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Abstract

Scalable Visualization of Multivariate Spatiotemporal Distributions

from Scientific Simulation Data

As computational power increases, scientists simulate complex physical systems at a larger

scale. The resulting data is valuable but cumbersome due to its size and complexity. This

dissertation is driven primarily by exasperating data visualization challenges in two do-

mains: gyrokinetic particle-in-cell plasma physics simulations devoted to solving problems

in tokamak fusion energy production and turbulent combustion simulations devoted to

improving fuel efficiency and the formulation of new environmentally friendly fuels.

Challenges in these domains stem from data size and complexity due to high dimen-

sionality, large numbers of simulation grid points, large numbers of particles, and the

complicated joint physical and statistical interpretations of particles in particle-in-cell

plasma simulations. In both cases, due to chaos and turbulence, the systems can evade

predictability and exhibit emergent properties and pattern formations that are not yet

well understood through causal analysis starting from earlier states and parameters.

Ultimately, the simulations produce large amounts of spatially distributed and multi-

variate data elements that jointly model the states of the simulations at each time step.

The data is precious to researchers; however, since large-scale and complex data distri-

butions characterize the state spaces, it is non-trivial and time-consuming for scientists

to comb through and absorb the data. Furthermore, since the raw data is too large to

manage with current I/O limitations, data storage systems, and networks, researchers are

forced to make uncertain compromises as they reduce the data.

Our contributions ameliorate these problems through data summarization and inter-

active visualization. First, we develop methods and systems for visualizing particle data

and phase-space particle distribution functions from tokamak fusion simulations. To ac-

complish this, we introduce a novel approach for the interactive visualization of large sets

of spatially organized histograms. The approach is leveraged into a visualization system

tailored for the study of phase-space particle distribution functions and the evolution of
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the statistical weights of the simulation superparticles. We then develop tools for visual-

izing large sets of multivariate trajectories, such as the phase-space particle trajectories in

fusion simulations, as well as trajectories of particles from linear accelerator simulations.

Finally, we develop an approach for spatial statistical visualization of multivariate

volume data from turbulent combustion simulations. The approach is based on a novel

dynamic, nested, hierarchical spatial decomposition method based on isobands, connected

components, and the restricted centroidal Voronoi tessellation. Our tessellation is re-

stricted between level sets so that the Voronoi tessellation conforms to the boundaries of

surface-based features. We leverage the tessellation in a custom visualization system for

interactive local spatial statistical analysis. The system is designed in collaboration with

expert combustion scientists.
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Chapter 1

Introduction

Large simulations of spatial, physical systems are pushing the frontiers of modern science

and engineering. However, the resulting data is often challenging to analyze due to a range

of factors, such as unpredictability from chaos [1] and turbulence [2], non-linearity, high

dimensionality [3, 4, 5], large dynamic ranges of scales [6, 7], multi-physics interactions [8],

and the large compositions of interacting components that all together model the states

of the simulated systems.

As supercomputing power, measured in floating point operations per second (FLOPS),

advances and larger-scale systems become feasible to model, the increasingly large amounts

of resulting data are more and more challenging to manage and visualize. For reference,

the first gigascale (109) computer (Cray-2) released in 1985 [9], the first exascale (1018)

computer (Fugaku) released in 2020 [10], and the DOE’s first exascale computer (Aurora)

is set to release in late 2022. While exascale computing marks a rough threshold for simu-

lating important scientific phenomena [11], exploring simulation data is still a significant

challenge even at orders of magnitude smaller. While datasets are reaching the exascale,

workstations used for analysis remain bottlenecked by system memory at the gigascale.

This dissertation focuses on ameliorating this discrepancy and enabling more value

extraction from large spatially distributed and multivariate data through interactive vi-

sualization. The challenges we focus on stem from both human and hardware constraints.

The human constraints stem from people’s limited time and perceptual and cognitive

abilities. Hardware constraints come primarily from the limited storage space, network
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bandwidth, compute power, and system memory of workstations used by researchers for

visualization and analysis.

1.1 What is visualization and why is it needed?

Visualization is an interactive process that forms a feedback loop between persons, data,

images, and analysis. Information is encoded through different channels, such as shape,

size, and color, and familiar visual cues, such as lighting and perspective, are used to

convey spatial and structural information. The visually encoded information is effectively

absorbed thanks to the sophisticated visual processing systems of human beings and our

cognitive abilities, which help us to integrate the information into abstract mental models

and reason analytically. Further, with its exceptional general intelligence, the mind can

quickly notice anomalies, patterns, and trends, including unexpected ones that algorithms

coded with prior knowledge might miss.

What is gained from visualization is commonly categorized as insight. Since the insight

gained depends on the persons, their prior knowledge, and intuition, it is non-trivial to

precisely define and measure [12, 13, 14]. The difficulties in measuring insights attributed

to visualization stem from the complexity of the human mind and the often long and

complex processes of thought that steer open-ended or uncertain scientific workflows.

One comment from a collaborating scientist has stood out in its simplicity, “It is just

useful to know what the particles are doing.” In context, the behaviors of the particles

(what they are doing) are non-trivial to grasp since there are billions of them, and they

have complex interpretations as statistical superparticles. Greater awareness and stronger

intuition offer extensive benefits, from helping to validate and debug the simulation to

more effective brainstorming toward the formation of scientific hypotheses, to name a few.

While “seeing what happened” is an obvious goal, it is not simple in practice when

the data is vast, complex, and multifaceted; many things happened. In practice, the

visualization process usually needs to be guided and focused rather than aimless to be

efficient yet not so narrow in focus as to suppress unexpected but insightful information.
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Figure 1.1. An illustrative model for scalable interactive visualization. The complete
data is too large to fit in system memory and too complex to view with all its details
through a single visualization. The problem is addressed through data summarization,
organized and coupled data structures, and interaction through the visualization sys-
tem. The visualization system relies on the overview first, details on demand model.
Combined with the focus+context model, this allows the user to maintain important
context to relate the current visualization views with the encompassing data space so
that they can navigate and drill down into details following an intuitive and coherent
workflow. The summary data is helpful to represent a large portion of the raw data
in a compact size that can fit in system memory—the overviews generated from the
summary data act as an interface that facilitates drilling down into details. The de-
tails, or raw data, which are much too large to fit in system memory, are selectively
extracted for visualization as the user drills down. A data manager dynamically fa-
cilitates the transfer of data from external sources, such as local hard disks or remote
data through networks, into system memory and manages its persistence based on the
demand driven by the interactive visualization workflow. In order to ensure details can
be extracted efficiently from the complete data, they are coupled with the summary
data through an organized and indexed data layout.

1.2 Scalable Interactive Visualization

Our overall goal is to create visualization systems that continue to operate effectively as

the size and complexity of datasets increase. In other words, the primary form of scala-

bility we focus on is the scalability of a visualization system, in terms of effectiveness, as

a function of data size and complexity. The effectiveness of the visualization is dependent

on both human and hardware constraints. Towards this end, multiple forms of scalability

come into play. Richer et al. surveyed the holistic concept of scalability in visualization

and proposed a framework for modeling it [15]. In this dissertation, we consider percep-

tual and cognitive scalability, as well as computational scalability, which we characterize

broadly to capture issues posed by human and hardware constraints.

The first issue is that the data is too large and complex to represent with one image;
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thus, the user must explore the data through sequences of changing views. Context and

interactivity provided through the visualization system are crucial for human efficiency

and the coherency of the exploration workflow. The second issue is that the capacity of

system memory, where visualization takes place, is dramatically smaller than the complete

data. Therefore, attempting to scale the visualization workflow purely through data

reduction is not feasible. Instead, the system must bring in and retain data selectively

without exceeding memory limitations.

Without scalable interactive tools, the visualization process is arduous and time-

consuming. Such conditions can force scientists to prioritize heavily and only investigate

the data through limited vantage points based on expectations and prior knowledge. As

a result, the unexpected is at risk of going without notice, and thus errors and anomalies

are at risk of being undetected, and new phenomena are at risk of remaining undiscovered.

For reference, we present an illustrative model for scalable visualization in Figure 1.1.

Our approaches in this dissertation combine data decomposition, local summarization,

coupling of lightweight summary data with details through an organized data layout, and

interactive visualization systems designed following focus+context [16] and overview first,

details on demand [17] visualization models. We now delve further into the relevant con-

cepts of scalability, the underlying problems, and the techniques and approaches applied

to address them.

1.2.1 Perceptual and Cognitive Scalability

A visualization conveying too much information can confuse or mislead the user [18].

As the amount of detail and complexity in a visualization view increases, the perceptual

abilities of the user are more and more overwhelmed [19, 20]. This problem has been

called the perceptual scalability of visualization [21, 22]. When it comes to large-scale

multivariate time-varying simulation data with a 3D spatial component, the amount of

detail and complexity is too vast to be understood reliably through only a few views.

Let us consider first the more straightforward task of visualizing one variable in a 3D

domain (e.g., a 3D scalar field). This kind of data is usually visualized through direct

volume rendering [23] or by extracting and rendering isosurfaces [24] or other features.
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Due to the data being 3D, there is an inherent issue with occlusion [25]. Objects in the

front of the view occlude objects in the back, and the exterior occludes the interior. Color

and opacity transfer functions [26], which assign color and opacity values to each point in

the 3D space as a function of the scalar value, are used to hide, reveal, emphasize, or de-

emphasize different parts of the data. The user then extracts visual information through

a series of views generated with different transfer functions. This process is usually most

effective when interactive but can sometimes be automated based on data-driven view

selection [27] and transfer function design heuristics. Another technique for revealing

occluded visual information is exploded views, which isolates 3D features in the spatial

domain and then spatially separates them in the rendered visualization view [28]. For 3D

flow data, topological approaches [29] help detangle features and guide the extraction of

visual information.

Overall, the visualization of 3D scalar data is a mature field with scalable solutions.

However, comprehensive visualization of 3D data with more than one variable is a much

more challenging task, and the difficulty increases as the number of variables increases.

To understand the challenges with visualizing 3D multivariate data, we should first

consider some of the use cases. First, let us consider vector fields, where each point in the

spatial domain is vector-valued. An example is a velocity field where the vectors include

one velocity component for each orthogonal axis in the 3D space. More generally, we have

tensor fields where each point is matrix-valued. One possible way to visualize this kind of

data is through multidimensional transfer functions [30], which assign color and opacity

as a function of the multivariate values. The main problems with this approach are that

humans can perceive limited dynamic ranges of color and have individual differences and

deficiencies in how they perceive color. Further, the mental mapping of color and opacity

to vector or matrix values is generally unintuitive.

Another approach is to use glyphs, which encode information through shape and ori-

entation. Since the vectors or tensors commonly carry orientation information (e.g., di-

rectional information) that is coherent with the axis of the 3D space, this is an intuitive

approach that allows one to grasp some of the meaning in the visualization without ref-
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erence to a legend. We can thus more directly and easily scan and relate the different

components in the image to understand the complete picture. For vectors, arrows are

used, and for tensors, parameterized shape models are used in conjunction with shape

metrics. Color can also be applied to glyphs to encode an additional information channel.

The main problems with glyphs are that they take up much space since they need to be

large and spaced out enough to perceive their shapes easily. Moreover, since rendering

one glyph for each discrete volume element would result in far too much clutter, glyphs

usually represent spatially aggregated or sparsely sampled data points. Aggregation alle-

viates issues from clutter and occlusion but destroys information, sometimes leaving the

encoding ambiguous or misleading. For example, vectors pointing in opposite directions

can cancel out.

Regarding arbitrary multidimensional volume data, glyph representations often lack

intuitive encodings. Furthermore, limitations of human perception make it challenging

to translate the visual properties of an abstract object to quantitative parameter values.

Also, when spatially aggregating multivariate scientific simulation data, simplifying as-

sumptions about the underlying distribution are often not justified, so simple parametric

statistical models or shape models will not faithfully represent the data. Thus, more

information about the distribution of the aggregated elements needs to be conveyed or

at least retrievable by the user. However, due to limitations in screen space and human

perceptual abilities, we must limit the amount of information displayed to the user at a

given time. The more we aggregate and simplify through abstraction, the more coverage

the visualization view conveys, but at the cost of reduced detail.

Due to the reasons above, visualization through the aggregation of multivariate and

multifaceted data into glyphs is much more effective when the user can interactively adjust

the views to reveal hidden detail. With a large and complex space of possible views or

parameterizations, revealing the details in the data aimlessly requires a large amount of

time and effort. It can be overwhelming as the user must rely extensively on memory

and attempt to determine the relations between many different views. Visualization

researchers have sought ways to steer the exploration process more effectively. Particular
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applications require particular designs, yet some general paradigms and approaches have

become popular and proven effective: overview first, details on demand, focus+context,

and view-linking. An overview or summary can cover more of the domain but with less

detail. The summary or overview acts abstractly as a map, which helps orient the user

and helps the user to choose a starting point for drilling down into details. As the user

selectively reveals detail, overviews can be rendered alongside the details or underneath

them, which helps the user stay oriented and grasp the context. View-linking further

helps the user to relate different facets of the overviews and details.

These approaches are leveraged to reduce cognitive load and make the visualization

process more efficient, comprehensive, and robust. In practice, the visualization designs

that integrate them tend to be application specific, and the design process requires col-

laborative research with experts and practitioners. The reliance on collaboration with

rare and busy experts and the need for data access and HPC resources have made for

slow progress in bringing this research direction to widespread fruition. Moreover, the

demand for interactivity to address perceptual scalability and comprehensiveness, and

the demand for efficiency to achieve interactivity with large data, make implementation

labor-intensive and challenging. In the application domains of focus in this dissertation,

to the best of our knowledge, no available tools or visualization designs yet existed to

support a comprehensive and perceptually scalable solution.

1.2.2 Computational Scalability

Having established the need for perceptually scalable visualization solutions, we now

consider computational issues:

• Entire datasets are too large to store on the hard disks of desktop workstations and

can even overwhelm data centers.

• Interactive visualization requires the occupation of data in system memory, which

is vastly smaller in capacity than even the already overwhelmed hard disk capaci-

ties. The performance mandated for interactive transformation and rendering often

requires the data also be persistent in memory during the interactions.
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• The algorithms and implementations for transformation and rendering should be

efficient enough for low latency throughout some interactions.

• For scalability, the systems must efficiently bring new data into memory from disk

or through a network when demanded.

In terms of storage on disk, supercomputing facilities where the data is produced have

strict quotas and purge user data after some time once projects end. Simulation scientists

typically save the data at a reduced temporal frequency to meet the constraints. After

the simulation runs, data is transferred to long-term storage systems and commonly needs

to be later moved again through a network to a cluster or workstation for visualization

and analysis. This issue causes long delay times to getting started. To help illustrate the

hindrance to the scientific process, a fraction of one of the combustion datasets we utilize

in this dissertation took approximately one month to transfer from remote storage to the

systems where we processed it. Further, the visualization process can be time-consuming

when suitable and scalable visualization software is unavailable for the problems at hand.

While distributed parallel rendering tools such as Paraview [31] and Visit [32] help

overcome some of the limitations for 3D rendering at scale, there is little for scalable

multivariate spatial statistical analysis or for building customized interactive visualization

systems with linked views that are suitable for the needs of our driving applications.

1.2.3 Data Reduction and Summarization

Data reduction can be considered to be motivated by two general goals: filter out the

data that is redundant or extraneous to future tasks and meet the minimal restrictions,

or reduce disadvantages imposed by limited hardware resources to store and manage the

data. The former, besides reducing data, also reduces complexity; region-of-interest (ROI)

based reduction and feature extraction are examples. If all of the extraneous or redundant

data, for all future interests, could be predetermined, then optimizing the data reduction

under the constraints would be straightforward. However, problem domains are broad and

uncertain in the real world; thus, determining which information can be safely thrown out

can be difficult or in some cases impossible.
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What is retained can be compressed, either with lossy or lossless compression algo-

rithms, and data can also be reduced by reducing the floating point precision. Sub-

sampling is another widely used reduction approach; in some cases, the raw data can be

reconstructed from the data samples, e.g. based on compressed sensing theory [33]. These

methods ameliorate management and storage problems for large data, but usually only

by a limited constant factor, especially if the error must be controlled, and the data must

be reconstructible.

For reference, Marsaglia et al. provide a survey on data reduction in scientific visual-

ization and analysis [34]. They break down the category into five sub-categories: lossless,

near-lossless, and lossy compression, mesh reduction, and derived representations.

A core part of our approach is domain decomposition and statistical summarization.

While data summarization is often categorized in the literature as a form of data reduction,

it is not strictly useful for reducing the total data size. We characterize it as a form of

derived representation, which will likely not preserve detailed information. Due to the

challenges in determining what information is redundant or irrelevant to future tasks,

and the loss of information inherent in summarization, we take a conservative approach

to its use as a replacement for raw or otherwise reduced data. Still, summarization may

be used to one’s benefit, even without reducing the total data. For example, due to the

compact size, straightforward interpretation, and breadth of coverage, data summaries are

helpful for interactive visualization or real-time simulation monitoring. Moreover, since

summary data is useful in the overview-first, details-on-demand visualization approach,

it is an excellent form of data to couple with more detailed subsets of data.

Domain decomposition can also play a role in data reduction since one can optimize

the data reduction by reducing or abstracting data more or less aggressively in different

parts of the domain based on saliency. By breaking down the data into smaller chunks

and summarizing those chunks with bounded-scale summaries, one can scale up the total

data size while controlling the parameters of the decomposition and summaries so that

computational limitations for interactive visualization are not exceeded.
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1.3 Driving Application Domains

With room for generality, this research’s primary driving application domains are the vi-

sualization of particle-in-cell plasma simulation data and turbulent combustion simulation

data. Most of the research presented in this dissertation was done in collaboration with

scientists in the fields of tokamak fusion simulation and combustion simulation. Some of

the work was done through more limited collaboration with scientists who simulate linear

particle accelerators. Further, we apply some of our work to the visualization of a marine

mammal migration dataset. The data we use is described in more detail in Appendix A.

Videos which are helpful for understanding the data and some of the analysis interests

are described and referenced in Appendix B.4, along with video demos of the software we

produced. These videos may be helpful for the reader, to make better sense of our research

as they work through it. We now briefly introduce the primary application domains.

Particle-in-cell Plasma Simulations Plasma physics simulations model systems of

matter full of charged particles, such as ions and electrons. In these systems, the charged

particles generate electric fields and currents and interact with each other and magnetic

fields. The particle-in-cell (PIC) method [35] uses a combined Lagrangian (discrete par-

ticles) and Eulerian (fields modeled on grids) approach. Since the time scales are very

small, and the number of particles in real physical systems is enormous, it is not feasible in

most cases to model all of the real particles directly. Instead, superparticles representing

a larger number of real particles are used in the simulation.

We utilize particle-in-cell data from simulations of tokamaks, a class of magnetically

confined fusion devices. These devices work by confining hydrogen plasmas within pow-

erful toroidal magnetic fields while heating them to the extreme temperatures required

for fusion reactions. Particle-in-cell simulations are used to model the confined plasma

within these devices to aid in the design and theoretical development of the underlying

physics. Hopefully, this technology will one day provide vast sources of clean energy.

This dissertation utilizes data from two gyrokinetic particle-in-cell tokamak fusion

simulations: The Gyrokinetic Tokamak Simulation (GTS) [36], and The X-point Gyroki-

netic Code for Transport in Tokamaks (XGC) [37]. In both simulations, each particle
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lives in a 5D phase space. Each particle in the simulation also carries signed weights, rep-

resenting contributions to an aggregate perturbation of a background distribution. The

weights evolve, and it is important to the scientists we collaborated with to understand

the evolution of these weights in conjunction with the phase-space particle distributions

and superparticle trajectories.

Turbulent Combustion Simulation Combustion-driven processes are pervasive in

the modern world, and thus, the applications are many and diverse. This dissertation

utilizes data from a simulation code called S3D [38], which is a parallel direct numerical

simulation (DNS) that simulates compressible reacting flows. The data is comprised of

chemical mixture fractions, pressure, and velocity values for each grid point of the mesh

at each time step.

1.4 Dissertation Structure

In general, our technical approach to visualization combines spatial decomposition, local

summarization with statistics and distribution functions, and tailored interactive visual-

ization systems. The visualization systems leverage the decompositional and distribution

function based approaches, combined with linked views, focus+context, and overview

first, details on demand techniques. Various methods are introduced to fill the gaps as we

develop novel visualization systems based on these concepts tailored for the applications.

Before presenting our research, we provide background and summary of related works

for relevant topics. Then we summarize related visualization work focused more specifi-

cally on our driving application domains.

Our research with tokamak scientists focuses on the visualization of particle data.

In Chapter 3, we present our research on visualizing phase-space particle distributions

through interactive visualization. In that chapter, we introduce a novel approach to visu-

alizing spatially distributed velocity data through spatially organized histograms. Next,

in Chapter 4, we extend the method of spatially organized histograms to a more general

approach and design a visualization system based on the technique that also addresses the

need for co-analysis with the particle weights and temporal analysis. Then, in Chapter 5,
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we introduce an interactive technique based on the distance plot, or unthresholded re-

currence plot, to analyze individual multidimensional particle trajectories in combination

with particle weights. Finally, in Chapter 6, we extend the capabilities for interactive

temporal analysis of large sets of multidimensional trajectories. Chapters 6 and 4 also

include applications to particle data from a linear particle accelerator dataset, and Chap-

ter 3 includes an application to a marine mammal dataset.

The research with combustion scientists is confined to Chapter 7. This application

domain focuses on field data stored on fixed mesh nodes rather than particle data. Again,

a primary goal is the visualization of multivariate spatially distributed data; furthermore,

we again take a decompositional and distribution function-based approach. However,

since the collaborating combustion scientists prefer to investigate the spatial facets of

the data through conditioning on complex surface features, we require a new more so-

phisticated spatial segmentation approach. We address this problem through level set

restricted centroidal Voronoi tessellation. An interactive visualization system leveraging

the tessellation for spatial statistical analysis is designed based on the goals and feedback

from the collaborating scientists.

Finally, we discuss the combined work from a more holistic point of view before con-

cluding. The software and media we developed through this work are referenced in Ap-

pendix B. Again, the data we utilize is explained in more detail in Appendix A.
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L. (VIS 2022). Level Set Restricted Voronoi Tessellation for Large scale Spatial Sta-

tistical Analysis. To appear in IEEE Transactions on Visualization and Computer

Graphics, 29 (1) 2023. © 2022 IEEE.
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Chapter 2

Background and Related Work

While most of the dissertation focuses on the visualization of fusion and combustion

simulation data, we draw broadly from more general concepts. Furthermore, the technical

contributions that together form our solutions are related to various lines of research with

a range of applications. Therefore, we begin with a more general presentation of the

background and related works, focusing on those works which are most closely related

to our specific methodology. We then end the chapter with background and summary of

work done specifically for tokamak and combustion data.

2.1 Density Estimation and Distribution Functions

Our approach is centered on visualizing spatiotemporal data through local statistical sum-

marization using distribution functions. We use the term distribution function because it

is general enough to include: the particle distribution functions (PDFs) that we visualize

from the tokamak datasets in Chapters 4 and 3, the probability distributions functions

from Chapter 7, and the dense trajectory visualizations in Chapter 6.

Distribution functions can be modeled in several ways, with the three main classes

being non-parametric models (such as histograms and kernel density estimation), para-

metric models such as Gaussians, or semi-parametric models such as mixtures of Gaus-

sians. David W. Scott’s book, Multivariate density estimation: theory, practice, and

visualization [39], is an excellent introduction to the topic.

Parametric models are very useful if their assumptions are valid in the application do-
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Figure 2.1. A visualization of distribution functions for the time-varying GTS data.
The visualization is a screenshot of the visualization system presented in Chapter 4.
These distribution functions represent signed perturbations of the phase-space particle
distribution function, as explained in Chapter 4 and further in Appendix A.1.2. The
purpose of this figure is to highlight some of the characteristics which motivate the use
of non-parametric models.

main, largely due to their simplicity and applicability as predictive tools. Non-parametric

models don’t rely on as many assumptions and represent the data more explicitly; thus,

they are more flexible. They tend to be more beneficial for exploratory visualization but

less useful for prediction because they tend to overfit the data. Rice suggests a workflow

for density modeling where one begins with an exploratory process utilizing more explicit

and less smoothed models (e.g., scatter plots and histograms), and then works towards

the application of more smoothed models [39].

In the context of this dissertation and the related works, parametric and semi-parametric

models, such as Gaussians and mixtures of Gaussians, are especially powerful when the

assumptions are valid because they can be represented with only a few parameters and

thus have a small storage cost. However, especially in complex spatiotemporal simulation

data, one must be careful when considering the application of parametric models since
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Figure 2.2. A histogram of particle weights for a subset of particles from the XGC
simulation. The visualization shows the full histogram as a heatmap on the bottom
(with darker color indicating higher frequency/count), and a histogram as a bar chart
shows a subset of the full data corresponding to the extents/outer edge values marked
by the arrows. The figure illustrates the peakiness and extraordinary long tails that
develop in these distributions over time. Left) The distribution at t = 1. Right) the
distribution at t = 208. The visualization is a screenshot of one of the interactive
visualization views used in the visualization system presented in Chapter 4.

Figure 2.3. A visualization of a time-varying 2D histogram of chemical mixture frac-
tions in the 2D autoignition data. The joint plots, computed at different time steps,
are shown above in juxtaposition. The upper-left three plots correspond to the lower
temporal visualization, and the upper-right three plots correspond to the temporal
plot shown in the middle of the figure. These temporal views show the surface/outer
edge of the joint plot extended in time. The two cases correspond to different spatial
regions/subsets, and the visualization on the right shows the spatial domain with the
two regions outlined in black. The purpose of the visualization is to show an example
of characteristics we encounter in some of the joint distributions in our combustion
data.

the data can be highly variant over time, non-Gaussian, or carry non-linear multivariate

correlation structure.

Histograms are cheap to compute but come at a higher storage cost than parametric

alternatives. Since they explicitly decompose the data into discrete bins, they also can eas-
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ily support simple interactive techniques for drilling down into details, as demonstrated in

Chapters 3 and 4. In this dissertation, we primarily focus on non-parametric exploratory

analysis using histograms, but our tool in Chapter 7 also supports 2D Gaussian mixtures

and kernel density estimation (KDE) [40].

For context, we highlight a few distributions from data utilized in this dissertation:

Figure 2.3 shows the evolution of two histograms from a combustion dataset over time.

Initially, the correlation appears linear but later becomes non-linear. Figure 2.2 shows

the interactive histogram tool from our visualization system described in Chapter 4. The

bar chart represents the “zoomed-in” portion of the histogram. The heat-map-based

visualization below it represents the complete histogram, and the arrows show which

part of the complete histogram the zoomed-in view represents. The figure highlights the

peakiness, long tails, and extreme outliers in the distributions of particle weights in the

XGC simulation data. Figure 2.1 shows some of the histograms generated from the GTS

data, which have unusual shapes and characteristics. In these cases, it would be difficult

to use a parametric model without hiding important information.

2.2 Spatial Segmentation and Summarization

Many papers have been published over the years on spatial statistical aggregation to re-

duce and analyze large simulation data. Chaudhuri et al. introduced scalable distributed

algorithms for computing histogram-based spatial summaries of large data sets on var-

ious kinds of 3D grids [41]. Lu et al. further improved on the state of the art, with

compact representations of histograms based on bit-strings and space-filling curves [42].

For simulation monitoring and anomaly detection in transonic jet engine simulations,

distribution functions were used to quickly and compactly represent facets of the flow

conditions so that they could be easily monitored in real-time for human-in-the-loop stall

detection [43]. Ye et al. [44] decomposed the domain of combustion simulations into

blocks, then computed spatial statistics used for querying Lagrangian particles through

a coupled out-of-core (off memory) data structure. Many more related methods have

been introduced. Gaussian mixture models (GMMs) and copula functions have provided
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highly minimal footprint models of joint statistics [45, 46]. Additional work has focused

on utilizing spatial statistical correlation to recover spatial information from spatially

aggregated data to enhance the ability to perform volume rendering directly through

sampling spatially localized PDFs [47]. In terms of spatial segmentation for statistical

aggregation, different approaches have been applied, including kd-trees and simple linear

iterative clustering [45]. Thompson et al. [48] leverage such in situ (while the simulation is

running) generated histograms for feature detection through a combination of statistical

and topological methods.

One way to segment flow data is through topological methods. Heine et al. provide

an in-depth survey [49]. Topological methods can also be used to constrain sub-sampling

methods to preserve important flow features [50, 51, 52, 53]. Topological exploration is

commonly done through graph-based data structures. Bremer et al. proposed merge trees

to segment combustion data into hierarchical features that can be summarized through

statistics and explored efficiently through their graphs [54]. Dynamic nested tracking

graphs track the topological changes in isosurfaces over time and have been used to

create interactive visual summaries [55]. They have also been used within an integrated

visualization system that couples topological features with in situ rendered images using

a cinema database [56]. Jankowai and Hotz proposed a generalization of isosurfaces to

multi-fields, which inspires a new approach to topological visualization and analysis in

multivariate data [57]. These are just a few examples, as topological segmentation is a

rich and active area of research.

Voronoi tessellations are one of the most fundamental methods in computational ge-

ometry and related fields. The centroidal Voronoi tesselation is a Voronoi tessellation

where the Voronoi sites are positioned at the centroids of their Voronoi regions. Our

method, presented in Chapter 7, utilizes restricted centroidal Voronoi tessellation for

spatial segmentation as a basis for spatial statistical analysis. One popular algorithm

for computing a discrete CVT is Lloyd’s Algorithm, which has been applied widely and

studied in depth [58]. Amenta et al. introduced Voronoi algorithms for conforming tes-

sellation of 3D surfaces [59, 60, 61]. Such tessellations are used for constructing and
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refining meshes [62], which has various applications. Recently, a provably conforming

Voronoi meshing algorithm, VoroCrust [63], which borrows from Power Crust, has been

proposed. Our tessellation in Chapter 7 is proposed as a new variation of the CVT that

is more suitable for statistical analysis due to its ability to trade off conformity for spatial

homogeneity.

2.3 Clutter Reduction

Many works focus on reducing clutter in flow visualization. Kirby and Laidlaw [64] used

concepts from painting to design a multi-layer representation of colors and textured pat-

terns to represent different parameters of a flow field in an easy-to-read manner. Ober-

maier and Joy [65] used a visualization of metric tensors to show deformations on 3D

surfaces. Ellipsoid glyphs can represent properties like the velocity gradient on these sur-

faces. In addition, topologically-based methods, which were first introduced by Helman

and Hesselink [66], can be used to extract specific flow patterns of interest and present

them in a low-clutter way.

In Chapers 3 and 4, we use a “panning-window” style layout and sampling method for

interacting with spatially organized histograms. Our technique can be considered a form

of “Magic Window” as defined by Tominski [67]. Other methods have been used to show

spatial variation and uncertainty quantities, such as vectors, in a summarized manner.

For example, glyphs have been designed for visualizing uncertain flow fields by showing

ranges of possible velocities [68]. Furthermore, Hlawatsch et al. [69] have designed a glyph

that encodes statistical moments.

2.4 Histograms for Motion Representation

In Chapter 3, we use spatially organized histograms to visualize particle motion. Repre-

senting motion with a histogram-based format has been used before in computer vision.

For example, Ihaddadene and Djeraba [70] utilize a block direction histogram to represent

the overall motion of crowds in different “blocks” or fields of view. Romanoni et al. [71]

utilize spatiotemporal histograms for background subtraction in cases where the camera

is in motion. Another example is the use of “Histograms of Oriented Gradients” as fea-
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ture descriptors. Dalal et al. [72] utilize these to detect humans in motion relative to the

background accurately. Lastly, Jung et al. [73] used velocity histograms to cluster visually

tracked objects. The clusters are identified based on the motion of groups of objects by

identifying similar neighborhoods in the resulting velocity histograms.

2.5 Boolean Filtering for 3D Flow Data

In Chapter 6, we developed an algorithm for GPU accelerated Boolean filtering of particle

trajectories. Similar work has been done by Salzbrunn et al., who formally defined the

concept of pathline predicates [74]. Their work focuses on 3D flow fields and the selection

of pathlines based on sets of time-dependent properties. Computing the properties is

done in a non-interactive preprocessing stage, and queries based on the properties are

done interactively. Shi et al. did similar work for 3D flow fields [75].

For high-performance logical filtering and querying, GPU accelerated database systems

have been proposed [76]. These systems must support general database operations such

as join, select, and sort. They utilize data structures and algorithms such as B-trees,

indexing/tables, hashing, etc. Another technique for rapid queries on scientific datasets is

Fast-bit [77]. Fast-bit uses bit-indexing based on pre-computed property flags. One can

then accelerate common query patterns by looking up the pre-computed conditions in a

table rather than computing them on the fly.

2.6 Focus+Context

Focus+context is a style of visualization where the data in focus is emphasized but simul-

taneously visualized with less emphasized data to provide context. Theory on the gener-

alization of this technique was proposed by Hasuser [16]. In the area of Focus+Context

for scientific data, Muigg et al. have introduced techniques for visualizing temporal fea-

tures in large data sets [78]. Doleisch et al. designed a Focus+Context visualization for

simulation data that incorporates an XML and Java-based feature description language

[79]. This approach parallels our work in Chapter 6. We also design focus+context style

visualizations which are classified as examples of interactive lenses, sometimes referred to

as magic windows. Tominski et al. provide a recent [80] on this class of techniques.
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2.7 Combustion Data Visualization

Flow phenomena are an exceptionally prominent topic of research since flow plays an

important role in many spatial physical systems besides combustion. Combustion science

is a subset of the more general area of reacting flows, where the system’s evolution is

driven strongly by flow dynamics and chemical reactions. The flow is usually modeled

using the Navier-Stokes equations [81]. Flow remains a major challenge for science, partly

because of turbulence, which is a phenomenon where flow disturbances become chaotic

(unpredictable due to extreme sensitivity to small differences in the state of the system).

Challenges to visualization and analysis stem from the need to understand the system’s

evolution in terms of both the turbulent flow dynamics in the physical space and the

reactions in the composition space, which consists of the mixture fractions of different

chemical species.

Statistical visualization of large-scale high-dimensional data is challenging because of

the curse of dimensionality in high-dimensional statistics [39] and the limitation in the

number of dimensions that can be visualized in one view. While, with three dimensions,

we can use direct volume rendering or surface rendering, as suggested by Rice [39], beyond

that, we run into the fundamental limitations of human visual perception. A scatter plot

matrix showing the joint distributions of each pair of variables can be used to help un-

derstand correlation structure in high-dimensional data. Extensions, such as the binned

scatter plot matrix [82], have been introduced to reduce the complexity of the visualiza-

tion for large multivariate data. However, the number of plots grows quickly (O(n2) in the

number of variables), and only 2D correlations are truly ascertainable from the visualiza-

tion. Linked views and interactive sub-selection are used to ameliorate this problem [83].

Through this process, one can focus on a meaningful set of multivariate conditions to see

how the other variables correlate in terms of their dependencies with those conditions.

Furthermore, selections can be linked with visualization views showing the physical space,

as done by Jones et al. [84].

In addition, spectral analysis is a major research topic for combustion data and turbu-

lent flow in general. Spectral analysis, in this context, involves analysis of flow features,
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e.g. eddies or vortical structures, based on their length scales. In turbulence theory, en-

ergy transfers from large-scale structures into smaller-scale structures in a process called

energy cascade [85]. The theory was pioneered by Andrey Kolmogorov [86], who intro-

duced the Kolmogorov Turbulence Spectrum. Some combustion visualization research

has focused on scale-based flow feature analysis [87, 88, 89]. One way this has been ap-

proached is through band-pass filtering in the frequency domain and then transforming

back into the physical domain. By doing this, we can get local information about spectral

information [90]. The main limitation here is that the Fourier transform assumes the

data is periodic in each dimension of the physical domain, which is not commonly the

case. Alternatively, the wavelet or curvelet transform can be used for spectral decompo-

sition, even without periodicity assumptions. The former has been used for scale-based

geometric analysis of flow features in combustion data [91].

In Chapter 7, we develop a new spatial segmentation method that is compatible with

the topological approach (as an extension for more general and finer-grained exploration),

combining connected component decomposition and centroidal Voronoi decomposition.

We then leverage this approach to support an interactive visualization system for scal-

able multivariate spatial statistical analysis, a much-needed capability that was not yet

adequately supported.

2.8 Tokamak Data Visualization

Tokamak simulations vary in terms of the simulation purpose and the type of data pro-

duced. The flow inside a tokamak is commonly studied through the lens of magnetohy-

drodynamics, the study of electrically charged fluids in the presence of magnetic fields.

One topic of study focuses on the patterns and topological features that emerge in the

magnetic fields. The stability of the magnetic field is essential since the magnetic fields

are responsible for containing the extremely hot plasma in the device. Sanderson et al.

used Poincaré plots to study recurrent patterns in toroidal magnetic fields [92]. Tricoche

et al. applied these methods within a more general study of topological features in area-

preserving maps[93]. In other cases, the stability of the magnetic field is assumed and
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modeled as a static (non-changing) field, e.g. the XGC data we utilize in this disserta-

tion. While there is an evolving electric field in this simulation, our collaborative work

was limited to the goal of analyzing particle data.

In one of the first major papers addressing the visualization of large-scale tokamak

simulation, Crawford et al. assessed the visualization needs and their support by current

technologies [94]. These include large-scale volume rendering tools, point-based render-

ing techniques, and hybrid point/field-based rendering methods. An approach was later

introduced for visualizing particle data through point rendering within an integrated sys-

tem for multivariate filtering (such as parallel coordinates plots) and for coloring the

particles using interactive color transfer functions [95, 84]. Other systems and techniques

that have been applied for visualizing particle data from tokamak simulations include

grid-based averaging [96, 97].

The work presented in this dissertation stems from a need not adequately supported

by existing tools, which was to interactively visualize thousands of local distribution func-

tions computed locally, throughout the spatial domain, from statistical super-particles.

The distribution functions, in the form of signed and weighted histograms, were being

visualized one at a time by the collaborating domain scientists using standard analysis

software such as Matlab. This mode of analysis is highly limiting and time-consuming.

To help support the needs, we develop interactive visualization software focusing on the

collective visualization of thousands of spatially organized histograms [98, 99]. We fur-

ther develop software offering new capabilities and performance enhancements for more

advanced interactive analysis of the multivariate particle trajectories [100, 101]. The

contributions are outlined in more detail in the associated Chapters 3, 4, and 6.
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Chapter 3

Visualizing Velocity Distributions

with Spatially Organized Histograms

This chapter is based on material from our publication, Scalable visualization of discrete

velocity decompositions using spatially organized histograms [98]. © 2015 IEEE.

The ability to visualize the motion of a group of objects has applications in many fields.

For example, the study of fluids often uses large sets of tracer particles to represent the

intricate flow patterns in both a laminar and turbulent setting. Presenting the motions of

these particles in a coherent fashion can lead to a better understanding of the underlying

processes involved in phenomena such as fusion [37, 36] or combustion [102]. Geospatial

movement data is another area that focuses on detecting motion-based patterns of objects

such as animals or motor vehicles. For example, studying trends in the movement of

marine life [103] can lead to a better understanding of migration or feeding patterns.

These are simply a few examples as there are many areas of study that focus on the

motions of a group of objects.

Visualization techniques are often subject to a trade-off between clutter and loss of

information. For example, visualizing the velocity decomposition of a group of objects

using vector plots can result in a great deal of clutter. Averaging the motion into a

velocity vector field can alleviate this problem, however significant information about the

true underlying velocity decompositions may be lost. This chapter focuses on developing
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a visualization tool that can address these issues.

Velocity-based histograms work by sampling the frequency of objects that exhibit a

particular velocity decomposition. In our implementation, each histogram bin is rep-

resented by a cell in a 2D grid and its associated frequency is visualized using a color

map. This results in an information-dense visualization of the overall motion of a group

of objects, with a nice regular structure that lends well to user interaction and efficient

computation. Many of the challenges of this technique lie in the ability to present many

velocity histograms to users simultaneously (each representing a different portion of the

domain).

3.1 Methods

The main application of this technique is for interactive visualization of the velocity

decomposition of a group of objects. The velocity of each object is sampled in order to

form a set of spatially organized velocity histograms to be visualized by the user. The

means of sampling and generating the histograms, as well as their visual appearance and

spatial layout, are all important factors that must be considered and are described in

more detail in the following sections.

3.1.1 Overview

One of the benefits of our system is the ability to interactively explore the data in real-time

with various adjustable parameters and configurations. For these reasons, the histograms

must be computed at runtime. The binning process is the most computationally intensive

step and can be done efficiently using GPU acceleration.

3.1.2 Velocity Histograms

Figure 3.1 shows a comparison of the velocity histogram to two other techniques that

attempt to visualize the motion of a group of objects. The most straightforward method,

shown on the left of the figure, involves adding a velocity vector to each object. The

direction and size of the arrow can be used to infer the speed and direction of motion

of that particular object. The downside to this technique is that it can result in a great

deal of clutter when the number of objects is large, making it difficult to visualize pat-
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Figure 3.1. An image comparing techniques of visualizing the velocity decomposition
of a group of objects. Left) Assigning a vector to each object. Middle) Averaging the
velocities into a vector field. Right) Sampling into a velocity histogram with darker
colors indicating a higher frequency.

terns. An alternative to this technique, shown in the middle of the figure, is to average

the velocities of all objects into a vector field. This has the advantage of reducing the

amount of clutter but also results in a loss of information about the underlying velocity

decomposition. Another option is to use trajectories of pathlines. However, this can once

again result in clutter, and becomes difficult to indicate which way along the pathline the

object is moving. Furthermore, there is some temporal confusion since a drawn trajectory

represents multiple points in time.

This chapter focuses on the use of velocity histograms, which are shown on the right

of the figure. The velocity histogram has the advantage of being able to accurately show

quantitative information about a large number of objects in a low-clutter, well-organized

visualization which supports easy, interactive quantitative exploration. The velocity of

each object is sampled and binned into an appropriate histogram cell. Color can then be

used to indicate the frequency of objects occupying each cell. In the example shown in

the figure, it is clear that the majority of objects have a velocity with a large positive x

and y component (as indicated by the dark cell at the top-right of the histogram). On

the other hand, few to no objects are moving to the bottom-right or top-left (as indicated

by the lightly colored cells in those regions).

Such a histogram is a powerful method of visualizing overall trends of the motion of a

group of objects. We can then further extend this technique to also study the differences

in motion in various parts of the domain. This is done by decomposing the domain into
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Figure 3.2. A synthetic particle dataset designed to show the advantages of using
the histogram-based representation. a) Attaching a velocity vector to each particle
results in a great deal of clutter. b) Averaging particle velocities into a vector field
eliminates important flow patterns. c) The histogram-based view provides a low-clutter
decomposition of the velocities in each part of the domain.

the desired number of subsections, each with its own velocity histogram. All the objects

within a particular subsection are then sampled to form a velocity histogram for that

region. A comparison between the histograms in different parts of the domain can show

spatial variations in the motion of the objects. Moreover, adjusting the resolution of this

domain decomposition can highlight general trends that permeate larger portions of the

domain, as well as small-scale details. This is discussed further in Section 3.1.3.

Figure 3.2 shows an example of a synthetic particle dataset designed to highlight

the advantage of the velocity histogram-based view. It consists of ∼ 200, 000 randomly

distributed particles whose velocity in the x-direction (horizontal) is a positive random

number and increases with the x position for some particles. The velocity in the y-direction

(vertical) is a positive or negative random number that increases with x position for all

particles. The y-direction velocity has an equal chance of being positive or negative.

The fact that many particles are moving in opposite directions throughout the domain

helps demonstrate the advantage of the histogram-based view: a) An arrow is attached

to each particle to indicate its velocity. Drawing only 2% of the full data still results in

an abundance of clutter. b) Averaging the particle velocities into a vector field causes

the opposite motions of particles in the y-direction to be averaged out and become lost.

Moreover, the increase in velocity in the x-direction is also difficult to notice since only

a few particles display this variation. c) In the histogram-based view, each histogram
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highlights the overall decompositions of velocities in each portion of the domain. Darker

colors represent a higher frequency of particles. The center of each histogram represents no

movement whereas a highlighted bin towards the top-right of the histogram, for example,

would represent fast motion in the positive x and y directions. Since the histograms

represent distributions, many of the subtle patterns that would normally become lost via

averaging are easily seen.

Flows like the one used in this example, where particles move differently from one

another, even when occupying the same location in the domain, are commonly found in

certain applications, such as fusion science. The plasmas that flow through fusion reactors

contain oppositely charged particles that behave uniquely from one another in the presence

of an electromagnetic field. This makes many traditional visualization techniques limited.

The histograms used in our visualization tool are 2D in nature. This is because occlusion

makes visually representing a 3D histogram very difficult. As a result, we employ a number

of interactive techniques so that users can explore 3D domains to a limited extent. This

is discussed in more detail in Section 3.1.3.

3.1.2.1 Generation from Particle Data with GPU Acceleration

In our algorithm, the texels of a single channel texture store the values of the histogram

bins. The object velocities and positions are transferred to the GPU in the form of a

vertex buffer. Interactive parameters, such as the position and structure of the sampling

grid, the histogram resolution, and the normalization factors, are transferred to the GPU

as well. The vertex shader then maps each object to a histogram bin based on its position

and velocity. The result is a texel index which must then be converted into the correct

position in normalized device coordinates before being input to the fragment shader.

With additive blending enabled, the fragment shader then increases the value of the texel

corresponding to the mapped histogram bin. The end result is a texture storing the

computed histograms that can be queried as necessary to support interactive features

before being rendered to the screen using an adjustable transfer function.
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3.1.3 Visualization System

Our system provides interactive control over the spatial organization of the histograms,

the resolution of the histograms, and any velocity/frequency thresholding. While the

user interacts with the visualization, the relevant information is automatically displayed

according to the selection of the user. In addition, several features are included to extend

the capabilities of the system and to aid in navigating the visualization. Lastly, the

system provides basic control over 2D slice extraction from 3D datasets, as well as time

step selection and animation.

3.1.3.1 The Histogram Layout

Different spatial histogram layouts can be selected by the user depending on the applica-

tion. The spatial layout defines how the domain is partitioned into multiple local sampling

regions. These local regions also define the location, size, and orientation of the visual

representation of their associated histograms. Reference points are drawn at the centers

of the histograms to mark the bin that corresponds to a velocity of zero.

Our primary layout uses a panning window approach. The sampling region is par-

titioned into a rectangular grid while a slider controls the number of partitions. When

the user drags the mouse over the view space or zooms in, the particles move relative

to the screen, while the grid remains fixed. We also employ a layout that remains fixed

with respect to the particles as the user pans and zooms. Such a layout has the benefit

that zooming and panning can be done without changing the sampling region sizes. How-

ever, the panning window approach gives more control over the locations of the sampling

regions with respect to the particles. In addition, custom layouts can be made to suit

specific applications. An example of such a layout can later be seen in Figure 3.6 where

the histograms are positioned and aligned along a magnetic flux surface.

3.1.3.2 Special Features

An example of the user interface can be seen in Figure 3.3 and highlights many of the

features discussed in this section. As the user mouses over a histogram bin, correspond-

ing particles are highlighted in green. This feature enables the histogram to double as

a powerful selection tool for inspecting particle locations according to velocity and en-
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Figure 3.3. The user interface. The particles associated with the moused-over his-
togram bin are shown in green. The moused-over histogram is shown in more detail in
the bottom left corner of the screen, and the mini-map is shown in the top left corner.

ables enhanced pattern and trend finding capabilities. Additionally, the histogram as a

selection tool can be easily extended to trigger the display of other information about

the corresponding particles, depending on the needs of the domain expert, e.g. temper-

ature, trajectories, or velocity parallel to the viewing angle. Empty histogram cells are

left transparent in order to minimize the occlusion of the particles within the associated

sampling regions. For the case when the entire histogram is filled with values, the opacity

of the histograms can also be manually adjusted. In addition, the user can adjust the

opacity of the particles themselves, to strike a balance between visibility and distraction.

The color vs. frequency mapping is, by default, globally assigned to all histograms in

order for users to see the relative differences in frequencies between regions. This global

thresholding has the advantage of being able to reduce the influence of large peaks that

would otherwise suppress subtle patterns in the histogram. The majority of the figures in

this chapter use the global thresholding scheme with the colormap shown in Figure 3.4.

In addition, we also provide the option to locally scale the colormap normalizing with

the maximum frequency in each histogram. This results in a separate color scale for each
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Figure 3.4. An overview of the histogram visualization using the C-MOD dataset
showing the general patterns throughout the domain. The colormap used for the
frequencies of each bin is shown as well and matches the colormap for all following
figures.

histogram which can be referenced by individually selecting the corresponding region.

This has the advantage of clearly representing the distribution regardless of the number

of particles that are sampled in that region.

To help the user navigate the visualization, we provide a mini-map that shows both

the outline of the grid layout as well as the outline of the selected histogram. This

feature gives users domain-level context when exploring the data at high zoom levels. In

addition, when the user selects a sampling region, the associated histogram is drawn larger

at the side of the view space for easier viewing. This feature also allows the user to more

accurately select specific histogram bins of interest when looking to identify additional

information such as the exact value of the bin. In addition, a line is drawn from the

center of the histogram to the selected bin to help the user perceive the direction of the

associated velocity.
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Figure 3.5. A zoomed view of the C-MOD dataset showing three select timesteps. Over
time, unique ring-like patterns begin to form showing that slower-moving particles tend
to move in a vertical direction and faster-moving particles tend to move towards the
left. The presence of these rings seems to cycle on and off throughout the duration of
the simulation.

Other relevant information is automatically displayed as well. This includes infor-

mation such as the velocity range corresponding to the selected histogram bin and the

number of particles in the sampling region. Additional domain-specific information can

also be displayed as needed. When applicable, controls are present for 2D slice extraction

from 3D data sets. The user can control the slice thickness and position via sliders as well

as the axis of the orthogonal view. A slider is also used to adjust the current timestep.

Additionally, the system can cycle through timesteps automatically, freeing up the mouse

to control other interactive parameters.

3.2 Results

We test our visualization tool with real-world datasets to demonstrate its usefulness.

3.2.1 Fusion Data

We use the Alcator C-MOD data described in the Appendix, Section A.2. The particle

subset that we were provided from this simulation consists of ∼ 50, 000 particles per

time step. For this dataset, we visualize displacement vectors based on the time series of

particle data.

The simulation domain of fusion devices represents a complex torus-like shape. How-

ever, scientists are often interested in the motion of the plasma towards or away from

chamber walls (in the direction of the “minor radius” of the torus). As a result, many
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visualizations (including our own) focus on presenting information on a 2D “poloidal”

slice where the less interesting motion in the third dimension is hidden. We project all

particles throughout the torus onto the slice view so that the resulting histogram-based

visualization, while 2D in nature, represents information from the entire 3D domain.

Appendix 3.4 shows an example of the histogram-based visualization for the C-MOD

dataset. In this case, we directly sample any particles that fall into a histogram region

(as denoted by the black grid). From this zoomed-out overview image, we can see general

patterns that permeate the domain. Since the center of each histogram/region represents

a zero velocity, we can see that many particles, heavy ions, in this case, are moving

around the slice in both a clockwise and counterclockwise direction. While the majority

are moving slowly (as shown in a dark color), smaller groups of particles are moving

quickly (as shown in a lighter color). Particles near the top and bottom of the slice are

either slow-moving or stationary.

After obtaining an overview of the general patterns throughout the data, users can

explore details by zooming into certain regions and adjusting the resolution of the his-

togram grid and the histograms themselves. Appendix 3.5 shows a zoomed view of a

select set of timesteps throughout the simulation. From the histograms, we can tell that

these particles, electrons, in this case, begin by moving very slowly. Over time, their dis-

placement vectors begin to increase in magnitude and ring-like patterns begin to form in

the histograms. These rings show that the slower moving particles tend to move vertically

while the faster moving particles tend to all move towards the left. Animating through

the simulation shows that the presence of these ring-like structures cycles on and off at

key timesteps.

Lastly, we demonstrate the ability to deform the histograms into non-Cartesian struc-

tures of interest. One such structure, the separatrix, represents an important magnetic

flux surface in the tokamak geometry. In this case, we use a layout scheme that places

histograms along the separatrix surface (defined in the acquired dataset) and transform

the velocities into components parallel and perpendicular to the surface. This allows users

to analyze the motion of particles relative to this curve. Appendix 3.6 shows an overview
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Figure 3.6. Left) An overview showing the histogram layout on the separatrix surface.
Right) A zoomed view showing that only higher-velocity particles have a perpendicular
velocity component to this surface.

of this new layout, as well as a zoomed-in version. Just like the Cartesian layout, the

position of the histogram bin relative to the center of the histogram denotes the velocity

direction that the bin represents. We can see that most of the particles tend to move

parallel to the separatrix surface except for some higher-velocity particles which have a

slight perpendicular component towards the center of the slice.

3.2.2 Combustion Data

The combustion dataset we use is described in the appendix A.3.1.1. In this dataset, being

able to explore all three dimensions of the domain is important to combustion scientists.

Since our histogram-based visualization is 2D in nature, we use the interactivity of the

system to explore different aspects of the domain. For example, users can choose to

view the data from multiple orthogonal axes. In addition, the histograms can represent

particles sampled from a slice in the data whose position and thickness are both adjustable
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Figure 3.7. Two images showing the combustion dataset as viewed from different
orthogonal directions. From the x-y plane, it is clear that particles near the center of
the combustion jet are moving both quickly and slowly to the right. Particles near the
top and bottom of the images are fairly stationary. A set of particles is highlighted in
green when mousing over a particular histogram bin of interest.

in the user interface.

From the histogram-based view in Appendix 3.7, we can see the velocity decomposition

of the particles from multiple orthogonal viewing angles. Viewing from the front, one can

see that particles are moving towards the right both quickly and slowly near the center of

the jet, whereas particles near the top and bottom of the image are stationary. In addition,

mousing over a particular histogram bin highlights the corresponding set of particles in

green. Viewing from the sideshows similar patterns but reveals an additional dimension

of motion. Upon careful inspection, there is a greater variation in the velocities in the

top half of the image when compared to the bottom half.

3.2.3 Marine Life Movement Dataset

The last data we test comes from the Tagging of Pelagic Predators (TOPP) [103] dataset,

Appendix A.4.2. This is a geospatial movement dataset that tracks the motion of marine

life throughout the Pacific Ocean. Datasets like these are essential in understanding
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Figure 3.8. The velocity decomposition of elephant seals at two different times of the
year near the California coast. Left) The direction of movement is primarily towards
the northwest as the seals migrate into the Pacific Ocean to feed. Right) The direction
of movement is primarily to the southeast as the seals return to the coast.

animal behavior in terms of migratory or feeding patterns. We choose this dataset to

show that our histogram-based visualization tool has applicability in areas outside of flow

visualization.

Appendix 3.8 shows an example of our visualization applied to this geospatial move-

ment dataset. More specifically, we look at the migratory patterns of elephant seals that

inhabit the California coast. On the left, we can see that the primary direction of motion

is towards the northwest in late February and early March. This is a result of the seals

migrating into the Pacific Ocean to feed after a long breeding period on the coast. A few

months later in late April and early March, the direction of motion reverses towards the

south-east when many of the seals return to the coast.

3.3 Discussion

Overall, we present an interactive system which utilizes the advantages of velocity-based

histograms to visualize and explore the motion of a group of objects. While many tra-

ditional techniques are subject to a trade-off between visual clutter and loss of detail, a
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histogram-based representation can provide a clear description of the velocity decompo-

sition of a system of study. In the next chapter, we extend our approach to also use an

in situ generation scheme which can be used for extreme-scale applications.
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Chapter 4

Visualizing Weighted Particle

Distribution Functions

This chapter is based on material from our publication, Scalable Visualization of Time-

varying Multi-parameter Distributions Using Spatially Organized Histograms [104]. ©

2016 IEEE.

In the previous chapter, we introduced an approach to visualize the movements of

discrete objects based on spatially organized histograms. In this chapter, we expand

on this approach, with an in situ processing scheme to compute histograms during the

simulation where the full data is available. We then leverage the same zoomable panning

window approach as in the previous chapter. We also extend the visualization system

with a number of features, such as the support to visualize weighted particle distributions,

hierarchically drilling down into the particle weight distributions, and linking with phase

plots. Additionally, we add a linked temporal view and build in support for visualizing the

temporal evolution of a selected 2D distribution function using temporal stacking and then

rendering the time-extended 2D+1 data stacks through 3D isosurface rendering. Different

projections of the spatially organized histograms are explored to enhance the ability to

select regions of interest, and capabilities to derive variables through an embedded DSL

for mathematical expressions and using them to define new plots to use in the different

views are included. We present case studies using this approach with the XGC data
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Figure 4.1. An image depicting the visual representation used for 1D and 2D his-
tograms in this work. Left) A 1D histogram discretized into bins. The frequency of
entities sampled into each bin is represented by the height of the bar. Right) A 2D
histogram with each bin represented by a colored cell. Darker colors represent bins
with higher frequency, and the hue can differentiate between positively (red-orange)
and negatively (blue) weighted samples.

described in Section A.1.1, the GTS data in Section A.1.2, the Ethylene Flame data from

Section A.3.1.1, and the AECP3 Accelerator data from Section A.2.1. Performance results

for the on-the-fly scheme from the previous chapter are included and compared against

the in situ scheme presented in this chapter.

4.1 Preliminaries

Before we describe our methods, we introduce some preliminary background knowledge

about the types of histograms we can make use of as well as the data types that our

methods can support.

4.1.1 Weighted Histograms

In some cases, it is necessary or useful to weight the contributions of each sampled object.

We compute our weighted histograms as follows, where H(i, j) gives the value of the bin

at row and column (i, j), bin(i, j) represents the set of objects mapped to it, and wk is

the weight for the sampled object, Ok.
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H(i, j) =
∑

Ok∈bin(i,j)

wk

In various particle-in-cell fusion simulations such as XGC [37] and GTC [36], the sim-

ulation particles each represent a variable number of real-particles. In this case, scientists

need to use this value as a weight in order to see the proper distributions corresponding

to the modeled physical system. Further, these weights represent perturbations from a

Maxwellian background, and thus can be negative or positive. Still, visualizing the dis-

tributions of unweighted simulation particles can be useful for making sense of how the

simulation is behaving.

Alternatively, one could use any variable in the data as a weight when generating

the histograms. This allows users to view additional information in the limited 1D or

2D spaces since the frequency counts are now being adjusted by a separate variable.

However, it must be considered that the ”frequency” of a certain bin can be caused by

a large number of samples with a small weight, or a small number of samples with a

large weight (see Section 4.2.3.4). As an analogy, suppose you want to see distributions of

campaign contributions in a local election. You could compute an unweighted histogram

showing how many people contributed to a campaign. Alternatively, you could weight each

contribution by its amount in order to see how money/influence is distributed. Weighting

contributions to one party negative and the other positive allows one to see how deviations

from a neutral position are distributed. See Figure 4.1 for an illustration.

4.1.2 Applicable Data Types

Any set of data points embedded in a mathematical space can be sampled in order to

summarize their distributions. In this chapter, we focus on particle data from fusion and

accelerator simulations. However, we could also operate on data associated with discrete

grid points. Furthermore, as we can also sample entities in non-physical spaces, we can

visualize and study many different combinations of variables in a single visualization.

Thus the techniques in this chapter can be applied to many multi-parameter datasets,

and are not limited to just scientific simulation data.
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Figure 4.2. An overview of our workflow. Histograms can be constructed on-the-
fly directly from particle data or from pre-generated high-resolution histograms that
were computed in situ. A user interfaces with the visualization software and can
explore the data using three linked views: a histogram viewer which shows the spatially
organized histograms, a trajectory viewer which shows the trajectories of particles
corresponding to selected bins, and a time-varying visualization which uses isosurfaces
to show temporal patterns of a selected histogram.

4.2 Methods

4.2.1 Overview

One important aspect of such a technique is the ability to interactively explore the data

through a variety of adjustable parameters and configurations, (e.g., chosen variables,

size/distribution of sampling regions, histogram resolution, etc.). As a result, the his-

tograms displayed to a user need to be constructed at runtime; however, this is one of

the most computationally expensive steps. We, therefore, provide two schemes for his-

togram generation each designed to handle different dataset sizes as shown in Figure 4.2.

For smaller datasets, we utilize GPU acceleration to efficiently sample the raw simula-

tion data directly. This scheme has been described already in Chapter 3. For large-scale

datasets, we provide an alternate method that can emulate this same interactivity. In-

stead of sampling the raw data values directly, a set of high-resolution histograms are
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Figure 4.3. A) Color can be used to highlight spatial variations throughout the
domain but does not show trends between variables. B) A vector plot showing particle
motion (color mapped to magnitude) results in clutter, even when plotting only 0.5%
of the full data. C) A scatter plot can be used to show trends between two different
variables in the particle data but does not show any spatial variations. D) Spatially
organized histograms can display both trends between different variables and spatial
variations throughout the domain in a low-clutter manner.

constructed in situ and saved to disk. These can then be sampled in real-time according

to the user-defined parameters.

The visualization tool itself provides multiple linked views which can be used to explore

different aspects of the data. A trajectory viewer is used to directly view raw simulation

data and provides spatial context as well as detailed information on demand. The his-

togram viewer presents a set of spatially organized histograms that can present major and

minor trends in the data in a low-clutter manner. This view focuses on exploring spatial

differences in the distributions of a sample. Lastly, a time-varying visualization is pro-

vided to highlight temporal variations in histogram distributions. Histograms of interest

are stacked into a 3D volume, and isosurfaces are used to visually represent major trends.

4.2.2 Spatially Organized Histograms

The main advantage of using spatially organized histograms is illustrated in Figure 4.3.

Traditionally visualizations can expose spatial variations in the data by plotting values

directly and using color to represent variable values (part A). While this makes spatial

variations clear, it is difficult to compare multiple variables at once without introducing

confusion, over-plotting, and clutter. Furthermore, using vector plots to describe particle
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motion can result in a great deal of clutter (part B). To compare trends between multiple

variables, phase-space plots may be used where each axis represents a particular variable

(part C). However, such a view does not show spatial variations throughout the domain.

A spatially organized set of histograms can be used to represent both spatial variations

as well as trends between variables simultaneously in a low-clutter manner (part D).

4.2.2.1 In Situ Generation and Sampling

The interactive capabilities available through an on-the-fly sampling method are a ma-

jor facet of our visualization tool. However, the computational overhead of histogram

generation in larger datasets limits the responsiveness of the system, impeding real-time

exploration. As a result, we implement an alternative in situ scheme which can be used

to handle large-scale datasets while minimizing any loss of functionality in the visual-

ization tool. In this scheme, raw data values are directly sampled and transformed into

a histogram-based representation during the runtime of the simulation allowing us to

accumulate the statistical information of objects at much larger scales.

Each of these pre-generated histograms is saved so that they can be sampled in real-

time by the visualization tool during post-processing analysis. Each histogram is sampled

onto a mesh, dependent on the type of simulation, where each grid point represents the

center of a 3D volume from which objects are sampled. Since the size of each sampling

region can vary, especially in unstructured grids, the volume of the sampling region is also

saved. This will in turn be used to more accurately sample histograms in the visualization

tool. The histograms themselves represent distribution functions that are normalized

using a normalization factor according to their relative intensities. Users can control a

balance between the temporal resolution of output steps, the spatial resolution of the

sampling mesh, and the phase-space resolution (number of histogram bins) to suit their

needs.

Our interactive system then samples this more manageable data representation for

interactive exploration. Because the grid sizes can be dense and unstructured, it is often

effective to visualize an overview at a reduced level of detail. For this reason, we partition

the domain into disjoint sampling regions, as we do in the on-the-fly scheme, and sample
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Figure 4.4. A screenshot of the user interface. The interface consists of three main
views: the histogram view (A), the trajectory view (B), the time-varying view (C).
Additionally a minimap depicting the zoom and location of the histogram view is
shown on the top-left and a detailed view of the selected histogram is shown on the
bottom-left.

grid points (their associated raw histograms) by region. The histogram values of grid

points that fall into the same sampling region are merged using the normalization factor,

N , and the net sampling volume,
∑M−1

k=0 Vk, where k is the grid point index, and M is the

number of grid points. The normalization factor is equal to the inverse of the total phase-

space volume where particles are sampled from and is computed during the simulation.

The resulting histogram values are computed as follows:

H(i, j) =
N∑M−1

k=0 Vk

M−1∑
k=0

hk(i, j)

where hk(i, j) is the 2D histogram of a sampled grid point with index k and H(i, j) is the

resulting merged histogram, and M is the number of grid points.
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Figure 4.5. An alternate example of the three main visualization views. A 1D his-
togram is generated from the particle data in the histogram view (top-left). Trajecto-
ries for particles corresponding to a moused-over bin are shown in 3D in the trajectory
view (top-right). A spectrogram-like plot shows the evolution of the distribution in
the selected histogram over time in the time-varying view (bottom).

4.2.3 Visualization System

The visualization system ties together three main interactive views: a histogram view, a

trajectory view, and a time-varying visualization. Each representation presents a different

perspective on the data and allows for real-time exploration. Furthermore, each view is

linked so that selections and interactions in one view simultaneously affect the other. This

multi-faceted approach allows users to investigate multiple aspects of the data at the same

time. Figure 4.4 shows an overview of the user interface of the visualization tool.

4.2.3.1 The Histogram View

The histogram view presents the 1D or 2D distribution functions computed using either

the on-the-fly or in situ sampling schemes. By comparing the relative frequencies of

different histogram bins, users can explore trends between multiple variables and spatial

regions throughout the simulation domain simultaneously. Figure 4.5 shows the use of 1D

histograms in the histogram view.

By default, this view uses a panning window approach. The screen space is partitioned
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into a regular grid of sampling regions. Entities within each sampling region are used to

construct histograms in real-time based on the user-defined parameters. The user interface

can be used to control these parameters, such as the number of partitions, the resolution

of the histograms, or the variables used for sampling. When the user drags the mouse over

the view space or zooms in, the sampled objects move relative to the screen, while the grid

remains fixed. We also employ a layout that remains fixed with respect to the particles as

the user pans and zooms. Such a layout has the benefit that zooming and panning can be

done without affecting the sampling partitions. However, the panning window approach

gives more control over the locations of the sampling regions with respect to the particles.

One potential disadvantage of partitioning the space into rectangular sampling regions

is that such regions may not conform well to the geometries underlying the data. This

can be alleviated by projecting the data into different spatial layouts. For example, the

Tokamak device geometry is based on the magnetic flux surfaces that act to confine the

plasma. The two spatial variables of interest in this space are the magnetic radius and

the angle about the center of the poloidal plane. By projecting the data from this space

into Cartesian coordinates, such that the poloidal angle is mapped to the x-axis, and the

magnetic radius is mapped to the y-axis, the user can easily select regions that conform to

tokamak geometries of interest as in Figure 4.6. Furthermore, we can scale the projection

in each dimension separately, allowing us to sample from larger ranges of one of the

variables relative to the other.

4.2.3.2 The Trajectory View

The trajectory view is used to show the overall motion of sets of particles (or other ob-

jects) in either physical or phase space. Conveniently, the histogram view provides a

powerful and unique way of selecting desired particle subsets. Due to the simple and

regular structure of the spatially organized histograms, the user can apply mouse inter-

actions over a sampling region and a bin in the associated histogram, and the system can

unambiguously and efficiently extract the corresponding sampled objects. This process

ultimately implements a 2-level range-based selection, with the first level corresponding

to a 2D spatial range (sampling region/histogram) and the lower level a 1D or 2D value
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Figure 4.6. Projecting curved geometry into a Cartesian viewport for easier visual-
ization and interpretation. A,B,C) Projecting sampling points into a Cartesian x-y
layout based on radius and sweeping angle. A) The selected grid points in another
spatial context, B) The mini-map view, C) The histograms overlaid over the projec-
tion. D,E,F) The same type of projection with one dimension scaled to an extreme in
order to favor sampling the points based on one of the spatial variables over the other.
D) The selected grid points, E) The mini-map, F) The associated histograms.
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Figure 4.7. The steps involved in generating the isosurfaces in the time-varying view.
First, a frequency isovalue is chosen and displayed as isocurves on the currently selected
histogram. Next, histograms using the same sampling parameters are generated for all
available time steps and stacked into a 3D volume. Lastly, an isosurface is generated
with the selected isovalue using marching cubes.

range (bin of a 1D or 2D histogram). After the user makes such a selection, the particle

trajectories are constructed and displayed in the trajectory view.

Since this process occurs in real-time, users can interactively explore the motion of

particle subsets in either physical space, phase space, or both. An example of a selection

can be seen in Figure 4.4B. In this case, the extent of all trajectories is drawn in gray,

the trajectories corresponding to the selected histogram are drawn in purple, and the

trajectories corresponding to the selected bin are drawn in green. The lightness/darkness

of the color represents the density of trajectories at that location. To the left of the

trajectory view, bar charts show the distribution of weights in the dataset as well as the
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selected histogram and bin. This feature provides useful information in the case where

the histograms are weighted and also provides an interface for additional weight-based

levels of particle selection. See Section 4.2.3.4 for more details.

4.2.3.3 The Time-varying Visualization

While the histogram view is effective for comparing trends between variables as well as

spatial differences throughout the domain, it’s not effective for visualizing trends over time.

As a result, we implement a time-varying view that can display the temporal properties

of a selected histogram. Occlusion and over-plotting make it difficult and confusing to

view time-varying patterns for each bin in a 2D histogram. Instead, we rely on isosurface

techniques to extract surfaces from a volume that represents the histograms values at each

time step. We choose isosurfaces because they are a simple and intuitive way of exploring

a 3D volume. While a more flexible direct volume rendering approach could be another

option, it would rely on careful selection of the transfer function, which can be a burden

on the user and can result in a more complex and difficult to interpret visualization.

Figure 4.7 describes the process through which we generate the time-varying view.

First, a histogram of interest is selected. A user then chooses a frequency isovalue. This

forms a set of contours that separates the 2D histogram into regions where the bins have

a frequency higher than the isovalue and regions where the bins have a frequency lower

than the isovalue. Next, additional 2D histograms over a series of time steps are generated

using the same set of parameters (sampling region size, number of bins, etc.). These are

then stacked into a 3D volume, where two dimensions represent each of the histogram

variables and the third dimension represents time.

As the construction of the time-varying visualization requires computing histograms

over many time steps, it often represents the primary performance bottleneck of the

overall system. To accelerate this process we use the GPU. To maximize performance, we

want high saturation of computational resources and a balanced workload between GPU

threads. We must also prevent multiple threads from attempting to update the same bin

value (at a single memory location) simultaneously. These considerations affect our choice

of how to parallelize the computation, and which GPU computing platform to use.
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Figure 4.8. An image demonstrating the ability to use the time-varying view to con-
struct isosurfaces over a spatial path rather than through time. Histograms are sam-
pled along this path (shown at the right). These are then stacked into a 3D volume to
be visualized by isosurfaces. The views on the top left show isosurfaces from various
isovalues and viewing angles and reveal distinct trends in the data.

One option would be to assign each GPU thread a separate chunk of time steps.

This has the benefit that concurrent writes to the same memory address are implicitly

avoided as the computation for each time step is independent of each other. However,

because the number of time steps is often small relative to the number of cores in modern

GPUs and each time step may correspond to a large chunk of data, this can lead to a

load balancing problem. Another option is to assign threads work based on particle id.

Because the number of particles is typically much larger than the number of time steps

as well as GPU cores, this approach may result in better load balancing. The drawback

is that different particles handled by different threads may be mapped to the same bin,

and therefore some locking mechanism is required to ensure that only one thread updates

a bin’s memory address at a time.

Modern GPU architectures, e.g. NVIDIA’s compute architectures since Kepler [105],

support efficient hardware-based atomic operations on floating-point data. Specifically,

we can use CUDA’s atomic add(float*, float) function to increment a bin within

the GPU kernel. Because we found parallelization over the particle ids using atomic

operations to be much more efficient than parallelization over the time steps, we choose

to use this method.
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We must also consider that all of the data needed to compute the temporal view may

not fit in GPU memory at once. In this case, chunks of the data need to be processed

one at a time, which means that large amounts of data need to be transferred to the

GPU each time the histogram parameters have changed and the visualization needs to

be recomputed. In the tests, we used a Titan X graphics card with 12GB of memory,

which could safely store a little over 500 time steps × 1M particles × 5 32-bit floating-

point variables persistently in memory. In addition to the particle data, GPU memory is

allocated for the volume/histogram stack, but because the volume is typically very small

relative to the size of the particle data, its memory footprint is insignificant.

When utilizing the in situ scheme, histograms have already been computed per grid

point and thus typically represent a smaller data size than the raw particles. In addition,

the grid points do not move over time, so the mapping of a grid point to a sampling region

needs to be done only once. As a result, this procedure can be done reasonably quickly

using only CPU thread parallelism along with CPU vector instructions.

Once the 3D volume has been computed, we perform marching cubes [106] to gener-

ate the isosurface. In general, the time it takes to construct the isosurface geometry is

insignificant compared to the time it takes to generate the 3D volume. Performance tests

for histogram stacking and isosurface generation can be found in section 4.3. Note that it

is possible to select multiple isovalues resulting in the generation of multiple isosurfaces.

Once the isosurface has been generated, users are free to pan, rotate, or zoom around

the constructed mesh. An intersecting slicing plane indicates the currently selected time

step and helps to orient the viewer. Users can also adjust any histogram or isovalue

parameter and receive real-time feedback on how the mesh changes form.

When visualizing a 1D histogram over time, we use a waterfall plot. In this case,

we can incorporate the values of each bin into the visualization. The 1D histograms are

stacked and connected into complex polygons depth-wise over time. An example of this

can be seen in Figure 4.5.
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Figure 4.9. Using the time-varying visualization to study temporal trends for a selected
histogram in the XGC dataset. The horizontal histogram variable represents the ve-
locity parallel to the magnetic field, while the vertical histogram variable represents
the velocity perpendicular to the magnetic field. Left) The temporal view is shown
using 4 different isovalues, low to high from top to bottom. Right) The histogram
view. A global threshold was used to map color to frequency, and the volume was
not normalized per-time step. This way the visualization highlights the differences
in overall weighted particle frequency in different areas of the domain as well as over
time. One interesting aspect shown in this visualization is how the distribution starts
out quad-modal and evolves to become bi-modal.

4.2.3.4 Other Features

As previously described, a particular bin in a weighted histogram could represent different

numbers of discrete particles depending on their weights; a small number of high-weight

particles and a large number low weight particles could map to the same “weighted fre-

quency”. As a result, we also provide a visualization of the distribution of weights from a

selected bin or histogram, as well as from the full particle data. This can be seen in the

left portion of Figure 4.4B as 1D histograms. Selecting a subset of particle weights from

the distribution highlights the bar and any corresponding trajectories in white.

An additional feature is the ability to stack histograms into a 3D volume based on a

physical path through the domain rather than through time. In this case, histograms are
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generated along a discrete set of points along the path. Each point represents the center of

a sampling region from which particles are sampled. In this case, the isosurfaces represent

continuous variations in the distribution between variables along this physical path. An

example of this can be seen in Figure 4.8 where grid points are sampled along a line from

the center of the poloidal plane to the edge of the high field (right) side. The histogram

stack is ordered by radial distance and shows how the distributions change according to

this spatial variation.

The normalization of histograms is another factor that users can adjust interactively.

Sometimes it is useful to visualize variations in bin frequency, or overall sample sizes,

across multiple histograms at once. In such cases, it is important to ensure that the color

mapping used is globally consistent across every region and time step. However, this can

significantly reduce the usable color range for histograms with relatively low maximum

bin frequencies, and as a result, can hide patterns and make variations in-perceivable

for certain individual histograms. For this reason, the user interface includes a slider to

apply a global normalization factor in order to amplify unpronounced features. We also

provide a local normalization feature that allows the full range of color to be used in

each histogram independent of its maximum frequency relative to the other histograms.

Local normalization is favorable for showing how the variables are distributed within

each region individually. When the user chooses local normalization, the histogram view

is affected as well as the temporal volume, in where the histograms will be normalized on

a per-histogram, per-time step basis.

The system also features an embedded mathematical expression DSL, based on the

exprtk mathematical expressions library [107]. The user can define sets of constants, build

new constants from existing ones, and derive variables based on the raw variables in the

data as well as the constants. The system compiles the expressions on the fly, and signifies

when the expression is valid. The derived variables can then be used in user defined phase

plots, projections, and time plots. Figure 4.11 shows the interface for the timeline plots.

These features are demonstrated in the video demo for the Baleen software system listed

in Section B.4.
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Figure 4.10. Using the time-varying visualization to study temporal trends for a se-
lected histogram in the XGC dataset. The horizontal histogram variable represents
the magnetic radius, while the vertical histogram variable represents the magnetic field
strength in a direction that runs around the torus geometry. The isosurfaces reveal
complex wavelike patterns which tend to swap places with their positively and nega-
tively weighted counterparts.

Figure 4.11. The timeline view with the interface for defining new temporal plots or
selecting from existing ones.

4.3 Results

We demonstrate the effectiveness of our system using a set of real-world datasets in the

fields of fusion and particle accelerator research. We use results from two different fusion

simulations to test the on-the-fly and in situ sampling schemes provided by our system

and demonstrate the unique patterns that the visualization can highlight. We then test

the system using a particle accelerator dataset to show its applicability to other fields of

science. Lastly, we provide performance results to justify the interactivity of our technique

when using either sampling scheme.

4.3.1 Fusion Datasets

The fusion datasets include the XGC and GTS datasets described in the Appendix A.1.1

and A.1.2 respectively. Their spatial domains and coordinate systems are illustrated in

Figures A.1 and A.2. As in the previous chapter, the data is toroidally integrated and
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Figure 4.12. A) Visualizing the in situ generated histograms by merging histograms
from the simulation grid points within each sampling region. B) Comparing the same
simulation using histograms generated on-the-fly from particles directly. C/D) Zoom-
ing in the domain from A and B respectively highlights the advantages of using the
in situ method. When the sampling regions have fewer particles to sample (D) the
histograms become noisy. This is not an issue in the in situ case (C) since it was able
to sample a much larger number of particles during the simulation.

Figure 4.13. An image depicting the in situ generated histograms from the GTS
dataset. The horizontal histogram variable represents the velocity parallel to the mag-
netic field, while the vertical histogram variable represents the velocity perpendicular
to the magnetic field. The right side shows spatial variations in the distributions
throughout the simulation domain. The left side shows two time-varying isosurfaces
of the selected histogram over time at different isovalues. This reveals a unimodal to
trimodal evolution of the distribution.

projected onto the poloidal plane.

4.3.1.1 On-the-fly generation with XGC

Figure 4.9 shows an example of the system employing the on-the-fly sampling scheme

to visualize the XGC dataset. In this case, the weight of the particle describes the

perturbation from the background (Maxwellian) distribution. Positive/negative weights
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describe an increase/decrease of particle population from the background. The histograms

were computed using these weights, and a divergent color map was used to differentiate

negatively (blue) and positively (red) valued bins. From the figure, it can be seen that

at the beginning of the simulation, the distribution is quad-modal alternating between

negative and positive and eventually becomes bi-modal. Additionally, one can see how the

weights grow over time since the surfaces associated with fixed bin frequencies/isovalues

expand in size as the simulation progresses.

When using our visualization tool, physicists have described that it can easily investi-

gate the perturbed distribution function and the particle trajectories which are responsible

for the perturbation. They mention that one very useful example is monitoring the growth

of particle weights. In particle simulations, excessive growth of particle weight could in-

duce statistical noises and degrade the accuracy of the simulations. Hence, monitoring the

growth of particle weights and identifying the cause is important to regulate the statistical

noises.

Another example can be seen in Figure 4.10. In this example, the horizontal histogram

variable represents the magnetic radius, while the vertical histogram variable represents

the magnetic field strength in a direction that runs around the torus geometry. The time-

varying isosurfaces reveal complex wavelike patterns forming in distinct positively and

negatively weighted groups. Furthermore, these groups tend to swap positions over time

occupying different regions of phase space.

4.3.1.2 In Situ Generation with GTS

Next, we test the in situ sampling scheme using data from the GTS simulation. His-

tograms were generated during the simulation with access to the full resolution particles.

These histograms are then sampled based on the user-defined parameters of the sampling

regions. The values in the histograms represent energy distributions in that the particles

are weighted by energy relative to a background value (which allows them to be positive

or negative).

The horizontal axis of each histogram represents the velocity of the particle parallel

to the direction of the magnetic field, whereas the vertical axis represents the magnitude
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Figure 4.14. The top of the image shows a visualization of clusters of particles in
the cryomodule device with the mesh depicting the shape of the device/individual
cavities. In this case, they were colored categorically according to which cavity they
were emitted from. Temporal histogram stack isosurfaces are computed for each cluster
based on momentum in the x and y directions (perpendicular to the beam) and are
shown side by side for comparison. As opposed to the other clusters, the leading
cluster (E) is made up entirely of particles that were emitted from the same cavity.
Additionally, the particles that make up this cluster experienced a higher than normal
level of instability, especially during a time segment starting about halfway through
the available time steps.

of the velocity perpendicular to the magnetic field. Since the perpendicular velocity

is represented as a magnitude, it is always positive and results in only the top half of

our histograms bearing values. These types of velocity plots are commonly used when

studying gyrokinetic simulations.

Figure 4.12 shows an example of the in situ sampled histograms using our visualization

tool (A/C) vs. a comparison to the on-the-fly particle-based sampling scheme (B/D). Due

to I/O limitations, the simulation is only able to dump a small subset of the full particle

data, forcing the on-the-fly method to sample only 3% of all particles. The points in the

background show the grid points from which the pregenerated histograms were merged.

From the images, it is clear that the in situ version was able to capture more detail

since it represents statistical information from a much larger sample size. This is further
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exacerbated when zooming into the domain; as fewer particles are sampled per histogram,

eventually we observe excessive degradation of statistical quality(D).

Figure 4.13 shows an alternate run of the GTS simulation and focuses on studying the

time-varying properties of the histograms. The left side of the figure shows three different

isosurfaces of the selected histogram (which is outlined in yellow) with time increasing

towards the right. Each of these isosurfaces shows a unimodal distribution towards the

start of the run with nearly all particles exhibiting a small parallel and perpendicular

velocity. This evolves into a trimodal distribution consisting of a small parallel and

perpendicular velocity, a large positive parallel and large positive perpendicular velocity,

and lastly a large negative parallel and large positive perpendicular velocity. This is what

forms the distinct “V-like” shape in the images.

We can also look at spatial variations within a single time step (near the end of the

simulation, as indicated by the yellow indicator in the 3D views) as shown on the right

side of the image. We can see that these ”V-like” distributions are more prevalent near

the center of the tokamak cutting plane. This gradually transforms to the unimodal

distribution near the edges which only contain particles with small parallel and perpen-

dicular velocities. Furthermore, there seems to be an even influence between positively

and negatively weighted particles in both space and time.

4.3.2 Accelerator Dataset

Our next example uses data from a simulation called ACE3P [108] which is used to

study the electromagnetic dynamics within particle accelerators. The specific device this

simulation run studies is called a cryomodule which uses a set of resonating cavities

to accelerate the particles. A better understanding of certain processes, such as dark

current, in which charged particles become emitted from the cavity surfaces and enter the

accelerating beam, can lead to an improved design of the device.

In this application, we sampled particles from the accelerator data over a projection

of r (radial distance) and z (along the length of the cryomodule). However, in this case,

we were interested in examining the behavior of different clusters of particles over time

rather than the behaviors of particles in specific regions. For this reason, we used the
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spatial layout only to make our initial selections based on the cluster, and then used the

computed histograms, for the particles in those clusters, at each time step to construct

the temporal histogram stack. The histograms here represent momentum in the x and

y directions (perpendicular to the length of the device). The visualization was made

from about 15,000 particles over about 3,000 time steps. This gives an overview of the

movement of the particles perpendicular to the beam and easily highlights segments in

time where apparent extreme or abnormal behavior occurs.

Figure 4.14 shows a comparison of 5 different clusters of particles (labeled A-E). In the

time-varying view, time is increasing towards the right. Since each isosurface represents

momentum perpendicular to the motion of the beam, the thickness of the isosurface tube

represents a point in time where instabilities are occurring which can cause particles to

exit the beam and become deposited into a cavity downstream potentially damaging the

device. Comparing each of the clusters, it is clear that cluster E contains the most amount

of instabilities over the entire time window, which may explain why it has fewer particles

than clusters A-D.

4.3.3 Performance Results

The performance results for generating spatially distributed 2D histograms for a single

time step can be found in our previous work [109]. This section will instead focus on

the performance results for generating the 3D temporal volume of stacked histograms for

both the on-the-fly and in-situ methods. This generation step is the largest bottleneck

as performing marching cubes to construct an isosurface is much faster in comparison

considering the typical sizes of the associated volumes. For example, a volume representing

a 32× 32 bin 2D histogram over time could include over 16,000 time steps (much larger

than the typical use case) before exceeding the size of a 2563 volume (which is relatively

small by today’s standards). For testing, we used an Intel i7-5939K processor with 6 cores

at 3.5 GHz and a Titan X graphics card with 12 GB of memory.

Figure 4.15 shows the timing results for the on-the-fly method. The graph shows the

time it takes to construct the 3D volume as a function of the number of time steps in the

data. Each curve represents a different number of particles that are sampled. Since the
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number of particles in each sampling region can vary over time, we artificially ensured

that each particle would be mapped to the selected sampling region, which represents the

worst-case computationally. In practice, the performance should be higher on average as

in the intended use case the selected sampling region will contain only a fraction of the

full data.

The graph itself shows a general linear increase in the time it takes to compute the

3D volume with a distinct jump that occurs at the points where all of the particle data

does not fit into GPU memory. At that point, chunks of data need to be transferred to

the GPU and processed one at a time whenever the volume needs to be recomputed. The

red curve shows the most extreme test case where we were able to process over 22 GB

of particle data (1,000,000 particles × (2 spatial variables + 2 histogram variables + one

weighting variable) × 4 bytes) into a volume in less than 2 seconds. As the number of

particles increases, the user may need to reduce the number of time steps and vice-versa,

however the visualization can remain interactive with reasonably large data sizes. For

example, with 1 million particles per time step, we can generate volumes representing

500 time steps at a time and still get reasonably high frame rates. This delay can be

alleviated further with the use of additional GPUs which could process each of the chunks

simultaneously.

Figure 4.16 shows the performance tests of the in situ versions. In this case, each

curve represents a different number of grid points that are within the selected sampling

region. Because the grid points remain fixed over time (unlike particles), mapping them to

sampling regions only needs to be done once, each time the sampling layout changes and

the rest of the computation is just a summation, which can be done very efficiently even

without using GPU acceleration. These timing results are based on our parallel CPU

implementation (using OpenMP) which also utilizes CPU vector operations to further

increase performance.
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Temporal Histogram Stack Generation

from Raw Particle Data
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Figure 4.15. Timing results for the time-varying visualization using the on-the-fly
method with varying numbers of particles (P). A jump in time occurs at the point
where the GPU can no longer keep all of the loaded time steps in memory. Sampling
from 1M particles, we were able to achieve fluid interaction while computing up to 500
time steps per volume.

Temporal Histogram Stack Generation

from Pregenerated Histograms
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Figure 4.16. Timing results for the time-varying visualization using the in situ method
with varying numbers of grid points/pregenerated histograms sampled (GP). Since
each thread is simply computing a summation over the number of grid points, for
disjoint sets of time steps, it scales linearly and is very computationally efficient.

4.4 Discussion

The results demonstrate the ability of our system to not only visualize trends between

variables in conjunction with spatial trends but also to analyze time-varying properties

as well. Maintaining generality allows the system to be applicable to a large variety of
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data types while employing multiple data processing schemes allows the system to handle

various data scales.

4.4.1 Scalability

Using the on-the-fly scheme with GPU acceleration, the data scales that desktop comput-

ers can handle depend on the number of data entities (samples × time steps). In general,

the system can handle up to ∼ 10 billion data entities before there is a several-second

delay when requesting a time-varying representation from a particular sampling region.

Limits can be pushed further by utilizing multiple GPUs or even a distributed setting

that can process chunks of particles simultaneously.

For larger data scales, the system can utilize the in situ sampling method. Since

histograms are pregenerated during simulation time, they can represent information from

massive numbers of particles. While the in situ sampling method cannot be used to select

trajectories (since the particle data is not available), the larger statistical sample size

provided can be a huge advantage.
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Chapter 5

Visualizing Multivariate Trajectories

with Recurrence Plots

This chapter is mainly based on material from our publication, Interactive Spatiotemporal

Visualization of Phase Space Particle Trajectories Using Distance Plots [104] © 2019

IEEE, but also contains material from our paper, An Interactive Visualization System for

Large Sets of Phase Space Trajectories [101]. © 2019 John Wiley and Sons.

The distance plot (or unthresholded recurrence plot) has been shown to be a useful

tool for analyzing spatiotemporal patterns in high-dimensional phase-space trajectories.

In this chapter, we incorporate this technique into an interactive visualization with mul-

tiple linked phase plots and extend the distance plot to also visualize marker particle

weights from particle-in-cell (PIC) simulations together with the phase-space trajecto-

ries. By linking the distance plot with phase plots, one can more easily investigate the

spatiotemporal patterns, and by extending the plot to visualize particle weights in con-

junction with the phase-space trajectories, the visualization better supports the needs of

domain experts studying particle-in-cell simulations. We demonstrate our resulting visu-

alization design using particles from the XGC ITER tokamak fusion simulation described

in Section A.1.1.

Distance plots and recurrence plots [110] are useful for highlighting recurrent patterns

and dynamical transitions in phase-space trajectories from multidimensional complex sys-
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tems. Despite an embrace by communities in domain sciences and applied mathematics,

the visualization community has yet to robustly investigate their use as an interactive

tool for qualitative visualization. Specifically, in many-particle systems (especially PIC

simulations where particles commonly carry time-varying weights), there are several issues

that should be addressed if one wishes to utilize these techniques. Standard procedures

for applying recurrence quantification analysis (RQA) are error-prone and tedious even for

simpler single component systems. The significance of a single component (e.g., particle)

in a many-component system such as a PIC tokamak simulation, the overall complexity of

the entire system and its boundary conditions, and the complex meaning of a trajectory

that carries weight, makes the setting highly non-trivial. A typical application of RQA to

these kinds of particle trajectories would be problematic. Despite these limitations, it is

clear that recurrence plots, and especially the distance plot, can be useful for understand-

ing the spatiotemporal patterns of these trajectories. In this chapter, we show how this

can be done through the combination of a novel distance plot visualization, and linked

phase-space views.

Our main contribution is the extension of the plot to also visualize the weights of

marker particles in PIC simulations. This is important for researchers studying tokamak

fusion simulations since the particles often carry time-varying weights which identify each

particle’s contribution to the overall particle distribution. While interactive recurrence

plots have been used for information visualization [111] [112], linking them with phase

plots for studying scientific simulation data appears to be novel in application. A small

additional novelty to our visualization is the incorporation of marks on the distance plot to

indicate occurrences of events. We apply these methods to study phase-space trajectories

of particles from the XGC tokamak fusion simulation [113]. Our preliminary results show

interesting patterns related to little-understood dynamical interactions between the phase-

space trajectories and evolution of particle weights, and correlations between the weights

and trajectories in terms of their (quasi) periodicity.
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5.1 Background

The phase space of a dynamical system includes those variables which are necessary to

uniquely describe the system’s state. A trajectory of a dynamical system, therefore,

represents an evolution of the system’s state over time from a particular initial condition.

A single particle in a many-particle system can be viewed as a component (or subsystem)

of the overall system, that follows its own phase-space trajectory.

In practice, it is common to refer to a plot in which time is a parameter rather than

an axis as a phase plot, regardless of whether each axis is technically one of the actual

phase-space variables of the system.

Figure 5.1. Top) An illustration of a recurrence within a dynamical system. Each
point represents a phase-space position (or state) x along a phase-space trajectory.
Recurrence occurs when the distance d(xi,xj) between a pair of states at discrete time
steps (i, j) is within a threshold, ϵ (the recurrence threshold). Bottom) An example
recurrence plot computed from the phase-space trajectory of an ion in a tokamak fusion
simulation. On the left is the un-thresholded recurrence plot (or distance matrix). To
the right are the distance plots derived from it using progressively smaller thresholding
parameters.
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5.1.1 Distance and Recurrence plots

A recurrence plot is a symmetric binary matrix where the columns/rows represent time

steps, and the cells (i, j) represent the mapping R(i, j) = 1 if ||xi− xj|| < ϵ else 0, where

xt is phase-space vector of the system at time t. Similarly, the unthresholded recurrence

plot (or distance matrix) is the matrix with each cells (i, j) representing the distances

||xi − xj||. Figure 5.1 demonstrates visually how the recurrence plot is computed and

what it represents.

Figure 5.2. A depiction of the tokamak fusion device. Right) An image of the inside
of a real device. Left) A cross section depicting the poloidal plane, and two important
types of particle modes: trapped (blue), and passing (red).

5.1.2 Requirements

Figure 5.2 depicts the tokamak device as well as the two important types of particle trajec-

tories (trapped and passing) that are featured in our analysis. Our design is motivated by

three primary challenges. First, the trajectories of interest are typically at least 5D. One

approach is the use of multiple linked views to visualize different sub-spaces. However,

we wish to identify patterns in the higher dimensional space since they are meaningful

for domain scientists to understand the system’s dynamics. Distance plots are useful for

finding high dimensional patterns in dynamical systems, yet they lack spatial context.

Second, physicists who develop and study XGC stress the importance of analyzing the

particle weights in conjunction with the phase-space trajectories. Third, we would like to

support the study of a phenomenon of interest. These factors motivated our design which

includes an extended distance plot that also shows the particle weights, markers indicating
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occurrences of discrete events that cue specific phenomena and includes multiple linked

2D phase plot views.

Figure 5.3. Phase plots in the poloidal plane (left) and velocity space (upper right)
with a selected trajectory (black). Its distance plot is shown in the lower right. A
pair of time steps that correspond to a recurrent state is selected with the mouse.
The points/states at these two time steps are shown in pink and green dots along the
trajectory in each of the phase plots.

5.2 Related Work

The more general problem of how to visualize multivariate temporal scientific data has

been studied extensively. Some approaches include dimensionality reduction, linked and
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coordinate views, glyphs, and 2D or 3D plots or volume visualizations with additional

variables mapped through color [114]. Other techniques, specifically for analyzing mul-

tidimensional trajectories or pathlines, include similarity analysis [115], clustering [116],

and flow feature-based pathline attributes [75]. The problem with these methods that we

address with this work, is the difficulty of exploring recurrent patterns in high dimensional

spaces.

Distance plots and recurrence plots have been proven useful for these purposes [110].

Extensions of the recurrence plot include fuzzy recurrence plots [117], which use cluster

centers as an alternative to discrete states, as well as cross recurrence plots [118] and joint

recurrence plots [119], which can be used in limited circumstances to analyze separate

trajectories together. Additionally, Poincaré plots and Poincaré maps are also used to

study recurrence in dynamical systems. Sanderson et al. used them to study recurrent

patterns in toroidal magnetic fields [92], and Tricoche et al. applied these methods within

a more general study of topological features in area-preserving maps[93].

In terms of interactive visualization, and domain-specific extensions, a “conceptual

recurrence plot” was proposed by Agus et al. for finding patterns in human discourse

[111]. Additionally, Demiralp et al. applied recurrence plots within an interactive system

for studying eye movements associated with visual-cognitive tasks [112].

However, existing recurrence plots do not support visualizing the combination of par-

ticle weights along with the phase-space trajectories, and interactive use to complement

multiple coordinated phase-space views has not been explored. Previous work addressed

visualization of tokamak particle distributions through weighted, spatially organized ve-

locity histograms [99]. While useful for visualizing local changes in the particle distribution

over time, they lacked the ability to analyze patterns in the particle trajectories.

5.3 Methods

5.3.1 Linking Distance Plots with Phase Plots

Since distance plots primarily show temporal patterns, and trajectory plots primarily show

spatial patterns, we use an interactive linking between them to enable a more intuitive and
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Figure 5.4. A group of linked phase plots together with our custom distance plot. The
left plot represents the poloidal plane, the lower middle plot represents velocity space,
the upper-middle plot represents the two angles of rotation (toroidal and poloidal),
and the upper right plot represents the particle weight and magnetic radius. The
background of each of these phase plots shows a heatmap-based aggregation of all of
the weights of the particles, while the specific trajectory being singled out is shown in
bright green. This trajectories distance plot is shown in the lower right corner. The
user has selected a cell in the distance plot and the states corresponding to this pair
of time steps are plotted in each of the phase plots (black point with white border
and white point with black border). Unfortunately the screenshot application has not
captured the mouse, so the selected cell is not marked.

detailed analysis of the phase-space trajectories. By hovering the mouse over cells within

the distance plots, the associated pairs of time steps are selected and their corresponding

points are then plotted in each of the phase plots, as in Figure 5.3.

One procedure that one could apply to analyze the recurrence patterns in this manner,

is to first select an interesting time step (e.g., based on an event, change, or anomaly) and

then inspect the profile about the time step as defined by Schultz [120]. The profile about

the time step corresponds to the window preceding and superseding the time step, and

can be investigated by moving the mouse along the “anti-diagonals” (perpendicular to

the main diagonal). Other uses are simply pointing out which actual states are recurring
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Figure 5.5. The design of our distance plot-based visualization incorporating events
and particle weights. the upper-left portion of the matrix represents the phase-space
distance plot, while the lower-left represents the particle weights distance plot. Dif-
ferent color maps are used for each to distinguish them. In each case, lighter means
smaller distances. The red/blue bands along the axis show the values of the weights
over time with red indicating positive weight and blue negative weight. The points
along the diagonal represent the events.

(in the phase space) and demystifying new patterns found in the distance plots.

5.3.2 Incorporating Events

Scientists are commonly able to define meaningful events that may occur within their

system of study. By incorporating these events into an interactive visualization, one can

more easily investigate particular aspects of the data they are currently interested in. We

incorporate events in our visualizations for both visual context, and selection. For visual

context, points in time are recorded when the event of interest has occurred. The state

of the system during these recorded events is marked as points and rendered over each of

the linked phase-space visualizations, as well as along the diagonals of the distance plots

(where t = i = j, corresponds to an event occurrence at time t). For selection, the user

can directly select groups of events based on the state through interactions on the phase

plots and then explore the associated trajectories and their correlations with the events.

The particular event we use in our analysis is the change of direction of rotation about
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the center of the poloidal plane. This is an indication of trapped particle modes. Passing

particles are defined as particles that rotate fully about the center of the poloidal plane

without turning around. Figure 5.2 illustrates these two types of trajectories. Research

on this topic is ongoing and important for designing more stable tokamak devices.

5.3.3 Incorporating Particle Weights

Since our collaborating physicists wish to analyze the particle weights in conjunction

with the trajectories, we split the otherwise symmetric phase-space distance plot into two

halves, one for showing recurrent patterns in the phase-space trajectory, and the other for

showing recurring patterns of the particle weights. Second, we plot the time series of the

weights along the axis of the distance plot to give additional context for gaining insight

into the patterns. Figure 5.5 illustrates the design of the resulting distance plot, as well

as the placement of event-based markings.

Figure 5.4 shows a group of phase plots together with the custom distance plot. The

phase plots show one selected trajectory (bright green) with a weight-based aggregation

of all of the particles beneath it for context. Read the caption of the figure for more

details.

Computation Times for Distance Plots
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Figure 5.6. Computation times for a distance plot from trajectories of different dimen-
sions and number of time steps.
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5.4 Performance

The distance plot requires N2 pairwise distance calculations on vectors in RM where N is

the number of time steps and M is the dimension of the trajectory. The computation is

embarrassingly parallel and can be easily mapped to the GPU. Our implementation per-

forms the calculation on the CPU with thread-level parallelism using OpenMP which we

found sufficient for our application. We tested the performance on an Intel(R) Core(TM)

i7-5930K CPU @ 3.50GHz. Results for a range of time series lengths and dimensionalities

are shown in Figure 5.6, and demonstrate sufficient efficiency for interactive visualization.

Figure 5.7. Four examples of the dual phase-space, particle weight distance plots. The
left two plots are from passing particle trajectories, while the two on the right are
from trapped particle trajectories and include marks representing the direction change
events.

5.5 Results

Figure 5.7 shows some examples of the distance plots for different particles. An interesting

pattern is an apparent correlation between the quasi-periodicity of each of these aspects
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Figure 5.8. A particle on its transition from magnetic confinement to escape and
absorption by the heat load diverter. The arrow shows that the point along the trajec-
tory in the upper view (in the poloidal plane) corresponds to the time step where an
anomalous change in the evolution of the particle’s weight occurred. It appears this
marks onset of the transition, before the subsequent loss of confinement.

of the particle. That is, it seems that the weights tend to oscillate with the orbits of

the particles in phase space. While this seems to be a tendency, it is not a strict rule,

and variations of interesting sub-patterns seam to occur which may loosely or tightly

follows this trend. While the presented images only depict a few of many trajectories,

the finding seems to be consistent with the larger set of trajectories as well (based on a

visual inspection of a large sample). A more robust investigation in close collaboration

with expert physicists will be done in the future to uncover the greater significance of
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Figure 5.9. Visualizations of distance above the corresponding linked pitch angle plots,
and velocity plots, for both trapped and passing particles. The green points in the
phase plots represent direction changes. The green points in the distance plots repre-
sent the timestep of the direction change events for the selected trajectories.

74



these insights.

Figure 5.8 shows another visualization. In this use case, the transition from magnetic

confinement to escape and subsequent absorption by the tokamak’s heat load diverted

is studied. The focus is on the relationships between weight fluctuation and the phase-

space transitions from confinement to loss. This use case is interesting since particle flux

near the outer portion of the toroidal device is strongly associated with particle loss, and

a major driving force for weight evolution as the simulation progresses. Understanding

this process can help to design better simulation techniques in addition to the physics.

Our finding highlights instances in which sudden anomalous weight changes are observed

before it is obvious (based on the trajectory) that the particle is escaping. In the figure,

the anomaly in the distance plot is pointed to by the black arrow, as the dark vertical

band (representing a narrow spike in the particle’s weight). A linked phase plot of the

poloidal plane is shown above the distance plot, and the point at which the anomaly

occurred is pointed out as well. The direction change events plotted on the recurrence

plot correspond to the point where the particle impacts the heat load diverter.

Figure 5.9 shows examples of trapped and passing particles in the recurrence plots,

alongside linked views. This visualization helps to be able to see the multivariate tra-

jectories of the trapped and passing particles without clutter. Mouse hover interactions

on the recurrence plot support zeroing in on specific time points of interest in the linked

phase plots.

5.6 Discussion

This work stands as a good starting point for a line of new research for advanced in-

teractive visualization of complex many-particle dynamical systems such as PIC tokamak

simulations with particle weights. Still, there are several challenges, limitations, and areas

for further improvement and future work.

While applicable in many cases, distance plots are not always useful. For example,

some systems have recurrence rates that are so far apart that analyzing them is imprac-

tical. Additionally, we apply distance plots as linked visualizations to deeper analyze
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phase-space trajectories, yet in many cases, they are used to study 1D observational time

series data and the underlying phase space and associated trajectories are not available.

In these cases, recurrence is studied by first “reconstructing” a phase space through time-

delay embedding. This workflow requires special stages in which one must be careful to

properly reconstruct the phase space, and attempt to extract dynamical features without

direct knowledge of the actual phase space of the system or its trajectories. Marwan

provided a guide to avoiding common pitfalls in recurrence quantification analysis [121].

Note that in our application, we do not attempt recurrence quantification analysis since it

would be problematic in our setting, but instead utilize the distance plot (unthresholded

recurrence plot) for qualitative analysis. While thresholding is primarily used to support

the process of RQA, in the setting where RQA is not the goal, the distance plot is con-

sidered a valuable representation for qualitative analysis. Still, thresholding has value in

this setting, since it allows to clarify which states are the most recurrent (have the closest

pairwise distances).

While a single recurrence plot only shows a single trajectory, one could explore a large

set of trajectories by using the patterns within the recurrence plot as a basis for trajectory

comparison and clustering as well as feature extraction and search. One possible direction

is to use deep learning, for example, neural networks/auto-encoders to learn latent features

that are invariant to subtle, or uninteresting differences such as phase alignment, or small

differences in frequency.

We leave it as future work to robustly investigate the potential for these ideas. One

additional challenge is scalability if distance plots for each separate trajectory need to

be computed and stored at once. The straight-forward implementation will be compu-

tationally expensive in both time and space when dealing with a very large number of

trajectories. To store each of the plots alone would require N × T 2, where N is the num-

ber of trajectories, and T is the number of time steps. This is too much space to use

in the case of large-scale simulation data which can include thousands of time steps and

hundreds of thousands to billions of particles. For this reason, the distance matrices will

likely need to be computed on the fly and used as needed.
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Chapter 6

Visualizing Multivariate Trajectory

Distributions

This chapter is based on material from our publication, An Interactive Visualization Sys-

tem for Large Sets of Phase Space Trajectories [101]. © 2019 John Wiley and Sons.

Many scientific efforts focus on complex multi-component systems that are intensive

to model and difficult to understand. Some examples include space or confined plasma,

molecular and fluid dynamics, and astronomy. With modern computational resources,

capabilities to simulate such systems are becoming more feasible. Still, assimilating the

resulting large and complex multivariate trajectory data presents non-trivial visualization

and analysis challenges due to the enormous amounts of information, and computational

intensity to filter, transform, and visualize the data interactively.

Since the output from scientific simulations can be large and complicated, visualizing

all of the details at once is not feasible. Visualizing overall trends through aggregation-

based visualizations provides useful information, yet hides many details and variations

within the data that may shed light on important physical phenomena. As an analyst

sifts through the data from the high to low-level details, it is important that they don’t

lose context or miss the intermediate levels of detail that bridge the gaps and give con-

fidence about the importance and representativeness of the lower-level details. It is well

established that data categorization and Focus+Context techniques fit these problems
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well [114].

Subsetting the data is a pragmatic starting point for categorization, drilling down

into details, and exploring conditional hypotheses. Furthermore, interactively combining

subsets through set-wise/Boolean operations is a useful approach since it allows one to

simplify the creation of new subsets, and organize them as meaningful selections that

have concrete probabilistic/statistical interpretations. To support this approach interac-

tively for large sets of trajectories, we design a novel GPU-based algorithm for comput-

ing/selecting the Boolean combinations as they are defined interactively. The method

works by transforming the specified Boolean formulas into bitwise expressions, and then

inserting them into dynamically generated and compiled GPU kernel code. This results in

a highly efficient interactive logical filtering feature that can operate on multiple gigabytes

of data in less than a second.

Based on this core approach, we design and implement a Focus+Context visualization

system. Our system is motivated largely by two specific application domains, particle-in-

cell tokamak plasma simulations, and particle accelerator simulations. However, within

these constraints, we have designed our system generally for visualizing large sets of

phase-space trajectories from complex dynamical systems. Central components of the

Focus+Context visualizations are trajectory aggregations that provide overall statistical

descriptions of the trajectories. To compute these aggregations, we use high-performance

GPU rendering techniques. Unique to our trajectory aggregation approach is the option

to use resident time weighting (from spatiotemporal sampling theory). Based on the

goals of our system, we also incorporate interactive lensing operations. Our system is

implemented using C++, GLSL, Cuda NVRTC, and OpenMP. The following are our

main contributions:

• the design and implementation of a Focus+Context visualization system for the

analysis of complex dynamical systems,

• an efficient GPU algorithm for computing Boolean combinations of data subsets

that supports interactive user specification,
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• and a GPU algorithm for computing trajectory density plots that incorporates time-

residency weighting.

6.1 Design Goals

We begin by briefly describing several high-level design goals based on the theory and

application of complex dynamical systems, and collaborations with domain scientists.

DG1. Categorical and Time Dependent Properties: Besides temporally static

categorizations, our system also should be able to effectively visualize time-dependent be-

haviors (time-varying properties of points/states along trajectories that can change cate-

gorically over time), e.g. dynamical regimes, phase transitions, etc. In tokamak physics

specifically, trapped and passing particle modes are an important area of analysis [122].

DG2. Interactive Subset Combination: Since these types of categorizations do

not necessarily split the data into mutually exclusive sets, our system should interactively

support subset operations to define Boolean combinations. Moreover, the available vi-

sualizations should not only show the overall qualitative behaviors/properties of these

subsets/combinations, but they should also show statistically relevant properties that

could be further quantified by the domain expert.

DG3. Events: Besides static and behavioral categorizations, we also wish to sup-

port an event-driven approach to exploring a system. Some examples include particle

interactions and phase transitions. For accelerator physics, important events include par-

ticle emissions and impact/absorption. For tokamak particles, the direction change event

(which is associated with particle trapping) is found to be useful.

DG4. Interactivity and High Performance: Systems, or ensembles of systems,

often include many multivariate, time-varying trajectories. Our system should be efficient

enough that the analyst can efficiently explore large amounts of information to tease

out knowledge from the data. In particular, we aim to support in depth conditional

analysis of the multivariate and time-dependent behaviors of the particles. Besides both

high-performance manual/mouse-based selections and rendering, an important goal of our

system is to support run-time/interactive specification/language support for applying the

filtering conditions needed to select Boolean combinations of time-dependent subsets.
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DG5. Visual Occlusion and Clutter Management: Our system needs to handle

the analysis of events in combination with heatmaps of data subsets and supersets, as well

as additional manual trajectory selections. These elements play important roles for our

particle analysis system, yet together they bring a great deal of clutter and occlusion to

the visualizations. This clutter and occlusion must be well managed to gain the benefits of

using the different elements together within multi-faceted, Focus+Context visualizations.

DG6. Flexible Layout Supporting High Aspect Ratio Plots: Beforehand,

we do not know how many plots the analyst will need to link/use in a single session,

nor do we know what their aspect ratios should be, or how large they should each be

relative to one another. The plot layout must be easily configurable. Furthermore, of

particular importance is supporting the exploration of large aspect ratio spaces, since this

is a requirement for particle accelerator analysis.

DG7. Statistical and Physical Trajectory Analysis: Gyrokinetic particle-in-cell

codes (that are commonly used to model plasma/fusion simulations), often use marker

particles with joint statistical and physical interpretations. While the trajectories may

follow physical laws, they also represent weighted statistical samples/contributions of the

overall phase-space particle distribution. The particle’s weights are time-varying and can

also be negative, representing a decrease in phase-space density near its phase-space loca-

tion. Analyzing the joint statistical and physical behaviors requires plots that aggregate

the trajectories into meaningful statistics, together with an analysis of the spatial motion

of the trajectories through time.

Besides cases where the particles have a joint physical and statistical interpretation,

they may also carry momentum, and be involved in complex interactions such as collision,

which limits the use of many traditional flow visualization techniques that are based on

mass-less tracer particles. The techniques we employ by default should be usable and

have clear interpretations, no matter what are the physical properties and interactions of

the particles within the dynamical system.

80



6.2 Methods

According to the aforementioned design goals, we have devised methods to address all the

essential issues. Section 6.2.1 covers the technique used for interactive specification and

computation of Boolean combinations of time-dependent subsets. This technique is used

to help support DG1, DG2 and DG4. Section 6.2.2 covers the plots that are used as

context to help support joint statistical and spatial analyses in support of DG7. High-

performance algorithms are also given in that section to help support DG4. Section 6.2.3

covers the methods used to help support an event-based analysis approach in support of

DG7. Section 6.2.4 describes the interactive lenses we use to help manage clutter and

occlusion in support of DG5. Section 6.2.5 covers the manual/direct selection tools, and

how one investigates spatiotemporal details of individual trajectories on top of the statis-

tical/aggregate plots. This helps support both DG1 and DG7. Section 6.2.6 describes

the overall system, as well as the layout scheme for supporting high aspect ratio spaces,

and flexible layouts/configurations of the multiple linked phase plot views (supporting

DG6).

6.2.1 Subset Management and Boolean Combination

As described in DG1, subsets of interest are commonly time-variant. Thus we design

our approach accordingly and allow subset memberships to include sub-paths along the

trajectories. With each subset representing a condition, one has a collection of modular se-

lection components that can be combined to form more complex selections for conditional

analysis. This approach also lends well to statistical quantification of the visualization

results.

To compactly store subset memberships for each point along the trajectory, we encode

them using bit-flags. Each base subset corresponds to a bit-index and is assigned a unique

symbol representing it. Analysts specify Boolean combinations of the subsets interactively

using set operations. As they define them, the combinations go into lists from which they

can be selected. The specified Boolean combination is then converted into an expression

composed of bitwise operations, inserted into GPU code, and compiled dynamically at

runtime. The resulting GPU programs can then test the membership of the Boolean
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combinations by directly evaluating the expressions. This enables highly efficient modifi-

cation or creation of a Boolean combination without necessitating the movement of data

and allows the resulting Focus+Context visualizations to be rapidly updated throughout

the analyst’s exploration process, as parameters are changed and details toggled. This is

the core of our support for DG4.

Without loss of generality, we describe our implementation in terms of time-varying

particle data. We denote the phase-space vector for particle i at time-step t as xi
t. We

denote X to be the full set of loaded particles, such that X(i, t) = xi
t. Subsets will be

denoted Sk ⊆ X, where k is the subset id, as {xi
t s.t. fSk

(xi
t) = 1} where fSk

: X −→

{1, 0} maps phase-space vectors to membership in Sk.

Given subsets, S1, S2, ..., Sm, an m-bit bitmask bit is computed for each xi
t, such that

bit[k] = 1 if xi
t ∈ Sk else 0. With this, we test membership of xi

t in Sk with the Boolean

expression, bit & 2k != 0, where & is the bitwise AND operator, or equivalently (bit & 2k) in

languages where 0 evaluates to false and not 0 evaluates to true. Note that the number

2k, in binary, has a 1 in digit k (indexed from 0), and has 0’s in all other digits.

An analyst specified Boolean combination, C ⊆ X, e.g. (S1∪S2)\ (S3∩S4), is defined

by an associated Boolean combination function fC mapping each particle xi
t ∈ X to mem-

bership in C. We compute these functions on the GPU to support efficient exploratory

analysis of the data subsets. To accomplish this, we generate GPU code through text

replacement of a placeholder symbol, @, by the formulated Boolean expression operating

on bit to compute fC , and then compile the GPU program during runtime.

An example conversion of the Boolean combination into a computable expression, is

given in Equation 6.1. First, the set difference operations in Expression 6.1a are converted,

using the property Sa \ Sb ≡ Sa ∩ Sb, to produce Expression 6.1b. Then we replace the

remaining set operations with their corresponding logical Boolean operators AND, OR,

and NOT respectively, which are denoted &&, ∥, and !, to produce Expression 6.1c.

Lastly, we derive Expression 6.1d by replacing the symbols for each Sk with the bitwise

expression for computing membership, (b&2k), where b is a variable input into the program

representing bit. Finally we have an expression that we insert into our GPU source code
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to compute fC . While not shown in this example, symmetric difference(△) is converted

using the property, Sa△Sb ≡ (Sa ∪ Sb) \ (Sa ∩ Sb), and then an application of the set

difference rule.

(S1 ∪ S2) ∩ (S3 \ S4) (6.1a)

(S1 ∪ S2) ∩ (S3 ∩ S4) (6.1b)

(!S1 ∥ S2)&&(S3&&!S4) (6.1c)

(!(b&21)∥(b&22))&&((b&23)&&!(b&24)) (6.1d)

Algorithm 6.1: The procedures underlying our subset and Boolean combination

selection process. In the GenProgram procedure, l denotes left operand and

r denotes right operand. @ is a symbol within the template program that is

replaced with the formula for testing membership in the Boolean combination.

1 Define InSubset(bitmask b, BitIndex k):

2 return (b&2k) ̸= 0// check if bit-k is 1

3 Define SetCombFlag(bitmaskRef b, BitIndex k):

4 temp← b & ∼ (2k) // set bit-k to 0

5 b← temp | (int(@)× 2k) // set bit-k to 1 if @ is true

6 Define GenProgram(Program p, Expression e):

7 e.replace( l ∩ r, (l&&r) )

8 e.replace( l ∪ r, (l∥r) )
9 e.replace( l \ r, (l&&!r) )

10 e.replace( l△r, ((l∥r)&&!(l&&r)) )

11 e.replace( r, !r )

12 for Sk ∈ e
13 e.replace( Sk, bool(b&2k) )

14

15 p.replace(@, e)

16 return p

Note that both & (bitwise AND), and && (logical AND) are used in these expres-

sions and are not to be confused. Based on the generated expression, the GPU program
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computes memberships for each data point to choose which aggregations should include

them. See Algorithm 6.1.

6.2.1.1 Alternative Implementations

For computing Boolean combinations, one alternative method is the use of symbolic pro-

gramming and abstract syntax trees. In this approach, a symbol table can be made to

map each subset symbol in the expression to one or more memory references (at least

one per parallel thread of execution). The references are replaced by the memory of each

data point, one at a time, as the expression is iteratively evaluated. If the function that

evaluates the Boolean expression is pre-compiled, then it must be a function to compute a

general Boolean expression. This requires an algorithmic process to parse the expression

as a string, or another representative form, each time it is evaluated. Optimization can be

made to make maximize the efficiency of this process. However, if the expression is known

at compile-time, it can be converted to a single line of code (as we have demonstrated with

our method). The limitation is that one needs to use an environment/language in which

they can compile newly generated code at runtime. We use Cuda/NVRTC to achieve

this. GPU processing has obvious performance benefits for this process compared with

CPU code since the computation is embarrassingly parallel. An added benefit of using

the GPU is that the data already needs to be processed through the GPU for graphics

rendering. Thus, the data can reside on the GPU and can be shared between the rendering

and Boolean filtering codes.

One limitation with our Boolean filtering implementation is that it depends solely on

Cuda, which is only able to use NVIDIA GPU hardware. Additionally, we also have not

integrated a method to achieve runtime compilation of CPU code as a backup. Since

OpenCL also supports runtime compilation, is cross-platform, and can be compiled to

both CPU and GPU code, we may integrate an OpenCL back-end in the future to increase

the portability of our system. We expect that our algorithm would be efficient on a CPU

as well, and it may be preferable to use the CPU instead of the GPU on some systems if

the GPU memory is too small compared to the CPU memory.
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Figure 6.1. Examples of the aggregated phase plots described in Section 6.2.2. These
plots represent particle statistics from a tokamak dataset. The axes are v∥ and ψN. The
dataset and variables are described in Section 6.4.1. A) shows time-averaged particle
density. B) shows path/curve density. C) shows weighted particle density (using the
simulation weights from XGC). D, E, F, G, and H) show mean, min, max, and range
and variance of v⊥ respectively. The color maps are shown at the bottom of the figure.
For plot C, a divergent color map that is centered at 0 is used since the particle weights
can be negative. The other plots are colored based on the uppermost color legend at
the bottom of the figure. In both cases, darker means high magnitude.

6.2.2 Aggregate Phase-Space Plots

We use 2D aggregate trajectory plots as the primary contextual elements within our Fo-

cus+Context design. Their purposes are to provide insight into overall/statistical trends

and direct further selections/refinements while drilling down into the details. While many
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different ways of aggregating phase-space trajectories are possible, we begin with several

aggregation methods that are chosen for their straightforward mathematical meaning,

ability to be applied generally, and efficient computability. These include plots that bin

statistical measures such as mean, variance, range, and min/max. We also use a path

density plot (in the spirit of curve density estimations [123]), and a time-averaged particle

density plot.

ρs(T, i, j) =
1

Nt

Nt∑
t=1

Np(ci,j, t)/A(ci,j), (6.2)

Equation 6.2 shows how the density plot is computed. ci,j represents the 2D spatial

cells in the heatmap defined over the subspace space s, T is a discrete time window (series

of time steps), A(ci,j) gives the area of each of the cells (respective of the particular spatial

dimensions of the bins), Nt is the number of time steps, and Np(ci,j, t) is the particle count

within the cell at time t. Figure 6.1 shows examples of several variants of the heatmap

plots used.

Hardware rastering is leveraged to efficiently compute the aggregations. This is done

by setting the OpenGL blend function to glBlendFunc(GL_ONE, GL_ONE), and then ren-

dering graphics primitives to a single-channel 32-bit floating-point frame buffer. We can

set the blend equation to GL_FUNC_ADD for summations, or use GL_MIN or GL_MAX. Note

that hardware rastering and additive blending were also used by Scheepens et al. [124].

Since we are aggregating trajectories in the form of discretely sampled time-series data, we

wish to interpolate between the points to reconstruct the missing data points and achieve

smoother, more continuous results. To accomplish this, we could apply a constant rate

over-sampling by rendering a fixed number of discrete points (GL_POINTS) in-between the

original points. While this results in each particle being sampled at the same frequency,

it will still leave discontinuities between the points. Instead, we draw lines between the

points (GL_LINE_STRIP), to guarantee connected trajectories. However, this means that

particles with larger displacements will be sampled into more bins/texels over the same pe-

riod of time, which will lead to incorrect time-integrated densities and statistics. To solve

this issue we use resident time weighting, a technique applied to spatiotemporal sampling
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Figure 6.2. When rendering lines into a heat map using the graphics pipeline, percep-
tually significant inaccuracies can occur in the result due to varying numbers of pixels
used by lines of different orientations. Top right) A table showing the relative number
of pixels by angle. This was computed by rendering many lines at different angles
and then counting the non-zero pixels. Top left) A depiction of the problem: each of
the three lines is drawn with the same number of pixels even though they have differ-
ent distances. Bottom left) The rendering artifact: when rendering the time-averaged
particle density heat map using lines, without accounting for angle, the regions where
the particle paths are nearer to 45° are under-sampled (producing the x-shaped darker
region). Bottom left, middle) lines are used and the artifact is corrected. Bottom left,
right) Points are rendered without interpolation.

in dynamical systems and particle flows when using physical measuring devices/probes

[125] ch. 5.2.3. Each particle has a fixed net contribution between time steps, and the

contribution is divided between each of the bins that the particle had visited.

Another issue in utilizing line rendering and the graphics pipeline for aggregation is

that there are inconsistencies in the number of pixels used to raster lines of the same

length depending on their angles. This can give rise to significant artifacts/errors in

certain cases, as demonstrated in Figure 6.2. To solve the problem, we pre-compute a

lookup texture of normalization factors, based on the average relative number of pixels

used to raster lines by angle.

The implementation uses GLSL shaders, including a geometry shader. The lines are

rendered as a GL_LINE_STRIP. In the geometry shader, the two points corresponding to

87



each line can be accessed for computing the angle in image-space and the displacement in

texels. The angle is then used to look up the pre-computed normalization factors in an

attached texture. The geometry shader then applies them and outputs normalized values

to be aggregated through the fragment shader. Since we render separate trajectories in

one graphics rendering call (glDrawArrays), we also need to break the lines between them.

Since we already are using bit-flags to store subset memberships, we dedicate one of the

bits to mark the endpoints, so that we can omit the lines between different trajectories

within the geometry shader. Another issue that we address is rendering trajectories in

spaces where an axis wraps around. For example, in tokamak research, plots, where one

axis represents an angle, are commonly used. We also handle this in the geometry shader

by splitting lines crossing the wrap-around point into two separate lines.

While we compute the trajectory plots using OpenGL, we also compute statistics for

each of the variables using Cuda. Since these computations all read the same data, we

use Cuda OpenGL inter-operation to share GPU memory resources. The OpenGL vertex

buffers are registered and mapped to Cuda device pointers.

6.2.3 Events

To support DG3, we incorporate events into the system. Events serve as visual elements

(plotted as points), but also as selection targets for operations. The interface includes a

list of these events, from which the analyst can activate, or deactivate each of them. The

analyst can also engage in an event-based selection mode, which changes the trajectory

probe tool to capture only trajectories that undergo any of the active events within the

selected range.

6.2.4 Interactive Lenses

Since our phase plot visualizations involve multiple layers and visual elements, the re-

sulting clutter and occlusion must be managed. While interactive subset combination,

selection, and toggling of the overlaid visual elements help to address these issues (DG5)

we take a step further with the use of interactive lenses.

First, since the aggregations favor stronger trends and leave less prominent trends
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Figure 6.3. Examples of interactive lenses used in our design. Left column) an ag-
gregate phase plot showing momentum (p) vs. radius (r) from a particle accelerator
simulation. The dataset and variables are described in Section 6.4.2. Faint features
in the plot on the left are brought out by a color-map localization lens (middle and
right). Middle column) a kinetic energy (Ek) vs. ψN plot from a tokamak simulation.
Direction change events are plotted over it (green points). A “de-occlude” lens is used
(right) to look through the plotted points. Right column) mean v⊥ in (w0 × w1) vs.
ψN space from a tokamak fusion simulation (Section 6.4.1). A subset representing
particles with lower energy is shown in the forefront, while the extent of the full data
is in the background. An interactive lens (below) brings the aggregation of the full
data to the forefront for comparison.

difficult to see, we use an interactive lens that localizes the color mapping underneath

by extending the color range to between the min and max within the encircled region.

Second, since the base layer in the backdrop is partially occluded by the aggregate heat

map layer on top, we only show it with flat color. Since this base layer represents a

superset of other layers, the extent can be fully observed despite occlusion. However, the

heat map-based aggregation of this layer would be problematic to show due to occlusion.

Thus, we provide an interactive lens that brings the encircled portion of the background
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layer to the forefront to be shown as a heat map. This allows one to quickly compare

trends and features expressed in the forefront against the full set of data underneath in

an interactive fashion, with the perceptual convenience that both are in exact alignment.

Third, we over-plot lower-level details, such as trajectories and points on top of the other

layers. This allows one to see the context underlying the details, but also causes occlusion.

We thus use a “de-occlude” lens which hides the over-plotted details under the encircled

region, allowing one to examine the higher-level features beneath. Examples using these

lenses are shown in Figure 6.3.

6.2.5 Subsampling and Selection of Individual Trajectories

In some cases, e.g. many-particle systems or ensembles, the overall behavior of large

groups of trajectories is the main object of study. However, even in such cases, scien-

tists may want to analyze individual trajectories since; They may have direct physical

meanings, and based on the behavior of one trajectory under certain conditions, similar

behaviors could be hypothesized for others. As another example, fusion scientists have

requested us to visualize individual particles with very large simulation weights. These

particles exert disproportionately more influence than others on the overall system.

Therefore, at the lowest levels of our Focus+Context visualization, one can explore

small samples of discrete trajectories. These trajectories are sampled by probing the 2D

spaces using the aggregate plots for context. The selected trajectories are plotted on a top

layer of the visualization, while their ids populate a list. Refinements or expansions of the

manual selections can be made through intersections or unions of additional selections.

Individual trajectories can be selected from the list to be highlighted in the phase-space

views and studied with the recurrence plot. Finally, these selections can be saved as named

subsets, used in Boolean combinations, and visualized with the different aggregated plots.

These features help support the mid-level to low-level exploratory processes that help

bridge the gap between the high-level overall trends and the behaviors of individual tra-

jectories. With this support, one can break down large groups iteratively into smaller and

smaller subgroups, which can simultaneously be managed within the interface, and later

brought back into the visualization. These features offer core support for the interactivity
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demanded by DG4.

Additionally, we incorporate an interactive distance plot that is linked with the other

visualizations. Distance plots, commonly referred to as unthresholded recurrence plots,

are able to give a perspective into the dynamics of high-dimensional systems in a 2D

view[110]. They can be useful for analyzing recurrent patterns in phase-space trajectories,

as well as evolutionary phenomena such as transitions between dynamical regimes. The

distance plot is defined by a symmetric matrix where the columns and rows represent

time-step indexed states, xt, of a phase-space trajectory, and the cells (i, j) represent the

pairwise distances ||xi − xj||.

We incorporate them into the system as a linked view that compliments the phase

plots highlighting the states (as points) that correspond to the mouse hovered distance

plot cells. This helps one to uncover the meanings of features and transitions observed

within the distance plots, as well as to give more temporal insight into the particle’s

motion along its trajectory.

6.2.6 Graphical Interface

The interface includes 4 main views that are always present: A) a panel on the left for

managing subsets, subset combinations, and events, B) a view on the bottom that shows

a selected time series plot and allows for time step selections, C) a panel on the right that

shows 1D distributions of each of the active variables, and D) a view in which the linked

phase plots and distance plots are visualized and interacted with. See Figure 6.4.

To support DG6, we design an adaptable and customizable grid-based plot layout.

Each plot in the view is defined with an aspect ratio setting. There are two main options,

1) the analyst can choose how many rows and columns the plot should use, or 2) the

analyst can choose only how many rows the plot should use and let the system decide

the number of columns based on the value ranges of the data. This way, the analyst can

define very wide plots, such as required by accelerator data, make some plots oversized

relative to others, and also keep or modify the aspect ratios defined by the ranges of the

axis. The system then packs the plots together into the layout. Since they may not all fit

on the screen at once, the view is scrollable in the horizontal direction. Besides manually
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Figure 6.4. An interface for our Focus+Context visualization scheme. A) subsets,
events, and Boolean combinations are managed. B) a layout for multiple linked phase-
space visualizations. C) a timeline view. D) 1D density plots for each active variable.
E) groups of trajectories populate a list of IDs from which to select individual trajecto-
ries. The trajectories of the listed particles are plotted in dark gray, while the selected
trajectory is plotted in bright green. While not shown in this view, the distance plots
are optionally computed from the selected trajectory and added into the phase-space
plot layout.

scrolling, a button is used to shift the plots over by one column and snap the scroll level

so that the leftmost plots line up with the view at their edges. To enlarge the plots in the

view, the analyst can press buttons that either increase or decrease the number of rows

in the layout, with the lower limit being the maximum number of rows required by any

one plot. The time-series view at the bottom can also be resized, allowing the main plot

view to take up more or less space relative to it. This allows the analyst to easily blow

up the size of the time series plot as needed, and then pull it back down to enlarge the

sizes of the phase plots.

This layout scheme works well to provide the customization required for different needs

and is easy to interact with, satisfying DG6. It is an especially useful layout for plots

with extreme aspect ratios such as required for accelerator data.
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Computing Aggregate Phase Plots
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Figure 6.5. Computation times for the aggregate plots. On the horizontal axis is
number of data elements, (time-steps × particles). D refers to number density, P
refers to path density, and W refers to weighted density. Since each of these had
very similar computation times, we averaged them into one curve. Also, the min
and max times were averaged. The time to compute a Boolean combination, fC =
(A \ ((B ∩ C ∩D)△E)) ∪ F is shown as well.

6.3 Performance

We tested the performance of computing an example Boolean combination function, fC =

(A\ ((B∩C ∩D)△E))∪F , as well as each type of aggregate phase-plot. The former (fC)

is based on the Nvidia Runtime Compilation (NVRTC) Cuda API, with -O4 optimization

flags, and the latter (aggregate plots) use GLSL. The graphics card was a GeForce GTX

TITAN X, and the CPU was an Intel(R) Core(TM) i7-5930K CPU @ 3.50GHz. We

measured the elapsed time over the number of data elements processed (Np ×Nt), where

Np is the number of particles, and Nt is the number of time steps. To increase the

number of data elements and push the limitations of our implementations, we progressively

duplicated the particle trajectories. The results are shown in Figure 6.5. The computation

times each follow a linear trend. We were able to maintain speeds of less than 0.5 seconds

with over 213, 416, 346 data points for each of them.

The aggregate plots were faster to compute than fC , most likely because they are

implemented in GLSL and utilize special graphics hardware within the GPU’s rendering

pipeline. Computing the variance plot takes the longest of the aggregate plots since it

requires two summation passes. Likewise, the range plot requires two min/max passes.
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Overall, a primary limiting factor to interactivity seems to be GPU memory limita-

tions. This limitation depends on the number of variables that are actively used within

the set of linked phase plots. Assuming the variables are stored as 32-bit floats, and that

32-bit subset bitmasks are used (supporting 30 subsets flags), then the memory use (for

data storage) in bytes is Np × Nt × (Nv + 1) × 4, where Np is the number of particles,

Nt is the number of time steps, and Nv is the number of active variables. This memory

cost limits how many data points and/or variables can be visualized interactively at one

time using the GPU methods. For reference, the performance plot in Figure 6.5 show

the performance up to Np × Nt = 213, 416, 346. The textures used to render the plots

use additional memory. There are up to two textures used per plot, one for the superset

and one for the subset. Each uses w × h× 4 bytes. Suppose you are using a 4k monitor,

then you could require up to 4, 0002 × 4× 2 = 128, 000, 000 bytes of memory, which is of

minor significance compared to the data. Our GPU has a max of 12 GB, but in prac-

tice 10 GB is a safer upper limit. Thus with 213, 416, 346 data points, we could support

⌊10, 000, 000, 000/853, 665, 384− 1⌋ = 10 variables at one time. In Section 6.5, we discuss

extending the methods to a multi-node system for increased scalability.

We also tested the performance of computing the distance plots. These plots require

about D × N×(N−1)
2

embarrassingly parallel primitive operations, where N is the number

of timesteps, and D is the dimension of the trajectory. Our implementation uses a simple

OpenMP parallel loop for CPU parallelism. For (N = 1000, D = 5) the plot took 0.241659

seconds to compute, and for (N = 2000, D = 9) the plot took 1.73711 seconds to compute.

GPU parallelism would likely increase the performance if needed.

6.4 Applications

Besides general concepts, our system was also motivated by collaborations with two groups

of simulation scientists. The first is with scientists at Princeton Plasma Physics Labo-

ratory (PPPL). Multiple discussions and email exchanges have helped guide our design,

and inform our first motivating use case. The second is with scientists at Stanford Linear

Accelerator National Accelerator Laboratory (SLAC), who informed our second use case.
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Figure 6.6. Annotated screenshot frames from a visualization session with the XGC
dataset. The plots in the left column are in v∥ vs w0 × w1 space, while the plots
in the right column are in v∥ vs ψN space. The blue arrows are used to point out
action applied through the interface and the associated visual elements. The figure is
explained in detail in Section 6.4.1 .

6.4.1 XGC Fusion Simulation

The XGC data is described in Appendix A.1.1. One of the challenges it must address

to enable computational feasibility, is to avoid the need to simulate the extremely large

number of real particles within the device. It accomplishes this, in part, by using marker

particles which each carry time-varying weights that correspond to a number of real

particles. One of the accompanying challenges is that the weights can evolve away from

an idea distribution [126], and undergo unwanted growth. One particular concern is the

development and effects of particles with very large weights. A second concern [122] is

the physics and different contributions of two kinds of trajectories, trapped and passing

(Figure 5.2). Trapped particles lack the energy to leave the high field side of the poloidal

plane. Instead of circling the poloidal center, they turn around and form banana-shaped

trajectories. A third interest is the study of particles near the separatrix of the magnetic

field. Particles that pass across this magnetic flux surface will escape and be captured by

the diverter.
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Figure 6.7. Trajectories of electrons (from the accelerator dataset) in r-z space (Sec-
tion 6.4.2). A) the cavity in which the particles are emitted is enclosed in the purple
rectangle. B) manually selecting the ‘long range right’ trajectories (those which reach
the end of the full assembly on the right side). The selection radius is the small inner
red circle, and the resulting selection of trajectories is plotted in dark gray. The bold
outer red circles have been added to the figure to help make it more clear where se-
lections were made. C) selecting the ‘long range left’ trajectories in the same manner.
Both the ‘long range right’ and ‘long range left’ trajectories are exported to saved sub-
sets so that they can be plotted as heatmaps and used in other Boolean combinations.
D) after changing the focused Boolean combination to the ‘long range left’ subset, a
manual selection, from these trajectories, was made, just past the right side of the
cavity that the particles were emitted from. This selects the particles which escape
the initial cavity in the opposite direction before turning around and becoming ‘long
range left’ trajectories. E) a zoomed-in view before exporting this selection to a saved
subset. An individual trajectory is highlighted in green.

We utilized the following 7 subsets and their combinations: ions, electrons, trapped

and passing particles (time-dependent subsets), particles inside the separatrix beginning

from timestep 30 (suggested to us by a collaborating physicist), and particles that do

and do not escape the separatrix. The two primary spaces of the analysis include v∥

(parallel velocity with respect to the magnetic field) vs w0×w1 (particle weight), and v∥

vs ψN-normal (a radial measure that identifies the flux surfaces outward from the poloidal

center). From these combinations and spaces, we could explore trends and patterns

interactively under different combinations of conditions, for example, trapped particles,

which were initially confined, which are near the separatrix, do not escape the separatrix,

and that achieve very large weights.

Figure 6.6 shows a series of screenshot frames from the visualization session. (A)

shows the UI symbol for the full particle set listed along with the other subsets. The

extent of the superset is shown in the light gray background. (B)shows the focused

96



Boolean combination that is selected in the UI, and the heat map of the focused subset.

The selected subset is B ∩ E ∩ F , where B represents particles that should be trapped

according to an analytic formula (this is a time-varying subset), E represents particles that

are confined before time step 30 (this time step marks the offset of a global phenomenon

of interest to the collaborating scientists), and F represents particles which do not escape

the separatrix. The Boolean combination is rendered using the curve density plot, with a

light-yellow to red color map. (C) shows the UI has the “direction change” events (sign

change of v∥) engaged. These events are plotted as green points. (D) shows that the

event-based selection is engaged. In this mode, the selection tool targets the particles

(from within the focused subset) that experience the event within the selection radius

(red circle). The trajectories of these particles are plotted in dark gray. (E) shows an

individual particle from within the selection. It is selected from a list in the UI and

is rendered over the top of the views in bright green. (F) shows the “show all” option

is engaged. Otherwise, only the green trajectory would be shown over the top of the

heatmap, rather than the full set of selected particles (dark gray). (G, H) show the

analyst has used the mouse hover action over the unthresholded recurrence plot to make

a selection of a pair of timesteps to identify along the selected (bright green) trajectory.

The two time points are rendered as the blue and yellow points in each of the plots. An

enlarged view of these points is shown in the upper-right plot. Within this visualization

session, an observation is made that trapped particles that achieve larger weights seem

to generally have less range in v∥ and a large volatile range in w0 × w1. While looking

through the individual particles, and examining their patterns, the distance matrix is

used interactively to highlight the positions of the particles at specific time steps, and the

temporal patterns underlying their quasi-periodic dynamics.

6.4.2 ACE3P Accelerator Simulation Data

The ACE3P data is described in Appendix A.2.1. In this case, we focus on long-range

trajectories of field emitted electrons. Our subsetting and analysis approach is based on

a discussion with the scientists as well as an associated paper [127].

One of the main plots we use is an r-z space plot, where r =
√
x2 + y2, and z is the

97



Figure 6.8. Probing groups of trajectories (dark gray) of long-range particles emitted
from the 5th iris in a cryomodule cavity, and then exploring different individual tra-
jectories around conditions from which outcomes diverge (green). The region targeted
by the selection tool is within the small red circle. Each of the green trajectories in
the 3 plots was emitted from nearby locations in the same iris. Particles emitted from
this region appear to diverge based on small differences in their initial location. The
trajectory highlighted in the top plot diverges, turning left. The trajectory highlighted
in the middle plot stays right at first, but is then diverted near one of iris 8, and turns
around. The trajectory in the bottom plot follows almost the same course as the one in
the middle plot, except right after turning around near iris 8, it again changes direction
and then stays right for the rest of the simulation.
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direction along the length of the accelerator. This is a very wide aspect ratio plot that is

handled well by our adaptable plot layout. As a starting point, based on the scientists’

recommendations, we partition the trajectories into 10 disjoint subsets based on which

iris the particles are emitted from. See Figure A.4 for a depiction of the device and

its structural components. Next, we manually select trajectories from each of the ends

of the module and export them as subsets. From here, we found that many full-range

trajectories initially travel quite far in the opposite direction before turning around. We

select those particles and export them to subsets as well. Next, we select particles that

escape the cavity they are emitted from (but not necessarily the full module) and export

them as subsets. These operations are shown and described in detail in Figure 6.7.

Afterward, we switch to the event-based selection mode and use the timeline plot to

select based on the times of the emission events. We then export different associated

groups of particles to subsets such as ‘1st emitted’, ‘2nd emitted’, etc. Lastly, we make

selections of the highest momentum particles from a momentum space plot and export

them to a subset.

Finally, we are left with a total of 20 subsets to investigate. We are able to explore

combinations of them and probe for more details interactively. For example, (NOT (’cav-

ity escape left’ OR ’cavity escape right’)), gives the particles which do not leave their

initial cavities, and ((’iris 1’ OR ’iris 10’) AND (’long range left’ OR ’long range right’))

gives trajectories, from the outer irises of the cavity, that last through the full simulation.

These are only a few examples of many combinations worth investigating. Figure 6.8

shows some frames of analysis based on emission location and highlights trajectories near

conditions that lead to diverging outcomes. After identifying such sensitivities to initial

conditions, further exploration can be done to help understand the causal factors such

as emission timing. These exploration tools help to dissect the behaviors of the particles

and better understand the overall system.
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6.5 Discussion

Our performance results demonstrate that the efficiency of our Boolean combination algo-

rithm is good enough to leave memory limitations as the main bottleneck. This limitation

was analyzed in Section 6.3. To increase scalability, our algorithms can be extended to

work with multi-node systems. This would be straightforward since the required process-

ing can be done independently over chunks of the different trajectories before reducing

each partial result, for example using MPI_Reduce.

Our system supports both predefined/initial subsets, interactive creation of new sub-

sets through direct selection over the 2D visualizations, and Boolean subset combination.

In principle, the system can be used without the need for any predefined subsets, by using

the direct selection tools, export to subset feature, and Boolean combination. However,

more sophisticated ways to generate new subsets interactively could make the system

more powerful. In many cases, subsets of interest are expected to require domain-specific

algorithms (mathematical/statistical) to extract. This will likely necessitate a built-in

scripting language (e.g. Python), custom plugin support, or similarly flexible mecha-

nisms to enable specifying and extracting the more complex time-dependent behaviors of

interest to scientists. Integrating Fast-Bit into our system is a promising direction toward

supporting these future goals.

In our implementation, we use 32-bit integers as bit-masks for subset membership

flags. This limits the number of subsets that can be used in the visualization session. In

our case studies, we didn’t find the need to use more subsets than this, however, it is

a simple change to use 64-bit masks, or even larger, in order to expand the number of

supported subsets.

One possible concern with our time-varying trajectory subset approach is the issue

of continuity of the aggregated trajectories. Since the subsets are defined on a sub-path

level, there could be gaps between them. Our position is that the possible discontinuities

are critical to allow since it is assumed that this is the analyst’s intention based on the

time-dependent categories they have defined and selected. The system should be math-

ematically precise to the analyst’s assumed intention. Note that besides the aggregate
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plots, full trajectories are shown when selected as in Section 6.2.5.

While our system handles events represented as discrete points in time and space, more

complex events may represent multistage transitions or activities [128] as defined by Ozer

et al. A direction for further research is how one can effectively generalize and incorporate

such events into a system like ours. Additionally, there are many possibilities for other

interactive lenses within this environment. For example, statistical and uncertainty-based

lenses might help to bring more insight and confidence into the trends visible in the

aggregate phase-space plots.
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Chapter 7

Level Set Restricted Centroidal

Voronoi Decomposition

This chapter is based on material from our publication, Level Set Restricted Voronoi Tes-

sellation for Large scale Spatial Statistical Analysis [129]. © 2022 IEEE.

Simulation scientists continue to push computational limits for the modeling of com-

plex spatial systems. These simulations can generate extreme-scale data with high spatial

and temporal fidelity, but I/O bottlenecks and storage constraints place limitations on

Figure 7.1. Left to right illustrates steps of our methodology. We decompose volume
data by novel geodesically based discrete centroidal Voronoi tessellations restricted by
sequences of level sets. Then we aggregate statics within the resulting hierarchically
structured segments. Finally, the data is reorganized according the hierarchical struc-
ture, and used for interactive spatial statistical analysis of large data at a reasonable
cost.
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how much of this data can be saved and analyzed post hoc. This problem motivates the

development of in situ data analysis and processing workflows with the goal of reducing

I/O while retaining crucial information.

One way to approach this problem is spatial statistical aggregation. Such approaches

usually involve segmentation or decomposition in the spatial domain, and then statistical

aggregation within the resulting segments. Several methods have been developed for

spatial segmentation of statistical aggregation, such as blockwise decomposition, Voronoi

decomposition, and voxel clustering. These methods have demonstrated value; however, it

remains a challenge to organize such a tessellation around dynamic flow features, typically

defined by surfaces.

To address this problem, we segment the spatial domain dynamically using level set

restricted centroidal Voronoi tessellation (CVT). The CVT may also be weighted to vary

the spatial fidelity based on a spatial saliency function. Since the decomposition is aligned

to the level sets, this also provides a hierarchical segmentation, from isbands (voxels

between pairs of isosurfaces or contours) to connected components within isobands, to

the centroidal tessellations within the connected components. The statistical aggregations

may also be merged over Voronoi cells and throughout the hierarchy. For example, one

may view statistics of the Voronoi cells individually, or locally merge Voronoi cells to

obtain aggregations over multi-segment volumetric patches that are aligned to the surfaces

of interest, or merge all Voronoi cells within a connected component or entire isoband.

For practical purposes, the implementation must be scalable and efficient. Efficient al-

gorithms have been developed for computing CVTs; however, the focus of these methods

has been on different application areas, such as re-meshing and construction of compu-

tation grids. These other applications have requirements that Voronoi must conform to,

and are typically defined through precise geometry. For statistical aggregation, however,

the requirements may be relaxed, since heterogeneity in region size but conflict with the

goal of generating a conforming mesh in complex geometries. Meanwhile, the benefit of

the discrete tessellation is that it can be done efficiently in parallel on GPUs and it fits

the analysis workflow whereby voxel elements are sub-selected discretely for visualization.
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Since our requirements differ from the typical use case, and because we are aiming for

high performance, we implemented our own discrete method for a non-conforming level

set restricted tessellation that favors volumetric and geodesic regularity.

Additionally, interacting with the data in this form is difficult without a supporting

visualization system. As scientists put great preparation into planning an expensive,

large-scale simulation run, it is important to also adequately prepare the configuration

of the in situ workflow so that it can be relied on without concern. For example, with

our approach, one must choose level sets, overall Voronoi site density, and the optional

saliency function for concentrating site density. For statistical aggregation, there are

several possible models for distribution functions, each with different possible parameters

that should be tuned appropriately. Among models and their parameters, there are also

tradeoffs affecting performance, storage costs, fidelity, and other measures of quality. Thus

a working visualization system is a valuable tool to have before one attempts to apply the

in situ methods. Our visualization system is able to help with this, since it can be used

on existing data where the methods can be tested and the aggregates can be compared

with the raw data to get an idea what information may be lost or misrepresented by the

aggregates. Figure 7.1 shows the system interface.

Our primary contributions in this chapter are:

• a parallel level set restricted CVT algorithm and implementation,

• a supporting visualization system, and

• an overall approach to visualizing large scale multivariate spatial statistical infor-

mation.

We apply our work to simulation data of turbulent combustion and wall-bounded tur-

bulence, and we evaluate the performance and scalability on the Summit supercomputer

at the Oak Ridge National Laboratory.

7.0.1 Motivation, Research Challenge and Novelty

Restrictions and Homogeneity. The state of the art methods work by building a con-

forming crust around the boundaries. But in building the crust so that it is conforming,

104



we must concentrate more sites around sharp features, and thus we will sacrifice homo-

geneity of the Voronoi regions on the boundaries. But the regions on the boundaries are

those of primary interest for spatial statistical analysis. This is why we relax conditions

required for surface reconstruction, and instead focus on homogeneity of the region sizes.

However, this creates challenges for a restricted CVT algorithm since individual regions

will wrap around the flow features, and so the normal centroid is no longer valid since it

may not even be within the region, and the centroidal updates could carry a Voronoi site

through a boundary/restriction. Therefor, we create a novel restricted CVT algorithm

based on graph geodesic distances, where the graph is constructed within the volume for

each voxel to have a shortest path around the restriction boundaries to the graph geodesi-

cally nearest Voronoi sites. Besides CVTs, homogeneity guided decompositions for spatial

statistics have been approach using simple linear iterative clustering (SLIC) [45], however,

to our knowledge, an algorithm for restricted SLIC is not available, and since the spatial

component of SLIC is based on Euclidean distance, a restricted version also could not

reliably meet complex boundary restrictions while maintaining spatial homogeneity of

region sizes.

Scalability and Computational Performance. Since the domain is evolving, and

one application of the decomposition is for in situ processing, it is important that our algo-

rithm is efficient, and exploits the heterogeneous parallelism of modern super computers,

including distributed data parallelism, and GPGPU parallelism. Comparisons between

our algorithm and others are difficult since to our knowledge, no other algorithm computes

the same form of CVT as ours. However, algorithms have been proposed for standard

CVTs on 2D planes and surfaces which exploit GPU parallelism [130], and in 3D parallel

clipped CVTs [131]. A general data distributed parallelism for CVTs was intruduced by

Starinshak et al. [132], which also handles restrictions only by clipping. However, clipping

will leave randomly fragmented regions along the boundaries depending on the data.
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Figure 7.2. A 2D case of the weighted centroidal Voronoi tessellation, where contours
of one scalar field (shades of blue) impose the restrictions, and the second field (brown
to green) controls the site density.

7.1 Methods

First, we introduce a local statistical aggregation approach based on a discrete geodesically

based level set restricted CVTs. It is geodesically based in a graph theoretical sense, with

voxels as nodes and the geodesics being the shortest restricted paths from each voxel to

its nearest Voronoi site. We then present a prototype system that utilizes the method for

hierarchical spatial statistical analysis.

7.1.1 Level Set Restricted Voronoi Tessellation

Level Sets, Isobands, and Connected Components. We define a set of disjoint

discrete isobands where each isobands Ba,b is the set of voxels which have values between

scalar values a, b, i.e., Ba,b = {v ∈ V | a < f(v) ≤ b}. The isobands may be comprised of
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Figure 7.3. Upper right) Domain decomposed by isocontours into isobands. One
isoband Ba,b is highlighted in bright green. Upper left) One connected component of
the isoband Ck

a,b along with 3 Voronoi sites/regions. Lower right) Voronoi region Rs

and illustration of standard averaging of the vectors for all voxels. Lower left) The
mass of non line-of-site voxel v is propagated to ϕ(v), the LOS voxel on its geodesic
path.

multiple spatially disconnected components, Ck
a,b, such that Ba,b = C0

a,b ∪ C1
a,b ∪ ... ∪ Cm

a,b,

where no voxel in Ci
a,b is adjacent to any voxel in Cj

a,b for any pair (i, j). Each of these

components is a bounded region which is to be tessellated by a CVT.

Voronoi Sites and Regions. The Voronoi site s is defined by a point xs, and its

Voronoi region restricted to the component C as

Rs = {v ∈ C | s = argmin
u∈SC

gd(xv,xu)} (7.1)

where SC is the set of Voronoi sites in component C, and gd(xv,xu) is the graph geodesic

distance from voxel v to Voronoi site u, where each voxel may be node in the graph, and

no edges in the graph cross any boundaries, so that the distance gd(xv,xu) is the shortest

restricted path from the voxel to the Voronoi site.
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Algorithm 7.1: Level Set Restricted CVT

1 Define LRCVT():

2 StratifiedRandomSiteDistribution()

3 do

4 RestrictedGeodesicVoronoiDecomposition()

5 RestrictedGeodesicallyWeightedUpdate()

6 while not converged()

7 GeodesicVoronoiDecomposition()

Centroids or Centers of Mass. A standard discrete CVT in a volume is a Voronoi

tessellation where each Voronoi site point is at the centroid or center of mass of the region

it encapsulates, where center of mass is defined as 1
m(Rs)

∑
v∈Rs

mvxv, where Rs is the

region of the site s, v ∈ Rs are the encapsulated voxels, mv is the weighting function

evaluated at volume element v, xv is the position vector of v, and m(Rs) is the net mass

for all v ∈ Rs. In the unweighted version, (∀v)[mv = 1]. However, by this definition, the

center of mass of a Voronoi region could be outside the boundaries, which would make

the centroidal distribution impossible, create disconnected Voronoi regions, and break

Lloyd’s algorithm (which repeatedly moves each site to the center of mass). To avoid

escaping its component, we can move the site towards the centroid only until it runs into

the boundary, but the sites can still remain stuck moving into the obstacles instead of

around them. Instead we compute a weighted centroid of only line-of-site (LOS) voxels.

The LOS voxels are those for which a strait line between them and their Voronoi site does

not intersect a boundary. To account for voxels which are not LOS, we propagate their

mass to the line of site nodes in their geodesic path back to their Voronoi site. This leads

us to a new definition of the centroid xc , where instead of xc = 1
m(Rs)

∑
v∈Rs

mvpv, we

define,

x′
c =

1

m(Rs)

∑
v∈Rs

mvxϕ(v) s.t. ϕ(v) = v if los(v, s) else ϕ(src(v)) (7.2)
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Figure 7.4. High-level illustration of our CVT algorithm. Left to right, top to bottom:
The scalar field, decomposing into layers based on a set of isosurfaces/contours, con-
nected component labelling, component/block decomposition for stratified component
sampling, heat map showing the mass of each segment which determines how many
Voronoi sites to place in each segment, the seed Voronoi sites, geodesic distances from
each voxel to its geodesically nearest site, the initial Voronoi tesselation, a centroidal
update, and lastly, the tesselation after multiple centroidal updates.

where los(v, s) = true if v is line of site to s else false. Figure 7.2 shows weighted 2D

and 3D examples of our LSRCVT.

7.1.2 Parallel Algorithm and Implementation

Our algorithm is based on Lloyd’s algorithm [133], which repeatedly computes the Voronoi

tessellation (VT) and then updates each Voronoi site to the centroid of its region as shown

in Algorithm 7.1. The difference is we use the geodesic distances defined in Equation 7.1,

and illustrated in Figure 7.3, to compute the VT, and we update the site positions based

on xc as defined in Equation 7.2. The full process is illustrated in Figure 7.4.

For distributed parallelism, each rank computes a LSRCVT for one block of data inde-

pendently. The result is that the CVT is aligned to both the level set restrictions and the

block boundaries, as can be seen in the large scale tessellation in Figure 7.1. The benefits

and limitations are discussed in Section 7.5. Within each block, GPU parallelism is used

to compute the CVT. The code is written in C++ using MPI for distributed parallelism,

and Thrust [134] and CUDA [135] for GPU parallelism. Due to space limitations, the full

implementation details are included in the supplemental material.
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7.1.2.1 Stratified Random Initial Site Distribution.

The initial Voronoi sites are generated to cover the set of connected components with a

target number of sites nc in each component chosen based on its net mass and a site-

density parameter α using the formula

nc = max

(⌈
α

m(C, γ)

∑
v∈C

mγ
v

⌉
, 1

)
. (7.3)

Where γ is a parameter, the attraction, that reduces or increases the effect of the weighting,

m(C, γ) =
∑

v∈C m(v)γ, and m(v) is the voxel’s weight. We also use a block-wise spatial

stratification, where each component is segmented into pieces and then the nc sites are

distributed fairly over those pieces. This is illustrated in Figure 7.4 row 1 (r1), columns

3,4, and 5, where the components (c3) are split into blocks (c4), the net mass of each

component block is computed (c5), and then sites are placed based on the net mass 7.3

(r2,c1).

The process is done in parallel on the GPU. First we compute the net component

masses m(C, γ) and the net component block masses m(bi, γ). Next, the nc sites are

distributed by first seeding ⌊nc
m(bi,γ)
m(C,γ)

⌋ sites in each block, and then placing the remaining

sites to the most underrepresented blocks based on the equation,

ur(bi) = 1.0− nbi +

⌊
nc
m(bi, γ)

m(C, γ)

⌋
(7.4)

7.1.2.2 Discrete Restricted Geodesic Voronoi Tessellation.

The Voronoi tessellation, defined by Equation 7.1, is computed using a GPU parallel

region growing approach emanating from the Voronoi sites. The voxels communicate

with their neighbors to determine if there is a possible shorter path, and the process

continues until all voxels have paths and no voxel can find a shorter one.

The paths Pv are represented recursively through a map src(v) : V −→ V , and can be

constructed by the formula Pv = (v, src(v), src(src(v)), ..., ϕ(v), s), where ϕ(v) (defined

in Equation 7.2) is the node in the path which is in line-of-site of s. Each voxel also has

an 1-byte bit-field, statev. One bit indicates los(v, site(v)) (whether v is line-of-site of its
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site), another indicates active(v) (whether v has a current path), and another indicates

node(v) (whether v is a valid node).

In the initial step, the nearest volume element to each site is classified and activated.

Then, repeatedly until the stopping condition is met, for each voxel v in parallel, we ask

each other adjacent voxel w if it is active, and if it is, then their are two possible paths

for v back to s: (1) the path (v, Pw), which is has the distance ||xv − xw||2 + d[w], or (2)

the path (v, Psrc(w)), which has distance ||xv − xsrc(w)||2 + d[src(w)]. The former path (2)

might intersect a boundary, so a ray must be cast from v to src(w) to check for a collision.

If v finds a shorter path based on the best of these possible choices, then it records the

distance and new src(v), but the update is delayed until a next kernel invocation to avoid

race conditions. In order to determine which voxels are LOS to their Voronoi sites, in a

initial stage of the above procedure, we only allow s to be active nodes so that all classified

voxels are line-of-site. Then we activate the rest of the voxels as nodes and perform the

procedure repeatedly until voxels have paths and cease to find a better path.

Figure 7.4 row 2 column 3 shows a heat map of the final geodesic distances for each

voxel, and column 5 shows the associated Voronoi tessellation mapping each voxel to the

geodesically nearest site. Figure 7.3, lower right, illustrates the LOS vs non-LOS voxels

and pathways.

7.1.2.3 Geodesically Weighted Voronoi Site Update.

The next component of the algorithm is the updating of the site positions based on

Equation 7.2. This is illustrated in Figure 7.4 row 2, column 4, and Figure 7.3. In a GPU

kernel parallelized over voxels, we sum the moments mvxv of each line-of-sight voxel in

each Voronoi region. The Cuda atomic add operator is used for the summation. The

geodesic weighting comes into play as the line of sight voxels which are path nodes that

connect voxels which are around corners are weighted by the amount of voxels that they

are sources of.

Next, a GPU kernel parallelized over the Voronoi sites is invoked, and the resulting

site’s sum of moments from the previous stage is normalized by the net mass to give the

vector xc from Equation 7.2, which is the new target position for the xs. We then cast a
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ray from xs to xc and move xs only as far as possible before crossing the boundary.

7.1.2.4 Data Reduction and Structured Data Layout.

Oftentimes, flow features of interest will comprise only a small portion of the full data. In

this case, it makes sense to summarize and/or extract only the data within the level set

restrictions of our tessellation as a way to reduce the data. Our method can optionally

extract the raw data and couple it with the statistical summarization in a structured data

layout before saving on disk. The data structure is hierarchically ordered by level set and

connected components as shown in Figure 7.5. This ensures the components and layers

are directly indexable and contiguous in storage, so one can directly load only the feature

of interest for an efficient out of core approach. The statistical summaries, which are

lighter weight, can be loaded first, explored, and then other data for selected features of

interest can be loaded selectively.

The reduction from discarding the regions beyond the isobands can be approximated

as (n − r) × (m + 1) + nl + nc where n is the number of volume elements in the full

domain, r is the size of the subset within the levels, and m is the number of variables per

volume element. nl and nc are the number of layers and components, respectively (for

storing the offsets) which should be very small relative to r. Thus, when (n− r) is large

and or m is large, the additional cost of storing coordinates becomes nearly negligible.

In extreme-scale combustion simulations, m can be greater than 100, in which case the

coordinates can be as little as 1% of the total footprint of the reduced data.

7.1.3 Role and Choice of Parameters

Tessellation. The tessellation is both dynamic and data dependent, and also depends

on a few important parameters. First, one must have the scalar field to use for the level

set restrictions. For example, in our combustion application we may choose temperature

isotherms, or we may use the distance function from the flame surface. The set of isovalues

must then also be chosen. If the method is used in situ, one must know in advance what

kinds of value ranges the simulation will produce, and what isobands will be of interest

for representing the flow features. In addition, if the tessellation is weighted based on a

second scalar field, then this adds another aspect to what must be known in advance to
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Figure 7.5. Top Right: The data layout is sorted hierarchically by layer and component.
Middle right: (A) White line is a rough measure of geodesic distance based on paths
along Voronoi cells following the level set restriction; blue line is Euclidean distance.
(B) and (C) are two separate connected components of the same layer. Left: The
tree view in our visualization system showing the iso-values defining the layers and the
connected components as nodes. The grey nodes are designated as components that
are too small to compare with statistical measures.
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appropriately. The parameter γ controls the attraction force is equivalent to applying a

non-linear re-scaling of the second scalar field used for weighting, and the effect it has

depends on the data. The site density parameter α represents the choice of the number

ratio of Voronoi sites to voxels. So this parameter can reasonably be decided in advanced

with limited knowledge.

Aggregation. When aggregating data for spatial statistical summarization, infor-

mation is lost if the raw data is not also output. Additionally, statistical aggregation

is usually not a competitive form of pure compression, so if the primary goal is a re-

duced form of data to reconstruct the original data from, then this is probably not the

best approach. Instead, we consider the statistical summarization as an explorable set

of analysis results, which is useful for summarizing and analyzing certain aspects of the

data, especially the dynamic spatial multivariate correlation structure. We assume exist-

ing methods for statistical summarization of the segments in the tessellation will be used

(e.g., histograms, Gaussian’s, Gaussian mixtures, etc.). It also depends on the method

and application what the value of the summarization will be, how much space it will take,

and how much of the raw data if any can be replaced with the summary. Our view is that

the summaries have multiple opportunities for added value. First, they are lightweight

and, when coupled appropriately with a visualization system, can support scalable inter-

active visualization of a larger domain than would otherwise be possible from using the

raw data directly. Second, even if the summary is not used to replace the raw data, it

represents an analysis result that would be useful anyways in addition to the raw data.

And since simulations are already commonly unable to output full raw data at each time

step due to I/O and storage limitations, outputting the more lightweight summaries at

higher temporal fidelity would add value to the simulation result without reducing any

information at only a nominal extra cost. The lighter weight summaries can be possible

to stream through a network for in situ monitoring. Finally, considering the hierarchically

structured data layout that our tessellation provides, the summaries corresponding to flow

features can be extracted out of core, and if coupled with raw data, if it exists, can also

be a basis for drilling down into the full details from the raw data.
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7.2 Interactive Visualization System

To showcase our feature-based approach, we designed and implemented a prototype vi-

sualization system. The system represents one promising way that the dynamic spatial

decomposition approach could be leveraged. The system demonstrates the qualitative

value of the approach, and we hope it can inspire more adaptations and ideas for similar

work.

The visualization workflow follows the natural hierarchical pattern for sub-selection

that is implicit in spatial decomposition. As the user drills down into details, based

on layers, connected components, Voronoi cells, smaller subsets of volume elements are

brought into play for spatial statistical analysis. The layers, components, Voronoi sites,

and volume elements are interacted on and visualized in 3 associated sets of views as shown

in Figure. 7.1. Since the system supports interactive multivariate statistical analysis, data

from many fields may need to be active simultaneously. The hierarchical sub-selection

becomes useful in this case, not only as a means to narrow down the features of interest,

but also to improve performance since sub-selections at each level will significantly reduce

the amount of active data.

Figure 7.6. Upper left) t-SNE projection of components with lasso selection. Lower
left) projection of Voronoi regions within selected components with second level lasso
selection. Middle Left) KDE plot with voxel sub-selection (blue), and sub-marginals
displayed. Middle right) scatter plot option is selected. Right) GMM with 1D condi-
tional plot on top.
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7.2.1 Motivation and Design Goals

This system in its first iteration was designed based on discussions between visualization

researchers and combustion scientists. Both the visualization researchers and scientists

are co-authors of this paper. Since, to our knowledge, no other systems exist that could

explore the same data in sufficiently comparable way, and due to the limited length and

scope of the paper, we are not able to do a thorough presentation of the system and

robust evaluation at this stage. Instead we view this system as a starting point, and proof

of concept for how to utilize the tessellation result, which may be built on, optimized,

and evaluated in depth in future work. We provide below the set of visualization and

analysis goals used to inform our design. In Section 7.5 we further lay out our vision for

improvement and evaluation of the system.

Design Goals:

1. Be able to use the system on both raw and aggregated data for testing and compar-

ison.

2. Be able to link and visualize the multivariate statistical plots and the features in

the spatial domain.

3. Support the following common statistical plots: 1/2D probability density functions

(PDF’s), cumulative distribution functions (CDF’s), 1/2D conditional plots, and

scatter plots.

4. Be able to compare different candidate models for the probability distribution func-

tions.

5. Be able to inspect the higher order joint statistical moments and how well the PDF

models preserve them.

6. Be able to drill down into the details with a focus on the hierarchical structure of

the data that is decomposed around flow features.
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7.2.2 Isobands and Connected Components

The first set of views that the user will interact with are for selecting isobands and their

connected components. A tree-based visualization is used to show the nested hierarchy

as depicted in Figure. 7.5, and another linked view represents the components based on

a 2D t-distributed stochastic neighbor embedding (t-SNE) projection, as can be seen in

Figure. 7.6 (Left). The input to the projection is a featurization of the components,

for example based on the bin values of histograms, parameters of parametric statistical

models, or statistical moments. t-SNE will try to group the points with similar statistical

features together. The points can be selected by the user through a lasso selection tool

in the projection or from the tree view. The lasso selection operation has several modes

besides new selection (◦), based on set combination operations with the existing selection

(∩,∪, or \).

In the projection, the points are color coded by isoband, but in the tree view, that

information is implicitly encoded by level of the node. Thus, for tree nodes, color encodes

other information. For example, in Figure. 7.5 color is used to encode µ4(H2O, p), which

is the cokurtosis of hydrogen mixture fraction and pressure. Since very small components

have too few voxels to get quality statistics, we color encode them in gray instead. This can

also be helpful information since those small components may be particularly meaningful

(e.g., in combustion they may indicate the incipient development of an ignition event).

7.2.3 Voronoi Cell Views

The Voronoi regions are also projected into t-SNE projection views. Figure. 7.6 (lower

left) shows such a projection. After selecting a set of components, the Voronoi cells in

those components are highlighted in the Voronoi region projections and become selectable

using the same lasso tool with the same set operator modes.

In addition to t-SNE projection based on statistical features, we found that a projec-

tion based on spatial similarity is a useful option for one or more of the linked Voronoi

region projections, since it can group points based on spatial proximity. In Figure 7.1

(right) the bottom projection is based on such a 2D spatial projection. For this pro-

jection, we use a pre-computed distance/similarity matrix based on a custom pairwise
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distance measure between Voronoi sites. Since the tessellation is restricted by level sets,

it makes sense to utilize the geodesic/path distance obeying the restrictions, as illustrated

in Figure. 7.5 (A). The blue line shows the Euclidean distance, while the white line shows

geodesic distance. An example where this useful in capturing the condition where regions

around a folded surfaces (e.g., flame) are geodesically distant but yet close together in

Euclidean distance. In combustion, for example, this may preclude or represent inter-

esting interactions of the flame as the Euclidean distance approaches the laminar flame

thickness while the geodesic distance remains larger. One example distance function that

can be used is,

d(si, sj) =

(
||x(si)− x(sj)||2

gd(si, sj)

)
if Pi,j exists else c (7.5)

where Pi,j is the graph geodesic of adjacent Voronoi sites, gd is the path’s distance, c ≥ 1

is a parameter where a higher value results in more separation of sites outside of the

same component. To find Pi,j, we compute the connectivity of the Voronoi sites based on

region adjacency, and then Johnson’s all-pairs shortest path algorithm (which internally

uses Dijkstra’s algorithm) is used. Since the neighborhood is also restricted to within

connected components the computation is parallelized by letting different threads operate

on different components. The Boost graph library’s implementation is used, which has

time complexity O(|V |·|E|·log(|V |)), where V is the set of nodes, and E is the set of edges.

An alternative to Johnson’s/Dijkstra’s is to use the Floyd-Warshall all pairs shortest path

algorithm which has time complexity O(|V |3). Since our graph is only locally connected

it is sparse enough that O(|V | · |E| · log(|V |)) is better than O(|V |3).

7.2.4 Interactive Joint Plots

Once a selection of Voronoi regions is made, statistical plots are generated, either from

their pre-aggregated statistics, or from the raw data loaded out of core based on the

aforementioned structured data layout.

Based on the experience of the domain scientists, the following statistical plots are

chosen: joint PDF’s and their marginals, joint CDFs, conditional plots (which estimate

one variable conditioned on 1 or 2 others), and scatter plots. Since each of these plots

118



share the same axis with the same scaling, we can switch between them, or combine layers

on a single interactive generalized joint plot.

The joint plot includes information from both the background layer which is generated

from the set of selected components, and foreground layer which is generated from the

set of Voronoi regions within the components. The background layer in the joint plot is

a static gray scatter plot, while the foreground layer is plotted over the background and

depends on the selected plot mode. There are also marginals for both the background layer

which are shown as gray histograms drawn as bar charts, and marginals of the foreground

data as heatmaps beneath the bar charts as seen in Figure 7.6. The user can zoom and

pan by scrolling or dragging the mouse when within either the joint plot (to zoom/pan

both axis), or over one of the marginals (to zoom/pan only one axis). Highlighting on

the background marginals, and arrows are used as a form of mini-map to depict the zoom

level.

The joint plot of the foreground layer can be either scatter plot, histogram, CDF, kernel

density estimation (KDE), or Gaussian mixture models (GMM’s). The KDE plots are

useful for capturing high-level detail and smoothness in the potentially complex nonlinear

distributions. Histograms and GMM’s are models which are commonly used for in situ

statistical summarization. By using our system on existing data, before employing in

situ, the choices of models and their parameters can be tested and the user can get an

idea what information might be lost or misrepresented using the candidate methods. As

the user interacts with the data, the PDF’s may be interactively recomputed as the data

inputs and the data range changes. Since the KDE and GMM plots are often not able to

be recomputed immediately at interactive rates, the plot will automatically switch from

KDE or GMM to a histogram, for example, while zooming/panning is occurring.

To evaluate the PDF’s, the system estimates how well they preserve joint moments,

which are used in the analysis of turbulent flows [136, 137]. The moments (i.e., mean,

covariance, coskewness, and cokurtosis) estimated from the PDF’s are compared against

the moments computed from the raw data. Each plot has a button (in the upper right

corner, labeled µk) that can be pressed to open/close an attached table that is auto-
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generated as a LaTeX document as shown in Figure. 7.1. This functionality can also aid

featurization of high-order moments-based anomaly detection algorithms to [138, 139].

If voxel data is available, the voxels deriving the foreground can be selected using the

lasso tool and aforementioned set combination operators. The selections are linked across

views and plotted as blue points. This layer can be toggled on/off per-plot to manage

occlusion. These selections are also linked in the 3D view where their bounding surfaces

are rendered. Conditional plots can be toggled on/off as well, and are rendered on the top

most layer as a red curve estimating mean y as a function of x, with blue lines above and

below the curve at ±1 standard deviation. 2D conditional plots, showing estimated mean

z as a function of (x, y), rendered as a heatmap, is also supported. For these plots, the

forground layer can also be toggled to show a scatter plot of (x, y) as shown in Figure 7.6

(second from right).

Figure 7.7. Isotherms in the premixed hydrogen/ammonia/nitrogen flame.

7.3 Performance

The data used to obtain these results is the hydrogen/ammonia/nitrogen flame data

described in Section 7.4. Five isobands of temperature were used. The bands are highly

contorted as can be seen in Figure 7.7. This makes the data a good stress test for the

algorithm as the Voronoi sites need to find their way around complex obstacles. At each

iteration of Lloyd’s algorithm, we measure the distance moved, ds, for each site point,

s. And we also compute the mean, d̄s, which is used in the formulation of our stopping
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conditions.
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Figure 7.8. Computation time per-node to reach a mean ds of less than 0.5 (unit
voxel length). Each line represents a different block size for distributed computation.
Since the computation is independent for each block of data in a distributed setting,
the scalability can be assumed to depend primarily on the number of GPU nodes
available.

First, we evaluate the computation time with respect to site density and number of

voxels on a node; shown in Figure 7.8. The performance drops as the number of voxels

on a GPU node increases. The primary bottleneck is the Voronoi classification described

in Section 7.1.2.2. This computation is parallelized on the GPU using one thread per

voxel without communication. Thus we can expect the GPU parallelism to scale well

with the number of GPU threads. However, the performance decreases approximately

linearly with respect to site density, as lower site density means longer paths traced out

per voxel/thread.
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Figure 7.9. The reduction in log2 d̄s (log base 2 of mean ds) over the number of
geodesically weighted centroidal update steps, shown for 3 different site densities. The
result is similar in each case. The mean continues to improve slightly over time with
diminishing returns on the benefit for the cost.

The second result, in Figure 7.9, shows how quickly the tessellation quality improves in
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terms of the number of steps in Algorithm 1. Diminishing returns for the computation cost

are seen after only a handful iterations. Since the computation is independent over each

node/block of the block decomposition domain, we were able to use a single user machine

to perform these first two tests; an Arch-Linux machine with an Intel(R) Core(TM) i7-

5930K CPU @ 3.50GHz with 64 GB of main memory, and an NVIDIA GeForce GTX

TITAN X GPU with 12 GB of memory. The number of Cuda threads per-block was set

at 128, which gave us the best performance. The Cuda code was compiled with compiler

flags, ‘nvcc -std=c++11 -O3 -w -m 64 -rdc=false -ftz=true -use fast math -Xptxas -O4,

-Xcompiler -O4 -arch=sm 52’.

Nodes 8 16 32 48 60

GPUs 48 96 192 288 360

time(s) 26.939 12.996 5.618 3.990 3.091

Table 7.1. Parallel Performance results for Ammonia Data of Size 3456× 1280× 2560.
The computation was performed till mean ds reached 0.25 voxel lengths.

Last, we performed a full distributed parallel test for the combustion data on the

Summit supercomputer. The volume has a size of 3456 × 1280 × 2560 voxels. The site

density was 2700 voxels per Voronoi site. We ran the system until it reached the point

where mean ds dropped below 0.25 unit voxel widths. The results are shown in Table 1.

Each of the nodes on Summit has 6 NVIDIA V100 Tesla accelerators, 512 GB of DDR4

memory, and two IBM POWER9 CPUs. We ran our code with 1 GPU and 1 CPU per

rank, and 6 ranks per node. We testing the performance using 48, 96, 192, 288, and 360

GPUs. Since Summit has 6 GPUs per-node, we mapped this to 8, 16, 32, 48, and 60

nodes respectively. The run command for example was ‘jsrun -n48 -a1 -c4 -g1 ./t8’ for

the case of 48 GPUs. The CUDA code was compiled with NVCC, with command-line

arguments: -std=c++11 -O3 -w -m 64 -rdc=true -Xptxas -O3. The CUDA version was

11.4.2. The C++ program that links the GPU code was compiled with GCC 10.2.0 (the

GNU Compiler Collection) with arguments: -std=c++11 -O3 -fpic -fopenmp. Since

each node took a different amount of time to complete, we report the worst case, which

represents the overall time for the entire data to process. The CUDA kernels used a block
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size of 128.

7.4 Applications

We tested our algorithms on two types of flow data, turbulent combustion and wall

bounded channel flow. The flame surface in the turbulent combustion data is more con-

nected, but still highly complex, while the channel flow data has many small vortical

structures. The combustion data features strong coupling between the flame wrinkling

and the underlying turbulent strain, where the flame response occurs in a composition

phase space (dependent locally on species concentrations and temperature which con-

trol the burning rate and are modulated by the turbulent strain), while turbulent strain

evolves in physical space. Hence, there is an inherent need to interactively toggle between

physical and composition space to drill down and understand causality. Depictions of the

two datasets and tessellations made using them are shown in Figure 7.7 and Figure 7.10,

respectively.

7.4.1 Hydrogen/Ammonia/Nitrogen Turbulent Flame

We apply the nested hierarchical approach presented here to turbulent combustion data

from Direct Numerical Simulation (DNS) of a premixed hydrogen/ammonia/nitrogen

flame [140]. The DNS study aims to gain an understanding of the combustion behavior

of hydrogen/ammonia/nitrogen as a carbon-free replacement for conventional fuel (i.e.,

natural gas). The simulation was run on 900 nodes of the Oak Ridge National Laboratory

OLCF Summit cluster requiring approximately 110k node-hours. The aggregate amount

of data produced comprises 400 checkpoint files, where each checkpoint file is 2TB. The

data is described further in the Appendix A.3.2.

Due to the nature of turbulent combustion and the need to resolve all flow and chemical

scales, turbulent combustion DNS data is characterized by a large separation of scales,

with portions of the data often not relevant for statistical analysis or over-resolved on

the numerical grid that is designed to capture the smallest scales (e.g., regions of hot

products feature small gradients/large flow and chemical features). The Voronoi tessella-

tion effectively reduces the amount of data to be processed for the purpose of statistical
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analysis and allows for efficient and fast data exploration. While conventional statistical

analysis (e.g., (joint) statistical distributions, statistical moments, correlations between

species and temperature and between reaction rates and strain rate) is important in tur-

bulent combustion, the analysis of spatially and temporally intermittent features is often

of interest (e.g., flame-flame interactions, reactant pocket formation enriched with minor

species that are chemically crucial, and formation of localized flame extinction holes). The

hierarchical selection of connected components together with distance-based metrics, and

with the linked views between spatial and statistical features, allows scientists to quickly

identify and select specific flame features and directly extract necessary statistics to un-

derstand causality between the ‘turbulence-chemistry’ interactions and to steer further

downstream analysis, and adaptive labeling of ‘feature’ data for searchable training and

validation for machine learning.

The mass fraction of H2O, normalized by the values obtained in burned and unburned

gas of a laminar, unperturbed flame at the same conditions as the turbulent flame, acts as

a so-called progress variable, which monotonically increases from 0 to 1 across the flame

brush. This progress variable is usually used to identify specific zones of a premixed flame

and specific values can be selected to obtain iso-surfaces that identify the various zones

in the flame front (i.e. preheat zone, reaction zone, oxidation zone in a premixed flame).

Here, we choose a specific value that represents the reaction zone, i.e., the location where

the heat released by the flame is at its peak. We refer to the iso-surface corresponding

to this value as the flame surface. Of particular interest is the analysis of the value

of other quantities on the flame surface. For example, a large value of the OH radical

species represents a region that is burning particularly strongly and in the present dataset,

this corresponds to a flame element that experiences preferential diffusion effects (i.e.,

hydrogen reactant diffusing faster than heat), where the burning is amplified locally by

a large influx of fuel. In other regions of the flame, OH is low, which represents flame

elements that are locally extinguishing, i.e., strain and stretch-induced by turbulence

disrupt the reactions to a large extent. Distance-based metrics also provide a conditioning

variable in physical space indicating the response of different zones in the flame, upstream
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and downstream of the flame isosurface, to the strain rate. Distance function iso-contours

represent the locus of all points that are equidistant from the flame surface.

Figure 7.10. Channel flow decomposition using the λ2 field to encapsulate vortical
structures, and the distance function to define iso-levels. The dark grey surface repre-
sents the vortical structures.

7.4.2 Turbulent Channel Flow at High Reynolds Number

Here we examine is the incompressible turbulent channel flows at a high Reynolds num-

ber, Re (Figure 7.10). High Re wall-bounded turbulence has great importance in many

engineering applications with moving objects at high speed. However, the fundamental

dynamics of wall-bounded flows are not yet fully understood. The turbulent channel flow

is one of the simplest canonical flows to study the high Re wall-bounded turbulence. Still,

the DNS of high Re turbulent channel flows is quite expensive due to the scale separation
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similar to the turbulent combustion as explained above. The simulation performed with

33K nodes in Mira (Bluegene/Q, ALCF) used 242 billion DOFs, and it remains the largest

DNS simulation of wall-bounded turbulence [141, 142, 143]. The data is described further

in the Appendix A.4.1.

In this study, we use the λ2 field, which is calculated from a subset of the aforemen-

tioned DNS. The interaction of coherent structures in turbulent flows is a long-standing

problem. Naturally, the methods to identify vortex structures are well developed. λ2

is one of the widely used vortex identification methods. It uses the eigenvalues of a

3 × 3 matrix constructed with a velocity gradient tensor[144]. Even though the vortex

identification method is mature itself, using it to study the dynamics of high Re wall-

bounded turbulence is still a challenging task because the identified vortex structures are

too numerous to analyze readily from the raw data[145]. Note that other types of high

Re turbulence also encounter the same flow complexity. The dynamic nested hierarchi-

cal statistical decomposition approach can efficiently identify the vortical structures and

analyze their interactions with other state variables, such as velocity and pressure fields.

7.5 Discussion

Block Based Distributed Parallelism. For large-scale domains, a distributed ap-

proach is needed. There are two possibilities; (1) perform the CVT globally over the

whole domain, which will be computationally intensive due to the communication require-

ments across nodes, or (2) compute the CVT separately on large blocks of the domain

on different ranks. We have only implemented the second option. The result is that the

boundaries of the blocks will act as further restrictions so that the Voronoi sites will be

aligned to those boundaries in addition to the isobands. Such alignments are already

implicit at the boundaries of the full domain, and the alignment to the block boundaries

does not break the level set based hierarchy, or alignment of the CVT to the level set

surfaces. Additionally, it offers one advantage over a global CVT; whole blocks can be

loaded without clipping the tessellation. This is practical because large datasets are often

analyzed post-hoc through block-wise sub-selection due to the large scale. It also makes
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a more efficient implementation possible and is trivial to scale up.

CVT Algorithm and Optimality. In general, it is difficult to prove guarantees for

CVTs [146]. Liu et al. provide theory on CVT convergence [147]. Despite theoretical

challenges, CVT algorithms adaptively minimize energy and are argued to have practical

expectations of convergence. For our algorithm it depends on the definition of xc, the new

target site position in the update step for Lloyd’s algorithm. As site density increases

and/or the restriction complexity decreases, xc approaches the Euclidean centroid. While

the tessellation will evolve from less optimal to more optimal distributions, we are not

able to prove theoretical guarantees. A more optimal definition is also possible, but it is

unclear what that should be in order to balance efficiency and quality. Our implementation

can be extended or improved in the future by redefining xc and modifying the update

step. As an alternative to Lloyd’s algorithm, one can also try an approach based on

limited memory BFGS method for large scale optimization (L-BFGS) [148]. Lastly, the

performance depends strongly on the choice of the stopping condition. As our tessellation

must conform to complex boundaries, the spatial homogeneity of the tessellation cells is

generally imperfect. This means that the value gained from extensive refinement through

iterations of Lloyd’s algorithm may not be worthwhile considering the performance trade-

off. The tessellation usually reaches a decent state with only a few iterations. Thus, if

time is a constraint, i.e., if the algorithm must complete in time to prevent the delay

of a simulation (when used in situ), then one could define a small minimum number of

iterations, and then run as many iterations of Lloyd’s algorithm as possible within the

allotted time beyond the minimum.

Need to Choose Parameters A Priori and Loss of Information. As discussed

in Section 7.1.3, there is a significant limitation in the need to specify parameters before

hand, and the choice of parameters depends on dynamic data. This becomes a bigger

concern when one is less clear what kind of data they can expect the simulation to produce.

When one has some existing data which they expect to have similar characteristics to the

data the simulation will produce, then they can apply the methods on the raw data and use

our prototype system to explore the results while being able to compare what information
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may be lost from the raw data given a parameterization of the methods. As future work,

one may explore robust dynamic methods to adapt the statistical aggregation/modelling

approach as the data evolves based on the uncertainty or error. For example, when a

model is no longer able to represent the data sufficiently, one can trigger more output of

the raw data, or employ a more expensive yet superior algorithm or model.

Applicability and Extensibility. Our implementation works on Cartesian grids

and rectilinear grids. For rectilinear grids, one can perform the tessellation as if it were

a Cartesian grid in which case the tessellation will be stretched to match the grid. In

some cases, this approach is sensible because it results in more homogeneity in region

sample sizes (volume elements per region), which may yield greater statistical consistency.

However, one can also use the stretching function for the tessellation. The algorithm

can be extended to work in most cases where a discrete binning of volume elements is

acceptable.

Impact of the Visualization Approach While visualization tools for 3D rendering

and surface analysis of the large scale data have matured over the years, there is still

a lack of scalable tools for exploring large scale multivariate data and spatial statistical

correlation. Our work contributes new ideas and software to help push the state of the

art in this area, and can be expanded on by future research.

Evaluation and Refinement of Visualization Design. The visualization system

and overall approach has clear motivation and has been applied to help combustion sci-

entists better understand their data. The design is still in an early stage and represents

only one for approach visualizing spatial statistics using the hierarchical segmentation.

We have determined several ways it can be improve. First, a direct selection of connected

components in the 3D view would be useful. This could be supported either based on an

explorable image with depth buffers [149], through 3D ray intersection testing. Second,

we would like to region growing of the selections based on spatial or statistical proxim-

ity. Lastly, the visualization system needs better support for temporal visualization. The

statistical summaries of components can be efficiently visualized through time utilizing a

dynamic tracking graph [55] and the structured data layout from Section 7.1.2.4.
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Once the visualization system has matured, a more robustly evaluation can be done.

Evaluation of methods designed for use by qualified scientists for exploratory visualization

and analysis can be challenging, because few are qualified to participate in studies, and

appropriate tasks are difficult to define for visualizations when the result of the visual-

ization is qualitative insight. If a user study is overly simplified or narrow in scope, it

can give a false impression of the usefulness and potential of the design [150]. Feedback

from the participating scientists on the value of the methods and tools is included in

Section 7.4. However, the qualified scientists we have worked with are co-authors and

helped design the system around their interests, so there is a level of potential bias that

may be expected in their direct feedback, and the potential use cases for the methodology

spans domains we are not experts in. Our vision for the future evaluation and refinement

of the system involves iterative refinement based on lessons learned as we apply it in our

domain [151], as well as through as much feedback as can be gained by other users outside

our domain.
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Chapter 8

Conclusion

The dissertation concludes with some of my views about the challenges in collaborative

scientific visualization research, remarks on the overall impact of our work, some of the

overall limitations, and opinions about promising directions for future work.

8.1 Collaborative Visualization Research with Do-

main Scientists

Some challenges I faced as a visualization researcher collaborating with domain scientists

include: (1) The visualization researcher is not the leading expert in the scientific field

of application. One may readily become acquainted with the application domain but

would not be expected to attain the level of expertise necessary to perform research

independently. Thus one must rely intimately on the collaborating scientists to help guide

the research. (2) The visualization researcher needs to do novel research while many

of the domain scientist’s immediate and intermediate needs are often solvable without

novel visualization methodology. Furthermore, the novel directions of research that are

useful for the salient applications to the domain scientists may be highly customized

and narrow in application. Thus one needs to be determined to find novel solutions

and broaden the work’s scope and impact. (3) Research papers where the methods are

designed and motivated based on specific domain science needs are difficult for members of

the visualization community to review. Relying on the collaborating domain scientists to

evaluate and give testimony as to the value of the work presents a conflict of interest since
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they are often co-authors or invested in the research themselves. However, they may be

the only qualified persons who are readily available to evaluate the work. Furthermore,

visualization is highly qualitative in nature, and its insights are difficult to measure.

(4) The datasets are large and difficult to acquire. This leads to difficulties in testing

and comparing work against the previous works and exasperates the already difficult

evaluation challenges.

Despite the challenges, I believe there is a wealth of rich and novel visualization prob-

lems yet to be discovered through domain science-driven collaboration. And through time,

the common factors between the visualization needs of scientists in different niche areas

will be better understood, and the value of the past research will thus increase with age.

8.2 Overall Impact

The problem of visualizing large-scale, multivariate, spatially, and temporally distributed

simulation data is broad. The data will have such characteristics in a wide range of sci-

entific domains where physical systems are modeled. In each case, specific requirements

are necessary, and goals constrain the approach. This makes it difficult to declare what

is precisely the state-of-the-art when it comes to the visualization methodology or ap-

proach. When it comes to distribution-driven visualization methods, this is especially

the case since the methodology can be constrained by the statistical quality of the data

and assumptions, as well as the end goals, which can vary from monitoring in search

of anomalies [43] or errors, exploratory visualization to pinpoint known or undiscovered

patterns [152], validation or monitoring of simulation progress, filtering [151], fast but

lossy data compression [47], or some combination of any of these.

Within the scope of my research, we focused not on developing new statistical meth-

ods but on spatial decomposition and layout, visualizations, visualization system design,

interactions, and efficiency and scalability. Before our work, there was some work on

spatial decomposition in combination with statistical summarization, but there was still

a lack of work on utilizing the spatially decomposed statistics for interactive multivariate

visualization. In both the tokamak fusion and combustion cases, achieving the goals con-
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veyed to us by the domain scientists require novel solutions. The solutions in each case

are multifaceted.

8.3 Limitations

One of the main limitations of this work is the limited forms of supported data types.

These are not necessarily fundamental limitations, but future work may be necessary to

determine the suitability of our approach in different cases, and one may need to modify,

redesign, or replace some of our algorithms. Overall, our driving applications represent

limited classes of 3D simulation data and have yet to be tested widely on the potential

application domains. Because of this limitation, we can only guess at the benefits of our

approaches to the domains we have yet to consider. For example, our methods might be

useful for applications to the visualization of cosmology data, space plasma data, or blood

flow data, to name a few. Still, it is unclear what changes need to be made for effective

application and what common factors can effectively generalize.

Another limitation is the lack of testing for in situ processing and visualization. Our

approaches, specifically in Chapters 4 and 7, are geared towards in situ use. In Chapter 4,

histograms were generated in situ, but we have not supported live in situ monitoring. In

Chapter 4, we could not easily test the methods for in situ processing and monitoring

because the simulation is too expensive to re-run for testing purposes with our limited

HPC allocations. In general, large-scale simulations of turbulent combustion, or tokamak

fusion, are costly. Smaller versions of the simulations may be used for testing in situ

methods, but the smaller simulations may not produce similar results to the larger-scale

simulations. We thus may need to test on existing data, if available, or make apriori

assumptions based on expert knowledge to prepare the in situ workflows for a future big

simulation run. Furthermore, the methods need to be trustworthy enough to bring into

the dependency chain of a highly expensive simulation when mistakes can be costly.

8.4 Directions for Future Work

In Chapters 3 through 7, we discuss ideas for future work specific to the individual topics.

Here we focus more broadly on what can be done to advance the state-of-the-art in
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practice.

First, some obvious directions for future work are to seek to overcome the limitations

mentioned above. For example, the extension of our methods to work on different kinds

of data, as well as extensions to better support different applications, will help increase

the impact of the work. Furthermore, research is needed to determine how to better

evaluate these methods, which are currently assessed primarily logically and qualitatively

through expert feedback. I think that one problem we face is that distribution-driven vi-

sualization, or statistical summarization, are very general topics with different use cases.

A taxonomy of these different use cases pertaining to visualization and an in-depth re-

view of the statistical characteristics and modeling requirements for data from different

scientific domains would be a nice contribution.

Another direction for future work that I suggest is the development of automated

statistical summarization workflows to be used in situ. Since processing performed in situ

may not be able to be redone later on, it is imperative that the processing succeeds the

first time. When done in situ, the statistical model and any parameters need to be either

data-driven or decided apriori. In some cases, lightweight parametric models might be

sufficient, except in special circumstances that cannot be determined in advance. In such

cases, fallback models could be leveraged. Moreover, based on saliency measures, one

could trigger more expensive processing, or the output of more data (in time or space),

in different regions. I envision a framework supported by a declarative domain-specific

language, e.g. Diva [153], for specifying the assumptions, rules, and priority or saliency

measures and how the in situ workflow should adapt based on the data and hardware

constraints to optimize the value of the output while minimizing the costs in resources.

Next, future work is needed to figure out how to incorporate different forms of data

into the same integrated visualization system. For example, how can we best visualize

collections of histograms with different extents or bin edges, when some distribution func-

tions are parametric and others are non-parametric, or when certain forms of data are

only available for some time steps or spatial regions?

Modern scientific simulation datasets, like those from the domains described in this
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dissertation, are already so large that they are cumbersome to analyze and manage in

storage. But in the big-picture, this data is small compared to the amount of information

nature produces about the same phenomena. I believe that we will always be seeking

to simulate at a larger scale. As compute capabilities necessary to process and store the

resulting data increase, our ability to effectively visualize the data will still be limited by

our inability to sift through it, perceive the information, and interpret it. Yet this is a

valuable process since inspecting the data may be crucial for discovering the unexpected.
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Appendix A

Datasets Used in This Dissertation

Most of the data used in this dissertation are large and managed by external organizations

and thus can only be obtained through channels outside my control. Inquiries in these

cases should be directed to the corresponding authors of the cited papers.

A.1 Particle-in-Cell Simulation Data

The fusion simulation datasets were provided to us by scientists at Princeton Plasma

Physics Laboratory (PPPL). The accelerator simulation data was provided by scientists

at the Stanford Linear Accelerator (SLAC).

A.1.1 XGC ITER Fusion Simulation Data

XGC [37] is a tokamak fusion simulation code designed to study edge physics of magnet-

ically confined plasmas. The fusion datasets come from large-scale simulations developed

by Princeton Plasma Physics Laboratory research teams. This dataset represents a sim-

ulation of the International Tokamak Experimental Reactor (ITER) [154]. The dataset

we were provided contains both field and particle data, as well as constants and formulas

for deriving variables of interest from the raw data. A rendering of the device and its

coordinate systems are shown in Figure A.1. A deeper understanding of the code and

research supported by the XGC1 ITER simulation is provided by Chang Et al. [155].

Mesh and Fields The simulation includes both a magnetic field and an electric field

data stored on a mesh grid. The spatial coordinates are positions in cylindrical coordi-
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Figure A.1. An illustration of the XGC ITER Simulation domain. On the right, the
cylindrical coordinate system, with positions (r, ζ, z), on the left, the tokamak device is
cut in half. On the left side of the device, the face is the 2D poloidal plane mesh. Two
types of particle trajectories, passing and trapped, are rendered in both the 3D space
and projected onto the poloidal plane. On the right side of the device, the separatrix
of the magnetic field is rendered. Overlaid in black is the 2D (r, z) axis, an illustration
of the center of the poloidal plane xc, and the poloidal angle θ. The separatrix is
the isosurface of the magnetic field where it crosses over itself. ψn, the normalized
magnetic radius, is equal to 0 at the center of the poloidal plane and equal to 1.0 at
the separatrix.

nates, (r, ζ, z), and the mesh grid consists of a series of identical 2D meshes representing

the poloidal plane (r, z), organized toroidally around the device (at different toroidal

angles, ζ).

The magnetic field B is modeled as a static (non time-varying) field, while the electric

field is time-varying. In this work, the electric field data, however, is not used.

Particles The particle we were provided from this simulation consists of a sample of

simulation particles, which includes 286,000 electron particles and 286,000 ion particles,

each for 282 time steps. The number of particles simulated is much larger. However, only

a small sample had been available to us. Each particle has positions (r, z, ζ), variables

ρ∥ and µ, which are the parallel Larmor radius and the magnetic moment, respectively,

and weights w0 and w1. The velocities, v∥ and v⊥, in magnetic coordinates (parallel and

perpendicular to the magnetic field), as well as energy, are derived from the raw data.
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Particle Weights Each particle also has a pair of weights, w0, w1, where w = w0 × w1

is equal to the number of real particles that the super particle represents. Each super

particle must be weighted by w to get its net contribution to the distribution. w is

time-varying, and since the particle density is represented through perturbations from a

background distribution, w can also be negative.

Electrons For the electrons, we derived the following variables:

v⊥ =

√
2µ∥B∥
me

,

where B is the magnetic field at (r, ζ, z) and me = mi

mr
(the mass of the electrons in

the simulation), and mi = 2× 1.660539040e− 27 (the mass of the ions in the simulation,

which for the ITER simulation case are pairs of hydrogen atoms). mr is a simulation

parameter, which for the ITER simulation is 1000.

v∥ =
−eρ∥∥B∥

me

, and

E = µ∥B∥+ 0.5me

(
−e∥B∥ρ∥

me

)2

Ions for the ions, we derived the following variables:

v⊥ =

√
2µ∥B∥
mi

,

v∥ =
eρ∥∥B∥
mi

, and

Ek = 0.5mi(v
2
∥ + v2⊥)

Analysis Interests In speaking to scientists at PPPL, we learned that the analysis

interests for tokamak simulation data are highly varied and dependent on the specializa-

tions of the researcher. Through our collaborations with several members of the PPPL
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theory group, we focused on helping to support a subset of those analysis interests. In

each case, the scientists were primarily interested in the visualization of the particles’

toroidally integrated statistics and the positions projected onto the 2D poloidal plane

(r, z) by discarding ζ as depicted in Figure A.1.

A.1.2 GTS Fusion Simulation Data

Figure A.2. Rendering of the GTS data. On the upper left, the grid points of the probes
where local statistics were gathered from. Below are the same grid points projected
onto (rs, θs), which are variables included in the data set that give radial positions
and poloidal angles. The function mapping between (r, z) to (rs, θs) had applied a
transformation, twisting the grid to concentrate points where the scientists wanted
more of them. The green points show a linked selection of the grid points between the
lower left and upper left projections. On the right, the histograms associated with the
grid points are aggregated based on the overlaid Cartesian grid, and the same is done
using the raw particle sub-sample for comparison.

GTS [36] is a gyrokinetic simulation that focuses on studying microturbulence in

fusion devices. This simulation dataset contains ∼ 500 million particles which were used

to generate 3840 weighted histograms, with each histogram summarizing a local physical

region based on a coarse grid. This processing was done by our collaborators at PPPL,

and the aggregation grid and raw histogram data (one histogram per-grid point) were

provided to us. Each histogram has a resolution of 33 by 17 bins. As with the XGC
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data, the histograms represent perturbations from a background phase-space particle

distribution. Each grid point has an associated phase volume where the particles were

sampled from that is used for normalization. One frame of data was provided along with

a sub-sample of ∼ 15 million particles and their weights for comparison.

In addition, a time series of the spatially organized histograms was provided, which

includes about 2,000 time steps and several versions of the velocity histograms for each

time step, including histograms representing particle density, and histograms where the

particles were weighted by momentum, momentum flux, energy, energy flux, particle flux,

and bootstrap current.

As with the XGC data, the histograms were computed in the 2D poloidal plane. The

same spatial coordinate system is also used, with (r, ζ, z). However, the grid points in this

data also each include variables named radial_position and poloidal_angle, which

we denote as (rs, θs). These are mapped from (r, z) based on a transformation that has

twisted the grid to concentrate more of the points in salient spatial locations. Each of

the grid points also includes a constant representing the static magnetic field strength, B.

Renderings illustrating the coordinate systems and data are shown in Figure A.2.

A.2 Alcator C-MOD Data

Alcator C-Mod was a tokamak device developed by MIT and PPPL, which was used as

a test platform for ITER. We obtained a small set of simulated Alcator C-Mod particles,

which we used as a proof of concept for our visualization approach leveraging interactive

grids of spatially organized histograms in Chapter 3.
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Figure A.3. A rendering of the ACE3P cryomodule dataset. The top is a cross-section
of the magnetic field, which oscillates between positive and negative to push/pull the
particles through the accelerator. The middle views show the particles colored by their
initial position and by their momentum from top to bottom, respectively. The bottom
view shows the same particles in momentum vs. radius from the longitudinal axis of
the device.

A.2.1 ACE3P Accelerator Simulation Data

Figure A.4. Top) an ILC 8-Cavity Cryomodule particle accelerator. Bottom Right) a
9-cell cavity (image courtesy of the Linear Collider Collaboration). The irises are the
regions between the cells. Bottom left) a full cryomodule assembly (image courtesy of
the Linear Collider Collaboration).
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ACE3P is a set of simulation codes that model electrodynamics in particle accelerators.

The simulated accelerator is made up of a series of cryomodules, which themselves are

made up of a series of resonating cavities driven by RF antennas. Electromagnetic field

fluctuations accelerate the charged particles contained within. The data we used consists

of particles from a simulation for studying dark current and field emissions [127] within

ILC cryomodule particle accelerators. The cryomodules are depicted in Figures A.4, and

A.3.

The data we used in this dissertation work includes the fluctuating electric field, which

oscillates between positive and negative, and particle data. The electric field is repre-

sented by a tetrahedral grid. The particle data represents field-emitted electrons that

pass through the cavity, and gain high momentum as they are accelerated by the cavities.

The particles each have their own start and end time steps as they are emitted at differ-

ent times and absorbed at different times. Because the particles reach relativistic speeds,

their momentum and energy grow larger and larger with a small increase in velocity. The

more momentum the field-emitted particles gain, the more dangerous they become. The

analysis interests are described in detail by Li Et al. [127].

This data provided us with a good test case for our software from Chapter 6. A

challenge to accelerator visualization has been due to their lengths and a lack of support

for the visualization of domains with large aspect ratios. It is also used in a case study

in Chapter 4.

A.3 S3D Combustion Simulation Data

Data from three S3D simulations are used in this work.

A.3.1 2D Autoignition

The first is a 2D auto-ignition simulation which has been previously used for the study

of statistical anomaly detection and its use for detecting autoignition events [156]. The

dataset is used in Chapter 7 for illustration of our Voronoi decomposition algorithm.
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A.3.1.1 Lifted Ethylene Jet Flame

This dataset is from a petascale combustion simulation developed by scientists at Sandia

National Labs [102]. The particular simulation run depicts a 3D highly turbulent lifted

ethylene jet flame, which can lead to a better understanding of phenomena such as au-

toignition in engines. We were provided particle data from this data, which is used in our

work in Chapters 3 and 4.

Figure A.5. Renderings of the Hydrogen/Ammonia/Nitrogen data. On the left is the
1 atm case, and on the right is the 10 atm case. The orange structures in the 10 atm
case are the cellular flame elements that destabilize the flame.

A.3.2 Hydrogen/Ammonia/Nitrogen Fuel Simulation Data

This data is from a Direct Numerical Simulation (DNS) of a hydrogen/ammonia/nitrogen

flame [140]. The DNS study aims to better our understanding of the combustion behavior

of hydrogen/ammonia/nitrogen as a carbon-free replacement for conventional fuel (i.e.,

natural gas). The simulation was run on 900 nodes of the Oak Ridge National Laboratory

OLCF Summit cluster requiring approximately 110k node hours. The aggregate amount

of data produced comprises 400 checkpoint files, where each checkpoint file is 2TB. Two

simulations were produced, each with different pressure parameters. A rendering of the

temperature field for the data is shown in Figure A.5.

A.4 Miscellaneous Data

Besides combustion data and plasma data, we also used a channel flow data set and a

marine life data set. The marine data is the only data we used that is not simulation
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data.

A.4.1 Channel Flow Data

The channel flow data represents a simulation of incompressible turbulent channel flows

at a high Reynolds number, Re. High Re wall-bounded turbulence is important in many

engineering applications with moving objects at high speeds [141, 142, 143]. This data

was used in Chapter 7.

A.4.2 Marine Life Data

The last data we test comes from the Tagging of Pelagic Predators (TOPP) [103] dataset.

This is a geospatial movement dataset that tracks the motion of marine life through-

out the Pacific Ocean. Datasets like these help us to understand animal behavior in

terms of migratory or feeding patterns. This data was used in work from Chapter 3.

The dataset is open source and can be accessed at https://oceanview.pfeg.noaa.gov/

erddap/tabledap/gtoppAT.html.
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Appendix B

Software and Media Produced by

This Work

The software produced by this work includes three interactive visualization systems:

Baleen, Cirrina, and Marrus.

B.1 Baleen

The visualization software described in Chapter 4, which leverages spatially organized his-

tograms, has been named Baleen, after the bristled teeth that whales use to filter plankton

out of the ocean. This visualization system has two operational modes, one that works

with scalar data and another which works with pre-generated grids of spatially organized

histograms.

Code Repository https://gitlab.com/tneuroth/baleen

Project Page https://tneuroth.gitlab.io/baleen

B.2 Cirrina

The visualization methods and systems described in Chapters 6 and 5 are incorporated

into a software package called Cirrina, after the suborder of octopuses, in keeping with the

marine theme. This software supports the visualization of distributions of multivariate

trajectories.
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Code Repository https://gitlab.com/tneuroth/cirrina

B.3 Marrus

Marrus is a software package that includes both the tessellation implementation from

Chapter 7, and the visualization system based on it to explore multivariate volume data.

It is named Marrus, after the genus of siphonophores, again in keeping with the marine

life theme.

Code Repository https://gitlab.com/tneuroth/marrus

B.4 External Media

Videos we’ve produced illustrating datasets, as well as demoing the visualization systems,

are listed:

• A video showing the ammonia/hydrogen/nitrogen flame data:

https://tneuroth.gitlab.io/combustion-highlight

• A video depicting trapped and passing particles in the ITER dataset that highlights

a discovery made by our collaborators at PPPL:

https://tneuroth.gitlab.io/xgc-highlight

• A video heat loss to the diverter in the XGC data:

https://tneuroth.gitlab.io/xgc-heat-loss-highlight

• A video illustrating the ACE3P simulation:

https://tneuroth.gitlab.io/ace3p-highlight

• A video demo of the Baleen system that is presented in Chapter 4:

https://tneuroth.gitlab.io/baleen-demo
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• A video demo of the Cirrina system that is presented in Chapter 6:

https://tneuroth.gitlab.io/cirrina-demo

• A video demo of the system from Chapter 7:

https://tneuroth.gitlab.io/lsrvt-highlight
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