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MRI Super-Resolution with Partial
Diffusion Models

Kai Zhao, Kaifeng Pang, Alex Ling Yu Hung, Haoxin Zheng, Ran Yan, Kyunghyun Sung

Abstract— Diffusion models have achieved impressive
performance on various image generation tasks, including
image super-resolution. Despite their impressive perfor-
mance, diffusion models suffer from high computational
costs due to the large number of denoising steps. In this
paper, we proposed a novel accelerated diffusion model,
termed Partial Diffusion Models (PDMs), for magnetic res-
onance imaging (MRI) super-resolution. We observed that
the latents of diffusing a pair of low- and high-resolution
images gradually converge and become indistinguishable
after a certain noise level. This inspires us to use certain
low-resolution latent to approximate corresponding high-
resolution latent. With the approximation, we can skip part
of the diffusion and denoising steps, reducing the computa-
tion in training and inference. To mitigate the approximation
error, we further introduced ‘latent alignment’ that gradually
interpolates and approaches the high-resolution latents
from the low-resolution latents. Partial diffusion models, in
conjunction with latent alignment, essentially establish a
new trajectory where the latents, unlike those in original dif-
fusion models, gradually transition from low-resolution to
high-resolution images. Experiments on three MRI datasets
demonstrate that partial diffusion models achieve com-
petetive super-resolution quality with significantly fewer
denoising steps than original diffusion models. In addition,
they can be incorporated with recent accelerated diffusion
models to further enhance the efficiency.

Index Terms— Generative models, Diffusion models,
Score-matching, MRI, Super-resolution

I. INTRODUCTION

Magnetic resonance imaging (MRI) is essential in clinical
diagnosis because it provides structural and functional in-
formation without ionizing radiation. High-resolution MRI is
generally desired for precise clinical diagnosis and analysis.
However, acquiring high-resolution MRI is limited due to
various constraints, such as scan time and hardware. MRI
super-resolution (SR) is a promising technique that improves
the resolution of MRI without increasing acquisition time or
decreasing signal-noise ratio (SNR).

In recent years, deep learning has been widely used in image
super-resolution and successfully applied to MRI [1], [2]. Deep
learning models can be trained to map from low-resolution
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(LR) to high-resolution (HR) images from massive training
data. Deep generative models, such as Generative Adversarial
Networks (GANs) [3], have shown impressive results in image
generation and have been applied to super-resolution [2],
[4]. Though generating realistic images, GANs often suffer
from instability in model optimization and model collapse. In
addition, the inconsistency between these artificially generated
details and their lower-resolution inputs can be detrimental
to clinical decision-making. Recently, diffusion models [5]–
[7] have shown remarkable performance on image generation
tasks and have been applied to the super-resolution for both
natural images [8], [9] and MRI [10], [11]. By modeling the
reverse process of gradually diffusing the data distribution
into Gaussian noise, diffusion models generate new images
by iterative denoising from random Gaussian noise. Studies
have shown that diffusion-based SR methods exhibit superior
performance and enhanced consistency [8].

Unlike unconditional image generation, where models are
expected to generate samples from pure noise, image super-
resolution involves generating a high-resolution output from a
low-resolution input image. The low-resolution input exhibits a
similar structure, content, and appearance as a high-resolution
image, except for high-frequency details. This unique feature
raises an interesting question: is it necessary to denoise from
pure noise when applying diffusion models to image super-
resolution?

To answer this question, we first investigate the diffusion
processes of low- and high-resolution image pairs. As shown
in Fig. 1, we found that the latents of low- and high-resolution
images gradually converge and become almost indistinguish-
able after a certain noise level. Given the observation that the
latents are similar, potentially we can use the low-resolution
latent at a certain noise level to approximate the corresponding
high-resolution latent. This motivates us to propose a novel
diffusion model that only executes part of the denoising steps.
As illustrated in Fig. 1, our method uses a low-resolution latent
(𝑥𝐿𝑅𝐾 ) to approximate the high-resolution latent (𝑥𝐻𝑅

𝐾 ). This
allows us to bypass denoising steps between 𝑇 to 𝐾 and only
execute the denoising steps from 𝐾 to 0. Our method, termed
partial diffusion models (PDMs), can accelerate diffusion
models by reducing the number of denoising steps.

Although the two latents are visually similar, there is still
a statistical disparity which will inevitably have a detrimental
effect on the quality of generation, especially when the approx-
imation is made at a lower noise level (smaller 𝐾 values). We
introduced ‘latent alignment’ to mitigate the approximation
error and enhance the quality of generation, which progres-
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Fig. 1: The low- and high-resolution latents and the denoising trajectories of diffusion (top red) and partial diffusion (bottom
blue) models. The low- and high-resolution latents gradually converge and become indistinguishable after certain noise levels
(𝑋𝐾 with blue frames), making it possible to use 𝑥𝐿𝑅𝐾 to approximate 𝑥𝐻𝑅

𝐾 to reduce the number of denoising steps.

sively aligns the low- and high-resolution latents. Concretely,
we interpolate between the low- and high-resolution latents,
gradually transitioning from low resolution to high resolution.
Latent alignment essentially establishes a new denoising (dif-
fusion) trajectory that smoothly transitions from low (high)
resolution to high (low) resolution images, thus avoiding
abrupt discontinuities caused by the approximation.

Extensive experiments on three different MRI datasets
demonstrated that: 1) partial diffusion models are able to
achieve the same or very similar image quality with few
denoising steps. 2) with the same number of denoising steps,
partial diffusion models achieve better image quality, and 3)
partial diffusion models can incorporate with recent accel-
erated diffusion models to further improve the efficiency.In
summary, the contributions of this paper are in three folds:

∙ We qualitatively and quantitatively observed that the
diffusion processes of low- and high-resolution images
gradually converge midway and the latents become indis-
tinguishable.

∙ With the observation, we are motivated to use the latents
of low-resolution images to approximate that of the high-
resolution images. This allows us to accelerate diffusion
models in training and testing by skipping part of the
denoising steps.

∙ We proposed ‘latent alignment’ that establishes a new
trajectory whose latents gradually transition from low-
resolution to high-resolution images to mitigate the ap-
proximation error and improve the quality of generation.

The rest of this paper is organized as follows: Sec. II
summarizes the related works in image super-resolution and
diffusion probabilistic models. Sec. III introduces the back-
ground of the diffusion models. Sec. IV elaborates on the
proposed partial diffusion models (PDMs) and discusses the
key components. Sec. V presents experimental details and
reports comparison results. Sec. VI makes a conclusion
remark.

II. RELATED WORK

Our method is inspired by recent works in generative
models, especially diffusion models [5], [6], [12], for image
super-resolution. In this section, we first briefly introduce
related works in image super-resolution with a focus on deep
learning-based methods and then cover some recent advances
in diffusion models for image super-resolution.

A. Image Super-resolution

Early methods for image super-resolution employ different
types of priors, e.g. edges [13], gradient [14], [15] and
sparsity [16], to recover high-frequency image details. With
the rapid development of deep learning techniques, a line
of deep learning-based super-resolution approaches has been
proposed, achieving appealing results. Many of the early ex-
plorations directly use convolutional neural networks (CNNs)
to regress a high-resolution image [17]–[20] based on a low-
resolution input. Many new architectures [18], [19], [21] and
loss functions [20], [22] have been proposed to improve the
quality of super-resolution. Although being able to generate
images close to the ground-truth, regression-based methods
tend to produce blurry images that correlate poorly to human
perception. Deep generative models, e.g., generative adversar-
ial networks (GANs), have shown impressive performance in
generating high-fidelity realistic images and benefited condi-
tional tasks such as image super-resolution [4], [23]. Many
studies improve GAN-based image super-resolution in network
architecture [4], [23], training strategies [4], and domain-
specific priors [24]. Although GANs provide a promising
direction, they generally suffer from common failure cases of
mode collapse and unstable training [25].

Recently, Saharia et al. [8] and Li et al. [9] adapted diffusion
models for natural image super-resolution and have shown
their outstanding performance in generating realistic high-
resolution images. Hung et al. [10] applied diffusion models
to conditional medical image generation tasks, including MRI
super-resolution. Chung et. al. [11] used diffusion models to
reconstruct high-resolution MR images from low-resolution
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measurements.However, one deficiency of diffusion models is
its tedious generation process, which includes thousands of
denoising steps.

B. Diffusion Probabilistic Models and Acceleration

Diffusion probabilistic models [26] are a class of generative
models that match a data distribution by learning to reverse
a gradual noising process. Diffusion models have received
growing attention in recent years due to their promising results
in generating high perceptual images [5], [6]. Diffusion
models have also shown impressive results in condition image
generation tasks such as image super-resolution [8], [9], [11],
[27]. SR3 [8] takes the low-resolution image as an additional
input to the denoising network and sets up a conditional
denoising framework. SRDiff [9] also uses the low-resolution
image as the condition but executes the diffusion process
in a lower-dimensional hidden space. MedDiff [10] applied
diffusion models to various conditional image generation tasks
in medical imaging including MRI and CT image super-
resolution. Chung et. al. [11] and Xie et. al. [27] apply
diffusion models to the inverse problem of MRI reconstruction
from undersampled measurements.These methods have shown
impressive super-resolution results in restoring high-fidelity
details, especially under large upsampling factors.

While achieving appealing performance in image gener-
ation, diffusion models are notoriously slow in inference
because generating high-quality samples generally needs hun-
dreds or thousands of sequential denoising steps [6]. A
line of studies has been proposed to accelerate diffusion
models for image generation, such as the fast diffusion
probabilistic model solver [28], Denoising Diffusion Implicit
Models (DDIM) [29], and Consistency Models (CM) [30].
SkipDiff [31] selectively skips some denoising steps using
reinforcement learning. Another work [32] predicts an inter-
mediate state using the low-resolution input and then starts
the denoising process from the intermediate to skip denoising
steps. However, this approach requires a separate neural net-
work to predict the intermediate state where denoising begins,
which limits its practical utility.Lu et al. [28] propose an exact
formulation that analytically computes the linear part of the
solution to diffusion ordinary differentiable equations (ODEs).
Chen et al. [33] condition denoising models on the continuous
noise scales instead of discrete denoising steps 𝑡, such that
separate noise schedules can be used in training and testing,
allowing flexible adjustment of denoising steps in inference.
This method requires carefully tuned noise schedules in test-
ing, and the resulting noise schedule is unstable in different
datasets. Model distillation was also introduced to reduce the
denoising steps of diffusion models [34]. More recently, Zheng
et al. [35] propose to add noise not until the data becomes
pure random noise, but until they reach a hidden noisy data
distribution that can be confidently learned. Consequently, few
denoising steps are required to generate data from the hidden
noise distribution.

Different from these general-purpose diffusion model accel-
eration methods, our proposed method is dedicated to image
super-resolution. Our model does not require any additional

computation, and can reduce a large proportion of the denois-
ing steps while achieving competitive image quality. It can be
incorporated with other accelerated diffusion models to further
improve efficiency.

III. BACKGROUND ON DIFFUSION MODELS

We introduce some background of diffusion models and
their applications to super-resolution. We adopt the notation
of DDPMs [6] for both unconditional image generation and
conditional image generation for image super-resolution.

A. Denoising Diffusion Probabilistic Models

Diffusion models transform data samples 𝑥0 into Gaussian
noise 𝑥𝑇 through a gradual noising process and generate new
data by learning to reverse this process. The transition from
data to noise is referred to as the forward process (or diffusion
process), and the opposite is called the reverse process (or
denoising process).

1) Forward process: The forward process transforms data
into Gaussian noise by iteratively adding Gaussian noise to a
clean sample 𝑥0. This can be formulated as a Markov process
with pre-defined Gaussian transitions:

𝑞(𝑥1∶𝑇 |𝑥0) =
𝑇
∏

𝑡=1
𝑞(𝑥𝑡|𝑥𝑡−1), (1)

where

𝑞(𝑥𝑡|𝑥𝑡−1) ∶=  (𝑥𝑡;
√

1 − 𝛽𝑡𝑥𝑡−1, 𝛽𝑡𝐈) (2)

is the forward Gaussian transition with variances 𝛽𝑡. Ideally,
with sufficiently large 𝑇 and well-behaved 𝛽𝑡, 𝑥𝑇 is nearly
an isotropic Gaussian distribution. As noted by Ho et al. [6],
the diffusion process defined in Eq. (1) allows us to sample
arbitrary steps of the latent step 𝑥𝑡 conditioned on the input
𝑥0:

𝑞(𝑥𝑡|𝑥0) =  (𝑥𝑡;
√

𝛼𝑡𝑥0, (1 − �̄�𝑡)𝐈)

𝛼𝑡 ∶= 1 − 𝛽𝑡, �̄�𝑡 =
𝑡

∏

𝜏=1
𝛼𝜏 .

(3)

√

�̄�𝑡 is also called the ‘noise scale’ of 𝑥𝑡. Furthermore,
following DDPM [6], we can derive the posterior distribution
of 𝑥𝑡−1 given 𝑥𝑇 and 𝑥0:

𝑞(𝑥𝑡−1|𝑥𝑡, 𝑥0) = 
(

𝑥𝑡−1; �̃�𝑡(𝑥𝑡, 𝑥0), 𝛽𝑡𝐈
)

, (4)

�̃�𝑡(𝑥𝑡, 𝑥0) ∶=

√

�̄�𝑡−1𝛽𝑡
1 − 𝛼𝑡

𝑥0 +

√

𝛼𝑡(1 − �̄�𝑡−1)
1 − �̄�𝑡

𝑥𝑡 (5)

𝛽𝑡 ∶=
1 − �̄�𝑡−1
1 − �̄�𝑡

𝛽𝑡. (6)

The forward posterior in Eq. (4) will be compared with the
learned reverse posterior during training.
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2) Reverse process: The reverse process (denoising pro-
cess) learns to recover the original sample 𝑥0 𝑥𝑇 ∼  (0, 𝐈).
This process is formulated as a Markov process with learned
transitions:

𝑝𝜃(𝑥0∶𝑇 ) = 𝑝(𝑥𝑇 )
𝑇
∏

𝑡=1
𝑝𝜃(𝑥𝑡−1|𝑥𝑡), (7)

where

𝑝𝜃(𝑥𝑡−1|𝑥𝑡) = 
(

𝑥𝑡−1;𝜇𝜃(𝑥𝑡, 𝑡),Σ𝜃(𝑥𝑡, 𝑡)
)

(8)

is the reverse Gaussian transition with learned mean 𝜇𝜃(𝑥𝑡, 𝑡)
and variance Σ𝜃(𝑥𝑡, 𝑡). Note that the variance Σ𝜃(𝑥𝑡, 𝑡) can
be either a time-dependent constant or learned by a neural
network [6], and the mean 𝜇𝜃(𝑥𝑡, 𝑡) is parameterized by a
neural network. The reverse process transforms the standard
Gaussian distribution 𝑥𝑇 ∼  (0, 𝐈) into data distribution
𝑝(𝑥0).

With learned transition distribution 𝑝𝜃 , to generate a new
image from the reverse process, we first sample 𝑥𝑇 from
standard Gaussian distribution, and then sample �̂�𝑡−1 from
𝑝𝜃(𝑥𝑡−1|𝑥𝑡) for 𝑡 = 𝑇 , 𝑇 − 1, ..., 1. �̂�0 is the data generated
from DDPMs.

Data generation of DDPMs is extremely time-consuming
because it involves hundreds or even thousands of evaluations
of the neural network parameterizing transition 𝑝𝜃 . Therefore,
It is necessary to accelerate the sampling process of the DDPM
for practical utilization.

3) Optimization: Like other latent variable generative mod-
els, such as VAE [36], training DDPMs is performed by
optimizing the evidence lower bound (ELBO) on negative log-
likelihood [6]:

 = 𝔼𝑞 log
𝑝𝜃(𝑥0∶𝑇 )
𝑞(𝑥1∶𝑇 |𝑥0)

= 𝐿0 +
∑

𝑡>1
𝐿𝑡 + 𝐿𝑇 ,

(9)

where
𝐿0 = − log

(

𝑝𝜃(𝑥0|𝑥1)
)

𝐿𝑡 = 𝐷𝐾𝐿
(

𝑞(𝑥𝑡−1|𝑥𝑡, 𝑥0) || 𝑝𝜃(𝑥𝑡−1|𝑥𝑡)
)

𝐿𝑇 = 𝐷𝐾𝐿
(

𝑞(𝑥𝑇 |𝑥0) || 𝑃 (𝑥𝑇 )
)

.
(10)

𝐿0 can be evaluated with the histogram of image pixel values.
𝐿𝑇 is independent of 𝜃 and will ideally be zero with adequate
diffusion steps 𝑁 and proper noise schedule {𝛽1, 𝛽2, ..., 𝛽𝑡}.
𝐿𝑡−1 in Eq. (9) compares the KL-divergence between esti-

mated posterior 𝑝𝜃(𝑥𝑡−1|𝑥𝑡) and forward posterior in Eq. (4),
which can be analytically expressed. Ho et al. [6] suggest to
fix the variance Σ𝜃 to a constant value, e.g. Σ𝜃 = 𝛽𝑡𝐈. After
ignoring all constant variables independent of 𝜃, 𝐿𝑡−1 can be
simplified as:

𝐿𝑡−1 = 𝔼𝑞

[ (�̃�𝑡 − 𝜇𝜃)2

2𝜎2
]

. (11)

Instead of directly predicting 𝜇𝜃 using the neural network, Ho
et al. [6] suggest to predict the noise 𝜖 and the estimated
mean can be derived through:

𝜇𝜃(𝑥𝑡, 𝑡) =
1

√

𝛼𝑡

(

𝑥𝑡 −
𝛽𝑡

√

1 − �̄�𝑡
𝜖𝜃(𝑥𝑡)

)

, (12)

where 𝜖 is the random noise added in the forward process, and
𝜖𝜃(𝑥𝑡) is the model prediction. Under this parameterization, the
objective 𝐿𝑡−1 becomes

𝐿𝑡−1 = 𝔼𝜖,𝑡
[

‖𝜖𝜃(𝑥𝑡) − 𝜖‖
]

(13)

Ho et al. [6] found that predicting 𝜖 works the best, and
the estimated noise 𝜖𝜃 is the gradient of the data density.
This connects DDPM with score-based generative models and
Langevin dynamics [5].

After training, the model output 𝜖𝜃(𝑥𝑡) matches the gradient
of the log probabilistic density ∇𝑥 log 𝑝(𝑥) (or the Stein score
function) almost everywhere and to sample 𝑝(𝑥𝑡−1|𝑥𝑡) is to
compute

𝑥𝑡−1 =
1

√

�̄�𝑡

(

𝑥𝑡 −
𝛽𝑡

√

1 − �̄�𝑡
𝜖𝜃(𝑥𝑡)

)

+ 𝛽𝑡𝐈 ⋅ 𝐳 (14)

where 𝛽𝑡𝐈 is the time-dependent constant variation and 𝐳 ∼
 (0, 𝐈).

B. Diffusion Models Conditioned on Noise Level

In the original DDPM [6], the noise schedule {𝛽1, ..., 𝛽𝑇 }
and the number of diffusion (or denoising) steps 𝑁 have
to be carefully tuned to ensure high-quality data generation.
The noise schedule is typically determined by hyper-parameter
heuristics, e.g., linear [6]. To generate high-quality images at
high resolution, 𝑁 must also be large enough. For example,
Ho et al. [6] use 𝑁 = 1, 000 to sample 256 × 256 images.

Instead of conditioning on discrete step index 𝑡, Chen et
al. [33] reparameterize the model to condition on continuous
noise level �̄�𝑡. This allows separate noise schedules {𝛽𝑡}𝑇𝑡=1
and the number of iterative steps 𝑁 in training and testing.
The network 𝜖 is conditioned on noise scale, and the objective
in Eq. (13) becomes 𝜖𝜃(𝑥𝑡, 𝑥0, �̄�𝑡).

C. Conditional DDPMs for Image SR

In image super-resolution, we are given a dataset
of pairwise low- and high-resolution images  =
{(𝐼𝑙𝑟, 𝐼ℎ𝑟)1, ..., (𝐼𝑙𝑟, 𝐼ℎ𝑟)𝑁}, and are expected to learn the dis-
tribution of 𝐼ℎ𝑟 conditioned on 𝐼𝑙𝑟: 𝑝(𝐼ℎ𝑟|𝐼𝑙𝑟). Based on
the distribution, we can sample a super-resolution image 𝐼𝑠𝑟
conditioned on low-resolution input.

Two recent works SR3 [8] and SRDiff [9] approach this
problem by adapting the DDPMs to conditional image gener-
ation. The basic idea is to use the low-resolution image as the
condition in the DDPM image generation framework. Under
this setting, the reverse process of conditional DDPMs is:

𝑝𝜃(𝑥0∶𝑇 |𝐼𝑙𝑟) = 𝑝(𝑥𝑇 )
𝑇
∏

𝑡=1
𝑝𝜃(𝑥𝑡−1|𝑥𝑡, 𝐼𝑙𝑟). (15)

where the reverse transition 𝑝𝜃(𝑥𝑡−1|𝑥𝑡, 𝐼𝑙𝑟) conditions not only
on denoising step 𝑡, but also on the low-resolution image 𝐼𝑙𝑟.
Similarly, to generate super-resolution image 𝐼𝑠𝑟 from 𝐼𝑙𝑟, we
first sample 𝑥𝑇 from Gaussian distribution and then iteratively
sample from 𝑝𝜃(𝑥𝑡−1|𝑥𝑡, 𝐼𝑙𝑟) for 𝑡 = 𝑇 , 𝑇 −1, ..., 1 until we get
𝐼𝑠𝑟 = 𝑥0.
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IV. PARTIAL DIFFUSION MODELS FOR IMAGE SR

In this section, we introduce partial diffusion models
(PDMs) for MRI super-resolution. We first compare the diffu-
sion process of low- and high-resolution images in Sec. IV-A,
and then introduce the two key components of our proposed
method, partial diffusion and latent alignment, in Sec. IV-B
and Sec. IV-C, respectively.

A. Diffusing LR and HR Images

We first compare the diffusion process of low- and high-
resolution images. Let 𝑝(𝑥𝐿𝑅1∶𝑇 |𝑥

𝐿𝑅
0 ) and 𝑝(𝑥𝐻𝑅

1∶𝑇 |𝑥
𝐻𝑅
0 ) be the

forward processes of low- and high-resolution image pairs, and
𝑥𝐿𝑅𝑡 and 𝑥𝐻𝑅

𝑡 are the latents. The two processes start from
different distributions, i.e., low- and high-resolution images,
but end up with the same isotropic Gaussian distribution, i.e.
𝑥𝐿𝑅𝑇 , 𝑥𝐻𝑅

𝑇 ∈  (0, 𝟏). We hypothesize that the two processes
converge at the midway, and 𝑥𝐻𝑅

𝑡 and 𝑥𝐿𝑅𝑡 become indistin-
guishable after certain noise level. We verified our hypothesis
qualitatively and quantitatively.

First, we visualize the diffusion processes of low- and high-
resolution images. As shown in Fig. 1, the diffused images
become visually indistinguishable after several diffusion steps.

Second, we quantitatively measured the KL-divergence be-
tween 𝑥𝐿𝑅𝑡 and 𝑥𝐻𝑅

𝑡 . Specifically, we first diffused the low-
resolution and high-resolution image pairs of ProstateX [37]
dataset to get the latents 𝑥𝐿𝑅𝑡 and 𝑥𝐻𝑅

𝑡 . Then, we calculated the
histogram of each latent at different time steps 𝑡. The number
of bins used for histogram calculation was set to 256. We then
calculated the average KL-divergence between the histograms
of low- and high-resolution latents. We tested two different
downsampling factors: ×2 and ×4.

The results in Fig. 2 demonstrate that, as expected, the
low- and high-resolution latents gradually converge, with the
KL-divergence nearing zero at approximately one-quarter of
the denoising steps. The statistics in Fig. 2 suggest that we
can roughly approximate 𝑥𝐻𝑅

𝑡 with 𝑥𝐿𝑅𝑡 at a 𝑡 value greater
than one-quarter of the denoising steps. And the approximation
becomes more accurate if 𝑡 is equal to or larger than half of
the denoising steps.

B. Partial Diffusion Models

Based on the analysis in Sec. IV-A, we propose the partial
diffusion Models (PDM) which execute only part of the
diffusion and denoising steps by approximating 𝑥𝐻𝑅

𝐾 with 𝑥𝐿𝑅𝐾 ,
where 𝐾 < 𝑇 is an intermediate step, after which 𝑥𝐾𝐿𝑅
and 𝑥𝐾𝐻𝑅 become indistinguishable. PDMs accelerate the
diffusion models by skipping all steps with 𝑡 ≥ 𝐾 .

In particular, in training, we only train the reverse Gaussian
transition 𝑝𝜃(𝑥𝑡−1|𝑥𝑡) for 𝑡 = 1, 2, ..., 𝐾 and all steps after 𝐾
are skipped. During generation, given the low-resolution image
𝐿𝑙𝑟 ∶= 𝑥𝐿𝑅0 as input, we first diffuse it by 𝐾 steps to derive
𝑥𝐿𝑅𝐾 which can be analytically evaluated using Eq. (3), and
then use 𝑥𝐿𝑅𝐾 as the proxy to 𝑥𝐻𝑅

𝐾 and start denoising from
𝑥𝐻𝑅
𝐾 until reach 𝑥𝐻𝑅

0 ∶= 𝐼𝑠𝑟, which is the generated high-
resolution image. In other words, PDMs skipped diffusion and
denoising steps for 𝑡 ≥ 𝐾 for both training and testing.
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Fig. 2: KL-divergence between low-resolution latents (𝑥𝐿𝑅𝑡 ,
downsampled by factors of ×2 and ×4) and high-resolution
latents (𝑥𝐻𝑅

𝑡 ) across denoising steps 𝑡. The latents gradually
converge and the KL-divergence approaches zero at approxi-
mately one-quarter of the denoising steps.

It’s worth noting that the approximation may lead to subop-
timal results due to the disparity between 𝑋𝐻𝑅

𝐾 and 𝑋𝐿𝑅
𝐾 . As

shown in Fig. 3 (b), during training, the denoising trajectory is
𝑋𝐻𝑅

𝐾 → 𝑋𝐻𝑅
𝐾−1... → 𝑋𝐻𝑅

𝐾−2. In testing, the trajectory becomes
𝑋𝐿𝑅

𝐾 → 𝑋𝐻𝑅
𝐾−1... → 𝑋𝐻𝑅

𝐾−2. The approximation error becomes
more severe when the upsampling factor is large or when more
steps are skipped. In Sec. IV-C, we will elaborate on how
we mitigate the approximation error and establish a unified
denoising trajectory with latent alignment.

C. Latent Alignment
The partial diffusion introduced in Sec. IV-B can be seam-

lessly integrated into any pretrained diffusion model. This can
be achieved by approximating the high-resolution latent with
a low-resolution latent, as shown in Fig. 3 (b). The subtle
approximation error between 𝑥𝐿𝑅𝐾 and 𝑥𝐻𝑅

𝐾 may cause a slight
degradation in generation quality. The disparity is even more
noticeable with larger upsampling factors or when more steps
are skipped (smaller 𝐾).

We propose the ‘latent alignment’ to mitigate the ap-
proximation error and unify the trajectory in training and
inference. Latent alignment gradually interpolates between the
low- and high-resolution latents so that the denoising trajectory
gradually starts from 𝑋𝐿𝑅

𝐾 and gradually approaches 𝑋𝐻𝑅
0 .

As shown in Fig. 3 (c), latent alignment essentially estab-
lishes a new diffusion (denoising) trajectory: between 𝑥𝐻𝑅

0 and
𝑥𝐿𝑅𝐾 . The denoising model learns to recover high-resolution
image 𝑥𝐻𝑅

0 from the low-resolution latent 𝑥𝐿𝑅𝐾 .
For each training iteration, we first randomly sample a step-

index 𝑡 ∈ (0, 𝐾] and diffuse a pair of low- and high-resolution
images to derive 𝑥𝐿𝑅𝑡 and 𝑥𝐻𝑅

𝑡 according to Eq. (3). The latent
partial diffusion models with latent alignment are defined as:

𝑞(�̂�𝑡|𝑥𝐿𝑅0 , 𝑥𝐻𝑅
0 ) = 

(

�̂�𝑡;
√

𝛼𝑡
(

𝜆𝑡𝑥
𝐻𝑅
0 + (1 − 𝜆𝑡)𝑥𝐿𝑅0

)

,

(1 − �̄�𝑡)𝐈
)

,
(16)

where �̂�𝑡 is the latent of the new trajectory, and 𝜆𝑡 is the
predefined interpolation weights. 𝜆𝑡 ensures that �̂�0 = 𝑥𝐻𝑅

0 ,
�̂�𝐾 = 𝑥𝐿𝑅𝐾 , and for 0 < 𝑡 < 𝐾 , �̂�𝑡 monotonically approaches
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2 𝑥𝐻𝑅

𝐾 𝑥𝐻𝑅
𝑇−1 𝑥𝐻𝑅

𝑇

(a) Diffusion models denoise from 𝑥𝐻𝑅
𝑇 to 𝑥𝐻𝑅

0 over 𝑇 steps.

𝑥𝐻𝑅
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1 𝑥𝐻𝑅
2 𝑥𝐻𝑅
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𝑇

𝑥𝐿𝑅𝑇 𝑥𝐿𝑅𝑇−1 𝑥𝐿𝑅𝑇−2 𝑥𝐿𝑅𝐾

≈approximation

Eq. (3) 𝑥𝐿𝑅0𝑥𝐿𝑅𝐾

(b) Trajectories of partial diffusion models without latent alignment.
During training, the model learns to denoise from 𝑥𝐻𝑅

𝐾 to 𝑥𝐻𝑅
0 .

During inference, the denoising trajectory follows 𝑥𝐿𝑅𝐾 → 𝑥𝐻𝑅
𝐾−1 →

... → 𝑥𝐻𝑅
0 , reduces the number of steps from 𝑇 to 𝐾 . However, the

disparity between 𝑥𝐻𝑅
𝐾 and 𝑥𝐿𝑅𝐾 leads to suboptimal results.

𝑥𝐻𝑅
0 𝑥𝐻𝑅

1 𝑥𝐻𝑅
2 𝑥𝐻𝑅
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Eq. (3) 𝑥𝐿𝑅0
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𝑇

Eq. (3)𝑥𝐿𝑅0 𝑥𝐿𝑅1 𝑥𝐿𝑅2

𝑥𝐻𝑅
𝑇

𝑥𝐿𝑅𝐾

�̂�2

�̂�1

𝑥𝐿𝑅0

(c) Partial diffusion with latent alignment using linear (top) and
cosine (bottom) schedules. Both training and inference share the same
trajectory. The latents �̂�𝑡 interpolate between 𝑥𝐻𝑅

𝑡 and 𝑥𝐿𝑅𝑡 , smoothly
transitioning from 𝑥𝐿𝑅 to 𝑥𝐻𝑅 without abrupt changes.

Fig. 3: The denoising trajectories of diffusion models (a), par-
tial diffusion models with (c) and without (b) latent alignment.

𝑥𝐻𝑅
0 from 𝑥𝐿𝑅𝐾 . We propose two 𝜆𝑡 schedules, the linear and

the cosine schedules, in Eq. (17).

𝜆𝑡 =

{

1 − 𝑡
𝐾 , (a)

0.5 ⋅
(

cos 𝑡
𝐾 𝜋 + 1

)

, .
𝑡 ∈ {0, ..., 𝐾} (17)

The two schedules are illustrated in Fig. 3 (c). By default,
we used the cosine schedule unless stated otherwise, and we
compared the two schedules in Tab. VII of Sec. V-F.

Similar to Eq. (4), the posterior of �̂�𝑡−1 in PDMs becomes:

𝑞(�̂�𝑡−1|𝑥𝑡, 𝑥𝐿𝑅0 , 𝑥𝐻𝑅
0 ) = 

(

�̂�𝑡−1; �̂�𝑡(�̂�𝑡, �̂�0), 𝛽𝑡𝐈
)

, (18)

where
�̂�𝑡(𝑥𝑡, 𝑥0) = 𝜆𝑡�̃�𝑡(𝑥𝐻𝑅

𝑡 , 𝑥𝐻𝑅
0 ) + (1 − 𝜆𝑡)�̃�𝑡(𝑥𝐿𝑅𝑡 , 𝑥𝐿𝑅0 )

𝛽𝑡 = 𝛽𝑡.
(19)

and �̃�(⋅, ⋅) and 𝛽𝑡 are the mean and variance of forward
posterior defined in Eq. (5) and Eq. (6), respectively. During

training, the forward posterior in Eq. (18) is used as the target
to guide the denoising model. The loss term 𝐿𝑡−1 in Eq. (9)
becomes

𝐿𝑡−1 = 𝐷𝐾𝐿

(

𝑞(�̂�𝑡−1|𝑥𝑡, 𝑥𝐿𝑅0 , 𝑥𝐻𝑅
0 ) || 𝑝𝜃(𝑥𝑡−1|𝑥𝑡)

)

.

The model learns to denoise along the newly estimated trajec-
tory that approaches 𝑋𝐻𝑅

0 from 𝑋𝐿𝑅
𝐾 , as illustrated in Fig. 3

(c).

V. EXPERIMENTS

In this section, we introduce the implementation details and
report the experimental results.

A. Implementation details
We applied partial diffusion to various diffusion model vari-

ants. All the models are implemented with the PyTorch [38]
framework. All hyper-parameters, unless otherwise specified,
are identical to those in the original papers for fair compar-
isons.

1) Data and Data Preprocessing: We test our method on
three multi-slice MRI datasets: i) our in-house prostate MRI
dataset, ii) the ProstateX dataset [37], and iii) the Knee MRI
from the FastMRI [39] dataset.

We use T2-weighted images from ProstateX and our in-
house datasets, and proton density-weighted (PD) images from
the FastMRI [39] knee scans. Detailed information, including
the number of training/testing patients and images, are sum-
marized in Tab. I. All the images are real-valued and in dicom
format.

Let (ℎ×𝑤×𝑑) be the shape of a multiple-slice 2D scan where
(ℎ×𝑤) is the in-plane resolution and 𝑑(epth) is the number of
slices. We perform super-resolution on two different settings:
1) in-plane super-resolution that improves the resolution in
the (ℎ × 𝑤) plane and 2) through-plane super-resolution that
improves the resolution in the 𝑑-axis.

For in-plane super-resolution, we downsample high-
resolution images using K-space zero padding (KSZP) to
simulate the under-sampled MR images. We used a KSZP-
downsampled image as the low-resolution image, and the
model estimates high-resolution images from low-resolution
images as input.

2) Models and Training Details: We compared our method
with three diffusion-based super-resolution methods including
SR3 [8], ScoreMRI [12], and MC-DDPM [27]. SR3 is a
general image super-resolution method proposed for natural
image, and ScoreMRI and MC-DDPM were proposed for
MRI reconstruction. MC-DDPM was designed to take under-
sampled K-space data as input. We adapted it to accept under-
sampled image data as input. For ScoreMRI, we utilized its
single-coil real-valued configuration to recover high-resolution
images from low-resolution undersampled images. We trained
both methods using their original settings for fair comparisons.
By default, we used the cosine 𝜆 schedule (Eq. (17) bottom)
unless otherwise specified.

Our method is compatible with and applicable to sev-
eral other diffusion model acceleration techniques. We ap-
plied partial diffusion to three accelerated diffusion models,
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LR SwinIR HRSR3 SoreMRI
LR SwinIR [40] MC-DDPM [27]

𝑇 = 2000
[27]+PDM
𝐾 = 1, 000

ScoreMRI [11]
𝑇 = 2000

[11]+PDM
𝐾 = 1, 000 HR

Fig. 4: Super-resolution results (×4) of MC-DDPM, ScoreMRI, and PDMs on the ProstateX (top), our in-house prostate MRI
(middle), and the FastMRI knee MRI datasets. PDMs reduce the denoising steps of MC-DDPM and ScoreMRI from 𝑇 = 2000
to 𝐾 = 1000, while achieving competitive results.

TABLE I: Summary of the three datasets used in our experi-
ments.

Datasets ProstateX [37] fastMRI [39] Clinical Prostate
Region prostate knee prostate

Sequence T2-TSE T2-PD T2-TSE
Plane axial+coronal sagittal axial+coronal
#train 206 (8,826) 600 (20,015) 636 (12,542)
#test 142 (12,881) 200 (6,611) 200 (6,271)

DDIM [29], DPM-Solver [28], and Consistency Models [30]
to further reduce the number of iterations in both training and
testing. We also compared with several non-diffusion-based
super-resolution models, including SRGAN [4], EDSR [41],
SwinIR [40], and EDSR [41].

All the models were trained on a server with 4 NVIDIA
RTX 8000 GPUs. We kept the training recipes of the original
papers for fair comparisons except that all the diffusion models
were trained for two million iterations and a batch size of eight.

3) Denoising Steps: When experimenting with diffusion-
based methods, we strictly follow the recipe of the original
papers about the number of diffusion and denoising steps. For
MC-DDPM and ScoreMRI, we set 𝑇 = 2, 000, while for SR3,
we set 𝑇 = 100 by default. We employed PDMs to reduce
the denoising steps to one-quarter and one-half of the original
methods. For example, with SR3, PDMs reduce the original
denoising steps from 𝑇 = 100 to 𝐾 = 25 and 𝐾 = 50.
To compare PDMs with the original methods using the same
denoising steps, we also train and test original methods using
one-quarter and one-half of the denoising steps. For example,
we trained ScoreMRI with 𝑇 = 2, 000, 𝑇 = 1, 000 and
𝑇 = 500.

The denoising steps 𝐾 in PDMs were determined according

to Fig. 2, which shows that the KL-divergence between low-
and high-resolution latents becomes nearly zero after one-
quarter of the steps and remains stably close to zero after about
half of the steps. We also conducted experiments to evaluate
the performance with various 𝐾 in Sec. V-F.2.

B. In-plane MRI Super-resolution
We first report experimental results on in-plane MRI super-

resolution. We tested two different super-resolution scales: ×2
(160 × 160 → 320 × 320) and ×4 (80 × 80 → 320 × 320).

1) Qualitative comparisons: Fig. 4 displays some ×4 super-
resolution results of SwinIR, MC-DDPM, and ScoreMRI.
We applied partial diffusion to MC-DDPM and ScoreMRI to
reduce the denoising steps from 𝑇 = 2000 to 𝐾 = 1000.
The super-resolution factor is ×4 where images of dimensions
80×80 are enhanced to 320×320. The first column represents
the low-resolution input, the last column shows the high-
resolution reference, and the middle columns showcase the
super-resolution outcomes achieved through various methods.

As shown in Fig. 4, diffusion-based methods, MC-DDPM
and ScoreMRI, generate more realistic details than the state-
of-the-art non-diffusion SR method, SwinIR. Partial diffusion
models achieve very similar results with the original methods
with significantly less denoising steps.

2) Quantitative performance: We quantitatively assess the
super-resolution image quality of various super-resolution
methods, including diffusion-based approaches such as MC-
DDPM [27] and ScoreMRI [11], as well as other deep
learning-based methods like SRGAN [4], EDSR [41],
SwinIR [40], and SMORE [1]. The performance of SR is
quantified in terms of three metrics: i) Structural Similarity
(SSIM), ii) Peak Signal Noise Ratio (PSNR), and iii) Consis-
tency (Consist). Following the practice of [8], the consistency
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TABLE II: PSNR, SSIM, and Consistency on the ProstateX
dataset. 𝑇 denotes the number of steps of original diffusion
models, and 𝐾 is the number of steps in PDMs. In each group,
the same color indicates methods with the same number of
inference steps.

Method 𝑇 𝐾 PSNR SSIM Consist

×2

Bicubic 30.62 0.8568 38.56
EDSR [41] 32.59 0.8714 46.48
SwinIR [40] 32.82 0.8811 46.14
SRGAN [4] 31.25 0.8579 40.55
SMORE [1] 32.65 0.8501 39.79

ScoreMRI [11] 2000 34.12 0.9113 47.09
ScoreMRI [11] 1000 34.00 0.9102 47.02
ScoreMRI [11] 500 33.81 0.9037 46.87

ScoreMRI+PDM 2000 1000 34.12 0.9112 47.09
ScoreMRI+PDM 2000 500 33.97 0.9092 47.01
MC-DDPM [27] 2000 34.09 0.9109 47.00
MC-DDPM [27] 1000 33.92 0.9081 46.93
MC-DDPM [27] 500 33.76 0.9025 46.19

MC-DDPM+PDM 2000 1000 34.04 0.9109 47.00
MC-DDPM+PDM 2000 500 33.92 0.9100 46.91

SR3 [8] 100 34.02 0.9098 46.86
SR3 [8] 50 33.81 0.9017 46.83
SR3 [8] 25 33.19 0.8849 46.11

SR3+PDM 100 50 34.01 0.9096 46.86
SR3+PDM 100 25 33.98 0.9079 46.79

×4

Bicubic 25.75 0.6589 36.27
EDSR [41] 27.45 0.7529 38.57
SwinIR [40] 27.89 0.7535 38.23
SRGAN [4] 24.80 0.6756 32.45
SMORE [1] 25.29 0.6765 33.12

ScoreMRI [11] 2000 28.48 0.7665 39.81
ScoreMRI [11] 1000 28.09 0.7654 39.68
ScoreMRI [11] 500 27.47 0.7608 39.11

ScoreMRI+PDM 2000 1000 28.46 0.7664 39.80
ScoreMRI+PDM 2000 500 28.02 0.7649 39.57
MC-DDPM [27] 2000 28.46 0.7662 39.79
MC-DDPM [27] 1000 28.01 0.7653 39.65
MC-DDPM [27] 500 27.39 0.7579 39.07

MC-DDPM+PDM 2000 1000 28.45 0.7660 39.78
MC-DDPM+PDM 2000 500 27.89 0.7640 39.36

SR3 [8] 100 28.12 0.7611 39.48
SR3 [8] 50 27.92 0.7601 39.31
SR3 [8] 25 27.69 0.7543 38.92

SR3+PDM 100 50 28.12 0.7610 39.47
SR3+PDM 100 25 28.02 0.7598 39.25

is defined as the PSNR between the original LR image and
the k-space down-sampled SR result:

Consist(𝐼𝑠𝑟, 𝐼𝑙𝑟) = PSNR
(

KSZP(𝐼𝑠𝑟), 𝐼𝑙𝑟
)

. (20)

The definition in Eq. (20) measures the consistency between
the SR results and the original inputs. The inconsistency
between the input and output can be detrimental to clinical
applications.

Quantitative results on the three datasets are summarized
in Tab. II to IV. In the tables, 𝑇 denotes the number of
denoising steps of diffusion models, while 𝐾 is the denoising
steps of partial diffusion models. In each group, we use colors
to indicate methods with different inference denoising steps.
In Tab. VI, we summarize the per-image execution time of
different diffusion models on 80 × 80 → 320 × 320 image
super-resolution.

These quantitative results clearly demonstrate the superior-
ity of PDMs in accelerating and enhancing the performance of
diffusion models. For example, as shown in Tab. II, under the

TABLE III: PSNR, SSIM and Consistency of our in-house MRI
dataset.

Method 𝑇 𝐾 PSNR SSIM Consist

×2

Bicubic 36.30 0.9163 42.98
EDSR [41] 37.21 0.9228 43.90

SwinIR [40] 38.32 0.9231 44.01
SRGAN [4] 36.11 0.9128 39.98
SMORE [1] 36.95 0.9407 40.21

ScoreMRI [11] 2000 39.74 0.9511 46.23
ScoreMRI [11] 1000 39.57 0.9502 46.19
ScoreMRI [11] 500 38.72 0.9379 45.75

ScoreMRI+PDM 2000 1000 39.73 0.9510 46.23
ScoreMRI+PDM 2000 500 39.58 0.9501 46.20
MC-DDPM [27] 2000 39.63 0.9485 46.04
MC-DDPM [27] 1000 39.45 0.9411 45.93
MC-DDPM [27] 500 38.93 0.9351 45.67

MC-DDPM+PDM 2000 1000 39.63 0.9483 46.03
MC-DDPM+PDM 2000 500 39.39 0.9456 45.82

SR3 [8] 100 39.37 0.9449 46.19
SR3 [8] 50 39.37 0.9429 46.07
SR3 [8] 25 38.72 0.9270 45.49

PDM 100 50 39.37 0.9448 46.19
PDM 100 25 39.34 0.9479 46.17

×4

Bicubic 31.00 0.7783 40.81
EDSR [41] 33.48 0.8461 38.45

SwinIR [40] 33.45 0.8457 39.32
SRGAN [4] 31.44 0.7911 31.82
SMORE [1] 32.29 0.6765 32.39

ScoreMRI [11] 2000 34.21 0.8523 41.26
ScoreMRI [11] 1000 34.18 0.8521 41.24
ScoreMRI [11] 500 34.09 0.8506 41.17

ScoreMRI+PDM 2000 1000 34.21 0.8522 41.26
ScoreMRI+PDM 2000 500 34.17 0.8521 41.23
MC-DDPM [27] 2000 34.19 0.8523 41.25
MC-DDPM [27] 1000 34.13 0.8514 41.20
MC-DDPM [27] 500 33.86 0.8479 41.06

MC-DDPM+PDM 2000 1000 34.17 0.8522 41.23
MC-DDPM+PDM 2000 500 34.11 0.8510 41.18

SR3 [8] 100 34.05 0.8511 41.18
SR3 [8] 50 33.89 0.8502 41.11
SR3 [8] 25 33.23 0.8381 40.15

PDM 100 50 34.04 0.8510 41.18
PDM 100 25 33.89 0.8496 41.07

×2 setting, ScoreMRI [11] achieves a PSNR of 34.12 and an
SSIM of 0.9113 using 2,000 denoising steps. Under the same
setting, the partial diffusion model achieves a PSNR of 34.12
and an SSIM of 0.9112, which is very close to ScoreMRI but
uses only 1,000 steps. Under the ×4 setting, MC-DDPM [27]
achieves a PSNR of 28.01 and an SSIM of 0.7653 using 1,000
denoising steps. Under the same setting and with the same
number of steps, partial diffusion model achieves a PSNR of
28.45 and an SSIM of 0.7660. In general, the results across
the three datasets consistently reveal that:

1) Diffusion models significantly outperform other deep
learning-based methods in all metrics, particularly in
terms of consistency.

2) PDMs reduce the number of denoising steps while
achieving the same or very similar results compared to
the original diffusion models.

3) When using the same number of denoising steps, PDMs
achieve much better image quality.

In Tab. VI, we summarized the running time of different
diffusion-based methods for 80×80 → 80×80 super-resolution.
We calculated the average time of generating a single image
on the ProstateX dataset. As shown in Tab. VI, the running
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TABLE IV: In-plane MRI super-resolution results on FastMRI
dataset.

Method 𝑇 𝐾 PSNR SSIM Consist

×2

Bicubic 36.48 0.9059 44.21
EDSR [41] 38.51 0.9121 46.68
SwinIR [40] 38.23 0.9138 46.24
SRGAN [4] 36.49 0.8994 42.23
SMORE [1] 36.62 0.9025 43.21

ScoreMRI [11] 2000 39.54 0.9375 49.05
ScoreMRI [11] 1000 39.37 0.9312 49.01
ScoreMRI [11] 500 38.72 0.9279 48.55

ScoreMRI+PDM 2000 1000 39.53 0.9375 49.05
ScoreMRI+PDM 2000 500 39.41 0.9358 48.89
MC-DDPM [27] 2000 39.53 0.9375 49.04
MC-DDPM [27] 1000 39.41 0.9341 48.93
MC-DDPM [27] 500 38.63 0.9251 48.67

MC-DDPM+PDM 2000 1000 39.48 0.9373 47.03
MC-DDPM+PDM 2000 500 39.39 0.9340 46.82

SR3 [8] 100 39.33 0.9363 48.85
SR3 [8] 50 39.02 0.9257 48.72
SR3 [8] 25 38.31 0.9125 48.27

SR3+PDM 100 50 39.33 0.9361 48.84
SR3+PDM 100 25 39.14 0.9282 48.67

×4

Bicubic 32.17 0.8454 42.86
EDSR [41] 33.49 0.8388 44.49
SwinIR [40] 33.22 0.8312 44.19
SRGAN [4] 32.13 0.7536 36.36
SMORE [1] 32.31 0.7571 36.51

ScoreMRI [11] 2000 35.11 0.8540 47.91
ScoreMRI [11] 1000 34.99 0.8527 47.71
ScoreMRI [11] 500 34.39 0.8467 47.00

ScoreMRI+PDM 2000 1000 35.03 0.8537 47.86
ScoreMRI+PDM 2000 500 34.87 0.8522 47.64
MC-DDPM [27] 2000 35.07 0.8535 47.85
MC-DDPM [27] 1000 34.78 0.8529 47.69
MC-DDPM [27] 500 34.32 0.8434 46.94

MC-DDPM+PDM 2000 1000 35.01 0.8533 47.78
MC-DDPM+PDM 2000 500 34.67 0.8501 47.25

SR3 [8] 100 34.89 0.8529 47.72
SR3 [8] 50 33.71 0.8501 47.64
SR3 [8] 25 33.19 0.8337 46.87

SR3+PDM 100 50 34.87 0.8528 47.70
SR3+PDM 100 25 33.69 0.8500 47.61

time scales linearly with the number of denoising steps. The
running time on other datasets is similar because it only
depends on the image dimensions and hardware.

C. Incorporating with Accelerated Diffusion Models

In this experiment, we incorporate PDMs with several ac-
celerated diffusion models to further improve their efficiency.
In particular, we experimented with DDIM [29], Consistency
Models (CM) [30], and DPM-Solver [28]. These models allow
flexible number of denoising steps. We used different denois-
ing steps, e.g. 5, 10, 15 and 20, to assess the performance
under various computation budgets. We used the consistency
distillation when experimenting with consistency models.
We reused the configurations and hyperparameters from the
original papers, making only the necessary adjustments to
incorporate partial diffusion models.

As demonstrated in Tab. V, PDMs can effectively reduce
the number of denoising steps required by accelerated diffusion
models. On one hand, PDMs reduce the number of steps while
maintaining comparable performance. On the other hand,
when employing an equivalent number of denoising steps,
PDMs achieve significantly improved image quality. This is

TABLE V: The incorporation of PDMs with accelerated diffu-
sion models for ×4 super-resolution on the ProstateX dataset.

Method 𝑇 𝐾 PSNR SSIM Consist
DDIM [29] 20 27.62 0.7601 39.39
DDIM [29] 15 27.51 0.7582 39.32
DDIM [29] 10 27.21 0.7466 38.75
DDIM [29] 5 26.13 0.7161 37.58

DDIM + PDM 20 15 27.62 0.7601 39.39
DDIM + PDM 20 10 27.61 0.7598 39.37
DDIM + PDM 20 5 26.85 0.7428 38.18

DPM-Solver [28] 20 27.67 0.7608 39.41
DPM-Solver [28] 15 27.60 0.7598 39.38
DPM-Solver [28] 10 27.23 0.7467 39.29
DPM-Solver [28] 5 26.49 0.7298 37.71

DPM-Solver + PDM 20 15 27.67 0.7607 39.40
DPM-Solver + PDM 20 10 27.66 0.7604 39.39
DPM-Solver + DPM 20 5 27.02 0.7467 38.37

CM [30] 20 27.89 0.7611 39.45
CM [30] 15 27.78 0.7603 39.36
CM [30] 10 27.69 0.7521 38.85

CM+PDM 5 26.67 0.7317 37.83
CM+PDM 20 15 27.89 0.7610 39.44
CM+PDM 20 10 27.83 0.7607 39.44
CM+PDM 20 5 27.11 0.7481 38.63

TABLE VI: Average execution time of various diffusion mod-
els for generating a single image. The time was measured on
(80×80 → 320×320) image super-resolution with an NVIDIA
RTX 8000 GPU.

Method # Steps Time (sec)
SR3 [8] 100 4.8

SR3 + PDM 50 2.4
SR3 + PDM 25 1.2

MC-DDPM [27] 2000 92.7
MC-DDPM + PDM 1000 46.4
MC-DDPM + PDM 500 23.3

ScoreMRI [11] 2000 88.1
ScoreMRI + PDM 1000 44.3
ScoreMRI + PDM 500 22.0

because PDMs decrease the number of denoising iterations
by lowering the noise levels to be denoised (from 𝑥𝑇 → 𝑥0
to 𝑥𝐾 → 𝑥0, 𝐾 ≪ 𝑇 ), while other acceleration methods,
such as DDIM, DPM-Solver, and CM, reduce the number
of iterations without changing the noise level (𝑥𝑇 → 𝑥0).
Consequently, PDMs exhibit higher iteration density (i.e., the
number of iterations divided by the noise level) than other
methods, leading to more accurate gradient estimations and
higher-quality generations.

D. Through-plane MRI Super-resolution

Multi-slice 2D MRI images have an anisotropic resolution
due to the heterogeneous pixel distances. For example, in our
prostate MRI dataset, the in-plane pixel spacing (the physical
distance between two pixels) is 0.625 mm, while the slice
spacing (the physical distance between two slices) is 3.6 mm.
In this experiment, we test our method in improving the
through-plane resolution of MRI, where the upsampling scale
is set to 6 ≈ 3.6∕0.625.

To construct low- and high-resolution training pairs, we use
two distinct scans acquired in orthogonal planes, e.g., axial
scan and coronal scan, during training and testing. The two or-
thogonal scans are illustrated in Fig. 6. Let anterior↔posterior
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Input
(𝑑 ×𝑤), axial SRGAN [4], [42] EDSR [41] SR3+PDM

𝑇 = 100 → 𝐾 = 50
Visual reference
(ℎ ×𝑤), coronal

Fig. 5: Example results on through-plane MRI image super-resolution. The model is trained with in-plane slices (ℎ × 𝑤) of
coronal scan and the test input is the through-plane (𝑤 × 𝑑) images of axial scan. The visual reference is an in-plane slice
(ℎ×𝑤) from coronal scan and is not necessarily aligned with the results. We only visualize PDMs because the results of SR3
and SR3+PDMs are very close.

Axial scan Coronal scan

AP

SI

LR

𝑑

𝑤

ℎ
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SI

LRℎ

𝑤
𝑑

Fig. 6: Axial scan, coronal scan, and the three anatomi-
cal directions: anterior↔posterior (AP), left↔right (LR) and
superior↔inferior (SI).

(AP) left↔right (LR) and superior↔inferior (SI) be the
anatomical directions in 3D space. Axial scan captures 2D
slices in the AP and LR planes, and coronal scan captures
slices in SI and LR planes. Let ℎ × 𝑤 × 𝑑 be the shape of
MRI data where ℎ × 𝑤 is the in-plane image size and 𝑑 is
the number of slices. In our data, ℎ = 𝑤 = 320 and 𝑑 = 20.
During training, we collect ℎ × 𝑤 in-plane slices from the
coronal scan as the high-resolution image, and downsample
those slices along the ℎ dimension (SI) to simulate the low
through-plane (SI direction) in the axial scan. The models
learn to super-resolution along the SI direction by training
with the data pairs. During the test, the model takes as input
the 𝑤× 𝑑 through-plane slices of the axial scan and performs
super-resolution in the 𝑑 dimension (SI).

Example through-plane MRI super-resolution results of the
axial scan are shown in Fig. 5. There is no such ‘ground-truth’
in through-plane super-resolution, we use the in-plane slice
from a separate acquisition of the coronal scan as the visual
reference. The visual references are not necessarily perfectly
aligned with the super-resolution results due to potential
patient motion between the two scans. Note that we use an
average of 6 (≈ 3.6∕0.625) consecutive through-plane images

as the input to super-resolution models to compensate for the
differences in pixel spacing (0.625 mm) and slice thickness
(3.6 mm). As shown in Fig. 5, SRGAN generates blurry results
that lack rich texture details. LIIF and our method generate
much better high-frequency details and are generally aligned
better with the visual reference.

E. Application to Prostate Zonal Segmentation
Prostate zonal segmentation is an important step in auto-

matic prostate cancer detection, and a suspicious lesion should
be analyzed differently in different prostate zones due to varia-
tions in image appearance and cancer prevalence [43]. In this
experiment, we test the performance of zonal segmentation
using images upsampled with different methods. We use a
pretrained model [44] which segments the prostate into the
peripheral zone (PZ) and the transition zone (TZ).

2 4 8
0.82

0.84

0.86

0.88

D
ic

e

SR3 (T=100)

SwinIR

PDM (T=100, K=50)

PDM (T=100, K=25)

SRGAN

Bicubic

Fig. 7: Zonal segmentation performance under different up-
sampling factors. The test images are downsampled and then
upsampled by various super-resolution models.

Fig. 7 compares the dice coefficients of segmentation
results under various upsampling factors. The results demon-
strate that our method consistently achieves higher segmen-
tation performance under various upsampling factors, and
the performance gap is becoming wider at large upsampling
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Bicubic SRGAN [4] PDM
𝑇 = 100, 𝐾 = 50 HR

Fig. 8: Example images and zonal segmentation results. The
input images are upsampled by ×4 using different methods.
𝐾 = 50 was used for PDMs to reduce the iterations of
SR3 with 𝑇 = 100. The results of SR3 are omitted because
they are very similar to the results of PDMs and visually
indistinguishable.

factors. Interestingly, although our upsampled images are
visually much more realistic than SRGAN, the improvements
in segmentation are not as noticeable as the visual differences.
This reveals that visual realism is not well correlated with
segmentation quality. Fig. 8 shows some zonal segmentation
results using images upsampled (×4) by different methods.

F. Ablation Study
We did ablation studies to verify the effectiveness of Latent

Alignment and to demonstrate how we choose 𝐾 during
training. The experiments were conducted on the ProstateX
dataset.

1) Latent Alignment: We compared the super-resolution
quality with and without latent alignment ( Sec. IV-C). Scale
is set to ×4 in this experiment. Quantitative results are
summarized in Tab. VII and visual comparisons are made
in Fig. 9. The results in Tab. VII show that: 1) ‘Latent
alignment’ significantly improves the performance of partial
diffusion models, especially when many steps are skipped
(i.e., smaller 𝐾 values). This is because smaller 𝐾 increases
the disparity between 𝑋𝐻𝑅

𝐾 and 𝑋𝐿𝑅
𝐾 , and latent alignment

mitigates these approximation errors to improve generation
quality. 2) The improvements become larger with lower 𝐾
values, because of the larger gap between low- and high-
resolution latents (see Fig. 2). 3) Latent alignment with a
cosine schedule performs slightly better than with a linear
schedule due to a smoother transition from low-resolution to
high-resolution latents.

2) Different 𝖪 values: We tested the performance with
different inference steps 𝐾 for ×4 super-resolution on the
ProstateX dataset. The results in Fig. 10 demonstrate that

TABLE VII: SSIM of ×4 super-resolution with various ‘latent
alignment’ schedules on the ProstateX dataset. We utilize
partial diffusion to reduce the denoising steps of SR3 [8] from
𝑇 = 100 to 𝐾 = 75, 50, and 𝐾 = 25.

𝐾 75 50 25
w/o 0.7610 0.7579 0.6704

Linear 0.7611 0.7607 0.7594
Cosine 0.7611 0.7610 0.7598

𝑇
=
10
0
→

𝐾
=
25

𝑇
=
10
0
→

𝐾
=
50

LR PDM w/o LA PDM w LA HR

Fig. 9: Super-resolution results (×4 ) on ProstateX dataset
with and without latent alignment (LA). We utilized PDMs to
reduce the denoising steps of SR3 [8] from 𝑇 = 100 to 𝐾 = 50
and 𝐾 = 25. The red arrows point out prostate tumors and blue
arrows highlight the differences between with and without LA.
There is a clear benefit of using LA, especially a larger number
of steps are skipped.

partial diffusion models can achieve very similar performance
with SR3 with half of denoising steps (𝐾 = 50), and achieve
decent performance with only a quarter of denoising steps
(𝐾 = 25).

0.90

0.91

15 25 35 50 75 100

K

0.755
0.760
0.765S

S
IM

×2 ×4

Fig. 10: SSIM of ×4 super-resolution on the ProstateX dataset
using different 𝐾 values.
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VI. CONCLUSIONS

We introduced the Partial Diffusion Model for MRI super-
resolution. Our method accelerates diffusion-based super-
resolution methods by skipping part of the diffusion steps.
We first observed that the latent of a pair of low- and
high-resolution images gradually converge and become in-
distinguishable after a certain noise level. Based on this
observation, we proposed to approximate the high-resolution
latents with the corresponding low-resolution latents, allowing
us to skip and shortcut some of the denoising steps. To
mitigate the approximation error, we further proposed the
latent alignment that gradually interpolates between the high-
and low-resolution latents. Partial diffusion models with latent
alignment essentially establish a new diffusing (denoising)
trajectory where the latent directly evolves from the high-
resolution (low-resolution) image to the low-resolution (high-
resolution) image. Extensive experiments on clinical MRI
datasets demonstrated that the proposed method significantly
reduces the number of denoising steps without sacrificing the
quality of the generation. One limitation is that it applies only
to conditional generation tasks where a conditional input can
be used for the approximation.

One limitation of our method is the requirement for in-
put that closely resembles the target image in structure to
achieve accurate approximation. This restricts its applicability
to conditional image generation tasks such as image super-
resolution and translation. Furthermore, the evaluation section
relies heavily on numerical metrics such as PSNR, SSIM, and
Consistency to validate that the proposed method can replicate
the output of diffusion models with fewer denoising steps.
Human expert evaluation is yet to be introduced to perceptually
assess the quality of the generated images.

REFERENCES

[1] C. Zhao, B. E. Dewey, D. L. Pham, P. A. Calabresi, D. S. Reich, and
J. L. Prince, “Smore: a self-supervised anti-aliasing and super-resolution
algorithm for mri using deep learning,” IEEE transactions on medical
imaging, vol. 40, no. 3, pp. 805–817, 2020.

[2] M. de Leeuw den Bouter, G. Ippolito, T. O’Reilly, R. Remis, M. van Gi-
jzen, and A. Webb, “Deep learning-based single image super-resolution
for low-field mr brain images,” Scientific Reports, vol. 12, no. 1, p. 6362,
2022.

[3] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
in Neural Information Processing Systems, Z. Ghahramani, M. Welling,
C. Cortes, N. Lawrence, and K. Weinberger, Eds., vol. 27. Curran
Associates, Inc., 2014.

[4] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta,
A. Aitken, A. Tejani, J. Totz, Z. Wang et al., “Photo-realistic sin-
gle image super-resolution using a generative adversarial network,” in
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2017, pp. 4681–4690.

[5] Y. Song and S. Ermon, “Generative modeling by estimating gradients of
the data distribution,” Neural Information Processing Systems, vol. 32,
2019.

[6] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,”
Neural Information Processing Systems, vol. 33, pp. 6840–6851, 2020.

[7] Y. Song and S. Ermon, “Improved techniques for training score-based
generative models,” Neural Information Processing Systems, vol. 33, pp.
12 438–12 448, 2020.

[8] C. Saharia, J. Ho, W. Chan, T. Salimans, D. J. Fleet, and M. Norouzi,
“Image super-resolution via iterative refinement,” IEEE Transactions on
Pattern Recognition and Machine Intelligence, pp. 1–14, 2022.

[9] H. Li, Y. Yang, M. Chang, S. Chen, H. Feng, Z. Xu, Q. Li, and Y. Chen,
“Srdiff: Single image super-resolution with diffusion probabilistic mod-
els,” Neurocomputing, vol. 479, pp. 47–59, 2022.

[10] A. L. Y. Hung, K. Zhao, H. Zheng, R. Yan, S. S. Raman, D. Terzopoulos,
and K. Sung, “Med-cdiff: Conditional medical image generation with
diffusion models,” Bioengineering, vol. 10, no. 11, p. 1258, 2023.

[11] H. Chung and J. C. Ye, “Score-based diffusion models for accelerated
mri,” Medical image analysis, vol. 80, p. 102479, 2022.

[12] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon,
and B. Poole, “Score-based generative modeling through stochastic
differential equations,” in International Conference on Learning Rep-
resentations, 2021.

[13] R. Fattal, “Image upsampling via imposed edge statistics,” in ACM
SIGGRAPH 2007 papers, 2007, pp. 95–es.

[14] J. Sun, Z. Xu, and H.-Y. Shum, “Image super-resolution using gradient
profile prior,” in IEEE/CVF Conference on Computer Vision and Pattern
Recognition. IEEE, 2008, pp. 1–8.

[15] Q. Shan, Z. Li, J. Jia, and C.-K. Tang, “Fast image/video upsampling,”
ACM Transactions on Graphics (TOG), vol. 27, no. 5, pp. 1–7, 2008.

[16] K. I. Kim and Y. Kwon, “Single-image super-resolution using sparse
regression and natural image prior,” IEEE Transactions on Pattern
Recognition and Machine Intelligence, vol. 32, no. 6, pp. 1127–1133,
2010.

[17] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution
using deep convolutional networks,” IEEE Transactions on Pattern
Recognition and Machine Intelligence, vol. 38, no. 2, pp. 295–307, 2015.

[18] Z. Wang, D. Liu, J. Yang, W. Han, and T. Huang, “Deep networks for
image super-resolution with sparse prior,” in IEEE/CVF International
Conference on Computer Vision, 2015, pp. 370–378.

[19] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop,
D. Rueckert, and Z. Wang, “Real-time single image and video super-
resolution using an efficient sub-pixel convolutional neural network,” in
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2016, pp. 1874–1883.

[20] M. S. Sajjadi, B. Scholkopf, and M. Hirsch, “Enhancenet: Single image
super-resolution through automated texture synthesis,” in IEEE/CVF
International Conference on Computer Vision, 2017, pp. 4491–4500.

[21] Z. Li, J. Yang, Z. Liu, X. Yang, G. Jeon, and W. Wu, “Feedback network
for image super-resolution,” in IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 3867–3876.

[22] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time style
transfer and super-resolution,” in ECCV. Springer, 2016, pp. 694–711.

[23] A. Brock, J. Donahue, and K. Simonyan, “Large scale GAN training for
high fidelity natural image synthesis,” in International Conference on
Learning Representations, 2019.

[24] Y. Chen, Y. Tai, X. Liu, C. Shen, and J. Yang, “Fsrnet: End-to-
end learning face super-resolution with facial priors,” in IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2018, pp.
2492–2501.

[25] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,” 2017.
[26] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep

unsupervised learning using nonequilibrium thermodynamics,” in ICML.
PMLR, 2015, pp. 2256–2265.

[27] Y. Xie and Q. Li, “Measurement-conditioned denoising diffusion prob-
abilistic model for under-sampled medical image reconstruction,” in
International Conference on Medical Image Computing and Computer-
Assisted Intervention. Springer, 2022, pp. 655–664.

[28] C. Lu, Y. Zhou, F. Bao, J. Chen, C. Li, and J. Zhu, “Dpm-solver: A
fast ode solver for diffusion probabilistic model sampling in around 10
steps,” in Neural Information Processing Systems, 2022.

[29] J. Song, C. Meng, and S. Ermon, “Denoising diffusion implicit models,”
in International Conference on Learning Representations, 2021.
[Online]. Available: https://openreview.net/forum?id=St1giarCHLP

[30] Y. Song, P. Dhariwal, M. Chen, and I. Sutskever, “Consistency mod-
els,” in Proceedings of the 40th International Conference on Machine
Learning, ser. ICML’23. JMLR.org, 2023.

[31] X. Luo, Y. Xie, Y. Qu, and Y. Fu, “Skipdiff: Adaptive skip diffusion
model for high-fidelity perceptual image super-resolution,” in Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol. 38, no. 5,
2024, pp. 4017–4025.

[32] H. Chung, B. Sim, and J. C. Ye, “Come-closer-diffuse-faster: Accelerat-
ing conditional diffusion models for inverse problems through stochastic
contraction,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022, pp. 12 413–12 422.

[33] N. Chen, Y. Zhang, H. Zen, R. J. Weiss, M. Norouzi, and W. Chan,
“Wavegrad: Estimating gradients for waveform generation,” in Interna-
tional Conference on Learning Representations, 2021.



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS ON MEDICAL IMAGING 13

[34] T. Salimans and J. Ho, “Progressive distillation for fast sampling of diffu-
sion models,” in International Conference on Learning Representations,
2022.

[35] H. Zheng, P. He, W. Chen, and M. Zhou, “Truncated diffusion proba-
bilistic models and diffusion-based adversarial auto-encoders,” in Inter-
national Conference on Learning Representations, 2023.

[36] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in
International Conference on Learning Representations, 2014.

[37] G. Litjens, O. Debats, J. Barentsz, N. Karssemeijer, and H. Huisman,
“Prostatex challenge data,” Cancer Imaging Arch, vol. 10, p. K9TCIA,
2017.

[38] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An imper-
ative style, high-performance deep learning library,” Neural Information
Processing Systems, vol. 32, 2019.

[39] F. Knoll, J. Zbontar, A. Sriram, M. J. Muckley, M. Bruno, A. Defazio,
M. Parente, K. J. Geras, J. Katsnelson, H. Chandarana et al., “fastmri: A
publicly available raw k-space and dicom dataset of knee images for ac-
celerated mr image reconstruction using machine learning,” Radiology:
Artificial Intelligence, vol. 2, no. 1, p. e190007, 2020.

[40] J. Liang, J. Cao, G. Sun, K. Zhang, L. Van Gool, and R. Timofte,
“Swinir: Image restoration using swin transformer,” in IEEE/CVF Inter-
national Conference on Computer Vision, 2021, pp. 1833–1844.

[41] B. Lim, S. Son, H. Kim, S. Nah, and K. Mu Lee, “Enhanced deep
residual networks for single image super-resolution,” in CVPRW, 2017,
pp. 136–144.

[42] R. Sood and M. Rusu, “Anisotropic super resolution in prostate mri
using super resolution generative adversarial networks,” in ISBI. IEEE,
2019, pp. 1688–1691.

[43] B. Israel, M. van der Leest, M. Sedelaar, A. R. Padhani, P. Zamecnik,
and J. O. Barentsz, “Multiparametric magnetic resonance imaging for
the detection of clinically significant prostate cancer: what urologists
need to know. part 2: interpretation,” European urology, vol. 77, no. 4,
pp. 469–480, 2020.

[44] A. L. Y. Hung, H. Zheng, Q. Miao, S. S. Raman, D. Terzopoulos, and
K. Sung, “Cat-net: A cross-slice attention transformer model for prostate
zonal segmentation in mri,” IEEE TMI, vol. 42, no. 1, pp. 291–303,
2022.




