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Initiation and resolution of inflammation are considered to be
tightly connected processes. Lipoxins (LX) are proresolution lipid
mediators that inhibit phlogistic neutrophil recruitment and pro-
mote wound-healing macrophage recruitment in humans via
potent and specific signaling through the LXA4 receptor (ALX).
One model of lipoxin biosynthesis involves sequential metabolism
of arachidonic acid by two cell types expressing a combined trans-
cellular metabolon. It is currently unclear how lipoxins are effi-
ciently formed from precursors or if they are directly generated
after receptor-mediated inflammatory commitment. Here, we pro-
vide evidence for a pathway by which lipoxins are generated in
macrophages as a consequence of sequential activation of toll-like
receptor 4 (TLR4), a receptor for endotoxin, and P2X7, a purinergic
receptor for extracellular ATP. Initial activation of TLR4 results in
accumulation of the cyclooxygenase-2–derived lipoxin precursor
15-hydroxyeicosatetraenoic acid (15-HETE) in esterified form
within membrane phospholipids, which can be enhanced by aspi-
rin (ASA) treatment. Subsequent activation of P2X7 results in effi-
cient hydrolysis of 15-HETE from membrane phospholipids by
group IVA cytosolic phospholipase A2, and its conversion to bio-
active lipoxins by 5-lipoxygenase. Our results demonstrate how
a single immune cell can store a proresolving lipid precursor and then
release it for bioactive maturation and secretion, conceptually similar
to the production and inflammasome-dependent maturation of the
proinflammatory IL-1 family cytokines. These findings provide evi-
dence for receptor-specific and combinatorial control of pro- and
anti-inflammatory eicosanoid biosynthesis, and potential avenues
to modulate inflammatory indices without inhibiting downstream
eicosanoid pathways.

lipidomics | enzyme coupling | membrane remodeling

Acomplex network of danger-sensing receptors and bioactive
peptide and lipid signals, including cytokines and eicosa-

noids, regulates innate immunity. Toll-like receptor (TLR)
priming is suggested as a precautionary step in building a signif-
icant inflammatory response by driving production of IL-1 family
protokines, which remain inactive until a second stimulus drives
them to bioactive maturation and secretion (1). The second step
of this process has been most strongly linked to extracellular
ATP and specifically to one of its purinergic receptors, P2X7 (2,
3), particularly in macrophages (4).
TLR stimulations also increase prostaglandin synthesis

by activating cytosolic phospholipase A2 (cPLA2) through a Ca2+-
independent mechanism to release arachidonic acid (AA) from
phospholipids, and by increasing expression of cyclooxygenase-2
(COX-2) and microsomal prostaglandin E2 synthase-1. P2X7 stim-
ulation activates cPLA2 through a Ca2+-dependent mechanism that
couples AA metabolism with 5-lipoxygenase (5-LOX)-activating
protein (FLAP), Ca2+-activated 5-LOX, and constitutive COX-1 to
form leukotrienes (LTs) and prostaglandins (PGs). Short-term
(∼1 h) TLR priming of Ca2+ ionophore/P2X7-activated immune
cells enhances LT synthesis (5, 6), but long-term TLR priming
(16–18 h) significantly suppresses LT synthesis by different cell-
type–specific mechanisms (7, 8).
Whereas PGE2, PGI2, and LTC4 promote local edema from

postcapillary venules, and LTB4 amplifies neutrophil recruitment

to initiate pathogenic killing, subsequent “class switching” to lipoxin
(LX) formation by “reprogrammed” neutrophils inhibits additional
neutrophil recruitment during self-resolving inflammatory resolu-
tion (9). The direct link between inflammatory commitment and
resolution mediated by eicosanoid signaling in macrophages
remains unclear from short-term vs. long-term priming, but the
complete temporal changes and important interconnections
within the entire eicosadome are now demonstrated.

Results
We first primed immortalized macrophage-like cells (RAW264.7)
with the TLR4 agonist Kdo2 lipid A (KLA) for various times and
examined the effects on subsequent purinergic stimulated COX
and 5-LOX activity using targeted lipidomic monitoring (Fig. 1A).
Total 5-LOX products (5-HETE, LTC4, 11-trans LTC4, LTB4,
6-trans,12-epi LTB4, 6-trans LTB4, and 12-epi LTB4) peaked at
2 h and diminished steadily at later time points; total levels from
12 to 24 h were less than 1% of maximal 2-h levels. Total COX
products [PGD2, PGE2, PGF2α, PGJ2, 15-deoxy PGD2, 15-deoxy
PGJ2, 11-hydroxyeicosatetraenoic acid (11-HETE) and 15-
HETE] were lowest during short-term TLR4 priming and
steadily increased with longer priming durations. AA levels in
media were maximal with 2-h priming and were vastly reduced
with 8-h priming and beyond (Fig. S1); AA release during major
COX activity from 2 to 12 h may therefore be slower and/or
coupled to COX-2.
The proresolution mediators lipoxin A4 (LXA4) and 15-epi–

LXA4 were also detected between 4 and 10 h of TLR4 priming
and peaked at 8 h (Fig. 1A). LXA4 and 15-epi–LXA4 are trihy-
droxylated eicosanoids derived from 15(S)-HETE and 15(R)-
HETE, respectively. The 15-HETE comprises ∼1–3% COX-2
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metabolism in four different macrophage phenotypes, including
RAW cells, after 8 h TLR4 stimulation (10). Here, lipoxins
were formed between 4 and 10 h of TLR4 priming, after the
initial phase when COX-2 and 5-LOX products were significantly
elevated.
Celecoxib, which specifically inhibits COX-2 formation of

PGH2, 11-HETE, and 15-HETE, caused a ∼50% decrease in
formation of both PGD2 and lipoxins (Fig. 1B) at 50 nM [near
the reported human COX-2 IC50 of 40 nM (11) and far below the
COX-1 IC50 of 15 μM (11)], thus demonstrating that lipoxin
biosynthesis in this system requires COX-2. Additionally, we
observed a threefold increase in 5-LOX products vs. without
celecoxib after 7.5 h of TLR4 priming (Fig. 1B), confirming that
5-LOX was still active and competes with COX-2 for AA. In the
presence of both 1 μM PGE2 and 50 nM celecoxib, we observed
no inhibition of total 5-LOX metabolism after long-term priming
compared with treatment with celecoxib alone (Fig. S2), which
rules out down-regulation of FLAP and reduced 5-LOX activity
via PGE2-mediated IL-10 signaling that has been observed in
dendritic cells (8). These results were then recapitulated in
primary macrophages. Resident peritoneal macrophages (RPMs)
express approximately twofold higher constitutive levels of
5-LOX and FLAP vs. RAW cells (Fig. S3) and twofold lower

levels of COX-2 after TLR4 stimulation (10). RPMs produced
lipoxins with long-term priming (Fig. S4 A and B), and increasing
cell density increased the level (and concentration) of PGE2, but
this did not limit lipoxin formation or 5-LOX metabolism of AA
based on levels of LTC4 (Fig. S4 C and D). Thus, RPM and
RAW macrophages both retain 5-LOX activity in the presence
of exogenous or endogenous PGE2, unlike in dendritic cells (8).
Ultimately, lipoxins from macrophages likely represent an addi-
tional source of the total that might be found in certain physio-
logical environments. Lipoxins can be formed by coordinate
conversion of endothelial COX-2/mucosal epithelial 15-LOX–
derived 15-HETE with neutrophil 5-LOX, or neutrophil 5-LOX–
derived LTA4 with platelet 12-LOX, which inhibit neutrophil
extravasation (12). Macrophages initially recruit neutrophils via
leukotriene and chemokine signaling in response to TLR signaling
and may subsequently switch to forming lipoxins to inhibit neu-
trophil recruitment in response to high ATP levels.
To assess the enzymatic control of lipoxin formation, chiral

chromatography was used to determine the proportions of 15(R)-
HETE and 15(S)-HETE in TLR4 primed/purinergic-stimulated
RAW cells in the presence and absence of aspirin (ASA). Acet-
ylation of COX-2 by ASA inhibits PG formation and enhances
15(R)-HETE formation (13). Non–ASA-treated cells produced
15(R)- and 15(S)-HETE at a ratio between 1:3 and 1:4 (R:S)
(Fig. 2A), and produced both lipoxin epimers at a ratio of ∼1:2
(15-epi–LXA4:LXA4). In the presence of ASA, RAW cells pro-
duced almost exclusively 15(R)-HETE and 15-epi–LXA4. These
results demonstrate that COX-2 activity with or without aspirin
treatment can lead to formation of 15-epi–LXA4, which is more
slowly inactivated by 15-hydroxyprostaglandin dehydrogenase
(PGDH) than LXA4 (12). Lipoxins are well known to be formed
by either 12- or 15-LOX activity along with 5-LOX, although
the additional contribution by COX-2 may partially explain the
observance of delayed resolution caused by COX-2 inhibition
or knockout in vivo (14, 15).
We then assessed the individual contributions of TLR4 and

purinergic stimulation to macrophage lipoxin synthesis. LC-MS/
MS chromatograms from incubations with only KLA for 7.5 h or
ATP for 30 min contained no detectable peaks coeluting with
lipoxins (Fig. 2B). Four peaks resulted from TLR4 primed,
purinergic-stimulated RAW cells, with the third peak coeluting
with LXA4 and 15-epi–LXA4. TLR4 primed, purinergic-stimu-
lated cells in the presence of ASA produced exponentially higher
levels of four peaks observed in non–ASA-treated cells, and the
third peak coeluted with LXA4 and 15-epi–LXA4. ASA treat-
ment partially inhibited COX prostanoids (Fig. S5A) and pro-
portionally increased the levels of 15-HETE and lipoxins (Fig. S5
B and C). ASA has previously been shown to specifically increase
COX-2–mediated formation of 15(R)-HETE and induce forma-
tion of aspirin-triggered lipoxins, including bioactive 15-epi–LXA4
in cocultures of endothelial cells and neutrophils (16). This same
study also identified a cluster of peaks resembling those shown in
Fig. 2B, which corresponded to 15-epi–LXA4, 15-epi–11-trans–
LXA4, and other isomers with different double-bond geometry
and C5 and C6 chirality deriving from a 15-epi–5,6-epoxytetraene
intermediate (16). Importantly, low dose (75–81 mg/d) aspirin in
humans has since been shown to be anti-inflammatory (17) and
cardioprotective (18) via increases in 15-epi–LXA4. Our results
determined that macrophages require both TLR4 priming and
purinergic stimulation to synthesize lipoxins, and ASA exponen-
tially enhances their formation. Consistent with this conclusion,
RAW cells produced lipoxins in the presence of exogenous 1 μM
15(R)-HETE and ATP, but not KLA, after 30 min (Fig. 2C). Also,
long-term stimulation with KLA (without adding 15-HETE) led to
accumulation of 15-HETE in membrane phospholipids (Fig. 2C),
and the levels in the extracellular medium increased after addi-
tional stimulation with ATP (Fig. S5B).
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Fig. 1. Duration of TLR4 priming controls purinergic 5-LOX product for-
mation and lipoxin biosynthesis. (A, Inset) Protocol for TLR4 priming (Kdo2

lipid A, KLA) starting at time = 0 followed by ATP stimulation at indicated
times and subsequent reaction quench as endpoint (further details can be
found in SI Materials and Methods); eicosanoid levels from RAW264.7 (RAW)
cell medium after TLR4 priming with 100 ng/mL KLA for varying durations
before stimulation with 2 mM ATP for the final 10 min include total COX
products (PGD2, PGE2, PGF2α, PGJ2, 15-deoxy PGD2, 15-deoxy PGJ2, 11-HETE,
and 15-HETE); total 5-LOX products (5-HETE, LTC4, 11-trans LTC4, LTB4,
6-trans,12-epi LTB4, 6-trans LTB4, and 12-epi LTB4); lipoxins (LXA4 and 15-epi–
LXA4). (B) Levels of PGD2, lipoxins (LXA4 and 15-epi–LXA4), and total 5-LOX
products (as in A) from RAW medium after KLA priming for the indicated
times in the absence (white bars) or presence (black bars) of 50 nM celecoxib
(∼IC50) followed by stimulation with ATP for the final 30 min; PGD2 levels
were decreased with celecoxib treatment vs. control with 1-h TLR4 priming
(*P < 0.01) and 7.5 h TLR4 priming (***P < 0.0001); lipoxin levels were not
detected (N.D.) with 1 h priming and were decreased at 7.5 h TLR4 priming
with celecoxib treatment vs. control (**P < 0.005); total 5-LOX products with
1-h priming were not significantly different with celecoxib vs. control, and at
7.5-h priming were increased with celecoxib vs. control (***P < 0.0001). Data
are mean values of three separate experiments ± SEM.
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We then examined specific purinergic receptor requirements
for lipoxin synthesis because most P2X and P2Y receptors can be
activated by nanomolar ATP concentrations, whereas only P2X7
requires high micromolar–millimolar concentrations (19). In
murine macrophages, P2X7 was previously shown to be responsible
for the majority of eicosanoids generated with mM ATP (20).
Lipoxin synthesis was confirmed to be dependent on P2X7 stimu-
lation by varying the concentration of ATP in the presence of 1 μM
15(R)-HETE. PG and LT (Fig. 3A) and AA levels (Fig. S6) in-
creased significantly only with mM ATP vs. midhigh μM ATP;
15-epi–LXA4 was only detected with mM ATP (Fig. 3A).
Whereas formation of PG and 15-HETE by COX, and LT and

5-HETE by 5-LOX all require hydrolysis of esterified AA by
cPLA2, it has generally been assumed that lipoxin production from
15-HETE is independent of cPLA2 action. However, we found that
in the presence of 1 μM 15(R)-HETE and a potent, selective in-
hibitor of cPLA2 [without effect on FLAP or 5-LOX (21)], pyrro-
phenone, ATP-stimulated COX and 5-LOX arachidonate-derived
product formation was dose dependently inhibited as expected, and
yet 15-epi–LXA4 was also dose dependently inhibited (Fig. 3B).

It is known that 15-HETE supplied to neutrophils is rapidly es-
terified into membrane phosphatidylinositol (PI), phosphatidyl-
choline (PC), and other phospholipids and neutral lipids within 15 s
to 20 min (22). Subsequent activation with the Ca2+ ionophore
A23187 is able to induce formation of LXA4 (22); however, the
enzymes involved in 15-HETE liberation or hydrolysis from phos-
pholipid precursors have not been elucidated. We found that RAW
cells also rapidly incorporate exogenous 15-HETE into phospholi-
pids, and levels decreased 10-fold in the presence of ATP with
a concomitant increase in esterified 5-HETE levels (Fig. 3C). ATP-
stimulated hydrolysis of esterified 15-HETE was completely abol-
ished with pyrrophenone, but was unaffected by the group (G)IIA,
V, and X sPLA2 inhibitor, LY315920 (varespladib). We additionally
confirmed that a third macrophage phenotype, primary bone-mar-
row–derived macrophages (BMDMs), also produced lipoxins with
TLR4 priming and 2 mM ATP (Fig. 3D). Genetic deletion of
GIVA cPLA2 abolished lipoxin production (Fig. 3D), 15-HETE
incorporation into phospholipids after TLR4 priming, and sub-
sequent release of 15-HETE after ATP stimulation (Fig. 3E).
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Discussion
We have demonstrated here that 15-HETE generated by native
and aspirin-acetylated COX-2 participates in classic membrane
remodeling through which it is efficiently coupled to the cPLA2–

FLAP–5-LOX pathway in parallel to AA during key inflam-
matory receptor stimulations (Fig. 4). Part of this mechanism
elucidates the endogenous enzymatic efficiency by which lipoxin
synthesis occurs in the established two-cell systems via trans-
cellular metabolism, as well as in single-cell systems. Because
FLAP and Ca2+-activated 5-LOX are primarily localized at the
perinuclear membrane (23), release of AA by cPLA2 at this site
is crucial for leukotriene synthesis, and 15-HETE conversion to
lipoxins through FLAP and 5-LOX is under spatial and tem-
poral constraints. The potential for cellular cPLA2 to hydrolyze
15-HETE was previously negated based on in vitro studies where
activity was only observed when 15-HETE comprised 5 mol% or
less in phospholipid vesicles (24). This observation is actually
supportive, because 15-HETE levels measured in phospholipids
after KLA stimulation (Fig. 2C) or with exogenous 15-HETE
(Fig. 3C) were over 100-fold lower than AA levels we have
previously measured (25), not counting the high levels of other
fatty acids present in cells. Most interestingly, macrophages more

efficiently convert esterified 15-HETE to lipoxins via priming vs.
exogenous/transcellular routes (Fig. S7 A and B), which we
propose is due to colocalization of COX-2, FLAP, and 5-LOX at
the perinuclear membrane along with cPLA2. A phospholipase
that is largely expressed in dendritic cells, group IID sPLA2, has
also recently been found to contribute to proresolution mediator
synthesis as well as the resolution of skin inflammation (26).
Thus, coordination between different PLA2 isoforms may also be
required to facilitate maximal proresolution mediator synthesis
in physiological contexts.
Increased PGE2 derived from up-regulated COX-2 during in-

flammation is the primary target of nonsteroidal anti-inflammatory
drugs (NSAIDs) to treat arthritis and many other inflammatory
conditions because of the strong association between PGE2 re-
ceptor EP signaling and pain, yet EP signaling also attenuates TNF-
α expression and up-regulates IL-10 in macrophages (27) and can
increase lipoxin production in vivo during inflammation (15). Omega-
3 fatty acids and aspirin more strongly inhibit COX-1 vs. COX-2 to
promote cardioprotective actions and also partly avoid the afore-
mentioned proinflammatory effects of COX-2 inhibitors. Still, the
results presented herein suggest that therapeutic strategies should
also be directed to the membrane where eicosanoids can be
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Fig. 3. Millimolar ATP and cPLA2 are required for lipoxin biosynthesis in the presence of exogenous 15-HETE or TLR4 priming. (A) Extracellular eicosanoid
levels from RAW cells after 30 min in the presence of 1 μM 15(R)-HETE along with the indicated concentrations of ATP (PGD2, LTC4, and lipoxin levels were
higher with millimolar ATP levels vs. 0–500 μM ATP levels; *P < 0.001). (B) Extracellular eicosanoid levels from RAW cells preincubated for 30 min in the
absence (control) or presence of the indicated concentrations of pyrrophenone; cells were then stimulated with ATP in the presence of 1 μM 15(R)-HETE for
30 min. (C) Eicosanoid levels in membrane phospholipids of RAW cells incubated for 30 min in the absence or presence of ATP and/or 1 μM 15(R)-HETE, and
absence or presence of 500 nM pyrrophenone or 5 μM LY315920 (varespladib); 5-HETE levels increased with 15(R)-HETE + ATP-treated cells in the absence/
presence of LY315920 vs. untreated cells (*P < 0.0001), but not with pyrrophenone treatment or 15(R)-HETE treatment alone; 15-HETE levels decreased in cells
treated with 15(R)-HETE +ATP in the presence/absence of LY315920 vs. treatment with pyrrophenone or with 15(R)-HETE treatment alone (#P < 0.0001). (D) Bone-
marrow–derived macrophages generated from GIVA cPLA2 transgenic mice (Left column) (+/+) and (Right column) (−/−) were stimulated (Upper row) with 100 ng/
mL KLA in the presence of 1 mM ASA for 8 h; (Lower row) with 100 ng/mL KLA in the presence of 1 mM ASA for 7.5 h before stimulation with 2 mM ATP for the
final 30 min. Data are chromatograms of extracellular media generated as described in Fig. 2B and are representative of three separate experiments. Green
asterisk indicates coelution with LXA4 and 15-epi–LXA4 standards. (E) Levels of 15-HETE from membrane phospholipids in BMDM cells (from the same experiment
as in D); 15-HETE levels in KLA + ASA vs. untreated cells (+/+) were increased (**P < 0.001); KLA + ASA + ATP vs. KLA + ASA-treated cells (+/+) were decreased (*P <
0.01); the same comparisons in (−/−) cells found no significant increases or decreases. Data are mean values of three separate experiments ± SEM.

Norris et al. PNAS | September 2, 2014 | vol. 111 | no. 35 | 12749

BI
O
CH

EM
IS
TR

Y

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1404372111/-/DCSupplemental/pnas.201404372SI.pdf?targetid=nameddest=SF7


conditionally introduced into membrane remodeling cycles that
have important implications in inflammation. Although eicosanoids
have been exhaustively studied as secreted mediators, we anticipate
that the complete elucidation of the fates and functions of eicosa-
noids in membranes will uncover new strategies for controlling pro-
and anti-inflammatory signaling.

Materials and Methods
Methods used for cell stimulation and quantitation (6), eicosanoid analysis
(28, 29), transcript quantitation, primary macrophage isolation/ex vivo culture
(10), and phospholipid extraction/saponification (25) were all described in
previous papers, which also established appropriate sample sizes used in this
study. RAW264.7 cells were obtained from the American Type Culture Collec-
tion (cat. no. TIB-71). Full protocols are described in SI Materials and Methods.

Animals. Male, 10-wk-old, C57bl/6 mice were purchased from The Jackson
Laboratory.Mice exhibiting skin lesions or visible tumorswere excluded from the
study. All experiments were carried out according to protocols approved by the
Institutional Animal Care Committee of the University of California, San Diego.

Statistical Analysis. Statistical analyses were performed using Student t test;
P ≤ 0.05 was considered significant.
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