [31]. Using this Z-test formulation, we
also compare the frequencies of resistance genes in the DHMMC collection with the
averages of the nationwide frequencies. We then address the question of statistical
evidence for the correlation or pairwise linkage between resistance genes using a χ2

test [61] and the phi coefficient

(
Φ = ±

√
χ2

n

)
as a χ2 measure of directional deviation
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from the null relationship of independent assortment of resistance genes [50]. Con-
trolling for multiple statistical tests was conducted via the FDR-controlling procedure
[22], a Bonferroni-type multiple testing procedure, with a false discovery control level
of q∗ = 0.025 and a significance level of α = 0.05.

We found DHMMC gene frequencies are stable over time and differ significantly
from nationwide frequencies throughout the period of time we examined. Our results
suggest that local selective pressures are a more important influence on the population
structure of resistance genes in bacterial populations than migration. This, in turn,
indicates the potential for antibiotic resistance to be controlled at a regional level,
making it easier to limit the spread through local stewardship.

Conclusions and Future Directions

Chapter 6 presents concluding remarks regarding the work presented in this dis-
sertation and suggestions for possible extensions to these areas of research.



Chapter 2

A Structured Population Model
and Likelihood Approach to
Estimate Propagon Replication
Rates and Their Asymmetric
Transmission from Propagon
Recovery Experiments in
Saccharomyces Cerevisiae

2.1 Introduction

Today in the United States, millions of individuals suffer from Alzheimer’s dis-
ease and other similar dementias. The cause of these diseases is thought to be the
accumulation of misfolded proteins in the brain [6]. Currently, Alzheimer’s is the
sixth-leading cause of death in the United States and the fifth-leading cause of death
for individuals 65 and over [6]. Beyond Alzheimer’s, there are a many other disor-
ders caused by protein misfolding. Neurodegenerative diseases such as Parkinson’s
and Huntington’s disease to less well-known diseases like Kuru and Creutzfeldt-Jakob
Disease [129, 68] have a similar pathology. In addition, protein misfolding disorders
have also been observed in other mammals such as scrapie in sheep, chronic wasting
disease in deer and Bovine Spongiform Encephalopathy in cattle [126, 112]. Collec-
tively, these diseases are largely untreatable and nearly universally fatal. While the
details differ, all share two key commonalities: (1) a misfolded form of a protein ap-
pears in an otherwise healthy cell; (2) this misfolded form of the protein spreads to
other cells.

A promising system allowing for insight into mammalian protein misfolding and
prion disease is the yeast Saccharomyces cerevisiae. A number of harmless, heritable

7
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phenotypes in yeast are shown to be transmitted vertically to new daughter cells by
prion seeds, termed propagons [138, 126]. Because these propagons are harmless to
the yeast cells, researchers are able to study the protein dynamics themselves in the
absence of harming the host. Indeed, biologists have many experimental tools that
have been developed for yeast which allow for a detailed interrogation of the protein
aggregation system in ways that are not possible to do in mammalian systems in
vivo [136]. However, a unique challenge to working with yeast as a model system
is that during the experimental time course, the yeast cells themselves continue to
divide [49]. Without cell division, we know that the number of propagons in a cell
will increase until it reaches a steady-state concentration where the propagon number
is in balance with the soluble protein level [49, 124, 60, 114]. However, the number
of propagons in a cell will decrease when the cell divides as any propagons (i.e.,
transmissible aggregates above a critical minimal size, see [138] for more details)
will be separated between the resulting mother and daughter cells [126, 49]. This
means that for meaningful quantitative comparisons between mathematical models
and experimental systems, care must be taken to understand the population averages
but also heterogeneity amongst cells in the same population.

In this work, we build upon a previous approach to consider not only the protein
dynamics within yeast cells, but the cellular populations themselves. More specifi-
cally, in this work we consider a structured population model of yeast cells where the
transmission of prion aggregates are tracked as cells divide and as aggregates repli-
cate. While prior models have been developed of this system [8], our work considers
a more general framework and has several novel contributions. First, in contrast to
prior studies, rather than assuming that the variance in prion aggregate counts is pro-
portional to the system mean, we use the full likelihood of the data. Second, while
prior approaches assume symmetric division of propagon between dividing cells, our
work allows for non-symmetric transmission of propagons. Finally, we consider prion
recovery data from six distinct prion variants.

With this more general framework, we find that all six prion variants are best
described by an asymmetric transmission of propagons between actively dividing yeast
cells. With our model selection framework we were also able to exclude influential
outliers from our prion variant datasets for computing kinetic parameters of prion
variants. Moreover, we find differences among the variants for both the propagon
replication rate and the transmission bias. Encouragingly, prion variants with similar
phenotypic properties are fit with similar kinetic parameters. As such, our framework
offers the ability to infer meaningful properties about prion variants even with our
simplified model of intracellular aggregate dynamics.

In Section 2.2, we develop the biological background of prion variants and the re-
covery assays we model. Section 2.3 describes our aggregate and generation structured
population model and the likelihood approach we use for fitting kinetic parameters
to experimental data. In Section 2.4 we first characterize the ability of our model
and inference framework to recover the correct kinetic parameters and then apply our
model and inference framework to recovery data from six distinct prion variants. In



9

Section 2.5 we discuss the implications of our study as well as factors to be considered
in future studies on prion aggregate dynamics.

2.2 Biological Background

As mentioned in Section 2.1, yeast prions were not discovered in the context
of a disease but in one of mysterious heritable phenotypes [38, 137]. In addition,
there is a considerably shorter history of knowledge about yeast prions than their
mammalian counterparts [124, 136]. The [PSI+] phenotype in yeast that we now
know to be linked to a prion form of the protein Sup35, was discovered in 1965 by
biologist, Brian Cox. The phenotype corresponded to that of a white colored colony
and the ability to grow a colony on media lacking adenine [38]. Remarkably, this
phenotype appeared to be vertically transmissible (from mother to daughter) but
did not obey the laws of Mendelian inheritance as defined by DNA transmission.
For example, if two diploid organisms are heterozygous for a recessive trait then,
by the rules of Mendelian inheritance, we expect that 1/4 of their offspring would
exhibit the recessive trait. With DNA ruled out as the mode of inheritance, the
identity for the heritable species associated with the [PSI+] phenotype began. In
1994, Wickner hypothesized that [PSI+] and [URE] (another mysterious phenotype)
were propagated by a misfolded (prion) form of their respective proteins [144]. In
1996, Paushkin and colleagues [104] demonstrated that the [PSI+] phenotype was the
result of a misfolded form of the protein Sup35 that was self-propagating. Today
we know that many proteins in yeast are capable of forming prions and that a given
prion protein may have multiple variants - distinct misfolded confirmations - each of
which is capable of propagating through this self-propagation process. In particular,
as mentioned in the introduction, we are considering six variants of the [PSI+] prion
in yeast [76].

For mammalian prion disease, the disease phenotype is observed at the level of
single organism (i.e., a cow, human, mouse, etc). However, in yeast prion biology the
prion phenotypes are only observed with a yeast colony consisting of many organisms
(cells) and founded by from a single cell [133]. As such, it has been challenging to
establish a precise link between the infective species, or propagon (that necessarily)
reside in a single cell with the colony level phenotype [126]. While it is clear that the
presence of a single propagon in the founding cell is necessary for the appearance of
the prion phenotype at the colony level, is it not clear that it is sufficient [138]. In
this work, following others [49, 8, 125] we will assume that the presence of a single
propagon in a founding cell is both necessary and sufficient for the appearance of the
prion phenotype at the colony level. As such, yeast prion dynamics are inherently a
multi-scale process [14, 79].

Prion phenotypes occur when a misfolded form of a protein occurs and, rather
than be cleared by cellular quality control machinery, the misfolded form persists
and associates in aggregates, ordered structures of prion monomers as shown in Fig-
ure 2.1(a). More specifically, four steps are essential to the maintenance of prion
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phenotypes (see Figure 2.1(b)). First, normal protein is continually produced by the
cell. Second, prion aggregates convert the normally folded protein to its misfolded
confirmation through a templated conversion process which incorporates the newly
misfolded protein. This conversion process increases the size of the aggregate. Third,
the total number of aggregates increases when the aggregates are fragmented. This
increases the total number of templating units and thus accelerates the conversion
process. Fourth, aggregates are transmitted between cells during division. Intrigu-
ingly, the cell division process creates an interesting phenomenon from the perspective
of a single cell. Between cell divisions, the number of aggregates increases, and it will
then decrease when cell division occurs Figure 2.1(c). Due to the low frequency
of spontaneous [PSI+] appearance, ∼ 10−8 − 10−7/generation [75], in this work we
assume there is no spontaneous appearance of aggregates.

Figure 2.1: Multiscale Yeast Prion Aggregate (Propagon) Dynamics. (a)
Within each cell in the colony is a mixture of normal protein and prion (misfolded)
protein. Prion proteins are contained in aggregates of multiple misfolded monomers.
(b) Within each cell normal protein is produced (synthesis) and converted to the prion
form and incorporated into existing aggregates (conversion) which increases the size
of an aggregate. Aggregates may increase in number by fragmentation and must
be spread from mother to daughter cells during division (transmission). (c) Under
normal growth conditions, the number of aggregates increases during the lifetime
of a cell and is split during cell division. (d) When cells are grown under GdnHCl
fragmentation is assumed to stop and the number of aggregates remains unchanged
during the lifetime of a cell.

Yeast biologists take advantage of the fact that when cells are exposed to Guana-
dine Hydrochloride (GdnHCl) cell division is not impacted, but the aggregate frag-
mentation process is assumed to halt. As such, the number of aggregates within a
cell, and indeed in the entire population is kept constant, while the number of cells in
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the colony continues to increase, see Figure 2.1(d). This allows for experiments which
probe the number of aggregates in a single cell by regrowing colonies and assuming
that any cell with at least one aggregate will create a colony with a prion phenotype.
A single yeast cell with propagons is introduced to a GdnHCl environment and the
population of cells is allowed to grow normally. Because aggregates will be split be-
tween mother and daughter cells during division, the expected number of aggregates
per cell will continue to decrease until the point where a cell in the population is
extremely unlikely to have more than one aggregate [35, 96, 125]. Then each cell in
this population is allowed to form their own colony under normal growth conditions.

In propagon recovery experiments, yeast biologists use GdnHCl exposure in two
phases to observe the amplification of propagons (see Figure 2.2). In the first phase,
yeast cells are treated with GdnHCl until the aggregates have sufficiently diluted.
In this first phase, as aggregates present at the beginning of GdnHCl exposure will
exist for all time, the expected number of aggregates per cell will continue to decrease
as cell division continues as normal. In time, cells in the colony will contain a very
low number of propagons per cell, ideally one. In the second phase, the resulting
cells from phase one are transferred to a GdnHCl free environment and are allowed to
form individual colonies. The number of white colonies is then assumed to correspond
exactly to the number of cells with with at least one propagon (see Figure 2.2). This is
because the resulting colony whose founding cell had at least one propagon will have
the [PSI +] prion phenotype (white) while those founded by a cell with no propagons
will have the [psi−] non-prion phenotype (red).

2.3 Methods

In this section we begin by presenting our model, a system of partial differential
equations (PDEs) for the intracellular process of propagon replication and their trans-
mission through the cellular process of division. We present intermediate quantities
that allow the decoupling of the PDE system and present the explicit solutions to the
model that we consider in this work. Then we show that the intermediate quanti-
ties used to derive explicit solutions facilitate a likelihood formulation for parameter
estimation and model selection. We describe how to generate simulated data with
the model solutions and that we can recover the true kinetic paramaters with our
likelihood formulation and our implementation of the adpative Metrolopolis (AM)
algorithm. We conclude this section by detailing how we overcome numerical issues
with the implementation of our likelihood formulation.

2.3.1 Asymmetric Transmission of Propagons Model

We seek to model the number of aggregates of propagons or a single prion variant
in a population of actively dividing cells. Let a(t) be the number of propagons a cell
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Figure 2.2: Propagon Amplification Assay. A two-step process is used to count
the number of transmissible prion aggregates (propagons) in a single cell. Left : A
single target cell is isolated, and aggregate fragmentation is stopped through exposure
to GdnHCl. Since aggregates (pinwheels) can not increase in number, they are diluted
through cell division (green arrows). Right : After sufficient dilution, i.e. each yeast
cell is likely to contain at most one aggregate, the colony is replated onto solid media.
In the absence of GdnHCl, each single cell serves as a founder of a distinct yeast
colony. The number of propagons in the target cell corresponds to the number of
white colonies in the plate.
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has t hours after dividing, then

da

dt
= η(a;θ) (2.1)

where η is the intracellular propagon amplification model that depends on the current
number of propagons a and θ, the kinetic parameter(s) that govern the propagon
replication and transmission dynamics (i.e. replication rate and transmission bias).
We model the propagon distribution dynamics in the yeast cell population Y (t, a), as
evolving in time according to the transport equation:

∂

∂t
Y (t, a) +

∂

∂a
(η(a;θ)Y (t, a)) = 0. (2.2)

However, we are interested in tracking Yi(t, a), the distribution of propagons in cells
that have undergone i divisions, t hours since the start of the experiment (see Figure
2.3). These propagon dynamics in the population of dividing cells are captured by
the following system of M + 1 coupled PDEs, which we refer to as the Asymmetric
Transmission of Propagons (ATP) model:

∂

∂t
Y0(t, a) +

∂

∂a
(η(a;θ)Y0(t, a)) = −(α0(t) + β0(t))Y0(t, a),

∂

∂t
Y1(t, a) +

∂

∂a
(η(a;θ)Y1(t, a)) = −(α1(t) + β1(t))Y1(t, a) +D1(t, a),

...

∂

∂t
Yi(t, a) +

∂

∂a
(η(a;θ)Yi(t, a)) = −(αi(t) + βi(t))Yi(t, a) +Di(t, a),

...

∂

∂t
YM(t, a) +

∂

∂a
(η(a;θ)YM(t, a)) = −(αM(t) + βM(t))YM(t, a) +DM(t, a).

(2.3)

The right hand side of each PDE captures the rate of cells lost in that generation
from cell division and cell death, and accounts for new cells from cell division in the
previous generation. Here αi(t) is the rate of cell division, and βi(t) the rate of cell
death in the ith generation. The rate of increase in the number of cells in the ith

generation is represented by the term

Di(t, a) = ρ−1
1 αi−1(t)Yi−1(t, ρ−1

1 a) + ρ−1
2 αi−1(t)Yi−1(t, ρ−1

2 a), (2.4)

where ρ1 and ρ2 control the transmission of propagons between dividing cells. To
maintain the conservation of propagons during division we require ρ1 + ρ2 = 1, show-
ing only one degree of freedom or that if ρ1 = ρ ∈ (0, 1), then ρ2 = 1− ρ. Note that
letting ρ1 = ρ2 = 1/γ reduces our model to that proposed by [66]. Note that this
formulation implies that for conservation and symmetric transmission of aggregates
during cell division ρ = 1/γ = 1/2. The work by [83] first generalized the work by
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[66] to study T cells traced with carboxyfluorescein diacetate succinimidyl ester to
include their resting and cycling phases (delay in division) while considering an asym-
metric division with a system of delay hyperbolic PDEs. However, in our modeling
framework because of the duration of the experiment (8 hrs), we expect most cell
divisions to be the product of mature cells actively producing daughter cells so we do
not consider synchronous delays in division.

Figure 2.3: Asymmetric Transmission of Propagons Model Schematic. The
model dynamics of intracellular aggregate replication and cell division from generation
i to generation i+ 1. The black arrow (→) illustrates the intracellular increase in the
number of propagons over time. The remaining parameters are detailed in Section
2.3.1.

In this work, we are interested in determining the effect of ρ, the propagon trans-
mission biased between dividing cells. To this end, we can bound the number of cell
divisions (M) because the duration of the experiment of interest is finite. We bound
the maximum number of cell divisions up to M = 6 generations because yeast cells
divide every 1.5 hours and the longest duration of the propagon recovery experiments
considered in this work is eight hours. Then to solve the ATP model, Eq. (2.3), we
must specify an initial distributions for each generation

Y0(0, a) = Υ(a) and Yi(0, a) = 0 for all i > 0. (2.5)

Where Υ(a), is the initial intracellular distribution of aggregates at the start of the
experiment.

2.3.2 Analytic Solutions and Model Decomposition

The formulation of the ATP model, Eqs.(2.3)-(2.5) presented in Section 2.3.1,
allows for computation of intermediate quantities that allow for the decoupling of
population and intracellular propagon dynamics in Eq. (2.3). First, the total number
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of cells resulting from the ith division, since the beginning of the experiment, at time
t is given by

ni(t) =

∫
R

Yi(t, a)da, (2.6)

where R depends on the intracellular propagon amplification dynamics model in
Eq. (2.1), and is taken to be R = (0,∞) in our work (see Corollary 1). The normalized
density of propagons can then be defined by

yi(t, a) =
Yi(t, a)

ni(t)
, for ni(t) > 0, (2.7)

and yi(t, a) = 0 otherwise. This quantity represents the intracellular dynamics of the
dividing cells in our population of interest. We define the initial number of cells at
the start of the experiment by

N0 =

∫
R

Y0(0, a)da, (2.8)

and the initial normalized propagon density

y0(0, a) =
Y0(0, a)

N0

. (2.9)

Using the quantities defined above and Eq. (2.3), the following theorem holds for
Eq. (2.1) defined by an exponential growth model η(a;θ) = λa, where a ∈ R = (0,∞).

Theorem 1. The solution of the system defined by Eq. (2.3) and (2.4), with initial
conditions given by Eq. (2.5) is given by:

Yi(t, a) = ni(t)yi(t, a), for 0 ≤ i ≤M, (2.10)

in which:

1. ni(t) is the solution of the system of ODEs:

i = 0 :
dn0

dt
= −(α0(t) + β0(t))n0,

for 1 ≤ i ≤M :
dni
dt

= −(αi(t) + βi(t))ni + 2αi−1(t)ni−1,

(2.11)

where n0(0) = N0, and ni(0) = 0 for i ≥ 1.

2. yi(t, a) is the solution to the PDE

∂yi(t, a)

∂t
+
∂(η(a;θ)yi(t, a))

∂a
= 0 (2.12)

with initial conditions yi(0, a) :=
(

1
2

)i∑i
k=0

(
i
k

)
ρk−i1 ρ−k2 Υ

(
ρk−i1 ρ−k2 a

)
, and
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3. the solution yi(t, a) satisfies the recursive property

yi(t, a) =
1

2

(
ρ−1

1 yi−1(t, ρ−1
1 a) + ρ−1

2 yi−1(t, ρ−1
2 a)

)
, (2.13)

for all 0 ≤ i ≤M .

Unlike the theorems presented in [66] and [83], in Theorem 1 we highlight the fact
that yi(t, a) must satisfy Eq. (2.12) and Eq. (2.13), in order for Eq. (2.10) to be a
solution to the system defined by Eq. (2.3). This is to highlight that for non-linear
intracellular dynamics models (Eq. (2.1)), the property given by Eq. (2.13) may no
longer be satisfied [120]. The proof of Theorem 1 follows the structure of the proof
in [66], therefore we simply outline the proof of Theorem 1 here.

Proof. First, we substitute the Yi(t, a) terms in Eq. (2.3) with the decomposition
given by Eq. (2.10). Then we simplifying the terms of Eq. (2.3), and using Eqs. (2.11)
and (2.12) leads to the recursive expression in Eq. (2.13) completing the proof.

In this work we are modeling propagon replication where at the beginning of the
experiment the initial condition is that of a distribution of low propagon counts in
the yeast cell population as observed in the propagon recovery data (see Figure 2.5).
This initial low number of propagons is followed by a period of exponential growth
where a steady state in the number of propagons is not yet observed. Corollary 1
captures this phase of growth, where we assume that the rate of propagon replication
is proportional to the current number of propagons present within a yeast cell. This
type of propagon proliferation assumes that there is an unlimited amount of normally
folded (soluble) protein that can be be misfolded and lead to the continued formation
of prion aggregates.

Corollary 1. The solution of the system defined by Eq. (2.3) and (2.4) with an
intracellular propagon replication model η(t, a) = λa, is

Yi(t, a) = ni(t)
i∑

k=0

(
i

k

)
ρ1
k−iρ2

−k exp(−λt)Υ
(
ρ1
k−iρ2

−ka exp(−λt)
)

for 0 ≤ i ≤M.

(2.14)
Where ni(t) is the solution to Eq. (2.11).

Proof. Following [83], we solve Eq. (2.12) via the method of characteristics. This
yields

yi(t, a) =

(
1

2

)i i∑
k=0

(
i

k

)
ρ1
k−iρ2

−k exp(−λt)Υ
(
ρ1
k−iρ2

−ka exp(−λt)
)

for 0 ≤ i ≤M.

To show that yi(t, a) satisfies the recursive property in Eq. 2.13 we prove the
equivalent expression yi+1(t, a) = 1

2

(
ρ−1

1 yi(t, ρ
−1
1 a) + ρ−1

2 yi(t, ρ
−1
2 a)

)
holds, see Sup-

plementary Section 2.7. Then, replacing yi(t, a) in Eq. (2.10), and inserting this
result in Eq. (2.3) proves Corollary 1.
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The following corollary presented in [66] involves the solution of Eq. (2.11) under a
special case of constant cell division rate αi(t) = α and constant cell death βi(t) = β.
In [66] the authors consider βi(t) = β > 0, but the solution also holds for β = 0,
which is the assumption in this work.

Corollary 2. Let αi(t) = α ≥ 0 and βi(t) = β ≥ 0, for all 0 ≤ i ≤ M , the solution
to Eq. (2.11) is

ni(t) =
(2αt)i

i!
exp(−(α + β)t)N0, for 0 ≤ i ≤M. (2.15)

Proof. Straightforward by plugging Eq. (2.15) into Eq. (2.11).

2.3.3 Likelihood Problem Formulation & Model Selection

In this work we are interested in estimating the kinetic parameters of our model,
Eqs.(2.3)-(2.5), using experimental data. We are interested in the probability of
the observed data for a given value of the kinetic parameters θ of the parameter
space Θ, denoted L(θ|Data). Let N(t) =

∑M
i=0 ni(t), the total number of cells at

time t, Z(t, a;θ) =
∑M

i=0 Yi(t, a) represent the total yeast cell population propagon
density after M cell divisions, and θ represent the kinetic parameters. Further, let
the experimental observations ak observed at time tk consisting of propagon counts
be {(ak, tk)}mk=1 (see Section 2.4). Then, the likelihood of the kinetic parameters θ,
given the propagon data is defined as follows

L(θ|Data) =
m∏
k=1

P ({tk, ak};θ),

=
m∏
k=1

{
M∑
i=0

[(
ni(tk)

N(tk)

)
yi(tk, ak;θ)

]}
,

=
m∏
k=1

M∑
i=0

Yi(tk, ak;θ)

N(tk)
,

=
m∏
k=1

Z(tk, ak;θ)

N(tk)
.

(2.16)

where P ({tk, ak};θ) is the probability of observing ak propagons at time tk given

model parameters θ. This probability is the product of ni(tk)
N(tk)

, the probability that the

observation ak came from a cell in the ith cell division and yi(tk, ak;θ), the probability
that the cell in the ith cell division at time tk contains ak propagons. The product
of both terms is summed over the number of divisions that can be observed during
the experiment. This is because a cell at any point in the experiment results from a
finite number of cell divisions since the beginning of the experiment.

In this work we are interested in considering two mathematical modeling scenarios.
The first ZS(t, a;λ, ρ = 0.5), symmetric cell division where we estimate the posterior
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distribution of the replication rate (λ) and fix the division bias at ρ = 0.5, and
the second ZA(t, a;λ, ρ), asymmetric cell division where we estimate the posterior
distributions of the replication rate λ and the posterior distribution of the propagon
division bias ρ. With the likelihood formulation we compute the Akaike Information
Criterion (AIC)

AIC = −2 · log
(
L(θ̂|Data)

)
+ 2K,

where θ̂ are the mean parameter estimates that best explain the data (see Section
2.3.4) and K is the number of free parameters [2]. To account for bias due to different
number of parameters and data sizes, we use the AIC bias correction

AICc = AIC +
2K(K + 1)

m−K − 1
,

where m is the sample size [69]. These AICc values are used to compute the AICc

difference
∆i = AICc

i −min(AICc),

for the ith model and prion variant data. Finally, we can compute the relative model
weights

Wi =
exp(−1

2
∆i)∑M

m=1 exp(−1
2
∆m)

,

of each model [111] with each prion variant dataset. We interpret this quantity as the
probability that a model is the best approximation to the replication and division of
propagons during cellular proliferation given the experimental data.

2.3.4 Adaptive Metropolis Algorithm

In this work we follow the procedure described in [128], a Metropolis algorithm
with an adaptive Metropolis (AM) step to estimate the target distribution π(θ), with
p kinetic parameter variables Θ. Using an initial value for each kinetic parameter
θ0, as the starting condition, a random candidate θnew is drawn from a proposal
distribution J of the parameters θ. Thus θnew ∼ J(θnew|θi−1), is drawn in every
iteration.

The target distribution π(θ) is given using previously defined likelihood function
L(θ|Data),

π(θ) =
L(θ|Data)π0(θ)

π(Data)
, (2.17)

where the random parameter variables Θ have a known and possibly uninformative
prior density π0(θ), and π(Data) =

∫
Rp L(θ|Data)π0(θ)dθ, and p is the dimension of

the parameter set. In this work we choose the noninformative prior π0(θ) = U(0, 1)p

and J(θnew|θi−1) = N(θi−1;V ) to be normally distributed with covariance matrix V .
The acceptance probability then follows

α(θnew|θi−1) = min

{
1,
π(θnew)J(θi−1|θnew)

π(θi−1)J(θnew|θi−1)

}
= min

{
1,
L(θnew|Data)

L(θi−1|Data)

}
. (2.18)
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In Eq. (2.18), the terms involving J cancel because by design J is a symmetric proposal
distribution. Now, with probability α(θnew|θi−1), we accept θnew, and set θi = θnew.
Otherwise, with probability 1− α(θnew|θi−1), we set θi := θi−1.

Following [63], the adaptive step is preceded by a non-adaptive period of length k
where θ1,θ2, · · · ,θk are computed using an initial covariant matrix V0 = V . Following
the non-adaptive step, the covariance matrix is computed using the previous chain
values

Vi = spcov (θ0,θ1, . . . ,θi) + εIp, for i ≥ k. (2.19)

Here sp is a design parameter that depends on p. The term εIp consists of the p-
dimensional identity matrix and ε ≥ 0 to ensure that Vi remains positive definite.
This formulation can quickly incur large computational cost, but this cost can be
drastically reduced by use of the recursive update of the covariance [63]

Vi =
i− 2

i− 1
Vi−1 +

sp
i− 1

(
(i− 1)θ̂i−2θ̂

T

i−2 − iθ̂(i−1)θ̂
T

(i−1) + θ(i−1)θ
T
(i−1)

)
. (2.20)

In the application of the adaptive Metropolis algorithm to the simulated data and
experimental data (Sections 2.4.1 and 2.4.2), we take sp = 1.0, ε = 1× 10−6, and

V0 =

[
σ2
λλ σ2

λρ

σ2
ρλ σ2

ρρ

]
,

where σ2
λλ = 0.1406, σ2

λρ = σ2
ρλ = 0, and σ2

ρρ = 0.0156. A non-adaptive period
length of k = 1500 for the simulated data and experimental data were established
using Geweke’s convergence diagnostic as presented in [37], and performed a total of
2×106 iterations. We avoid numerical issues in the direct evaluation of the likelihood
formulation presented in Eq. (2.16) by working with natural-logarithm version of the
acceptance probability in Eq. (2.18) using the numerically stable procedure outlined
in Section 2.3.5.
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Algorithm 1 Adaptive Metropolis Algorithm

1: D ← load data
2: L← load likelihood formulation
3: M ← load Maximum number of iterations
4: k ← load non-adaptive period length
5: θ(0) ← initial value for θ
6: V (0:k) ← initial covariance matrix values for non-adaptive period V0

7: sp← set covariance scaling design parameter sp
8: ep← set identity scaling ε for positive definite V
9: for i = 1 to k do . Non-adaptive period

10: θnew ← N(θ(i−1),V (i−1))
11: u ∼ U(0, 1)

12: α← min
{

1, L(θnew|D)/L(θ(i−1)|D)
}

13: if u < α then
14: θ(i) ← θnew
15: else
16: θ(i) ← θ(i−1)

17: for i = k + 1 to M do . Adaptive period
18: θnew ← N(θ(i−1),V (i−1))
19: u ∼ U(0, 1)

20: α← min
{

1, L(θnew|D)/L(θ(i−1)|D)
}

21: if u < α then
22: θ(i) ← θnew
23: else
24: θ(i) ← θ(i−1)

25: V (i) = sp ∗ cov
(
θ(0),θ(1), . . . ,θ(i)

)
+ ep ∗ Ip

26: return θ, V

2.3.5 Numerical Implementation of Likelihood Formulation

In our initial implementation of the likelihood formulation presented in Section
2.3.3, we encountered significant numerical underflow, so we opted to work with the
natural-logarithm form of the likelihood or log-likelihood. Recalling that N(t) =∑M

i=0 ni(t) and that Z(t) =
∑M

i=0 Yi(t, a), taking the natural logarithm of Eq. (2.16),
we have

lnL(θ|Data) =
m∑
k=1

ln (Z(t, a;θ))− ln (N(t)) ,

=
m∑
k=1

ln

(
M∑
i=0

Yi(tk, ak;θ)

)
− ln

(
M∑
i=0

ni(tk)

)
.

(2.21)
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Numerical evaluation of this log-likelihood is performed by generalizing the algebraic
and numerically stable property ln(a0+a1) = ln(a0)+ln(1+exp(ln(a1)−ln(a0))) where

ln(a0) > ln(a1). That is we evaluate ln
(∑M

i=0 Yi(tk, ak;θ)
)

by applying the natural

log directly to each ith model solution Yi(t, a;θ), then evaluating the resulting ex-

pression. The evaluation of ln
(∑M

i=0 Yi(tk, ak;θ)
)

is then found recursively using the

ln (Yi(tk, ak;θ)) terms as follows: let ln qi = lnYi(t, a;θ)
∣∣
t=tk,a=ak

, and q = {ln qj}Mj=0

be the sorted values ln qi in descending order, then ln
(∑M

i=0 qi

)
is given by the nu-

merically stable recursive function ξ as follows

ξ (q) =

{
q(1) |q| = 1

q(1) + ln(1 + exp(ξ(q(2 : |q|))− q(1))) |q| > 1
(2.22)

where | · | is the cardinality or the number of elements in q and the notation “2 : |q|”
indicates all elements in q except the first. Implementing this formulation removed
numerical underflow when evaluating the likelihood formulation presented in Section
2.3.3.

2.4 Results

In this section we demonstrate that we can recover known parameters from simu-
lated data using the adaptive Metropolis (AM) algorithm with our likelihood formu-
lation, and study the effects of hourly sampling rate. We then apply these parameter
estimation methods to experimental data for six prion variants and perform model
selection between symmetric cellular division and asymmetric division of intracellular
constituents.

2.4.1 Parameter Inference on Simulated Data

We first verify the capability of our likelihood formulation from Section 2.3.3 and
the AM algorithm detailed in Section 2.3.4 to estimate known kinetic parameter
values from simulated data before applying our methods to the experimental data.
The simulated datasets are created using rejection sampling methods [28] on the
ATP model presented in Section 2.3.2. We take the cell division rates αi(t), to be
constant during each period of cell division, with a rate of αi(t) = 0.46 hr−1, and that
death is negligible throughout the duration of the experiment by setting βi(t) = 0.
Furthermore, we assume the initial distribution of aggregates to be a truncated normal
distribution defined on the interval R = (0,∞) with µ = 10 and σ = 1, that is
Υ(a) = N+(a;µ = 10, σ = 1), to simulate a colony with low number of aggregates at
the beginning of the experiment.

In our investigation we considered the effects of replication rates, division biases,
and sampling rates on our ability of recover known kinetic parameter values. Figure
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2.4 shows four examples of simulated data produced by rejection sampling in the cases
of four intracellular constituents biases ρ = 0.20, 0.30, 0.40, 0.50, a replication rate of
λ = 0.70, and a sampling rate of 16 samples per hour.

(a) ρ = 0.20 (b) ρ = 0.30 (c) ρ = 0.40 (d) ρ = 0.50

Figure 2.4: Simulated Data. The simulated data was generated using a replication
rate of λ = 0.70 and four different division biases (ρ). Samples were generated per
experimental hour at a rate of 16 samples per hour. Data points outlined in red were
determined to be outliers by the IQR method. Further details are given in Section
2.4.1.

Parameter estimations are made using the likelihood formulation presented in Sec-
tion 2.3.3 with the AM algorithm outlined in Section 2.3.4. We generate simulated
data with three sampling rates: 8, 16, and 32 samples per hour, with replication rates
λ = 0.5, 0.7, 0.9 and division bias ρ = 0.2, 0.3, 0.4, 0.5, for 36 total possible combina-
tions. The sampling rates were chosen to reflect the experimental data which contain
approximately 16 samples per hour per dataset. To robustly assess the effects of
the sampling rates on our ability to recover known parameter choices, we tested our
methods on 500 generated datasets for each of the 36 sampling rate and parameter
combinations. We compute the mean parameter for each simulated dataset and sum-
marize the distribution of these estimates in the form of 95% credible intervals in
Table 2.1.

In all cases we found that we can successfully detect differences in replication
rates and asymmetric division biases. As expected, we observed that increasing the
sampling rate led to more precise parameter estimates. In the cases where we estimate
a symmetric division bias (ρ = 0.5), the credible intervals never capture this value.
That is due to the fact that we estimate ρ in the interval [0, 0.5] because of the
symmetry in our model about the point ρ = 0.5 in the interval [0, 1]. However, in
Table 2.1 we see that as we increase the sampling rate, the estimates become closer
to the true value of ρ = 0.5. In the experimental data we are interested in removing
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outliers using the inner quartile range (IQR) method [31], so we studied the effects of
removing possible “outliers” or extreme values using this method from our simulated
data to study the effects on our ability to recover the true parameter values. We found
that removing such outliers from our simulated data slightly improved our ability to
recover the true parameter values (see Supplementary Section 2.7).

θ 8 Samples/Hour 16 Samples/Hour 32 Samples/Hour
λ ρ λ ρ λ ρ λ ρ
0.5 0.2 (0.49,0.52) (0.19,0.21) (0.50,0.52) (0.19,0.20) (0.50,0.51) (0.20,0.20)

0.3 (0.49,0.53) (0.28,0.32) (0.49,0.51) (0.29,0.31) (0.50,0.51) (0.30,0.31)
0.4 (0.49,0.51) (0.38,0.42) (0.50,0.51) (0.39,0.41) (0.50,0.51) (0.39,0.41)
0.5 (0.49,0.50) (0.48,0.49) (0.50,0.50) (0.49,0.50) (0.50,0.50) (0.49,0.50)

0.7 0.2 (0.69,0.72) (0.19,0.21) (0.70,0.72) (0.19,0.21) (0.70,0.71) (0.20,0.20)
0.3 (0.69,0.73) (0.28,0.32) (0.69,0.71) (0.29,0.31) (0.69,0.71) (0.30,0.31)
0.4 (0.69,0.72) (0.38,0.42) (0.70,0.71) (0.39,0.41) (0.70,0.71) (0.39,0.41)
0.5 (0.69,0.70) (0.48,0.49) (0.70,0.70) (0.48,0.50) (0.70,0.70) (0.49,0.50)

0.9 0.2 (0.89,0.92) (0.19,0.21) (0.90,0.92) (0.19,0.21) (0.90,0.91) (0.20,0.20)
0.3 (0.89,0.93) (0.29,0.32) (0.89,0.91) (0.29,0.31) (0.90,0.91) (0.30,0.31)
0.4 (0.89,0.92) (0.39,0.42) (0.90,0.91) (0.39,0.41) (0.90,0.91) (0.39,0.41)
0.5 (0.89,0.91) (0.48,0.49) (0.90,0.90) (0.48,0.50) (0.90,0.90) (0.49,0.50)

Table 2.1: Credible Intervals (95%) for Parameter Estimates on Simulated
Data. The table summarizes the parameter inference results for twelve (λ, ρ) param-
eter pairs and three sampling rates using data simulated from the ATP model. (see
Section 2.3.1 for details).

2.4.2 Parameter Inference on Experimental Data

After verifying that our methods allows us to recover known replication rate and
division bias parameters from simulated datasets, we apply our methods to experimen-
tal data from six prion variants. We consider the aggregate replication experiments
for six Sup35 variants that misfold, aggregate, and transmit the [PSI+] phenotype:
Weak, Sc37, Strong [105], RWT∆RPR, R15, and R2E1 [76]. The experimental results
from propagon recovery assays for the six prion variants are presented in Figure 2.5.
Note that all variants exhibit heteroscedasticity in the number of aggregates in time.

We consider two models for the division of aggregates among dividing yeast cells.
First we consider the model ZS := ZS(t, a;λ, ρ = 0.5), symmetric division of aggre-
gates between dividing cells where our model collapses to the model first proposed
by proposed by [66] and we estimate the replication rate λ and fix the division bias
at ρ = 0.5. Secondly we consider the model ZA := ZA(t, a;λ, ρ), asymmetric division
of prion aggregates where we estimate both the replication rate λ and the aggregate
division bias ρ.

The general formulation of our likelihood also allows us to consider the possibility
that the start of the exponential phase of prion amplification begins at a time after
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the start of the experiment (Figure 2.5). For this, application of the AM algorithm
on the experimental data {a(ti)}mi=1 is performed by using the data where ti ≥ T∆ for
T∆ = 0, 1, 2, 3, and 4 hours into the experiment. Then we apply model selection to
determine T∆, the point of time into the experiment that best describes the beginning
of the exponential phase of aggregate replication.
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(a) R15 (b) R2E1 (c) RWT∆RPR

(d) Sc37 (e) Strong (f) Weak

Figure 2.5: Experimental Propagon Counts for Six Prion Variants. This
experimental data was obtained through propagon recovery experiments (see Section
2.2 for more details). Data points outlined in red were determined to be outliers by
the IQR method.

In Table 2.2, we present the replication rate, division bias, the start of exponential
growth phase, and the percent model weight for the model, ZA or ZS, that best
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explains each dataset. Through our analysis we found that a model which includes
the cell replication rate and asymmetric division of aggregates during cell division
(ZA), best explains the experimental propagon recovery data for all prion variants
(model weights > 99%, Table 2.2). In the case of the Weak prion variant, we found
that the dataset where outliers were kept, EWeak, with an asymmetric division model
ZA, best explained the aggregate dynamics for the Weak variant with a model weight
of 99.34%. For each variant we detected differences in the replication rates and
division bias. However, across prion variants, we detected similar division bias on the
order of ρ ≈ 0.30. For the three prion variants RWT∆RPR, Strong, and R15, we
found a delay in the start of the exponential growth phase of aggregate replication.
RWT∆RPR was found to have the largest delay (T∆ = 3 hrs) before the beginning of
the exponential growth phase, which was identified from experimental data without
the outliers identified through the IQR method. Without the work to detect T∆, we
underestimate the replication rate for this variant (see Supplemental section 2.7).

Variant Rep. Rate (λ, hr−1) Trans. Bias (ρ) T∆ %W Model
Weak 0.88(0.87,0.88) 0.27(0.26,0.27) 0* 99.34 ZA*
Sc37 0.81(0.79,0.82) 0.23(0.22,0.23) 0 100.0 ZA
RWT∆RPR 0.77(0.72,0.80) 0.31(0.29,0.33) 3 100.0 ZA
Strong 1.13(1.11,1.16) 0.36(0.34,0.38) 1 100.0 ZA
R15 1.14(1.10,1.18) 0.32(0.29,0.35) 1 100.0 ZA
R2E1 1.25(1.22,1.29) 0.29(0.26,0.33) 0 100.0 ZA

Table 2.2: Parameter Estimates and Credible Intervals (95%) for Six Prion
Variants. The column labeled T∆ indicates the point of time into the experiment
that best describes the beginning of the exponential phase of aggregate replication.
The column labeled %W presents the percent model weight for ZA, the model for
asymmetric division of aggregates. The asterisk (*) indicates the dataset not filtered
for outliers (raw data) was selected.

The parameter estimates, corrected AIC, percent model weights, and the postpro-
cessing of the Metropolis chain iterations for all the cases considered are summarized
in Supplemental Section 2.7.

2.5 Discussion and Conclusions

In this work we presented a structured population model that generalizes the
work presented in [8, 66], to study propagon replication dynamics and the bias in
their transmission among proliferating yeast cells. We developed an inverse problem
formulation that consists of an interpretable likelihood formulation descriptive of
the propagon recovery experiment. We first verified that we could recover known
propagon replication parameters from simulated data, then used our inverse problem
formulation to study propagon replication in six prion variants. Additionally, the
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likelihood formulation allowed us to consider the presence of influential outliers and
if there was a delay in observing the exponential phase of propagon replication in the
experimental data.

We were able to detect differences in propagon replication rates and bias in their
transmission during cell division among the six prion variants that we studied. We
found that the Weak prion variant had a lower replication rate and transmission bias,
λ = 0.88 and ρ = 0.27 respectively, when compared to the Strong prion variant
which had a higher replication rate and transmission bias, λ = 1.13 and ρ = 0.36
respectively. These findings are consistent with previous studies of propagon size
[138, 74], and fragmentation rates [49, 133] of Weak and Strong aggregates, where
Weak aggregates are larger and replicate at a lower rate than Strong aggregates,
thus it would be reasonable to observe a higher rate of propagon replication and
transmission bias in Strong than in Weak.

We would expect the transmission bias to be proportional to the relative volume
of the daughter cell to that of the mother and daughter volumes or ρ ≈ VD/(VM+VD).
From Table 2.3 adapted from [148], these ratios are generation dependent. However,
our estimates for the transmission biases remain close to these generational dependent
values. Therefore, it is possible that the transmission bias values we are capturing
are a combination of these generation volume proportions and diffusion effects due to
propagon aggregate size. In future models, we will need to incorporate differences in
daughter volumes to discern transmission biases from daughter cell volume size based
bias.

Generation G1 G2 G3 G4

VD/(VD + VM) 0.40 0.32 0.29 0.25

Table 2.3: Relative Volume of Daughter Cells by Generation. Where VD is
the daughter volume, VM is the mother volume, and Gi indicate a cell in the ith

generation. This table was adapted from Table 2 in [148].

To our knowledge our work is the first to use propagon amplification assays and a
structured population model (ATP model) to recover both the propagon replication
rate and the transmission bias during cell division. The work in [8] uses propagon am-
plification assays and a structured population model that assumes symmetric trans-
mission of propagon between dividing cells to determine propagon replication rates
for two yeast variants but did not directly address the asymmetric bias in propagon
transmission during cell division. Separate work presented in [26] has used curing ex-
periments, where the application of GdnHCl causes inhibition of propagon replication
and leads to elimination of the [PSI +] phenotype through dilution by cell division
and a model that captures asymmetric cell division through unequal transmission of
propagons through cell division [34], are able to recover the propagon transmission
bias, considered the probability of propagon transmission to a budding daughter cell
in their work. The curing experiment eliminates [PSI +] phenotype and as such, a
propagon replication rate cannot be computed. We note that our model can also be
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used to calculate the asymmetric transmission bias using data from curing experi-
ments by setting the replication rate equal to zero (λ = 0). The number of propagon
will decrease through asymmetric transmission of aggregates between dividing cells.

In this work we detail the importance of the propagon replication rate λ, the asym-
metric propagon transmission bias ρ and detection of a delay T∆, before observing
the exponential growth phase of prion replication, to explain prion replication in a
proliferating yeast cell colony. In future work we intend to build on this framework by
incorporating cell maturation, a state during which cells can grow but cannot divide
until they are fully mature. We have made an effort to be clear about the difference
between asymmetric cell division and asymmetric transmission of intracellular con-
stituents, but in future models we plan to incorporate cell volume into our models, so
that we can distinguish between effects due to volume and those due to transmission
bias. Also, in this work our intracellular aggregate replication model assumed expo-
nential growth because a clear steady state, or carrying capacity, was not observed
in the experimental data, but perhaps by running the propagon amplification assays
over a longer period of time we would begin to observe such a steady state. This
would require the application of a more complex intracellular model to capture such
a carrying capacity and would require methods such as those presented in [120] to nu-
merically solve such a propagon replication model. As previously mentioned, another
possible application with our modeling framework that we have not yet considered is
the possibility of its application to study curing experiments.
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2.7 Supplemental Materials

2.7.1 Recursive Property to Corollary 1

We show that the recursive property of Eq. 2.13, in Theorem 1 re-stated below in
an equivalent form

yi+1(t, a) =
1

2

(
ρ−1

1 yi(t, ρ
−1
1 a) + ρ−1

2 yi(t, ρ
−1
2 a)

)
, (2.23)

is satisfied by the solution
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k−iρ2

−k exp(−λt)Υ
(
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k−iρ2

−ka exp(−λt)
)
,

in Corollary 1. That is, we show that the left hand side (LHS) of Eq. (2.23) is equal
to the right hand side (RHS) of Eq. (2.23) with our solution. First we replace yi(t, a)
in the RHS of the recursive equation with the solution from Corollary 1, resulting in
(s1). We write out the first term (k = 0) from the first sum and the last term (k = i)
in the second sum. The second sum is re-indexed with k := k − 1 and we combine
the two sums, resulting in (s2). Using Pascal’s rule(
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)
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=
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)
,
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the equivalent expressions
(
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)
and
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i
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)
=
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)
, results in (s3). The three terms

can now be written as one sum (s4) which is the LHS of Eq. (2.23), or yi+1(t, a).
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= yi+1(t, a),

= LHS.

2.7.2 Adaptive Metropolis

In our application of Adaptive Metropolis (AM) detailed in Section 2.3.4, on
experimental data discussed in Section 2.4, we performed 2 × 106 iterations with
k = 1500 non-adaptive steps with the asymmetric cell division model ZA(t, a;λ, ρ) and
the symmetric cell division model ZS(t, a;λ, ρ = 0.5). Figures 2.6 and 2.7 illustrate
the chain iterations for the models and datasets selected after our model selection
procedure. The appearance of increasing variance in the posterior estimates, as the
number of iterations increases, is an artifact from plotting the AM algorithm chain
iterations on a logscale. To reduce the correlation among the AM estimates, estimates
after the burn-in period and after thinning at regular intervals of 50 iterations are
used in our work. In this work we use the integrated autocorrelation time (iac) as
a measure of autocorrelation across the autocorrelation function (ACF) [117]. Note
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that there are no chain iteration and autocorrelation function figures for the division
bias (ρ) under the model ZS(t, a;λ, ρ = 0.5) because in these cases the division bias
parameter is fixed at ρ = 0.5 (symmetric cell division).

(a) Weak Replication Rate (b) Sc37 Replication Rate

(c) RWT∆RPR Replication Rate (d) Strong

(e) R15 (f) R2E1

Figure 2.6: Adaptive Metropolis Chain Iterations: Replication Rate. The
non-adaptive and adaptive steps are displayed and the burn-in period is highlighted
in red. The iac for each chain is presented for both before thinning and dropping the
burn-in period (iacpre) and after dropping the burn-in period and thinning (iacthin).
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(a) Weak (b) Sc37

(c) RWT∆RPR (d) Strong

(e) R15 (f) R2E1

Figure 2.7: Adaptive Metropolis Chain Iterations: Transmission Bias. The
non-adaptive and adaptive steps are displayed and the burn-in period is highlighted
in red. The iac for each chain is presented for both before thinning and dropping the
burn-in period (iacpre) and after dropping the burn-in period and thinning (iacthin).

2.7.2.1 Parameter Estimates: Raw Data

Prion Variant
T∆ = 0 T∆ = 1 T∆ = 2 T∆ = 3 T∆ = 4
ZS ZA ZS ZA ZS ZA ZS ZA ZS ZA

Weak 0.71 0.88 0.56 0.62 0.68 0.81 0.58 0.72 0.44 0.51
Sc37 0.48 0.51 0.55 0.59 0.62 0.63 0.81 0.91 0.81 1.11
RWT∆RPR 0.77 0.80 0.96 0.99 1.08 1.43 0.58 0.62 0.96 0.92
Strong 0.78 0.86 1.09 1.17 1.19 1.33 0.93 1.06 0.85 1.06
R15 0.79 0.84 1.13 1.20 1.17 1.39 0.99 1.12 0.83 0.85
R2E1 1.23 1.26 1.79 2.01 0.92 1.17 0.38 0.53 0.62 0.54

Table 2.4: Replication Rate (λ) by T∆: Raw Data.
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Prion Variant
T∆ = 0 T∆ = 1 T∆ = 2 T∆ = 3 T∆ = 4
ZS ZA ZS ZA ZS ZA ZS ZA ZS ZA

Weak 0.50 0.27 0.50 0.33 0.50 0.32 0.50 0.27 0.50 0.29
Sc37 0.50 0.28 0.50 0.29 0.50 0.26 0.50 0.25 0.50 0.25
RWT∆RPR 0.50 0.36 0.50 0.37 0.50 0.23 0.50 0.28 0.50 0.30
Strong 0.50 0.31 0.50 0.35 0.50 0.32 0.50 0.32 0.50 0.33
R15 0.50 0.30 0.50 0.31 0.50 0.29 0.50 0.33 0.50 0.31
R2E1 0.50 0.27 0.50 0.19 0.50 0.29 0.50 0.33 0.50 0.37

Table 2.5: Division Bias (ρ) by T∆: Raw Data.

2.7.2.2 Parameter Estimates: Data Filtered for Outliers

Prion Variant
T∆ = 0 T∆ = 1 T∆ = 2 T∆ = 3 T∆ = 4
ZS ZA ZS ZA ZS ZA ZS ZA ZS ZA

Weak 0.71 0.89 0.56 0.62 0.68 0.81 0.58 0.72 0.45 0.51
Sc37 0.65 0.81 0.46 0.55 0.51 0.59 0.67 0.90 0.51 0.63
RWT∆RPR 0.82 0.82 0.89 0.87 0.91 0.86 0.80 0.77 1.06 1.07
Strong 0.78 0.86 1.08 1.13 1.29 1.43 0.73 0.80 0.94 1.12
R15 0.81 0.84 1.09 1.14 1.10 1.19 1.04 1.18 0.83 0.85
R2E1 1.21 1.25 1.73 2.02 0.79 0.87 0.52 0.66 0.71 0.77

Table 2.6: Replication Rate (λ) by T∆: Data Filtered for Outliers.

Prion Variant
T∆ = 0 T∆ = 1 T∆ = 2 T∆ = 3 T∆ = 4
ZS ZA ZS ZA ZS ZA ZS ZA ZS ZA

Weak 0.50 0.28 0.50 0.33 0.50 0.32 0.50 0.27 0.50 0.29
Sc37 0.50 0.23 0.50 0.30 0.50 0.26 0.50 0.26 0.50 0.33
RWT∆RPR 0.50 0.43 0.50 0.40 0.50 0.32 0.50 0.31 0.50 0.32
Strong 0.50 0.32 0.50 0.36 0.50 0.30 0.50 0.33 0.50 0.31
R15 0.50 0.31 0.50 0.32 0.50 0.31 0.50 0.32 0.50 0.31
R2E1 0.50 0.29 0.50 0.19 0.50 0.33 0.50 0.36 0.50 0.42

Table 2.7: Division Bias (ρ) by T∆: Data Filtered for Outliers.
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2.7.2.3 Parameter Estimates of Simulated Data Filtered for Outliers

θ 8 Samples/Hour 16 Samples/Hour 32 Samples/Hour

λ ρ λ ρ λ ρ λ ρ

0.5 0.2 (0.49,0.52) (0.19,0.21) (0.49,0.52) (0.19,0.21) (0.50,0.51) (0.19,0.20)
0.3 (0.49,0.52) (0.29,0.32) (0.49,0.51) (0.29,0.31) (0.49,0.51) (0.30,0.31)
0.4 (0.49,0.52) (0.38,0.42) (0.49,0.51) (0.39,0.41) (0.50,0.51) (0.39,0.41)
0.5 (0.49,0.50) (0.48,0.49) (0.50,0.50) (0.49,0.50) (0.50,0.50) (0.49,0.50)

0.7 0.2 (0.69,0.72) (0.19,0.21) (0.69,0.72) (0.19,0.21) (0.70,0.71) (0.19,0.20)
0.3 (0.69,0.72) (0.28,0.32) (0.69,0.71) (0.29,0.31) (0.69,0.70) (0.30,0.31)
0.4 (0.69,0.71) (0.38,0.42) (0.69,0.71) (0.39,0.41) (0.70,0.71) (0.39,0.41)
0.5 (0.69,0.70) (0.48,0.49) (0.70,0.70) (0.48,0.50) (0.70,0.70) (0.49,0.50)

0.9 0.2 (0.89,0.92) (0.19,0.21) (0.89,0.92) (0.19,0.21) (0.90,0.91) (0.19,0.20)
0.3 (0.88,0.92) (0.29,0.32) (0.89,0.91) (0.29,0.31) (0.89,0.90) (0.30,0.31)
0.4 (0.89,0.91) (0.39,0.42) (0.89,0.91) (0.39,0.41) (0.90,0.91) (0.39,0.41)
0.5 (0.89,0.90) (0.48,0.49) (0.90,0.90) (0.49,0.50) (0.90,0.90) (0.49,0.50)

Table 2.8: Credible Intervals (95%) for Parameter Estimates of Simulated
Data: Filtered for Outliers. The table summarizes the parameter inference results
for twelve (λ, ρ) parameter pairs and three sampling rates using data simulated from
the ATP model (see Section 2.3.1 for details).

2.7.3 Model Weights

Tables 2.9 and 2.10 present the model weights for every model and dataset combi-
nation using the formulation presented in Section 2.3.3. Note that the model weights
for each row and across both tables sum to 100%.

Prion Variant
T∆ = 0 T∆ = 1 T∆ = 2 T∆ = 3 T∆ = 4
ZS ZA ZS ZA ZS ZA ZS ZA ZS ZA

Weak (1/2) 0.00 99.3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Sc37 (1/2) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

RWT∆RPR (1/2) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Strong (1/2) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

R15 (1/2) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

R2E1 (1/2) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 2.9: Percent Model Weights by T∆: Raw Data.



35

Prion Variant
T∆ = 0 T∆ = 1 T∆ = 2 T∆ = 3 T∆ = 4
ZS ZA ZS ZA ZS ZA ZS ZA ZS ZA

Weak (2/2) 0.00 0.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Sc37 (2/2) 0.00 100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

RWT∆RPR (2/2) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100 0.00 0.00

Strong (2/2) 0.00 0.00 0.00 100 0.00 0.00 0.00 0.00 0.00 0.00

R15 (2/2) 0.00 0.00 0.00 100 0.00 0.00 0.00 0.00 0.00 0.00

R2E1 (2/2) 0.00 100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 2.10: Percent Model Weights by T∆:Data Filtered for Outliers.
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Numerical Approaches to Division
and Label Structured Population
Models

This chapter originally published as, “Santiago, F., Sindi, S., Flores, K. (2020).
Numerical Approaches to Division and Label Structured Population Models. Let-
ters in Biomathematics, 7(1), 153-170.” Reprinted in accordance with the Cre-
ative Commons Attribution 4.0 International License (http://creativecommons.
org/licenses/by/4.0/) with minor changes.

3.1 Introduction

Division and label structured population models have recently been investigated
in the context of cell proliferation assays. These assays yield insight into the role of
cell cycle dynamics [127] and intercellular heterogeneity [57] to the overall growth of a
population of cells. A widely used proliferation assay, developed by Lyons and Parish
[87], uses the intracellular dye carboxyfluorescein succinimidyl ester (CFSE). CFSE is
nonradioactive and enables a durable and sufficiently uniform labeling of a population
of cells without adverse effects on proliferation and death. Label structured popula-
tion models are an ideal tool for understanding these type of data because the CFSE
dye is modeled as a label that is approximately partitioned into two equal halves when
cells divide into two daughter cells. Flow cytometry can be used to rapidly measure
CFSE fluorescence intensity for each cell in a population [87, 86, 103, 116, 141, 146],
resulting in a population histogram. Peaks in the histogram are typically interpreted
to represent a separate generation of cells, i.e., the number of times a subpopulation
of cells has divided.

Prior to the application of division and structured population models to CFSE
data [11, 9, 84, 85], the number of cells in each generation was approximated using
simple binning or deconvolution techniques [45, 46, 47, 55, 56]. CFSE labeling has
been used to study immune system dynamics through monitoring lymphocytes pro-
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liferation [87], and is also able to track the proliferation behavior of specific types
of lymphocytes through the use of fluorescent antibodies with specificity to markers
on the lymphocyte cell surface [86]. The typical response of various cell populations
within the immune system is to clonally expand when presented with foreign antigens.
Thus, being able to more accurately quantify these responses, e.g., by estimating rates
of activation, proliferation, and death through coupling structured population models
with data, will lead to a more complete characterization of how various diseases and
stimuli affect the immune system. With increasing advances in the ability to quantify
the contents in single-cells [91], such structured population models will become more
applicable.

Previous efforts to fit CFSE label decay experimental data with division and la-
bel structured population models used a least squares inverse problem framework
[84, 85, 11, 9]. The inverse problem formulation typically involves estimating pa-
rameters by minimizing a least squares cost function that measures the discrepancy
between a solution of the PDE system at a set of parameter values and the histogram
data from flow cytometry. Optimization routines that have been used to solve the in-
verse problem with flow cytometry data include derivative free methods [85], such as
the Nelder-Mead simplex based method, and gradient based methods relying on the
computation of a local gradient of the cost function [12]. Both of these optimization
methods use an iterative scheme requiring thousands of simulations of the forward
solution of the label structured PDE system at different parameter values. In the
case where division structure is modeled with separate compartments, i.e., one per
cell division cycle, the computational requirements are exacerbated since one needs
to solve a large system (>10) of coupled PDEs. Under simplifying assumptions on
the form of the CFSE label decay rate, such as decay that is directly proportional to
the amount of intracellular label, analytical solutions to the PDEs can be obtained
through the method of characteristics. The main drawbacks to these assumptions
are that the resulting decay rate functional forms may not accurately explain the
data and that they do not extend to other scenarios involving the measurement of
an intracellular label such as protein production [24, 54] or prion aggregate amplifi-
cation [8]. Thus, more efficient numerical methods are needed to enable validation of
division and labeled structured population models from data across a broader range
of assumptions describing the rate of change of the intracellular label.

In this work, we develop a novel numerical and theoretical framework for a class
of division and label structured population models. We develop our framework in the
more general context of population of dividing cells that is structured by the concen-
tration of a single intracellular species evolving under its own dynamics (rather than
a decaying label). In Section 3.2, we derive a recursive relation allowing the density
of the (i+1)-generation to be solved in terms of the i-th generation. In Section 3.3 we
apply our recursive formulation to three common models for intracellular dynamics.
In Section 3.3.3.2 we demonstrate that our recursive framework facilitates rapid and
accurate numerical solutions through recursive numerical integration. In Section 3.4
we summarize our findings and discuss their implications in the context of parameter
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inference and uncertainty quantification.

3.2 Division and Label Structured Population

We seek to model the concentration of a single intercellular constituent in a pop-
ulation of actively dividing cells. Let a(t) be the concentration of an intracellular
species in a cell t hours after the start of an experiment. In the absence of division,
the intracellular dynamics are governed by the following ordinary differential equation

da

dt
= η(a;θ), (3.1)

where η is assumed to be a known smooth function of possibly unknown parameters
θ. When cells divide, the intracellular constituent is divided between daughter cells.
Let Yi(t, a) represents the constituent density of cells that have undergone i cell
divisions since the beginning of the experiment. The dynamics of each generation in
the dividing cellular population evolves according to the following system of coupled
partial differential equations:

∂

∂t
Y0(t, a) +

∂

∂a
(η(a;θ)Y0(t, a)) = −(α0(t) + β0(t))Y0(t, a),

∂

∂t
Y1(t, a) +

∂

∂a
(η(a;θ)Y1(t, a)) = −(α1(t) + β1(t))Y1(t, a) + 2γα0(t)Y0(t, γa),

...

∂

∂t
YM (t, a) +

∂

∂a
(η(a;θ)YM (t, a)) = −(αM (t) + βM (t))YM (t, a) + 2γαi−1(t)Yi−1(t, γa),

(3.2)

where αi(t) and βi(t) represent the division and death rates respectively. As men-
tioned above i represents the number of divisions since the beginning of the experi-
ment (not the generational age) and so our problem formulation includes the following
initial conditions:

Y0(0, a) = Υ(a), and Yi(0, a) = 0 for i ≥ 1. (3.3)

Where Υ(a) is the initial constituent density of cells at the start of an experiment.
Following previous convention we refer to this system as the Division and Label
Structured Population Model (DLSPM).

In this study, we derive solutions to the DLSPM (Eqs. (3.2) & (3.3)) through
recursive integration of the previous generation. The decomposition approach for
finding solutions to Yi(t, a) in terms of Υ(a), used in Theorem 2.1 of [10] and first
presented in [66], is valid only for functions of the form η(a;θ) = v(t;θ)a. Theorem 2
stated below is valid for a broader set of flux functions, namely those which allow for
solution via the method of characteristics, and whose characteristics are invertible.
This includes the flux functions considered by [66].



39

Theorem 2. The solution of the system defined by Eq. (3.2) with initial conditions
in Eq. (3.3), is given by an analytic solution and a recursive integral equation:

Y0(t, a) = Υ(s(t, a))µ0(t, s(t, a))−1, and

Yi(t, a) =
2γαi−1(t)

µi(t, s(t, a))

∫ t

0

µi(τ, s(t, a))Yi−1(τ, γa(τ, s(t, a)))dτ, for 1 ≤ i ≤M,
(3.4)

in which:

1. s(t, a) comes from solving the characteristic equation:

da

dt
= η(a;θ), (3.5)

with the parametric initial condition a(0, s) = s, and

2. µi(t, s) is an integration factor of the form:

µi(t, s) = exp

(∫ t

0

αi(τ) + βi(τ) +
dη(a;θ)

da

∣∣∣
a=a(τ,s)

dτ

)
. (3.6)

Before presenting the proof of Theorem 2 we offer two comments on its use. First, we
note it is possible to write Yi(t, a) as an explicit high dimensional integral equation
of Υ; however, because the notation is cumbersome we omit it from the presentation.
Second, the integral form of the solution requires being able to explicitly solve for
and invert the characteristic Eq. (3.1).

Proof. To determine the solution of the linear system defined by Eq. (3.2) with initial
conditions, Eq. (3.3), we solve these using the method of characteristics following
[108]. For the initial generation Y0(t, a), we solve the characteristic equations

da

dt
= η(a;θ), and

dY0

dt
+

(
α0(t) + β0(t) +

dη(a;θ)

da

)
Y0 = 0, (3.7)

with parametric initial conditions a(0, s) = s, and Y0(0, s) = Υ(s) respectively. Note
that solution to the second characteristic equation can be written using an integrat-
ing factor. Then combining the solutions to the ODEs (Eqs. (3.7)) and the initial
conditions, the solution to the initial generation Y0(t, a), is given by

Y0(t, a) = µ0(t, s(t, a))−1Υ(s(t, a)),

where

µ0(t, s) = exp

(∫ t

0

α0(τ) + β0(τ) +
dη(a;θ)

da

∣∣∣
a=a(τ,s)

dτ

)
.

For generations 1 ≤ i ≤M , we solve the characteristic equations

da

dt
= η(a;θ), and

dYi
dt

+

(
αi(t) + βi(t) +

dη(a;θ)

da

)
Yi = 2γαi−1(t)Yi−1(t, γa(t, s)),

(3.8)
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with parametric initial conditions a(0, s) = s, and Yi(0, s) = 0. Solving the second
equation using an integrating factor, and using the solution on the first equation in
the system of ODEs (Eqs. (3.8)), the solution to the ith generation Yi(t, a), is given
by

Yi(t, a) =
2γαi−1(t)

µi(t, s(t, a))

∫ t

0

µi(τ, s(t, a))Yi−1(τ, γa(τ, s(t, a)))dτ, (3.9)

where

µi(t, s) = exp

(∫ t

0

αi(τ) + βi(τ) +
dη(a;θ)

da

∣∣∣
a=a(τ,s)

dτ

)
.

3.3 Analytic and Numerical Solutions

In this section we apply Theorem 2 to three biologically relevant intracellular
models: (1) linear growth, (2) constant growth and linear decay, and (3) logistic
growth. In each case, we first derive the problem specific recursive integral formula-
tion and then compare the stability of numerical solutions using recursive numerical
integration (RNI) [4] to the explicit Lax-Wendroff (LxW) method [123], a standard
numerical approach for hyperbolic PDEs.

Theorem 2 gives an analytic solution for the initial generation, however iterative
substitution of previous generations to determine the following generation in the
recursive formulation leads to high dimensional integral solutions that need to be
numerically estimated, which requires high computational overhead. The application
of RNI takes advantage of the recursive formulation in Theorem 2 and allows for
numerical estimations of the structured population density by recursively iterating
through previous generations until the initial generation (analytic solution) is reached.
In what follows, we compare our numerical solutions for both each generation Yi(t, a)
and, when informative, the “total population” which we define as the sum of densities
up to some generation M :

ZM(t, a) =
M∑
i=0

Yi(t, a). (3.10)

Note that Theorem 2 combined with RNI leads to a meshfree method that allows
for the evaluation of each generation at a single point in terms of intracellular con-
stituent level and time (t, a), which is not possible with methods, such as LxW, that
require a spatial grid.

In this implementation of RNI, Guass-Legendre quadrature [139] is applied for
solving the integral equations. In order to compare RNI to LxW numerical solutions,
the number of Gauss-Legendre quadrature points were determined systematically
as we detail in the Supplemental Information (Section 3.5). Briefly, the number of
quadrature points were increased until the addition of a new quadrature point did not
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lead to an appreciable change in the solution. Also, the same number of quadrature
points were used for integration at every level of recursion.

Intriguingly, for our third example the number of quadrature points needed per
generation decreased while for our second example the number of points increased.
Therefore, in this work, RNI outperformed LxW with intracellular dynamic models
with a linear and logistic growth flux terms, but not in the case of a flux that con-
sisted of constant synthesis and linear degradation (Table 3.1). Because of this, we
conjecture that using Theorem 2 and RNI will outperform LxW in terms of accuracy
and speed when the flux term, Eq. (3.1), does not have a constant non-zero additive
or degradation term.

Flux Term
Average Runtime (s)

LxW1 LxW2 RNI Exact
Linear Growth 11.1620 870.7137 0.3205 0.0559

Constant Growth and Linear Decay 0.09089 7.0570 180.6480 -
Logistic 0.4466 31.9893 0.2792 -

Table 3.1: Average runtimes. Average runtimes for numerical solutions, and evalu-
ation time of the analytic solution with a linear growth, using two numerical methods
Lax-Wendroff (LxW) and Recursive Numerical Integration (RNI), for three different
flux terms: Linear Growth (Section 3.3.1), Constant Growth with Linear Decay (Sec-
tion 3.3.2), and Logistic Growth (Section 3.3.3). These averages were computed over
four different model evaluation times T = 1, 2, 3, and 4 hours.

3.3.1 Linear Growth

We first consider linear growth of an intracellular constituent:

η(a;θ) = v(t;θ)a. (3.11)

In this case, an analytic solution is known from the decomposition method first pre-
sented in [66]. We recover the same solution in our recursive integral formulation and
use the analytic solution to compare to our numerical solutions with RNI and LxW.

3.3.1.1 Recursive Integral Formulation

We present the general solution to Eq. (3.2) with initial conditions stated in
Eq. (3.3) and η(a;θ) as in Eq. (3.11). To apply Theorem 2 we solve the following
equation

da

dt
= v(t;θ)a, (3.12)

with the parametric initial condition a(0, s) = s.
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This yields a(t, s) = s exp
(∫ t

0
v(t;θ)dt

)
, and s(t, a) = a exp

(
−
∫ t

0
v(t;θ)dt

)
. We

then solve

µi(t, s) = exp

(∫ t

0

αi(τ) + βi(τ) +
dη(a;θ)

da

∣∣∣
a=a(τ,s)

dτ

)
.

This is simply µi(t, s) = exp
(∫ t

0
αi(τ) + βi(τ) + v(τ ;θ)dτ

)
. Then the analytic solu-

tion to the initial generation, Y0(t, a), is

Y0(t, a) = µ0(t, s(t, a))−1Υ

(
a exp

(
−
∫ t

0

v(τ ;θ)dτ

))
. (3.13)

Then from Theorem 2, we have that Yi(t, a) is given by

Yi(t, a) =
2γαi−1(t)

µi(t, s(t, a))

∫ t

0

µi(τ, s(t, a))Yi−1(τ, γa(τ, s(t, a)))dτ. (3.14)

For simplicity we consider constant cell division and constant cell death rates, αi(t) =
α and βi(t) = β, where α, β ≥ 0, for 0 ≤ i ≤ M , and we have µi(t, s) = µ(t, s) =

exp((α + β)t) exp
(∫ t

0
v(τ ;θ)dτ

)
. We drop the subscript notation because there is

no longer a dependence on the generation i. We can then write the initial solu-

tion Y0(t, a) = µ(t, s(t, a))−1Υ
(
a exp

(
−
∫ t

0
v(τ ;θ)dτ

))
. Now we can write the first

generation as

Y1(t, a) =
2γα

µ(t, s(t, a))

∫ t

0

µ(τ, s(t, a))Y0(τ, γa(τ, s(t, a)))dτ.

When we substitute Y0(t, a) we see that

Y1(t, a) =
2γα

µ(t, s(t, a))

∫ t

0

Υ(γs(t, a))dτ =
2γαt

µ(t, s(t, a))
Υ(γs(t, a)),

where the integrand term Υ(γs(t, a)) does not depend on τ so we can perform the
integration. Further replacement of the terms s(t, a), and µ(t, a), we have an analytic
solution for the first generation

Y1(t, a) = 2γαt exp(−(α+β)t) exp

(
−
∫ t

0

v(τ ;θ)dτ

)
Υ

(
γa exp

(
−
∫ t

0

v(τ ;θ)dτ

))
.

(3.15)
Continuing iteratively by substitution of the previous solution in the recursive integral
form of Eq. (3.14) to determine the following generation we find that

Yi(t, a) =
(2γαt)i

i! exp((α + β)t)
exp

(
−
∫ t

0

v(τ ;θ)dτ

)
Υ

(
γia exp

(
−
∫ t

0

v(τ ;θ)dτ

))
,

(3.16)
for 1 ≤ i ≤M. As expected we have reproduced the solution to this problem presented
in [66]. Note that in this case, iterative substitutions of previous generations to
compute the following generations leads to an explicit analytic solution and not high
dimensional integral equations as we will see in Sections 3.3.2 and 3.3.3 with different
intracellular dynamics models.
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3.3.1.2 Numerical Solution

Numerically solving the DLSPM with a linear flux (Eq. (3.11)) requires specify-
ing several parameters in our model. For these numerical experiments we assumed
that there is no cell death (βi(t) = 0) and a time-independent rate of cell division
(αi(t) = log(2)/1.5). We solved the DLSPM up to generation M = 7 on spatial
grids of intracellular constituents that range from zero to one-hundred (a ∈ [0, 100]).
The spatial discretizations for Lax-Wendroff for comparison with RNI are ∆a = 0.1
(LxW1) and ∆a = 0.01 (LxW2). Recursive numerical integration is applied on the
same intracellular constituent values as LxW1. For simplicity, we consider a flux term
that is linear in intracellular concentration η(a;λ) = λa with λ = 1.5. The number
of initial cells was set equal to 1 and the initial intracellular density, Υ(a), was set to
a normal distribution with mean 1 and variance 0.1.

For the LxW method, the CFL condition for stability that requires that ∆t <
∆a

(M+1)·max
a {λa}

= ∆a
(M+1)λamax

. Here amax is the largest concentration of intracellular con-

stituent considered in the spatial discretization. The number of quadrature points
used in our implementation of RNI and our systematic way of determining them are
presented in the Supplemental Information (Section 3.5). In this case, at most four
quadrature points were applied in this implementation of RNI.

We now compare numerical solutions with RNI using Theorem 2 and the appli-
cation of LxW on the original DLSPM, Eq. (3.2), to the known analytic solution to
this system. As shown in Figures 3.1 and 3.2, using Theorem 2 and RNI leads greater
accuracy than a LxW method at equal mesh size with a significantly faster runtime.
Figure 3.2 and Table 3.2 show that RNI and the exact model evaluation significantly
outperform both applications of LxW in terms of runtime.
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(a) T = 1 hour of experimental time. (b) T = 2 hour of experimental time.

(c) T = 3 hours of experimental time. (d) T = 4 hours of experimental time.

Figure 3.1: Numerical Solutions Linear Growth: Separate Generations. We
compare numerical solutions (RNI, LxW) of the DLSPM, (Eqs. (3.2)-(3.3)) with
Linear Flux Term (Eq. (3.12)) to the exact solution. (Top) We separately plot each
generation at different points in time T = 1, 2, 3, and 4 hours. For the LxW method
we used a uniform mesh with ∆a = 0.1 (LxW1) and a = 0.01 (LxW2), and ∆a = 0.01
for the RNI method. (Bottom): The error between the exact solution and each of the
two numerical methods LxW and RNI. (See Section 3.3.1 for further details).



45

Figure 3.2: Numerical Runtimes Linear Growth. Comparison of runtimes for
numerical solutions (LxW and RNI) and the exact solution [66] for the DLSPM
(Eqs. (3.2)-(3.3)) with a linear flux term (Eq. (3.11)) at four different model evaluation
times T = 1, 2, 3, and 4 hours.

Method
Runtime (s)

T = 1 T = 2 T = 3 T = 4
LxW1 5.528 8.812 13.17 17.14
LxW2 350.6 706.6 1043.0 1383.0
RNI 0.3545 0.3636 0.2853 0.2784

Exact 0.07435 0.0435 0.04969 0.05625

Table 3.2: Numerical Runtimes Linear Growth. Runtimes for numerical solu-
tions, and evaluation time of the analytic solution for the DLSPM, (Eqs. (3.2)-(3.3))
with a linear flux term (Eq. (3.11)) at four different model evaluation times T = 1, 2, 3,
and 4 hours.

3.3.2 Constant Synthesis and Linear Degradation

Now we consider solutions to Eq. (3.2) with initial conditions from Eq. (3.3) and
a constant synthesis and linear degradation model

η(a;θ) = λ− δa. (3.17)

Flux functions of this form have been previously used in modeling cellular populations
[54]. In this case the DLSPM, Eq. (3.2), no longer admits analytic solutions.

3.3.2.1 Recursive Integral Formulation

Applying Theorem 2, we first solve the characteristic equation

da

dt
= λ− δa, (3.18)
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with the parametric initial condition a(0, s) = s. Using an integrating factor, Eq. (3.18)
has solutions

a(t, s) =
λ

δ
+ exp(−δt)

(
s− λ

δ

)
, and s(t, a) =

λ

δ
+ exp(δt)

(
a− λ

δ

)
.

Then we solve

µi(t, s) = exp

(∫ t

0

αi(τ) + βi(τ) +
dη(a;θ)

da

∣∣∣
a=a(τ,s)

dτ

)
.

This is simply µi(t, s) = exp
(∫ t

0
αi(τ) + βi(τ)− δdτ

)
. The dynamics of the initial

generation are then given by the equation

Y0(t, a) = µ0(t, s(t, a))−1Υ

(
λ

δ
+ exp(δt)

(
a− λ

δ

))
. (3.19)

Continuing with Theorem 2, Yi(t, a) is then given by the recursive equation

Yi(t, a) =
2γαi−1(t)

µi(t, s(t, a))

∫ t

0

µi(τ, s(t, a))Yi−1(τ, γa(τ, s(t, a)))dτ, (3.20)

for i > 0. Thus, the first generation dynamics are given by the equation

Y1(t, a) =
2γα1(t)

exp
(∫ t

0
α1(τ) + β1(τ)− δdτ

)×
∫ t

0

exp

(∫ t

0

α1(τ) + β1(τ)− δdτ
)
Y0(τ, γa(τ, s(t, a)))dτ.

(3.21)

Here, substitution of the term γa(τ, s(t, a)) in Y0(t, a) for a leads to an integral form
where the existence of an analytic solution to the integral in τ depends on the form of
the initial distribution Υ. Therefore, continuing inductively to determine solutions for
Yi(t, a) leads to high dimensional integral equations whose dimensionality (number of
nested integrals) scales with the generation (i). The formulation in Eq. (3.20) allows
for the estimate of Yi(t, a) for a particular value of intracellular constituents (a) at
any time (t), without explicit knowledge of Yi−1(t, a).

3.3.2.2 Numerical Solutions

As in the linear flux case, we specify parameter values used to numerically solve
our model. It is assumed that there is no cell death (βi(t) = 0) and a time-independent
rate of cell division (αi(t) = log(2)/1.5). The flux term parameter values used are
λ = 1.5, and δ = 20

1.5
. We solved our system up to the seventh generation, M = 7. We

set initial intracellular density Υ(a) to follow a normal distribution with mean 10, a
variance 1, and we begin with 10 cells in the initial population.



47

We compare solutions with RNI using Theorem 2 to application of LxW on the
original DLSPM, Equation (3.2). The CFL condition for stability of the LxW method
requires that our timestep be ∆t < ∆a

(M+1)·max
a {λ−δa}

= ∆a
(M+1)λ

. The spatial discretiza-

tions for Lax-Wendroff for comparison with RNI are ∆a = 0.1 (LxW1) and ∆a = 0.01
(LxW2). The number of quadrature points used in our implementation of RNI and our
systematic way of determining them are presented in the Supplemental Information
(Section 3.5). Recursive numerical integration is applied on the same intracellular
constituent values as LxW1.

We show our numerical solutions in two contexts, first as each generation sep-
arately plotted (Figure 3.3) and then as the sum over all generations (Figure 3.4),
which is consistent with what would be obtained with an experimental assay. While
we can no longer compare with an exact solution, we see that RNI achieves results
comparable to a higher order LxW method at the cost of longer runtimes than both
LxW implementations. These longer runtimes for RNI are due to an increasing trend
in necessary quadrature points as we estimate later generations, see Supplemental In-
formation. We hypothesize that this increase in quadrature points is necessary due to
the constant synthesis term in Eq. (3.17), which adds to the recursive computational
complexity of the problem.
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(a) T = 1 hour of experimental time. (b) T = 2 hours of experimental time.

(c) T = 3 hours of experimental time. (d) T = 4 hour of experimental time.

Figure 3.3: Numerical Solutions Constant Growth and Linear Decay: Sep-
arate Generations. We compare numerical solutions (RNI, LxW) of the DLSPM,
(Eqs. (3.2)-(3.3)) with Flux Term (Eq. (3.17)). (Top) We separately plot each gen-
eration at different points in time T = 1, 2, 3, and 4 hours. For the LxW method we
used a uniform mesh with ∆a = 0.1 (LxW1) and a = 0.01 (LxW2), and ∆a = 0.01
for the RNI method. (Bottom) The error between the RNI and LxW solutions. (See
Section 3.3.2 for further details).
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(a) T = 1 hour of experimental time. (b) T = 2 hours of experimental time.

(c) T = 3 hours of experimental time. (d) T = 4 hour of experimental time.

Figure 3.4: Numerical Solutions Constant Growth and Linear Decay: To-
tal Population. We compare numerical solutions (RNI, LxW) of the DLSPM,
(Eqs. (3.2)-(3.3)) with Flux Term (Eq. (3.17)). (Top) We plot the sum of all gener-
ations at different points in time T = 1, 2, 3, and 4 hours. For the LxW method we
used a uniform mesh with ∆a = 0.1 (LxW1) and a = 0.01 (LxW2), and ∆a = 0.01
for the RNI method. (Bottom) The error between the RNI and LxW solutions. (See
Section 3.3.2 for further details).
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Figure 3.5: Numerical Runtimes Constant Growth and Linear Decay.
Comparison of runtimes for numerical solutions (LxW and RNI) for the DLSPM
(Eqs. (3.2)-(3.3)) with constant growth and linear decay (Eq. (3.17)) at four different
model evaluation times T = 1, 2, 3, and 4 hours.

Method
Runtime (s)

T = 1 T = 2 T = 3 T = 4
LxW1 0.04184 0.07266 0.1037 0.1451
LxW2 2.926 5.497 8.533 11.27
RNI 106.1 109.3 252.6 254.6

Table 3.3: Numerical Runtimes Constant Growth and Linear Decay.
Comparison of runtimes for numerical solutions (LxW and RNI) for the DLSPM
(Eqs. (3.2)-(3.3)) with constant growth and linear decay (Eq. (3.17)) at four different
model evaluation times T = 1, 2, 3, and 4 hours.

3.3.3 Logistic Growth

Finally, we consider solutions to Eq. (3.2) with initial conditions from Eq. (3.3)
with intracellular dynamics driven by logistic growth

η(a;λ,K) = λa
(

1− a

K

)
. (3.22)

The logistic equation is a standard model in mathematical biology and considers
growth within a resource limited environment [51, 121]. It is characterized by two pa-
rameters λ, the maximum growth rate, and K, the maximum possible concentration.
As in our previous example, Eq. (3.2) does not admit analytic solutions. Therefore, we
begin by solving for the recursive formulation and then compare numerical solutions
with RNI to LxW.
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3.3.3.1 Recursive Integral Formulation

We consider solutions to Eq. (3.2) with initial conditions given in Eq. (3.3) un-
der logistic growth (Eq. (3.22)). As before, following Theorem 2, we first solve the
characteristic equation

da

dt
= λa

(
1− a

K

)
,

with the parametric initial condition a(0, s) = s. This has solutions

a(t, s) =
Ks exp(λt)

K − s+ s exp(λt)
, and s(t, a) =

Ka

a− a exp(λt) +K exp(λt)
.

Secondly, we solve for µi(t, s(t, a)) by

µi(t, s(t, a)) = exp

(∫ t

0

αi(τ) + βi(τ) +
dη(a;θ)

da

∣∣∣
a=a(τ,s)

dτ

)
,

so that

µi(t, s(t, a)) =

(
K

K + s(t, a)(exp(λt)− 1)

)2

exp

(
λt+

∫ t

0

αi(τ) + βi(τ)dτ

)
.

We have an analytic solution for the initial generation,

Y0(t, a) = µ0(t, s(t, a))−1Υ

(
Ka

a− a exp(λt) +K exp(λt)

)
.

Then, continuing with Theorem 2, Yi(t, a) is given by the recursive equation

Yi(t, a) =
2γαi−1(t)

µi(t, s(t, a))

∫ t

0

µi(τ, s(t, a))Yi−1(τ, γa(τ, s(t, a)))dτ, (3.23)

for i > 0. However, we no longer obtain non-integral solutions for Yi(t, a) for any ini-
tial distribution Υ by inductively using the previous solution Yi−1(t, a) by substituting
the term Yi−1(t, γa(t, s(t, a))) in the integral form of Yi(t, a). In this case, substitution
of Yi−1(t, γa(t, s(t, a))) leads to high dimensional integral solutions for Yi(t, a), whose
dimension depends on the generation (i). The advantage to numerically solving the
formulation in Eq. (3.23), over numerically solving the system in Eq. (3.2), is that for
later generations, we can estimate this solution for a particular value of intracellular
constituents (a) at any time (t).

3.3.3.2 Numerical Solutions

In our numerical solutions, we assume there is no cell death (βi(t) = 0) and a
time-independent rate of cell division (αi(t) = log(2)/1.5). We fix the parameters in
the logistic model: λ = 1.5 and K = 20. The number of initial cells was set equal to
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1 and the initial population density, Υ(a) was set to a normal distribution with mean
and variance 1 and 0.1, respectively. We solved our system up to generation M = 7.

As before, we compare solutions with RNI to LxW. The CFL condition for stability
of the explicit LxW method requires that our timestep be ∆t < ∆a

(M+1)·max
a {λa(1− a

K )}
=

4∆a
(M+1)λK

. The spatial discretizations for Lax-Wendroff for comparison with RNI are

∆a = 0.1 (LxW 1) and ∆a = 0.01 (LxW2). The number of quadrature points used in
our implementation of RNI and our systematic way of determining them are presented
in the Supplemental Information (Section 3.5). Recursive numerical integration is
applied on the same intracellular constituent values as LxW1.

As in the previous example, we show our solutions in two ways: each generation
separately (Figure 3.6) and the sum of all generations to be more consistent with
experimental results (Figure 3.7). Notice that our implementation of Theorem 2
with RNI achieves an accuracy that is comparable to LxW at a higher refinement
(∆a = 0.01) with a much faster runtime than both LxW implementations (Figure 3.8
and Table 3.4). These also show that while LxW with ∆a = 0.1 and RNI take
a fraction of a second of computational time, LxW with ∆a = 0.01 takes more
than 100 times longer to run. We also observe that unlike in the case of constant
synthesis and linear degradation (Section 3.3.2), application of Theorem 2 with RNI
required a decreasing number of quadrature points to estimate later generations, see
Supplemental Information.
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(a) T = 1 hour of experimental time. (b) T = 2 hour of experimental time.

(c) T = 3 hours of experimental time. (d) T = 4 hours of experimental time.

Figure 3.6: Numerical Solutions Logistic Growth: Separate Generations. We
compare numerical solutions from (RNI and LxW) of the DLSPM (Eqs. (3.2)-(3.3))
with Flux Term (Eq. (3.22)). (Top) We separately plot each generation at different
points in time T = 1, 2, 3, and 4 hours. For the LxW method we used a uniform
mesh with ∆a = 0.1 (LxW1) and a = 0.01 (LxW2), and ∆a = 0.01 for the RNI
method. (Bottom) The error between the RNI and LxW solutions. (See Section 3.3.3
for further details).
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(a) T = 1 hour of experimental time. (b) T = 2 hour of experimental time.

(c) T = 3 hours of experimental time. (d) T = 4 hours of experimental time.

Figure 3.7: Numerical Solutions Logistic Growth: Total Population. We
compare numerical solutions from (RNI and LxW) of the DLSPM (Eqs. (3.2)-(3.3))
with Flux Term (Eq. (3.22)). (Top) We plot the sum of generation at different points
in time T = 1, 2, 3, and 4 hours. different points in time. For the LxW method we
used a uniform mesh with ∆a = 0.1 (LxW1) and a = 0.01 (LxW2), and ∆a = 0.01
for the RNI method. (Bottom) The error between the RNI and LxW solutions. (See
Section 3.3.3 for further details).
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Figure 3.8: Numerical Runtimes Logistic Growth. Comparison of runtimes for
LxW and RNI for numerical solutions (LxW and RNI) for for the DLSPM (Eqs. (3.2)-
(3.3)) with logistic growth dynamics (Eq. (3.22)) at four different model evaluation
times T = 1, 2, 3, and 4 hours.

Method
Runtime (s)

T = 1 T = 2 T = 3 T = 4
LxW1 0.2158 0.358 0.5186 0.6939
LxW2 13.71 26.52 37.91 49.82
RNI 0.1069 0.2391 0.1237 0.6472

Table 3.4: Numerical Runtimes Logistic Growth. Comparison of runtimes for
LxW and RNI for numerical solutions (LxW and RNI) for for the DLSPM (Eqs. (3.2)-
(3.3)) with logistic growth dynamics (Eq. (3.22)) at four different model evaluation
times T = 1, 2, 3, and 4 hours.

3.4 Discussion & Conclusions

In this work, we presented a new theorem that gives a recursive solution to the
label structured population models. This theorem applies to more general functional
forms of the flux term for DLSPMs than addressed by previous work in [10, 66]
whose aims were to speed up computation of the forward solution to the PDE system
with decomposition techniques. Our recursive solution structure allows us to define
Y1(t, a), by using the solution Y0(t, a), then Y2(t, a) can be written by assuming that
Y1(t, a) has already been defined, and so on for i ≥ 2. For some examples, an analytic
solution for each generation can be determined, as in the case of Section 3.3.1. In
other cases our formulation allows for novel numerical solutions.

We provided examples for applying this theorem with RNI to functional forms of
the flux term which have been previously used to describe the production or decay
of intracellular constituents, including linear growth, constant growth with linear
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degradation, and logistic growth. Numerical results for a DLSPM with linear flux, in
which we can also compute an exact solution for a baseline comparison, showed that
the RNI method was significantly more efficient than the Lax-Wendroff (LxW) finite
difference method, a standard numerical technique for approximating the solution
of first order hyperbolic PDE systems. We found that application of Theorem 2
with RNI was more accurate than finite differences even when a very small step size
was employed with the LxW method. We observed that RNI was between 900 to
5,000 times faster than the LxW method for this base case. For flux terms with
constant growth and linear degradation, we found that RNI was 36 times slower than
the LxW method. However, with the more complex flux term of logistic growth,
RNI was between 77 to 300 times faster than the LxW. We believe that in the case
of flux terms with constant synthesis, the additive term adds to the computational
complexity when applying RNI methods to evaluate the DLSPM. However, the LxW
method can efficiently handle first order hyperbolic PDE systems with a constant flux
term.

An advantage of using Theorem 1 and RNI is in that this leads to a meshfree
method for evaluating the DLSPM for an individual point in time and an intracellular
constituent amount for a particular generation. The runtimes presented in Figures 3.2,
3.5, and 3.8 are the result of applying RNI on the coarse spatial grid for LxW, so
evaluation of the DLSPM with Theorem 2 using RNI at one point takes less time
than was reported. We also explored a forward method (iterative approach) of using
Theorem 2, by saving the solution to the previous generation (i) to approximate
the next generation (i + 1) in hopes that this would lead to a speedup in runtime;
however, we found that this is not the case because in saving the solution to the
previous generation we incur two costs. First, we incur an overhead cost from storing
the previous solution by discretizing in time and space. Second, we incur additional
overhead in having to use an interpolation method on previous generation in order
to produce the next generation. The need for an interpolation method can be seen in
the form of Equation (3.4) in Theorem 2 because of the γa(τ, s(t, a)) in the integrand:

Yi(t, a) =
2γαi−1(t)

µi(t, s(t, a))

∫ t

0

µi(τ, s(t, a))Yi−1(τ, γa(τ, s(t, a)))dτ.

The RNI method on the other hand takes advantage of the recursive formulation in
Theorem 2.

There are ways in which application of the RNI method can be sped up that
were not considered in this work. We used Gaussian quadrature to approximate
the integrals observed in the recursion formulation in Theorem 2, but there are other
methods and problem specific quadrature rules that lead to greater stability and faster
integration times [142]. In our work, we found that generating the quadrature points
during each recursive integration using the scripts from [139] was another limiting
factor. While we do not address these problems in our work, we believe that these
are problem specific details that open up other research directions.

Our results are significant because the increased efficiency will drastically speed up
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the ability to perform inverse problems, e.g., for parameter estimation, in which thou-
sands of forward solutions of the entire PDE system are typically required. Thereby,
Theorem 2 combined with the RNI method will enable model comparisons [13, 8],
i.e., the testing of many different model structures including more detailed molecular
processes, which may have previously been unexplored due to computational bur-
den. Moreover, RNI will enable researchers to perform uncertainty quantification for
DLSPMs, since methods such as Markov Chain Monte Carlo Bayesian estimation or
frequentist bootstrapping techniques can require several orders of magnitude more
forward solves than parameter estimation with gradient based optimization [72, 128].

Code and Data

Open-source code for both RNI and LxW methods are available at https://

github.com/biomathlab/DLSPM_solver.
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3.5 Supplemental Information

3.5.1 Determining Number of Quadrature Points

In the analysis presented in the main text, in the implementation of Recursive
Numerical Integration, the number of quadrature points used (RNIq) were chosen such
that the addition of a quadrature point (RNIq+1) no longer led to an improvement in
the solution with a tolerance of tol = 10−1, using an adjusted ∞-norm (see Figure
3.9). That is the number of quadrature points (q) used in the text satisfy ||RNIq −
RNIq+1||∞/max(RNIq,q+1) < tol, for each generation and point in time presented.
Here the norm adjustment term max (RNIq,q+1) allows dynamically adapting the norm
to each generation.

https://github.com/biomathlab/DLSPM_solver
https://github.com/biomathlab/DLSPM_solver
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(a) Numerical solutions using Lax-
Wendroff and three examples of RNI
using a different number of quadrature
points

(b) The convergence of RNI as we
increase the number of quadrature
points

Figure 3.9: Number of Quadrature Points and Convergence. Using a logistic
flux term, the concentration of intracellular constituents is determined for the second
generation at four hours into the experiment. The parameter values used here are
the same as in the text.

Tables 3.5-3.7 present the number of quadrature points used for each flux term at
each point in time. Note that we have an analytic solution for the initial generation
(Y0) and so we do not use RNI to approximate this solution.

Time
Generation

Y1 Y2 Y3 Y4 Y5 Y6 Y7

T = 1 3 3 3 3 3 4 4
T = 2 3 3 3 3 3 4 4
T = 3 3 3 3 3 3 4 4
T = 4 3 3 3 3 3 4 4

Table 3.5: Linear Growth Flux Term. Number of quadrature points by generation
for each model evaluation time.

Time
Generation

Y1 Y2 Y3 Y4 Y5 Y6 Y7

T = 1 3 4 6 8 10 12 14
T = 2 3 6 9 11 13 14 14
T = 3 4 7 11 13 14 14 16
T = 4 6 9 13 13 14 14 16

Table 3.6: Constant Synthesis Linear Degradation Flux Term. Number of
quadrature points by generation for each model evaluation time.
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Time
Generation

Y1 Y2 Y3 Y4 Y5 Y6 Y7

T = 1 3 3 3 3 4 3 4
T = 2 5 4 4 4 4 3 5
T = 3 18 13 7 5 5 5 4
T = 4 54 33 22 13 7 7 5

Table 3.7: Logistic Flux Term. Number of quadrature points by generation for
each model evaluation time.



Chapter 4

Growth Rate Assays Reveal
Fitness Consequences of
β-Lactamases

This chapter originally published as, “Santiago, F., Doscher, E., Kim, J., Camps,
M., Meza, J., Sindi, S., & Barlow, M. (2020). Growth rate assays reveal fitness
consequences of β-lactamases. PloS one, 15(1), e0228240.” Reprinted in accor-
dance with the Creative Commons Attribution 1.0 International License (https:
//creativecommons.org/publicdomain/zero/1.0/) with minor changes.

4.1 Introduction

Antibiotic resistance has become a powerful model system for studying evolution-
ary biology. The emergence, mutation and selection of antibiotic resistance genes
has created a nearly unique opportunity to study fitness [143], adaptation [64],[18],
pleiotropy [59], epistasis [48], adaptive landscapes [95], and evolutionary potential
[16]. Studying these specific aspects of antibiotic resistance requires the measure-
ment of fitness of bacterial isolates. Although antibiotic clinical classifications were
not designed to measure fitness, antibiotic susceptibility testing has been heavily used
as an approximation of fitness [143]. The justification in the field is that as resistance
to an antibiotic increases, the fitness of organisms exposed to that antibiotic is like-
wise increasing. More recently, growth rates [65] have been implemented as a direct
measurement of fitness [94] but without direct experimental connection to suscepti-
bility testing results. While this method has been rapidly catching on, and its results
are being used to answer important questions about evolution [107], there are few
studies investigating the effects of this change in methodology upon the data and
results to which we now have access. In this study, we investigate the correlation of
growth rate assays to susceptibility testing and find that growth rates are a much
more sensitive method for assessing fitness in bacteria.

Clinical testing of antibiotic resistance is critical for the development of effective
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treatment options. By determining the susceptibility of an isolate to an antibiotic,
health care providers can properly administer antibiotics [5]. Three common meth-
ods used to detect resistance among bacterial isolates are: disc diffusion, E-testing,
and broth dilution minimum inhibitory concentrations (MICs) [88]. In a clinical set-
ting, bacterial isolates are classified as resistant, intermediate, or susceptible (RIS) to
individual antibiotics. While these methods are useful for detecting antibiotic resis-
tance, they lack the sensitivity for precise comparison of fitness in different antibiotics.
Moreover, these clinical classifications are not amenable to quantitative analyses and
were not designed to measure fitness.

A more sensitive measurement that reflects fitness is bacterial growth rate, which
is a measure of the rate at which bacteria go through binary fission. Bacterial growth
is characterized by four phases: lag phase, exponential phase, stationary phase, and
death phase [17]. Typically, bacterial growth rates measure the exponential phase
since this is the period in which the most growth occurs in the bacterial population.
Growth rates have not yet been compared to clinical assays and it is unknown how
growth rates correlate with clinical susceptibility assays. One of the goals of this
study is to investigate if growth rates correlate with clinical resistance classification.

We hypothesized that growth rates can provide evidence about the relative contri-
butions of resistance genes to the susceptibility of clinical isolates [94]. We reasoned
that a low bacterial growth rate in the presence of an antibiotic would indicate sus-
ceptibility to that antibiotic, whereas a high bacterial growth rate would indicate
elevated resistance to that antibiotic [94]. In either case, growth rates are a more
quantitative measure of susceptibility to antibiotics and are more amenable to math-
ematical modeling and analysis. We additionally hypothesized that the quantitative
sensitivity of growth rates would make it possible to generate reliable estimates about
the predicted effect that the presence of resistance genes has on fitness.

To investigate these relationships, we partnered with Dignity Health Mercy Med-
ical Center. Since 2013 we have collected patient isolates consisting primarily of
E. coli from urinary tract infections (UTIs) that are resistant to extended spectrum
beta-lactamases (ESBLs). While antibiotics are usually an effective treatment against
UTIs, the rise of antibiotic resistant bacteria is starting to limit their effectiveness.
Moreover, many isolates of bacteria are resistant to multiple antibiotics so identify-
ing appropriate treatments remains a challenge [149]. We have previously used these
patient isolates to study broad trends in resistance [122]; in this work we study the
correlation between isolate growth rates and clinical resistance classifications as well
as the presence of known resistance genes.

4.1.1 β-lactamases and antibiotic resistance

β-lactamase genes are among the most prevalent resistance genes in UTIs. This
study considers the effects of three β-lactamases: blaTEM-1, blaCTX-M-15, and blaOXA-1.
We consider these three specifically because they are the most common resistance
genes in our isolates (Table 4.5, Fig 4.3, and accompanying text). Although the
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resistance gene ampC occurred with high frequency in our isolates we did not include
it in our analysis because it is almost always found within the chromosome of E. coli
and usually not expressed.

Historically the most common β-lactamase has been blaTEM, which has accounted
for approximately 90% of ampicillin resistance in E. coli [27]. blaTEM-1, the most
common blaTEM causes penicillin resistance, while most of the 200+ variants that
have evolved from it confer cephalosporin resistance as well. Based on structure,
blaTEMs have been categorized as Class A β-lactamases. Conformational changes in
the active site of the enzyme, caused by amino acid substitutions result in the different
resistance phenotypes (cephalosporin resistance) conferred by extended spectrum β-
lactamases (ESBLs). More recently, another family of Class A resistance genes, the
blaCTX-Ms, have been replacing blaTEM β-lactamases in clinical isolates [27], [78], [82].
These confer cephalosporin resistance, including cefepime resistance at levels equal
to or surpassing blaTEMs. This trend has caused a reduction of available treatment
options and primary treatment has shifted to carbapenems. We note, blaTEM and
blaCTX-M are structurally similar as they are both Class A β-lactamases [62].

blaOXA β-lactamases are Class D serine β-lactamases that were named for their
ability to hydrolyze oxacillin [52]. They are typically located on large plasmids and
have been present in this location before the antibiotic era [15]. While they are not the
most efficient at cephalosporin hydrolysis, these resistance genes eventually evolved
the ability to confer resistance to cephalosporins and carbapenems [52].

4.2 Methods

4.2.1 Ethics statement

This project was evaluated by the IRB committees of both UC Merced and Dignity
Health Mercy Medical Center and was classified as an exempt study by both. The
isolates were isolated in the course of normal patient care, and provided to us after
their clinical usefulness was fulfilled. Furthermore, the samples were de-identified,
and for these reasons patient consent was not required.

4.2.2 Hospital isolates

The isolates used in this study were collected from patients admitted to Dig-
nity Health Mercy Medical Center in Merced, California. They are representa-
tives of the different resistance phenotypes and species that were collected from
the hospital. Our goal in selecting these were to make sure each phenotype was
represented at least once. For each sample we recorded: the date of sample isola-
tion, the age and gender of the patient, the species of the bacteria, the source of
the isolate, and its phenotype: resistant, intermediate, or susceptible for 16 differ-
ent antibiotics (ampicillin, ampicillin/sulbactam, piperacillin/tazobactam, cefazolin,
ceftazidime, ceftriaxone, cefepime, ertapenem, imipenem, amikacin, gentamicin, to-
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bramycin, ciprofloxacin, levofloxacin, nitrofurantoin and sulfamethoxazole/trimethoprim)
using standard breakpoints CLSI M100-S26 (2015).

4.2.3 Growth rate assays

Growth rate inocula were taken from standing overnight cultures and diluted to a
final working concentration of 105 cells per mL in Mueller Hinton (MH) broth. The
growth rate assay was performed in a BIOTEK (Model# 267638) spectrophotome-
ter for 22 hours on stationary cultures at a temperature of 37◦ C at a wavelength
of 600nm. Reads were collected every 20 minutes and after the 22-hour incubation
period the optical density (OD) readings were then converted into growth rates, esti-
mated during the exponential growth phase, using the freely available GrowthRates
software package [65] (see Fig 4.1). The growth rate for each isolate was measured
with six replicates for each antibiotic and control (no antibiotic). The cephalosporin
antibiotics used were ceftazidime (CAZ), ceftriaxone (CRO), cefepime (FEP), all at
a concentration of 64 µg/mL. Isolates were also tested against ampicillin (AMP) at
32 µg/mL. We chose these concentrations because after measuring the growth rates
of 213 separate clinical isolates, we found that these concentrations provided a broad
range of growth rates that indicated phenotypic differences between isolates (Figures
4.8-4.10). It was necessary to use concentrations that in some cases exceeded CLSI
breakpoints for resistance because the variance in growth rates was insufficient at
other concentrations to detect fitness differences.
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Figure 4.1: Optical density (OD) measurements of E.coli isolates in the
presence of ceftriaxone at a concentration of 64 µg/mL and control over
a period of 22 hours. OD measurements were made at 600nm every 20 minutes.
The circles (◦) represent OD measurements for isolate99; the squares (�) represent the
OD measurements for isolate155; the triangles (4) represent the OD measurements
for isolate109; and the diamonds (�) represent the OD measurements for isolate105.

4.2.4 Statistical analysis of growth rates

We analyzed isolate growth rates in the presence of an antibiotic as a function of
antibiotic susceptibility (S/R) and genetic differences (presence or absence of resis-
tance alleles). We performed all analyses with R version 3.3.2 [134] and used α = 0.01.
In order to control for multiple statistical tests, we used The False Discovery Rate
(FDR) Controlling Procedure [21, 22], which is a Bonferroni-type multiple testing
procedure for both Welch’s t-tests and the Shapiro-Wilk tests. Applying this proce-
dure1 with a false discovery control level of q∗ = 0.05, we report as significant only
those results that remained significant after using FDR.

We tested the growth rates in each condition using the Shapiro-Wilk test, which
rejects the null hypothesis of normality based on the skew and kurtosis of the sample
[73]. Most of our data did not deviate from normality (Tables 1 and 2), which allowed

1The FDR Controlling Procedure follows from Theorem 1 in [22], which is restated with minor
changes for clarity. If we consider n null hypotheses h1, h2, . . . , hn, and their corresponding p-values
p1, p2, . . . , pn. Let P1 ≤ P2 ≤ · · · ≤ Pn be the ordered p-value, and Hi be the corresponding null
hypothesis to Pi. The Bonferroni-type multple-testing procedure is as follows: let k be the larges i
for which Pi ≤ i

nq∗. Then reject all Hi for i = 1, 2, . . . , k. This procedure controls the FDR at the
q∗ control level.
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us to compare the means between conditions using Welch’s t-test [118]. The skew we
observed in growth rates for cefepime (Fig 4.2), may be due to greater responsiveness
to slight concentration differences in cefepime than in other antibiotics. Though the
growth rates data may have different variances, equal variance is not a requirement
of Welch’s t-test.

4.3 Results and discussion

The growth rates of these isolates were found using the optical density (OD)
measurements of their growth in MH medium with a single concentration of the
antibiotics CAZ, CRO, FEP, and AMP. We began by determining how well these
growth rates corresponded to clinical determinations of susceptibility (Table 4.3).
For simplicity, and because of sample size, we included only resistant and susceptible
classifications. All isolates were either resistant or susceptible to FEP and CRO,
and all isolates were found to be resistant to AMP. Three of the isolates displayed
intermediate susceptibility to CAZ and were excluded from this analysis.

4.3.1 Isolate growth rates and clinical antibiotic susceptibil-
ity tests

In the case of all three cephalosporin antibiotics (CAZ, CRO, and FEP), growth
rates for isolates clinically determined to be resistant were higher than growth rates
of susceptible isolates (Table 4.4 and Fig 4.2, p < 2×10−3). The entries marked with
an asterisk in Table 4.4 indicate that one (or both) of the growth rate groups under
analysis did not pass a test for normality (Table 4.1). The cephalosporin CAZ had
the greatest inhibitory effect on the growth rates of both resistant and susceptible
isolates (Fig 4.2). We believe this is due to the high frequency of the blaCTX-M-15

gene in our isolate population. The immediate ancestor of this gene, blaCTX-M-3 has
innate activity against ceftriaxone and cefepime, and through mutation, blaCTX-M-15

more recently evolved activity against ceftazidime (see also Fig 4.4) [25]. All isolates
were clinically determined to be resistant to ampicillin, and so we could not compare
susceptible and resistant isolate growth rates.
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Figure 4.2: Resistant isolates grow faster than susceptible isolates. There are
two boxplots per antibiotic, the first (gray) shows the distribution of growth rates
for isolates that are resistant to the antibiotic, and the second (white) shows the
distribution of growth rates for isolates that are susceptible to the antibiotic. The
boundaries on the boxes indicate the 25th (Q1) and the 75th (Q3) percentiles, the line
in the box represents the median, the diamond represents the arithmetic mean, and
the whiskers indicate the minimum (below) and maximum (above) growth rate. The
number of isolates used to create each boxplot is given in parenthesis. The asterisk
indicates that one (or both) of the groups of growth rates under consideration did
not pass a test for normality (Table 4.1).
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Resistant/(+) Susceptible/(−)
Ceftazidime

Sensitivity 0.67 0.47
blaCTX-M-15 0.73 0.62

blaTEM-1 0.11 0.13
blaOXA-1 0.62 0.14

Ceftriaxone
Sensitivity 0.32 0.12
blaCTX-M-15 0.04 0.12

blaTEM-1 0.27 0.08
blaOXA-1 0.24 0.10

Cefepime
Sensitivity 0.03 2.93×10−3*
blaCTX-M-15 0.04 4.29×10−4*

blaTEM-1 0.02 7.00×10−3*
blaOXA-1 0.09 3.58×10−3*

Table 4.1: p-values for Shapiro-Wilk normality test in each condition. For
the row labeled “Sensitivity”, the first column corresponds to resistance to the antibi-
otic, and the second column corresponds to susceptibility to the antibiotic. For the
rows labeled with a resistance gene (blaCTX-M-15, blaTEM-1, blaOXA-1) the first column
indicates the presence of a resistance gene (+), while the second column indicates the
gene is not present (−). All cases except growth rates in the presence of cefepime in
the second column (Susceptible/(−)) indicate normality (with p < 0.01).

blaCTX-M-15:blaTEM-1 (+) : (+) (+) : (−) (−) : (+) (−) : (−)
Ceftazidime 0.56 0.53 0.65 0.07
Ceftriaxone 0.82 0.16 0.11 0.32
Cefepime 0.28 0.20 1.70×10−3* 0.13

Table 4.2: p-values for Shapiro-Wilk normality test with combined resis-
tance genes. For each condition we test for normality with the Shapiro-Wilk Nor-
mality Test. All cases except one (growth rates for isolates with no blaCTX-M-15 and
blaTEM-1 in presence of cefepime) indicate normality (with p < 0.01).

CAZ CRO FEP AMP
Resistant 30 35 31 47

Susceptible 14 12 16 0

Table 4.3: Susceptibility to ceftazidime (CAZ), ceftriaxone (CRO), cefepime
(FEP) and ampicillin (AMP). Clinical susceptibility classifications of isolates in
the presence of four antibacterial agents. Three intermediate samples excluded.
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µ1 µ2 99% CI
Sensitivity Resistant Susceptible µ1 − µ2

CAZ 8.80×10−3 2.78×10−3 (3.97×10−3,8.08×10−3)
CRO 1.33×10−2 3.61×10−3 (6.74×10−3,1.26×10−2)
FEP 1.16×10−2 5.55×10−3 (1.45×10−3,1.07×10−2)

CTX-M-15 (+) (−) −
CAZ 9.19×10−3 3.25×10−3 (4.03×10−3,7.87×10−3)
CRO 1.34×10−2 6.66×10−3 (3.04×10−3,1.04×10−2)
FEP 1.26×10−2 4.62×10−3 (4.39×10−3,1.16×10−2)

TEM-1 (+) (−) −
CAZ 5.17×10−3 8.59×10−3 (-6.29×10−3,-5.51×10−4)
CRO 7.73×10−3 1.38×10−2 (-9.71×10−3,-2.40×10−3)
FEP 7.01×10−3 1.20×10−2 (-9.06×10−3,-8.96×10−4)

CTX-M-15:TEM-1 (+) : (+) (+) : (−) −
CAZ 8.08×10−3 9.78×10−3 (-5.59×10−3,2.20×10−3)
CRO 1.15×10−2 1.44×10−2 (-8.47×10−3,2.57×10−3)
FEP 1.16×10−2 1.31×10−2 (-6.72×10−3,3.66×10−3)

CTX-M-15:TEM-1 (+) : (−) (−) : (+) −
CAZ 9.78×10−3 2.93×10−3 (-4.53×10−3,9.17×10−3)
CRO 1.44×10−2 4.85×10−3 (-5.93×10−3,1.32×10−2)
FEP 1.31×10−2 3.47×10−3 (-6.21×10−3,1.31×10−2)

CTX-M-15:TEM-1 (+) : (+) (−) : (+) −
CAZ 8.08×10−3 2.93×10−3 (-1.42×10−3,8.90×10−3)
CRO 1.15×10−2 4.85×10−3 (8.12×10−4,1.24×10−2)
FEP 1.16×10−2 3.47×10−3 (2.68×10−3,1.36×10−2)

Table 4.4: Average growth rates (min−1) for all conditions. Mean isolate
growth rates and 99% confidence intervals (CI) for the difference in mean growth
rates based on a t-statistic.

blaCTX-M-15 blaTEM-1 blaOXA-1

Present (+) 29 23 26
Absent (−) 18 24 21

Table 4.5: Presence of blaCTX-M-15, blaTEM-1, and blaOXA-1 resistance genes.
The frequency of resistance genes blaCTX-M-15, blaTEM-1, and blaOXA-1 in our 47
isolates.

4.3.2 Resistance genes and isolate growth rates

After confirming that growth rates are associated with the broad clinical catego-
rization of resistance to cephalosporins, we wanted to analyze the effect of individual
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resistance genes on isolate growth rates. We hypothesize that isolates with genes
known to confer resistance to cephalosporins would have higher growth rates than
isolates without those resistance genes. We first identified the β-lactamases in our
isolates (Table 4.5). Only three β-lactamases occurred at high frequency (more than
20 isolates) in our data set: blaCTX-M-15, blaTEM-1 and blaOXA-1 (Table 4.5, Fig 4.3).
Although we observed four other β-lactamases: blaTEM-19 (1 isolate), blaCTX-M-14 (4
isolates), blaCTX-M-27 (3 isolates), blaCTX-M-65 (2 isolates), we focused on blaCTX-M-15,
blaTEM-1 and blaOXA-1 because of their frequency.

Figure 4.3: Resistance gene combinations for our 47-isolate population.

4.3.3 Observed effect of blaCTX-M-15 on isolate growth rates

We found that isolates with the blaCTX-M-15 gene had a higher growth rate in
the presence of all three cephalosporin antibiotics than isolates that did not have
the resistance marker (Table 4.4, Fig 4.4, p < 2.05×10−5). We did not observe this
difference in either of the two controls (i.e., isolates grown with no antibiotic) or
isolates grown in the presence of ampicillin.
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Figure 4.4: Isolates with blaCTX-M-15 exhibit higher growth rates in the
presence of cephalosporins. There are two boxplots per antibiotic, the first (gray)
shows the distribution of growth rates for isolates that have the blaCTX-M-15 gene,
labeled blaCTX-M-15(+) and the second (white) shows the distribution of growth rates
for isolates that do not have the blaCTX-M-15 gene, labeled blaCTX-M-15(−). The n.s.
indicates the difference in growth rates is not significant. Abbreviations for controls:
CON1, the control growth rates for the experiment CAZ, CRO and FEP; CON2,
the control growth rates for the experiment AMP. See Fig 4.2 for interpretation of
boxplots.

4.3.4 Observed effect of blaTEM-1 on isolate growth rates

When comparing the growth rates of isolates with the blaTEM-1 gene and those
without the gene, we observed that isolates without the blaTEM-1 gene had a higher
growth rate than those that had the marker (Table 4.4, Fig 4.5, p < 2.5×10−3).
This difference in growth rates was not observed in the ampicillin experiments or the
controls.

There are multiple potential causes for this effect that we have not yet explored
which may not directly result from blaTEM-1 expression. As blaCTX-M is a power-
ful cephalosporinase, the fact that our isolates without blaTEM-1 were likely to have
blaCTX-M-15 may be the primary reason for these differences (Fig 4.3). However, the
difference in frequency has been observed but not addressed as blaCTX-M genes have
replaced blaTEM genes in bacterial populations [27], [78], [82]. This unexplained shift
in populations suggests that something more may be at work. Another possibility
is that the two genes result in negative sign epistasis when they co-occur. Since the
blaTEM-1 enzyme appears to hydrolyze cephalosporins more slowly than blaCTX-Ms, its
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presence could interfere with blaCTX-M hydrolysis of cephalosporins and decrease their
overall efficiency. While we do not fully understand the biochemical basis for such a
fitness cost, it does provide a mechanistic reason for the observation that blaCTX-M-15

and blaOXA-1 are replacing blaTEM-1 in bacterial populations [27].

Figure 4.5: Isolates with blaTEM-1 exhibit lower growth rates in the presence
of cephalosporins. There are two boxplots per antibiotic, the first (gray) shows the
distribution of growth rates for isolates that have the blaTEM-1 gene, labeled blaTEM-1

gene (+), and the second (white) shows the distribution of growth rates for isolates
that do not have the blaTEM-1 gene, labeled blaTEM-1(−). The n.s. indicates the
difference in growth rates is not significant. See Fig 4.2 for interpretation of boxplots.

4.3.5 Observed effect of blaOXA-1 on isolate growth rates

We did not observe a difference in growth rates based on the presence or absence
of the blaOXA-1 gene (Fig 4.6). This may be due to the high frequency of the co-
occurrence of blaCTX-M-15 and blaOXA-1 (Fig 4.3). Also, blaOXA-1 is penicillinase whose
emergence was thought to result from the clinical introduction of oxacillin and methi-
cillin. The different antibiotic specificities of blaOXA-1 and blaCTX-M-15 may confer an
advantage when bacteria expressing both are exposed to a wide variety of antibiotics
[97].
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Figure 4.6: The presence of blaOXA-1 does not affect isolate growth rates.
There are two boxplots per antibiotic, the first (gray) shows the distribution of growth
rates for isolates that have the blaOXA-1 gene, labeled blaOXA-1 gene (+), and the
second (white) shows the distribution of growth rates for isolates that do not have
the blaOXA-1 gene, labeled blaOXA-1(−). See Fig 4.2 for interpretation of boxplots.

4.3.6 Separate and combined effects of blaCTX-M-15 and blaTEM-1

on isolate growth rates

Based on our previous observations about blaCTX-M-15 and blaTEM-1 in our iso-
lates, we considered their combined effects. We found that the presence of blaTEM-1

is not significantly associated with changes in growth rates for isolates that carry
blaCTX-M-15 even though there is a slight increase in mean growth rate for isolates
lacking blaTEM-1 (Table 4.4, Fig 4.7). It is possible that this result may become sig-
nificant in future studies as the sample size increases since there is a tendency for
isolates without blaTEM-1 to have a faster growth rate than those that have it (Figs
4 and 6). Additionally, in the presence of ampicillin, isolates carrying blaTEM-1 had a
statistically significant faster growth rate (Table 4.4, Fig 4.7, p < 9.64×10−3). This
result is expected because blaTEM-1 is an efficient penicillinase whereas blaCTX-M-15 is
primarily a cephalosporinase.
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Figure 4.7: Isolates with blaCTX-M-15 exhibit higher growth rates irrespective
of blaTEM-1 presence. There are three boxplots per antibiotic, the first boxplot
(gray) shows the distribution of growth rates for isolates that have the blaCTX-M-15

gene and the blaTEM-1 gene (labeled blaCTX-M-15(+) and blaTEM-1(+)), the second
boxplot (hash marked) shows the distribution of growth rates for isolates that have the
blaCTX-M-15 gene but not the blaTEM-1 gene (labeled blaCTX-M-15(+) and blaTEM-1(−)),
and the third boxplot (white) shows the distribution of growth rates for isolates
that have the blaTEM-1 gene but not the blaCTX-M-15 gene (labeled blaCTX-M-15(−) and
blaTEM-1(+)). See Fig 4.2 for interpretation of boxplots.

4.4 Conclusion

The continued evolution of bacterial resistance to clinically useful antibiotics is a
major world health crisis. The ability of bacteria to evolve and transfer resistance
genes rapidly throughout a bacterial population presents an ongoing challenge for
healthcare providers and will require the development of more effective treatment
plans. Coping with this challenging problem requires not only effort of clinicians,
but the expertise of researchers in evolutionary biology, statistics and mathematics.
Methods in these latter fields require sensitive techniques for quantifying the fitness
of a bacterial isolate to an antibiotic. We propose that bacterial growth rates have
the potential to be a useful technique to the study of antibiotic resistance in these
fields because growth rates can provide more information about the fitness effects of
resistance genes than current clinical classifications of resistance.

In this study, we used E. coli isolates from Dignity Health, Mercy Medical Center
to measure bacterial growth rates in the presence of different antibiotics. In particular,
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we determined growth rates for each of 47 bacterial isolates in the presence of three
cephalosporins and one penicillin. Through growth rate assays, we were able to
quantify an isolate’s fitness in the presence of antibiotics at single concentrations
and found these results to be highly consistent with the information provided by
clinical antibiotic susceptibility testing. Additionally, the sensitivity of growth rates
enabled us to observe the effects that resistance genes had on isolate growth rates,
both individually and in various combinations. We also confirmed that blaCTX-M-15 is
an excellent cephalosporinase.

Overall, we found that growth rates have greater sensitivity for assaying inter-
actions between resistance genes and may be useful in helping to develop predictive
models for assessing antibiotic susceptibility based on presence or absence of resis-
tance genes. While growth rates are not a good candidate for susceptibility testing,
their added sensitivity may help reveal the interactions between resistance genes and
may facilitate improvements in the reliability of molecular diagnostic methods. Our
findings suggest that there may be inhibitory interactions between resistance genes,
and we intend to explore the relationships in future studies with isogenic strains.

4.5 Supporting information

Figure 4.8: Boxplot of E.coli isolates growth rates in the presence of cef-
tazidime at a concentration of 64 µg/mL. The boundaries on the boxes indicate
the 25th (Q1) and the 75th (Q3) percentiles (quartiles), the line in the box represents
the median, and the whiskers indicate the minimum (below) and maximum (above)
growth rate. There are 214 boxplots, one box-plot per isolate from six technical repli-
cates. This figure shows that at a concentration of 64 µg/mL, we observe phenotypic
differences between isolate growth rates.
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Figure 4.9: Boxplot of E.coli isolates growth rates in the presence of ceftri-
axone at a concentration of 64 µg/mL. The boundaries on the boxes indicate
the 25th (Q1) and the 75th (Q3) percentiles (quartiles), the line in the box represents
the median, and the whiskers indicate the minimum (below) and maximum (above)
growth rate. There are 214 boxplots, one box-plot per isolate from six technical repli-
cates. This figure shows that at a concentration of 64 µg/mL, we observe phenotypic
differences between isolate growth rates.

Figure 4.10: Boxplot of E.coli isolates growth rates in the presence of ce-
fepime at a concentration of 64 µg/mL. The boundaries on the boxes indicate
the 25th (Q1) and the 75th (Q3) percentiles (quartiles), the line in the box represents
the median, and the whiskers indicate the minimum (below) and maximum (above)
growth rate. There are 214 boxplots, one box-plot per isolate from six technical repli-
cates. This figure shows that at a concentration of 64 µg/mL, we observe phenotypic
differences between isolate growth rates.



Chapter 5

Distribution of β-Lactamase Genes
in Clinical Isolates from California
Central Valley Hospital Deviates
from the United States Nationwide
Trends

This chapter originally published as, “Guzman-Cole, C., Santiago, F., Garse-
vanyan, S., Sindi, S., & Barlow, M. (2021). Distribution of β-Lactamase Genes in
Clinical Isolates from California Central Valley Hospital Deviates from the United
States Nationwide Trends. Antibiotics, 10(5), 498.” Reprinted in accordance with the
Creative Commons Attribution 4.0 International License (http://creativecommons.
org/licenses/by/4.0/) with minor changes.

5.1 Introduction

β-lactam antibiotics have been in use since the discovery of penicillin in the 1940s,
and they continue to be the most widely used antibiotics due to their high effective-
ness, ease of delivery, and low toxicity [145, 102]. The longstanding use of β-lactam an-
tibiotics has led to the emergence of resistant strains in clinical care settings [65]. The
continuous selection and evolution of β-lactamase genes by β-lactam antibiotic use has
led to the diversification of successful β-lactamase genes: blaTEM, blaSHV, blaCTX-M,
and blaOXA [20]. β-lactamase genes produce extended spectrum β-lactamase (ESBL)
enzymes that work by hydrolyzing β-lactam antibiotics, rendering them ineffective.
blaTEM and blaSHV were the first β-lactamase enzymes identified in 1963 and 1972,
respectively, and were implicit in outbreaks in the 1990s [42, 81, 109]. Today, blaSHV

composes 10% of ESBLs, and blaTEM has become somewhat less common in the U.S.
[8]. blaCTX-M was first identified in 1989, and was identified with increasing frequency
throughout the 1990s [9]. By the 2000s, the frequency of blaCTX-M enzymes surpassed
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those of blaTEM and blaSHV.
Although first discovered in 1976, blaOXA enzymes have been increasing in preva-

lence due to the frequent association of blaOXA-1 with blaCTX-M-15 [10,11]. To-
day, blaCTX-M enzymes are the most identified ESBLs, and have displaced blaTEM

and blaSHV in many individual hospitals [81, 27, 39, 132, 93]. However, this trend
is not uniform across publications originating from different surveillance locations
[110, 90, 130]. Bajpai et al. (2017) found blaTEM to be the most abundant ESBL
enzyme in a single hospital, although other reports detail different ESBL gene fre-
quencies [7]. In the United States, few recent nationwide surveillance studies have
specifically examined the frequencies of specific ESBL genes. One recent survey of
26 hospitals identified blaTEM as the most abundant ESBL enzyme in clinical isolates
(47%), followed by blaCTX-M (36%), blaSHV (35%), and blaOXA (20%) [29].

Regional variance in the frequencies of ESBLs enables the assessment of which
factors are contributing the most to ESBL frequencies. Due to the strong selection
that bacteria experience from antibiotics and the rapid migration of bacteria that
occurs in human populations, selection and migration were the two factors we chose
to investigate. To understand the relative contributions of selection and migration,
it was important to obtain and compare updated ESBL gene frequencies. We chose
to compare the frequencies of ESBLs in a local repository of ESBL positive isolates
collected from a single hospital, with average frequencies nationwide across the U.S.
obtained from ESBL-positive clinical isolates whose genomic sequences have been de-
posited in the NCBI Isolates Browser Database. When comparing genetic variations
over two populations, there are four possible outcomes depending on the stability of
gene frequencies within a site and comparisons of those frequencies between sites.
First, gene frequencies that are stable over time within a population and non-uniform
across populations indicate low migration between bacterial populations and that
selection for resistance within a given population is strong and constant. However,
if the gene frequencies are unstable over time within a population and non-uniform
across populations, this would indicate alternating local selective pressures and rapid
migration as “immigrants would increase the mutation supply rate” [89] and would
compete with “better-adapted residents maintaining the population away from the
local fitness optimum” [106]. Stability over time and uniformity between popula-
tions suggest rapid continuous migration between populations and strong consistent
selection resulting in a highly resistant and optimized strain [106]. Finally, unsta-
ble (alternating) frequencies over time and uniformity between populations indicate
strong alternating selective pressures in large areas (or populations). Moreover, this
signal also indicates rapid migration because variation between populations averages
out as immigration leads to a decrease in genetic differentiation between populations
[99]. We compared ESBL gene frequencies from Dignity Health Mercy Medical Center
(DHMMC) and the rest of the U.S. over a period of six years as follows.
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5.2 Materials and Methods

5.2.1 Hospital Isolates

Clinical patient isolates (n = 872) were collected from patients at DHMMC in
Merced, CA, USA, from 2013 to 2018. These isolates were flagged as ESBL using
Vitek 2 (bioMérieux, Inc. Hazelwood, MO, USA). These patient samples were col-
lected from urine, blood, sputum, and wounds.

5.2.2 Molecular Methods

Genomic DNA was isolated using the boil preparation method by adding a single
colony to 100 µL sterile water and boiling at 100 °C for 15 min. From this 100 µL
solution, 1 µL was used in the PCR reaction for the respective genes with the primers
listed in Table 5.1. Multiplex PCR was used to determine the presence of blaCTX-M,
blaTEM, and blaOXA. Detection of blaSHV was run in a separate reaction. Each PCR
reaction consisted of 1 µL of template DNA, 10 µM of each primer, and Taq 2X
master mix (NEB) at a final concentration of 1X, and the reactions were run under
the following conditions: initial denaturation at 94 °C for 10 min, 30 cycles of 94 °C
for 40 s, 60 °C for 40 s, 72 °C for 1 min, and a final elongation at 72 °C for 7 min [40].
PCR amplicons were run out on 2% agarose gel at 100 V for 30 min and visualized
using a ChemiDocTM Touch Imaging System. (Figures S1 and S2).

5.2.3 US Database

We obtained clinical isolate genomes from the NCBI RefSeq database [100], using
the NIH Isolate Browser [98] to identify clinical isolates of E. coli and K. pneumoniae
from the United States from 2013 to 2018. Using the Comprehensive Antibiotic
Resistance Database (CARD) [3], we identified isolate genomes containing ESBL
genes to compile an ESBL clinical database (n = 1060) using the BLAST+ program.
In combination with a 98% identity cut-off to positively identify the frequency of
blaTEM, blaOXA, blaCTX-M, and blaSHV, we applied an additional base pair match cutoff
for each gene to limit partial gene matches. For blaTEM, we required a base pair (bp)
match at or above 753 bp; for blaOXA, we required 831 bp; for blaCTX-M, we required
876 bp; and for blaSHV, we required 861 bp. The metadata for nationwide clinical
isolate genomes were downloaded from the NIH Isolate Browser and included date,
species, and location. The list of genome assemblies used to perform this analysis can
be found in the Supplementary Materials.
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Gene Primer Sequence (5’ to 3’) Product Size (bp)

blaSHV Forward GCCTGTGTATTATCTCCCTGTTAG 813
Reverse TCCCGGCGATTTGCTGATTCC

blaTEM Forward TGACGCCGGGCAAGAGCA 424
Reverse AAGGGCCGAGCGCAGAAGTG

blaOXA Forward AGCGCCAGTGCATCAACAG 300
Reverse GCAAAACCCAAACAACAGAAA

blaCTX-M Forward CGGCCGCGGTGCTGAAGAA 482
Reverse GCTGCCGGTTTTATCCCCCACAA

Table 5.1: List of primers pairs used to identifyblaSHV, blaTEM, blaOXA, and
blaCTX-M and their expected product size.

5.2.4 Statistical Analysis

We used one-way analysis of variance (ANOVA) to compare the means of the re-
sistance gene frequencies to identify significant differences between frequencies across
months. We compared the same months across years, different months within the
same year, different months across all years, and bins of 2, 3, 4, and 6 months. We
tested for significant differences between the means of the resistance gene frequencies
across years at DHMMC and the nationwide database using a Z-test1. We tested for
significant differences in the proportions of a resistance marker between isolates from
DHMMC and the nationwide database using a Z-test. Pairwise linkage among the
resistance alleles in each of the two clinical isolate populations, DHMMC and the na-

tionwide database, was assessed using a χ2 test [61]. The phi coefficient

(
Φ = ±

√
χ2

n

)
was used as a χ2 measure of directional deviation from the null relationship of inde-
pendent assortment [50]. The PC has the desired property of accounting for sample
size n (often >500 in this work) and because it has a known sampling distribution,
it allows us to compute significance and to form confidence intervals. Controlling for
multiple statistical tests was conducted via the FDR-controlling procedure [21, 22],
a Bonferroni-type multiple testing procedure2, with a false discovery control level of
q∗ = 0.025. Only those results that remained significant after using FDR are reported
as significant. All analyses were performed using the Statistics and Machine Learning
Toolbox of MATLAB R2020a [92].

1Following [31], let X1 ∼ B(n1, p1) and X2 ∼ B(n2, p2), where B is the binomial distribution with
n trials and success probability p, be independent. To test h0 : p1 = p2 against ha : p1 6= p2, we
form the Z test statistic Z = (p̂1− p̂2)/

√
p̂∗(1− p̂∗)(1/n1 + 1/n2), where p̂i is the sample proportion

and p̂∗ = X1+X2

n1+n2
, and Z∼ N (0, 1).

2The FDR Controlling Procedure follows from Theorem 1 in [22], which is restated with minor
changes for clarity. If we consider n null hypotheses h1, h2, . . . , hn, and their corresponding p-values
p1, p2, . . . , pn. Let P1 ≤ P2 ≤ · · · ≤ Pn be the ordered p-value, and Hi be the corresponding null
hypothesis to Pi. The Bonferroni-type multple-testing procedure is as follows: let k be the larges i
for which Pi ≤ i

nq∗. Then reject all Hi for i = 1, 2, . . . , k. This procedure controls the FDR at the
q∗ control level.
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5.3 Results

5.3.1 Regional gene frequencies

We performed a molecular surveillance study of common β-lactamases among
isolates. At DHMMC, the most common ESBL gene we identified was blaCTX-M,
followed by blaOXA, blaTEM, and blaSHV (Figure 5.1a). Their yearly frequencies are
provided in Table 5.2. Mathematical analysis of those frequencies over time revealed
no significant differences over months or agricultural seasons. However, there were
some significant differences (p-value < 0.05) in yearly frequencies (Table 5.2). blaSHV

and blaTEM frequencies were stable over time. blaCTX-M frequencies increased after
the first year in 2014 and remained stable over time (Table S3). blaOXA frequencies
significantly decreased in 2016 from previous years but returned to stable in 2017
(Table S4).

(a) DHMMC (b) National DB

Figure 5.1: Venn diagrams of blaSHV, blaTEM, blaCTX-M, and blaOXA combi-
nations from both repositories. (a) Venn diagram of the resistance genes found
in the clinical isolates from DHMMC. There were 142 isolates without any of these
resistance genes (inconclusive data). (b) Venn diagram of the resistance genes found
in the nationwide database of ESBL clinical isolates.

DHMMC blaSHV blaTEM blaCTX-M blaOXA

2013(n = 106) 9.4(4.6,16.7) 37.7(28.5,47.7) 52.8(42.9,62.6) 52.8(42.9,62.6)
2014(n = 88) 8.0(3.3,15.7) 29.5(20.3,40.2) 75.0(64.6,83.6) 54.5(43.6,65.2)
2015(n = 255) 7.5(4.5,11.4) 29.8(24.3,35.8) 71.4(65.4,76.8) 49.8(43.5,56.1)
2016(n = 207) 12.6(8.4,17.9) 24.6(18.9,31.1) 62.8(55.8,69.4) 35.7(29.2,42.7)
2017(n = 126) 9.5(5.0,16.0) 23.8(16.7,32.2) 61.1(52.0,69.7) 36.5(28.1,45.6)
2018(n = 90) 13.3(7.1,22.1) 28.9(19.8,39.4) 63.3(52.5,73.2) 37.8(27.8,48.6)

Table 5.2: The yearly frequency of blaSHV, blaTEM, blaCTX-M, and blaOXA

from DHMMC. Each frequency is presented with a 95% confidence interval. The
number of isolates is given in the first column in parenthesis.
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We then measured the frequencies at which these genes co-occurred in each iso-
late population. Statistical analysis suggests a genetic linkage (or correlation) between
resistance genes in isolates from DHMMC (Table 5.3). Two statistical methods (Pear-
son’s χ2 test and the Φ) revealed a significant positive correlation between blaTEM and
blaSHV (p-value < 0.05) and between blaCTX-M and blaOXA (p-value < 0.05). There
are significant negative correlations between blaTEM and blaCTX-M (p-value < 0.05)
and blaTEM and blaOXA (p-value < 0.05).

Species Markers χ2 p-value Φ Φ p-value
All (n = 872) blaSHV:blaTEM 3.75×10−9* 0.20 2.74×10−9*

blaSHV:blaCTX-M 6.37×10−1 0.02 6.37×10−1

blaSHV:blaOXA 1.08×10−1 0.05 1.08×10−1

blaTEM:blaCTX-M 1.49×10−3* -0.11 1.46×10−3*
blaTEM:blaOXA 3.00×10−6* -0.16 2.68×10−6*
blaCTX-M:blaOXA 8.59×10−30* 0.38 5.24×10−32*

Ec (n = 787) blaSHV:blaTEM 5.22×10−1 0.02 5.23×10−1

blaSHV:blaCTX-M 2.58×10−1 -0.04 2.59×10−1

blaSHV:blaOXA 4.89×10−1 -0.02 4.89×10−1

blaTEM:blaCTX-M 1.24×10−6* -0.17 1.07×10−6*
blaTEM:blaOXA 1.40×10−9* -0.22 9.50×10−10*
blaCTX-M:blaOXA 9.22×10−26* 0.37 1.53×10−27*

Kp (n = 85) blaSHV:blaTEM 3.36×10−4* 0.39 2.34×10−4*
blaSHV:blaCTX-M 1.97×10−5* 0.46 8.15×10−6*
blaSHV:blaOXA 6.84×10−3* 0.29 6.44×10−3*
blaTEM:blaCTX-M 2.58×10−5* 0.46 1.13×10−5*
blaTEM:blaOXA 3.84×10−2 0.22 3.88×10−2

blaCTX-M:blaOXA 5.69×10−6* 0.49 1.72×10−6*

Table 5.3: Linkage analysis summary for DHMMC isolates. Here Ec abbre-
viates E. coli, and Kp abbreviates K. pneumoniae. The p-value for a χ2 test for
linkage, the phi coefficient (Φ), and the associated p-value are presented for each re-
sistance marker pair comparison. The number of isolates for each species is given in
parenthesis. An asterisk (*) indicates a statistically significant comparison after the
FDR-controlling procedure (q∗ = 0.025) for both the χ2 test and the Φ.

5.3.2 U.S. Database Gene Frequencies

We conducted an analogous surveillance study using a nationwide database of
ESBL clinical isolates from the NIH Pathogen Detection Isolates Browser (Figure
5.1b). Nationwide, the resistance gene frequencies were different from the DHMMC
repository. The most common ESBL gene was blaTEM, followed by blaSHV, blaCTX-M,
and blaOXA. Those frequencies are provided in Table 5.4. Analysis of these gene
frequencies over time also showed no significant differences in the frequencies of com-
mon ESBL genes in the U.S. over a period of months. However, there were significant
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differences (p-value < 0.05) in the yearly frequencies for blaSHV, blaTEM, and blaCTX-M

(Table 5.4). blaSHV significantly increased in 2015, followed by a significant decrease
in 2016, but returned to stable in 2017 (Table S5). blaTEM frequencies significantly de-
creased in 2017 and 2018 from previous years (Table S6). There was a non-significant
decrease in blaCTX-M frequency in 2015 from previous years. The 2015 blaCTX-M fre-
quency was significantly different than that of 2018 due to an increase that year (Table
S7).

Nationwide blaSHV blaTEM blaCTX-M blaOXA

2013(n = 6) 16.7(0.4,64.1) 83.3(35.9,99.6) 0.0(0.0,45.9) 0.0(0.0,45.9)
2014(n = 179) 4.5(1.9,8.6) 82.7(76.3,87.9) 14.0(9.2,19.9) 16.8(11.6,23.1)
2015(n = 268) 66.8(60.8,72.4) 74.6(69.0,79.7) 8.2(5.2,12.2) 9.7(6.4,13.9)
2016(n = 190) 19.5(14.1,25.8) 84.7(78.8,89.5) 16.8(11.8,22.9) 13.2(8.7,18.8)
2017(n = 251) 50.6(44.2,56.9) 66.9(60.7,72.7) 13.9(9.9,18.9) 11.6(7.9,16.2)
2018(n = 166) 50.0(42.2,57.8) 66.9(59.2,74.0) 22.3(16.2,29.4) 18.7(13.1,25.4)

Table 5.4: The yearly frequency of blaSHV, blaTEM, blaCTX-M, and blaOXA

from the U.S. Nationwide Database. Each frequency is presented with a 95%
confidence interval. The number of isolates is listed in the first column in parenthesis.

In the nationwide database, the co-occurrence of resistance genes differs from that
of our local samples from DHMMC (Table 5.5). We observed a negative association
between blaTEM and the other resistance markers (p-value < 0.05), and a positive
association between blaCTX-M and blaOXA (p-value < 0.05). The negative association
of blaTEM with both blaCTX-M and blaOXA was almost double that found at DHMMC
for all species (Table 5.3 and Table 5.5). When stratified by species, E. coli upholds
these trends, but in K. pneumoniae, blaSHV is negatively correlated with the other
resistance genes (p-value < 0.05) and blaCTX-M is positively correlated blaOXA (p-value
< 0.05).
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Species Markers χ2 p-value Φ Φ p-value
All (n = 1060) blaSHV:blaTEM 7.03×10−43* -0.42 6.29×10−47*

blaSHV:blaCTX-M 2.13×10−1 -0.04 2.14×10−1

blaSHV:blaOXA 2.81×10−1 -0.03 2.81×10−1

blaTEM:blaCTX-M 1.31×10−9* -0.19 9.80×10−10*
blaTEM:blaOXA 3.31×10−17* -0.26 1.02×10−17*
blaCTX-M:blaOXA 1.01×10−99* 0.65 7.63×10−129*

Ec (n = 559) blaSHV:blaTEM 2.03×10−6* -0.20 1.68×10−6*
blaSHV:blaCTX-M 1.48×10−1 -0.06 1.49×10−1

blaSHV:blaOXA 1.52×10−1 -0.06 1.52×10−1

blaTEM:blaCTX-M 6.72×10−35* -0.52 2.90×10−40*
blaTEM:blaOXA 1.85×10−64* -0.72 2.38×10−89*
blaCTX-M:blaOXA 1.83×10−53* 0.65 1.05×10−68*

Kp (n = 501) blaSHV:blaTEM 6.81×10−10* -0.28 3.45×10−10*
blaSHV:blaCTX-M 4.69×10−5* -0.18 4.23×10−5*
blaSHV:blaOXA 7.37×10−3* -0.12 7.30×10−3*
blaTEM:blaCTX-M 4.73×10−1 0.03 4.74×10−1

blaTEM:blaOXA 5.68×10−1 0.03 5.69×10−1

blaCTX-M:blaOXA 4.37×10−48* 0.65 1.04×10−61*

Table 5.5: Linkage analysis summary for the Nationwide Database Isolates.
Here Ec abbreviates E. coli, and Kp abbreviates K. pneumoniae. The p-value for a
χ2 test for linkage, the phi coefficient (Φ), and the associated p-value are presented
for each resistance marker pair comparison. The number of isolates for each species
is given in parenthesis. An asterisk (*) indicates a statistically significant comparison
after the FDR-controlling procedure (q∗ = 0.025) for both the χ2 test and the Φ.

5.3.3 Comparison of DHMMC and US populations

We then performed a formal statistical comparison between the frequencies of
resistance genes in the DHMMC repository and the U.S. database to determine sig-
nificant differences (Table 5.6). In the nationwide database, blaSHV and blaTEM occur
more frequently (all p-values < 0.05) than at DHMMC. At DHMMC, blaCTX-M and
blaOXA occur at higher frequencies than they do nationwide (all p-values < 0.05). A
further breakdown of the gene frequencies by species and FDR controlling revealed
no significant frequency difference in blaSHV within species between datasets. blaTEM

occurs in 57-68% more E. coli isolates in the U.S. database than E. coli isolates at
DHMMC (p-values < 0.05). There is no significant difference in blaTEM frequency
in K. pneumoniae isolates. blaCTX-M occurs much more frequently in E. coli and K.
pneumoniae isolates from DHMMC than in the U.S. database (all p-values < 0.05).
blaCTX-M occurs in 47-58% more E. coli isolates and 33-52% more K. pneumoniae
isolates at DHMMC than isolates from the nationwide U.S. database. This trend is
similar but less drastic for blaOXA, which occurs in 26-36% more E. coli isolates and
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26-44% more K. pneumoniae isolates than isolates nationwide.

Species Marker FM FN FM − FN p-value 95% CI
All blaSHV 9.9 41.0 -31.2 2.79×10−53* (-35.2,-27.2)

blaTEM 28.6 74.8 -46.3 1.34×10−91* (-50.7,-41.8)
blaCTX-M 65.1 14.2 50.9 2.40×10−117* (46.6,55.2)
blaOXA 44.2 13.3 30.8 6.58×10−52* (26.9,34.8)

Ec blaSHV 2.8 2.5 0.3 7.44×10−1 (-1.5,2.0)
blaTEM 25.9 89.1 -63.2 1.14×10−115 (-68.6,-57.8)

blaCTX-M 65.8 12.7 53.1 1.75×10−83 (47.7,58.5)
blaOXA 43.6 12.5 31.1 4.16×10−34 (26.1,36.1)

Kp blaSHV 75.3 84.0 -8.7 4.86×10−2 (-17.4,-0.1)
blaTEM 52.9 58.9 -5.9 3.05×10−1 (-17.3,5.4)

blaCTX-M 58.8 16.0 42.9 1.46×10−18 (33.3,52.4)
blaOXA 49.4 14.2 35.2 2.65×10−14 (26.2,44.3)

Table 5.6: Percent frequency differences between resistance markers at
DHMMC and the Nationwide Database. Here Ec abbreviates E. coli, and
Kp abbreviates K. pneumoniae. The frequency of a resistance marker from DHMMC
is denoted FM, and the frequency of a resistance marker from the National Database
is denoted by FN. An asterisk (*) indicates a statistically significant comparison after
the FDR-controlling procedure (q∗ = 0.025). The last column provides the 95% con-
fidence interval for the percent difference for a particular resistance marker between
the two datasets.

5.4 Discussion

We answered our initial question about the relative importance of selection and
migration in small and large regions. The stability of resistance genes over time in a
distinct community that differ from the nationwide frequencies strongly suggests that
local selective pressures have a larger impact on frequencies than migration. DHMMC
is unique with regards to the presence of blaCTX-M and blaTEM genes. At DHMMC,
blaCTX-M occurs more frequently than in the nationwide database, while blaTEM occurs
less frequently at DHMMC. The negative correlation at DHMMC between blaTEM and
blaCTX-M and between blaTEM and blaOXA implies incompatibilities between blaTEM

and at least one of the other genes. Since blaCTX-M and blaOXA are commonly linked
with each other, it is not surprising that blaTEM is negatively associated with both of
them, and genetic incompatibilities may exist for only one of those pairings. As those
genetic compatibilities were not observed throughout the U.S., it is likely that they
are the product of local selective pressures. This negative relationship results mainly
from E. coli isolates; this relationship is not observed in K. pneumoniae isolates. This
result indicates that either the genetic background of K. pneumoniae eliminates the
incompatibilities of these genes, or that the antibiotic exposures of these pathogens is
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different from E. coli. Additionally, at DHMMC, there appears to be strong selection
for blaCTX-M, which may be displacing blaTEM likely due to antagonism between these
genes [119].

In terms of antimicrobial stewardship, our results suggest resistance may be mod-
ulated at a regional level, facilitating the implementation of effective strategies to
limit and control selection of the antibiotic resistance genes. However, we also found
evidence that resistance must be modulated differently for separate species, which
may be difficult to conduct because of the environmental presence of antibiotics and
the use of empiric therapies without species identification.

High blaSHV frequencies are unique to our nationwide dataset. However, when we
considered E. coli and K. pneumoniae isolates separately, DHMMC and nationwide
frequencies of blaSHV are similar. The greater number of K. pneumoniae isolates in
the nationwide database likely accounts for the overall higher nationwide frequencies
of blaSHV (Simpson’s paradox [140]). A high blaTEM frequency is also unique to our
nationwide dataset. There are 57-68% more E. coli isolates with blaTEM nationwide
than isolates from DHMMC. E. coli isolates nationwide have a negative correlation
between blaTEM and the other resistance genes, meaning these isolates are likely to
have blaTEM and no other resistance genes. In K. pneumoniae isolates nationwide,
there is a negative correlation between blaSHV and the other resistance genes, meaning
these isolates are likely to have blaSHV and no other resistance genes, which is the
opposite of the K. pneumoniae isolates from DHMMC. ESBLs were initially derived
from blaSHV and blaTEM, explaining the relatively high blaTEM frequencies nationwide,
as blaTEM has proceeded to fixation [147]. blaSHV and blaTEM have been responsible
for most ESBL infections since at least the 1980s, so it is reasonable for them to be
widely distributed in a large-scale dataset [71].

We observed stable gene frequencies over time within the DHMMC population
which differ from nationwide frequencies. This implies there is low migration or
low survival of immigrants between populations, and that the selective forces within
the DHMMC population are strong and constant. Overall, there is strong evidence
that local selective pressures have a much stronger effect on the frequencies of ES-
BLs in local populations. This suggests that communities and specific regions have
the potential to effectively manage ESBL frequencies through intentional antibiotic
stewardship practices.

5.5 Supplementary Materials

The following are available online at https://www.mdpi.com/article/10.3390/
antibiotics10050498/s1. Table S1: Pairwise yearly frequency comparison for blaSHV

in the DHMMC database, Table S2: Pairwise yearly frequency comparison for blaTEM

in the DHMMC database, Table S3: Pairwise yearly frequency comparison for blaCTX-M

in the DHMMC database, Table S4: Pairwise yearly frequency comparison for blaOXA

in the DHMMC database, Table S5: Pairwise yearly frequency comparison for blaSHV

in the Nationwide database, Table S6: Pairwise yearly frequency comparison for

https://www.mdpi.com/article/10.3390/antibiotics10050498/s1
https://www.mdpi.com/article/10.3390/antibiotics10050498/s1
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blaTEM in the Nationwide database, Table S7: Pairwise yearly frequency compari-
son for blaCTX-M in the Nationwide database, Table S8: Pairwise yearly frequency
comparison for blaOXA in the Nationwide database, Figure S1: 2% agarose gel of
blaCTX-M, blaTEM, and blaOXA PCR products, Figure S2: 2% agarose gel of blaSHV

PCR products, Table S9: Number of clinical isolates annually by state.



Chapter 6

Conclusions and Future Directions

6.1 Conclusions

In this dissertation, mathematical models, numerical methods, and data driven in-
vestigations of inheritable cellular phenotypes were presented. In the first part, Chap-
ters 2 and 3, novel mathematical models and numerical approaches for the dynamics
of protein misfolding in yeast cells were presented. In the second part, Chapters 4
and 5, data driven mathematical approaches to evaluate new biological techniques
used to study the evolution of bacterial antibiotic resistance were presented. The
following summarizes my direct contributions towards the study of prion dynamics
in yeast and in the area of bacterial antibiotic resistance by dissertation chapter.

Prion Dynamics

Chapter 2

• I proposed a structured population model describing the intracellular distribu-
tion and replication dynamics of yeast prion propagons in an actively dividing
population of cells.

• I developed a likelihood formulation that is interpretable in terms of the propagon
recovery experiment we are modeling, and detail how it can be applied to es-
timate the propagon replication rate and their transmission bias during cell
division of a prion variant.

• I showed that under our modeling framework, prion dynamics in yeast are best
described by a model with an asymmetric transmission of propagons.

Chapter 3

• We develop a novel numerical and theoretical framework involving a recursive
formulation for a class of Division and Label Structured Population Models
(DLSPMs). I developed this framework for a population of dividing cells with
an arbitrary functional form describing the intracellular dynamics.

87
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• I demonstrate that recursive numerical integration can be used to efficiently
evaluate the integral form of the DLSPM models.

• I created an open-source code base that can be used to implement the numerical
methods using the proposed theoretical framework.

Antibiotic Resistance

Chapters 4 & 5: My contribution to these chapters involved mathematical
formalization of questions addressed. I performed, interpreted the results, and wrote
the sections on all statistical analyses in these chapters.

6.2 Future Directions

6.2.1 Prion Dynamics

The work presented in Chapters 2 and 3 highlight the importance of descriptive
structured population models to understand intracellular processes while capturing
colony level dynamics in yeast. However, there are more colony level dynamics that
can be incorporated into our modeling framework. Thus, in future investigations we
plan to adapt our modeling framework to account for the following processes.

• Cell maturation. In yeast cell division, while a mature yeast cell divides about
every 90 minutes, a new cell bud requires about 120 minutes to mature before
it can begin dividing. In future iteration of the model presented in Chapter
2, we plan to incorporate a maturation process to capture its effects on the
transmission bias and replication rate.

• Cell volume. In our modeling framework of Chapter 2 we have made an effort to
be clear about the difference between asymmetric cell division and asymmetric
division of intracellular constituents, and that our model captures the asym-
metric division of intracellular constituents (propagons), but in future models
we plan to incorporate cell volume to distinguish between effects due to volume
and those due to division bias.

• More complex intracellular dynamics. In future investigations we plan to include
a more complex intracellular propagon replication than linear replication as
presented in Chapter 2. This will be possible by applying the methods presented
in Chapter 3.

• Removing high frequencies in numerical solutions. Some of our numerical re-
sults in Chapter 3 contain high frequencies due to numerically solving integral
equations using Gaussian quadrature. In future work, we plan to include an ad-
ditional post-processing step to filter numerical solutions for high frequencies.
This will allow us to use less quadrature points in our recursion while improving
the accuracy of our numerical solutions.
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6.2.2 Antibiotic Resistance

In this work we highlight the need for better mathematical approaches to quantify
bacterial resistance to particular antibiotics and to assess local trends in antibiotic
resistance. The goal of this research is to apply statistical and numerical approaches
to aid in model building and interpretation to combat antibiotic resistance. In future
investigations the following ideas will be explored.

• A mathematical model to assess the efficacy of treatment strategies to combat
antibiotic resistance. Current mathematical models used to assess the efficacy
of treatment strategies for combating antibiotic resistance [58, 32, 19, 23, 53],
do not take into account the fact that an individuals’ infection can be tested
for resistance to particular antibiotics. Therefore, these models fail to consider
treatment strategies where an appropriate treatment can eventually be pre-
scribed at the patient level. Development of such a model would allow us to
study antibiotic resistance in the context of test turnaround time, laboratory
tests for resistance, as well as allow us to study the efficacy of different treatment
strategies prior to receiving test results and administration of the appropriate
antibiotic.

• A model to predict antibiotic resistance. The goal is to create a machine learn-
ing model to predict the probability of resistance to particular antibiotics us-
ing genetic information. While methods for detecting antibiotic resistance are
available, they are time intensive (results typically take multiple days) and dur-
ing that time the infection can progress within the patient. These predictive
methods in combination with rapid molecular polymerase chain reaction (PCR)
tests (results can typically take less than an hour) could lead to faster methods
for detecting antibiotic resistance and application of the correct antibiotic for
treatment.
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