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Abstract

A combinatorially-optimized, range-separated
hybrid, meta-GGA density functional with
VV10 nonlocal correlation is presented. The
final 12-parameter functional form is selected
from approximately 10 billion candidate fits
that are trained on a training set of 870 data
points and tested on a primary test set of 2965
data points. The resulting density functional,
ωB97M-V, is further tested for transferability
on a secondary test set of 1152 data points. For
comparison, ωB97M-V is benchmarked against
10 leading density functionals including M06-
2X, ωB97X-D, M08-HX, M11, ωM05-D, and
ωB97X-V. Encouragingly, the overall perfor-
mance of ωB97M-V on nearly 5000 data points
clearly surpasses all of the tested density func-
tionals. In order to facilitate the use of ωB97M-
V, its basis set dependence and integration grid
sensitivity are thoroughly assessed, and recom-
mendations that take into account both effi-
ciency and accuracy are provided.

1 Introduction

Density functional theory (DFT) is built on ex-
act foundations,1 but the exact functional, even
if it were accessible, would likely be so compli-
cated that it would give little practical advan-

tage relative to the best wave function theories.
The great achievement of functional develop-
ment to date is the fact that very approximate
functionals can provide useful levels of accuracy
for many electronic structure problems in chem-
istry and condensed matter physics. The quest
to obtain improved functionals that are com-
putationally tractable continues in many re-
search groups today, and this paper describes
a promising effort in that direction.
The parameterization of empirical density

functionals via linear least-squares fitting is per-
haps the most widely-used method for func-
tional development in the quantum chemistry
community. Introduced by Axel Becke with the
B97 density functional,2 it relies on expanding
inhomogeneity variables based on physically-
relevant ingredients, such as the spin-density
(ρσ), its gradient (|∇ρσ|), or the kinetic en-

ergy density (τσ =
occ.∑
i

|∇ψiσ|2), in one or more

power series, whose coefficients are determined
with the use of a training set of high-quality
reference values.
Since 1997, at least 40 semi-empirical den-

sity functionals have been developed based on
the concept introduced by B97. These func-
tionals range from generalized gradient approx-
imation (GGA) and nonseparable gradient ap-
proximation (NGA) functionals to meta-GGA
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and meta-NGA functionals. GGAs, represent-
ing Rung 2 of Perdew’s Jacob’s Ladder,3 usu-
ally depend on a single inhomogeneity variable
that is a function of both ρσ and |∇ρσ|, while
NGAs additionally depend on an inhomogene-
ity variable that is solely a function of ρσ. meta-
GGAs (Rung 3) expand upon GGAs by includ-
ing an additional dependence on an inhomo-
geneity variable that depends on ρσ and τσ,
while meta-NGAs expand upon meta-GGAs in
the same way that NGAs expand upon GGAs.
The inclusion of exact exchange, popular-

ized in 1993 with the B3PW91 density func-
tional,4 has conventionally been of the global
variety, meaning that the fraction of exact ex-
change is uniform for all interelectronic dis-
tances. More recently, these global hybrids
have often been replaced by range-separated
hybrid (RSH) functionals,5 which have a frac-
tion of short-range exact exchange that typi-
cally either smoothly increases to 1 (long-range-
corrected) or smoothly decreases to 0 (long-
range-screened).
Finally, since density functionals are un-

able to properly account for long-range corre-
lation, most modern parameterizations simul-
taneously train a dispersion correction onto
the local exchange-correlation functional. The
simplest form for a dispersion correction is a
damped, atom-atom potential (DFT-D) such
as Grimme’s DFT-D2 or DFT-D3 models.6–8

A more rigorous treatment of dispersion is pro-
vided by nonlocal correlation (NLC) functionals
such as VV109 and vdW-DF-2.10 However, the
most elaborate and computationally demand-
ing choice for a dispersion correction is a post-
Hartree–Fock correlation (post-HFC) method
such as MP2, MP3, RPA, or CCSD.
In light of the above considerations, Fig-

ure 1 presents an alternate view of elements
that can be combined to define most exist-
ing density functionals. The first element
(Local Exchange-Correlation) pertains
to the ingredients that constitute the local
exchange-correlation functional, with the avail-
able choices mimicking the first three rungs of
Jacob’s Ladder. The second element (Exact
Exchange) pertains to the optional use of
exact exchange contributions to define hy-

brid functionals. Finally, the third element
(Dispersion Correction) generally accounts
for the optional treatment of long-range corre-
lation by the approaches discussed above.

3). Dispersion 
Correction 

• None 
• DFT-D (DFT-D3) 

• NLC (VV10) 
• post-HFC (MP2) 

2). Exact 
Exchange 

• None 
• GH 
• RSH 

1). Local 
Exchange-

Correlation 
• LSDA (ρ) 

• GGA (+∇ρ) 
• meta-GGA (+τ) 

Dispersion 
Correction

• None
• DFT-D (DFT-D3)

• NLC (VV10)
• post-HFC (MP2)

3). 
C

• GH
• RSH

A ( τ)

Figure 1: An alternate view of elements that
can be combined to define most existing density
functionals.

A selection of semi-empirical density func-
tionals based on the B97 concept are listed be-
low (dispersion-corrected functionals are under-
lined):

• GGA Functionals

– Local: HCTH/93, HCTH/120,
HCTH/147, HCTH/407, B97-D,
SOGGA116,11–14

– Global Hybrid: B97-1, B97-2, B97-K,
B97-3, SOGGA11-X11,15–18

– Range-Separated Hybrid: ωB97,
ωB97X, ωB97X-D, ωB97X-D3, ωB97X-V19–22

• NGA Functionals

– Local: N12, GAM23,24

– Range-Separated Hybrid: N12-SX25

• meta-GGA Functionals
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– Local: τ -HCTH, M06-L, M11-L,
B97M-V26–29

– Global Hybrid: τ -HCTHh, BMK,
M05, M05-2X, M06, M06-2X, M06-HF,
M08-HX, M08-SO16,26,30–34

– Range-Separated Hybrid: M11,
ωM05-D, ωM06-D321,35,36

• meta-NGA Functionals

– Local: MN12-L, MN15-L37,38

– Range-Separated Hybrid: MN12-
SX25

The simplest form for the power series utilized
in GGA functionals is

f (y) =
N∑
j=0

cjy
j, (1)

with y representing an inhomogeneity variable
based on one of the aforementioned physically-
relevant ingredients, and N representing the
maximum truncation order for the summa-
tion. Conventionally, the value of N has either
been chosen a priori or determined based on a
“goodness-of-fit” to the training set. Smaller
values of N can yield smoother and thus per-
haps more transferable inhomogeneity correc-
tion factors, while larger values necessarily pro-
vide better fits to training data, whose trans-
ferability must subsequently be assessed.
The most general approach, however, is to

choose a value for N and consider all possible
combinations of the N + 1 coefficients. This
approach was explored several years ago,39 re-
sulting in the development of the ωB97X-V
functional.22 Using this combinatorial approach
leads to a total of 2N+1-1 fits, instead of just a
handful. With a large number of candidate fits,
the transferability of the fits can be assessed on
a test set, allowing them to be ranked based on
both their training set and test set performance.
Furthermore, fits can be discarded based on un-
desirable physical characteristics or other rele-
vant criteria.
By contrast with the one-dimensional power

series characterizing a GGA density functional,

the most general power series that can accom-
modate a meta-GGA density functional is two-
dimensional:

f (x, y) =
N ′∑
i=0

N∑
j=0

cijx
iyj. (2)

In the spirit of the original B97 density func-
tional, three components of the local exchange-
correlation functional require parameterization:
exchange, same-spin correlation, and opposite-
spin correlation. With each component con-
tributing (N ′ +1)(N +1) coefficients, the total
number of possible fits is 23(N

′+1)(N+1)-1. Set-
ting N ′, the meta-GGA maximum truncation
order, to 8, and N , the GGA maximum trun-
cation order, to 4, brings the total number of
possible combinations to an astounding 2135-
1≈1041, a “functional genome” whose rank is
approaching the square of Avogadro’s number.
The development of the B97M-V density

functional29 was a first attempt at a partial
search of the meta-GGA functional genome
within the combinatorial optimization ap-
proach. Apart from the difficult issue of choos-
ing appropriate weights for different sets of
training and testing data, the main compro-
mise made in the design of B97M-V was the
choice to exclude exact exchange.
The goal of this paper is to improve upon

B97M-V by revisiting the meta-GGA combi-
natorial search problem with the inclusion of
exact exchange. The objective is to combina-
torially design a range-separated hybrid, meta-
GGA density functional which includes VV10
nonlocal correlation. It must be stressed that
the combinatorial search performed to define
B97M-V should not and will not be used in any
direct way for this purpose. The addition of ex-
act exchange means that different coefficients in
Equation 2 will emerge as significant, perhaps
apart from the few lowest-order terms. Unfor-
tunately, the whole reason for adopting a com-
binatorial design approach is that it is impossi-
ble to anticipate which other terms will emerge
as significant. Accordingly, it is a brand new
search problem.
After describing the search process and its

outcome, the functional which emerges as most
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transferable (ωB97M-V) can then be compared
to existing functionals. ωB97M-V will be
compared against two functionals that were
designed in a similar fashion (ωB97X-V and
B97M-V), as well as some of the best alter-
native functionals from other groups, particu-
larly those that include similar functional ingre-
dients. However, no other existing functional
yet combines precisely the same components as
ωB97M-V.
A few of the issues that will be particularly

interesting to examine are the following:

1. Comparing ωB97M-V against ωB97X-V
will show the effect of meta-GGA lo-
cal exchange-correlation against the cor-
responding GGA terms in an RSH con-
taining VV10 nonlocal correlation.

2. Comparing ωB97M-V against B97M-V
will indicate the value of exact exchange
in combination with VV10 nonlocal cor-
relation and meta-GGA local exchange-
correlation.

3. Comparing against the best available
semi-empirical hybrid meta-GGAs in-
cluding M06-2X, M08-HX, M11, and
ωM05-D will test the value of the combi-
natorial optimization strategy.

The hope is that within the limits of the
functional form that has been chosen for op-
timization, the combinatorial design approach
will permit the discovery of the most broadly
accurate Rung 1-4 density functional to date.

2 Computational Details

Since several of the density functionals that
appear in this paper contain both a local
exchange-correlation functional and a nonlo-
cal correlation functional, the integration grids
used to evaluate these two components will
be reported together, separated by a forward
slash (local/nonlocal). Regarding the integra-
tion grid, the notation (x,y) indicates x radial
shells with y angular grid points per shell.
The (99,590)/SG-1 grid was used for all of

the datasets in the training, primary test, and

secondary test sets, except AE18 and RG10.
The (500,974)/(75,302) grid was used for both
of these datasets. The def2-QZVPPD basis set
was used for all of the datasets in the training,
primary test, and secondary test sets, without
counterpoise corrections.
For the basis set limit tests, the (99,590)/SG-

1 grid was used, while 21 basis sets from 4
different families were tested: the cc-pVXZ
and aug-cc-pVXZ (X=D,T,Q) Dunning basis
sets,40–42 the pc-X and aug-pc-X (X=0,1,2,3)
Jensen basis sets,43–45 the def2-SVP, def2-
SVPD, and def2-XZVPP and def2-XZVPPD
(X=T,Q) Karlsruhe basis sets,46–50 and the 6-
311++G(3df,3pd) Pople basis set. For the in-
tegration grid limit tests, the def2-QZVPPD
basis set was used, while seven different grid
combinations were tested: (250,974)/SG-1,
(99,590)/SG-1, (99,302)/SG-1, (75,590)/SG-1,
(75,302)/SG-1, (75,302)/SG-0, and SG-1/SG-
0.51,52

All of the calculations were performed with a
development version of Q-Chem 4.0.53

3 Datasets

A total of 84 existing datasets are employed
in this work, containing 4987 data points (and
requiring 5933 single-point calculations). 82
of these 84 datasets (AE18 and RG10 are
excluded) are classified according to 8 cat-
egories (or datatypes): NCED (non-covalent
dimers (easy)), NCEC (non-covalent clusters
(easy)), NCD (non-covalent dimers (difficult)),
IE (isomerization energies (easy)), ID (iso-
merization energies (difficult)), TCE (thermo-
chemistry (easy)), TCD (thermochemistry (dif-
ficult)), and BH (barrier heights). The number
of data points (and datasets) that are classi-
fied according to NCED, NCEC, NCD, IE, ID,
TCE, TCD, and BH are 1744 (18), 243 (12), 92
(5), 755 (12), 155 (5), 947 (15), 258 (7), and
206 (8), respectively.
For purposes of functional development and

testing, the datasets are divided into three cat-
egories. A training set is used to fit the pa-
rameters of each candidate functional in the
combinatorial search, and then again to self-
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consistently train the best candidate. A pri-
mary test set is used in conjunction with
the training set to perform the combinatorial
search, and identify the best candidate (details
of this procedure are given in Section 5). Fi-
nally, a secondary test set is used to assess the
final optimized functional. Detailed informa-
tion about the training, primary test, and sec-
ondary test sets can be found in Table 1. The
training set contains 870 data points overall,
the primary test set contains 2965 data points
overall, and the secondary test set contains 1152
data points overall. Thus, the training set con-
stitutes only 17.5% of the entire database used
to develop and assess ωB97M-V.

4 Theory

The complete functional form for ωB97M-V is
given by Equations 3-5. The acronyms used
in this section are: exchange-correlation (xc),
exchange (x), correlation (c), short-range (sr),
long-range (lr), meta-GGA (mGGA), same-
spin (ss), opposite-spin (os), and nonlocal (nl).

EωB97M−V
xc = EωB97M−V

x + EωB97M−V
c (3)

EωB97M−V
x = EmGGA

x,sr + cxE
exact
x,sr + Eexact

x,lr (4)

EωB97M−V
c = EmGGA

c,ss + EmGGA
c,os + EV V 10

c,nl (5)

The local spin-density approximation (LSDA)
for exchange can be expressed in terms of the
first-order spinless reduced density matrix for
an infinite uniform electron gas (UEG),

ELSDA
x = −1

2

α,β∑
σ

∫ ∫
1

s

∣∣ρUEG
σ

∣∣2 drds, (6)

ρUEG
σ = 3ρσ

(
sin (kFσs)− kFσs cos (kFσs)

(kFσs)
3

)
, (7)

where s = r1 − r2, r = 1
2
(r1 + r2), and kFσ =

(6π2ρσ)
1/3

is the spin-polarized Fermi wave vec-
tor. Integration of Equation 6 over s gives the
well-known expression for the LSDA exchange
energy in terms of the exchange energy density
per unit volume,

ELSDA
x =

α,β∑
σ

∫
eUEG
x,σ dr, (8)

eUEG
x,σ = −3

2

(
3

4π

)1/3

ρ4/3σ , (9)

Transforming ELSDA
x to its short-range coun-

terpart, ELSDA
x,sr , is accomplished by replacing

1
s
in Equation 6 with erfc(ωs)

s
and carrying out

the same integration. The resulting SR-LSDA
exchange functional,

ELSDA
x,sr =

α,β∑
σ

∫
eUEG
x,σ Fx,σdr, (10)

is conveniently identical to its unattenuated
counterpart, with the exception of a multiplica-
tive factor,

Fx,σ = 1− 2

3
aσ

(
2
√
πerf

(
1

aσ

)
− 3aσ+

a3σ +
(
2aσ − a3σ

)
exp

(
− 1

a2σ

))
,

(11)

where aσ = ω
kFσ

and ω is a nonlinear parameter
that controls the transition from local DFT ex-
change to nonlocal exact exchange with respect
to interelectronic distance.
Accounting for inhomogeneities in the elec-

tron density is achieved by multiplying the in-
tegrand of the SR-LSDA exchange functional
(Equation 10) by a power series inhomogene-
ity correction factor (ICF), gx, resulting in the
SR-mGGA exchange functional,

EmGGA
x,sr =

α,β∑
σ

∫
eUEG
x,σ Fx,σgxdr, (12)

gx =
N ′∑
i

N∑
j

cx,ijw
i
x,σu

j
x,σ, (13)

wx,σ =
tσ − 1

tσ + 1
, (14)

ux,σ =
γxs

2
σ

1 + γxs2σ
, (15)

where the variable, wx,σ ∈ [−1, 1], is a fi-
nite domain transformation of the dimension-
less ratio of the UEG kinetic energy density to

the exact kinetic energy density, tσ = τUEG
σ

τσ
,

with τUEG
σ = 3

5
(6π2)

2/3
ρ
5/3
σ , and the variable,

ux,σ ∈ [0, 1], is a finite domain transforma-
tion of the dimensionless spin-density gradient,
sσ = |∇ρσ |

ρ
4/3
σ

∈ [0,∞). The linear DFT exchange

parameters, cx,ij, will be determined via least-
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Table 1: Summary of the 84 datasets that comprise the training, primary test, and
secondary test sets. The datatypes are explained in Section 3. The sixth column con-
tains the root-mean-squares of the dataset reaction energies. PEC stands for potential
energy curve, SR stands for single-reference, MR stands for multi-reference, Bz stands
for benzene, Me stands for methane, and Py stands for pyridine.

Name Set Datatype # Description ∆E (kcal/mol) Ref.

A24 Train NCED 24 Binding energies of small non-covalent complexes 2.65 54
DS14 Train NCED 14 Binding energies of complexes containing divalent sulfur 3.70 55
HB15 Train NCED 15 Binding energies of hydrogen-bonded dimers featuring ionic groups common in biomolecules 19.91 56
HSG Train NCED 21 Binding energies of small ligands interacting with protein receptors 6.63 57,58

NBC10 Train NCED 184 PECs for BzBz (5), BzMe (1), MeMe (1), BzH2S (1), and PyPy (2) 1.91 58–61
S22 Train NCED 22 Binding energies of hydrogen- and dispersion-bonded non-covalent complexes 9.65 58,62
X40 Train NCED 31 Binding energies of non-covalent interactions involving halogenated molecules 5.26 63

A21x12 PriTest NCED 252 PECs for the 21 equilibrium complexes from A24 1.43 64
BzDC215 PriTest NCED 215 PECs for benzene interacting with two rare-gas atoms and eight first- and second-row hydrides 1.81 65
HW30 PriTest NCED 30 Binding energies of hydrocarbon-water dimers 2.34 66
NC15 PriTest NCED 15 Binding energies of very small non-covalent complexes 0.95 67
S66 PriTest NCED 66 Binding energies of non-covalent interactions found in organic molecules and biomolecules 6.88 68,69

S66x8 PriTest NCED 528 PECs for the 66 complexes from S66x8 5.57 68
3B-69-DIM SecTest NCED 207 Binding energies of all relevant pairs of monomers from 3B-69-TRIM 5.87 70
AlkBind12 SecTest NCED 12 Binding energies of saturated and unsaturated hydrocarbon dimers 3.14 71

CO2Nitrogen16 SecTest NCED 16 Binding energies of CO2 to molecular models of pyridinic N-doped graphene 3.84 72
HB49 SecTest NCED 49 Binding energies of small- and medium-sized hydrogen-bonded systems 14.12 73–75
Ionic43 SecTest NCED 43 Binding energies of anion-neutral, cation-neutral, and anion-cation dimers 69.94 76

H2O6Bind8 Train NCEC 8 Binding energies of isomers of (H2O)6 46.96 77,78
HW6Cl Train NCEC 6 Binding energies of Cl−(H2O)n (n = 1− 6) 57.71 77,78
HW6F Train NCEC 6 Binding energies of F−(H2O)n (n = 1− 6) 81.42 77,78

FmH2O10 PriTest NCEC 10 Binding energies of isomers of F−(H2O)10 168.50 77,78
Shields38 PriTest NCEC 38 Binding energies of (H2O)n (n = 2− 10) 51.54 79

SW49Bind345 PriTest NCEC 31 Binding energies of isomers of SO4
2−(H2O)n (n = 3− 5) 28.83 80

SW49Bind6 PriTest NCEC 18 Binding energies of isomers of SO4
2−(H2O)6 62.11 80

WATER27 PriTest NCEC 23 Binding energies of neutral and charged water clusters 67.48 81,82
3B-69-TRIM SecTest NCEC 69 Binding energies of trimers, with three different orientations of 23 distinct molecular crystals 14.36 70

CE20 SecTest NCEC 20 Binding energies of water, ammonia, and hydrogen fluoride clusters 30.21 83,84
H2O20Bind10 SecTest NCEC 10 Binding energies of isomers of (H2O)20 (low-energy structures) 198.16 78
H2O20Bind4 SecTest NCEC 4 Binding energies of isomers of (H2O)20 (dod, fc, fs, and es) 206.12 81,82,85,86

TA13 Train NCD 13 Binding energies of dimers involving radicals 22.00 87
XB18 Train NCD 8 Binding energies of small halogen-bonded dimers 5.23 88

Bauza30 PriTest NCD 30 Binding energies of halogen-, chalcogen-, and pnicogen-bonded dimers 23.65 89,90
CT20 PriTest NCD 20 Binding energies of charge-transfer complexes 1.07 91
XB51 PriTest NCD 21 Binding energies of large halogen-bonded dimers 7.77 88

AlkIsomer11 Train IE 11 Isomerization energies of n = 4− 8 alkanes 1.81 92
Butanediol65 Train IE 65 Isomerization energies of butane-1,4-diol 2.89 93

ACONF PriTest IE 15 Isomerization energies of alkane conformers 2.23 82,94
CYCONF PriTest IE 11 Isomerization energies of cysteine conformers 2.00 82,95
Pentane14 PriTest IE 14 Isomerization energies of stationary points on the n-pentane torsional surface 6.53 96

SW49Rel345 PriTest IE 31 Isomerization energies of SO4
2−(H2O)n (n = 3− 5) 1.47 80

SW49Rel6 PriTest IE 18 Isomerization energies of SO4
2−(H2O)6 1.22 80

H2O16Rel5 SecTest IE 5 Isomerization energies of (H2O)16 (boat and cage structures) 0.40 97
H2O20Rel10 SecTest IE 10 Isomerization energies of (H2O)20 (low-energy structures) 2.62 78
H2O20Rel4 SecTest IE 4 Isomerization energies of (H2O)20 (dod, fc, fs, and es) 5.68 81,82,85,86
Melatonin52 SecTest IE 52 Isomerization energies of melatonin 5.54 98
YMPJ519 SecTest IE 519 Isomerization energies of the proteinogenic amino acids 8.33 99

EIE22 Train ID 22 Isomerization energies of enecarbonyls 4.97 100
Styrene45 Train ID 45 Isomerization energies of C8H8 68.69 101
DIE60 PriTest ID 60 Isomerization energies of reactions involving double-bond migration in conjugated dienes 5.06 102

ISOMERIZATION20 PriTest ID 20 Isomerization energies 44.05 103
C20C24 SecTest ID 8 Isomerization energies of the ground state structures of C20 and C24 36.12 104

AlkAtom19 Train TCE 19 n = 1− 8 alkane atomization energies 1829.31 92
BDE99nonMR Train TCE 83 Bond dissociation energies (SR) 114.98 103

G21EA Train TCE 25 Adiabatic electron affinities of atoms and small molecules 40.86 82,105
G21IP Train TCE 36 Adiabatic ionization potentials of atoms and small molecules 265.35 82,105

TAE140nonMR Train TCE 124 Total atomization energies (SR) 381.05 103
AlkIsod14 PriTest TCE 14 n = 3− 8 alkane isodesmic reaction energies 10.35 92
BH76RC PriTest TCE 30 Reaction energies from HTBH38 and NHTBH38 30.44 82,106,107
EA13 PriTest TCE 13 Adiabatic electron affinities 42.51 108

HAT707nonMR PriTest TCE 505 Heavy-atom transfer energies (SR) 74.79 103
IP13 PriTest TCE 13 Adiabatic ionization potentials 256.24 108

NBPRC PriTest TCE 12 Reactions involving NH3/BH3 and PH3/BH3 30.52 82,109,110
SN13 PriTest TCE 13 Nucleophilic substitution energies 25.67 103
BSR36 SecTest TCE 36 Hydrocarbon bond separation reaction energies 20.06 110,111

HNBrBDE18 SecTest TCE 18 Homolytic N–Br bond dissociation energies 56.95 112
WCPT6 SecTest TCE 6 Tautomerization energies for water-catalyzed proton-transfer reactions 7.53 113

BDE99MR PriTest TCD 16 Bond dissociation energies (MR) 54.51 103
HAT707MR PriTest TCD 202 Heavy-atom transfer energies (MR) 83.41 103
TAE140MR PriTest TCD 16 Total atomization energies (MR) 147.20 103
PlatonicHD6 SecTest TCD 6 Homodesmotic reactions involving platonic hydrocarbon cages, CnHn (n = 4, 6, 8, 10, 12, 20) 136.71 114
PlatonicID6 SecTest TCD 6 Isodesmic reactions involving platonic hydrocarbon cages, CnHn (n = 4, 6, 8, 10, 12, 20) 96.19 114
PlatonicIG6 SecTest TCD 6 Isogyric reactions involving platonic hydrocarbon cages, CnHn (n = 4, 6, 8, 10, 12, 20) 356.33 114
PlatonicTAE6 SecTest TCD 6 Total atomization energies of platonic hydrocarbon cages, CnHn (n = 4, 6, 8, 10, 12, 20) 2539.27 114

BHPERI26 Train BH 26 Barrier heights of pericyclic reactions 23.15 82,115
CRBH20 Train BH 20 Barrier heights for cycloreversion of heterocyclic rings 46.40 116
DBH24 Train BH 24 Diverse barrier heights 28.34 117,118
CR20 PriTest BH 20 Cycloreversion reaction energies 22.31 119

HTBH38 PriTest BH 38 Hydrogen transfer barrier heights 16.05 107
NHTBH38 PriTest BH 38 Non-hydrogen transfer barrier heights 33.48 106

PX13 SecTest BH 13 Barrier heights for proton exchange in water, ammonia, and hydrogen fluoride clusters 28.83 83,84
WCPT27 SecTest BH 27 Barrier heights for water-catalyzed proton-transfer reactions 38.73 113

AE18 Train - 18 Absolute atomic energies of hydrogen through argon 148,739.00 120
RG10 PriTest - 569 PECs for the 10 rare-gas dimers involving helium through krypton 1.21 121

6



squares fitting to a training set in Section 5,
while γx = 0.004 is a fixed nonlinear DFT ex-
change parameter that was fit to the Hartree–
Fock exchange energies of 20 atoms in 1986 by
Becke.122

Nonlocal exact exchange is introduced by
splitting the conventional 1

r
Coulomb operator

into a short-range component (Eexact
x,sr ) and a

long-range component (Eexact
x,lr ) with the erfc

r
and

erf
r

Coulomb functions, respectively,

Eexact
x,sr = −1

2

α,β∑
σ

occ.∑
i,j

∫ ∫
ψ∗
iσ (r1)ψ

∗
jσ (r2)

erfc (ωr12)

r12

ψjσ (r1)ψiσ (r2) dr1dr2,

(16)

Eexact
x,lr = −1

2

α,β∑
σ

occ.∑
i,j

∫ ∫
ψ∗
iσ (r1)ψ

∗
jσ (r2)

erf (ωr12)

r12

ψjσ (r1)ψiσ (r2) dr1dr2,

(17)

where ψiσ and ψjσ are occupied Kohn–Sham
spatial orbitals. Instead of setting the percent-
age of exact-exchange at r = 0 to zero, an opti-
mizable parameter, cx, controls the amount of
short-range exact exchange.
Closed-form expressions for the correlation

energy density per particle of an infinite uni-
form electron gas, ϵUEG

c , are only known
for the low- and high-density limits of the
paramagnetic and ferromagnetic cases. Us-
ing the Monte-Carlo data of Ceperley and
Alder,123 Perdew and Wang developed an
analytic spin-compensated representation,124

ϵPW92
c , for ϵUEG

c . Combined with the spin-
polarization interpolation formula of Vosko,
Wilk, and Nusair,125 the spin-polarized PW92
correlation energy density per electron, ϵPW92

c ,
is the starting point for the correlation func-
tional,

ELSDA
c =

∫
ρϵPW92

c dr. (18)

Using the spin decomposition technique of Stoll
and coworkers,126 the LSDA correlation energy
is separated into same-spin and opposite-spin
components,

ELSDA
c,ss =

α,β∑
σ

∫
ePW92
c,σσ dr =

∫
ραϵ

PW92
c (ρα, 0) dr+∫

ρβϵ
PW92
c (0, ρβ) dr,

(19)

ELSDA
c,os =

∫
ePW92
c,αβ dr =

∫
ρϵPW92

c dr−∫
ραϵ

PW92
c (ρα, 0) dr−

∫
ρβϵ

PW92
c (0, ρβ) dr,

(20)

where ePW92
c,σσ and ePW92

c,αβ are the PW92 same-
spin and opposite-spin correlation energy den-
sities per unit volume, respectively. Extending
Equations 19 and 20 to account for inhomo-
geneities in the electron density is straightfor-
ward, since the approach used for the exchange
functional can be utilized,

EmGGA
c,ss =

α,β∑
σ

∫
ePW92
c,σσ gc,ssdr, (21)

gc,ss =

N ′∑
i

N∑
j

ccss,ijw
i
c,σσu

j
c,σσ, (22)

wc,σσ =
tσ − 1

tσ + 1
, (23)

uc,σσ =
γc,sss

2
σ

1 + γc,sss2σ
, (24)

EmGGA
c,os =

∫
ePW92
c,αβ gc,osdr, (25)

gc,os =
N ′∑
i

N∑
j

ccos,ijw
i
c,αβu

j
c,αβ , (26)

wc,αβ =
tαβ − 1

tαβ + 1
, (27)

uc,αβ =
γc,oss

2
αβ

1 + γc,oss2αβ
, (28)

where tαβ = 1
2
(tα + tβ) and s

2
αβ = 1

2

(
s2α + s2β

)
.

The linear DFT correlation parameters, ccss,ij
and ccos,ij, will be determined via least-squares
fitting to a training set in Section 5, while
γc,ss = 0.2 and γc,os = 0.006 are nonlinear DFT
correlation parameters that were fit to the cor-
relation energies of neon and helium in 1997 by
Becke.2

Nonlocal correlation is taken into account via
the VV10 NLC functional,9

7



E
V V 10
c,nl =

∫
ρ (r)

[
1

32

[
3

b2

]3/4
+

1

2

∫
ρ
(
r
′
)
Φ

(
r, r

′
, {b, C}

)
dr

′
]
dr,

(29)

where Φ (r, r′, {b, C}) is the nonlocal correlation
kernel defined in Reference 9. The VV10 NLC
functional contains two nonlinear parameters:
b, which controls the short-range damping of
the 1/r6 asymptote, and C, which controls the
accuracy of the asymptotic C6 coefficients.

5 Training

With a total of 3835 data points in the train-
ing and primary test sets, a three-dimensional
nonlinear optimization of the parameters asso-
ciated with range-separation (ω) and VV10 (b
and C) is impractical. As a result, the values of
ω=0.3, b=6, and C=0.01 that were optimized
for ωB97X-V are taken without further inves-
tigation. Any inaccuracies in these parameters
will be accounted for during the optimization
of the linear parameters.
In order to generate the data that is needed to

carry out the least-squares fits, it is necessary
to choose an initial guess for the linear coef-
ficients. As explained in Section 1, the value
of N ′ (the maximum truncation order for w in
Equations 13, 22, and 26) is set to 8 and the
value of N (the maximum truncation order for
u in Equations 13, 22, and 26) is set to 4. This
results in 135 coefficients that arise from the lo-
cal exchange-correlation functional. Addition-
ally, the fraction of short-range exact exchange
(cx) from Equation 4 is the 136th coefficient.
For the 135 coefficients that arise due to

the three power series ICFs, the most flexible
initial guess is that of the SR-LSDA, where
cx,00=ccss,00=ccos,00=1, and the remaining 132
coefficients are zero. For cx, the most straight-
forward initial guess is zero. However, since the
contribution from exact exchange is bound to
constitute a large fraction of the total exchange-
correlation energy, it is beneficial to pick a
value for cx that is as close to the final value
as possible, in order to minimize discrepancies
between the RMSDs that are generated using
the initial guess, and the RMSDs of the final,
self-consistently optimized functional. With

the value of cx = 0.167 from ωB97X-V serv-
ing as a guide, the initial guess for the frac-
tion of short-range exact exchange is set to
cx = 0.15. Finally, the only constraint that
is explicitly enforced is the UEG limit for ex-
change (cx,00+cx=1).
The fundamental equations that will be used

throughout the least-squares fitting procedure
are

W
1/2
Tr A∆x =W

1/2
Tr b (30)

and

∆x = (ATWTrA)
−1(ATWTrb), (31)

where ∆x = xi+1 − xi is the change in the lin-
ear coefficients (length: 136), WTr is a diagonal
matrix of training weights (dimensions: 3835 x
3835), b = Eref − Ei is the difference between
the reference and initial guess energies (length:
3835), and A = A(xi) is the matrix of ICF con-
tributions (dimensions: 3835 x 136). While the
first three quantities are conceptually straight-
forward, it is worthwhile to further explain how
to generate the A matrix.
A is most generally a (# of data points) × (#

of linear parameters) matrix. As an example,
the element A7,23 corresponds to the contribu-
tion to the 7th data point from the 23rd linear
parameter (cx,42). Assuming that the seventh
data point corresponds to the binding energy
of the water dimer from the S22 dataset, com-
puting A7,23 requires calculating the following
quantity,

α,β∑
σ

∫
eUEG
x,σ Fx,σw

4
x,σu

2
x,σdr, (32)

for the water dimer and both of its monomers,
and computing the associated contribution to
the binding energy. In this work, the A matrix
is computed twice: once with the (99,590)/SG-
1 grid and once with the (250,974)/SG-1 grid
(the (500,974)/(75,302) grid is always used for
AE18 and RG10). The rationale for computing
A in two different grids will be explained when
the filtering procedure is discussed. Unless oth-
erwise specified, terms from Equations 30 and
31 that appear henceforth are computed with
the (250,974)/SG-1 grid. To refer to the A ma-
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trix computed in the (99,590)/SG-1 grid, the
following notation will be used: A(99,590).
Since the optimization procedure involves

both a training set (for determining the val-
ues of the coefficients) and a primary test set
(for assessing the transferability of the result-
ing coefficients), a measure of the overall perfor-
mance of the fits is necessary for ranking them.
For this purpose, the total weighted root-mean-
square-deviation (WRMSD),

WRMSDTotal =

√
diag (W ) · (A∆x− b)

2

#Total
, (33)

is used, where W is a diagonal matrix of train-
ing and primary test set weights (dimensions:
3835 x 3835). The diagonals of W and WTr are
identical for the elements that belong to the
training set, while WTr contains zeros for the
elements that belong to the primary test set.
The weighting scheme used for ωB97M-V is

considerably different than that used for B97M-
V. Initially, each data point is given a weight
that corresponds to the inverse of the product
of the number of data points in the associated
dataset and the root-mean-square of the reac-
tion energies in the associated dataset. These
values can be found in the fourth and sixth
columns of Table 1, respectively. Within each
of the datatypes, the weights are normalized by
dividing by the smallest weight, and then ex-
ponentiated such that they lie between 1 and
2. For the determination of the weights only,
the NCED and NCEC datatypes are consol-
idated into a single datatype, NCE, giving a
total of seven datatypes. Furthermore, AE18
is included in the TCE datatype in order to
receive a weight. Finally, each of the seven
datatypes get a multiplicative weight based on
intuition: 0.1 for TCD, 1 for TCE, 10 for NCD,
ID, and BH, and 100 for NCE and IE. As RG10
does not belong to a datatype, it gets a weight
of 10000. At this point, all of the datapoints
(besides those in RG10) have a weight between
0.1 and 200. In order to promote transferability,
the datasets in the primary test set get another
multiplicative weight of 2.
Following the initial setup described above,

the search for the optimal least-squares fit can

proceed. Applying the single UEG constraint
to the initial parameter space of 136 brings
the total number of linearly independent pa-
rameters to 135. With the available com-
puting resources (a 64-core node), the max-
imum number of fits that can be performed
in a single day is around two billion. There-
fore 135C5=346,700,277, which returns only 5-
parameter fits, is the largest calculation that
can be performed in a single day using all 135
parameters (since 135C6=7,511,839,335). In
order to explore fits with more parameters, it
is necessary to either consider different trunca-
tions of the parameter space or compulsorily-
select commonly-occurring parameters. The
first option reduces the value of n (from nCk),
allowing for larger values of k. For example,
the binomial coefficients 135C5 and 82C6 are
both similar in value, yet the latter allows the
exploration of 6-parameter fits. The second op-
tion requires F parameters to be compulsorily-
selected (or frozen), allowing for the exploration
of (n-F)Ck (k+F)-parameter fits. For example,
if the results from 135C5 indicate that cx,01 is
the most important parameter, a possible next
step would be to freeze cx,01 (not its value but
simply its inclusion in all successive fits) and
explore the results of 134C5 with cx,01 frozen,
giving 6-parameter fits.
For the optimization of the functional at

hand, a combination of these two options is uti-
lized. While the meta-GGA parameter space
described thus far contains 135 linearly inde-
pendent parameters, its GGA subset contains
only 15, which amounts to 215-1=32767 total
possible fits. The GGA parameter space is
fully searchable and the recent ωB97X-V den-
sity functional was developed within this sub-
space. Since ωB97X-V has seven linear parame-
ters, it is plausible to assume that the minimum
number of linear parameters necessary to pa-
rameterize a functional within the meta-GGA
parameter space is seven. Thus, the initial pa-
rameter space of 135 should be truncated such
that 7-parameter fits are possible without freez-
ing. After considering a multitude of different
truncations, a parameter space designated as
2I6I6I is selected. This includes variables up
to second order individually in w and u for ex-
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change and up to sixth order individually in w
and u for same-spin and opposite-spin corre-
lation. With 9 coefficients from exchange, 35
coefficients from same-spin correlation, 35 co-
efficients from opposite-spin correlation, an ad-
ditional coefficient from short-range exact ex-
change, and a single constraint, the 2I6I6I des-
ignation reduces the parameter space from 135
to 79.
Although the 2I6I6I designation reduces

the parameter space substantially, the largest
calculation that is possible is still only
79C7=2,898,753,715. Thus, only up to 7-
parameter fits can be explored. In order
to advance past seven, it is necessary to
compulsorily-select commonly-occurring pa-
rameters. The process of selecting the pa-
rameter that will be frozen involves a series of
steps. First, from all of the 7-parameter fits
resulting from the 79C7 optimization, the top
100,000 (ranked by total WRMSD) are saved
and filtered twice. The first set of filters deals
with the physical characteristics of the fits:

• |xi+1| ≤ 25

• 0 ≤ gx ≤ 2.273

• −10 ≤ gc,ss ≤ 10

• −10 ≤ gc,os ≤ 10

• (Ei−E(99,590)
i )+(A−A(99,590))∆x ≤ 0.015

kcal/mol

Of the conditions listed above, the first en-
sures that the coefficients are small, the second
ensures that the exchange functional obeys the
local Lieb-Oxford bound and that all contribu-
tions to exchange are negative, the third and
fourth ensure that the correlation functionals
are well-behaved, and the last ensures that in-
teraction energy errors attributed to the inte-
gration grid are no larger than 0.015 kcal/mol.
Following the first set of filters, at most 1000

of the remaining fits are passed through a sec-
ond filter, which deals with the accuracy of
the fits for predicting equilibrium bond lengths
for non-covalent interactions. The BzDC215,
NBC10, S66x8, and RG10 datasets are utilized

to this effect. In total, these four datasets con-
tain 96 PECs, with BzDC215, NBC10, and
RG10 each having 10, and S66x8 having 66.
However, the benzene-neon dimer PEC from
BzDC215 is removed because of severe integra-
tion grid issues. The remaining 95 PECs are
interpolated and the equilibrium bond lengths
are evaluated for all of the fits that pass through
the first filter. Only fits that have an RMSD of
less than 0.03 Å are allowed through the second
filter.
Finally, the surviving fits are analyzed in or-

der to determine the coefficient that is most
commonly used. This coefficient is then
compulsorily-selected in the next set of least-
squares fits in order to allow for the exploration
of 8-parameter fits. This procedure was re-
peated until a total of eight parameters were
frozen (cx,01, cx,10, ccss,10, ccss,20, ccos,20, ccss,00,
ccos,10, ccos,21). The progression from the 7-
parameter fits to the 15-parameter fits can be
tracked in Table 2.
Due to the nonlinear nature of the self-

consistent field method, the A matrix changes
with every update to the parameters (since A =
A(xi)), and it is very likely that the A matrix
that is constructed from the initial guess will
be vastly different from the last A matrix that
will be used to finalize the parameters. Fur-
thermore, the larger the difference between the
starting and the ending point, the higher the
chance that the initial RMSDs will differ signif-
icantly from the RMSDs of the final functional.
In fact, this phenomenon was first encountered
during the development of the B97M-V density
functional and was bypassed by updating the
initial guess with a better guess formed by the
first nine parameters that were frozen. Since
this methodology worked well during the devel-
opment of B97M-V, it is utilized in the present
work. Thus, the eight parameters shown in the
first column of Table 2 (“Best 8”) are used to
update the SR-LSDA+VV10 initial guess.
With the updated guess, the A matrix is

computed with both the (99,590)/SG-1 and
(250,974)/SG-1 grids and the same procedure
outlined above is followed. However, no addi-
tional parameters need to be frozen, since with
eight parameters already frozen, it is trivial
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Table 2: Progression from the 7-
parameter fits to the 15-parameter
fits based on the SR-LSDA+VV10 ini-
tial guess. The first column indi-
cates the additional coefficient that is
frozen (compulsorily-selected) in order to
achieve the associated set of fits. The sec-
ond column contains the total number of
least-squares fits that are performed, of
which only the top 100,000 (ranked by to-
tal WRMSD) are analyzed. The fourth
column indicates the number of fits (of
100,000) that remain after the first fil-
ter is applied. The fifth column indicates
the number of fits (of at most 1000) from
the previous column that remain after
the second filter is applied. Finally, the
last column indicates the coefficient that
is most commonly utilized in the surviv-
ing fits (shown in Column 5).

Frozen # of Initial Fits # (Fitted) Filter 1 Filter 2 Common

– 2,898,753,715 7 3342 413 cx,01
cx,01 2,641,902,120 8 1476 454 cx,10
cx,10 2,404,808,340 9 2806 623 ccss,10
ccss,10 2,186,189,400 10 7144 764 ccss,20
ccss,20 1,984,829,850 11 18021 591 ccos,20
ccos,20 1,799,579,064 12 6531 469 ccss,00
ccss,00 1,629,348,612 13 2985 696 ccos,10
ccos,10 1,473,109,704 14 1868 726 ccos,21
ccos,21 1,329,890,705 15 120 101 ccos,60

to explore 9- through 15-parameter fits (71C1
through 71C7). However, both sets of fil-
ters are still applied. Beginning with the 9-
parameter fits, an additional parameter is ac-
cepted only if it improves the total WRMSD
by more than 0.05 kcal/mol (a protocol which
was successfully utilized during the exploration
of the GGA subspace39). Consequently, a 12-
parameter fit emerges as the optimal fit and is
self-consistently optimized. The progression of
the minimum total WRMSDs from the 9- to
15-parameters fits is: {–, 5.04, 3.52, 3.46, 3.44,
3.42, 3.39}. The WRMSDs corresponding to
the least-squares fits from the SR-LSDA+VV10
initial guess and the “Best 8” updated guess are
shown in Figure 2 in red and blue, respectively.
The smallest WRMSD for a given number of
linear parameters is displayed only for the “Best
8” data. The WRMSD of the least-squares fit
that corresponds to ωB97M-V is boxed.

Table 3: Linear parameters from the
beginning of all six cycles of the self-
consistent optimization of ωB97M-V. The
“Best 8” column refers to the freez-
ing of eight commonly-occurring param-
eters. The nonlinear parameters that
are taken from previous studies2,22,122 are
γx=0.004, γc,ss=0.2, γc,os=0.006, ω=0.3,
b=6, and C=0.01.

Parameter 1 Best 8 3 4 5 6 (Final)

cx,00 0.85 0.85 0.85 0.85 0.85 0.85
cx,10 0 -0.097 0.265 0.259 0.259 0.259
cx,01 0 0.789 1.014 1.007 1.007 1.007

ccss,00 1 0.216 0.457 0.443 0.443 0.443
ccss,10 0 -2.496 -4.868 -4.55 -4.536 -4.535
ccss,20 0 -0.816 -3.401 -3.391 -3.39 -3.39
ccss,43 0 0 4.107 4.267 4.278 4.278
ccss,04 0 0 -1.533 -1.438 -1.437 -1.437

ccos,00 1 1 1 1 1 1
ccos,10 0 3.13 1.573 1.372 1.359 1.358
ccos,20 0 1.736 3.002 2.931 2.925 2.924
ccos,60 0 0 -1.736 -1.419 -1.392 -1.39
ccos,21 0 -1.591 -8.241 -8.776 -8.81 -8.812
ccos,61 0 0 8.582 9.113 9.141 9.142

cx 0.15 0.15 0.15 0.15 0.15 0.15

Including the initial cycle (Cycle 1) with the
unoptimized ωB97M-V density functional as
well as the “Best 8” cycle, the self-consistent
optimization of ωB97M-V required six cycles.
The final parameters of ωB97M-V can be found
in the last column of Table 3, and Figure 3
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Figure 2: WRMSDs corresponding to the least-squares fits from the SR-LSDA+VV10 initial guess
(red) and the “Best 8” updated guess (blue). The smallest WRMSD for a given number of linear
parameters is displayed only for the “Best 8” data. The WRMSD of the least-squares fit that
corresponds to ωB97M-V is boxed.

shows the exchange, same-spin correlation, and
opposite-spin correlation ICF plots for ωB97M-
V (bottom). In addition, it displays the ICFs
for the SR-LSDA+VV10 initial guess (top) and
the “Best 8” updated guess (middle). The fi-
nal ICFs of ωB97M-V are smooth and well-
behaved, with the maximum value of the ex-
change ICF (2.116) lying well under the Lieb-
Oxford bound (2.273). The lower and upper
bounds of all three ICFs are:

• 0.591 ≤ gx ≤ 2.116

• -7.482 ≤ gc,ss ≤ 4.429

• -1.957 ≤ gc,os ≤ 4.222

The four parameters that are chosen in addi-
tion to the “Best 8” are ccss,43, ccss,04, ccos,60, and
ccos,61. Interestingly, the chosen fit does not op-
timize the value of short-range exact exchange
away from cx = 0.15.

6 Results

In order to verify that ωB97M-V is a broadly
accurate density functional, it is necessary
to compare it to existing density functionals.
Thus, 10 exemplary density functionals are se-
lected for comparison to ωB97M-V across the
nearly 5000 data points in the training, primary
test, and secondary test sets. Furthermore, all
11 functionals are benchmarked on 90 poten-
tial energy curves in order to assess equilibrium
binding energies and bond lengths. Details for
the 10 density functionals selected for compar-
ison to ωB97M-V are shown in Table 4.

6.1 Overall Test Set Perfor-
mance

Since the training, primary test, and secondary
test sets contain 84 datasets overall, it is eas-
ier to obtain a general idea of the perfor-
mance of ωB97M-V by first considering the
eight datatypes defined in Section 3. However,
in order to make the comparison as unbiased
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Figure 3: Exchange, same-spin correlation, and opposite-spin correlation inhomogeneity correc-
tion factor plots for the ωB97M-V density functional (bottom). In addition, the ICFs for the
SR-LSDA+VV10 initial guess (top) and the “Best 8” updated guess (middle) are included for
comparison.
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Table 4: Details for the 10 exemplary
functionals chosen for comparison to
ωB97M-V. L stands for local, GH stands
for global hybrid, and RSH stands for
range-separated hybrid. The second col-
umn lists the number of parameters that
were optimized on a training set for the
given functional. The third column lists
the percentage of exact exchange, cx, as
well as the value for ω in parentheses, if
applicable. The column labeled UEG in-
dicates whether or not the uniform elec-
tron gas limits were satisfied.

Functional # (Fitted) cx (ω) Class Rung UEG Ref.

B97-D3(BJ) 12 0 L GGA DFT-D3(BJ) 2 No 6–8
B97M-V 12 0 L meta-GGA VV10 3 Yes 29
ωB97X-V 10 16.7-100 (0.3) RSH GGA VV10 4 No 22
ωB97M-V 12 15-100 (0.3) RSH meta-GGA VV10 4 No –
ωB97X-D 15 22.2-100 (0.2) RSH GGA CHG 4 Yes 20
ωM05-D 21 37.0-100 (0.2) RSH meta-GGA CHG 4 Yes 36
M06-2X 29 54 GH meta-GGA 4 Yes 32
M08-HX 47 52.23 GH meta-GGA 4 Yes 34
M11 40 42.8-100 (0.25) RSH meta-GGA 4 Yes 35
M06-L 34 0 L meta-GGA 3 Yes 27
MN15-L 58 0 L meta-NGA 3 No 38

as possible, only the data points from the pri-
mary and secondary test sets (henceforth re-
ferred to as the test set) are considered. Fur-
thermore, since RG10 does not belong to any of
the datatypes, it is excluded from this analysis.
The total number of data points and datasets
considered in Figure 4 are 3548 and 58, respec-
tively.
Beginning with the NCED datatype, the

functional with the best performance is
ωB97M-V, with an RMSD of 0.18 kcal/mol.
The next best functionals are ωB97X-V and
B97M-V, both with RMSDs of 0.23 kcal/mol.
Thus, the test set performance of ωB97M-V
for over 1400 non-covalent dimer binding ener-
gies is at least 25% better than that of both of
its predecessors. Besides the VV10-containing
functionals, ωB97X-D and ωM05-D perform
similarly, both with RMSDs of 0.38 kcal/mol,
followed by M06-2X and B97-D3(BJ), which
have RMSDs of 0.42 and 0.44 kcal/mol, re-
spectively. The remaining functionals (M06-L,
M08-HX, M11, and MN15-L) perform more
poorly, with MN15-L being by far the poorest.
Moving on to the 223 non-covalent cluster

binding energies in the test set with the NCEC
datatype, the best performance is once again
reserved for ωB97M-V, which has an RMSD

of 0.50 kcal/mol. The next best functional
(ωB97X-V) is about 30% worse, with an RMSD
of 0.66 kcal/mol. Only two other function-
als have RMSDs under or around 1 kcal/mol:
B97M-V and ωB97X-D.
The NCD datatype contains non-covalent

dimer binding energies that are susceptible to
self-interaction error. Thus, local functionals
should perform significantly worse than hybrid
functionals, while hybrid functionals with a
large fraction of exact exchange should perform
best. Accordingly, the density functionals with
the largest RMSDs across the 71 data points in
the test set are the local ones, with RMSDs be-
tween 1.35 and 1.8 kcal/mol. Surprisingly, the
best density functional is ωB97M-V, with an
RMSD of 0.80 kcal/mol, just ahead of ωM05-
D, which has 2.5 times more short-range ex-
act exchange. M08-HX, M06-2X, and ωB97X-
V are also close behind with RMSDs around
0.95 kcal/mol.
The test set contains a total of 679 isomer-

ization energies, ranging from alkane conform-
ers to amino acid conformers. The three func-
tionals with the best performance for the IE
data points in the test set are B97M-V, ωB97X-
V, and ωB97M-V, with RMSDs slightly un-
der 0.30 kcal/mol. The next best functionals
are M06-2X (0.52 kcal/mol) and ωM05-D (0.54
kcal/mol), while five of the remaining six func-
tionals (M08-HX, ωB97X-D, M06-L, M11, and
B97-D3(BJ)) have RMSDs between 0.6 and 0.8
kcal/mol.
The ID datatype contains isomerization ener-

gies that are sensitive to self-interaction error.
As with the NCD category, the local function-
als exhibit the worst performance across the 88
data points in the test set, with RMSDs larger
than 7.9 kcal/mol. From the hybrid function-
als, ωB97X-V and ωB97M-V perform almost
indistinguishably, with RMSDs of around 2.3
kcal/mol, while ωB97X-D performs about 65%
worse, with an RMSD of 3.84 kcal/mol. The
other hybrids have RMSDs that are 2 to 3 times
larger than that of ωB97M-V.
The 660 TCE data points in the test set in-

clude heavy-atom transfer energies, homolytic
bond dissociation energies, as well as isodesmic
reaction energies. ωB97M-V is the best-
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performing functional, with an RMSD of 2.45
kcal/mol. The next best functionals, M06-2X
and ωM05-D, perform more than 30% worse,
with RMSDs of 3.17 and 3.28 kcal/mol, respec-
tively. The remaining four hybrids (M08-HX,
M11, ωB97X-V, and ωB97X-D) perform com-
parably and have RMSDs around 3.6 kcal/mol.
The best local functionals are B97M-V (3.59
kcal/mol) and MN15-L (3.95 kcal/mol), both
performing significantly better than M06-L
(5.26 kcal/mol).
Of the 258 TCD data points in the test set,

234 are multi-reference atomization energies,
bond dissociation energies, and heavy-atom
transfer energies from the W4-11 database,
while 24 are atomization energies and ho-
modesmotic, isodesmic, and isogyric reactions
from the Platonic24 dataset. While the first
grouping should be a major challenge for hy-
brid functionals, the second grouping should
present difficulties for local functionals. The
best-performing density functional is a hybrid
(ωB97M-V with an RMSD of 4.30 kcal/mol),
followed by a local functional (B97M-V with
an RMSD of 4.82 kcal/mol). While ωB97X-
V comes in third with an RMSD of 5.01
kcal/mol, the next best functionals are ωB97X-
D and ωM05-D, with RMSDs of 5.79 and 5.87
kcal/mol, respectively. M06-2X performs about
65% worse than ωB97M-V, while M08-HX per-
forms almost two times worse. The second-best
local functional is B97-D3(BJ), with an RMSD
(7.92 kcal/mol) that significantly improves over
M06-L (12.97 kcal/mol).
Finally, the BH datatype contains five test

datasets (136 data points), two of which
(HTBH38 and NHTBH38) are found in the
Minnesota density functional training sets.
Nevertheless, ωB97M-V, with an RMSD of
1.80 kcal/mol, has the smallest RMSD out of
the 11 benchmarked functionals, followed by
M08-HX, which performs only slightly worse.
Surprisingly, M06-2X is only fifth best, with
an RMSD of 2.97 kcal/mol, followed closely by
M11 (3.18 kcal/mol) and distantly by ωM05-D
(4.11 kcal/mol). From the local functionals,
B97M-V performs the best, with an RMSD
of 3.95 kcal/mol, followed by MN15-L, which
has an RMSD of 4.93 kcal/mol. M06-L per-

forms about 25% worse than MN15-L, while
the worst functional overall is B97-D3(BJ),
with an RMSD of 7.85 kcal/mol.
Overall, the performance of ωB97M-V across

3548 test data points is very encouraging.
Across the eight datatypes, ωB97M-V performs
significantly better than the next best func-
tional for four of the datatypes (NCED, NCEC,
TCE, TCD), is indistinguishable from the next
best functional for two of the datatypes (NCD
and BH), and is indistinguishable from the best
functional for the two remaining datatypes (IE
and ID). It is worth noting that the size of
the test set (3548 data points) used to validate
ωB97M-V is more than 7 times larger than the
entire 2015A Minnesota database used to train
and test the latest MN15-L functional. Fur-
thermore, of the 4987 total data points in the
training, primary test, and secondary test sets,
only 870 data points are used for training, while
the other 82.5% are used for testing. Thus,
the transferability of ωB97M-V is satisfactorily
demonstrated with the results documented thus
far.

6.2 Results for Individual Datasets

Figures 5, 6, and 7 contain RMSDs for datasets
in the training, primary test, and secondary
test sets, respectively. Although there are 84
datasets in total, the AE18 and RG10 datasets
from the training and primary test sets are ex-
cluded. The performance of ωB97M-V on the
training datasets will be discussed very briefly,
since it is bad scientific practice to compare the
performance of a semi-empirical density func-
tional to that of existing functionals using its
own training set.
One training result worth mentioning is that

across the 124 atomization energies in the
TAE140nonMR dataset,103 ωB97M-V affords
an RMSD of 2.23 kcal/mol, which significantly
improves over ωB97X-V (2.95 kcal/mol) and
B97M-V (3.89 kcal/mol). This shows the im-
provement that is possible by including exact
exchange, nonlocal correlation, as well as meta-
GGA local contributions, since TAE140nonMR
was included in the training set of all three func-
tionals.
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Datatype B97�D3(BJ) B97M�V �B97X�V �B97M�V �B97X�D �M05�D M06�2X M08�HX M11 M06�L MN15�L
NCEDTest 0.44 0.23 0.23 0.18 0.38 0.38 0.42 0.57 0.61 0.54 1.39
NCECTest 4.91 0.99 0.66 0.50 1.03 1.82 2.48 1.73 2.92 2.27 13.20
NCDTest 1.80 1.45 0.97 0.80 1.10 0.82 0.94 0.93 1.32 1.37 1.48
IETest 0.80 0.28 0.28 0.29 0.69 0.54 0.52 0.61 0.77 0.73 1.57
IDTest 11.06 7.94 2.25 2.35 3.84 5.41 7.06 5.88 7.03 12.76 8.56
TCETest 4.80 3.59 3.56 2.45 3.61 3.28 3.17 3.53 3.55 5.26 3.95
TCDTest 7.92 4.82 5.01 4.30 5.79 5.87 7.23 8.14 9.19 12.97 8.62
BHTest 7.85 3.95 2.36 1.80 2.46 4.11 2.97 1.90 3.18 6.14 4.93

Figure 4: RMSDs in kcal/mol for 8 datatypes for 11 density functionals. These datatype RMSDs
include data points from the primary and secondary test sets only. NCED stands for non-covalent
dimers (easy), NCEC stands for non-covalent clusters (easy), NCD stands for non-covalent dimers
(difficult), IE stands for isomerization energies (easy), ID stands for isomerization energies (diffi-
cult), TCE stands for thermochemistry (easy), TCD stands for thermochemistry (difficult), and
BH stands for barrier heights. The partitioning of the 3548 data points contained in this figure into
the 8 datatypes is: 1433, 223, 71, 679, 88, 660, 258, and 136.

Dataset Datatype B97�D3(BJ) B97M�V �B97X�V �B97M�V �B97X�D �M05�D M06�2X M08�HX M11 M06�L MN15�L
A24 NCED 0.28 0.15 0.08 0.09 0.16 0.17 0.26 0.22 0.35 0.35 0.57
DS14 NCED 0.32 0.12 0.11 0.15 0.24 0.24 0.25 0.18 0.55 0.43 0.69
HB15 NCED 0.94 0.28 0.28 0.20 0.51 0.43 0.36 0.45 0.54 0.58 2.32
HSG NCED 0.55 0.12 0.16 0.11 0.35 0.29 0.52 0.68 0.88 0.63 0.83

NBC10 NCED 0.64 0.31 0.33 0.16 0.25 0.38 0.56 0.69 0.87 0.61 1.25
S22 NCED 0.49 0.31 0.27 0.28 0.24 0.36 0.54 0.64 0.88 0.83 2.52
X40 NCED 0.52 0.19 0.24 0.22 0.55 0.53 0.32 0.50 0.74 0.59 1.18

H2O6Bind8 NCEC 3.32 0.34 0.43 0.29 0.83 0.75 1.60 0.65 0.97 1.35 10.01
HW6Cl NCEC 1.90 0.21 0.34 0.22 0.39 0.94 2.84 2.31 0.93 0.90 5.18
HW6F NCEC 5.04 0.59 0.13 0.14 0.67 2.00 4.07 2.02 1.69 1.23 5.83
TA13 NCD 5.31 4.12 2.88 2.75 2.91 2.57 1.38 1.65 1.82 3.78 1.77
XB18 NCD 0.38 0.57 0.51 0.42 0.98 1.06 0.58 0.79 1.21 0.39 0.75

AlkIsomer11 IE 1.14 0.25 0.69 0.19 1.06 0.33 0.18 0.34 0.54 0.88 1.84
Butanediol65 IE 0.35 0.19 0.04 0.04 0.20 0.18 0.19 0.33 0.37 0.23 1.18

EIE22 ID 1.98 2.29 0.26 0.24 0.69 0.53 0.37 0.51 0.54 2.65 2.07
Styrene45 ID 6.87 4.34 3.95 1.92 2.07 2.50 2.98 2.38 3.62 5.79 4.55
AlkAtom19 TCE 2.04 1.04 1.69 0.91 3.35 6.46 8.02 7.38 5.42 9.63 17.04

BDE99nonMR TCE 4.07 3.56 3.14 2.50 2.68 2.71 2.77 3.52 3.76 5.66 3.81
G21EA TCE 3.35 2.57 3.08 2.82 2.45 2.75 2.81 2.77 2.10 5.15 2.90
G21IP TCE 4.51 3.64 3.56 3.69 3.82 3.57 3.57 4.59 4.85 5.45 4.25

TAE140nonMR TCE 4.85 3.89 2.95 2.23 3.01 2.77 2.98 2.88 3.74 5.43 4.30
BHPERI26 BH 4.24 1.43 2.75 1.44 2.40 1.82 1.81 1.97 2.71 2.18 2.12
CRBH20 BH 14.16 7.56 3.16 1.23 1.66 0.80 1.58 1.31 1.25 13.73 7.18
DBH24 BH 7.63 4.95 1.75 1.46 2.03 1.91 1.08 1.30 1.42 5.24 3.22

Figure 5: RMSDs in kcal/mol for 24 of the 25 training datasets (AE18 is excluded) for 11 density
functionals. Table 1 contains information regarding the datasets, and the datatypes are explained
in Section 3.
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Moving away from the relatively unimpor-
tant training datasets toward the more mean-
ingful primary test datasets (Figure 6), the
performance of ωB97M-V is generally satisfac-
tory, and the new functional has the smallest
RMSD for 15 of the 34 primary test datasets
considered. In order to circumvent the labo-
rious process of documenting the performance
of ωB97M-V for all 34 primary test datasets in
Figure 6, only a handful of the datasets will be
analyzed.
The S66 dataset68,69 is certainly the most

popular of the NCED datasets in the primary
test set, and the performance of ωB97M-V
is very good. Its RMSD of 0.15 kcal/mol
is slightly larger than that of ωB97X-V
(0.13 kcal/mol), which is the best performer.
ωB97M-V performs more than 2 times bet-
ter than M06-2X, nearly 3 times better than
ωB97X-D, and about 4 times better than M11.
At 0.18 kcal/mol, B97M-V has the third small-
est RMSD, and is the best local functional
tested.
The Shields38 dataset79 contains 38 water

clusters, ranging from dimers to decamers.
ωB97M-V performs the best, with an RMSD
of 0.48 kcal/mol, followed by M08-HX, with an
RMSD of 0.51 kcal/mol, and B97M-V, ωB97X-
V, and ωB97X-D, which have RMSDs around
0.7 kcal/mol. The rest of the functionals have
RMSDs between 1 and 3 kcal/mol, with the ex-
ception of MN15-L, which performs very poorly
(10.44 kcal/mol). Binding energies for larger
clusters are evaluated later on, with the 14 wa-
ter 20-mers in the secondary test set.
The CYCONF dataset is taken from the

GMTKN30 database82,95 and contains the iso-
merization energies of 10 cysteine conformers.
Again, ωB97M-V performs the best for this
dataset, with a small RMSD of 0.07 kcal/mol
that is virtually indistinguishable from that of
ωB97X-V, and nearly 3.5 times better than that
of the next best functional, M06-2X.
The HAT707nonMR dataset from the W4-11

database103 contains 505 heavy-atom transfer
energies, and is one of the largest datasets in
the primary test set. ωB97M-V affords an im-
pressive RMSD of 2.64 kcal/mol on this dataset,
performing nearly 25% better than the next

best functional, M06-2X (3.27 kcal/mol), and
45% better than ωB97X-V (3.84 kcal/mol).
The most interesting datasets contained in

this paper are found in the secondary test set,
as most of them are taken from papers that
were very recently published. Furthermore, the
secondary test set is the truest form of trans-
ferability testing, as it was compiled and evalu-
ated after ωB97M-V was fully self-consistently
trained. Thus, the bulk of the remaining dis-
cussion in this section will be focused on the
datasets from the secondary test set (Figure 7).
3B-69-DIM is a dataset created from the 3B-

69 dataset of Beran and coworkers,70 and con-
tains all relevant pairs of monomers that can be
constructed from the 69 trimers. This results in
a total of 207 dimer binding energies and serves
as a stringent test of transferability for the
new functional. ωB97M-V performs outstand-
ingly for this dataset, with an RMSD of 0.16
kcal/mol, followed by ωB97X-V and B97M-V,
with RMSDs of 0.20 and 0.21 kcal/mol, re-
spectively. The next best functional, ωM05-D,
performs nearly 2 times worse than ωB97M-V,
while the best Minnesota functional, M06-2X,
performs more than 3 times worse.
The HB49 dataset73–75 is a very interesting

dataset constructed by Boese, and contains the
binding energies of 49 hydrogen-bonded dimers.
In fact, a recent benchmark of density function-
als on the HB49 dataset found that MP2 at the
basis set limit, with an RMSD of approximately
0.3 kcal/mol, performed better than all of the
tested Rung 1-4 density functionals. Therefore,
it is of interest to assess the performance of
ωB97M-V on the HB49 dataset. The results
are very encouraging: with a low RMSD of
0.23 kcal/mol, ωB97M-V is the only functional
tested which significantly outperforms MP2. In
addition, ωB97X-V performs very comparably
to MP2, with an RMSD of 0.29 kcal/mol. From
the local functionals, B97M-V performs best,
with an RMSD of 0.47 kcal/mol.
While the 3B-69 dataset was originally in-

tended as a benchmark for three-body inter-
molecular interaction energies, it can also be
used as a benchmark for trimer binding ener-
gies (3B-69-TRIM). This is a good transferabil-
ity test for ωB97M-V, since very few trimers
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Dataset Datatype B97�D3(BJ) B97M�V �B97X�V �B97M�V �B97X�D �M05�D M06�2X M08�HX M11 M06�L MN15�L
A21x12 NCED 0.18 0.09 0.05 0.05 0.10 0.10 0.14 0.18 0.18 0.22 0.40
BzDC215 NCED 0.35 0.22 0.21 0.19 0.31 0.28 0.34 0.49 0.31 0.34 0.77
HW30 NCED 0.37 0.13 0.14 0.17 0.31 0.31 0.37 0.34 0.36 0.51 0.56
NC15 NCED 0.18 0.07 0.06 0.05 0.18 0.16 0.14 0.15 0.22 0.26 0.09
S66 NCED 0.42 0.18 0.13 0.15 0.41 0.53 0.33 0.38 0.61 0.61 2.16
S66x8 NCED 0.35 0.19 0.21 0.11 0.34 0.39 0.38 0.58 0.57 0.52 1.60

FmH2O10 NCEC 10.34 0.17 0.18 0.43 2.88 4.67 8.53 3.01 1.73 3.33 17.61
Shields38 NCEC 2.75 0.69 0.70 0.48 0.73 1.75 1.77 0.51 1.19 1.47 10.44

SW49Bind345 NCEC 0.82 0.38 0.31 0.27 0.76 0.70 0.57 0.60 0.88 0.42 2.15
SW49Bind6 NCEC 1.57 0.81 0.64 0.60 0.70 0.70 0.90 1.15 1.88 0.44 5.11
WATER27 NCEC 2.66 1.37 0.92 0.51 0.65 2.61 2.73 1.26 1.14 1.43 8.49
Bauza30 NCD 2.31 2.07 0.81 0.60 1.34 0.88 1.30 1.14 1.10 1.95 2.07
CT20 NCD 0.43 0.29 0.11 0.11 0.50 0.34 0.23 0.35 0.52 0.40 0.33
XB51 NCD 1.77 0.94 1.48 1.29 1.13 1.01 0.73 0.98 1.97 0.89 1.08
ACONF IE 0.10 0.13 0.02 0.07 0.27 0.24 0.29 0.46 0.73 0.49 0.85
CYCONF IE 0.70 0.27 0.09 0.07 0.40 0.29 0.24 0.33 0.40 0.40 0.56

Pentane14 IE 0.28 0.31 0.08 0.13 0.16 0.20 0.13 0.29 0.49 0.38 0.43
SW49Rel345 IE 0.76 0.10 0.23 0.13 0.86 0.68 0.24 0.32 0.31 0.43 0.66
SW49Rel6 IE 1.08 0.10 0.27 0.18 1.20 0.87 0.33 0.26 0.24 0.73 0.98
DIE60 ID 1.75 1.93 0.82 0.65 0.79 0.96 0.84 0.96 0.97 2.63 2.08

ISOMERIZATION20 ID 3.81 2.85 1.59 1.91 1.80 1.23 1.50 1.78 2.24 3.87 2.93
AlkIsod14 TCE 2.24 0.58 1.84 1.05 2.37 1.48 1.72 1.93 2.14 3.93 0.83
BH76RC TCE 4.07 2.71 1.89 1.22 1.79 1.37 1.20 1.55 2.10 4.18 3.26
EA13 TCE 3.73 2.48 2.96 2.21 2.30 2.96 2.51 1.53 0.75 5.10 3.09

HAT707nonMR TCE 5.07 3.88 3.84 2.64 3.69 3.52 3.27 3.80 3.80 5.36 4.17
IP13 TCE 3.49 3.81 3.36 3.12 3.17 2.93 3.18 4.10 5.45 2.71 2.36

NBPRC TCE 3.66 1.93 2.06 1.06 2.15 1.07 1.28 2.13 3.37 4.72 3.08
SN13 TCE 3.50 1.37 0.98 0.58 0.98 1.02 0.91 0.90 1.83 1.58 2.64

BDE99MR TCD 6.60 3.04 4.86 4.33 5.22 6.52 7.33 7.62 6.72 4.27 2.42
HAT707MR TCD 7.11 3.33 4.82 4.18 4.39 5.08 6.25 6.57 6.44 5.25 3.48
TAE140MR TCD 12.29 5.70 5.45 5.28 6.02 6.17 8.49 9.15 7.73 6.30 4.48

CR20 BH 9.53 2.15 2.90 0.56 3.68 1.64 2.07 2.56 6.24 12.70 1.68
HTBH38 BH 8.28 4.60 2.36 1.72 2.69 2.81 1.29 1.25 1.73 4.66 1.81
NHTBH38 BH 7.58 5.30 1.69 1.98 1.86 1.70 1.67 1.57 1.49 4.86 3.46

Figure 6: RMSDs in kcal/mol for 34 of the 35 primary test datasets (RG10 is excluded) for 11
density functionals. Table 1 contains information regarding the datasets, and the datatypes are
explained in Section 3.
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are found in its training set. ωB97M-V per-
forms very well for this dataset, with the small-
est RMSD of 0.32 kcal/mol. The next best
functionals are ωB97X-V and B97M-V, with
RMSDs of 0.39 and 0.47 kcal/mol, respectively.
Only two other functionals manage RMSDs un-
der 1 kcal/mol: ωM05-D and ωB97X-D, with
RMSDs of 0.65 and 0.88 kcal/mol, respectively.
Having tested the performance of ωB97M-

V for small- to medium-sized water clusters
with the Shields38 dataset in the primary test
set, it is time to consider the H2O20Bind10
and H2O20Bind4 datasets in the secondary test
set, as they contain a total of 14 water 20-
mer binding energies. In order to address both
datasets simultaneously, the geometric mean of
the two RMSDs (GMRMSD) will be consid-
ered. ωB97M-V performs best overall, with
a GMRMSD of 1.01 kcal/mol, while ωB97X-D
and ωB97X-V perform second and third best,
with GMRMSDs of 1.38 and 1.48 kcal/mol.
ωM05-D and B97M-V perform very similarly,
with GMRMSDs around 2.85 kcal/mol, while
M06-2X is the best of the tested Minnesota
functionals, with a GMRMSD of 3.40 kcal/mol.
While the binding energies of small, medium,

and large water clusters have been thoroughly
addressed thus far, it is important to assess
the performance of ωB97M-V for the rela-
tive energies of water clusters. This is done
with the help of three datasets from the sec-
ondary test set: H2O16Rel5, H2O20Rel10, and
H2O20Rel4. Once again, the geometric mean
of these three datasets will be considered for
brevity. The GMRMSD of ωB97M-V across
these three datasets is remarkably small, at only
0.09 kcal/mol. The next best functionals are
ωB97X-D and ωB97X-V, with very similar GM-
RMSDs of 0.22 and 0.24 kcal/mol, respectively.
B97M-V is the best local functional, with a
GMRMSD of 0.41 kcal/mol, while the two re-
maining non-Minnesota functionals (ωM05-D
and B97-D3(BJ)) have GMRMSDs of 0.67 and
1.04 kcal/mol, respectively. None of the Min-
nesota functionals are able to obtain a GM-
RMSD under 1 kcal/mol for these isomerization
energies.
A recent benchmark by Karton and cowork-

ers on the YMPJ519 dataset of amino acid iso-

merization energies99 found ωB97X-V to be the
best Rung 1-4 density functional. Thus, it is
important to verify that ωB97M-V performs
as well as its GGA counterpart. Accordingly,
both ωB97X-V and ωB97M-V have impressive
RMSDs of 0.30 and 0.32 kcal/mol, respectively,
while the smallest RMSD is surprisingly re-
served for B97M-V, at 0.28 kcal/mol. The
rest of the functionals have RMSDs that range
from 0.49 kcal/mol (M06-2X) to 1.51 kcal/mol
(MN15-L).
Another recent benchmark by Martin and

coworkers assessed the performance of various
density functionals for the relative energies of a
handful of C20 and C24 structures.

104 The study
found that only double hybrid functionals were
able to afford RMSDs under 10 kcal/mol (with
the smallest RMSD being around 8.3 kcal/mol).
Therefore, it is interesting to assess the per-
formance of ωB97M-V on this dataset to see
if it can break the 10 kcal/mol barrier. Both
ωB97X-V and ωB97M-V manage RMSDs un-
der 7 kcal/mol, with the former slightly outper-
forming the latter. By contrast, the best local
functional is B97M-V with an RMSD of 25.39
kcal/mol, followed closely by MN15-L (27.43
kcal/mol). From the remaining hybrid func-
tionals, ωB97X-D, ωM05-D, and M08-HX man-
age RMSDs under 20 kcal/mol, while M11 and
M06-2X perform more than 3 times worse than
ωB97M-V.
A very challenging benchmark set by Mar-

tin and coworkers114 assessed the performance
of density functionals for various reactions (ho-
modesmotic, isodesmic, and isogyric) involv-
ing platonic hydrocarbon cages, in addition to
their atomization energies. While the individ-
ual RMSDs for these four datasets are given in
Figure 7, the functionals will be assessed based
on the geometric mean of the four RMSDs. Al-
though the original study found ωB97X-V to be
the most promising Rung 1-4 functional over-
all, ωB97M-V manages a GMRMSD of only
3.86 kcal/mol, compared to ωB97X-V’s GM-
RMSD of 5.99 kcal/mol. Thus, ωB97M-V im-
proves over ωB97X-V by over 50%. The next
best functional (B97M-V) is surprisingly a lo-
cal one, and has a GMRMSD of 7.27 kcal/mol.
The performance of B97M-V is certainly note-
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worthy, since the two local Minnesota function-
als have GMRMSDs larger than 20 kcal/mol.
While M06-2X and M08-HX perform 3 times
worse than ωB97M-V, M11 performs more than
4.5 times worse than ωB97M-V.

6.3 Potential Energy Curves

Within the NCED category, the BzDC215,
NBC10, and S66x8 datasets contain potential
energies curves (PEC) that can be used to as-
sess the accuracy of density functionals for pre-
dicting equilibrium properties of dimers. Fur-
thermore, the RG10 dataset contains all 10
PECs that can be constructed between the rare-
gas dimers from helium to krypton. In to-
tal, these four datasets contain 96 PECs, with
BzDC215, NBC10, and RG10 each having 10,
and S66x8 having 66. Unfortunately, even with
the (99,590)/SG-1 grid, some of the resulting
potential energy curves are too oscillatory to be
accurately interpolated,127–129 primarily for the
Minnesota density functionals. Consequently,
the benzene-neon dimer and the benzene-argon
dimer PECs from BzDC215 were removed, the
sandwich benzene dimer, the methane dimer,
and the sandwich (S2) pyridine dimer PECs
from NBC10 were removed, and the helium
dimer PEC from RG10 was removed, leaving
a total of 90 potential energy curves. Figure
8 contains the equilibrium bond length (EBL)
and equilibrium binding energy (EBE) RMSDs
for these four datasets, along with the corre-
sponding total RMSDs with RG10 excluded
(All*). In order to keep the discussion suc-
cinct, only the RG10 and All* results will be
discussed.
For the nine rare-gas dimers, the three VV10-

containing functionals predict reasonably ac-
curate equilibrium bond lengths, with RMSDs
around 0.07 Å. The only other functional that
manages an EBL RMSD of under 0.1 Å for
the rare-gas dimers is MN15-L. However, it is
important to mention that MN15-L was fit to
at least a single point from the PEC of six of
the nine rare-gas dimers considered here. The
rest of the Minnesota functionals perform very
poorly, with RMSDs between 0.2 and 0.7 Å.
ωB97X-D also performs poorly, with an RMSD

of 0.403, while the worst overall performer is
ωM05-D, with an RMSD of 0.722 Å.
Moving on to the 81 PECs in the All* cat-

egory, the best performance is exhibited by
ωB97M-V, with a very impressive equilibrium
bond length RMSD of only 0.014 Å. In fact,
ωB97M-V performs almost 2 times better than
the next best functional, B97M-V, and 3 times
better than ωB97X-V. The five Minnesota func-
tionals have RMSDs that range from 0.043 Å
(M06-L) to 0.088 Å (M08-HX and MN15-L),
while ωM05-D, a range-separated hybrid func-
tional based on the M05 functional form,30

performs almost as well as B97M-V, with an
RMSD of 0.027 Å.
As for the All* equilibrium binding ener-

gies, ωB97M-V, ωB97X-V, and B97M-V per-
form very well, with RMSDs between 0.15 and
0.17 kcal/mol, while the rest of the function-
als (except MN15-L) have RMSDs that lie be-
tween 0.3 and 0.6 kcal/mol. MN15-L, on the
other hand, has an All* EBE RMSD of nearly
2 kcal/mol, which is more than 3 times larger
than that of M06-L.
Although the benzene-argon dimer was re-

moved from the BzDC215 dataset in order to
generate the RMSDs discussed thus far, it is
nevertheless an interesting example of a sys-
tem bound primarily by dispersion. Further-
more, due to the inherent weakness of the in-
teraction, it is a case that can be used to assess
the sensitivity of density functionals (especially
meta-GGAs) to the integration grid. Figure 9
displays the PEC for the benzene-argon dimer
as calculated by 6 of the 11 benchmarked den-
sity functionals with the (99,590)/SG-1 grid. It
is evident that the grid filtering that was ap-
plied in Section 5 worked successfully, since the
PEC of ωB97M-V is nearly as smooth as that
of ωB97X-V for this system. By contrast, the
Minnesota functionals are far harder to con-
verge with respect to the grid, with M06-2X
appearing to behave better than either M06-L
or MN15-L.
Considering the accuracy of the PECs them-

selves, ωB97M-V, ωB97X-V, and B97M-V are
very accurate, with equilibrium bond length er-
rors of -0.008, -0.01, and -0.026 Å, respectively.
M06-2X has an EBL error that is around 0.1 Å
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Dataset Datatype B97�D3(BJ) B97M�V �B97X�V �B97M�V �B97X�D �M05�D M06�2X M08�HX M11 M06�L MN15�L
3B�69�DIM NCED 0.48 0.21 0.20 0.16 0.39 0.29 0.52 0.74 0.87 0.72 1.27
AlkBind12 NCED 0.38 0.20 0.12 0.13 1.00 1.18 0.30 0.28 0.51 0.38 3.49

CO2Nitrogen16 NCED 0.58 0.21 0.10 0.09 0.81 0.62 0.36 0.58 0.86 1.16 0.82
HB49 NCED 0.76 0.47 0.29 0.23 0.37 0.56 0.56 0.48 0.63 0.72 2.00
Ionic43 NCED 1.33 0.67 0.78 0.70 1.07 0.83 1.16 1.38 1.63 1.02 2.39

3B�69�TRIM NCEC 1.11 0.47 0.39 0.32 0.88 0.65 1.31 1.90 2.14 1.71 2.70
CE20 NCEC 1.78 0.82 0.69 0.65 0.42 1.42 1.44 0.45 1.70 1.34 6.32

H2O20Bind10 NCEC 17.87 2.76 1.18 0.97 1.95 1.36 3.50 3.91 9.86 6.32 46.44
H2O20Bind4 NCEC 10.62 2.96 1.87 1.06 0.98 5.91 3.30 4.75 9.44 8.10 40.25
H2O16Rel5 IE 1.40 0.41 0.38 0.04 0.11 0.56 1.91 1.08 1.43 2.21 5.03
H2O20Rel10 IE 0.45 0.32 0.11 0.12 0.40 0.67 1.44 0.94 1.07 1.33 2.43
H2O20Rel4 IE 1.78 0.53 0.30 0.14 0.23 0.79 1.92 0.93 1.24 3.01 5.92
Melatonin52 IE 0.52 0.37 0.11 0.16 0.31 0.35 0.27 0.47 0.74 0.88 1.55
YMPJ519 IE 0.82 0.28 0.30 0.32 0.71 0.54 0.49 0.64 0.80 0.65 1.51
C20C24 ID 35.87 25.39 6.66 6.97 12.23 17.65 23.20 19.12 22.90 41.27 27.43
BSR36 TCE 4.01 0.35 2.87 1.11 5.19 2.62 4.46 3.50 2.46 7.00 3.63

HNBrBDE18 TCE 4.72 4.21 2.55 2.62 4.29 3.65 3.07 0.95 1.79 5.21 4.19
WCPT6 TCE 1.19 0.99 1.07 0.36 1.10 0.72 0.87 0.83 1.64 2.28 0.99

PlatonicHD6 TCD 10.73 5.27 4.89 4.33 4.43 4.88 9.12 6.07 12.91 25.53 15.80
PlatonicID6 TCD 6.99 5.05 5.01 1.92 10.06 9.74 14.37 11.42 10.14 16.65 18.37
PlatonicIG6 TCD 6.08 20.93 6.95 6.55 22.00 10.72 11.21 22.84 33.02 70.12 42.97
PlatonicTAE6 TCD 16.62 5.01 7.55 4.07 4.55 12.73 13.65 18.19 24.46 17.38 16.90

PX13 BH 6.46 1.60 3.38 2.55 1.62 9.62 6.94 3.02 4.45 1.66 12.85
WCPT27 BH 6.72 2.15 2.12 1.82 2.05 4.82 3.42 1.79 2.25 2.24 4.38

Figure 7: RMSDs in kcal/mol for the 24 secondary test datasets for 11 density functionals. Table
1 contains information regarding the datasets, and the datatypes are explained in Section 3.

Dataset B97�D3(BJ) B97M�V �B97X�V �B97M�V �B97X�D �M05�D M06�2X M08�HX M11 M06�L MN15�L
BzDC215 0.036 0.036 0.039 0.034 0.043 0.034 0.101 0.119 0.095 0.064 0.049
NBC10 0.037 0.040 0.050 0.024 0.044 0.042 0.091 0.114 0.076 0.099 0.134
RG10 0.220 0.065 0.062 0.075 0.403 0.722 0.247 0.353 0.673 0.311 0.095
S66x8 0.047 0.022 0.041 0.007 0.037 0.024 0.071 0.081 0.067 0.027 0.085
All*�EBL 0.045 0.026 0.042 0.014 0.038 0.027 0.077 0.088 0.071 0.043 0.088
BzDC215 0.47 0.11 0.23 0.24 0.39 0.39 0.44 0.54 0.35 0.44 1.14
NBC10 0.67 0.20 0.17 0.15 0.27 0.45 0.46 0.48 0.82 0.75 1.62
RG10 0.05 0.04 0.03 0.05 0.08 0.16 0.11 0.14 0.17 0.14 0.02
S66x8 0.38 0.17 0.13 0.13 0.44 0.52 0.30 0.34 0.57 0.60 2.05
All*�EBE 0.42 0.17 0.15 0.15 0.42 0.50 0.33 0.38 0.58 0.60 1.94

Figure 8: Equilibrium bond length (EBL) RMSDs in Å and equilibrium binding energy (EBE)
RMSDs in kcal/mol for 11 density functionals. The first section contains the EBL RMSDs while
the second section contains the EBE RMSDs. The All* category contains 81 data points and is
a combination of BzDC215, NBC10, and S66x8. More information regarding the datasets and
excluded potential energy curves can be found in Table 1 and Section 6.3, respectively.
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in magnitude, while M06-L overestimates the
bond length by at least 0.3 Å. The three VV10-
containing functionals manage to reproduce the
equilibrium binding energy rather well, with the
largest error (12%) attributed to ωB97X-V, a
7.5% error attributed to ωB97M-V, and the
smallest error associated with B97M-V (2%).
Despite predicting a bond length that is more
than 0.1 Å too short, M06-2X underestimates
the EBE of the benzene-argon dimer by only
6.5%. By contrast, MN15-L overbinds the sys-
tem by more than 1.15 kcal/mol.

7 Reaching the Basis Set

Limit

Although ωB97M-V was consistently trained
and tested in the def2-QZVPPD basis set (with-
out counterpoise corrections), it is inevitable
that it will be used with different basis sets. As
a result, this section explores the use of ωB97M-
V with 21 basis sets from 4 different fami-
lies, and makes recommendations based on how
closely these basis sets can mimic the results
of the training set basis (TSB), def2-QZVPPD.
For this purpose, four datasets are selected
and tested: S66 representing non-covalent in-
teractions, Pentane14 representing isomeriza-
tion energies, AlkAtom19 representing thermo-
chemistry, and CRBH20 representing barrier
heights. For the S66 dataset, the calculations
are performed both with and without counter-
poise corrections (designated CP and noCP, re-
spectively), because it is very unlikely that a
double- or triple-zeta basis set without counter-
poise corrections will be able to reproduce the
quadruple-zeta, def2-QZVPPD basis set bind-
ing energies. The results, summarized in Fig-
ure 10, are analyzed using two sets of RMSDs
(the first relative to the reference values and
the second relative to the def2-QZVPPD val-
ues) for each of the five datasets of interest:
S66 CP, S66 noCP, Pentane14, AlkAtom19, and
CRBH20. In order to facilitate the use of Figure
10, the basis sets are sorted based on the geo-
metric mean (GM) of the S66 CP, Pentane14,
AlkAtom19, and CRBH20 RMSDs relative to
the TSB. The S66 noCP RMSD is excluded

from the GM because it unfairly disadvantages
triple-zeta basis sets. Furthermore, the RMSDs
within each dataset are color-coded, with green
indicating that the use of the corresponding ba-
sis set with the type of interaction represented
by the corresponding dataset is recommended,
yellow indicating that the pairing should be
used with caution, and red indicating that the
pairing should not be used. Finally, the number
of basis functions that each basis set contains
for octane is shown in the last column of Figure
10.
From the outset, it is clear that a hand-

ful of basis sets are entirely incompatible with
ωB97M-V, namely def2-SVP, def2-SVPD, pc-
0, aug-pc-0, pc-1, aug-pc-1, and cc-pVDZ. This
result is expected, since the functional is trained
as close to the basis set limit as possible. On
the other hand, it is clear that certain basis sets
are very compatible with ωB97M-V, namely
pc-3, aug-pc-3, aug-cc-pVQZ, and of course,
def2-QZVPPD. These basis sets work superbly
well for isomerization energies, thermochem-
istry, and barrier heights, and provide accu-
rate binding energies for non-covalent interac-
tions with and even without counterpoise cor-
rections. With counterpoise corrections, aug-
pc-2 and def2-QZVPP additionally provide sat-
isfactory results for all four types of interac-
tions. While the smallest basis set that can
successfully handle all four categories is aug-
pc-2 with 274 basis functions for octane, two
smaller basis sets, pc-2 and def2-TZVPPD, are
almost always satisfactory, with the former be-
ing considerably smaller than aug-pc-2. In fact,
the only result that makes pc-2 not fully satis-
factory is the S66 CP RMSD relative to the
TSB (0.11 kcal/mol). However, the RMSD rel-
ative to the reference values is actually very
impressive (0.13 kcal/mol). Thus, pc-2, with
only 188 basis functions for octane, is the most
economical option that can be recommended
for use with ωB97M-V. def2-TZVPPD, on the
other hand, has an RMSD of 2.75 kcal/mol
for AlkAtom19, relative to the TSB. However,
the RMSD of 1.86 kcal/mol relative to the ref-
erence values is still acceptable, making def2-
TZVPPD, with only 230 basis functions for oc-
tane, another economical basis set choice. The
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Figure 9: Potential energy curves for the benzene-argon dimer from BzDC215 as computed by 6
of the 11 benchmarked density functionals. The gray curve represents the DFT method, while
the blue curve represents the reference method. The line immediately following the functional
name contains the equilibrium bond length in Å and the error (with respect to the reference) in
parentheses. The following line contains the same information for the equilibrium binding energy
(in kcal/mol).

rest of the basis sets that have not been men-
tioned explicitly must be used very cautiously.

8 Reaching the Integration

Grid Limit

Different density functionals converge to the
integration grid limit at different rates. Dur-
ing the training process of ωB97M-V, the bil-
lions of candidate functionals were filtered such
that the least-squares fit energies generated in
the (99,590)/SG-1 and (250,974)/SG-1 grids
differed by an absolute maximum of 0.015
kcal/mol. The effectiveness of this decision
is tested by analyzing the grid sensitivity of
ωB97M-V on all of the datasets in the train-
ing and primary test sets (with the exception
of AE18 and RG10) with the following grids:
(250,974)/SG-1, (99,590)/SG-1, (99,302)/SG-
1, (75,590)/SG-1, (75,302)/SG-1, (75,302)/SG-
0, and SG-1/SG-0.
Table 5 summarizes the results of this com-

prehensive test involving 3248 data points,
which are binned with respect to the absolute
error (AE) in kcal/mol. The table is populated
with the assumption that the (250,974)/SG-1
results are fully converged with respect to the
grid. Starting with the (99,590)/SG-1 grid, it is
clear that the filtering applied during the train-
ing stage has completely transferred to the final
functional form, since all 3248 data points have
absolute errors less than 0.015 kcal/mol. Fur-
thermore, changing the number of radial shells
from 99 to 75 (while keeping the number of
angular grid points constant) seems to have a
negligible effect on the results, yet accelerates
the integration of the local exchange-correlation
functional by 25%. On the other hand, chang-
ing the number of angular grid points from 590
to 302 (while keeping the number of radial shells
constant) seems to have a much more profound
effect. Based on the negligible effect of tran-
sitioning from (99,590)/SG-1 to (75,590)/SG-
1, it is reasonable to assume that transitioning
from (99,302)/SG-1 to (75,302)/SG-1 should
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Dataset GM BF
Comparison vs.�Ref vs.�TSB vs.�Ref vs.�TSB vs.�Ref vs.�TSB vs.�Ref vs.�TSB vs.�Ref vs.�TSB vs.�TSB C8H18

def2�QZVPPD 0.15 0.00 0.14 0.00 0.13 0.00 0.91 0.00 1.23 0.00 0.00 350
def2�QZVPP 0.18 0.13 0.14 0.02 0.13 0.00 0.85 0.05 1.20 0.03 0.02 316
aug�cc�pVQZ 0.15 0.03 0.14 0.01 0.13 0.00 0.66 0.25 1.20 0.11 0.03 412
aug�pc�3 0.15 0.02 0.14 0.01 0.12 0.01 0.21 0.76 1.14 0.12 0.05 472
pc�3 0.14 0.03 0.14 0.01 0.12 0.01 0.22 0.74 1.13 0.14 0.05 360

aug�pc�2 0.18 0.08 0.13 0.04 0.12 0.02 0.82 0.09 1.29 0.14 0.06 274
def2�TZVPPD 0.19 0.10 0.13 0.02 0.12 0.01 1.86 2.75 1.20 0.06 0.08 230

pc�2 0.26 0.27 0.13 0.11 0.14 0.02 1.11 0.21 1.18 0.19 0.09 188
cc�pVQZ 0.41 0.41 0.16 0.07 0.13 0.00 1.06 1.95 1.24 0.17 0.10 300

aug�cc�pVTZ 0.27 0.19 0.15 0.04 0.17 0.04 2.62 1.72 1.27 0.27 0.16 274
def2�TZVPP 0.43 0.42 0.15 0.08 0.15 0.03 1.68 2.58 1.13 0.13 0.17 196

LP 0.58 0.51 0.19 0.12 0.16 0.06 0.24 0.98 1.26 0.16 0.18 216
cc�pVTZ 0.96 0.97 0.21 0.15 0.15 0.03 0.80 1.69 1.28 0.45 0.25 188
aug�pc�1 1.93 1.87 0.24 0.18 0.21 0.11 13.80 12.90 1.66 0.81 0.68 162

aug�cc�pVDZ 0.90 0.85 0.20 0.13 0.36 0.25 14.85 13.95 0.71 1.17 0.85 162
cc�pVDZ 2.34 2.35 0.49 0.47 0.09 0.18 6.00 5.09 1.28 1.32 0.86 102
pc�1 2.05 2.05 0.58 0.58 0.10 0.14 13.88 12.99 4.37 3.41 1.39 102

def2�SVP 2.46 2.47 0.41 0.42 0.21 0.24 27.50 28.40 2.10 3.04 1.71 102
def2�SVPD 1.69 1.65 0.27 0.23 0.54 0.43 34.47 35.37 1.79 2.68 1.75 136
aug�pc�0 4.98 4.96 1.51 1.58 0.68 0.59 31.27 30.38 5.37 6.06 3.62 110
pc�0 7.16 7.18 1.51 1.57 0.77 0.68 40.43 41.32 11.04 11.96 4.79 76

S66�noCP S66�CP Pentane14 AlkAtom19 CRBH20

Figure 10: RMSDs in kcal/mol for 4 datasets computed with 21 different basis sets. S66 represents
non-covalent interactions, Pentane14 represents isomerization energies, AlkAtom19 represents ther-
mochemistry, and CRBH20 represents barrier heights. The S66 dataset is computed both with and
without counterpoise corrections (designated CP and noCP, respectively). The RMSDs are taken
with respect to both the reference values (vs. Ref) as well as the training set basis (vs. TSB). The
basis sets are sorted based on the geometric mean (GM) of the S66 CP, Pentane14, AlkAtom19,
and CRBH20 RMSDs relative to the TSB. The S66 noCP RMSD is excluded from the GM because
it unfairly disadvantages triple-zeta basis sets. The number of basis functions (BF) that each basis
set contains for octane is shown in the last column.
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have a negligible effect on the (99,302)/SG-1 re-
sults. The (75,302)/SG-1 results indicate that
this is indeed true.
The goal of this grid analysis is to recom-

mend three tiers of integration grids for use
with ωB97M-V: fine, medium, and coarse. So
far, it is clear that the (99,590)/SG-1 grid is cer-
tainly the finest grid that is necessary to obtain
fully converged results. Thus, the (99,590)/SG-
1 grid is deemed to be the “fine” option for
ωB97M-V. Furthermore, the only other com-
bination that is computationally more effi-
cient than the (99,590)/SG-1 grid yet maintains
its accuracy is the (75,590)/SG-1 grid, which
receives the “medium” certification. While
(75,302)/SG-1 appears to be a viable coarse op-
tion, it is useful to see if the nonlocal grid can
be reduced without incurring substantial addi-
tional errors. Modifying the nonlocal grid from
SG-1 to SG-0 (while maintaining the (75,302)
local grid) only negligibly affects the results.
On the other hand, modifying the local grid
from (75,302) to SG-1 (with SG-0 as the non-
local grid) has a devastating effect on the qual-
ity of the results and is absolutely not recom-
mended. Therefore, the “coarse” specification
is deemed to be the (75,302)/SG-0 grid.
Based on these results, the following three

grids are recommended for use with ωB97M-V:

• fine: (99,590)/SG-1

• medium: (75,590)/SG-1

• coarse: (75,302)/SG-0

9 Conclusions

For semi-empirical density functionals, univer-
sality (or transferability) is impossible to fully
guarantee, because such functionals are neces-
sarily approximate. In other words, for a given
system, a new density functional cannot neces-
sarily improve over existing ones, even though
it may often do so. Nonetheless, within a class
of functionals, transferability can be enhanced
by minimizing the number of empirical parame-
ters (i.e. avoiding overfitting), while increasing

the size of the training and test sets. Even then,
the use of a new density functional should only
be advocated if it statistically improves upon a
wide variety of existing competitors in and be-
low its class, across a very diverse set of bench-
mark systems.
ωB97M-V was developed upon these foun-

dations. A combinatorial, “survival-of-the-
most-transferable” approach was utilized to
screen over 10 billion candidate least-squares
fits based on accuracy, transferability, and de-
sired physical properties, an immense database
of nearly 5000 data points was used to train
and test the most promising fit, and the fi-
nal, self-consistently-optimized density func-
tional was assessed against 10 well-respected
semi-empirical functionals across all 4987 data
points. The results are very encouraging, be-
ginning with a large reduction in the number
of trained parameters versus other meta-GGA
functionals from 29 (M06-2X), 40 (M11), 47
(M08-HX), or 58 (MN15-L), to 12 in ωB97M-V.
The use of additional parameters did not yield
significantly better transferability in the screen-
ing and gradually leads to potential problems
with overfitting.
The combined training, primary test, and sec-

ondary test set results (summarized in Figure
11) indicate that ωB97M-V is remarkably accu-
rate for non-covalent interactions, isomerization
energies, thermochemistry, and barrier heights
across the main-group elements. For both
NCED and NCEC, ωB97M-V is at least 30%
more accurate than the next best tested func-
tional, which is ωB97X-V. ωB97M-V is equiva-
lent to ωB97X-V and B97M-V for IE, but out-
performs all tested functionals by at least 30%
for ID. Additionally, ωB97M-V is almost 40%
more accurate than ωB97X-V for TCE, and
30% more accurate than any tested functional.
For TCD, ωB97M-V significantly outperforms
the next best functionals, which are B97M-V
and ωB97X-V. Finally, despite only having 15%
short-range exact exchange, ωB97M-V is the
best tested density functional for BH.
ωB97M-V was consistently trained and tested

in the def2-QZVPPD basis set (without coun-
terpoise corrections). Thus, it is meant to be
used as close as practically possible to the ba-
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Table 5: Grid error ranges for 3248 data points from the training and primary test
sets. From the original 3835 data points, the 18 data points from AE18 and the
569 data points from RG10 are excluded. The errors are taken with respect to the
(250,974)/SG-1 grid. The grids are assessed with respect to the absolute error (AE)
in kcal/mol.

AE (kcal/mol) [0,0.015) [0.015,0.03) [0.03,0.045) [0.045,0.06) [0.06,0.075) [0.075,0.09) [0.09,∞)

(99,590)/SG-1 3248 0 0 0 0 0 0
(75,590)/SG-1 3245 3 0 0 0 0 0
(99,302)/SG-1 3201 39 3 3 2 0 0
(75,302)/SG-1 3190 50 3 3 2 0 0
(75,302)/SG-0 3123 107 11 5 2 0 0
SG-1/SG-0 1851 587 303 160 101 84 162

sis set limit. Its basis set dependence has been
thoroughly tested across four types of interac-
tions (non-covalent interactions, isomerization
energies, thermochemistry, and barrier heights)
in order to identify basis sets that can pro-
vide results similar in quality to those acquired
with the basis set used for training the param-
eters. The def2-QZVPPD, pc-3, aug-pc-3, and
aug-cc-pVQZ basis sets are recommended for
use, both with and without counterpoise cor-
rections (when applicable). Additionally, the
def2-QZVPP and aug-pc-2 basis sets are rec-
ommended for use with counterpoise correc-
tions (when applicable). Finally, the pc-2 and
def2-TZVPPD basis sets (to be used with coun-
terpoise corrections, when applicable) should
serve as economical choices under most circum-
stances.
Since the evaluation of the kinetic energy den-

sity is very sensitive to the integration grid,
ωB97M-V was trained with the intention of
making the (99,590)/SG-1 grid the integration
grid limit. This goal was met by filtering
fits during the training stage based on their
energetic deviation from the (250,974)/SG-1
grid. Based on tests spanning 3248 data
points, the (75,302)/SG-0 grid is recommended
as a viable coarse option for use with ωB97M-
V (particularly for quick calculations), while
the (99,590)/SG-1 grid is recommended as the
fine option if results near the integration grid
limit are required. For most applications, the
medium-sized (75,590)/SG-1 grid can serve as
a compromise between these two limits.
It is important to discuss the remaining lim-

itations of ωB97M-V. Like most Kohn-Sham
density functionals, it is not appropriate for use
when strong correlation effects are significant
(e.g. see the TCD results in Figure 11). It con-
tains some self-interaction error, which causes
larger errors in problems involving odd elec-
trons or holes (e.g. see the NCD results in Fig-
ure 11). Additionally, it is trained and tested on
main-group elements only, so its performance
on transition metal-containing systems remains
to be tested as suitable reference values become
available. However, the minimal empiricism of
ωB97M-V gives reason for cautious optimism
in cases such as organometallic systems, where
strong correlation is not important.
Finally, it is desirable to apply the same

approach used here to develop other semi-
empirical density functionals with improved
physical content, so that the resulting density
functionals are likewise minimally parameter-
ized and optimally transferable. Perhaps the
most obvious next step is a range-separated
hybrid, meta-GGA density functional that in-
cludes nonlocal correlation through virtual or-
bitals. A functional of this type should have
significantly lower errors due to self-interaction.
We hope to report such a development in due
course.
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Datatype B97�D3(BJ) B97M�V �B97X�V �B97M�V �B97X�D �M05�D M06�2X M08�HX M11 M06�L MN15�L
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TCD 7.92 4.82 5.01 4.30 5.79 5.87 7.23 8.14 9.19 12.97 8.62
BH 8.32 4.35 2.44 1.68 2.34 3.47 2.57 1.80 2.82 6.85 4.78

Figure 11: RMSDs in kcal/mol for 8 datatypes for 11 density functionals. These datatype RMSDs
include data points from the training, primary test, and secondary test sets. NCED stands for non-
covalent dimers (easy), NCEC stands for non-covalent clusters (easy), NCD stands for non-covalent
dimers (difficult), IE stands for isomerization energies (easy), ID stands for isomerization energies
(difficult), TCE stands for thermochemistry (easy), TCD stands for thermochemistry (difficult),
and BH stands for barrier heights. The partitioning of the 4400 data points contained in this figure
into the 8 datatypes is: 1744, 243, 92, 755, 155, 947, 258, and 206.
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