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Abstract

The ability to remember events plays an important role in hu-
man life. People can replay past events in their heads and make
decisions based on that information. In this paper, we describe
a novel extension to a cognitive architecture, ICARUS, that en-
ables it to store, organize, generalize, and retrieve episodic
traces that can help the agent in a variety of manners. Af-
ter discussing previous work on the related topic, we review
ICARUS and explain the new extension to the architecture in
detail. Then we discuss four architectural implications of the
new capability and list some future work before we conclude.
Keywords: episodic memory; cognitive architectures; virtual
sensing; expectations; impasse resolution

Introduction
Episodic memory is one of the cornerstones of human cog-
nitive ability (Tulving, 2002). It is responsible for enabling
one to remember the events of his or her life. This remember-
ing, however, is not simply a recollection of personal facts.
Rather, it is a relived experience made possible by three nec-
essary tenents: a subjective sense of time; a sense of self; and
autonoetic consciousness (Tulving, 1985, 2002). These allow
humans to go back in time in one’s head using the subjective
sense of time without confusing the events as happening right
now. This ability impacts many different aspects of human
cognitive capabilities.

Despite the fundamental importance of the episodic mem-
ory, however, computational models of episodic memory in
the context of cognitive architectures are not discussed very
frequently aside from some recent work (Nuxoll & Laird,
2007; Faltersack, Burns, Nuxoll, & Crenshaw, 2011; Bölöni,
2011). These systems have demonstrated how episodic mem-
ory aids in problem solving, reinforcement learning, narra-
tion, and so on. In our work, we aim to build a system that
provides these and other capabilities in a single implemen-
tation. We built a psychologically plausible episodic mem-
ory module and integrated it within a cognitive architecture,
ICARUS (Langley & Choi, 2006). The initial implementation
quickly resulted in three new or improved capabilities in our
system that we believe are important.

In the sections below, we first describe the background in
the literature that serves as basis for our work. After a brief
review of ICARUS that follows, we provide a detailed descrip-
tion of how an episodic memory has been implemented in the
architecture. We also discuss some architectural implications
of the new extension. Then, we conclude after a discussion
on future work.

Background
Researchers of memory have held that any biological or com-
putational model of episodic memory must support encod-
ing and retrieval of experience (Tulving, 1983). Encoding
is the process of recording and organizing experiences into
the episodic memory, and retrieval is the process of using a
retrieval cue to find episodes in this memory. These two func-
tionalities have been the subject of much discussion amongst
the experts of psychology because it is rather difficult to char-
acterize the processes that govern the interactions between
episodic and semantic memories.

Researchers realized that the nuances of memory between
implicit and explicit memory and the nature of knowing and
remembering are related to the relationship between seman-
tic and episodic memories (Schachter, 1987; Tulving, 1985).
We believe that a psychologically plausible model of episodic
memory should have an account for these nuances.

As for the details of how the episodic memory works,
there is psychological evidence suggesting that it is an index-
based long-term memory that supports cue-based retrieval
(Hellerstedt, 2015; Tulving, 1983). Researchers also stud-
ied the three technicalities of episodic memory to define the
notion of index-based memory, episodes, and cues, as sum-
marized below.

Index-based Memory Schiller et al. (2015) argue that
episodic memory receives many of its characteristics from
the hippocampus, one of which is the ability to create cog-
nitive maps, or a hierarchical network of memories. As
memories come and go, the hippocampus is believed to
dynamically change the structure of this network in order
to preserve the similarity relationship between connected
memories. With this structural representation, the index of
an episode may be seen as the path from one of the top-
level episodes in the network to the episodes of interest.

Episodes Previous research suggests that there exists an
episodic buffer that interfaces between the episodic mem-
ory and the central executive of the working memory
(Baddeley, 2000). This buffer is responsible for accepting
diverse sets of data from the agent’s sensors and creating
a common representation of the data. This representation
is what is used to create episodes. Hellerstedt (2015) fur-
ther states that the creation of these episodes occurs in an
on-line fashion.
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Cues To retrieve episodic memories, semantic patterns, or
cues, are used. These patterns can match against elements
in episodic memory even if there is some missing informa-
tion. Assuming that episodes are organized by similarity,
the retrieval process is about finding the episode that con-
tains the most similar situation to the cue. While retrieval
is in progress, semantic memory is responsible for gener-
ating, specifying, and storing cues (Hellerstedt, 2015). A
cue may return more than one episode, in which case the
system must use some conflict resolution strategies to de-
termine which episode to present.

Based on our understanding of episodic memory as de-
scribed above, we implemented our extension to ICARUS.
Before we describe the details of our implementation, how-
ever, it will be useful to review the architecture briefly to fa-
cilitate our discussions.

ICARUS Review
As a cognitive architecture, ICARUS provides a framework
for modeling human cognition and programming intelligent
agents. The architecture makes commitments to its repre-
sentation of knowledge and structures, the memories that
store these contents, and the processes that work over them.
ICARUS shares some of these commitments with other ar-
chitectures like Soar (Laird, 2012) and ACT-R (Anderson &
Lebiere, 1998), but it also has distinct characteristics like the
architectural commitment to hierarchical knowledge struc-
tures, teleoreactive execution, and goal reasoning capabilities
(Choi, 2011). In this section, we provide a brief review of the
architecture to facilitate our discussion on the new episodic
memory module afterwards.

Representation and Memories
ICARUS distinguishes two main types of knowledge. One is
its concepts that describe certain aspects of the situation in
the environment. They resemble Horn clauses (Horn, 1951),
complete with a predicate as the head, perceptual matching
conditions, tests against matched variables, and references to
any sub-relations. For example, the first two in Table 1 are
concept definitions. The first one, (on ?o1 ?o2), describes
a primitive situation where a block is on top of another block,
using only perceptual matching conditions for two blocks and
tests against the matched objects and their attributes. The
second one, (clear ?block), depicts a complex situation
where there is nothing on top of a block, using another con-
cept as a sub-relation in addition to perceptual matching con-
ditions for a block.

The other type of knowledge in ICARUS is its skills that
describe procedures to achieve certain concept instances in
the environment. These are essentially hierarchical ver-
sions of STRIPS operators (Fikes & Nilsson, 1971) with a
named head, perceptual matching conditions, preconditions
that need to be true to execute, direct actions to perform in the
world or any sub-skills, and the intended effects of the execu-
tion. For instance, the last entry in Table 1 shows a primitive

Table 1: Two sample ICARUS concepts and a skill for the
modified blocks world.

((on ?o1 ?o2)
:elements (?o1 is (block ?o1 ˆx ?x1 ˆy ?y1 ˆlen ?len1)

?o2 is (block ?o2 ˆx ?x2 ˆy ?y2 ˆlen ?len2
ˆheight ?height2))

:tests ((*overlapping ?x1 ?len1 ?x2 ?len2)
(= ?y1 (+ ?y2 ?height2))))

((clear ?block)
:elements (?block is (block ?block))
:conditions ((not (on ?another ?block))))

((look-right ?robot)
:elements (?robot is (robot ?robot ˆlooking ?looking

ˆholding ?holding))
:conditions ((not (eq ?looking ’right)))
:actions ((*look-right ?robot))
:effects (?robot is (robot ?robot ˆlooking right

ˆholding ?holding)))

skill definition, (look-right ?robot), that describes a pro-
cedure to get the robot to look right. The skill has a named
head, perceptual matching against a robot and its attributes,
the precondition of the robot not already looking right, the
action to perform in the world, and the intended effect. Com-
plex skills have a similar syntax, except that they include sub-
skills instead of direct actions in their body.

To store these knowledge and other structures, ICARUS em-
ploys a handful of distinct memories. The concept and skill
definitions are stored in conceptual and procedural long-term
memories, respectively. The short-term instances of these
definitions are stored in a belief memory and a goal / inten-
tion memory. The former maintains the current state of the
world, while the latter houses the agent’s current goals and
intentions for execution.

Inference and Execution
The ICARUS architecture operates in cycles (see Figure 1). At
the beginning of each cycle, the system receives sensory input
from the environment as a list of objects with their attribute–
value pairs. Based on this information, the architecture in-
fers all the concept instances that are true in the current state
by matching its concept definitions to perceived objects and
other concept instances.

Once all the beliefs are inferred, the system finds all the
relevant skill definitions for the current goal(s) that are exe-
cutable in the current belief state. ICARUS then chooses one
or more of them and execute them in the world. The archi-
tecture will continue its cycles in this manner until all of its
goals are achieved or its operations are terminated for any
other reasons. With this brief review, we now continue our
main discussion on the new episodic module in ICARUS.

Episodic Module in ICARUS

In the context of episodic memory, ICARUS shares some
architectural assumptions with Soar (Laird, 2012). More
specifically, both the architectures assume that episodic mem-
ory is a long-term, cue-based system that maintains cues in
the agent’s working memory, and the agent deliberately en-
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codes and retrieves episodes. However, there are also sig-
nificant differences. Each time a Soar agent takes action(s),
the architecture records a snapshot of its current state as an
episode, which is stored statically in the episodic memory
without any generalization (Nuxoll & Laird, 2007). An in-
dividual episode in Soar, therefore, does not capture the no-
tion of a relived experience. Rather, it is necessary to compile
multiple episodes to describe an event. Furthermore, the Soar
agent does not remember events where it did not perform any
action and stayed as an observer. In contrast, ICARUS has
these unique characteristics in its episodic memory:

• Episodic memory is organized as a compound structure
composed of an episodic cache, an episodic generalization
tree, and a concept frequency tree.

• Episodic generalization tree is organized by similarity.

• Episodes represent durative experiences of variable length.

• Episodic memory is a dynamic structure that supports gen-
eralization among similar episodes.

In this section, we describe the new episodic memory mod-
ule in ICARUS in detail. We start with the representation of
episodes, and then explain the encoding, retrieval, and gener-
alization processes.

Episodic Representation
The episodic generalization tree is the main data structure
that organizes and stores episodes. The episodic cache acts
as a storage for the agent’s unprocessed experience. Since
our agents do not run for days or years just yet, we assume
that the agent has sufficient memory to store the complete
state–action sequence. The concept frequency tree records
the number of times ICARUS has seen each concept instance.
The episodic cache and the concept frequency tree provide a
mechanism for recognizing and explaining significant events.

Episodic Processes
On every cycle, ICARUS records the current state and exe-
cuted actions into the episodic cache and updates the con-
cept frequency tree, as indicated by the arrows going into the
episodic memory in Figure 1. When the agent perceives or
infers one or more significant events, it begins to encode a
new episode. The architecture tries to explain each significant
event by analyzing information stored in the episodic cache
and finding a logical process that causes the event to happen.
If the explanation attempt is successful, the state–action se-
quence that explains the significant event will be stored as the
new episode. Otherwise, the significant event(s) and the time
when the event(s) occurred are stored as the new episode.
This is to make it possible for the agent to return to the par-
ticular episode and try to explain again after it accumulates
more knowledge about the world.

The episodic memory supports episodic generalization,
and the resulting hierarchy is stored in the episodic general-
ization tree. The root (top-level) node of this tree is the most

Long-term
Skill	Memory

Motor	Buffer

Goal	Memory

Belief	Memory

Perceptual	Buffer

Environment

Categorization
and	Inference

Skill	Retrieval

Skill	Execution

Perception

Long-term
Conceptual	Memory

Skill	Learning

Episodic	Memory

Figure 1: A block diagram that illustrates ICARUS’s processes
including the new episodic module marked in red. Arrows
represent the direction of information flow.

general episode and is allowed to have an arbitrary number
of children. Each child is a k-ary tree where k ∈ N. Episodes
become more specific at each decreasing level of the tree to-
ward the leaf nodes, and there are fully instantiated episodes
at the bottom of the tree. This structural organization reflects
our understanding of Schiller et al. (2015), and the notion of
episodes representing durative events is consistent with all the
literature on episodic memory we are aware of. Next, we ex-
plain the processes for encoding, retrieving, and generalizing
episodes in ICARUS.

Encoding Encoding is the process that consumes a raw
state–action sequence stored in the episodic cache and inserts
a fully specified episode into the episodic generalization tree.
This process is triggered by the noticing of one or more sig-
nificant events. Currently, ICARUS considers the following
four cases as significant:

1. A rarely seen concept predicate

2. A rarely seen partial set of bindings for a concept predicate

3. A rarely seen full set of bindings for a concept predicate

4. The absence of a concept instance that the agent expects

Once a new episode has been created in this manner, the
architecture inserts it to the episodic generalization tree using
a slightly modified level order search. In level order search,
a node’s children are added to the search queue after hav-
ing visited that node. Rather than always doing this, a sim-
ilarity test is done first to ensure that the episode already in
the tree unifies to the episode to insert if and only if the two
episodes are structurally similar. Figure 2 shows this proce-
dure graphically. The numbers in curly braces represent the
order in which the insertion happens. After the similarity test
is passed, then and only then are the similar episode’s children
added to the search queue. If the episode to insert cannot be
unified with any of the episodes on a given level, then that
episode becomes a sibling of those episodes. A new episode
has successfully been encoded into the episodic memory. If
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the episode to insert is a copy of one of the leaf episodes, then
the counter for the number of times that particular episode has
been observed goes up by one and the episode to insert is not
inserted. All episodes are guaranteed to be instantiated by the
general episode at the root node.
Retrieval ICARUS supports cue-based retrieval of the
episodic memory. Given a cue, ICARUS performs the level
order search described in the encoding process except that,
instead of the similarity test, the system checks to see if the
episode contains a matching fully specified copy of the cue or
if the episode contains a generalized version of the cue that
unifies with the cue. If so, the episode that matches with the
cue is returned. Figure 3 shows the retrieval process. More
than one episode can match the cue, so retrieving from a cue
returns a forest of trees. One major advantage of this is mech-
anism, is that the agent only has to search the episodes di-
rectly under the root to discover if a situation is completely
new. The reason is that, if the cue matches, the cue will ei-
ther match directly, or at least one of the root’s children will
contain some generalized version of the cue and the general-
ization match test will pass. If all match tests fail then there
does not exist a matching episode in the tree. This is known,
in the worst case, at level two of the tree.
Generalization The ability to generalize knowledge is a
key cognitive ability. One of the ways ICARUS supports this
is by performing generalization in the episodic tree at encod-
ing. The state–action trace in the episode represents a demon-
stration of how a significant event came to be. Therefore it
is possible to learn from that trace. For example, if person
x drops a glass on the ground and it breaks, and person y
drops a glass on the ground and it breaks as well, ICARUS
will generalize that knowledge to say that if anyone drops a
glass on the ground, it will break (assuming x 6= y). This may
not be true in general, but the number of times ICARUS makes
such generalizations forms the conditional probability, or the
confidence with which ICARUS believes a glass breaks when
someone drops it. The ability to gain knowledge in this way
seems quite central to general intelligence. Sibling general-
ization is implemented by iterating through the newly inserted
episode’s siblings. ICARUS makes a generalized episode, and
for each sibling it checks to see if it can unify the sibling and
the new entry by variablizing the bindings where conflicts are
found. If a consistent variablization has been made, ICARUS
tests to see if the generalized episode is still more specific
than the parent of the newly inserted episode. If so, then the
the generalized episode’s parent becomes the freshly inserted
episode’s parent and the generalized episode’s sub-episodes
becomes the freshly inserted episode and the sibling episode
that generalized with it. The count for the generalized episode
is the summation of the count of its children.

Architectural Implications

The modified blocks world we use in this work is a partially
observable world with two tables. When the agent is looking

Figure 2: The insertion into the episodic generalization tree.
The numbers in the diamonds represent the order in which the
existing episodes were experienced.

at one table it cannot see the contents of the other table. Both
tables contain three boxes, a red, a blue, and a green, and one
box on each table has a block inside of it. Though the contents
of the tables are the same, the tables themselves are labelled
differently and the positioning and names of the boxes are
different. Specifically, one table is labeled Rainbow and the
other is named Cloud, and the boxes are named Box1 through
Box6. This is done so that the agent knows that there are two
distinct environments in this domain.

We aim to demonstrate many interesting applications from
our work, but for the moment we use the modified blocks
world domain to supply examples for learning from observa-
tion, impasse resolution and making expectations.

Learning from Observations
Despite episodic memory being the memory for events, con-
stantly reflecting on passed experiences may cause the agent
to disproportionally slow down as a result of the amount
of resources required to search the episodic memory for an
episode that answers or responds to a query. When an agent
enters a new environment it may not know how to character-
ize it, and as a result may be unsure of what to do and relies
on its episodic memory. As it collects more experiences it
may come to knowledge of specific patterns about the envi-
ronment and formally characterize them in terms of rules.

Since episodes in the episodic memory have a count asso-
ciated with them, we can capture this ability in ICARUS. If
the agent experiences an episode a sufficient number of times
ICARUS will try to formalize it into a rule. In our domain, if
the agent experiences 10 times that an extra box appears when
it stacks two boxes on top of each other, it would have a suf-
ficient amount of evidence to logically relate a stacking two
boxes with producing a new box. This mechanism also ties
into remembering and knowing because even if ICARUS for-
gets the stacking experience it would still maintain the rule.
Of course there is the possibility that the agent overfits rules
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Figure 3: Retrieval and impasse resolution in ICARUS.

so a mechanism for modifying rules needs to exist. Also,
since ICARUS keeps a complete state–action sequence it can
always review old experiences to learn something new.

Impasse Resolution
ICARUS encounters an impasse when it does not know how
to reach its goal in the current state. One way to overcome
an impasse is to problem solve through means-ends analysis.
Note, however, that a plan generated by this method is depen-
dent on the agent’s conceptual knowledge of how the world
works. So, if the agent does not know how to logically re-
late the goal state to skills or concepts the agent fails. In such
cases it would be advantageous to recall a similar experience
to the current one and repeat the actions that produced the
goal in the previous experience. Figure 3 shows the order in
which ICARUS matches against the cue. Note that it is pos-
sible to match against generalized episodes. In stage 4, the
environment’s current bindings are applied to the retrieved
solution. Another interesting aspect of impasse resolution is
that it is one of the means for which ICARUS gathers support
to formalize experiences into a rules as discussed above.

ICARUS spends some time at the Rainbow table exploring
the world. During this time it tries a number of different ac-
tions and eventually it opens all the boxes and realizes that
one of them has a block inside of it. The agent goes to the
Cloud table and sees a new set of boxes on the table. The
task is to find the block inside the box. Even though ICARUS
knows that opening a box might reveal an item contained in-
side it, there is no logical reason why the box has to contain
a block so the problem solver cannot reason properly about
what to do in this case. When ICARUS uses (block ?b1)
as a cue to the episodic memory, it remembers that it found
a block at Rainbow by, say, opening Box0. This solution is
adapted to the current situation and the agent decides to open
all the boxes because Box0 is of type box.

Expectations
Our system uses the concept frequency tree to create expec-
tations of what beliefs should be true relative to a given en-
vironment. As an agent collects more experiences it collects
information about how often it sees certain beliefs over the to-
tal number of times it has been in a certain environment. Over
time these conditional probabilities give the agent an idea of
what to expect when it enters an environment.

In our example ICARUS spends several cycles at the Rain-
bow table. As it is exploring and acting in the environment,
the beliefs change. At a later time when the robot thinks about
being at the Rainbow table it may realize things like “Box
Box0 is always on the table” and “There was a block in the
box for about half the time I was there”. In subsequent in-
teractions, unless proven otherwise, ICARUS would assume
that Box0 is on the Rainbow table. This virtual sensing is a
process for discovering hidden or unseen facts about a given
environment. Incorporating this ability into ICARUS is im-
portant because often times, agents act in partially observable
worlds. So being able to recall information that pieces to-
gether a more complete view of the world may allow an agent
to operate in a more natural and efficient manner.

Remembering and Knowing
Many psychologists and students of memory have discussed
the nature of remembering and knowing. That is, once some-
one recognizes an item, is that item recognized because the
person had a recollective experience of the item, or did he or
she somehow know about the item without having any recol-
lective experience? This nuance has encouraged researchers
to characterize knowing and remembering responses and the
protocols that govern the interaction of the two.

It seems that remembering is based on episodic memory
while knowing responses are based on semantic memory
(Gardiner, 1988; Rajaram, 1993; Knowlton & Squire, 1995).
Specifically, in a remembering situation, responses are heav-
ily influenced by the conditions present at the time of the en-
coded episode and by the amount of resources available to
spend on remembering. For example, the more distracted a
person is while performing a task, the less likely the person
is able to recollect on what happened. On the other hand,
knowing responses are automatic and influenced neither by
the conditions at encoding nor the amount of resources avail-
able (Gardiner, 1988; Jacoby, 1991). While remembering in-
volves searching through the episodic memory, knowing sim-
ply involves the state of the semantic memory, thus giving
rise to the automatic property of know responses.

In our work, we take this research into account and aim to
provide a computational theory that is consistent with these
results. For instance, remembering responses in ICARUS uti-
lize the episodic memory retrieval mechanism and are thus
susceptible to encoding conditions as suggested in the litera-
ture. Knowing in ICARUS is facilitated by the semantic mem-
ory and does not involve extensive search, thus giving rise to
seemingly automatic performance.
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Discussions
We added an episodic memory to our theory of cognition in
order to better capture the full range of human cognitive abil-
ities for intelligent computational agents. One of the novel
features of this episodic implementation is the ability to gen-
eralize knowledge at encoding. This serves a two-fold pur-
pose. It provides an ordering to the episodes that lends itself
to efficient search and secondly it reduces the demand dur-
ing retrieval time to adapt a previous solution to the current
situation because solutions can be arbitrarily specific. Since
ICARUS learns from observations at the level of episodes, the
ability to generalize knowledge at encoding also implies that
the agent will be able to learn generalized models of how the
world works.

We plan to build on this work in a number of different di-
rections. We mention here three of them which, we believe,
are most relevant. The strength of our system largely de-
pends on ICARUS’s ability to explain significant events. To-
wards that end, we would like to tightly integrate an explana-
tion mechanism for the creation of episodes and to augment
learning from observations within the context of the episodic
memory. We will also expand the notion of expectations in
ICARUS to use both the concept frequency tree and the prim-
itive skills. This will enable the architecture to learn from
different types of surprises. Another interesting direction is
to implement a grammar for self-cueing. We expect that this
will facilitate the agent’s use of the episodic memory for a
number of tasks like virtual sensing and other applications of
case-based reasoning.

Conclusions
In this work, we detailed a computational model of episodic
memory within the context of a cognitive architecture,
ICARUS. We founded our approach on psychological evi-
dence concerning the nature of episodic memory, the mecha-
nisms of remembering and knowing, and the distinct features
of implicit and explicit memory. We believe episodic memory
is a fundamental component of human cognitive ability, and
the extended architecture serves as an important basis for fu-
ture research. We showed that the extension provides ICARUS
with at least three new or improved cognitive functions. We
plan to continue our research in this promising direction and
hope to report in the near future the results of our evaluations
using both qualitative and quantitative measures.
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