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ABSTRACT

The genomic loci bound by the glucocorticoid recep-
tor (GR), a hormone-activated transcription factor,
show little overlap between cell types. To study the
role of chromatin and sequence in specifying where
GR binds, we used Bayesian modeling within the uni-
verse of accessible chromatin. Taken together, our
results uncovered that although GR preferentially
binds accessible chromatin, its binding is biased
against accessible chromatin located at promoter re-
gions. This bias can only be explained partially by
the presence of fewer GR recognition sequences,
arguing for the existence of additional mechanisms
that interfere with GR binding at promoters. There-
fore, we tested the role of H3K9ac, the chromatin
feature with the strongest negative association with
GR binding, but found that this correlation does not
reflect a causative link. Finally, we find a higher per-
centage of promoter–proximal GR binding for genes
regulated by GR across cell types than for cell type-
specific target genes. Given that GR almost exclu-
sively binds accessible chromatin, we propose that
cell type-specific regulation by GR preferentially oc-
curs via distal enhancers, whose chromatin acces-
sibility is typically cell type-specific, whereas ubiq-
uitous target gene regulation is more likely to result
from binding to promoter regions, which are often
accessible regardless of cell type examined.

INTRODUCTION

Transcription factors (TFs) play a pivotal role in regulating
the expression of genes by binding to genomic response el-
ements. The recognition sequences for eukaryotic TFs en-
coded within these response elements are generally short
and degenerate (1). Consequently, only a fraction of all po-
tential binding sites of a TF present in the genome is occu-
pied. Moreover, for several TFs, the genomic binding pat-
tern shows little overlap between cell types (2), further em-
phasizing that the presence of a recognition sequence alone
provides insufficient information to specify where in the
genome TFs bind. Additional information is provided by
the combinatorial architecture of response elements that
typically harbor recognition sequences for multiple TFs.
These TFs can, for example, act cooperatively, when the
binding of one TF is stabilized by the presence of another,
thereby influencing its genome-wide binding pattern (3,4).
In addition to sequence, the local chromatin environment
plays an important role in defining where in the genome
TFs bind. For example, many TFs preferentially bind to re-
gions of accessible chromatin as assayed by DNase I sen-
sitivity assays (5). Accordingly, TF-bound regions are en-
riched for histone modifications that are associated with ac-
tive promoters (e.g. H3K4me3 and H3K9ac) and enhancer
elements (H3K4me1 and H3K27ac) (6). Consistent with an
important role for the chromatin environment in specifying
where TFs bind, genomic TF binding site prediction ben-
efits from incorporating both sequence and chromatin ac-
cessibility data (7,8). Similarly, histone modification data is
highly informative when predicting genomic TF binding (8).

The dynamic nature of the chromatin environment pro-
vides a mechanism to facilitate cell type-specific TF bind-
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ing. For example, regions of accessible chromatin show lit-
tle overlap between cell types, especially regions that do not
locate to the transcriptional start site (TSS) of genes (7,9).
Similarly, binding of the glucocorticoid receptor (GR), a
hormone-activated TF that predominantly binds to regions
of open chromatin, shows little overlap between cell types
(10,11). The cell type-specific binding of GR likely also ex-
plains the limited overlap in genes regulated by GR when
comparing different cell types ((12), this study) and thus
could facilitate the diverse range of biological responses to
glucocorticoid signaling ranging from gluconeogenesis in
the liver, to the suppression of inflammation in chronic in-
flammatory diseases like asthma.

Here, we set out to study the role of sequence and the
chromatin environment in specifying the genomic loci oc-
cupied by GR. Specifically, we explored available data from
the ENCODE (13) and the Epigenomics roadmap (14) con-
sortia regarding several histone modifications, the histone
variant H2A.Z and DNase I sensitivity data in three cell
types for which we have genome-wide GR occupancy data.
Similar to previous studies (10), we find that GR predom-
inantly (94%) binds to accessible (‘open’) chromatin dec-
orated with histone modifications found at transcription-
ally active regions. Since GR almost exclusively binds to
open chromatin, we decided to focus only on the universe
of DNase I Hypersensitive Sites (DHSs) to study the role of
chromatin environment and sequence in specifying which
of the open sites (GR binds ∼15% of all DHSs) are bound
by GR. We used a hierarchical Bayesian model to quantita-
tively describe GR binding in several cell lines based on se-
quence and chromatin features. The model is interpreted as
an exploratory, hypothesis-generating step towards further
investigation of how genomic sequence combines with cell
type-specific chromatin state to produce a diversity of cel-
lular responses to hormone. This approach uncovered that
not all open chromatin is equal and that GR preferentially
binds DHSs decorated with chromatin features found at
enhancers, whereas binding at DHSs decorated with chro-
matin features found at promoters was disfavored. Further,
we found that the depletion of promoter–proximal binding
could be explained in part by changes in sequence compo-
sition, with fewer GR recognition sequences mapping to
promoter–proximal DHSs. Together, our studies uncovered
a preferential bias against promoter proximal GR binding,
and we provide evidence that this may play a role in facili-
tating the cell type-specific transcriptional consequences of
GR signaling.

MATERIALS AND METHODS

Cell lines

Immortalized wild type mouse embryonic fibroblasts
(MEFs) and GCN5/PCAF double knockout (dko) MEFs
(15) were a kind gift of Kai Ge. Cells were grown in DMEM
supplemented with 10% FBS. A549 cells were grown in
DMEM supplemented with 5% FBS, whereas Nalm6 cells
were grown in RPMI 1640 supplemented with 10% FBS.

Chromatin immunoprecipiptation (ChIP) and ChIP sequenc-
ing (ChIP-seq)

ChIP assays were done essentially as described using ei-
ther the N499 GR-antibody ((16), 2 �l/ChIP) an H3K9ac
antibody (C5B11, Cell Signaling, 6 �l/ChIP) or as con-
trol IgG (cat#: C15410206, Diagenode, 6 �l/ChIP). For
each ChIP assay, ∼5 million cells were treated with 0.1%
ethanol vehicle or 1 �M dexamethasone for 1.5 h. For
ChIP-seq experiments, the material of multiple ChIP ex-
periments was pooled to obtain enough material (∼10 ng)
for library preparation. Primers used for qPCR analysis of
ChIP experiments are listed in Table 1.

Immunoblotting

Total protein isolated from equal amounts of cells were
separated with SDS-PAGE gels, transferred to membranes
and incubated with either anti-GR (N499, dilution 1:5000,
(16)), anti H3K9ac antibody (C5B11, Cell Signaling, dilu-
tion 1:1000) or anti-actin (Sc-1616R, Santa Cruz Biotech-
nology, dilution 1:1000) antibodies followed by incubation
with secondary antibodies conjugated with horseradish per-
oxidase. Proteins were visualized using an ECL detection
system (Amersham Biosciences).

DNase I assays

DNase I assays were done essentially as described (17) by
growing MEFs or dko MEFs in six-well plates (500.000
cells/well), washing cells with PBS and scraping them into 1
ml DNase I buffer (20 mM HEPES pH 7.4, 0.5 mM CaCl2,
5 % glycerol, 3 mM MgCl2, 0.2 mM spermine, 0.2 mM sper-
midine) plus 0.2% NP40 alternative. Nuclei from three wells
were pooled, isolated by centrifugation and resuspended in
300 �l DNase I buffer containing 2 �g/ml RNase A. 55 �l
aliquots were DNase I treated (or mock treated to normal-
ize for the amount of chromatin in input) by the addition
of 2.05 �l DNase I (Qiagen, 2.7 u/�l) and then incubated
at 37◦C for 10 min. The reaction was stopped by addition
1 ml stop buffer (50 mM Tris pH 8.0; 200 mM NaCl; 12.5
mM EDTA; 1% SDS, 200 �g/ml proteinase K) and samples
were incubated at 65◦C for 4 h to remove proteins. Finally,
DNA was purified using a PCR purification kit (Qiagen)
and regions of interest were analyzed by qPCR (primers
listed in Table 1).

Computational analysis

Sequencing data.

ChIP-seq data GR. GR ChIP-seq data for GR (U2OS,
IMR90, K562) were previously generated by us and de-
posited at EBI ArrayExpress under accession number E-
MTAB-2955 (18). ChIP-seq data for A549, Nalm-6 and
MEFs were deposited at EBI ArrayExpress with this study
under accession number E-MTAB-5113.

ChIP-seq processing. GR ChIP-seq data for A549 and
Nalm-6 was processed as described previously (16). For wild
type and dko MEFs, the paired-end sequence reads derived
from GR ChIP-seq experiments were mapped with Bowtie
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Table 1. qPCR primers used in this study (all target mouse)

Gene/Locus: Primer fw: Primer rev:

FKBP5 TCTGGTCACTGCAGACATCAC GTCAGCACATCGAGTTCATGTG
RAC1 TGACCTTGGCATTGGTTCTG TTTGAGTCTCCAGTGGCTCTTG
RBM16 CCAGTTAAGTTCTCAGGCACAC AACAGCTCACTATGCCAGACTG
PHACTR1 AGAGAGATCCCCTGCCAAAG GCCTTGTGAAGCTCATGTTTG
SCN9a GGCAGAAAAGAAACCAACATCC TCTTAGACACAGTGCCTGCTG
SUMF1 TGCACGGTAGCTTTCATATTCAG CCAGCCTGTGTGATGTTCTTTG
GIG18 TAAGCACCAGTTCACAAGCC CTGCCTGTGACTAAAGGATGAC
MAGI2 AACCACGTCTAAGTGACTCACC AGAACCACTGCTAGACACTGC
TXK AATTCCTGGACTCCTGAATCATG GACGTGTCATAACTCACTGCAG
CDCa7 TGTCACACGGCTAAGCTCTG ACAGAGAGTGTTAGGCCAGAC
FAM76b AACAGCTCCTGTAGTCAGTCAG TTGCCAGAGTCCAGAGGAAATG
EEF2 GCATCTATTGTGTGCAGAAGGC TTTCAAGAGAGCCCTCGATGC
GAPDH GGGCGCCCTTCCAATTTTATC TCACTTGTTGGACAGCACTG

2 (19) onto the Mus musculus assembly mm9. Number of al-
lowed mismatches was set to zero; length of seed substrings
to align was set to 20; default setting were used for all other
parameters. Peak calling was done using MACS2 (20) us-
ing the input DNA from each respective cell line as control.
Genome size was set to –mm; the keep-dup parameter to
1 and default was used for all remaining parameters. Peaks
were called using a FDR cutoff of 0.01.

Overlap GR peaks between wild type and dko MEFs. The
differential GR binding analysis between wild type and
dko MEFS was done using the R package DiffBind (21,
http://bioconductor.org/packages/release/bioc/vignettes/
DiffBind/inst/doc/DiffBind.pdf .). Differentially bound
peaks where called using the Mann–Whitney-U test with
a significance cut off of 0.05. For qPCR validation exper-
iments, loci representing the three classes of GR binding
sites: common, dko-specific and wt-specific where picked
based on peak height (for common peaks we chose ones
with high signal) and peak ratio (for dko- and wt-specific
loci, we chose peaks with relatively large differences in peak
height between dko and wt MEFs).

ChIP-seq data histone variants, histone modifications and
TFs. ChIP-seq mapped sequencing data (BAM files)
and annotated peaks from the ENCODE project (13)
(A549, K562) were downloaded from the UCSC genome
browser website. ChIP-seq data for IMR90 was from the
Roadmap Epigenomics Mapping project (14) and down-
loaded from the NCBI GEO website under the series
number GSE16256. H3K9ac ChIP data from primary
MEFs was accessed via GEO database series numbers
GSM863802 and GSM863804.

The following files were downloaded from the ENCODE
project’s Data Coordination Center FTP site and used for
comparative analysis:

(http://hgdownload.cse.ucsc.edu/goldenpath/hg19/
encodeDCC/wgEncodeOpenChromChip/)

Pol2: wgEncodeOpenChromChipA549Pol2PkRep
1.narrowPeak ETS1: wgEncodeHaibTfbsA549Ets1V042
2111Etoh02PkIntersect.broadPeak

CEBPB: wgEncodeHaibTfbsA549Cebpbsc150V04221
11PkIntersect.broadPeak

FOXA1: wgEncodeHaibTfbsA549Foxa2V0416102Eto
h02PkIntersect.broadPeak FOSL2: wgEncodeHaibTfbs
A549Fosl2V0422111Etoh02PkIntersect.broadPeak

TCF12: wgEncodeHaibTfbsA549Tcf12V0422111Etoh0
2PkIntersect.broadPeak

DHS data. DNase I-seq mapped sequencing data (BAM
files) from the ENCODE project (13) (A549, K562) were
downloaded from the UCSC genome browser website.
DNase I data for IMR90 was from the Roadmap Epige-
nomics Mapping project (14) and downloaded from the
NCBI GEO website under the series number GSE16256.
The DHSs as annotated by the ENCODE project (13) were
used to compare GR binding patterns at distinct genomic
regions (promoters, exons, introns, distal) and are available
from the UCSC Genome Browser as ‘narrowPeak’ files.
DHS regions mapping to repeats (RepeatMasker (22) score
>1000, track downloaded from repeatmasker.org, Febru-
ary 2012) were removed and resulted in 105 121 remaining
DHSs for A549, 127 803 for IMR90 and 97 304 for K562
cells.

Motif score calculations

Motif scores were calculated using the GR motif MA0113.1
from the JASPAR database (23) and scanning both strands
in a 160 bp range centered on the DHS peak. The maximum
log odds score was assigned to each DHS location. Scan-
ning was performed using the PWMscoreStartingAt func-
tion of the Biostrings R/Bioconductor package (24), with a
zero-order background model for DNA with 42% GC con-
tent.

% Deviance explained by promoter proximity

The effect of promoter proximity on GR binding was tested,
controlling for lack of sequence motif, using an analysis of
deviance (the change in −2 × log likelihood for a nested
statistical model). A binary variable was defined for each
DHS, indicating if the DHS overlapped a GR peak. The
GR peak presence variable was then modeled using a lo-
gistic regression. Two models were fit: (0) motif score as the
sole independent variable to explain GR peak presence, and
(1) motif score plus a binary indicator of promoter proxim-
ity of the DHS as independent variables to explain GR peak
presence. The deviance explained by introducing the indica-
tor variable of promoter proximity (model 1) was expressed
as a percent of the deviance explained by motif score alone
(model 0) (Figure 4B). The significance test for all cell lines

http://bioconductor.org/packages/release/bioc/vignettes/DiffBind/inst/doc/DiffBind.pdf
http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeOpenChromChip/
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rejected the null hypothesis that promoter proximity did not
help to explain depletion of GR binding beyond the motif
score (P < 2 × 10−16).

Calculation of the overlap between GR peaks and DHSs

The overlap of GR peaks with DHSs (Figure 1B) and the
overlap of DHSs with GR peaks (Figure 2A) was calculated
using the GR peak regions as defined by the MACS2 soft-
ware (20) for the IMR90 ChIP-seq data, and the DNase
I regions reads from the following file for the IMR90 cell
line as defined by the ENCODE project: DNase I: wgEn-
codeOpenChromDnaseImr90Pk.narrowPeak

Calculation of the overlap with different functionally an-
notated genomic regions for GR bound regions, GR-bound
DHSs and all DHSs

The overlap of DHSs and GR-bound DHSs with promot-
ers, exons, introns and distal regions (Figure 3A) was calcu-
lated using the genomic annotations defined by the Biocon-
ductor package ‘TxDb.Hsapiens.UCSC.hg19.knownGene’
(24). Promoter regions were defined as ±2.5 kb from the
TSS of a known gene. Because the genomic features can
overlap, the following hierarchy was defined: (i) promoters,
(2) exons, (3) intronic, (4) distal. In case a GR peak over-
lapped multiple features, it was assigned exclusively to one
category according to this hierarchy.

The overlap of TF peaks with promoters, exons, introns
and distal regions (Figure 3B) was calculated similarly, but
using the ENCODE defined peaks from files downloaded
from the Data Coordination Center FTP site.

Overlap MEF common, wt-specific, dko-specific map-
ping to promoters (Figure 5E): The overlap of MEF com-
mon, wt-specific, dko-specific GR peaks is based on the
same definition of promoter regions described above. A GR
peak was considered to map to promoters when at least one
promoter region overlapped the middle of the peak region.

Calculation of read count difference for histone marks

To compare the number of ChIP-seq reads within GR peak
regions to random regions of the genome (Figure 1C), we
took the 1000 GR peak regions with the lowest p-value
as calculated by MACS (20) and counted the reads within
them for each of the histone modifications, DNase I and In-
put, then took the median across all 1000 regions. We then
defined a background set of non-peak regions by shifting
each of the 1000 GR peak regions 5kb away in a random
direction (upstream or down), counted the reads there and
again calculated the median across all 1000 background re-
gions. The ratio of these two medians (GR / background)
was then calculated, converted to log2 scale and plotted.

Average read count profiles for histone marks ±2 kb from
the center of DHS (Supplementary Figure S1) were calcu-
lated using the R/Bioconductor GenomicRanges package
(25), taking the average of read counts at each position rel-
ative to the DHS center over the set of DHSs which over-
lapped GR peaks, or the set of DHSs which did not overlap
a GR peak.

To compare GR-bound promoter DHSs with unbound
promoter DHSs in IMR90 cells (Figure 3c), reads from EN-
CODE histone marks ChIP-seq experiments in IMR90 cells
were counted using Bioconductor core packages in 1600
bp windows centered on promoter–proximal DHSs (DHSs
within 200 bp of a transcriptional start site defined by Ref-
Seq gene annotation). Shown are boxplots of log10 counts
of reads across all DHSs, split by whether or not the DHS
overlapped a GR peak as identified by MACS software (20).

H3K9ac abundance for different classes of GR ChIP-seq
peaks in MEFs (common, dko-specific and wt-specific) was
computed from datasets GSM863802 and GSM863804 re-
trieved from the GEO database. Both datasets were pooled
for the analysis. To avoid biases from different widths of GR
peaks, we set the width for each peak to 500 bp for each class
of GR ChIP-seq peak (middle of peak region -249 bp, +250
bp). A single-end read from H3K9ac ChIP-seq was consid-
ered to fall into the 500 bp GR peak region when at least
1bp overlapped.

Gene regulation and promoter–proximal binding

Microarray datasets for U2OS, A549 and Nalm6 cells com-
paring dexamethasone treatment (1 �M, 3h) with vehicle
control were downloaded from E-GEOD-38971 (EBI Ar-
rayExpress) and processed as described previously (16). To
call genes regulated upon treatment with dexamethasone,
we used an adjusted p-value cut-off of 0.05 and 1.5 for the
fold change (either up- or down-regulated). The overlap of
the regulated gene sets between cell lines is visualized as
Venn diagram (Figure 6A). The percentage of genes with
GR binding in the promoter was computed for cell type-
specific genes and for genes regulated in all three cell lines
examined (common target genes). Promoters were defined
as regions ±2.5 kb around all transcript start sites anno-
tated in the Ensembl database (grch37) of Homo sapiens
genes, accessed via Bioconductor package BioMart (26). In
case a gene had several transcripts, all of them were con-
sidered. A gene was marked as having a GR peak in the
promoter, if at least one of its promoter regions overlapped
a GR peak position.

Hierarchical bayesian model

A hierarchical Bayesian model (27) was constructed to
correlate binding of GR (as measured by ChIP-Seq read
counts) with chromatin features and motif score in DHSs
across experiments and across cell types. The log of read
counts for various chromatin features plus a pseudocount
of 1 and the motif score over the annotated DHSs of a
cell type were arranged as columns of a matrix X (Figure
2B). The chromatin feature matrix X was identical for ex-
periments of the same cell type, except the Input feature,
which was paired with the GR ChIP experiment: each of
the IMR90 ChIP-Seq experiments was paired with its own
Input experiment, and the A549 ENCODE GR ChIP ex-
periments were paired with the A549 ENCODE Input ex-
periment. This matrix X was then centered and scaled to
have columns with zero mean and unit standard deviation.
For an experiment k and a genomic range i centered on a



Nucleic Acids Research, 2017, Vol. 45, No. 4 1809

A

B

C

Figure 1. Interaction of GR with the chromatin landscape. (A) Normalized tag density from ChIP-seq for GR after hormone treatment and from DNase-
seq and H3K27ac, H3K4me1 and H3K36me3 ChIP-seq prior to hormone treatment in IMR90 cells is shown for a region of the X-chromosome around
the GR target gene TSC22D3. (B) Distribution of GR ChIP-seq peaks between DNase I hypersensitive sites (DHSs) as annotated by the ENCODE
consortium (accessible chromatin) and the rest of the genome (inaccessible chromatin, non-DHS) in IMR90 cells. (C) Median read count difference of
chromatin features as indicated between GR ChIP-seq peaks and genomic control regions 5kb away (randomly up- or down-stream of the GR peaks) is
shown for three cell lines: A549, IMR90 and K562.
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D

Figure 2. GR binding in the universe of open chromatin. (A) Pie chart showing the percentage of all DHSs in IMR90 cells occupied by GR (15%) in
black. (B) Left: The hierarchical Bayesian model for a single cell type to model the read density of GR binding (tall colored columns), based on various
chromatin features (colored rectangles). Right: The full hierarchical model. The grey node at the bottom indicates the data. As output, the model generates
coefficients (�) for each chromatin feature and for each experiment. Experiments on the same cell type share a common effect (�), and all cell types share
a common effect �. (C) Estimated coefficients for all levels of the model, with cell type, lab and replicate number indicated e.g. A549 TRG. The cell type
parameters (�) are indicated with only the cell type e.g. A549. The parameter � is labeled ‘all’. Dots mark the posterior mean; whiskers indicate the 95%
quantile-based interval. P (positive) from 0 to 1 indicates the posterior probability of the coefficient having a positive impact on GR binding, according to
the posterior distributions obtained from the hierarchical Bayesian model. (D) % variance explained by the model for each of the cell lines.

DHS, the count of GR ChIP-Seq reads was modeled as fol-
lowing a Poisson distribution with a varying mean:

Kik ∼ Poisson (μik)
log (μik) = β0k + Xi∗kβ∗k

The ‘*’ indicates iteration over all j explanatory features.
The coefficient �0k provides a sample-specific intercept, or
base level of GR ChIP-seq read counts. The coefficient �jk
is interpreted as the multiplicative effect of chromatin fea-
ture j on the GR ChIP-Seq read counts for experiment k.
A positive coefficient implies an inductive contribution to
GR binding and a negative coefficient implies an inhibitory
contribution to GR binding, while fixing the contribution
of all other chromatin features.

We specify that �jk for experiments k of the same cell type
are related, with ct(k) denoting the cell type of experiment

k. These coefficients are given a shared prior mean �j,ct(k),
and experiment-specific variance �2

�:

β0k ∼ N
(
0, σ 20

)

βjk ∼ N
(
νj,ct(k), σ

2
β

)

The log of the mean for a given experiment and genomic
range, log(�ik), is therefore distributed as a normal random
variable (the sum of a number of normal random variables).
Each experiment k has its own set of coefficients, allowing
for variability in the mean across samples, similar to the
over-dispersion allowed by the Gamma-Poisson (Negative
Binomial) distribution.
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A

C

B

Figure 3. Genomic distribution of DHSs and of GR-bound DHSs. (A) Distribution of all DHSs and of GR-bound DHSs in cell lines as indicated relative
to annotated genomic features (promoters: ±2.5 kb from TSS; exons, introns and distal (rest)). (B) Same as for a) except that ChIP-seq peaks for TFs as
indicated (A549 cells) were analyzed. (C) Comparison of GR-bound and unbound promoter DHSs in IMR90 cells uncovered that GR-bound regions have
higher levels of enhancer-associated marks (H3K4me1, H3K12ac and H3K20ac) whereas levels for H3K4me3, a typical promoter mark, are lower when
compared to their unbound DHS counterparts.
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Figure 4. Role of sequence composition in explaining the promoter–proximal depletion of GR binding observed. (A) Distribution of GR motif score (GR
motif MA0113.1 from JASPAR, (23)) for the following groups: All promoter–proximal DHSs (salmon), all distal DHSs (green), for GR-bound proximal
DHSs (turquoise) and GR-bound distal DHSs (purple) for cell lines as indicated. (B) Percent deviance of GR peak presence at DHSs explained by promoter
proximity while controlling for motif score, as a percent of the deviance explained by the motif score alone indicates that motif score distribution explains
some, but not all promoter–proximal depletion of GR binding.
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The parameters of the distributions for the main model
coefficients �jk are themselves distributed as follows:

νj,ct(k) ∼ N
(
λj, σ

2ν : ct (k)
)

λj ∼ N
(
0, σ 2λ

)

σ0, σβ, σν:ct(k), σλ ∼ � (α = 10, β = 10)

The term �j gives the overall contribution of chromatin
feature j on GR binding – across all cell types included in
the hierarchical model. The zero-mean normal prior for �j
in practice produces a shrinkage of terms towards zero (no
contribution to GR binding) unless the data provides evi-
dence to the contrary.

The posterior of the model parameters conditioning on
the observed data was sampled using the Stan C++ MCMC
package and the rstan R package (28). The model was run
for four chains for 4000 iterations (the first 2000 iterations
discarded as burn-in) using the ‘no U-turn’ setting. R-hat
values near 1 were used as a convergence diagnostic. Exam-
ple code for the Bayesian model is provided as a separate
supplementary file (bayes model Loveteal 2016.txt).

Variance explained by the hierarchical Bayesian model

An estimate of the percent variance of log-scale GR ChIP-
seq read counts explained by the model was calculated by

squaring the Pearson correlation coefficient between the log
observed signal and the log of the predicted GR read count
for each DHS, using the coefficients estimated by the hi-
erarchical Bayesian model. The estimated coefficients used
for prediction were the posterior means from the Bayesian
model.

RESULTS

GR preferentially binds accessible chromatin decorated with
chromatin features associated with transcriptional activity

Sequences matching the GR recognition sequence are ubiq-
uitously found in the genome, yet only a cell type-specific
minority are actually bound. To understand the mecha-
nisms that specify which of these potential binding sites
are in fact occupied by GR, we studied the role of the
chromatin landscape in which these binding sites are em-
bedded. Specifically, we used the wealth of information re-
garding chromatin features available from the ENCODE
and the Epigenomics roadmap in three cell types (A549,
K562 and IMR90) for which we have genome-wide GR
ChIP-seq data ((18) and this study). Notably, the data re-
garding the chromatin landscape was generated in the ab-
sence of GR ligand and thus represents the chromatin land-
scape GR encounters upon ligand binding. Previous stud-
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ies have shown that chromatin accessibility pre-determines
GR binding patterns, with the majority of binding occur-
ring at preexisting loci of accessible chromatin (10,29). Ac-
cordingly, we found that the majority of GR binding in
IMR90 cells (94%) overlaps with DHSs as annotated by
the ENCODE consortium (13) (Figure 1A and B). Next,
we compared the levels of chromatin features at GR-bound
regions with those found at random genomic regions. As
expected, this analysis showed that GR-bound regions have
increased levels of DNase I sensitivity for each of the cell
lines examined (Figure 1C). Furthermore, the DHS signal
displays a distinctive pair of peaks flanking the GR-bound
regions for all enriched histone modifications (H3K27ac,
H3K4me1/2/3, H3K9ac) with the exception of H3K4me3,

which showed a single peak overlapping the GR ChIP-seq
peak (Supplementary Figure S1). The pair of peaks is in-
dicative of GR binding in between nucleosomes, whereas
the single peak for the H3K4me3 modification suggests that
GR might bind on top of the nucleosome when this mod-
ification is present (Supplementary Figure S1). No strik-
ing enrichment at GR-bound regions was observed for hi-
stone modifications associated with either transcriptionally
inactive regions (H3K9me3 and H3K27me3) or with tran-
scriptional elongation (H3K36me3, H3K79me2). Interest-
ingly, we found that H4K20me1, a histone mark linked to
transcription-linked histone turn-over (30) and Polycomb
repression (31), showed a marked enrichment at GR-bound
regions in IMR90 and K562 cells, whereas no enrichment
was observed in A549 cells (Figure 1C), indicative of a pos-
sible role of H4K20me1 in generating cell type-specific GR
binding patterns.

Hierarchical Bayesian modeling of GR binding within uni-
verse of accessible chromatin

Together, our findings corroborate previous studies show-
ing that GR predominantly binds to regions of accessible
chromatin decorated with chromatin features found at tran-
scriptionally active regions. However, GR only binds a mi-
nority (15% in IMR90, Figure 2A) of all DHSs found in a
cell raising the question: what distinguishes DHSs bound
by GR from those that are not bound? Notably, the oc-
currence of a GR consensus motif does not explain which
sites GR binds with great accuracy because many bound
sites do not contain a consensus motif and conversely, be-
cause many unbound sites contain GR consensus motifs
((18,32) and Figure 4A). Therefore, we constructed a hier-
archical Bayesian model which incorporates both sequence
and chromatin features to quantitatively describe the bind-
ing of GR (as measured by ChIP-seq read counts) based
on the level of cell type-specific chromatin features and the
score of the GR motif in DHSs across experiments and
across cell types (Figure 2B). As output, the model gener-
ates estimates for coefficients (�) for each feature and each
cell type, which can be compared between features to de-
termine their relative contribution to explaining GR bind-
ing levels. Furthermore, these coefficients can be compared
between cell lines to find potential differences between cell
types. Positive estimated coefficients indicate a positive as-
sociation with GR binding whereas negative estimated co-
efficients indicate a negative association with GR binding.
To assess how accurately our model describes GR binding,
we calculated the percentage of variance of GR binding ex-
plained by using the fitted hierarchical model coefficients to
predict log counts of ChIP-seq reads. The percent variance
explained was relatively high for IMR90 and K562 (48–
57%), while for A549, the percent variance explained was
22%. This difference may have be accounted for by generally
lower read counts in the A549 ChIP-seq experiment, leading
to more technical, sampling variability at low counts values.

Next, we analyzed the coefficients for individual chro-
matin features and found that they are mostly consistent
across cell types (Figure 2C). In general, chromatin fea-
tures that show the highest positive correlations with GR
binding are marks of distal regulatory elements (H3K27ac,
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H3K4me1) and the GR motif score. Further, within the uni-
verse of DHSs, GR preferentially binds to regions with high
DNase I and input read counts. Within the model, the fea-
tures are scaled to facilitate direct comparisons. Therefore,
the similar positive values for the DNase I coefficient and
the motif score coefficient indicate that they have a similar
positive association with GR binding, whereas the highest
positive coefficient is observed for H3K27ac levels indicat-
ing that this feature is more important in quantitatively ex-
plaining the level of GR binding than any other feature in-
cluding motif score (Figure 2C).

Four consistently negatively associated chromatin fea-
tures are H3K36me3, H3K79me2, H2A.Z and H3K9ac.
H3K36me3 is typically found along the gene body of tran-
scribed genes and has been linked to suppression of cryptic
transcription initiation (33). The negative association with
GR binding may thus reflect a link between H3K36me3 lev-
els and prevention of TF binding in transcribed regions.
H3K79me2 is also enriched in the gene body of transcribed
genes and linked to various biological processes includ-
ing telomeric silencing, DNA repair and cell cycle check-
points (34), if and how this could be linked to GR binding
however is unclear. The consistent negative association of
H2A.Z with GR binding might at first appear incompatible
with the findings reported by John et al. (29) that H2A.Z
is highly enriched at GR binding sites. However, this study
compared H2A.Z levels at GR binding sites with nearby re-
gions that are not DHSs. Similarly, our genome-wide analy-
sis (Figure 1C) shows a strong positive correlation between
H2A.Z levels and GR binding. In contrast, the hierarchi-
cal Bayesian model presented here focuses only on the uni-
verse of DHSs and suggests that of all accessible sites, GR
preferentially binds DHSs with low H2A.Z levels. Similar
to H2A.Z, H3K9ac is enriched at the transcription start site
of genes (35) and we find that within the universe of DHSs,
GR binding is associated with low levels of H3K9ac (Figure
2C). Interestingly, the coefficients of two chromatin features
that show a strong association with GR binding, H3K4me2
and H3K4me3, have a different sign depending on the cell
line examined. H3K4me2 is positively associated with bind-
ing in A549 and IMR90 cell lines, whereas its negatively as-
sociated in K562 cells. In contrast, H3K4me3 levels corre-
late negatively with GR binding in A549 and IMR90 cells
whereas they are a positive predictor of GR binding in K562
cells.

Together, our hierarchical Bayesian modeling of GR
binding within the universe of accessible chromatin uncov-
ered that GR preferentially binds regions with a recog-
nition motif and chromatin marks associated with (ac-
tive) enhancers. Further, some of the chromatin features
showed a cell type-specific link to GR binding indicative
of context-specific effects of the chromatin environment
on GR binding. Unexpectedly, chromatin marks associated
with promoter regions (H3K9ac, H2A.Z and to some de-
gree H3K4me3) showed a negative association with GR
binding, suggesting that mechanisms exist that interfere
with promoter–proximal GR binding.

GR binding is depleted at promoter–proximal accessible chro-
matin

The negative link between GR binding and chromatin
marks found at promoter regions suggests that GR prefer-
entially binds to open regions that do not map to the pro-
moters of genes. To test this hypothesis, we first determined
for each cell line, the fraction of genome-wide DHSs that
map to promoters (±2.5 kb around TSS of genes), to ex-
ons, to introns and to the rest of the genome (distal). This
analysis showed that the percentage of all DHSs mapping
to promoter regions ranged from 24% for IMR90 cells to
27% for A549 and K562 cells (Figure 3A). In comparison,
the percentage of GR-bound DHSs mapping to promot-
ers is strikingly lower, especially for A549 and IMR90 cells
(A549: 13%; IMR90 12%; K562 17%). Similarly, the per-
centage of GR-bound DHSs mapping to exons is lower than
the percentage observed for all DHSs whereas GR binding
is relatively enriched at intronic and distal DHSs. Together,
our analysis shows that GR preferentially binds to intronic
and distal DHSs rather than DHSs mapping to promoter
and exonic regions.

To test if the relative depletion of promoter–proximal
DHS binding is GR-specific, we examined the distribution
of other TFs across different genomic locations for ChIP-
seq peaks mapping to DHSs. Similar to what we observed
for GR, we observed promoter–proximal depletion of bind-
ing for FOSL2 and TCF12 TFs (Figure 3B). In contrast,
ETS1, a member of the ETS family of transcription fac-
tors and RNA polymerase II preferentially bind promoter–
proximal DHS regions with little binding to either exons, in-
trons or distal DHSs (Figure 3B; similar patterns observed
for ATF3, BHLHE40, c-MYC, E2F6, ELF1, PBX3, USF1,
YY1c and ZBTB33, data not shown). A third group of TFs
showed no marked bias for DHSs at specific genomic re-
gions as their binding distribution followed the distribu-
tion observed for all DHSs (Figure 3B, examples shown
for FOXA2 and CEBPB; similar pattern seen for JUND
and TEAD4, data not shown). Together, our analysis in-
dicates that, depending on the TF examined, binding can
either be preferentially promoter–proximal, relatively unbi-
ased toward a specific genomic location or, as observed for
GR, depleted at promoter regions when compared to the
distribution of all DHSs found in a cell.

Notably, GR does bind promoter–proximal in a num-
ber of cases (337). To determine if the chromatin fea-
tures found at GR-bound promoter DHS-regions differ
from those present at unbound promoter DHSs, we com-
pared their levels. This analysis showed that the level of
certain histone modifications differs between GR-bound
and unbound promoter DHSs. First, GR-bound promoter
DHSs have higher average levels of H3K4me1, whereas
H3K4me3 levels were lower than those observed for un-
bound promoter DHSs (Figure 3C). Moreover, H2BK12
and H2BK20 acetylation levels, which are markers of active
enhancers (36), are higher at GR bound promoter DHSs.

Together, we found that GR preferentially binds non-
promoter DHSs and that the subset of GR-bound promot-
ers shows chromatin characteristics typical for enhancer re-
gions.
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GR motif score explains part of the observed promoter prox-
imal depletion of GR binding

A simple explanation for the depletion of promoter–
proximal GR binding is that many promoters lack a proper
sequence motif to support GR binding. To investigate the
role of sequence composition, we calculated the distribu-
tion of GR motif scores for DHSs grouped by GR peak
presence and promoter proximity. As expected, for each of
the cell lines, GR-bound DHSs have a slightly higher av-
erage motif score than unbound DHSs (Figure 4A). Fur-
ther, the average motif score for distal DHSs is higher than
for their promoter–proximal counterparts arguing that se-
quence composition contributes to the promoter–proximal
depletion of GR binding observed. However, overall the
promoter proximal and distal groups of DHSs have largely
overlapping motif score distributions and a more formal ap-
proach was needed to determine the contribution of mo-
tif score in explaining the promoter proximal depletion ob-
served (Figure 4A). Therefore, the contribution of motif
score and promoter proximity to GR binding was quan-
tified and statistically tested using an analysis of deviance.
When controlling for motif score, promoter proximity could
still explain a significant portion of the depletion of GR
peaks (Figure 4B) arguing for the existence of additional
mechanisms responsible for the observed promoter proxi-
mal depletion of GR binding. Together, our analysis indi-
cates that the relatively low frequency of GR consensus mo-
tif matches explains part, but not all, of the depletion of GR
binding at promoter regions.

Increased genome-wide GR binding in the absence of GCN5
and PCAF

One unexpected finding from our Bayesian modeling was
the striking negative association between H3K9ac levels
and GR binding. This finding was unexpected because
acetylation of H3K9 is linked to transcriptionally active ge-
nomic regions and several studies have shown a positive cor-
relation between H3K9ac levels and TF binding (37,38).
H3K9ac is preferentially found at the TSS of genes and
accordingly, H3K9ac levels can be used to accurately clas-
sify enhancers and promoters (39). The majority of H3K9
acetylation is carried out by GCN5 and PCAF, two en-
zymes that acetylate histones and other proteins including
transcription factors (15,40). Of note, consistent with a role
of these enzymes in modulating GR binding, overexpres-
sion of GCN5 results in a reduced activation of endoge-
nous GR target genes and reduced DNA binding of GR
(40). To explore the possible causative and mechanistic con-
nection between H3K9ac levels and GR binding, we ex-
amined how the absence of GCN5 and PCAF influences
the genome-wide binding pattern of GR (Figure 5A). For
these assays, we used mouse embryonic fibroblast (MEF)
GCN5/PCAF double knock-out cells (dko MEFs) which
show an almost complete loss of global H3K9ac levels
whereas acetylation and methylation levels of other lysines
in the tails of histones, including H3K27ac, are largely unaf-
fected ((15), Supplementary Figure S2A). Accordingly, we
found that chromatin-associated H3K9ac levels, as assayed
by ChIP, were markedly reduced in dko MEFs when com-
pared to wild type (Figure 5B). Next, we assayed genome-

wide GR binding in wild type and in dko MEFS by ChIP-
seq. These experiments showed that the majority of GR
peaks in wild type were also bound in dko MEFs (Figure
5C and D). In addition, we find that some peaks are wild
type-specific (Figure 5C). Most strikingly however and con-
sistent with a role of these enzymes in suppressing GR bind-
ing, we find a 3.7 fold increase in the number of genomic
GR binding sites in the dko MEFs (Figure 5D). Subsequent
analysis of GR binding at the three classes of bound loci
(common; dko MEF-specific; wild type MEF-specific) by
qPCR verified what we observed in the ChIP-seq experi-
ments for each of the loci tested (Supplementary Figure
S2C), arguing that the observed increase in GR binding in
dko MEFs is not simply a consequence of differences in the
quality of the ChIP-seq experiments. Further, analysis of
two genes each near wild type and dko-specific GR peaks
showed differences in GR-dependent regulation consistent
with the observed cell type-specific GR binding (Supple-
mentary Figure S3). The increase in binding cannot be ex-
plained by changes in GR protein levels which are compa-
rable for wild type and dko MEFs (Supplementary Figure
S2B). Previous studies have shown that deletion of GCN5
results in a redistribution of DHSs in yeast (40). Therefore,
we tested if changes in chromatin accessibility could explain
the changes in GR binding upon GCN5/PCAF deletion by
comparing DNase I sensitivity for each of the three classes
of binding sites. The analysis of control ‘closed’ and ‘open’
regions showed that the assay can be used to distinguish re-
gions with different chromatin accessibility and that these
control regions yielded comparable results for wild type and
dko MEFs (Supplementary Figure S2E). Further, we found
that changes in GR binding levels correlated with changes
in DNase I sensitivity prior to GR binding for some of the
loci examined (Supplementary Figure S2E). For example,
the dko-specific binding sites showed higher levels of acces-
sibility in dko MEFs than their wild type counterpart for
each of the loci examined, arguing that chromatin accessi-
bility might contribute to the changes in GR binding we
observed upon GCN5/PCAF deletion.

Next, we set out to determine if the increased genome-
wide GR binding in the absence of GCN5 and PCAF might
explain the promoter–proximal depletion of GR binding we
observe in wild type cells. Therefore, we calculated the per-
centage of binding sites mapping to promoter regions for
each of the three classes of GR binding sites: dko-specific,
wild type-specific and common. If GCN5 and PCAF in-
deed play a key role in preventing promoter–proximal GR
binding, we would predict that a higher percentage of dko-
specific peaks map to promoter regions than for common or
wild type-specific peaks. What we observed however is that a
smaller percentage of dko-specific peaks maps to promoter
regions than for common and wild type-specific peaks (Fig-
ure 5E). Further, the gained dko sites do not have higher
H3K9ac levels prior to GR activation than those observed
for common and wild type-specific peaks (Supplementary
Figure S2D, Figure 5B) indicating that gained binding sites
in the dko MEFS are not preferentially regions with high
H3K9ac levels in wild type MEFs.

Together, our findings indicate that the negative associa-
tion between H3K9ac levels and GR binding does not re-
flect a causative link explaining the depletion of promoter–
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proximal GR binding observed. Nonetheless, PCAF and
GCN5 appear to modulate genome-wide GR binding, pos-
sibly by inducing locus-specific changes in chromatin acces-
sibility or by acetylating GR, which in turn can influence
GR’s ability to interact with DNA (41).

Cell type-specific GR target genes have fewer promoter prox-
imal GR peaks

The observed bias against GR binding at promoter–
proximal DHSs matches findings by others (10,42) and
prompts the question what the underlying biological signif-
icance might be. One possibility could be that the depletion
is linked to the cell type-specific functions of the glucocorti-
coid receptor, which regulates vastly different sets of genes
in different cell types (Figure 6A, (12)). Given the strong
link between GR binding and chromatin accessibility, we
hypothesized that cell type-specific regulation might pref-
erentially occur via distal enhancers, whose chromatin ac-
cessibility is typically cell type-specific, whereas the chro-
matin of promoter regions is often accessible regardless of
tissue examined (7,9). To test this hypothesis, we first com-
pared the transcriptional responses to GR activation be-
tween three cell types (A549, U2OS and Nalm6) for which
we also generated genome-wide GR binding data. Consis-
tent with other studies (12), we find that GR target genes
show little overlap between cell types (30 out of a total of
2974 regulated genes in three cell lines combined are regu-
lated in all three cell types). If cell type-specific gene regula-
tion is preferentially driven by distal binding, the expecta-
tion would be that cell type-specific target genes have fewer
promoter–proximal GR binding events than common tar-
get genes. Accordingly, we find that the percentage of genes
with a promoter–proximal GR peak is smaller for cell type-
specific target genes than for common target genes for each
of the three cell lines examined (Figure 6B) and the same
trend is seen when cell-type-specific target genes are com-
pared to genes that are regulated in two out of three cell
lines, indicating that depletion of promoter proximal bind-
ing might play a role in safe-guarding GR’s ability to regu-
late target genes in a cell type-specific manner.

DISCUSSION

Prior to the advent of methods to map TF occupancy
genome-wide, studies primarily focused on promoter–
proximal regions to identify candidate TF binding sites re-
sponsible for the regulation of genes. Subsequent genome-
wide analysis of TF binding have shown that the major-
ity of binding for certain TFs, including GR, actually oc-
curs at promoter-distal sites suggesting that certain TFs
might preferentially regulate transcription from remote lo-
cations. Notably, the majority of open chromatin maps
to promoter-distal locations and findings presented here
and by others (10) show that most GR binding occurs at
chromatin that is accessible prior to hormone treatment.
Thus, one explanation for the genomic distribution of GR
binding is that it simply follows the genomic distribution
of DHSs. Interestingly however, our approach, which fo-
cused on the universe of DHSs, uncovered that GR bind-
ing is biased against promoter proximal regions (Figure

3A). In agreement with our findings, another study also
found that GR binding is biased against promoter prox-
imal DHSs with 39% of all DHSs mapping to promoter
regions whereas the percentage of GR binding sites map-
ping to promoter regions was only 7% (10). Our analysis
of other TFs showed different biases towards binding at
DHSs located at distinct genomic regions (Figure 2B). For
some TFs (for example ETS1, c-MYC and E2F6) the major-
ity of binding (>75%) occurs at promoter–proximal DHSs
whereas other TFs follow the distribution of DHSs or, like
GR, show a bias against promoter–proximal binding. This
prompts the question what the biological significance of the
promoter–proximal depletion of TF binding might be. We
propose that gene regulation by distal regulatory elements
might play a role in allowing GR to regulate different tar-
get genes in different tissues. Our hypothesis is motivated by
the fact that promoter–proximal binding sites are typically
accessible across cell types, whereas promoter-distal sites
are predominantly accessible in a cell type-specific man-
ner (7,9). Accordingly, ChIP-seq peaks in promoters fre-
quently show a larger percentage overlap between cell types
than peaks promoter-distal sites (2,43). We propose that
GR might bind and regulate transcription from promoter–
proximal regions regardless of cell type, whereas binding
and regulation from promoter-distal regions is more likely
to direct cell type-specific transcriptional programs (Fig-
ure 7). Consistent with our hypothesis, a larger percent-
age of genes regulated by GR across cell types harbor a
promoter–proximal GR peak than genes regulated in a cell
type-specific manner (Figure 6B). In contrast, the prefer-
ential promoter–proximal binding of other TFs involved in
fundamental processes like DNA repair and cell-cycle pro-
gression (E2F6, YY1 and c-MYC) might facilitate the reg-
ulation of largely overlapping sets of genes across cell types.
One way to further test our hypothesis would be to use
genome-editing techniques to introduce GR response ele-
ments in the promoter–proximal regions of genes and to test
if these genes are more prone to be regulated by GR regard-
less of cell type than genes whose expression is regulated by
GR via distal regulatory elements.

Many bioinformatic approaches have integrated se-
quence and chromatin features to predict the genome-wide
binding patterns of TFs (2,8,44). What is unique about
the method presented here is that we modeled GR bind-
ing in the universe of accessible chromatin to uncover what
distinguishes GR-bound from GR-unbound open chro-
matin. This approach helped us uncover that not all open
chromatin is equal and that GR preferentially binds DHS
regions with chromatin marks found at active enhancers
rather than DHSs with promoter marks. Further, we found
a negative association of H2A.Z with GR binding which at
first appears incompatible with a previous study (29) show-
ing that H2A.Z is highly enriched at GR binding sites. How-
ever, this study compared H2A.Z levels at GR binding sites
with two nearby regions which where not DHSs. Similarly,
when we compared GR bound sites (which are predomi-
nantly DHSs) with other genomic regions (which are mostly
not DHSs) we found a strong enrichment of H2A.Z levels
at GR bound loci. This probably reflects the strong enrich-
ment at DHSs of H2A.Z and of other chromatin marks
associated with active chromatin (45) when compared to
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Figure 7. Cartoon depiction of our model how shared and cell type-specific chromatin accessibility direct gene regulation by GR. (top) Shared regulation
of GR targets across cell types preferentially occurs via promoter–proximal DHSs which are accessible regardless of cell type. (bottom) In contrast, the
expression of cell type-specific GR target genes preferentially occurs via cell type-specific GR binding to distal DHSs, which are accessible in a cell type-
specific manner.

the rest of the genome, which is mostly not DHSs. Con-
sequently, chromatin accessibility and histone modification
state might provide redundant information when TF bind-
ing is modeled genome-wide. Accordingly, a previous study
has shown that addition of information regarding post-
translational histone modification state did not provide ad-
ditional predictive power when DNase I data was already
included in the model to predict genome-wide TF binding
(8). In contrast, our approach showed that certain chro-
matin features are specifically enriched or depleted at GR-
bound accessible regions and the same approach can be ap-
plied to any TF to study the role of chromatin features in
specifying which DHSs are preferentially bound by a TF of
interest. The hierarchical Bayesian model allows compar-
isons to be made directly across experiments and across cell
types. This showed, for example, that H3K27ac levels show
a stronger association with the levels of GR binding than

motif score. The parameters are mostly consistent across
cell types with the exception of H3K4me2, H3K4me3 and
to some degree H4K20me1 although the ß coefficients for
this modification are quite small (Figure 2C). H3K4me3
marks actively transcribed promoters and shows a nega-
tive association with GR binding in IMR90 and A549 cells.
In contrast, for K562 cells, H3K4me3 positively correlates
with GR binding suggesting that some of the mechanisms
that specify where GR binds might be cell type-specific. No-
tably, depletion of promoter proximal GR binding in K562
cells is less pronounced than in A549 and IMR90 cells (Fig-
ure 3A). Furthermore, GR-bound regions in K562 cells har-
bor fewer GR consensus motifs ((18), Figure 4A). Together,
this argues for the existence of K562-specific mechanisms of
genomic GR binding, perhaps involving indirect (tethered)
promoter–proximal binding mediated by interactions with
other TFs. Our current model only included the GR consen-



1818 Nucleic Acids Research, 2017, Vol. 45, No. 4

sus motif and therefore does not pick-up potential contri-
butions of cell type-specific sequence motifs bound by TFs
that tether GR to the genome or act cooperatively. Similarly,
sequences that prevent GR binding to nearby response ele-
ments (46) were not included in the model. Therefore, future
iterations of our model, to include additional sequence mo-
tifs, might better explain the observed GR binding variance.

The results of our modeling are useful to generate hy-
potheses, which guide the design of subsequent follow-up
experiments. As detailed above, this approach uncovered a
depletion of promoter proximal GR binding and yielded
indications that this might play a role in facilitating cell
type-specific cellular responses to glucocorticoid signaling.
In addition, the modeling uncovered several striking corre-
lations between chromatin features and GR binding. How-
ever, whether observed correlations between histone modi-
fications and TF binding reflect a causal relationship is of-
ten unclear. Arguing for the existence of additional mecha-
nisms that interfere with promoter–proximal GR binding,
we found that motif score distribution only partially ex-
plains the depletion. Here, we followed up on the negative
correlation between H3K9ac and GR binding and tested
the effect of deletion of the two enzymes responsible for
H3K9 acetylation, GCN5 and PCAF. Although we found
that GR binds to many more genomic loci when PCAF and
GCN5 are missing, the gained GR-bound genomic loci did
not preferentially map to regions with high H3K9ac levels
or promoter regions arguing that the correlation between
GR binding and H3K9ac levels does not reflect a causative
link. A likely alternative explanation for the observed anti-
correlation between H3K9ac levels and GR binding is that
high H3K9ac levels are found at promoter regions which
have few GR binding sites which is the actual cause for the
low levels of GR binding observed. This stresses that ob-
served correlations between binding and histone marks do
not necessarily imply causation. Nonetheless, the approach
to disrupt the enzymes responsible for depositing specific
histone marks provides a way to test for causality, which
can also be applied to analyze other observed correlations
between TF binding and histone modifications.

Taken together, our results uncovered that although GR
preferentially binds accessible chromatin, its binding is bi-
ased against accessible chromatin located at promoter re-
gions. This depletion can be explained in part by the se-
quence composition at promoters which harbor fewer bind-
ing sites and we hypothesize that depletion of promoter–
proximal GR binding might play a role in safe-guarding
cell type-specific transcriptional consequences of glucocor-
ticoid signaling (Figure 7). Given that many TFs prefer-
entially bind accessible chromatin, modeling their binding
in the universe of open chromatin, as we did here for GR,
might provide additional insights into the mechanisms that
direct TFs to specific genomic loci.
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