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Abstract

We present a new stochastic extended Lagrangian molecular dynamics solution to

charge equilibration that eliminates self-consistent field (SCF) calculations, thus elim-

inating the computational bottleneck in solving the charge distribution with standard

SCF solvers. By formulating both charges and chemical potential as latent variables,

and introducing a holonomic constraint that satisfies charge conservation, the SC-

XLMD method accurately reproduces thermodynamic, dynamic and structural prop-

erties within the framework of ReaxFF for a bulk water system and a highly reactive

RDX molecules simulated at high temperature. The SC-XLMD method shows excel-

lent computational performance and is available in the publicly available LAMMPS

package.
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1 Introduction

Many non-reactive and reactive force fields have relied on the electronegativity equalization

method1,2 (EEM) or charge equilibration model3 (CEM) to describe charge flow in and

between molecules. The EEM was inspired by the concepts of atomic electronegativity and

hardness drawn from Density Functional Theory4 to define an electrostatic model that allows

the charges on atoms to fluctuate with changing nuclear configurations during molecular

simulations.1,2 The EEM was later generalized to the CEM by Rappe and Goddard to include

a screened electrostatic interaction between charges, using empirical atomic parameters such

as ionization potentials, electron affinities, and atomic radii to parameterize the model.3

The CEM has been successfully applied to a variety of chemical systems such as proteins5

and membranes,6 metal-organic frameworks,7,8 and to describe the quartz-stishovite phase

transition.9

The rate limiting step of the CEM is the determination of new charge distribution from

two sets of linear equations, which represent the minimization of the total energy for the new

nuclear configuration under a constraint that the total charge of the system is conserved.

This may be solved directly for small systems (typically with Cholesky decomposition),

but must be solved iteratively in practice for large systems using solvers such as the di-

rect inversion in the iterative subspace (DIIS)10 or conjugate gradient (CG) methods.11 The

number of self-consistent field (SCF) iterations can be reduced with careful precondition-

ing, polynomial extrapolation from previous steps, and good software implementations,12–14

but solving new charge distributions at each time step remains the most computationally

demanding component of MD simulations using ReaxFF,15 which is often one order of mag-

nitude slower than traditional non-reactive force fields. Recently we have also been aware of

several optimizations16,17 in terms of preconditioners such as the sparse approximate inverse

(SAI) preconditioner, as well as communication overheads through multicore architectures.

While these optimizations can reduce the iteration number to 5 ~20 (10−10 criteria), they

may require prior knowledge about simulation systems to configure the ad hoc optimization
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techniques.

An alternative approach is to formulate an extended system of auxiliary electronic vari-

ables that are evolved in time with extended Lagrangian molecular dynamics (XLMD).18–21

With an extended Lagrangian that includes fictitious kinetic energy of auxiliary charges, as

well as a potential energy that keeps the auxiliary charges close to the exact solution, the

extended system are evolved dynamically using symplectic and time-reversible algorithms

to replace the iterative solution in determining new charge distributions. Relevant to CEM,

Leven and Head-Gordon have recently utilized the dynamically evolved auxiliary charges as

an initial guess for the CG method, thereby allowing for a more loose convergence toler-

ance for final charges without introducing additional (and sometimes even with diminishing)

energy drift which measures the stability and accuracy of MD simulations.21 The resulting

inertial extended Lagrangian SCF (iEL/SCF) method was shown to successfully reduce the

number of SCF iterations by half or more in the CEM solutions.15,21

In this work we further extend the iEL/SCF method for CEM by eliminating SCF cy-

cles altogether, as we have done previously for non-reactive polarizable force fields using

iEL/0-SCF.20,22 For polarizable force fields, the auxiliary induced dipoles evolve under a

harmonic potential that keeps their values close to the converged real dipole solution, as

approximated by a one-time step estimation derived from a local-kernel mixing of the real

and auxiliary variables using an optimal mixing parameter γ. This SCF-free approximation

works well if the real dipole dynamics evolve on a longer timescale, well-separated from the

discretized time step, so that a local-kernel mixing remains a good approximation to the

true SCF solution. Another important consideration in the iEL/0-SCF method is to control

the problems of resonance, i.e. errors in the time-integration of the harmonic forces that

leak to the auxiliary kinetic energy and create numerical instabilities. The resonance prob-

lems can be controlled through a separate thermostat for the auxiliary variables as we have

shown previously.20,22 Recently, An and co-workers have developed a new formulation of an

iteration-free scheme, Stochastic-XLMD, where a thermostat coupling parameter ε replaces
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the mixing parameter γ, and the effect of a Langevin thermostat applied to the latent in-

duced dipole variables for classical polarization was shown to be robust, although not strictly

time-reversible.22

However, the generalization of the resulting iEL/0-SCF or Stochastic-XLMD methods

from induced dipoles to fluctuating charges is not straightforward for three reasons: (1) the

characteristic decorrelation time for charges is more than one order of magnitude faster than

for induced dipoles, (2) the charges are derived under a constraint that the total charge of

the entire system is conserved, and (3) the resonance problem may be more severe under

a harmonic potential now applied to two sets of coupled linear equations. To illustrate, an

iteration-free XLMD scheme for CEM,23,24 was found to be unstable in a trajectory of no

more than several picoseconds,21 which is generally not sufficient for converging thermody-

namic quantities.

In this work, we have addressed these issues through careful formulation of an XLMD

procedure that utilizes two types of latent variables - the charge and chemical potential

- and enforces the conservation of charge through a holonomic constraint scheme that is

conforming for both energy and forces.25 We have combined this new SCF-less solution for

CEM with the Stochastic-XLMD (SXLMD) method for thermostatting,22 and implemented

it within the ReaxFF force field in the Large-scale Atomic and Molecular Massive Parallel

Simulation (LAMMPS) package.26 We have shown that this stochastic constrained extended

Lagrangian scheme with no iteration, SC-XLMD, is capable of producing stable trajectories

over a timescale of nanoseconds, while retaining energy conservation and thermodynamics

properties compared to the CG method. Compared to the standard implementation in

LAMMPS, the computational speed of the new SC-XLMD approach is comparable to a

fixed charge calculation, and scales well with increasing number of cores or increasing size

of systems.
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2 Theory

Charge Equilibration Equation. A general form of the Hamiltonian for the CEM is

H =
1

2
pTM−1p+ U(r) + V (r, q) (1)

where r ∈ R3n and p ∈ R3n are the atom positions and momenta, M = diag{m1I3, · · · ,mnI3}

are the atom mass (diagonal) matrix, U(r) encompasses molecular interactions other than

the many-body electrostatic potential, V (r, q),

V (r, q) =
1

2
qTJ(r)q + χTq (2)

which is the focus of this work. The potential term in Eq. (2) describes changes in the

charges q that are dependent on the electronegativity of atoms when bearing zero charge,

χ, and the shielded electrostatic interaction matrix, J , comprised of the following matrix

elements

Jij = δijηi + (1− δij)(r
3
ij + γ−3

ij )−1/3 (3)

where ηi is related to the atomic hardness, γij is the electrostatic screening parameter, and

rij is the distance between atoms i and j.

The CEM allows the charges to rearrange according to the minimization of V (r, q) as a

response to the motion of atoms, while enforcing the constraint that the total charge remains

constant (without loss of generality, we assume the total charge is 0 henceforth):

L(r, q, µ) = V (r, q)− µ1Tq

=
1

2
qTJ(r)q + χTq − µ1Tq

(4)

and
∂L

∂q
= 0

∂L

∂µ
= 0 (5)
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where the Lagrange multiplier µ is the chemical potential. This yields an n+ 1-dimensional

equation:  J −1

−1 0


q

µ

 =

−χ
0

 (6)

Since a direct inversion of this matrix is prohibitive in practice, Eq. (6) is instead solved

by partitioning the original charges q into fictitious charges s and t, i.e. q = s − µt, and

then solving Js = −χ and Jt = −1 iteratively with the CG method.13 The number of

iterations can be reduced with careful preconditioning, as well as polynomial extrapolation

from previous steps, but the overall computational cost is still significantly larger than con-

ventional simulations using fixed charges, and defines the rate limiting step for reactive force

field simulations of large systems.

Extended System Dynamics: the SC-XLMD Method. An alternative solution to the

charge equilibration is to formulate an extended system by introducing latent variables that

evolve in time with the real degrees of freedom using an XLMD algorithm, as shown in many

previous studies.18–20 However, to the best of our knowledge, there is no known example of

successfully treating the charge conservation constraint and the time-evolution consistently

for the case of fluctuating charges.

One class of XLMD approach24,27 is to assign latent momenta pq and latent mass M q =

mqIn to the corresponding q variables, and utilizing a Hamiltonian of the form

H
(1)
ext(r,p, q,pq) =

1

2
pTM−1p+

1

2
pT
q M

−1
q pq

+ U(r) + V (r, q)

(7)

This XLMD approach completely ignores any constraint and thus will exhibit significant

problems with charge conservation in a long simulation.
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The second class of XLMD method,23,28 utilizes a Hamiltonian that is equivalent to

H
(2)
ext(r,p, q,pq) =

1

2
pTM−1p+

1

2
pT
q M

−1
q pq

+ U(r) + V (r, q)− µ1Tq

(8)

where µ = µ(r, q) is determined on-the-fly by solving the following algebraic equation every

time step,

1T (Jq + χ− µ1) = 0 (9)

However, the resulting differential-algebraic system is non-Hamiltonian and is vulnerable

to numerical noise. As a result, both of these classes of XLMD methods have not been

able to perform a simulation for CEM longer than 10 ps, which is generally not enough for

converging thermodynamic quantities.

Here instead, we consider a new extended Hamiltonian in which we treat the charges q

and chemical potential µ together as an extended set of latent positions, l = (q, µ) with

latent momenta pl = (pq, pµ) as well as latent mass M l = diag{mqIn,mµ}

H
(3)
ext(r,p, l,pl) =

1

2
pTM−1p+

1

2
pT
l M

−1
l pl

+ U(r) +
1

2
lTA(r)l− bT l

(10)

where

A(r) =

J(r) −1

−1 0

 b =

−χ
0

 (11)

Since the many-body potential term in H
(3)
ext is exactly what is minimized in the Lagrange

multiplier method, the evolution of the latent variables will consistently keep close to the

Born-Oppenheimer energy surface, as well as keeping the total charge constant. Furthermore,

by making connections to the well-known holonomic constraint scheme in classical molecular
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dynamics,25 we can define a function z(l) of the latent variables described as a projection,

z(l) =

In − 11T/n 0

0 1

 l (12)

By replacing l in H
(3)
ext with z(l), we arrive at our final expression of the extended Hamil-

tonian used in this work:

Hext(r,p, l,pl) =
1

2
pTM−1p+

1

2
pT
l M

−1
l pl

+ U(r) +
1

2
zT (l)A(r)z(l)− bTz(l)

(13)

We note that when we derive the latent force from Hext, we obtain

ṗl = −
∂Hext

∂l
=

In − 11T/n 0

0 1

 (b−Az) (14)

which satisfies 1T ṗq = 0. Therefore, with proper initialization of the latent position and

momenta that satisfies 1Tq(0) = 1Tpq(0) = 0, the time evolution keeps 1Tq(t) = 0 for

arbitrary t. We note that implementing this constraint does not disturb the symplectic

structure of integration, which is beneficial for long time stable simulation.25

3 Methods

Langevin Thermostat and Integration Algorithm. We utilize the Langevin thermostat ap-

proach we have developed previously for thermostating polarizable models,22 which requires

us to define both dissipation Γl = diag{γqIn, γµ} and temperature T l = diag{TqIn, Tµ} pa-

rameters corresponding to the latent variables. Once defined, the ”BAOAB” scheme is used

to achieve efficient thermostatting29 by propagating the equations of the extended system

as follows:
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• Step B for ∆t/2:

p← p− ∂Hext

∂r

∆t

2

pl ← pl −
∂Hext

∂l

∆t

2

• Step A for ∆t/2:

r ← r +M−1p
∆t

2

l← l +M−1
l pl

∆t

2

• Step O for ∆t;

• Step A for ∆t/2;

• Step B for ∆t/2;

Additional details to enforce the charge constraint in the Step O are provided in Appendix

A. The benefit of this scheme was shown in our previous work that proved that the trajectory

of the extended system will converge to the real system when M l → 0 for arbitrary initial

condition of latent variable l.22

Having formulated the integration algorithm with thermostats, we now explain the ra-

tionale to determine the parameters. We first note that for a one-dimensional harmonic

oscillator with force constant k and mass m, a stable numerical integration should satisfy

∆t2k/m = ∆t2ω2 < 2.30 For the CEM model, the “force constant” is J(r), thus it is subject

to

∆t2ρ(J(r))m−1
q < 2 (15)

where ρ(J(r)) denotes the maximum absolute value of the eigenvalues of J(r), which is

approximately the inverse of the minimum atom hardness, η−1
min. The above equation in turn

determines the mass by

mq > mq,min =
∆t2

2ηmin

(16)
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In practice, we will use mq = 5mq,min throughout the paper to ensure a stable trajectory.

The choice of charge temperature Tq is determined by taking derivatives on both sides of

the charge equilibration equation:

J̇ 0

0 0

 l +

 J −1

−1 0

 l̇ =

0

0

 (17)

where the derivative of J can be easily calculated by noticing Jij = f(rij), and

drij
dt

=
∑

α=x,y,z

(riα − rjα)(viα − vjα)

rij
(18)

so that

J̇ij =
f ′(rij)

rij

∑
α=x,y,z

(riα − rjα)(viα − vjα) (19)

In practice, short exact trajectories using a tight convergence (10−12) is calculated and

the derivatives of charges are collected. Next, we view this as the “intrinsic motion” of

charges and calculate their averaged intrinsic velocity. Then, from the averaged intrinsic

velocity and latent mass we obtained the appropriate latent temperature Tq:

Tq =
1

2
mq⟨q̇T q̇⟩/n (20)

Generally, the more reactive the system is, the faster the charges are fluctuating, and the

higher the latent temperature is.

In regards the parameters related to chemical potential, i.e. (mµ, γµ, Tµ), we note that in

practice the initial velocity µ̇ solved from the above equations were found to be negligible, so

we assign µ̇(0) = 0, then µ will be a constant of motion, thus we no longer need to determine

them.

Simulation Methods. We have implemented SC-XLMD within the framework of the

LAMMPS software package26 for ReaxFF.15 We use a cubic box comprising 233 water
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molecules, for which the force field developed by Rahaman et al is used,31 as well as a

cubic box comprising 40 RDX molecules with the force field developed by Shan et al.32 For

all NVE simulations, the system is first equilibrated in the NVT ensemble (with Nosé-Hoover

thermostats33) at the desired temperature for 10 ps, followed by NVE propagation for 500 ps

and up to 5 ns for water. To measure hydronium diffusion, the system is prepared by adding

one proton to the previously described water system of 233 water molecules, which corre-

sponds to a 0.2 M aqueous solution of a strong acid such as HCl. For all NVT simulations

the real system variables are also thermostatted with a 4th-order Nosé-Hoover chain33 along

with the thermostat applied to the latent variables, and statistics collected over 500 ps. The

water system was characterized at 300 K and the RDX system at 300 K and 1000 K. A time

step of ∆t = 0.15 fs was used in all simulations at 300 K as suggested by previous work23

except for the RDX system at 1000 K, which required a timestep of ∆t = 0.10 fs.

4 Results

Energy Conservation and Latent Temperature. The conservation of the total energy is the

most important intrinsic indicator of correct dynamics for any molecular dynamics algo-

rithm. We note that energy conservation for ReaxFF in LAMMPS may be poor due to

discontinuities in the potential energy surface, which has been identified to arise from dis-

tance cut-offs of the bond order terms.34 Nonetheless we take the CG method with a 10−10

convergence criteria as the gold standard for energy conservation comparison. We also con-

sider an XLMD method which uses no latent variable thermostats of the extended system

Hamiltonian (C-XLMD), and compare it against the complete SC-XLMD solution which

uses Langevin thermostats. As shown in Figure 1a, there is no more loss of energy con-

servation for C-XLMD (i.e. with no thermostat coupling γq = 0) as compared to the CG

method. However the latent variables are susceptible to numerical noise because of integra-

tor resonance,20,22 and without dissipation, the numerical error will accumulate and cause
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the kinetic energy of latent variables to increase as shown in Figure 1b.

Figure 1: Comparison of methods for energy conservation and latent charge temperature
of the CEM simulation for bulk water. (a) Total relative energy drift in percentage units
as a function of time for CG (10−10 convergence criteria), an extended Lagrangian with no
latent variable thermostatting (C-XLMD), and when using SC-XLMD with various values
of the latent thermostat coupling parameter γq. The absolute value of energy drift rates
in percent ns−1 are 0.03 (CG), 0.01 (C-XLMD), 0.22 (SC-XLMD with γq = 10−4), 0.05
(γq = 10−5) and 0.03 (γq = 10−6). (b) The corresponding latent charge temperature as a
function of time for the above methods except CG.

The resonance effects will eventually cause degradation of the molecular dynamics that

will in turn effect physical observables, which we illustrate further below. Hence we require

some type of thermostatting of the latent variables at an intrinsically cold temperature

to dissipate the error. We thus implemented a Langevin thermostat to control the latent

variable temperature, but this requires an optimization of the thermostat coupling parameter

for SC-XLMD, and in Figure 1 we have considered values of γq = 10−4, 10−5 and 10−6. If

γq = 10−4, the charge temperature Tq is very stable, but the energy conservation is severely

compromised with respect to CG and C-XLMD. On the other hand, if γq = 10−6, the

energy conservation is very good but the charge temperature Tq will increase over time and

properties will be compromised.

We therefore suggest that by using γq = 10−5, the energy conservation is comparable
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Figure 2: Comparison of SC-XLMD and CG for energy conservation and latent charge
temperature of the CEM simulation for water and RDX. (a) Total relative energy drift in
percentage units and (b) the corresponding latent charge temperature for SC-XLMD over
a 5 ns simulation for water (c) Total relative energy drift in percentage units at 300 K and
1000 K and (d) the corresponding latent charge temperatures as a function of time for RDX.
The CG-SCF uses a (10−10) convergence criteria and we compare to the optimal value of
γq = 10−5 for the SC-XLMD method.

to the CG method and the latent charge temperature is also kept under good control. To

support that this choice of γq is reasonably universal, Figure 2 shows that γq = 10−5 is both

sufficient for energy conservation and controlling resonance over longer timescales of 5 ns for

water, and completely transferable to the RDX system at both 300 K and 1000 K.

Fluctuating Charge Properties. Next, we assess the ability of C-XLMD and SC-XLMD

to produce a similar behavior in the converged real charges compared to CG, which is the

key feature of all CEM-based simulations and underlies all the calculated physical properties

of any system. We examine the real charge distribution (a statistic property) as well as the
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charge autocorrelation function (a dynamic property) defined by

Cq(t) =
⟨(q(t)− q̄)(q(0)− q̄)⟩
⟨(q(0)− q̄)2⟩

C̃q(ω) =

∫ ∞

0

e−iωtCq(t)dt

(21)

While both unthermostatted and thermostatted XLMD methods are able to qualitatively

reproduce the charge distribution generated by CG, Figure 3a shows that the increase of

the latent charge temperature for C-XLMD has caused a more noticeable dispersion for

the real charges, while the real charge dispersion is better controlled through the Langevin

thermostat for SC-XLMD. This is also evident in Figure 3b which shows that the increase of

the latent charge temperature using C-XLMD has given rise to an accelerated decorrelation

of real charges compared to the CG results. The SC-XLMD using Langevin thermostats

slows down the latent momenta and better recovers the auto-correlation behavior at the first

several frequencies.

Figure 3: Fluctuating charge properties of water calculated from 500 ps trajectories. (a)
Charge distribution function for CG (10−10 convergence criteria), C-XLMD, and SC-XLMD
with γq = 10−5. (b) The corresponding charge autocorrelation function in the frequency
domain for the three methods.
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Transport Properties. The recommended scheme, SC-XLMD with γq = 10−5, is now

tested for reproduction of dynamic properties and compared to CG. In the NVE ensemble,

the mean squared displacement (MSD) as a function of time, and subsequently the diffusion

constant calculated from the MSD, is found to be in good agreement with CG (Figure 4a).

The accurate description of fluctuating charges using SC-XLMD also provides a solid basis

for predicting reactive transport properties such as proton hopping in bulk water as shown

in Figure 4b, as measured by its very good consistency with CG.

Figure 4: Comparison of methods for transport properties of the CEM solution for bulk wa-
ter. (a) Diffusion coefficient obtained by SC-XLMD (2.52 × 10−9 m2 s−1) is in accord with
CG (2.51×10−9 m2 s−1) calculated from a 500 ps trajectory. (b) The proton diffusion coeffi-
cient obtained by SC-XLMD (1.12×10−9 m2 s−1) is in accord with CG (1.10×10−9 m2 s−1)
calculated from a 1 ns trajectory.

Thermodynamic Properties. In addition to the NVE simulations of water and RDX, an

NVT simulation is also carried out under 300 K for both systems, and 1000 K for RDX as

well. As shown in Figure 5a and 5d for water and RDX, respectively, SC-XLMD provides the

same thermal fluctuation behavior of the potential energy as that obtained by CG. We further

consider structural properties, i.e. the radial distribution function between oxygen atoms

(Figure 5b) as well as between oxygen atom and hydrogen atom (Figure 5c) from SC-XLMD

show excellent agreement with CG for water. The two radial distribution functions that

involve atoms near the reactive center of RDX, gNN (Figure 5e) and gNO (Figure 5f), show
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that the SC-XLMD method also reproduces the radial distribution function using CG-SCF

almost perfectly in both cases.

Figure 5: Comparison of CG and SC-XLMD for energy and structural properties in
the NVT ensemble for water and RDX. (a) Potential energy from SC-XLMD (U =
−85.61 ± 0.04 kcal mol−1 atom−1) is in excellent accord with CG (U = −85.64 ±
0.04 kcal mol−1 atom−1). Radial distribution functions between (b) oxygen atoms and
(c) oxygen and hydrogen atoms for water. (d) The potential energy obtained from CG
(−97.18 ± 0.12 kcal mol−1 atom−1) and SC-XLMD (−97.20 ± 0.12 kcal mol−1 atom−1) for
RDX. Radial distribution function between (e) nitrogen atoms and (f) nitrogen and oxygen
atoms for RDX.

Benchmarks. Finally, we show that the iteration-free extended dynamics offers significant

computational cost advantages over the standard CG-SCF method. We have previously

shown that ~40 iterations are required to reach convergence at each timestep for the water

system illustrated here, and the iEL/SCF procedure we developed previously21 for CEM was

able to reduce this to ~20 SCF cycles. The SC-XLMD method, by eliminating SCF cycles

altogether, is found to perform uniformly well for two types of computational benchmarks

where a variety of number of cores (Table 1b) and a variety of system size (Table 1b). Due to

the facts for SC-XLMD that (1) there are less communication between processors to exchange

the information of charges and (2) the matrix-vector multiplication is significantly reduced,
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our implementation of the SC-XLMD approach should benefit even more with the recent

optimized software implementations of LAMMPS on many-core hardware architectures.13,14

Table 1: The computational scaling of SC-XLMD compared to CG as demonstrated by (a)
different number of CPU cores, Ncores, and (b) for different sizes as indicated by number
of molecules, Nmlcs, of the ReaxFF bulk water system, showing the time cost in hours/ns
calculated from the ”Modify” component of a LAMMPS simulation time analysis where
charges and forces are updated.

Ncore CG(10−8) CG(10−12) SC-XLMD
1 19.73 26.83 11.16
2 11.42 15.88 6.32
4 7.48 10.38 3.85
8 5.19 7.66 2.47
16 3.62 5.24 1.64

Nmlcs CG(10−8) CG(10−12) SC-XLMD
233 3.62 5.24 1.64
466 5.53 7.99 2.70
932 9.55 13.83 4.75
1864 17.66 25.08 8.29
3728 32.68 45.55 16.39
7456 62.21 89.45 31.47
14912 120.08 169.80 60.14

5 Conclusion

The extended Lagrangian approach that eliminates the self-consistent field step for polariza-

tion, iEL/0-SCF, has been extended to charge equilibration models that require the solution

of two sets of linear equations for the charges under the constraint of charge conservation.

By creating two latent variables of charges and chemical potential under stochastic thermo-

dynamic control, and solving the XLMD with a holonomic constraint that preserves charge

conservation, the resulting SC-XLMD is stable and maintains desired accuracy, and yields

significant computational speed-ups relative to a standard SCF solver implemented in the

reference program LAMMPS. With no SCF cycles to consider, the solution for the many-
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body CEM forces is now commensurate with the cost of two-body fixed charge calculations,

opening up ReaxFF calculations to much larger systems and longer timescales than previ-

ously possible.

The successful formulation and application of SC-XLMD also suggests that SCF-less

solutions are widely applicable to more many-body models. We have asserted previously that

the iEL/0-SCF method yields satisfactory result because the characteristic decorrelation time

τ for polarizable force field model is ~500 times larger than the time step, thus the iEL/0-

SCF method is effectively doing SCF iterations on-the-fly. However for CEM this ratio is

reduced by an order of magnitude, and yet we have shown here that an SCF-less solution is

still viable for CEM using the SC-XLMD method. We thus look forward to reporting more

SCF-less solutions for many-body potentials such as ab initio molecular dynamics, where the

characteristic decorrelation time is similar to the CEM (i.e., ~10 fs).
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A The Stochastic Constrained Thermostat in SC-XLMD

In the SC-XLMD method, a Langevin thermostat is used to control the latent charge tem-

perature. However, direct application of the Langevin thermostat is questionable for CEM

since it will perturb the total charge conservation of the system by small amounts of white

noise, which does not formally conform to the holonomic constraint. To address this, we add

an extra holonomic constraint step after the Langevin thermostat:

1. Apply the Langevin thermostat:

pl ← eΓl∆tpl +
√
1− e2Γl∆t

√
M lT lξ

where ξ is a vector consisting of n+ 1-dimensional independent standard normal ran-

dom variable.

2. Calculate the sum of the latent momenta:

∆← 1Tpl

3. Shift the latent momenta to ensure the charge conservation:

pl ← pl −∆1/n

Though this extra constraint influences the original white noise and has made it colored

to some extent, we note that this influence is of order O(1/n) and should not cause any

noticeable problems for any but the smallest systems.
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