
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Accelerating Numerical Simulations with Deep Learning

Permalink
https://escholarship.org/uc/item/3q37p16z

Author
Kim, Dong Hoon

Publication Date
2020

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3q37p16z
https://escholarship.org
http://www.cdlib.org/

Accelerating Numerical Simulations with Deep Learning

by

Dong Hoon Kim

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Mechanical Engineering

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Tarek I. Zohdi, Chair
Professor Per-Olof Persson

Professor Kameshwar Poolla

Summer 2020

Accelerating Numerical Simulations with Deep Learning

Copyright 2020
by

Dong Hoon Kim

1

Abstract

Accelerating Numerical Simulations with Deep Learning

by

Dong Hoon Kim

Doctor of Philosophy in Mechanical Engineering

University of California, Berkeley

Professor Tarek I. Zohdi, Chair

In many industrial applications, numerical simulations allow us to perform virtual exper-
iments through computers by solving differential equations. However, it often requires us
to put large amounts of computational resources, because solving differential equations is
computationally expensive and time-consuming in general. This could be more critical when
we need to run heavy simulations in real-time applications.

This work introduces a hybrid approach on how to accelerate numerical simulations by
applying the fundamental idea of deep learning to the numerical simulations. Deep learning
and numerical simulation have proposed two different ways for engineers and scientists to
predict and understand the complex behavior of systems. While numerical simulation is a
traditional technology that relies on the fundamental laws of nature, deep learning is an
emerging technology that is highly data-driven.

In the first half of this dissertation, I will review a basic background on deep learning and
nonconvex optimization to help readers easily understand the fundamental concepts. In
the second half, I will introduce the two engineering problems on accelerating numerical
simulations with both reduced simulation costs and desirable accuracy. The first problem is
in rapid process control of multiphase flowing foods. The second problem is to optimize the
tool path in the Selective Laser Sintering process.

i

I wholeheartedly dedicate this dissertation to my beloved parents, Weonjun Kim and
Kyungja Lee, who have always loved me unconditionally and have been a constant source
of encouragement and support during my entire life. I also dedicate this dissertation to my

maternal grandfather, Kwangwoo Lee, who always inspired me to become a creative
engineer when I was young.

ii

Contents

Contents ii

List of Figures iv

List of Tables vii

1 Fundamentals of Deep Learning 1
1.1 Introduction . 1
1.2 Machine Learning . 4
1.3 Regression . 6
1.4 Mini-batches . 12
1.5 Regularization . 13
1.6 Classification . 19
1.7 Convolutional Neural Networks (CNN) . 22
1.8 Recurrent Neural Networks (RNN) . 27
1.9 The Overall Outlook and Further Algorithms 31

2 Fundamentals of Non-Convex Optimization 32
2.1 Introduction . 32
2.2 Bayesian Optimization . 32
2.3 Genetic Algorithms . 42
2.4 Particle Swarm Optimization . 53
2.5 The Overall Outlook and Further Algorithms 60

3 Modeling, Simulation and Machine Learning for Rapid Process Control
of Multiphase Flowing Foods 62
3.1 Abstract . 62
3.2 Introduction . 62
3.3 Technological Approaches . 64
3.4 Fluid through a Pipe of Radius R . 65
3.5 Induced Thermal Fields via Joule Heating 66
3.6 Models for Effective Properties of Particle-Laden Fluids 68

iii

3.7 Approximate Effective Thermal Properties 70
3.8 A Fouling Model . 71
3.9 Numerical Experiments . 71
3.10 A Simulation Algorithm . 73
3.11 The Genetic Algorithm for Optimization . 74
3.12 Simulation Results . 78
3.13 Prediction of Deposition Fouling on the Channel 80
3.14 The Overall Outlook . 84

4 Tool Path Optimization of the Selective Laser Sintering Process using
Deep Learning 95
4.1 Abstract . 95
4.2 Introduction . 95
4.3 Technological Approaches . 97
4.4 Tool Path Generation using Dynamic Programming 98
4.5 Modeling and Simulation of the SLS Process 101
4.6 Numerical Experiments . 105
4.7 Preprocessing of the Laser Paths . 108
4.8 A Deep Learning Model to Predict the Optimal Tool Path 110
4.9 Simulation Results . 112
4.10 The Overall Outlook . 122

Bibliography 123

iv

List of Figures

1.1 Echo Dot (3rd Gen) - Smart speaker with Alexa [3] 2
1.2 Machine Learning vs. Deep Learning [5] . 3
1.3 Artificial Intelligence, Machine Learning, and Deep Learning [6] 3
1.4 Supervised learning . 5
1.5 A workflow with a training set and a test set [7] 5
1.6 A workflow with a training set, a validation set, and a test set [7] 6
1.7 Linear regression . 7
1.8 A schematic of gradient descent [7] . 8
1.9 A person walking down on a mountain [8] . 8
1.10 A 3-layer neural network with three input features [9] 9
1.11 A biological neuron vs. An artificial neuron [9] 10
1.12 Activation functions in nodes . 11
1.13 A fully connected neural network . 12
1.14 Gradient descent, Stochastic gradient descent, and Mini-batch gradient descent . 13
1.15 Underfitting, Good fitting, and Overfitting [10] 14
1.16 Early stopping [15] . 15
1.17 “Dropout: a simple way to prevent neural networks from overfitting” - Srivastava

et al. (2014) [19] . 16
1.18 Batch Normalizing Transform - Ioffe & Szegedy (2015) [20] 17
1.19 Training a Batch-Normalized Network - Ioffe & Szegedy (2015) [20] 18
1.20 Without batch normalization (LEFT) vs. With batch normalization (RIGHT)

[21] . 19
1.21 A sigmoid function . 20
1.22 An example of multinomial classification . 21
1.23 The experiment on the visual cortex of a cat - Hubel & Wiesel (1962) [9, 24] . . 23
1.24 A CNN with many convolution layers [29] . 23
1.25 An application of the CNN to a classification problem 24
1.26 AlexNet - Krizhevsky, et al. (2012) [30] . 24
1.27 GoogLeNet - Szegedy, et al. (2014) [31] . 25
1.28 An input feature and and a convolution filter 25
1.29 An input feature and a corresponding output feature 26
1.30 Max-pooling: pooling out the maximum value from a rectangular neighborhood 27

v

1.31 An example structure of the RNN [33] . 27
1.32 An example of the training sequence of word “hello” [9] 28
1.33 Diverse structures of the RNN [9] . 29
1.34 A multi-layer RNN [9] . 29
1.35 Repeating modules in the LSTM containing four interacting layers [33] 30

2.1 A manual search of the hyperparameter . 34
2.2 An example of Bayesian optimization process using the GP approximation over

four iterations - Brochu et al. (2010) [55] . 36
2.3 An acquisition function - Brochu et al. (2010) [55] 37
2.4 An example of visualizing probability to derive a function value greater than the

maximum function value f(x+) - Brochu et al. (2010) [55] 39
2.5 All samples (dots) and the surrogate function (line) before Bayesian optimization 41
2.6 All samples (dots) and the surrogate function (line) after Bayesian optimization 41
2.7 The basic action of the genetic algorithm . 42
2.8 3D printing of a multiphase material [70, 76] . 44
2.9 Best performing Π vs. Generation (CASE 1) 51
2.10 Best performing Π vs. Generation (CASE 2) 52
2.11 The basic action of a particle in particle swarm optimization 54
2.12 The objective function (3D view) . 57
2.13 The objective function (2D view) . 57
2.14 Best performing function value vs. Iteration . 58
2.15 Initial positions of the particles . 59
2.16 Final positions of the particles . 60

3.1 Flow of a particle-laden fluid through a pipe in the presence of an applied current
(heating) . 63

3.2 The electric current, the pressure gradient, and the Reynolds number by the
particle volume fraction . 72

3.3 The overall flowchart of the simulation . 75
3.4 LEFT: A characterization of the class of objective functions of interest. RIGHT:

A loss of superior older genetic strings if the top parents are not retained. 78
3.4 CASE 1 (Qo = 0.008 (m3/s)) . 79
3.5 CASE 2 (Qo = 0.010 (m3/s)) . 79
3.6 CASE 3 (Qo = 0.012 (m3/s)) . 80
3.6 The prediction of the food channel fouling rate 83

4.1 The overall algorithm flowchart . 97
4.2 Examples of the possible laser paths in a 4 by 4 laser grid 99
4.3 Laser path finding (RED: Accumulated path points, BLUE: New possible points) 99
4.4 Starting points considering the symmetric laser grid 100
4.5 Failed paths to be removed from the candidate path set 101

vi

4.6 A schematic and the coordinate system of the laser processing 102
4.7 Grid configuration (RED: The laser grid, BLACK: The material grid) 102
4.8 LEFT: Example geometry, RIGHT: Corresponding laser grid 106
4.9 Examples of the possible laser paths for the given geometry 106
4.10 Temperature plots of the top surfaces at the final processing time (37.5 (s)) . . . 107
4.11 Distribution of the temperature gradients . 107
4.12 Preprocessing of path data . 109
4.13 Preprocessing of the paths into path map images 110
4.14 CNN architecture . 111
4.15 Ranking prediction (33000 training data) . 114
4.16 Ranking prediction (33000 training data, Closeup) 115
4.17 Ranking prediction (4000 training data) . 116
4.18 Ranking prediction (4000 training data, Closeup) 117
4.19 Top 4 paths of the linear model . 118
4.20 Temperature plots at the top surfaces (Top 4, linear model) 119
4.21 Top 4 paths of the CNN model . 120
4.22 Temperature plots at the top surfaces (Top 4, CNN model) 121

vii

List of Tables

2.1 Simulation Parameters . 49
2.2 Top 10 performing parameters (CASE 1) . 51
2.3 Top 10 performing parameters (CASE 2) . 52
2.4 Variables of particle swarm optimization . 53

3.1 Simulation Parameters . 77
3.2 Computation time comparison . 84
3.3 Root mean squared error of prediction . 84
3.4 Parameter combinations of the test data (Qo = 0.008 (m3/s)) 86
3.5 Parameter combinations of the test data (Qo = 0.010 (m3/s)) 89
3.6 Parameter combinations of the test data (Qo = 0.012 (m3/s)) 92

4.1 Simulation Parameters . 105
4.2 Computation time comparison . 122

viii

Acknowledgments

I have been extremely blessed to have my research advisor by Professor Tarek I. Zohdi. He
has not only supported me intellectually and financially, but also encouraged me mentally
and emotionally. Every time I made a small progress on research or projects, he always
praised and encouraged me by saying ‘You are a superman!’. Professor Tarek I. Zohdi is
sincerely a real superman for me. I greatly respect his generosity, vision, wisdom, sincerity,
and motivation, and these deeply have inspired me during my Ph.D. years. It was a great
privilege and honor to work and study under his guidance. Professor Tarek I. Zohdi is truly
one of the greatest persons I have ever met in my entire life.

I am extremely grateful to Professor Per-Olof Persson for teaching me numerical methods
and answering many näıve mathematical questions in his office hours. I learned a lot of useful
knowledge on the numerical methods, which is the core part of my doctorate study, from his
classes. I also respect his passion, kindness, smartness, and versatility. He was not only a
good teacher but also a great keyboard player. I could not forget the moment when I visited
his wonderful concert three years ago with Lun Jiang.

I am deeply indebted to Professor Kameshwar Poolla. He was sincerely a great teacher
for me. His lecture on Mathematical Methods in Engineering was one of the greatest and
most helpful classes I have ever taken in UC Berkeley. His class was really fun and exciting,
and I learned a lot from his class. He was not only good at making students understand,
but also a greatly respectful person. Every time I visited his office hour, he kindly answered
my questions. I respect his generosity and kindness.

I would also like to extend my deepest gratitude to Professor Grace Gu for encouraging
my study on machine learning. She kindly shared good references for studying machine
learning two years ago, and this became a necessary part of my doctorate research and
dissertation. When I came across her at Etcheverry hall in the evening, she always treated
me pleasantly and kindly.

I would like to extend my sincere thanks to Professors George Johnson and Ömer Savaş.
They were not only excellent lecturers but also great teachers. They always made themselves
available to me and nurtured my intellectual curiosity. Thanks should also go to Professor
Grace O’Connell, who always appreciated my diligence when I worked as a reader in her
class. I am extremely glad to have learned from or worked with those great professors in the
Department of Mechanical Engineering.

Many thanks to Sun Choi, who is an alumnus of the Computational Manufacturing and
Materials Research Lab, for mentally supporting me while I was studying at UC Berkeley.
When I felt anxious about taking the preliminary exam and the qualifying exam, he encour-
aged me saying ‘Don’t worry. I am sure you will pass the first time you take it.’ I pay the
tribute of praise to his foresight. I also appreciate that he empathized with my graduate life
when I felt tired or in a slump.

I would like to thank all the lab members, visiting scholars, and alumni in the CMMRL,
including David Fernández-Gutiérrez, Shanna Hays, Erden Yildizdag, Brett Kelly, Mickey
Clemon, Nicolas Castrillon, Takashi Maeshima, Simon Schmidt, Roger Isied, Zachary Yun,

ix

Avery rock, Brian Howell, David Alcantara, Kate Edwards, Maxwell Micali, Marc Russell,
Zeyad Zaky, Chang Yoon Park, Youngkyu Kim, Payton Goodrich, Lukas Bante, Christoph
Schreiber, Timo Schmidt, Christian Zeller, Anna Rehr, Henning Wessels, and Atrin Sarmadi.
I greatly appreciate their excellent and insightful feedback and help. Opening the lab door
was always fun to me because they made our lab’s atmosphere harmonious and pleasant.
Many thanks to all for your guidance and friendship.

Especially, many thanks again to Roger Isied and Zachary Yun for working for the COE
websites and Shorelight project together. I sincerely feel grateful that I worked with those
nice colleagues. I respect Roger Isied’s strong responsibility and passion for his work. I was
also very pleased to work with Keith Gatto and Walter Campbell for the Shorelight project.
They were always cheerful to me. Many thanks again to Nicolas Castrillon, Zachary Yun,
Roger Isied, and Avery Rock for providing excellent feedback on my research paper. I must
also thank David Fernández-Gutiérrez, Shanna Hays, and Mickey Clemon again for providing
me great advice on my research and graduate study.

I can not begin to express my thanks to Zhi-Wei Lin, who was a Master of Engineering
student in our lab in 2018-2019. I greatly appreciate his help on simulation work with Star-
CCM+ while I was super busy with preparing for my Ph.D. qualifying exam. Without him, I
could not have successfully run high fidelity simulations for the ARM project with Siemens.
I am also thankful to people at Siemens, Eugene Solowjow, Martin Sehr, and Shashank
Tamaskar, whom I worked together for the ARM project in 2019. It was a great pleasure to
work with them.

Special thanks to my good friends and confidants Erden Yildizdag, Orhan Ocal, and
Milad Shirani. They made my graduate life more fun and exciting. They were not only smart
researchers in the lab but also great friends to hang out outside the lab. I also congratulate
that Erden Yildizdag became an assistant professor at Istanbul Technical University recently.
I pray for good luck on his future research and teaching.

Many thanks to other professors and colleagues in the Department of Mechanical Engi-
neering and the other departments of UC Berkeley. I am deeply grateful to Professor Shaofan
Li, in the Department of Civil and Environmental Engineering, for his passionate teaching
in his Computational Nano-mechanics class and encouraging me every time. Also, special
thanks to Xin Lai, who was a teaching assistant in Professor Shaofan Li’s class. He always
helped me in the office hour with kindness. Professor Marcel Kristel was always kind and
cheerful in his class, and I respect his kindness and generosity. Professors Fai Ma and Mark
Mueller always greeted me kindly when I came across them in Etcheverry Hall.

I had the great pleasure of working with Brian Muldoon, Gabriel López, and Travis King
as teaching assistants in Professor Grace O’Connell’s class. Alejandro Morales Martinez,
Çağlar Tamur, Abdulrahman Jbaily, Zacharias Vangelatos, Sen Li, Michael Kelly, Michael
Estrada, Joshua Su, Nathaniel Goldberg, Max Chiyu Jiang, Andrew Sanville, Daniel Grieb,
Zachary Theroff, Eric Ibarra, Lun Jiang, Jessica Leu, April Novak, Kate Schweidel, Alvin
Chi-Chung Li, Ean Hall, Brett Hendrickson, Haris Moazam Sheikh, Sai Mandava, Tina
Piracci, Haley Wohlever, Yanhe Huang, Qiuchen Guo, Yara Mubarak, Magda Ntetsika, Guy
Bergel, Claire Arthurs, and Nicole Farias always treated me pleasantly and kindly. Many

x

thanks to all of them. I also appreciate all the staff members of the Department of Mechanical
Engineering, including Donna Craig, Isabel Blanco, Reggie Madison, Dan Essley, Rene Viray,
Ana Preza-Gregg, and Yawo Akpawu, for always being available and helping me.

I wish to show my sincere gratitude to Professor Phillip Colella in Berkeley Lab. I
learned a lot of fancy C++ programming skills from his Software Engineering for Scientific
Computing class. I’d like to greatly acknowledge the effort of Fanwei Kong for actively
working with me in a team for the final group project of Professor Phillip Colella’s class.
I also wish to thank Professors Aydın Buluç and Kathy Yelick. Applications of Parallel
Computers class from them was really helpful to me. I’d like to recognize the help that I
received from Jinkyu Kim and Cecilia Zhang for the project of the parallel computing class.
I also gratefully acknowledge the assistance of Philippe Laban and Deepak Pathak in the
parallel computing class. Many thanks to all of you.

Also, I very much appreciate some Korean undergraduate students, including Jenny
Jungmin Kim, Isabel Yura Hwang, Taeyoung Kim, Jihye Park, Kyunggeun Kim, Howard
Hoseok Yoon, Cloud Jaewook Lee, Jane Jang, Yoojeong Do, Amy Jung, Steve Kim, Jiho
Kwak, Nayeon Kang, and April Lee, for making my Berkeley life more fun and exciting.

I would like to express my gratitude to some Korean graduate students. Special thanks to
Soochan Chung and Yongkeun Choi, who are my trusted confidants, for always supporting
me mentally and personally. I am very glad to be in a friendship with such nice friends. Soo
Hyun Shin and Euihyun Choi were the nicest roommates ever in my life. Many thanks for
being with me and supporting me intellectually and personally during these years.

I am also sincerely grateful to the other Korean graduate students and postdoctoral re-
searchers including Minyoung Kim, Wonjun Jo, Sohee Jung, Yoonsoo Rho, Taesung Park,
Hyungtaek Kim, Sunmoon Yoo, Hyungjin Kim, Lynn Yeom, Suhong Moon, Jungpyo Hong,
Soomin Woo, Kyungtae Lee, Jaecheol Lee, Kiwoo Shin, Donggun Lee, Joonyoung Kim,
Jinkyu Kim, Sunah Moon, Yeojun Kim, Heesoo Kwon, Saemmool Lee, Joonwoo Kim,
Suhong Moon, Junseok Lee, Misa Jieun Kwon, Jinkyu Lim, Minsoo Kang, Jichan Chung,
Catherine Park, Saehong Park, Sangjae Bae, Hyundong Ha, Jeongseok Son, Changmin Lee,
Dongwoo Shin, Ji Min Kim, Yoonjae Park, Sangwon Kim, Wonkee Cho, Edward Kim, Dong-
guk Shin, Taejoo Ahn, Sangjoon Lee, Jangho Choi, Hotae Lee, Jungpyo Lee, Sareum Kim,
Kunmo Kim, Minok Park, and Euiyoung Kim for supporting me personally. Many thanks
again to Taesung Park, Suhong Moon, and Junseok Lee for having intellectual discussions
in deep learning with me and nurturing my intellectual curiosity.

Last but not least, my sincere gratitude goes to Samsung Scholarship, who supported my
graduate study financially. Without their support, I could not have found success. Thanks
also to all the other great people whom I might have forgotten to write here for being with
me and supporting me personally during my Ph.D. years. I could not have completed this
journey without you. Thank you.

1

Chapter 1

Fundamentals of Deep Learning

1.1 Introduction

Artificial Intelligence (AI) is a technology that realizes human learning ability, reasoning
ability, perception ability, and the ability to understand natural languages through computer
programs. Since around the 1950s when AI emerged, the AI has consistently demonstrated
problem-solving skills and has had a significant effect on the development of science and
technology.

In 2016, AlphaGo, an AI developed by Google DeepMind, surprised all over the world
by defeating the human champion of the world, Sedol Lee, in the board game Go. Go is an
abstract strategy board game for two players, in which the aim is to surround more territory
than the opponent. There are 2.089× 10170 cases to locate the go stone on the board while
playing [1], and it is impossible to calculate the possibilities to win by using a brute force
approach. AlphaGo uses a novel combination of supervised learning from games between
human experts and reinforcement learning from games of self-play [2].

Amazon Echo (Figure 1.1), a smart speaker from Amazon, is capable of voice interaction
with humans, recommending music that users would like to listen to, and providing real-time
information (e.g. weather, traffic, news, etc.). It can also control several smart devices using
itself as a home automation system.

Machine Learning (ML), a major branch of AI, is a field of study that gives comput-
ers the ability to learn without being explicitly programmed [4]. In explicit programming,
developers encapsulate the implementation details associated with a design concept and ex-
plicitly express their idea through their programming languages. However, there is a critical
limitation of explicit programming when the object of programming has many rules which
are difficult to be explicitly programmed (e.g. spam filtering, face recognition, automatic
driving, etc.). Beyond the limitations of explicit programming, the ML allows a computer
to learn through experience and improve its performance automatically. The ML builds a
mathematical model based on sample data, known as training data, to learn the patterns
of the data and make predictions or decisions without being explicitly programmed to do

CHAPTER 1. FUNDAMENTALS OF DEEP LEARNING 2

Figure 1.1: Echo Dot (3rd Gen) - Smart speaker with Alexa [3]

so. The ML algorithms are used in many applications, such as spam filtering and computer
vision.

Deep Learning (DL) is a subset of the ML. The ML uses algorithms to parse data, learn
from that data, and make informed decisions based on what it has learned. On the other
hand, the DL structures algorithms in layers itself to learn and make intelligent predictions
on its own. The difference between the DL and the ML is illustrated in Figure 1.2. While
machine learning still requires guidance from humans on feature selection to predict the
output, deep learning could extract the feature and learn through its method of computing
by itself. The overall concepts of the AI, ML, and DL are shown in Figure 1.3. From the
next section, we will review the fundamental concepts needed to implement deep learning in
our programming language.

CHAPTER 1. FUNDAMENTALS OF DEEP LEARNING 3

Figure 1.2: Machine Learning vs. Deep Learning [5]

Figure 1.3: Artificial Intelligence, Machine Learning, and Deep Learning [6]

CHAPTER 1. FUNDAMENTALS OF DEEP LEARNING 4

1.2 Machine Learning

Machine Learning systems learn how to combine input to produce useful predictions on
never-before-seen data. Machine learning has demonstrated its powerful potentials in various
fields such as image recognition, autonomous driving, spam detection, speech recognition,
medical prediction, and so on. There are two kinds of machine learning, Supervised Learning
and Unsupervised Learning :

Supervised Learning

1. Learning the mapping function from the input data (features) to the output data
(labels).

2. The goal is to approximate the mapping function so well that it can predict the output
variables for the new input data.

3. Predictive models for classification and regression.

Unsupervised Learning

1. We only have input data and no corresponding output data (label).

2. The goal is to model the underlying structure or distribution in the data in order to
learn more about the data.

3. Pattern/structure recognition for clustering, association, dimensionality reduction.

In the upcoming contents, we will only focus on supervised learning which is much more
common and widely used. Also, I will use the words machine learning and deep learning
only for supervised learning. A simple example of supervised learning is shown in Figure 1.4.

There are three core concepts for machine learning: Features, labels, and a model. Fea-
tures represent input variables, and labels represent the thing we want to make predictions
on. A model is a mapping function that defines the relationship between features and labels.
The objective of machine learning is to find the best model which has strong predictive
power on never-before-seen data.

In order to train the model to have good predictive power, we should divide the total
data we have into two subsets, which are a training set and a test set :

• A training set is a subset to train the model

• A test set is a subset to test the performance of the trained model

CHAPTER 1. FUNDAMENTALS OF DEEP LEARNING 5

Figure 1.4: Supervised learning

Figure 1.5: A workflow with a training set and a test set [7]

Note that the test set is completely isolated from the training set and the training process.
A workflow with the training set and the test set is shown in Figure 1.5. In Figure 1.5, ‘Tweak
model’ means adjusting anything about the model (e.g. changing the learning rate, adding
or removing features, designing a completely new model from scratch). At the end of this
workflow, we pick the model that does best on the test set. However, dividing the total
data set into three subsets (a training set, a validation set, and a test set) could be a better
workflow in some cases, as shown in Figure 1.6, because it creates fewer exposures to the

CHAPTER 1. FUNDAMENTALS OF DEEP LEARNING 6

test set while training. Also, we may want to check the performance of the model with the
validation set while training, so that we could take action as soon as possible if training is
not going well [7].

Figure 1.6: A workflow with a training set, a validation set, and a test set [7]

1.3 Regression

Linear Regression

Regression is an approach to find the relationship between input variables (features) and
continuous output variables (labels). In machine learning, the objective of the regression is
to develop a continuous mapping function that has strong predictive power on never-before-
seen data.

Linear regression is the simplest regression method in machine learning. Assuming we
are going to use J kinds of input features, the linear model could be expressed as shown in
Figure 1.7.

CHAPTER 1. FUNDAMENTALS OF DEEP LEARNING 7

Figure 1.7: Linear regression

In this case, N represents the number of data samples (either for the training, validation,
or test set). y represents labels that we finally want to make predictions on for the test data.
W is a weight for which we eventually want to get. Also, w0 (the first component of W) is
an additive bias.

From Figure 1.7, one can write the hypothesis function for the linear model as follows:

H(X) = XW (1.1)

In this linear model, we want to minimize the loss function L(W):

L(W) = ‖H(X)− y‖2
2 = ‖XW − y‖2

2 (1.2)

In order to minimize the L(W), we use a gradient ∇L(W) for gradient descent:

∇L(W) = 2XT(XW − y) (1.3)

This represents the gradient of the loss function. Based on this, we correct the weight
vector W, to search for optimal weights which minimizes the loss function:

W←W − α∇L(W) (1.4)

The method described in Equation 1.4 is called gradient descent. The gradient descent
is visually illustrated in Figure 1.8. If the gradient (slope) is big, then we could take a big
step in a single training step because we are still far from the local minimum of the loss
function. However, if the gradient (slope) is small, we need to take a small step carefully to
get to the optimal point. We could compare this process with a hiker hiking downhill on a
mountain, as shown in Figure 1.9. α in Equation 1.4 represents the training rate (also called
the learning rate), which means how much we would multiply to the gradient in every single
training step of the training process. We update W over and over based on Equation 1.4
until the training process ends.

CHAPTER 1. FUNDAMENTALS OF DEEP LEARNING 8

Figure 1.8: A schematic of gradient descent [7]

Figure 1.9: A person walking down on a mountain [8]

CHAPTER 1. FUNDAMENTALS OF DEEP LEARNING 9

Nonlinear Regression with Neural Networks

Even though the linear model is simple and computationally cheap enough, many things we
want to predict in the world are highly nonlinear. Therefore, the linear model often fails
to make good predictions in many cases. A neural network, which mimics the structure of
biological neurons of the human brain, is used to overcome this limitation (Figure 1.11).
Using a neural network, we could perform machine learning with nonlinear regression, which
could have stronger predictive power in many nonlinear problems. A simple example of the
neural network is shown in Figure 1.10.

Figure 1.10: A 3-layer neural network with three input features [9]

When N by M data (N : the number of data set, M : the number of features) gets
into the input layer, M features (N by 1 vectors) enter the corresponding M nodes in the
input layer. Passing through the hidden layers, they are multiplied by weight values in
‘axons’ between the layers,1 and they are activated in the nodes by activation functions.
Activation functions are nonlinear functions that allow the machine learning model to have
nonlinear properties. There are a variety of activation functions, as shown in Figure 1.12. A
rectified linear unit (ReLU) is widely used for activation functions because it could overcome
the gradient vanishing problem in the deep neural network, which sigmoid function and
hyperbolic tangent function are suffering from.

After passing through all the hidden layers, we need to train the model with gradient
descent as we did in linear regression. youtput represents the hypothesis of the model on the
input data X, and ytarget represents the true label values for the given data set.2 In Figure
1.13, the objective is to minimize the loss:

E =
1

N
‖youtput − ytarget‖2

2 (1.5)

1Additionally, one can have biases in the nodes which are added after the linear multiplication of weights.
In this case, biases would be ‘learned’ along with weight values during the training process.

2youtput is equivalent to H(X), and ytarget is equivalent to y in the linear regression above.

CHAPTER 1. FUNDAMENTALS OF DEEP LEARNING 10

(a) A biological neuron

(b) An artificial neuron

Figure 1.11: A biological neuron vs. An artificial neuron [9]

where N represents the number of data samples. Taking derivative of this yields:

∂E

∂youtput

=
2

N
(youtput − ytarget) (1.6)

Having x as a vector entering to some node and y as a vector coming out from the node,
we could write:

∂E

∂x
=
dy

dx
· ∂E
∂y

=
df(x)

dx
· ∂E
∂y

(1.7)

where f(x) represents the activation function (ReLU, sigmoid, etc.).

CHAPTER 1. FUNDAMENTALS OF DEEP LEARNING 11

Figure 1.12: Activation functions in nodes

Also, having yi as an output vector from ith node of the previous layer and xj as an input
vector to jth node in the next layer, we could apply the chain rule to write:

∂E

∂wij
=

∂xj

∂wij
· ∂E
∂xj

= yi ·
∂E

∂xj

(1.8)

where wij represents the weight which is multiplied in an ‘axon’ connecting ith node of
the previous layer and jth node of the next layer.

Based on ∂E
∂wij

shown in Equation 1.8, we could update the weight values for all the ‘axons’

by gradient descent:

wij ← wij − α
dE

dwij
(1.9)

where α represents the learning rate.
Also, we could get the derivative of output error with respect to yi (output vector of the

node in the previous layer):

∂E

∂yi

=
∑

j∈out(i)

∂xj

∂yi

· ∂E
∂xj

=
∑

j∈out(i)

wij
∂E

∂xj

(1.10)

CHAPTER 1. FUNDAMENTALS OF DEEP LEARNING 12

Figure 1.13: A fully connected neural network

The overall process explained above is called backpropagation. We start from the error
of the output layer, and backpropagate the error information to update weight values in
‘axons’ between all the layers.

1.4 Mini-batches

When training the model, we also have to consider the batch size. Batch size represents the
number of training examples utilized in one iteration. This could be the same as the size
of the training data or could be less than training data.

In some applications, the size of the training data set is large enough and it makes
the training process with all those data at once in each iteration more difficult and time-
consuming. Therefore, we could split the training data into mini-batches to train the model
efficiently, taking advantage of the parallel computing functionality of the graphics processing
unit. If the batch size is 1 in gradient descent, it is called stochastic gradient descent (SGD).
The word stochastic represents selecting a random sample from the total training data. If
we perform the iteration over and over, the SGD could effectively get to one of the minima.

CHAPTER 1. FUNDAMENTALS OF DEEP LEARNING 13

However, the SGD still has a problem that it is too noisy because it has much less batch
size than full batch iteration. Mini-batch gradient descent is a compromise between the
full batch iteration and the SGD. Mini-batches typically consist of 10 to 1000 randomly
selected examples. Mini-batch gradient descent reduces the noise of the SGD and is more
efficient than iteration with the entire batch of the training data. The comparison of gradient
descent, mini-batch gradient descent, and stochastic gradient descent is illustrated in Figure
1.14. The blue line represents gradient descent, the purple line represents stochastic
gradient descent (SGD), and the green line represents mini-batch gradient descent.
The red circle in the center is a local minimum of the loss function.

Figure 1.14: Gradient descent, Stochastic gradient descent, and Mini-batch gradient descent

1.5 Regularization

Overfitting

Figure 1.15 illustrates the cases of underfitting and overfitting. While underfitting could be
resolved easily by increasing more features to expand the hypothesis space, overfitting is a
critical problem in machine learning. As mentioned above, we split the total data into the
training set and the test set (and the validation set if applicable). We train the model with
the training set and make predictions on the test set to check the performance of the trained
model. Overfitting means the case when the model was over-trained from the training set, so
it has weak predictive power on never-before-seen data (the test set). Even though training

CHAPTER 1. FUNDAMENTALS OF DEEP LEARNING 14

error decreases continuously while the training process, test error starts increasing at some
point and the model starts losing generalization performance, as shown in Figure 1.16.

Figure 1.15: Underfitting, Good fitting, and Overfitting [10]

Here are some ways to prevent overfitting:

1. L1/L2 regularization

2. Dropout

3. Batch normalization

4. Early stopping (Figure 1.16)3

5. Adding more data

6. Reducing architecture complexity to generalize well

7. Adding noise to the input or output [12]

8. Cross-validation [13, 14]

One way to prevent overfitting in a quantified way is to penalize complex models, which
is a principle called regularization [16, 17]. In other words, instead of simply aiming to
minimize loss:

minimize(Loss(Data|Model)) (1.11)

We could try to minimize loss and complexity at once:

minimize(Loss(Data|Model) + λcomplexity(Model)) (1.12)

where λ is a regularization rate. Some ways to penalize the complexity of the model
are in the following subsections.

3For the readers who are interested in theoretical analysis on early stopping, refer to [11].

CHAPTER 1. FUNDAMENTALS OF DEEP LEARNING 15

Figure 1.16: Early stopping [15]

L1 Regularization (Lasso Regression)

L1 regularization adds absolute value of magnitude of coefficient as penalty term to the
loss function.

L(W) = ‖y −H(X)‖2
2︸ ︷︷ ︸

Original loss function

+ λ ‖W‖1︸ ︷︷ ︸
Regularization term

(1.13)

where H(X) represents the hypothesis of the model on the input data X, and y represents
the true label values for the given data set.

Performing L1 regularization has the following effect on a model:

• It encourages many of the uninformative coefficients of weights in a model to be exactly
0. In other words, it removes the unnecessary features from the model.

• Zeroing out features will save computational cost and may reduce noise in the model.

L2 Regularization (Ridge Regression)

L2 regularization adds squared magnitude of coefficient as penalty term to the loss func-
tion.

L(W) = ‖y −H(X)‖2
2︸ ︷︷ ︸

Original loss function

+ λ ‖W‖2
2︸ ︷︷ ︸

Regularization term

(1.14)

CHAPTER 1. FUNDAMENTALS OF DEEP LEARNING 16

where H(X) represents the hypothesis of the model on the input data X, and y represents
the true label values for the given data set.

Performing L2 regularization has the following effect on a model:

• It encourages weight values toward 0 (but not exactly 0).

• It encourages the mean of the weights toward 0, with a normal (bell-shaped or Gaus-
sian) distribution.

Dropout

On top of L1/L2 regularization, we could randomly drop the nodes in the neural network as
another way of the regularization. Dropout is a technique for regularizing neural networks,
developed by Hinton et al. [18]. The core idea behind dropout is to randomly set some of
the weights in a neural network to 0 during the training process. We set a keep probability
for dropout, which represents the ratio of the nodes that a weight value is left undisturbed
to all the nodes. Figure 1.17 illustrates how dropout works.

Figure 1.17: “Dropout: a simple way to prevent neural networks from overfitting” - Srivastava
et al. (2014) [19]

Batch Normalization

Batch normalization has become a necessary technique for neural network training since
Ioffe and Szegedy [20] suggested in 2015. Batch normalization is basically one of the ideas

CHAPTER 1. FUNDAMENTALS OF DEEP LEARNING 17

to prevent gradient exploding or gradient vanishing while training the deep neural networks.
People tried to resolve these gradient problems by changing the activation function to ReLU,
carefully initializing the weights, and using a small learning rate.

However, Ioffe and Szegedy devised a fundamental way to prevent the gradient problems
and eventually accelerate the learning speed by stabilizing the training process itself, rather
than those indirect methods. The overall algorithm of the batch normalization is shown in
Figures 1.18 and 1.19.

When training the neural network, data is usually brought as mini-batch units for train-
ing. After normalizing the batch by the average and standard deviation for each feature,
it is scaled by the scale factor and shift factor in the batch normalization layer. The scaled
batch then enters a hidden layer that has the activation function. The scale factors and shift
factors are trained during backpropagation as weight values in ‘axons’. A schematic of the
neural network with batch normalization is shown in Figure 1.20.

Figure 1.18: Batch Normalizing Transform - Ioffe & Szegedy (2015) [20]

The remarkable advantages of batch normalization are as follows:

1. In traditional deep neural networks, the gradient exploding or vanishing could occur
when the learning rate is high, due to the scale of the parameters. When using batch
normalization, it is not affected by the scale of the parameters when propagating.

CHAPTER 1. FUNDAMENTALS OF DEEP LEARNING 18

Figure 1.19: Training a Batch-Normalized Network - Ioffe & Szegedy (2015) [20]

Therefore, the learning rate can be greatly increased, and it enables fast learning
processes.

2. Batch normalization itself has a regularization effect. This allows the model
to exclude the weight regularization term (either for L1 or L2) and dropout. It also
overcomes the disadvantage of dropout by accelerating the learning process (because

CHAPTER 1. FUNDAMENTALS OF DEEP LEARNING 19

Figure 1.20: Without batch normalization (LEFT) vs. With batch normalization (RIGHT)
[21]

learning speed gets slightly slower when we use dropout).

1.6 Classification

Classification represents classifying the data into multiple categories. While labels are con-
tinuous values in regression problems, labels are discretized values (classes) in classification
problems. The classification technique could be applied to visual recognition and the detec-
tion of spam mail or credit card fraudulent transactions. There are two kinds of regression
methods for classification: Logistic regression and Softmax regression.4

Logistic Regression

Logistic regression is a regression method for binary classification. In regression problems,
the hypothesis of the model could potentially have any continuous value from −∞ to ∞.
However, in classification problems, we need to manipulate the hypothesis function so that
its output could have values between 0 and 1 as probabilities, using the sigmoid function
(Figure 1.21). We could express the hypothesis of logistic regression, H(X), as follows:

H(X) =
1

1 + exp(−z)
(1.15)

4We should distinguish the word regression and the phrase regression methods. While regression is a
type of machine learning algorithms [22] as we dealt in section 1.3, the regression methods are mathematical
methods for estimating the relationship between input variables and output variables.

CHAPTER 1. FUNDAMENTALS OF DEEP LEARNING 20

where z represents the output of the function that operates on layers earlier than the
sigmoid function. The sigmoid function converts the unscaled output of earlier layers, z, to
the new values between 0 and 1.

Figure 1.21: A sigmoid function

Note that there are only two classes, which are 0 and 1, in logistic regression. The
hypothesis of logistic regression will have predicted values between 0 and 1. As we can see
in Figure 1.21, the sigmoid function converts the values from −∞ to∞ into the values from
0 and 1.

We could write log loss function for Xi,
5 the ith data sample of the input X, as follows:

Loss =

{
−log(H(Xi)) if yi = 1

−log(1−H(Xi)) if yi = 0
(1.16)

where yi represents the label corresponding to Xi, and H(Xi) represents the logistic
hypothesis for Xi. We observe that the loss becomes a minimum when H(Xi) = yi. Writing
Equation 1.16 in the simpler form yields:

Loss = yilog(H(Xi))− (1− yi)log(1−H(Xi)) (1.17)

Now we could rewrite this form to express the overall loss function L(W) for the data
set :

L(W) = − 1

N

N∑
i=1

(
yilog(H(Xi))− (1− yi)log(1−H(Xi))

)
(1.18)

5For logistic regression with the hypothesis function shown in Equation 1.15, loss function in the mean
squared error form is non-convex and not suitable for training. For further detail, refer to [23].

CHAPTER 1. FUNDAMENTALS OF DEEP LEARNING 21

where N is the number of data samples in the data set (either for the training, validation,
or test set). Xi and yi represent the ith data sample of the input X and the corresponding
label, respectively.

Lastly, we could do logistic regression with L(W), by gradient descent:

W←W − α ∂

∂W
(L(W)) (1.19)

where α is the learning rate.

Softmax Regression

Softmax regression is used when we need to solve multinomial classification problems. In
logistic regression, we had only two kinds of labels. However, for multinomial classification
problems, we need to classify the input data into more than two classes, as shown in Figure
1.22. Therefore, we need to use another shape of hypothesis function and loss function.

Since softmax regression should output the predicted probabilities for every input data
sample to be in each class, the hypothesis H(X) on the input data X should have sizes of
N by c, where N is the number of the data samples (either for the training, validation, or
test set), and c is the number of the total classes.6

Figure 1.22: An example of multinomial classification

We could express the softmax probability for the mth data sample to belong to the kth

class, Hm,k(X), as follows:

Hm,k(X) =
ezm,k∑c
i=1 e

zm,i
(1.20)

6This is a remarkable difference from the logistic regression, where H(X) has a size of N by 1.

CHAPTER 1. FUNDAMENTALS OF DEEP LEARNING 22

where zm,i represents the mth row and the ith column of z, which is the output of the
function that operates on layers earlier than the softmax function. In this case, there are c
classes in total, from class 1 to class c. Hm,k(X) is the element on the mth row and kth

column of H(X). Also, Equation 1.20 implies that the sum of the probabilities to be in all
the classes should be 1.

For the loss function in multinomial classification, a cross-entropy loss function is used:

L(W) = − 1

N

N∑
m=1

c∑
k=1

(
Lm,k · log(Hm,k(X))

)
(1.21)

where N refers to the number of the data samples, and Lm,k represents the kth column
of the one-hot encoded label of mth data sample. For example, if the true label of some data
is class 3, Lm,(k=3) = 1 and Lm,(k 6=3) = 0.

Lastly, we could do softmax regression with loss (L(W)), by gradient descent:

W←W − α ∂

∂W
(L(W)) (1.22)

where α is the learning rate.

1.7 Convolutional Neural Networks (CNN)

In the 1960s, Hubel and Wiesel [24] worked on the area of Sensory Processing. They ex-
perimented by inserting a microelectrode into the primary visual cortex of a partially anes-
thetized cat so that it can’t move. They showed the images of the line at different angles
to the cat, as shown in Figure 1.23.7 Through the micro-electrode, they found out that
some neurons fired very rapidly by watching the lines at specific angles, while other neurons
responded best to the lines at different angles. Some of these neurons responded to lightness
patterns differently, while other neurons focused on detecting motion in a certain direction.
The concept of the Convolutional Neural Network was biologically inspired by this experi-
ment. LeCun [25–27], a French-American computer scientist, is known as a founding father
of Convolutional Neural Networks.

In deep learning, a Convolutional Neural Network (CNN) is one of the core classes of
neural networks, which is most commonly applied to image classification and recognition
[25–28]. The difference between the fully connected neural network (classical neural network)
and the CNN is that the CNN has convolution layers that extract and determine the features
from the image itself, in addition to the fully connected layers. A schematic of the CNN is
shown in Figure 1.24. Also, a simple application of the CNN to a classification problem is
shown in Figure 1.25. Note that the structure of the CNN shown in Figure 1.24 is simply
one of the diverse CNN structures it could have. CNNs could have more complex and deeper
architectures, as shown in Figures 1.26 and 1.27.

7Cat image by CNX OpenStax is licensed under CC BY 4.0; changes made

CHAPTER 1. FUNDAMENTALS OF DEEP LEARNING 23

Figure 1.23: The experiment on the visual cortex of a cat - Hubel & Wiesel (1962) [9, 24]

Figure 1.24: A CNN with many convolution layers [29]

CHAPTER 1. FUNDAMENTALS OF DEEP LEARNING 24

Figure 1.25: An application of the CNN to a classification problem

Figure 1.26: AlexNet - Krizhevsky, et al. (2012) [30]

CHAPTER 1. FUNDAMENTALS OF DEEP LEARNING 25

Figure 1.27: GoogLeNet - Szegedy, et al. (2014) [31]

As we could observe in Figure 1.24, the CNN is composed of convolution layers which
perform feature learning, and a fully connected neural network which processes the output
of convolution layers. Each convolution layer contains a set of filters (convolution filters,
activation function layers, and pooling layers) whose parameters need to be learned along
with the weights in the fully connected neural network. The explanations of the components
in convolution layers are as follows.

Convolution Filters

Every single convolution layer has its convolution filters. As shown in Figure 1.28, we have
an input image (input feature) entering the convolution layer and a convolution filter which
has scalar weight values as filter elements. We multiply the convolution filter values to the
input image values and get the sum of those values, by striding the filter from the left-top
to the right bottom of the image by stride.8 This process yields an output image (output
feature) as shown in Figure 1.29. The weight values multiplied by convolution filters will be
trained over and over during the training process.

Figure 1.28: An input feature and and a convolution filter

8Stride denotes how many steps we are shifting a convolution filter per each step in convolution.

CHAPTER 1. FUNDAMENTALS OF DEEP LEARNING 26

Figure 1.29: An input feature and a corresponding output feature

The output image size from a convolution filter

We could calculate the output image size from a convolution filter. We could assume that we
have an input image that has a dimension of 32 by 32 by 3 (3 because of the RGB channel),
and 10 different convolution filters which has a dimension of 5 by 5 by 3 (3 because of the
RGB channel). We also assume that stride is 1 and padding is 2.9 Then the new image will
have a dimension of 32 by 32 by 10, based on the following relationship:

Output size =
Input size–Filter size + 2× Padding

Stride
+ 1 (1.23)

The number of filters of the input image
= The number of channels of the output image

(1.24)

Activation Function Layers

We could give non-linearity to the filtered images by applying activation functions, as we
did in the fully connected neural network. The activation functions are commonly ReLU
(rectified linear units). Other choices might include sigmoid, tangent hyperbolic, leaky ReLU,
maxout, and so on. For the readers who are interested in other kinds of activation functions,
refer to [9].

Pooling Layers

We use pooling layers to detect and extract the summary information from the image. The
pooling layers are responsible for reducing the dimension of the convolved feature. The main
objective of pooling is to decrease the computational power required to process the data.

9Padding represents padding 0 values along the sides of the image before entering a convolution filter.
For example, M by M by 3 image becomes (M + 4) by (M + 4) by 3 when padding is 2.

CHAPTER 1. FUNDAMENTALS OF DEEP LEARNING 27

Max-pooling is the most popular pooling method. The concept of max-pooling is illustrated
in Figure 1.30. Other pooling functions include the average of a rectangular neighborhood,
L2 norm of a rectangular neighborhood, or a weighted average based on the distance from
the central pixel [32].

Figure 1.30: Max-pooling: pooling out the maximum value from a rectangular neighborhood

1.8 Recurrent Neural Networks (RNN)

A Recurrent Neural Network (RNN) is a class of deep neural networks that can train and
predict sequential data. The RNNs have been applied to a variety of fields including voice
recognition, speech recognition, machine translation, image/video captioning, and so on. An
example structure of the RNN is shown in Figure 1.31.

Figure 1.31: An example structure of the RNN [33]

Figure 1.31 shows the simplest structure of the RNN which is called a Vanilla RNN. ht
represents (hidden) state at the time t, and the previous (hidden) state affects to the next
state. Every single state consists of a single hidden vector h. We associate the new state

CHAPTER 1. FUNDAMENTALS OF DEEP LEARNING 28

with the old state ht−1 and input vector xt, by some function with parameters W (which
will be trained), as shown in Equation 1.25. For example, tangent hyperbolic could be used
for the function to calculate the new state as in Equation 1.26. Based on the new state, we
could calculate the output vector yt at time t, as shown in Equation 1.27.

ht = fW(ht−1,xt) (1.25)

ht = tanh(Whhht−1 + Wxhxt) (1.26)

yt = Whyht (1.27)

Figure 1.32 shows how we train the sequence of the word ‘hello’. All the characters
appearing in the word ‘hello’ were one-hot encoded. The RNN should be able to predict
that ‘ello’ will follow the very first character ‘h’. Since the output layer still has an error
(e.g. ‘eolo’), we still need to train the model by backpropagating the loss function with
softmax.

Figure 1.32: An example of the training sequence of word “hello” [9]

In addition to the Vanilla RNN, RNNs offer a lot of flexibility, as shown in Figures
1.33 and 1.34. For example, one to many structures could be used in image captioning by
converting images into a sequence of words. Many to one type could be used in sentiment

CHAPTER 1. FUNDAMENTALS OF DEEP LEARNING 29

classification by interpreting the sequence of words into sentiment. The first many to many
type could be used for machine translation, and the second many to many type could be
used to classify videos on frame level. The multi-layer RNN, shown in Figure 1.34, is also
useful when we would like to train the RNN in a more complex manner.

Figure 1.33: Diverse structures of the RNN [9]

Figure 1.34: A multi-layer RNN [9]

CHAPTER 1. FUNDAMENTALS OF DEEP LEARNING 30

Long Short-Term Memory (LSTM)

Figure 1.35: Repeating modules in the LSTM containing four interacting layers [33]

Long short-term memory (LSTM) is an advanced architecture of the RNN, which was
invented by Hochreiter and Schmidhuber [34] in 1997 and sets accuracy records in multiple
application domains. In recent years, employing the LSTM has become a necessary technique
in many applications of the RNN. The LSTM is explicitly designed to avoid the long-term
dependency problem.

For the long-term dependency problem, we could consider a language model trying to
predict the next word based on the previous ones. If we are to predict the last word in “The
clouds are in the”, we do not need any further context. That is because it is obvious that the
last word will be ‘sky’. Since the gap between the relevant information and the last word is
small enough, traditional RNNs can learn from the recent information and predict the next
word.

However, traditional RNNs become unable to learn to connect the information in the
cases when we need more previous context far away from the current sentence. For example,
we could consider the case when the model needs to predict the last word ‘Korean’ from
the long text “I was born in the United States but I moved to Korea when I was two years
old. I have grown up in Korea. (. . .) I speak fluent”. We need the context of Korea, which
is further back from the recent sentences, to predict the last word, and traditional RNNs
cannot learn to connect the information when the gap is large. The LSTM was proposed to
overcome this limitation which traditional RNNs have.

The interacting layers in the LSTM module (Figure 1.35) are as follows:

1. The forget gate layer determines whether to throw away the information from the
previous cell state.

2. The input gate layer determines which values to update.

CHAPTER 1. FUNDAMENTALS OF DEEP LEARNING 31

3. The tanh layer creates a vector of the new candidate values that could be added to
the state.

4. The output layer decides which parts it is going to output.

The LSTM structure mentioned above is simply a standard form of the LSTM. But not
all LSTMs have the same structure as above. For example, Gers and Schmidhuber [35], and
Cho, et al. [36] proposed different types of LSTM networks. For more detail on the LSTM,
refer to [33].

1.9 The Overall Outlook and Further Algorithms

We have reviewed the core algorithms in supervised learning so far. There are also a variety
of unsupervised learning algorithms. For example, an Autoencoder [37] is a type of artificial
neural networks that is used to perform feature learning in an unsupervised manner. The
objective of using an autoencoder is to learn a representation (encoding) for a set of data,
typically for dimensionality reduction by training the network to ignore signal noise. This
kind of idea could be applied to the reduced-order simulations in many applications. Other
examples of unsupervised learning include Deep Generative Models with Boltzmann Ma-
chines [38, 39], Deep Belief Networks (DBN) [40], Variational Autoencoders (VAE) [41], and
Generative Adversarial Networks (GAN) [42, 43]. Deep generative models are powerful ways
of learning any kind of data distribution using unsupervised learning, and it has achieved
great success in many fields recently. For the readers who are interested in more detail on
both supervised learning and unsupervised learning, refer to [9, 32, 44–48]. PyTorch [49] and
TensorFlow [50], which are the most popular and powerful machine learning frameworks,
also provide good tutorials on deep learning on their websites [51, 52].

32

Chapter 2

Fundamentals of Non-Convex
Optimization

2.1 Introduction

Optimization is the selection of the best parameters, which minimizes (or maximizes) the
objective function, from some set of available candidates. Optimization problems are indis-
pensable in all quantitative disciplines from computer science and engineering to economics
and operations research. Even though we could easily solve optimization problems by using
gradient-based methods when the objective function is convex, the majority of the optimiza-
tion problems in engineering applications are highly non-convex.

In convex problems, a local minimum is also the global minimum if it is interior (not on the
edge of the objective function). However, there may be multiple local minima in non-convex
problems, which makes scientists and engineers difficult to solve for the global minimum. A
large number of algorithms proposed for solving non-convex problems are still not capable
of making a distinction between locally optimal solutions and globally optimal solutions.
However, there are still powerful algorithms to solve non-convex optimization problems,
which are capable of guaranteeing convergence in finite time to the highly desirable (near-
optimal) solutions. In this chapter, I will review the three representative and powerful non-
convex optimization techniques, Bayesian Optimization, Genetic Algorithms, and Particle
Swarm Optimization.

2.2 Bayesian Optimization

Hyperparameters

In machine learning, hyperparameters are parameters whose values are used to control the
learning process. As an example of a deep learning model, the learning rate, mini-batch size,
regularization coefficients are typical hyperparameters that are related to learning algorithms

CHAPTER 2. FUNDAMENTALS OF NON-CONVEX OPTIMIZATION 33

or regularization. Factors that determine the structure of deep learning models (e.g. the
number of layers, convolution filter size, etc.) are also considered as hyperparameters.

Hyperparameter optimization refers to the problem of finding the optimal values of hy-
perparameter in machine learning and deep learning, which are values that must be set in
advance to perform learning [32, 53]. Here, the optimal values of the hyperparameter mean
the hyperparameters that enable the machine learning model to have the highest gener-
alization performance (e.g. predictive power with a reasonable amount of training data).
Hyperparameter optimization is criticial for obtaining good performance in many machine
learning and deep learning algorithms [54].

However, since optimal hyperparameters are hard to be determined, many people make
decisions depending on their intuition, experience, or publicly known know-how. Therefore,
in many cases, the decision of optimal hyperparameters may need trial and error from re-
peating the learning process several times to find the optimal hyperparameters with limited
computational resources.

As the simplest way, we could perform a manual search to find the optimal parame-
ters. We set the candidates of hyperparameters and manually evaluate the corresponding
predictive performances of the learning model. Even though the manual search is the most
intuitive method for hyperparameter optimization, it still has some problems.

First, the process of searching for the optimal hyperparameter is somewhat dependent on
luck. For example, there is a graph of performance of the machine learning model (objective
function to maximize) in Figure 2.1. The blue line represents the objective function, and red
markers correspond to the hyperparameter points we already evaluated the performance. We
could evaluate objective function many times until when we are confident about ‘discovered’
best-performing hyperparameter. If one is lucky, the global maximum point could be evalu-
ated and selected as an optimal point. However, there is less chance to get to the true global
maximum by brute force manual search in reality. The example shown in Figure 2.1 is the
simplest 1D function example to help readers easily understand the limitation of a manual
search. This could become an even more difficult problem when there are a large number of
hyperparameters, and the objective function is complex, noisy, or hard-to-evaluate.

The second problem with manual search is that the problem becomes more complicated
when we want to search for multiple hyperparameters at once. The best example of this is
the relationship between the learning rate and L2 regularization coefficients. The following
equation is a loss function of linear regression with L2 regularization.

L(W) = ‖XW − y‖2
2 + λ ‖W‖2

2

The L2 regularization term corresponds to the second term in the loss function equation.
If the value of λ (regularization rate), which is the L2 regularization coefficient, is changed
on the entire parameter W space of the deep learning model, the shape of the loss function
L(W) also changes. As a result, it can be inferred that the value of the optimal learning rate
to achieve optimal performance will also change naturally. As some types of hyperparameters

CHAPTER 2. FUNDAMENTALS OF NON-CONVEX OPTIMIZATION 34

Figure 2.1: A manual search of the hyperparameter

show mutually influencing relationship with each other, it is very difficult to apply this idea
to every single hyperparameter when searching for two or more hyperparameters at once.

The third problem of manual search is that we still need to do unnecessary calcula-
tions and explorations during trial and error. Even though we take advantage of the prior
knowledge and intuition on choosing the next candidate hyperparameters, we still may not
confident about whether the next candidate hyperparameters are better one until we evaluate
the objective function.

Bayesian Optimization is a methodology that allows us to systematically carry out the
entire exploration process while simultaneously reflecting prior knowledge and intuition when
conducting investigations of new hyperparameter values each time. The main purpose of
Bayesian optimization is to tune the hyperparameters in machine learning and deep
learning [55, 56].

Bayesian Optimization

Bayesian Optimization is an approach to search for the global maximum or minimum of
an objective function. It is an optimization method that is useful for objective functions
that are complex, noisy, and/or expensive to evaluate. Bayesian optimization is
a powerful strategy for finding the maximum or minimum of objective functions that are
expensive to evaluate [55, 57–59].

Bayesian optimization aims to find the optimal solution x∗ which maximizes the function

CHAPTER 2. FUNDAMENTALS OF NON-CONVEX OPTIMIZATION 35

value f(x) when unknown objective function f that takes an input value x is given.1 It is
usually assumed that the expression of the objective function is not known explicitly (i.e.
black-box function) and it takes a long time to calculate a function f(x). The main goal is
to efficiently find the optimal solution x∗ that maximizes f(x), by examining the function
value for as few input candidates as possible.

There are two essential elements in Bayesian optimization, which are a surrogate model
and acquisition functions. A surrogate model is a stochastic estimation of the shape of
an unknown objective function, which is constructed based on the real function points
(x1, f(x1)), ..., (xt, f(xt)) investigated so far. Acquisition functions refer to the functions
that recommend the next input value candidate xt+1 which is the most useful for finding
the optimal input value x∗, based on the results of the probabilistic estimation of the
objective function. The overall algorithm is shown in Algorithm 1.

Algorithm 1: Bayesian Optimization

for t=1,2,... do
STEP 1: Obtain the stochastic estimation of surrogate model for the collection
of existing points (x1, f(x1)), ..., (xt, f(xt)).

STEP 2: Based on this, select the candidate for the next input value xt+1 that
maximizes the acquisition function.

STEP 3: Compute the function value, f(xt+1), for the input value candidate
xt+1.

STEP 4: Add (xt+1, f(xt+1)) to the collection of existing function value points.
end

A Surrogate Model

Based on the function points (x1, f(x1)), ..., (xt, f(xt)) investigated so far, a stochastic es-
timation of the approximate form of the unknown objective function is performed. This
estimated model is called a surrogate model. The most widely used probabilistic model for
the surrogate model is a Gaussian Process (GP) [55, 60–63]. In addition to the GP, a model
that can cover the uncertainty in estimating the objective function, based on the input value
points of the objective function investigated so far, can be used as a surrogate model. Other
kinds of surrogate models that are frequently used include tree-structured Parzen estimators
(TPE) and deep neural networks.

The Gaussian Process (GP) is a probability model that represents the probability distri-
bution for functions, unlike the ordinary probability model (which expresses the probability
distribution for a specific variable). In the GP, the joint distribution between its com-
ponents is characterized by the Gaussian distribution, assuming a multivariable Gaussian
distribution. The GP is capable of efficient and effective summarization of a large number of
functions and smooth transition as more observations become available to the model. The

1For simplicity, we confine Bayesian optimization to the 1D case in the contents of this section.

CHAPTER 2. FUNDAMENTALS OF NON-CONVEX OPTIMIZATION 36

GP expresses the probability distribution for the functions using the mean function µ and
the covariance function k as follows.

f(x) ∼ GP (µ(x), k(x, x
′
)) (2.1)

Based on the function points investigated so far, the GP performs stochastic estimation
of the objective function as shown in Figure 2.2.

Figure 2.2: An example of Bayesian optimization process using the GP approximation over
four iterations - Brochu et al. (2010) [55]

• Black dotted line: Actual objective function

• Black solid line: Estimated mean of the surrogate model

CHAPTER 2. FUNDAMENTALS OF NON-CONVEX OPTIMIZATION 37

• Shaded blue: Estimated standard deviation of the surrogate model

• Black points: Function point investigated so far

• Green solid line at the bottom: Acquisition Function

In Figure 2.2, the horizontal axis is the input value x, and the vertical axis is the function
value f(x). The black solid line indicates an estimated average µ(x) for all the points, which
were estimated based on points (x1, f(x1)), ..., (xt, f(xt)) investigated so far. The blue shaded
region corresponds to the standard deviation σ(x) for all the points, which were estimated
based on points investigated so far. The shape of µ(x) is determined to pass the points which
have already been investigated. Also, we could observe that standard deviation σ(x) gets
larger if some point gets far away from investigated points, and vice versa.

When t = 2 in Figure 2.2, we observe that the blue shaded region is large if it is far away
from the two investigated points. On the other hand, as the number of investigated points
increases (e.g. t = 3 and t = 4), the size of the blue shaded region gradually decreases. This
implies that the estimation of the objective function gains more certainty, as the number of
investigated points increases. As uncertainty decreases, the likelihood of finding the input
value x∗, which maximizes the objective function, increases.

Acquisition Functions

Based on the stochastic estimates of the objective function from the surrogate model (e.g.
GP), the acquisition function recommends the next candidate point xt+1 on which we evalu-
ate the objective function. xt+1 that acquisition function selected is the most useful point
for finding the optimal input x∗ of the objective function.

Figure 2.3: An acquisition function - Brochu et al. (2010) [55]

Two points have been investigated so far in t = 2, as shown in Figure 2.3. It is reasonable
to think that there would be a higher probability to find the optimal point x∗ around the
point with the higher function value (the point on the right in Figure 2.3). Accordingly, it

CHAPTER 2. FUNDAMENTALS OF NON-CONVEX OPTIMIZATION 38

is a reasonable strategy to investigate the region around the point with the largest function
value, among all the points investigated so far. This form of strategy is called exploitation.

On the other hand, the optimal point x∗ may exist in the region with large uncertainty,
and it is hard to guarantee that the estimated mean function in this region would be similar
to the true objective function. Therefore, it will be a reasonable strategy to explore the blue
shaded region with large uncertainty and select the next candidate point from the region
with the largest deviation in the estimated objective function. This form of strategy is called
exploration.

Both exploration and exploitation strategies are equally important strategies for effec-
tively finding the optimal input value x∗, but the two strategies are in a trade-off relationship
with each other. Therefore, it is important to properly control the relative strength between
exploration and exploitation to successfully find the optimal input value for the true objective
function.

There are two kinds of acquisition functions that are widely used. The one is the Expected
Improvement (EI), and the other one is the Probability of Improvement (PI). The PI function
is the simplest, and the EI function is the most commonly used.2

Expected Improvement (EI)

The Expected Improvement (EI) function is designed to take both exploration and exploita-
tion strategies and is most often used as an acquisition function. The EI gives us the
usefulness of the candidate x, based on the probability of having greater value than
the maximum function value investigated so far (f(x+) = max

i
f(xi)) and the magnitude

of the difference between f(x+) and the function value of the candidate x.
In Figure 2.4, ‘PI’ represents the Probability of Improvement, which will be explained

in the following part of this section. In this case, the maximum value f(x+) of the points
investigated so far is at the rightmost point. For the candidate point x3 located further
to the right, the probability distribution of f(x3) can be displayed in the form of Gaussian
distribution, based on the probability estimation result. The green shaded area represents
the probability that the function value of the new candidate point x3 is greater than f(x+).
The larger the size of this area, the higher the probability that f(x3) is greater than f(x+).
In other words, if x3 is adopted as the next input point, it is more likely to obtain a larger
function value than the existing three points. Also, the difference between the mean of
x3 (µ(x3)) and f(x+) is calculated. Accordingly, the EI value for x3 is finally calculated
considering both how much likely to obtain a function value that is larger than
existing points and how big the difference is, as shown in Equations 2.2 and 2.3. For

2There are many other options for the acquisition function, such as Upper Confidence Bound (UCB) and
Entropy Search (ES).

CHAPTER 2. FUNDAMENTALS OF NON-CONVEX OPTIMIZATION 39

Figure 2.4: An example of visualizing probability to derive a function value greater than the
maximum function value f(x+) - Brochu et al. (2010) [55]

the readers who are interested in the derivation of Equations 2.2 and 2.3, refer to [64, 65].

EI(x) = E[max(f(x)− f(x+), 0)]

=

{
(µ(x)− f(x+)− ξ)Φ(Z) + σ(x)φ(Z) if σ(x) > 0

0 if σ(x) = 0

(2.2)

Z =

{
µ(x)−f(x+)−ξ

σ(x)
if σ(x) > 0

0 if σ(x) = 0
(2.3)

In Equations 2.2 and 2.3, Φ and φ represents the cumulative distribution function (CDF)
and the probability density function (PDF), respectively. ξ represents the parameter that
balances the strength of exploration and exploitation (ξ ≥ 0) [66]. Exploration gets dominant
as ξ gets bigger, and exploitation gets dominant as ξ gets smaller.

Probability of Improvement (PI)

The Probability of Improvement (PI) is an acquisition function that was proposed earlier
than the EI in the history of Bayesian optimization. The PI evaluates only the probability

CHAPTER 2. FUNDAMENTALS OF NON-CONVEX OPTIMIZATION 40

to obtain a function value that is greater than the maximum function value of the
points investigated so far. The score of the new candidate point evaluated by the PI could
be described as follows. Φ represents the CDF. Since standard deviation, σ(x), represents
uncertainty, a candidate point with a lower deviation will have a better score.

PI(x) = Φ(
µ(x)− f(x+)

σ(x)
) (2.4)

Based on the calculated PI value, we add the new point which has the highest PI value.

The Implementation of Bayesian Optimization

The following example illustrates the simple implementation of Bayesian optimization to
find the global maximum in the 1D non-convex function. In this case, I used the following
configuration.

• Surrogate model: Gaussian Process

• Acquisition function: Probability of Improvement (PI)

• The number of iterations: 100

Also, the objective function is as follows.

f(x) = 4(x− 2)2sin5(2πx) + 1.2x +Noise (2.5)

where Noise is the probability density function of the Gaussian distribution, with µ = 0
(mean) and σ = 0.1 (standard deviation).

In Figures 2.5 and 2.6, the blue line represents the average of the surrogate model af-
ter fitting the investigated points with the Gaussian process (GP) regressor. Red dots
represent the true points on the objective function that Bayesian optimizer selected and
evaluated as the most useful points for finding the optimal input value x∗. After investi-
gating the useful points during the iterations as shown in Figure 2.6, it also discovered that
(x,y) = (0.241,13.305) is the optimal point of the function which maximizes the objective
function value. From Figure 2.6, we could observe that the region around the optimum
has much more investigated samplings (red dots) than Figure 2.5 because they have been
regarded as useful sample points to find the optimum during the optimization process.

CHAPTER 2. FUNDAMENTALS OF NON-CONVEX OPTIMIZATION 41

Figure 2.5: All samples (dots) and the surrogate function (line) before Bayesian optimization

Figure 2.6: All samples (dots) and the surrogate function (line) after Bayesian optimization

CHAPTER 2. FUNDAMENTALS OF NON-CONVEX OPTIMIZATION 42

2.3 Genetic Algorithms

In many optimization problems, cost functions are often non-convex in design parameter
space and often nonsmooth. Their minimization is usually difficult with the direct applica-
tion of gradient methods. A Genetic Algorithm (GA) is a non-derivative and easy-to-
parallelize optimization method introduced by Holland [67, 68], which has both affordable
computational cost and high optimization performance. The GA can treat a wide
variety of non-convex inverse problems involving various aspects of multiphysics/multiscale
phenomena [69–72].

Figure 2.7: The basic action of the genetic algorithm

Suppose we have a multi-variate objective function which we want to minimize:

Π(Λ) = Π(λ1, λ2, ..., λn) (2.6)

According to Zohdi [69], the GA could be described as shown in Algorithm 2. The basic
idea of the GA comes from ‘mating’ the parent strings to obtain the offspring strings by
combining the parameters in the parent strings, as shown in Figure 2.7. In Algorithm 2,
performance represents the evaluated objective function value for each string.3 For example,
if we have an objective function we want to minimize, the smaller objective function value
on a certain parameter combination has better performance.

If one does not retain the parents in Algorithm 2, inferior performing offspring strings
or inferior new strings may replace superior parents. Thus, top parents should be kept for
the next generation. This guarantees a monotone reduction in the cost function, and this is
critical for proper convergence.

3There are N system parameters in this case.

CHAPTER 2. FUNDAMENTALS OF NON-CONVEX OPTIMIZATION 43

Algorithm 2: Genetic Algorithms

Initialization: Randomly generate a population of S initial strings, Λi

(i = 1, 2, 3, ..., S). −→Λi , {λi1, λi2, λi3, ..., λiN}

while min(Π) ≥ Tolerance do

STEP 1: Compute the performance of each genetic string Π(Λi)
(i = 1, 2, 3, ..., S), and rank those strings based on the performance values.

STEP 2: Mate the best performing P parent strings to generate C offspring
strings. ΛNEW , Φ�ΛOLD1 + (1−Φ)�ΛOLD2

, where Φ = {φ1, φ2, φ3, ..., φN}, and 0 ≤ φk ≤ 1 (k = 1, 2, ..., N).
� represents component-wise multiplication.

STEP 3: Replace the worst performing C strings in the old genetic strings with
the new child strings obtained in STEP 2.

STEP 4:
if Keeping parents then

Keep the old P parent strings
Generate S − P − C new strings

else
Remove the old P parent strings
Generate S − C new strings

end

end

(Optional) Employ gradient-based methods afterward in the local minima, if the
neighbor of the obtained optimal point is smooth enough.

Furthermore, retained parents do not need to be re-evaluated-making the algorithm less
computationally less expensive, since these parameter sets do not need to be re-evaluated in
the next generation. Numerous studies have shown that the advantage of retaining parents
outweighs the advantage of generating new strings, for sufficiently large populations [73–75].

Additionally, if one selects the ‘mating’ parameters in Φ to be greater that one and/or less
than zero, one can induce ‘mutations’ to have characteristics that neither parent possesses.
However, this is somewhat redundant with the introduction of new random members of the
population in the current algorithm.

CHAPTER 2. FUNDAMENTALS OF NON-CONVEX OPTIMIZATION 44

The Application of the Genetic Algorithm: Material Optimization

This subsection is the application of the genetic algorithm in multiphase material optimiza-
tion. The contents of this subsection are from the class project of the Mechanical Engineering
C201 class (2017) from Professor Tarek I. Zohdi.

When we would like to design new multiphase material (Figure 2.8) by adding particulate
material to the matrix (binding) material, we need to find the optimal microscopic properties
of particulate materials to get desirable macroscopic responses of the new material (including
bulk/shear moduli, electrical conductivity, stress concentration and so on). For simplicity,
we confine material optimization to the two-phase isotropic materials in this work.4 The
final objective is to optimize the two-phase material using a macro-micro objective function
and get the top 10 performing design parameters.

Figure 2.8: 3D printing of a multiphase material [70, 76]

4For the readers who are interested in making estimates of the overall properties of a mixture of more
than two materials, refer to Zohdi [70].

CHAPTER 2. FUNDAMENTALS OF NON-CONVEX OPTIMIZATION 45

Effective Property Bounds

Consider the widely used Hashin and Shtrikman bounds [77–79] for multiphase isotropic
materials with isotropic effective responses. For the bulk modulus,

κ∗,−
def
= κ1 +

v2

1
κ2−κ1

+ 3(1−v2)
3κ1+4µ1

≤ κ∗ ≤ κ2 +
1− v2

1
κ1−κ2

+ 3v2
3κ2+4µ2

def
= κ∗,+, (2.7)

and for the shear modulus

µ∗,−
def
= µ1 +

v2

1
µ2−µ1

+ 6(1−v2)(κ1+2µ1)
5µ1(3κ1+4µ1)

≤ µ∗ ≤ µ2 +
(1− v2)

1
µ1−µ2

+ 6v2(κ2+2µ2)
5µ2(3κ2+4µ2)

def
= µ∗,+, (2.8)

where κ2 and κ1 are the bulk moduli and µ2 and µ1 are the shear moduli of the respective
phases ((κ2 ≥ κ1) and (µ2 ≥ µ1)). v2 is the second phase volume fraction.

Such bounds are the tightest known on isotropic effective responses, with isotropic two-
phase microstructures, where only the volume fractions and phase contrasts of the con-
stituents are known.

As a model problem, our goal is to computationally design the macroscale effective bulk
and shear moduli κ∗ and µ∗, using linear combinations of the Hashin-Shtrikman bounds as
approximations for the effective moduli κ∗ ≈ θκ∗+ + (1− θ)κ∗− and µ∗ ≈ θµ∗+ + (1− θ)µ∗−,
where 0 ≤ θ ≤ 1.

We can also use the Hashin and Shtrikman bounds for the overall electrical conductivity
σ∗e

〈σ−1
e (x)〉−1

Ω ≤ σ1,e +
v2

1
σ2,e−σ1,e

+ 1−v2

3σ1,e︸ ︷︷ ︸
σ∗,−e

≤ σ∗e ≤ σ2,e +
1− v2

1
σ1,e−σ2,e

+ v2

3σ2,e︸ ︷︷ ︸
σ∗,+e

≤ 〈σe(x)〉Ω (2.9)

where σ2,e ≥ σ1,e, and v2 is the volume fraction of phase 2. Note that the subscript in
σ∗e is to distinguish between a mechanical stress component and is meant to denote electric
conductivity.

The original proofs, which are algebraically complicated, can be found in Hashin and
Shtrikman [77–79]. We emphasize that in the derivation of the bounds, the body is assumed
to be infinite, the micro-structure is isotropic, and that the effective responses are isotropic.
We remark that the bounds are the tightest possible, under the previous assumptions that
no geometric (micro-topological) information is included.

Stress and Strain Concentration Factors

In addition to the effective (macroscopic) properties, when selecting particulate micro-
additives for a base matrix, information about the changes in the otherwise (relatively)

CHAPTER 2. FUNDAMENTALS OF NON-CONVEX OPTIMIZATION 46

smooth internal fields, corresponding to the matrix material alone, is valuable to character-
ize a new tailored material’s performance. For this work, one way to analytically characterize
the smoothness of the microscopic field behavior is via (stress and strain) concentration ten-
sors, which provide a measure of the deviation away from the mean fields throughout the
material. We could consider the following identities:

〈ε〉Ω =
1

|Ω|
(

∫
Ω1

ε dΩ +

∫
Ω2

ε dΩ) = v1〈ε〉Ω1 + v2〈ε〉Ω2 (2.10)

and

〈σ〉Ω =
1

|Ω|
(

∫
Ω1

σ dΩ +

∫
Ω2

σ dΩ) = v1〈σ〉Ω1 + v2〈σ〉Ω2 . (2.11)

By direct manipulation we obtain

〈σ〉Ω = v1〈σ〉Ω1 + v2〈σ〉Ω2

= v1IE1 : 〈ε〉Ω1 + v2IE2 : 〈ε〉Ω2

= IE1 : (〈ε〉Ω − v2〈ε〉Ω2) + v2IE2 : 〈ε〉Ω2

= (IE1 + v2(IE2 − IE1) : C) : 〈ε〉Ω (2.12)

where (
1

v2
(IE2 − IE1)−1 : (IE∗ − IE1)

)
︸ ︷︷ ︸

def
=C

: 〈ε〉Ω = 〈ε〉Ω2 . (2.13)

Thereafter, we may write the following for the variation in the stress: C : IE∗−1 : 〈σ〉Ω =
IE−1

2 : 〈σ〉Ω2 , which reduces to

IE2 : C : IE∗−1 : 〈σ〉Ω
def
= C : 〈σ〉Ω = 〈σ〉Ω2 . (2.14)

C is known as the stress concentration tensor. Therefore, once either C or IE∗ are
known, the other can be determined.

In the case of isotropy we may write:

Cκ
def
=

1

v2

κ2

κ∗
κ∗ − κ1

κ2 − κ1
and Cµ

def
=

1

v2

µ2

µ∗
µ∗ − µ1

µ2 − µ1
(2.15)

where Cκ〈 trσ3 〉Ω = 〈 trσ
3
〉Ω2 and where Cµ〈σ′〉Ω = 〈σ′〉Ω2 . The microstress fields are

minimally distorted when Cκ = Cµ = 1.

CHAPTER 2. FUNDAMENTALS OF NON-CONVEX OPTIMIZATION 47

For the matrix, since 〈σ〉Ω1 =
〈σ〉Ω−v2〈σ〉Ω2

v1
, we could write:

〈σ〉Ω1 =
〈σ〉Ω − v2C : 〈σ〉Ω

v1
=

(1− v2C) : 〈σ〉Ω
v1

= C : 〈σ〉Ω. (2.16)

Also, in the case of isotropy, we could write:

Cκ
def
=

1

v1
(1− v2Cκ) and Cµ

def
=

1

v1
(1− v2Cµ). (2.17)

Finally, we get the following relations for the deviations in the particulate stress fields.

1. The deviation away from the mean for pressure:

|〈trσ〉Ω2 − 〈trσ〉Ω
〈trσ〉Ω2

| = |Cκ − 1

Cκ

| (2.18)

2. The deviation away from the mean for deviatoric stress:

√
(〈σ′〉Ω2 − 〈σ′〉Ω) : (〈σ′〉Ω2 − 〈σ′〉Ω)

〈σ′〉Ω2 : 〈σ′〉Ω2

= |Cµ − 1

Cµ

|, (2.19)

3. The deviation of matrix material away from the mean for pressure:

|〈trσ〉Ω1 − 〈trσ〉Ω
〈trσ〉Ω1

| = |Cκ − 1

Cκ

| (2.20)

4. The deviation of matrix material away from the mean for deviatoric stress:

√
(〈σ′〉Ω1 − 〈σ′〉Ω) : (〈σ′〉Ω1 − 〈σ′〉Ω)

〈σ′〉Ω1 : 〈σ′〉Ω1

= |Cµ − 1

Cµ

|. (2.21)

In order to incorporate these deviations into the cost function, we introduce tolarance
TOLµ and TOLκ as follows:

|Cκ − 1

Cκ

| ≤ TOLκ and |Cµ − 1

Cµ

| ≤ TOLµ. (2.22)

CHAPTER 2. FUNDAMENTALS OF NON-CONVEX OPTIMIZATION 48

and

|Cκ − 1

Cκ

| ≤ TOLκ and |Cµ − 1

Cµ

| ≤ TOLµ. (2.23)

If the normalized deviation exceeds the corresponding tolerance, then the level of violation
is incorporated as a multilateral constraint to the macroscopic objectives.

The Objective Function

The objective is to minimize the following macro-micro objective function (cost function):

Π = w1|
κ∗

κ∗,D
− 1|p + w2|

µ∗

µ∗,D
− 1|p + w3|

σ∗e
σ∗,De

− 1|p

+ŵ4

(∣∣∣∣∣
Cκ−1
Cκ

TOLκ

∣∣∣∣∣− 1

)q

+ ŵ5

∣∣∣∣∣∣
Cµ−1

Cµ

TOLµ

∣∣∣∣∣∣− 1

q

+ŵ6

∣∣∣∣∣∣
Cκ−1

Cκ

TOLκ

∣∣∣∣∣∣− 1

q

+ ŵ7

∣∣∣∣∣∣∣
Cµ−1

Cµ

TOLµ

∣∣∣∣∣∣∣− 1

q

where

1. if |Cκ−1
Cκ
| ≤ TOLκ, then ŵ4 = 0,

2. if |Cκ−1
Cκ
| > TOLκ, then ŵ4 = w4,

3. if |Cµ−1

Cµ
| ≤ TOLµ, then ŵ5 = 0,

4. if |Cµ−1

Cµ
| > TOLµ, then ŵ5 = w5,

5. if |Cκ−1

Cκ
| ≤ TOLκ, then ŵ6 = 0,

6. if |Cκ−1

Cκ
| > TOLκ, then ŵ6 = w6,

7. if |Cµ−1

Cµ
| ≤ TOLµ, then ŵ7 = 0,

8. if |Cµ
Cµ
− 1| > TOLµ, then ŵ7 = w7.

CHAPTER 2. FUNDAMENTALS OF NON-CONVEX OPTIMIZATION 49

Here the design variables are Λ = {κ2, µ2 σ2,e, v2}, and their constrained ranges are

κ
(−)
2 ≤ κ2 ≤ κ

(+)
2 , µ

(−)
2 ≤ µ2 ≤ µ

(+)
2 , σ

(−)
2,e ≤ σ2,e ≤ σ

(+)
2,e and v

(−)
2 ≤ v2 ≤ v

(+)
2 . There are two

characteristics of such a formulation which make the application of standard gradient type
minimization schemes (e.g. Newton’s method) inapplicable:

1. The incorporation of limits on the micro field behavior, as well as design search space
restrictions, renders the objective function not continuously differentiable in design
space.

2. The objective function is non-convex, which means that the system Hessian is not
positive definite (invertible) throughout design space.

Therefore, the genetic algorithm could be a good option to be applied to this non-convex
problem with the restrictions on the design parameters (Λ = {κ2, µ2 σ2,e, v2}). The parame-
ters used in the simulation are as shown in Table 2.1.

Symbol Units Value Description

κ1 GPa 80 Bulk modulus (Phase 1)
µ1 GPa 30 Shear modulus (Phase 1)
σ1,e S/m 1.0× 107 Electrical conductivity (Phase 1)
κ∗,D GPa 111 Desired bulk modulus
µ∗,D GPa 47 Desired shear modulus
σ∗,De S/m 2.0× 107 Desired electrical conductivity

TOLκ, TOLµ unitless 0.5 Physical tolerance

κ2 GPa κ1 = κ
(−)
2 ≤ κ2 ≤ κ

(+)
2 = 10κ1 Bulk modulus range

µ2 GPa µ1 = µ
(−)
2 ≤ µ2 ≤ µ

(+)
2 = 10µ1 Shear modulus range

σ2,e S/m σ1,e = σ
(−)
2,e ≤ σ2,e ≤ σ

(+)
2,e = 10σ1,e Electrical conductivity range

v2 unitless 0 = v
(−)
2 ≤ v2 ≤ v

(+)
2 = 2

3
Volume fraction (Phase 2)

w1, w2, w3 unitless 1 Cost function weights
w4, w5, w6, w7 unitless 0.5 Cost function weights

p, q unitless 2 Cost function coefficients
θ unitless 0.5 Hashin-Shtrikman bound combination ratio

TOL unitless 10−6 Simulation tolerance
- unitless 100 The number of genetic strings per generation
- unitless 2 The number of offspring strings per pairs

Table 2.1: Simulation Parameters

For the genetic algorithm, the two cases of the genetic algorithm were considered:

• CASE 1: Keeping the top 10 parents after each generation. (80 new genetic strings
are created per generation.)

• CASE 2: Not keeping top 10 parents after each generation. (90 new genetic strings
are created per generation.)

CHAPTER 2. FUNDAMENTALS OF NON-CONVEX OPTIMIZATION 50

The plots of the best performing design’s objective value for each generation for CASE
1 and CASE 2 are shown in Figures 2.9 and 2.10. Note that both axes are in log-log scale.

As we can see, the best performing cost function value decreases monotonically when
the top parents are retained. That is because Π(Λopt,I) ≥ Π(Λopt,I+1), where Λopt,I+1 and
Λopt,I are the best genetic strings from generations I + 1 and I respectively. There is no
such guarantee if the top parents are not retained. As in Figure 2.10, the case of not keeping
parents shows an increase in the cost function sometimes.

While the non-retention of parents allows newer genetic strings to be evaluated in the
next generation, numerous studies have shown that the benefits of parent retention outweigh
this advantage when there are sufficiently large populations.

The table with the top 10 performing design values κ2, µ2 and v2 for both cases are in
Tables 2.2 and 2.3. Young’s modulus and Poisson ratio corresponding to the effective bulk
and shear modulus were calculated based on Equations 2.24, 2.25, and 2.26:

κ = λ+
2

3
µ =

Ey

3(1− 2ν)
(2.24)

µ =
Ey

2(1 + ν)
(2.25)

κ

µ
=

2(1 + ν)

3(1− 2ν)
(2.26)

CHAPTER 2. FUNDAMENTALS OF NON-CONVEX OPTIMIZATION 51

Figure 2.9: Best performing Π vs. Generation (CASE 1)

Π κ2 (Pa) µ2 (Pa) σ2 (S/m) v2 E (Pa) ν

8.276E-07 3.369E+11 1.594E+11 8.344E+07 2.447E-01 9.161E+10 3.268E-01
1.958E-06 3.957E+11 1.848E+11 9.689E+07 2.183E-01 9.316E+10 3.260E-01
1.973E-06 3.347E+11 1.572E+11 8.212E+07 2.474E-01 9.148E+10 3.269E-01
2.846E-06 3.218E+11 1.537E+11 8.018E+07 2.525E-01 9.124E+10 3.269E-01
4.332E-06 3.013E+11 1.410E+11 7.415E+07 2.687E-01 9.045E+10 3.275E-01
4.492E-06 3.320E+11 1.568E+11 8.154E+07 2.488E-01 9.145E+10 3.269E-01
4.850E-06 3.380E+11 1.591E+11 8.394E+07 2.446E-01 9.160E+10 3.268E-01
5.023E-06 4.037E+11 1.877E+11 9.757E+07 2.169E-01 9.334E+10 3.259E-01
5.098E-06 3.272E+11 1.563E+11 8.120E+07 2.495E-01 9.141E+10 3.268E-01
5.245E-06 3.351E+11 1.575E+11 8.196E+07 2.475E-01 9.150E+10 3.269E-01

Table 2.2: Top 10 performing parameters (CASE 1)

CHAPTER 2. FUNDAMENTALS OF NON-CONVEX OPTIMIZATION 52

Figure 2.10: Best performing Π vs. Generation (CASE 2)

Π κ2 (Pa) µ2 (Pa) σ2 (S/m) v2 E (Pa) ν

8.791E-07 3.442E+11 1.626E+11 8.515E+07 2.413E-01 1.423E+11 3.096E-01
4.034E-06 3.459E+11 1.636E+11 8.579E+07 2.404E-01 1.427E+11 3.094E-01
4.034E-06 3.459E+11 1.636E+11 8.579E+07 2.404E-01 1.427E+11 3.094E-01
7.701E-06 3.449E+11 1.638E+11 8.601E+07 2.401E-01 1.427E+11 3.093E-01
7.701E-06 3.449E+11 1.638E+11 8.601E+07 2.401E-01 1.427E+11 3.093E-01
1.357E-05 3.405E+11 1.628E+11 8.414E+07 2.431E-01 1.423E+11 3.091E-01
1.888E-05 3.403E+11 1.601E+11 8.401E+07 2.423E-01 1.415E+11 3.100E-01
2.308E-05 3.464E+11 1.633E+11 8.578E+07 2.414E-01 1.426E+11 3.096E-01
2.308E-05 3.464E+11 1.633E+11 8.578E+07 2.414E-01 1.426E+11 3.096E-01
3.167E-05 3.418E+11 1.609E+11 8.579E+07 2.417E-01 1.418E+11 3.099E-01

Table 2.3: Top 10 performing parameters (CASE 2)

CHAPTER 2. FUNDAMENTALS OF NON-CONVEX OPTIMIZATION 53

2.4 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is an optimization method in which we iteratively trying
to improve the candidate optimal solution. Introduced by Kennedy, Eberhart, and Shi [80,
81], the PSO was biologically inspired by flocking of birds and schooling of fish. The PSO
uses particles (corresponding to birds or fish) to find the optimal point of the objective
function (either to minimize or to maximize). The PSO is a robust and fast-converging
optimization method that is computationally efficient and easy to parallelize.5 Even though
the PSO is not guaranteed to find the global minimum, it still does a solid job in many
optimization problems.

Equations 2.27 and 2.28 are the only two equations we need to know in order to implement
the PSO. Descriptions of the variables in Equations 2.27 and 2.28 are shown in Table 2.4.

x
(k+1)
i = x

(k)
i + v

(k+1)
i (2.27)

v
(k+1)
i = wv

(k)
i︸ ︷︷ ︸

inertia

+ c1r1(p
(k)
i − x

(k)
i)︸ ︷︷ ︸

cognitive term

+ c2r2(p(k) − x(k)
i)︸ ︷︷ ︸

social term

(2.28)

Variable Definition

x
(k)
i Position of the ith particle at kth iteration

v
(k)
i Velocity of the ith particle at kth iteration
w Inertia weight

p
(k)
i Best position of the ith particle until kth iteration
p(k) Best position of all the particles (swarm) until kth iteration
c1,c2 Cognitive parameter and social parameter, respectively
r1,r2 Random numbers between 0 and 1

f
(k)
i Objective function value at x

(k)
i

fk,besti Objective function value at p
(k)
i

fk,best Objective function value at p(k)

Table 2.4: Variables of particle swarm optimization

In the PSO, both x
(k)
i and v

(k)
i are vectors having the length of the number of

system parameters. In Equation 2.28, the first term, inertia, represents how much the
particle would like to keep the current velocity in the next iteration. The second term,
cognitive term, represents how much the particle wants to consider the difference between

5A disadvantage of the PSO is that it can converge prematurely and be trapped into a local minimum,
especially with complex problems [82].

CHAPTER 2. FUNDAMENTALS OF NON-CONVEX OPTIMIZATION 54

its current position and its own best position it has ever taken, in calculating the velocity
in the next iteration. The third term, social term, represents how much the particle wants
to consider the difference between its current position and the best position of all the
particles (swarm) obtained so far, in calculating the velocity in the next iteration.

The remarkable point of the PSO is that every single particle remembers its own local
best position so far, while all the particles moving together as a swarm trying to find the
global best position. Each particle then considers both the cognitively best direction and the
socially best direction to determine the velocity in the next time step. This principle is well
described in Equation 2.28.

The basic action of a single particle is shown in Figure 2.11. Also, the overall flowchart
of the PSO could be described as shown in Algorithm 3. Note that, in Algorithm 3, the goal
is to find the optimal parameter which minimizes the objective function. If the objective is
to find the parameter which maximizes the objective function, one could simply replace the
inequalities in STEP 1, f

(k)
i < fk,besti and f

(k)
i < fk,best, with f

(k)
i > fk,besti and f

(k)
i > fk,best,

respectively.

Figure 2.11: The basic action of a particle in particle swarm optimization

CHAPTER 2. FUNDAMENTALS OF NON-CONVEX OPTIMIZATION 55

Algorithm 3: Particle Swarm Optimization

Initialization: Set the constants (N , kmax, w, c1, and c2). Randomly initialize the

initial positions (x
(0)
i) and velocities (v

(0)
i) of the particles (i = 1, 2, ..., N).

for k=0 to kmax do

STEP 1: Evaluate the objective function for each particle. Update the
local/global best positions and corresponding fitness values.

for i=1 to N do

Evaluate f
(k)
i

if f
(k)
i < fk,besti then

p
(k)
i ← x

(k)
i

fk,besti ← f
(k)
i

else
pass

end

if f
(k)
i < fk,best then

p(k) ← x
(k)
i

fk,best ← f
(k)
i

else
pass

end

end

STEP 2: Update the velocities and positions of the particles for the next
iteration.

for i=1 to N do

v
(k+1)
i = wv

(k)
i + c1r1(p

(k)
i − x

(k)
i) + c2r2(p(k) − x(k)

i)

x
(k+1)
i = x

(k)
i + v

(k+1)
i

end

STEP 3: Record the global best position and corresponding objective function
value of the current kth iteration, p(k) and fk,best, respectively.

end

As in the genetic algorithm, one could employ gradient-based methods afterward if the
neighbor of the obtained optimal point is smooth enough. Also, if there are upper or lower
bound constraints in the searching domain, one could repair the updated positions of the
particles to satisfy the bounds.

CHAPTER 2. FUNDAMENTALS OF NON-CONVEX OPTIMIZATION 56

The Implementation of Particle Swarm Optimization

The following example illustrates the simple implementation of particle swarm optimization
to find the global minimum in the 2D non-convex function. In this case, I used the following
configuration.

• The number of particles: 100

• The maximum number of iterations: 200

• Inertia weight (w): 0.85

• Cognitive parameter (c1): 1

• Social parameter (c2): 2

Also, the objective function we want to minimize is as follows.

f(x, y) = 3(1− x)2e−x
2−(y+1)2 − 2(x− 5x3 − 5y5)e−x

2−y2 − 1

3
e−(x+1)2−y2

, (2.29)

in the range of −3 ≤ x ≤ 3 and −3 ≤ y ≤ 3.

Additionally, one could add a penalty score to the objective function if there are any
inequality constraints which the objective function is subject to. For example, if there is an
inequality constraint (x− 2)3 − y + 1 ≤ 0 for this problem, the final objective function will
look like the following.

f(x, y) = 3(1− x)2e−x
2−(y+1)2 − 2(x− 5x3 − 5y5)e−x

2−y2 − 1

3
e−(x+1)2−y2

+ Penalty, (2.30)

where

Penalty =

{
106 if (x− 2)3 − y + 1 > 0

0 if (x− 2)3 − y + 1 ≤ 0
(2.31)

For simplicity, I implemented the particle swarm optimization with the objective function
in Equation 2.29 (without any inequality constraint), not in Equation 2.30. The plot of the
objective function is shown in Figures 2.12 and 2.13.

CHAPTER 2. FUNDAMENTALS OF NON-CONVEX OPTIMIZATION 57

Figure 2.12: The objective function (3D view)

Figure 2.13: The objective function (2D view)

CHAPTER 2. FUNDAMENTALS OF NON-CONVEX OPTIMIZATION 58

After performing the particle swarm optimization, we could observe that the best per-
forming objective function value monotonically decreases by iterations, as shown in Figure
2.14.

Figure 2.14: Best performing function value vs. Iteration

Also, the positions of the particles before and after the particle swarm optimization are
shown in Figures 2.15 and 2.16, respectively. The red dots represent the particles. We could
observe that the particles converged on the location where we expected as a global minimum
from Figure 2.12. By performing the particle swarm optimization, it also discovered that
the global best position is (x,y) = (0.228,−1.625), having the objective function value of
−6.551.

CHAPTER 2. FUNDAMENTALS OF NON-CONVEX OPTIMIZATION 59

Figure 2.15: Initial positions of the particles

CHAPTER 2. FUNDAMENTALS OF NON-CONVEX OPTIMIZATION 60

Figure 2.16: Final positions of the particles

2.5 The Overall Outlook and Further Algorithms

We have reviewed three optimization algorithms for solving non-convex optimization prob-
lems, Bayesian Optimization, Genetic Algorithms, and Particle Swarm Optimization. They
are powerful algorithms that are widely used in a variety of disciplines including computer
science, engineering, economics, and business.

Finding the global optimum of a function is usually difficult. That is because analytical
methods are not applicable in general, and the numerical approaches often lead to very hard
challenges (e.g. ensuring that the investigated optimal point is the true global optimum).
Trying to overcome this limitation, many scientists and engineers have proposed a variety of

CHAPTER 2. FUNDAMENTALS OF NON-CONVEX OPTIMIZATION 61

optimization algorithms.
Mean-Variance Mapping Optimization (MVMO) is based on the particle swarm opti-

mization principles, but it uses a continuously updated mean and variance of best solutions
[83–85]. However, particle swarm optimization or the genetic algorithm sometimes converges
more accurately than the MVMO.

Graduated Optimization is an optimization technique that attempts to solve a difficult
optimization problem by solving a simplified version of the problem. It then progressively
transforms the problem into the complex version of the problem while optimizing, until it
becomes equivalent to the given difficult optimization problem [86–88].

The Ant Colony Optimization Algorithm (ACO) is a biologically inspired stochastic op-
timization method for solving problems that can be transformed into finding good paths
through graphs [89].

Some people even try to innovate the structures of the existing optimization methods.
For example, Dao, et al. [90, 91] provided an innovative framework for designing an effective
genetic algorithm structure that can enhance the performance of the genetic algorithm while
searching for the global optimal solution.6

There are many other algorithms for solving non-convex optimization algorithms includ-
ing the Artificial Bee Colony Algorithm [93], Cuckoo Search [94], Greedy Algorithms [95],
Simulated Annealing [96], and Tabu Search [97, 98]. However, the choice of the ‘optimal’
optimization algorithm is highly problem dependent. For the readers who are interested in
further optimization algorithms, please refer to [99–105].

6Dao, the first author of [90, 91], provides good tutorials on many optimization techniques in his blog.
Refer to [92] for more detail.

62

Chapter 3

Modeling, Simulation and Machine
Learning for Rapid Process Control of
Multiphase Flowing Foods

3.1 Abstract

The contents of this chapter are from the journal paper, “Modeling, simulation and ma-
chine learning for rapid process control of multiphase flowing foods” by Kim, D.H., Zohdi,
T.I., and Singh, R.P., which was accepted by Computer Methods in Applied Mechanics and
Engineering (VSI: Artificial Intelligence).

Across many modern industries, as technologies have matured, the use of more complex
processes involving multiphase materials has increased. In the food industry, multiphase
fluids are now relatively wide-spread, in particular, because of the desire to have faster
throughput for large-scale food production. In many cases involving transport, such mate-
rials consist of a fluidized binder material with embedded particles. As one increases the
volume fraction of particles, a corresponding increase in effective overall viscosity occurs.
Often, during the process, the material must be heated, for example, to ensure food safety,
induce pasteurization, sterilization, etc. For real-time control, this requires rapidly com-
putable models to guide thermal processing, for example by applied electrical induction. In
the present analysis, models are developed for the required heating field (electrically induced)
and pressure gradient needed in a pipe to heat a multiphase material to a target temperature
and to transport the material with a prescribed flow rate.

3.2 Introduction

Across many industries, new types of particle-laden materials are being developed and uti-
lized. In the development of such materials, the basic philosophy is to select material com-
binations to produce desired aggregate responses upon deposition onto a substrate or into a

CHAPTER 3. MODELING, SIMULATION AND MACHINE LEARNING FOR RAPID
PROCESS CONTROL OF MULTIPHASE FLOWING FOODS 63

mold. Oftentimes, such materials start in a fluidized form comprised of particles in a solvent
or fluidized binder, forming a viscous slurry. However, because of the increasing demands for
faster throughput and industrial-scale production of complex particle-laden materials, the
determination of accurate pumping pressures is critical to move such fluids through delivery
piping systems (Figure 3.1).

APPLIED CURRENT

2R x

r

Figure 3.1: Flow of a particle-laden fluid through a pipe in the presence of an applied current
(heating)

There have been monumental leaps in manufacturing technologies across many industries.
These technologies have the potential to drastically improve the precision in food processing
efficiency, food quality, and safety [106]. Some approaches are methodical and systematic,
while some are ad-hoc and haphazard. The purpose of this paper is to explore modeling
and simulation themes associated with multiphase fluid flow and thermal food processing.
Many foods and beverage manufacturers control their continuous fluid processes with PID
algorithms, using data from downstream sensors to adjust flow and heating parameters, for
example in pasteurization or sterilization processes. As food and beverage manufacturing
looks to optimize production efficiencies and energy productivity, machine learning, and
other data science tools offer a chance to improve precision and predictive capabilities for
real-time process optimization. In particular, new foods, such as plant-based meats, such as
Beyond Meat [107] and Impossible Burger [108] present new opportunities and challenges.
However, for such procedures to be successful, rapidly computable models are needed to
drive these technologies.

CHAPTER 3. MODELING, SIMULATION AND MACHINE LEARNING FOR RAPID
PROCESS CONTROL OF MULTIPHASE FLOWING FOODS 64

3.3 Technological Approaches

The main objective of this work is to develop a relatively simple model for the pressure
gradient needed in a pipe and the reduction of a food channel width by fouling, while particle-
laden fluids moving through the channel, as a function of (1) the volume fraction of added
particles, (2) the pipe radius, (3) the volumetric flow rate, (4) the fluid-induced intensity of
the shear stress at the pipe wall and (5) the multiphase fluid viscosity. Things overlaid on
this are the induced thermal fields and associated thermal dependency of the materials in
the system. This type of physical system has become increasingly more important to the
3D printing industry as well, which is attempting to rapidly print complex electrical inks
(“e-inks”) of multiphase extruded materials, where the embedded particles endow the cured
printed materials with overall (mechanical, electrical, thermal, magnetic, etc.) properties
that the pure solvent (particle-free ink) alone does not possess. This paper intends to adapt
and to do further this analysis for food production methods.

An overall objective of the analysis is to develop semi-analytical expressions that can
help guide analysts who are designing manufacturing systems involving fluidized particle-
laden foods. Theoretically speaking, one could attempt a large-scale CFD analysis, however,
for accurate direct numerical simulation of particle-laden continua, the spatial discretization
grids must be extremely fine, with several thousand numerical unknowns needed per particle
length-scale. Furthermore, extremely fine time-discretization is required. Thus, for even a
small system with several hundred-thousand particles, a proper discretization would require
several billion numerical unknowns (see, for example, [109–113]). Although such simulations
are possible in high-performance computing centers, their usefulness for rapid daily design
analysis for real-time food processing and related processes is minimal. This is even more
critical if the models are used to drive real-time control. Therefore, in this paper we seek to
develop simplified approaches. This work presents reduced-order calculations to predict the
radius change of the food channel by fouling, and pressure required to pump a suspension
of rigid particles in a fluid through a pipe, under the assumption that the flow is uni-
directional and fully developed. Heat is also applied as a function of an externally-applied
electric field. It first arrives at a modification of Poiseulle flow through a pipe. The analysis
assumes the suspension can be treated as a homogeneous fluid with an effective viscosity
µ∗. This is a simplification, in order to develop useful and practical results, without having
to resort to overly computationally-intensive numerical methods which seek results from
detailed accounting of the micro-scale hydrodynamic interactions between particles in a
suspension.

CHAPTER 3. MODELING, SIMULATION AND MACHINE LEARNING FOR RAPID
PROCESS CONTROL OF MULTIPHASE FLOWING FOODS 65

3.4 Fluid through a Pipe of Radius R

We consider fluid that is flowing through an idealized pipe with a circular cross-section of
area A = πR2.

v = vmax

(
1−

(
r

R

)q)
, (3.1)

where q is now considered a variable. For fully developed laminar flow, q = 2, while for
increasing q one characterizes progressively turbulent flow (q ≥ 2). Also, assuming that the
overall flow rate is assumed constant Qo, one can show that

vmax =
Qo(q + 2)

πR2q
, (3.2)

and

τw =
µ∗Qo(q + 2)

πR3
, (3.3)

where µ∗ represents effective viscosity of multiphase fluid.
We have the following observations: (a) Increasing µ∗ or Qo increases the stress at the

wall (τw) and (b) Decreasing R increases the stress at the wall (τw).
Also, by performing a force balance in the positive x-direction, we obtain

−∆P

∆x
= −∂P

∂x
=

2µ∗(q + 2)

πR4︸ ︷︷ ︸
C

Qo
def
= CQo. (3.4)

This expression allows us to correlate the pressure applied to a volume of particle-laden
to allow it to move as a constant flow rate. If we fix the flow rate Qo, the multiplier C
identifies the pressure gradient needed to achieve a flow rate Qo.

As the Reynolds number increases, the velocity profile will change from a quadratic
(q = 2) to a more blunted profile (q > 2). The effect of a changing profile is described by
representing q as follows.

q =
1

2

(
(γ∗ + c2) +

√
(γ∗ + c2)2 + 8γ∗

)
, (3.5)

where

γ∗ =
2c1Qoρ

∗

πRµ∗
. (3.6)

ρ∗ represents effective density of multiphase fluid, respectively. c1 and c2 are constants
where 0 ≤ c1 << 1 and c2 ≈ 2. For laminar flow (q = 2), c1 = 0 and c2 = 2. See [114]
for more detail. In the remaining analysis, we will consider turbulent flow (q > 2) of the
particle-laden fluid, in which the Reynolds number is greater than 4000 [115]. Also, we will
assume that the particles are not elongated and that they are well distributed within the
base fluid.

CHAPTER 3. MODELING, SIMULATION AND MACHINE LEARNING FOR RAPID
PROCESS CONTROL OF MULTIPHASE FLOWING FOODS 66

Comments on the Turbulent Flow

This subsection describes the reason why the flow we are considering is turbulent flow. We
could write the Reynolds number of the multiphase flow through a pipe as follows:

Re =
2ρ∗uavgR

µ∗
=

2ρ∗R

µ∗
Qo

πR2
=

2ρ∗Qo

πRµ∗
(3.7)

Referring to Equations 3.14 and 3.34 which will be explained further in the following
sections, we could write:

Re =
2ρ∗Qo(1− 2.5vp)

πRµf
=

2(vpρp + (1− vp)ρf)(1− 2.5vp)Qo

πRµf
(3.8)

The descriptions of variables in Equation 3.8 are in Table 3.1. From Equation 3.8, we
could consider the minimum Reynolds number it can have.

1. Maximum R (biggest when no fouling): 0.1 (m)

2. Maximum viscosity of the fluid µf (the maximum is from the initial time when the
flow temperature is the lowest): 0.005 (Pa− S)

3. Minimum flow rate (Qo): 0.008 (m3/s)

4. Minimum of the particle density (ρp) : 3000 (kg/m3)

5. Accordingly,
min((vpρp + (1− vp)ρf)(1− 2.5vp)) = (3000vp + 2000(1− vp))(1− 2.5vp)

6. Minimum of (3000vp + 2000(1− vp))(1− 2.5vp) is when vp = 0.3 (0.05 ≤ vp ≤ 0.3).

Therefore, we could observe that the minimum Reynolds number of the multiphase flow
is:

Remin =
2 · (3000 · 0.3 + 2000 · 0.7) · (1− 2.5 · 0.3) · 0.008

π · 0.1 · 0.005
= 5856.9 > 4000 (3.9)

Since it is higher than 4000 [115], it is turbulent flow.

3.5 Induced Thermal Fields via Joule Heating

The heating process in food and beverage production facilities is typically accomplished with
steam-heated heat exchangers. Most commonly, low-pressure steam heats a plate and frame
or tubular heat exchanger. For thermally sensitive food products, typical industry practice is
to heat food in long tubular heat exchangers using flowing hot water, heated via direct steam

CHAPTER 3. MODELING, SIMULATION AND MACHINE LEARNING FOR RAPID
PROCESS CONTROL OF MULTIPHASE FLOWING FOODS 67

injection, maintained at a single static temperature. Both steam-heated (single loop) and
hot water heated (double-loop) heating processes are notoriously slow to reach processing
temperature or adapt the temperature to changing processing conditions. In particular,
industrial-scale double-loop systems can take up to 10 minutes to create a response in end-
target heating. Steam-powered heat exchange, in either single loop or double loop systems,
is optimized for production in large facilities where processing conditions remain static and
unchanging. These systems are optimized for traditional manufacturing operations and
do not have the capabilities needed for the future. As this manufacturing sector moves
towards shorter production runs and expanding the number of products produced in a single
production line, there is an opportunity to find new production efficiencies and increase
energy production to boost yields and facility operational effective efficiency (OEE). Joule
heating (also known as Ohmic heating) generates heat by passing an electric current through
food which has electrical resistance [116]. Heat is generated rapidly and uniformly in the
liquid matrix as well as in particulates, producing a higher quality sterile and aseptic product
[117]. This heating method is best for foods containing particulates in a weak salt-containing
medium due to their high resistance [118]. Joule heating adapts well to computer control and
allows for instantaneous control, even though it is currently limited by the sensitivity and
response time of a downstream thermocouple. It is for this reason that we select induction
heating as a model process. From the first law of thermodynamics, we have the following
description of Watts per unit volume:

ρ∗C∗θ̇ = H − S (3.10)

where θ is the temperature, C∗ is specific heat capacity, H represents heating and S repre-
sents sinks. For the heating

H = a
J2

σ∗
, (3.11)

where a is the absorption coefficient, and S represents all of the losses (conductive, convective,
radiative, refrigeration). σ∗ is the effective electrical conductivity, and J is the electric current
for Joule heating. Discretizing and solving yields

θ(t+ ∆t) = θ(t) +
∆t

ρ∗C∗
(H − S) = θ(t) +

∆t

ρ∗C∗
(a
J2

σ∗
− S(t)). (3.12)

If at a given time t, one can solve for the necessary J(t) when θ(t+ ∆t) = θ∗:

J(t) =

√
σ∗

a

(
ρ∗C∗

θ∗ − θ(t)
∆t

+ S(t)

)
. (3.13)

CHAPTER 3. MODELING, SIMULATION AND MACHINE LEARNING FOR RAPID
PROCESS CONTROL OF MULTIPHASE FLOWING FOODS 68

3.6 Models for Effective Properties of Particle-Laden

Fluids

A key component of the analysis requires the characterization of the effective properties
of a particle-laden fluid as a function of the volume fraction of particles and the baseline
(interstitial) fluid properties. The density of the particle-laden fluid is actually an “effective
density” since it actually is a mixture of materials (particles and interstitial fluid). Effective
properties are defined through volume averages. For example, the effective density of the
mixture is

ρ∗
def
= 〈ρ(x)〉V

def
=

1

V

∫
V

ρ(x) dV =
1

V

(∫
Vf

ρf dV +

∫
Vp

ρp dV

)
= νfρf + νpρp (3.14)

where νf and νp are the volume fractions of the fluid and particles, respectively. The volume
fractions have to sum to unity: νf + νp = 1⇒ νf = 1− νp. Similar approaches can be used
to calculate various types of properties, such as effective viscosity. However, to calculate
it is somewhat more complicated since it requires one to estimate the interaction between
the constituents. There are a number of models that provide expressions for the effective
viscosity of the fluid containing particles. One of the first models for the effective viscosity
of such fluids was developed in 1906 by [119]. It reads as

µ∗ = µf (1 + 2.5νp), (3.15)

where µ∗ is the effective viscosity, µf is the viscosity of the fluid and νp is the volume fraction
of particles. This expression is accurate only for low volume fractions of particles. A more
accurate approximation, in fact, a strict, rigorous, lower bound can be derived from the well-
known Hashin and Shtrikman bounds [77–79] in solid mechanics. Specifically, for linearized
elasticity applications, for isotropic materials with isotropic effective (mechanical) responses,
the Hashin-Shtrikman bounds (for a two-phase material) are as follows for the effective bulk
modulus (κ∗)

κ∗,−
def
= κ1 +

ν2

1
κ2−κ1

+ 3(1−ν2)
3κ1+4µ1

≤ κ∗ ≤ κ2 +
1− ν2

1
κ1−κ2

+ 3ν2

3κ2+4µ2

def
= κ∗,+ (3.16)

and for the effective shear modulus (G∗)

G∗,−
def
= G1 +

ν2

1
G2−G1

+ 6(1−ν2)(κ1+2G1)
5G1(3κ1+4G1)

≤ G∗ ≤ G2 +
(1− ν2)

1
G1−G2

+ 6ν2(κ2+2G2)
5G2(3κ2+4G2)

def
= G∗,+, (3.17)

where κ1 (usually the matrix material) and κ2 (usually the particulate material) are
the bulk moduli and G1 and G2 are the shear moduli of the respective phases (κ2 ≥ κ1

CHAPTER 3. MODELING, SIMULATION AND MACHINE LEARNING FOR RAPID
PROCESS CONTROL OF MULTIPHASE FLOWING FOODS 69

and G2 ≥ G1), and where ν2 is the second phase volume fraction. Such bounds are the
tightest possible on isotropic effective responses, with isotropic two-phase microstructures,
where only the volume fractions and phase contrasts of the constituents are known (see [79]
for a discussion on the optimality of such bounds). Note that no geometric or statistical
information is required for the bounds. For an authoritative review of the general theory
of random heterogeneous media see [120]. One can take the limit of the particle phase
becoming rigid, i.e. the bulk and shear moduli tending towards infinity, κ2 = κp → ∞ and
G2 = µp →∞, signifying that the particles are much stiffer than the interstitial fluid, while
simultaneously specifying that the interstitial fluid is incompressible, i.e. κ1/G1 = κf/µf →
∞ with G1 being finite. This yields,

µ∗ ≥ µ∗,− = µf

(
1 + 2.5

νp
1− νp

)
. (3.18)

Equation 3.18 represents the tightest known lower bound on the effective viscosity of a
two-phase material comprised of rigid particles in a surrounding incompressible fluid. The
bound recaptures the Einstein result in the νp → 0 limit, but is a rigorous lower bound at
significant νp. This rigorous lower bound is extremely accurate up to approximately 20 %
volume fraction, which is sufficient for most applications of interest. These bounds have
been tested in the numerical analysis literature repeatedly, for example against direct Finite
Element calculations found in [113]. We refer the reader to [121] for a more in-depth analysis
of the effective viscosity of particle-laden fluids. Refer to [122] for the analysis of the proper
application of the non-interaction and the “dilute limit” approximations, and for detailed
discussions on the isotropic and anisotropic viscosity of suspensions containing particles of
diverse shapes and orientations. It is important to emphasize that [121] is accurate for up to
25-30 % in the case of spherical particles. Furthermore, [121] covers other shapes, including,
importantly, mixtures of diverse shapes. Of course, one can employ formulas such as in [121]
for more accuracy, however, because the Hashin-Strikman expression is a strict lower bound,
µ∗,− ≤ µ∗, we consequently generate a strict lower bound for the pressure gradient

−∂P
∂x
≥ 2µ∗,−(q + 2)

πR4︸ ︷︷ ︸
C−

Qo
def
= C−Qo. (3.19)

Comments on the Volume Fraction

We assume that the multiphase flow we simulate has particle volume fraction which is lower
than or equal to 30%. That is because the objective of this work is to develop a relatively
simple model for multiphase food processing through a channel. This simple model enables
us to perform the rapid computation to efficiently control the thermal processing of foods.
More accurate and delicate numerical methods could be applied when the particle volume
fraction is more than 30%.

CHAPTER 3. MODELING, SIMULATION AND MACHINE LEARNING FOR RAPID
PROCESS CONTROL OF MULTIPHASE FLOWING FOODS 70

3.7 Approximate Effective Thermal Properties

For illustration purposes, in this model problem, a relatively simplistic definition of the heat
capacity is defined through the stored energy at a point, w = C(θ − θo), where θo is a
reference temperature, for example, θo = 0 degrees Kelvin. In this case, the effective heat
capacity for a small body is given by

〈w〉V = 〈Cθ〉V = C∗〈θ〉V
def
=

1

V

∫
V

C(x)θ(x) dV

=
1

V

(∫
Vf

Cfθ(x) dV +

∫
Vp

Cpθ(x) dV

)
≈ (νfCf + νpCp)θ ⇒ C∗ = (νfCf + νpCp), (3.20)

provided θ is uniform in the (small body).
The effective density of a mixture for two-phase materials can directly be determined by

m = ρ∗V = (νfρf + νpρp)V, (3.21)

, while the effective thermal mass is mC = ρ∗C∗V .

Thermal Material Behavior

For illustration purposes, in this model problem, the primary properties which change by
temperature are viscosity, electrical conductivity, and thermal conductivity. This could be
expressed as follows.

µf = µfoe
−s1 θ−θoθo , (3.22)

and

σf = σfoe
−s2 θ−θoθo , (3.23)

and

σp = σpoe
−s3 θ−θoθo , (3.24)

and

kf = kfoe
−s4 θ−θoθo , (3.25)

and

kp = kpoe
−s5 θ−θoθo , (3.26)

CHAPTER 3. MODELING, SIMULATION AND MACHINE LEARNING FOR RAPID
PROCESS CONTROL OF MULTIPHASE FLOWING FOODS 71

where µ, σ, and k represents viscosity, electrical conductivity, and thermal conductiv-
ity, respectively. Subscript f represents fluid carrying particles, and subscript p represents
particles. s1, s2, s3, s4, and s5 represents thermal softening parameters.

3.8 A Fouling Model

Fouling is a cost-increasing problem for a variety of industries, including aerospace, petro-
chemicals and especially food [123–126]. The reduction of a food channel width, caused by
deposition of thermally modified proteins and other food components, is a major issue in
food processing since cleaning or removal of such deposits is crucial for quality and safety
issues [127]. Also, fouling of heat exchangers (undesirable depositions on channel surfaces) is
directly related to the quality of processed foods and processing cost, because it may require
more energy consumption for the pressure gradients and Joule heating. In this section, we
adopted the most common fouling model of a heat exchanger by Ebert and Panchal [128],
to predict the deposition thickness of the food channel, as shown in equation [3.27]:

dRf

dt
= c1Re

−0.66Pr−0.33e
− Ea
RTf︸ ︷︷ ︸

deposition

− c2τw︸︷︷︸
suppression

, (3.27)

where Rf is the fouling resistance (m2K/W), Re is the Reynolds number, Pr is the Prandtl
number, Ea is the activation energy (J/mol), Tf is the film temperature (K) and τw is the
shear at the deposit surface (Pa). c1 and c2 are fouling parameters determined by regression
of experimental data. For flow in a pipe or tube, the Reynolds number is generally defined
as Re = ρuD

µ
, where ρ is the density of the fluid, u is the mean velocity of the fluid, D is the

hydraulic diameter of the pipe and µ is the dynamic viscosity of the fluid. Also, the Prandtl
number is defined as Pr = Cpµ

k
, where Cp is the specific heat capacity, µ is the dynamic

viscosity of the fluid an k is the thermal conductivity. From fouling resistance obtained by
equation [3.27], we can get the deposition thickness, as shown in equation [3.28]

df = Rfλf , (3.28)

where df is the average thickness of the fouling (m), and λf is the thermal conductivity of
the fouling (W/mK).

3.9 Numerical Experiments

The main object of this section is to show how the pressure gradients, the electric current
needed to heat the multiphase food, and the Reynolds number are dependent on the particle
volume fraction in the multiphase fluid. We plotted the pressure gradient as a function of
of νp, with the following parameters: (a) viscosity, µf = 0.01Pa − s,1 (b) fluid density:

1For reference, the viscosity of water is µf = 0.001Pa− s and for honey, µf = 1Pa− s.

CHAPTER 3. MODELING, SIMULATION AND MACHINE LEARNING FOR RAPID
PROCESS CONTROL OF MULTIPHASE FLOWING FOODS 72

ρf = 1000 kg/m3, (c) particle density: ρp = 2000 kg/m3, (d) flow rate: Qo = 0.00001m3/s,
(e) thermal sensitivity: s1 = s2 = s3 = 1, and (f) pipe radius: R = 0.01m. The goal was to
raise the temperature from 300 K to 400 K in 1 second. The plots are shown in Figure 3.2.
The pressure gradient steadily increases with particle volume fraction. Due to the increase
in the particle volume fraction, the viscosity increases, thus the Reynolds number decreases
(already quite small). The point of this example was not to illustrate all the encompassing
parameter set, but simply to show the explicit dependency of the pressure gradient on the
presence of secondary particles.

(a) The electric field needed for the volume
fraction of particles

(b) The pressure gradient needed (∆P
∆x) as

a function of volume fractions of νp

(INCREASING q)

INCREASINGLY BLUNTED

(c) Progressive blunting of the velocity pro-
file with increasing q

(d) The resulting Reynolds number

Figure 3.2: The electric current, the pressure gradient, and the Reynolds number by the
particle volume fraction

CHAPTER 3. MODELING, SIMULATION AND MACHINE LEARNING FOR RAPID
PROCESS CONTROL OF MULTIPHASE FLOWING FOODS 73

3.10 A Simulation Algorithm

The objective of the simulation is to analyze

• the thermal behavior of food while processing,

• pressure gradient needed in a pipe to heat a multiphase material,

• the change of the radius (caused by fouling) of food channel by time.

First, we consider the electric current for heating the multiphase material, as a function of
the time as follows, having a factor α which represents the response rate

J = J0(1− e−αt)sin(2πt). (3.29)

We obtain the temperature of the next time step (equation 3.12) using a forward Euler
scheme.2 The thermal loss term S can account for any kind of thermal loss. In this example,
we assume that the dominant mode of thermal loss to the environment is convection and
that the temperature is essentially uniform within a cross-section of the pipe. Convective
losses are often modeled by:

S = hA(θ(t)− θa),
where h is the convection coefficient, A is the area over which conduction occurs, θ(t) is the
temperature of the object being modeled at a given time, t and θa is the temperature of
the ambient environment. Since all of our other terms are per unit volume of the slurry, we
must alter this relationship to have compatible units. We assume that we are considering an
arbitrary length ∆x of the pipe. The surface area A will be 2πR∆x, and the total volume
will be πR2∆x. Dividing A by volume yields 2/R. As such, the convective losses per unit
volume will be:

S = 2h(θ(t)− θa)/R. (3.30)

Note that S(t) models the transfer of heat out of the system, so a positive value of S repre-
sents a loss of energy. As temperature changes, primary material properties of the mixture
change(σ∗, k∗ and µ∗), because those properties of fluid and particle change (equation 3.22,
3.23, 3.24, 3.25, and 3.26).

The Hashin-Shtrikman bounds for σ∗ (electrical conductivity) are as follows, and σf and
σp were calculated based on Equations 3.23, and 3.24

σf +
vp

1
σp−σf

+ 1−vp
3σf︸ ︷︷ ︸

σ∗,−

≤ σ∗ ≤ σp +
1− vp
1

σf−σp
+ vp

3σp︸ ︷︷ ︸
σ∗,+

, (3.31)

2For the readers who are interested in further numerical methods for solving ordinary differential equa-
tions, refer to [129–132]. MATH 228A from the Department of Mathematics at UC Berkeley is also helpful.

CHAPTER 3. MODELING, SIMULATION AND MACHINE LEARNING FOR RAPID
PROCESS CONTROL OF MULTIPHASE FLOWING FOODS 74

Similarly, the Hashin-Shtrikman bounds for k∗ (thermal conductivity) are as follows, and kf
and kp were calculated based on Equations 3.25, and 3.26

kf +
vp

1
kp−kf

+ 1−vp
3kf︸ ︷︷ ︸

k∗,−

≤ k∗ ≤ kp +
1− vp
1

kf−kp
+ vp

3kp︸ ︷︷ ︸
k∗,+

, (3.32)

In the simulation, we take the average of the lower bound and upper bound to approximate
σ∗ and k∗

σ∗ =
σ∗,− + σ∗,+

2
, and k∗. =

k∗,− + k∗,+

2
(3.33)

Also, widely used effective viscosity estimate is that of Oliver&Ward [133] which is in
much better agreement (than Equation 3.18) with experimental data up to vp = 0.30 (see
[121, 122] for extensive reviews). It reads as

µ∗ ≈ µ∗e =
µf

1− 2.5vp
. (3.34)

We could observe that the ratio of the rigorous lower bound to the Oliver&Ward [133]
estimate is always less than unity for finite volume fraction [134]. In the remaining analysis,
we will employ Oliver&Ward estimate for the effective viscosity of multiphase flow.

Updating σ∗ affects integration of the next time step for obtaining the temperature,
and updating µ∗ and k∗ causes the change of channel radius (Equation 3.27-3.28) and the
pressure gradient (Equation 3.4), because they are function of µ∗ and k∗. Based on this, we
can obtain the new channel radius for the next step, which will be used for the calculation
of the temperature, pressure gradient of the next time step. This iteration is done until the
temperature becomes greater than or equal to the desired temperature of the food product.
The overall flowchart is shown in Figure 3.3, and the simulation parameters are shown in
Table 3.1.

3.11 The Genetic Algorithm for Optimization

A genetic algorithm (GA) is a type of non-derivative search and optimization tool, which
works differently from classical search and gradient-optimization methods. Because of its
broad applicability, ease of use and global perspective, the GA has been increasingly applied
to various search and optimization problems in the recent past [135, 136]. Our final objective
is to find the optimal parameters we could control for food processing using the GA. In order
to do that, we should set the cost function we want to minimize to find a way to process
food in a reasonable and efficient way. In this case, we try to minimize the fouling of the
food channel after processing (because it gets larger and larger as the food flows), as well as

CHAPTER 3. MODELING, SIMULATION AND MACHINE LEARNING FOR RAPID
PROCESS CONTROL OF MULTIPHASE FLOWING FOODS 75

Figure 3.3: The overall flowchart of the simulation

minimize the processing time and the total energy consumption for the process. We applied
a penalty if either the food processing time or energy consumption exceeded a preset limit.

The cost function we want to minimize is:

Π = w1 |η|2 + ŵ2

∣∣∣∣T − TlimitTlimit

∣∣∣∣2 + ŵ3

∣∣∣∣Efinal − ElimitElimit

∣∣∣∣2
where

1. T : Total processing time,

2. Tlimit: Limit of the total processing time,

3. Efinal: Energy consumption for food processing,

4. Elimit: Limit of the total energy consumption for processing,

5. if T ≤ Tlimit, then ŵ2 = 0,

6. if T > Tlimit, then ŵ2 = w2,

7. if Efinal ≤ Elimit, then ŵ3 = 0,

CHAPTER 3. MODELING, SIMULATION AND MACHINE LEARNING FOR RAPID
PROCESS CONTROL OF MULTIPHASE FLOWING FOODS 76

8. if Efinal > Elimit, then ŵ3 = w3.

Also, η represents the fouling rate of the channel, as shown in Equation 3.35, and Efinal
is calculated by numerically integrating the power by time during processing time.

η =
R0 −R
R0

(3.35)

Here the design variables we want to optimize are Λ = {α, vp, σp0, ρp, Cp, kp0}, and their

constrained ranges are α(−) ≤ α ≤ α(+), v
(−)
p ≤ vp ≤ v

(+)
p , σ

(−)
p0 ≤ σp0 ≤ σ

(+)
p0 , ρ

(−)
p ≤ ρp ≤

ρ
(+)
p , C

(−)
p ≤ Cp ≤ C

(+)
p and k

(−)
p0 ≤ kp0 ≤ k

(+)
p0 .

As a consequence of the character of the objective function, we can use the following
genetic algorithm:

Algorithm 4: Genetic Algorithm

Initialization: Randomly generate a population of S initial strings, Λi

(i = 1, 2, 3, ..., S). −→Λi , {λi1, λi2, λi3, ..., λiN}

while min(Π) ≥ Tolerance do

STEP 1: Compute the performance of each genetic string Π(Λi)
(i = 1, 2, 3, ..., S), and rank those strings based on the performance values.

STEP 2: Mate the best performing P parent strings to generate C offspring
strings. ΛNEW , Φ�ΛOLD1 + (1−Φ)�ΛOLD2

, where Φ = {φ1, φ2, φ3, ..., φN}, and 0 ≤ φk ≤ 1 (k = 1, 2, ..., N).
� represents component-wise multiplication.

STEP 3: Replace the worst performing C strings in the old genetic strings with
the new child strings obtained in STEP 2.

STEP 4:
if Keeping parents then

Keep the old P parent strings
Generate S − P − C new strings

else
Remove the old P parent strings
Generate S − C new strings

end

end

(Optional) Employ gradient-based methods afterward in the local minima, if the
neighbor of the obtained optimal point is smooth enough.

CHAPTER 3. MODELING, SIMULATION AND MACHINE LEARNING FOR RAPID
PROCESS CONTROL OF MULTIPHASE FLOWING FOODS 77

We remark that the definition of fitness of a genetic string in this algorithm indicates
the value of the objective function. In other words, the most fit genetic string is simply the
one with the smallest objective function. STEPS, which are associated with the genetic part
of the overall algorithm, attempt to collect multiple local minima.3

By observing Figure 3.4 one sees that if the objective functions are highly nonconvex,
there exists a strong possibility that the inferior offspring will replace superior parents.
Therefore, retaining the top parents is not only less computationally expensive, since these
designs do not have to be reevaluated, but it is also theoretically superior. The minimiza-
tion of the cost function is guaranteed to be monotone, if the top parents are retained,
i.e. Π(Λopt,I) ≥ Π(Λopt,I+1), where Λopt,I+1 and Λopt,I are the best genetic strings from
generations I + 1 and I respectively.

Symbol Units Value Description

µf0 Pa s .005 Reference temp. viscosity of fluid (Phase 1)
σf0

−1 m−1 0.617 Reference temp. electrical conductivity of fluid (Phase 1)
ρf kg/m3 2000 Density of fluid (Phase 1)
kf0 W/(m K) 0.45 Reference temp. heat conductivity of fluid (Phase 1)
Cf J/(kg K) 1600 Specific heat capacity of fluid (Phase 1)
R0 m 1e1 Initial channel radius
Qo m3/s 8e3, 10e3, 12e3 Flow rate
J0 A/m2 2e4 Base electric current
h W/(m2 K) 10 Convective heat transfer coefficient
c1 (m2 K)/(W s) 5e3 Fouling parameter
c2 (m2 K)/(W Pa s) 8e8 Fouling parameter
θ0 K 300 Initial slurry temperature
θa K 300 Ambient temperature
∆t s 0.001 Time step size
a Unitless 0.8 Absorption coefficient

Tlimit s 2.5 Limit of the total processing time
Elimit MJ/m3 600 Limit of the total energy consumption for processing

s1, s2, s3 Unitless 0.1, 0.12, 0.2 Thermal softening parameters
s4, s5 Unitless 0.01, 0.02 Thermal softening parameters
φ Unitless 0.5 Hashin–Shtrikman bound combination weight
α unitless 1 = α(−) ≤ α ≤ α(+) = 10 Current response rate

vp unitless 0.05 = v
(−)
p ≤ vp ≤ v

(+)
p = 0.3 Volume fraction (Phase 2)

σp0 S/m 0.1 = σ
(−)
p0 ≤ σp0 ≤ σ

(+)
p0 = 2.5 Reference temp. electrical conductivity of particles (Phase 2)

ρp kg/m3 3000 = ρ
(−)
p ≤ ρp ≤ ρ

(+)
p = 9000 Density of particles (Phase 2)

Cp J/(kg ·K) 1000 = C
(−)
p ≤ Cp ≤ C

(+)
p = 6000 Specific heat capacity of particles (Phase 2)

kp0 W/(m ·K) 0.11 = k
(−)
p0 ≤ kp0 ≤ k

(+)
p0 = 0.52 Reference temp. heat conductivity of particles (Phase 2)

w1, w2, w3 unitless 1, 2, 3 Cost function weights
N unitless 100 The number of genetic strings per generation
- unitless 2 The number of offspring strings per pairs

Table 3.1: Simulation Parameters

3If one selects the ‘mating’ parameters in Φ to be greater that one and/or less than zero, one can induce
‘mutations’ to have characteristics that neither parent possesses.

CHAPTER 3. MODELING, SIMULATION AND MACHINE LEARNING FOR RAPID
PROCESS CONTROL OF MULTIPHASE FLOWING FOODS 78

Λ

Π

GLOBAL

MINIMUM

Π Π

Λ Λ

Figure 3.4: LEFT: A characterization of the class of objective functions of interest. RIGHT:
A loss of superior older genetic strings if the top parents are not retained.

3.12 Simulation Results

We have developed a relatively simple model for multiphase food processing through a chan-
nel and optimized the parameters for processing with numerical simulations and the genetic
algorithm. Specifically, with the parameters which were optimized using the genetic algo-
rithm, we could obtain (a) the thermal behavior of multiphase food while processing, (b)
the pressure gradient needed in a pipe to heat the multiphase material, (c) the change of
the radius (by deposition fouling) of food channel by time and (d) the power needed for
processing by time. The plots are shown in Figures 3.4-3.6. Figure 3.4 represents the case
when Qo = 0.008 (m3/s), Figure 3.5 represents the case when Qo = 0.010 (m3/s), and Figure
3.6 represents the case when Qo = 0.012 (m3/s).

0.0 0.5 1.0 1.5 2.0
Time (s)

300

320

340

360

380

400

Te
m
pe

ra
tu
re
 (K

)

Food temperature vs. Time

(a) Thermal behavior of the multiphase food

0.0 0.5 1.0 1.5 2.0
Time (s)

9.75

9.80

9.85

9.90

9.95

10.00

Ra
di
us

 (c
m
)

Channel radius vs. Time

(b) Radius change of channel by time

CHAPTER 3. MODELING, SIMULATION AND MACHINE LEARNING FOR RAPID
PROCESS CONTROL OF MULTIPHASE FLOWING FOODS 79

0.0 0.5 1.0 1.5 2.0
Time (s)

72

74

76

78

80

Pr
es

su
re
 g
ra
di
en

t
(P
a/
m
)

Pressure gradient vs. Time

(c) Pressure gradient needed for heating

0.0 0.5 1.0 1.5 2.0
Time (s)

0

100

200

300

400

500

Po
w
er
 (M
W
/m

3)

Power needed vs. Time

(d) Power needed for processing by time

Figure 3.4: CASE 1 (Qo = 0.008 (m3/s))

0.0 0.5 1.0 1.5 2.0 2.5
Time (s)

300

320

340

360

380

400

Te
m
pe

ra
tu
re
 (K

)

Food temperature vs. Time

(a) Thermal behavior of the multiphase food

0.0 0.5 1.0 1.5 2.0 2.5
Time (s)

9.6

9.7

9.8

9.9

10.0

Ra
di
us

 (c
m
)

Channel radius vs. Time

(b) Radius change of channel by time

0.0 0.5 1.0 1.5 2.0 2.5
Time (s)

135

140

145

150

155

160

Pr
es

su
re
 g
ra
di
en

t
(P
a/
m
)

Pressure gradient vs. Time

(c) Pressure gradient needed for heating

0.0 0.5 1.0 1.5 2.0 2.5
Time (s)

0

100

200

300

400

Po
w
er
 (M
W
/m

3)

Power needed vs. Time

(d) Power needed for processing by time

Figure 3.5: CASE 2 (Qo = 0.010 (m3/s))

CHAPTER 3. MODELING, SIMULATION AND MACHINE LEARNING FOR RAPID
PROCESS CONTROL OF MULTIPHASE FLOWING FOODS 80

0.0 0.5 1.0 1.5 2.0
Time (s)

300

320

340

360

380

400

Te
m
pe

ra
tu
re
 (K

)

Food temperature vs. Time

(a) Thermal behavior of the multiphase food

0.0 0.5 1.0 1.5 2.0
Time (s)

9.88

9.90

9.92

9.94

9.96

9.98

10.00

Ra
di
us

 (c
m
)

Channel radius vs. Time

(b) Radius change of channel by time

0.0 0.5 1.0 1.5 2.0
Time (s)

156

158

160

162

164

166

Pr
es

su
re
 g
ra
di
en

t
(P
a/
m
)

Pressure gradient vs. Time

(c) Pressure gradient needed for heating

0.0 0.5 1.0 1.5 2.0
Time (s)

0

100

200

300

400

500
Po

w
er
 (M
W
/m

3)

Power needed vs. Time

(d) Power needed for processing by time

Figure 3.6: CASE 3 (Qo = 0.012 (m3/s))

3.13 Prediction of Deposition Fouling on the Channel

The unintended accumulation of the food on a channel wall while processing can cause
deposition fouling. The fouling on the food delivery channel is a critical issue for processing,
because it directly affects manufacturing costs [123–125]. It becomes harder to process the
food precisely in a desirable way, as channel radius gets smaller and smaller. Therefore,
predicting the possible changes in the radius of the food channel is important to control food
quality. We applied a machine learning technique to predict the fouling rate of the food
channel after final food processing time to get to the desired food temperature.

To obtain the channel fouling rate for combinations of the parameters, we still need to
solve differential equations using numerical methods, as we already did in the genetic algo-
rithm of the previous section. It might be computationally expensive when we use elaborate
numerical methods (Discrete element methods, Finite element methods, etc.) and/or there
are a large number of parameter sets to simulate. Even though numerical simulations are

CHAPTER 3. MODELING, SIMULATION AND MACHINE LEARNING FOR RAPID
PROCESS CONTROL OF MULTIPHASE FLOWING FOODS 81

computationally expensive in general, it gives us the data that is useful for generating a
predictive model.

Therefore, we applied a machine learning technique to predict the fouling rate of the
channel at the final processing time with reduced computation time and desirable accuracy,
when specific parameter sets are chosen while the other operation conditions (the initial
channel radius, the electric current, the ambient temperature) are fixed.

Machine learning (ML) is a subdivision of artificial intelligence, which allows computers
to learn from the past data so that it could detect patterns and make predictions from noisy
and complex data sets [32, 137–140]. The ML approach deals with the design of algorithms
to learn from machine-readable data and make predictions on future unknown data [141].
Also, there has been some research on generating prediction models using machine learning
to solve a variety of engineering problems such as material design, computer vision, pattern
recognition, and spam filtering [142–148], including those in computational mechanics [149–
151].

In our approach, we used a fully connected neural network to develop the model for
predicting the final fouling rate of the channel. The neural network is a biologically-inspired
machine learning model which enables nonlinear learning process based on how neurons
communicate and learn in living things. We used 9010 parameter combinations for the total
data. All the parameter combinations (features) and corresponding fouling rates (labels)
were normalized to have the range between 0 and 1, before training the neural network. We
implemented our machine learning model with PyTorch (1.1.0 version), which is an efficient
machine learning framework for Python and competent in both usability and speed [49]. We
used batch normalization, which is one of the ways to accelerate neural network training,
by reducing the internal covariance shift, allowing us to use much higher learning rates
[20]. Xavier initialization was used for weight initialization in order to obtain substantially
faster convergence [152]. Also, an Adam optimizer was used for the optimization, which is
computationally efficient and has little memory requirements [153]. The configuration of the
Machine Learning model is as follows.

• Learning rate: 0.001

• Training epochs: 100

• Batch size: 50

• The number of hidden layers: 2

• The number of nodes in hidden layers: 40, 20

• Activation function: ReLu (Rectified Linear Unit)

• Weight initialization: Xavier uniform

• Loss function: Mean Squared Error

CHAPTER 3. MODELING, SIMULATION AND MACHINE LEARNING FOR RAPID
PROCESS CONTROL OF MULTIPHASE FLOWING FOODS 82

• Optimization Method: Adam optimizer

• Division of the data: 20% for training, 79% for validation, and 1% for testing

With the trained model, we were able to desirably predict the fouling rate of the channel
(Equation 3.35) for the test data set, even though we trained our model with a small portion
of the total data (20% for training, 79% for validating, and 1% for testing), with considerable
accuracy, as shown in Figure 3.6. There are three cases with varying flow rates (Figure 3.6).
Data number represents the combinations of Λ = {α, vp, σp0, ρp, Cp, kp0} of the test data.
The parameter combinations of the test data represented by Data number is shown in
Table 3.4 - 3.6. Note that the test data is brand new data for the trained model, which
means they were completely isolated from the training data set and training process.

Also, our model reduced computational cost significantly (as shown in Table 3.2) while
ensuring the desired accuracy (as shown in Table 3.3). The total time represents the en-
tire simulation time of the machine learning model, including numerical simulation for the
number of training data (20% of the total data), the training time, and the testing (predic-
tion) time. The acceleration represents how many times faster it is than direct exhaustive
simulations to calculate the fouling rate for 9010 combinations of parameters.

0 20 40 60 80
Data number

0.02

0.04

0.06

0.08

0.10

Fi
na

l c
ha

nn
el
 fo

ul
in
g
ra
te

Prediction of the fouling rate
Prediction
Actual

(a) Qo = 0.008(m3/s)

CHAPTER 3. MODELING, SIMULATION AND MACHINE LEARNING FOR RAPID
PROCESS CONTROL OF MULTIPHASE FLOWING FOODS 83

0 20 40 60 80
Data number

0.01
0.02
0.03
0.04
0.05
0.06
0.07

Fi
na

l c
ha

nn
el
 fo

ul
in
g
ra
te

Prediction of the fouling rate
Prediction
Actual

(b) Qo = 0.010(m3/s)

0 20 40 60 80
Data number

0.01

0.02

0.03

0.04

0.05

Fi
na

l c
ha

nn
el
 fo

ul
in
g
ra
te

Prediction of the fouling rate
Prediction
Actual

(c) Qo = 0.012(m3/s)

Figure 3.6: The prediction of the food channel fouling rate

CHAPTER 3. MODELING, SIMULATION AND MACHINE LEARNING FOR RAPID
PROCESS CONTROL OF MULTIPHASE FLOWING FOODS 84

Flow rate(m3/s) Training (s) Prediction (s) Total time (s) Acceleration

0.008 13.74 0.0008 172.90 4.60
0.01 12.46 0.001 174.12 4.64
0.012 12.22 0.0008 171.39 4.64

Table 3.2: Computation time comparison

Flow rate(m3/s) RMS error of the fouling rate

0.008 0.00408
0.01 0.00318
0.012 0.00246

Table 3.3: Root mean squared error of prediction

This implies that the machine learning model could learn and detect the pattern of the
fouling rate (which includes the process of solving differential equations) and predict the
fouling of the channel, without having any mathematical or physical knowledge to solve
differential equations and physics problems. This could illustrate the potential predictive
power of machine learning with the low computational cost because we do not need to do
numerical simulation for all the combinations which may be included in the genetic algorithm
process.

3.14 The Overall Outlook

Currently, a modest level of modern technologies has been implemented in food produc-
tion. For example, sensors, cameras, telecommunications have not been widely deployed.
Furthermore, the cost of specialized equipment has been prohibitive and the development
of coherent, easy-to-use, rapid data fusion/management systems across different platforms
is lacking. Additionally, while control systems exist, they simply are too slow to be useful
in deployed mobile computing platforms in harsh environments. The long term mission of
this research is to integrate and implement convergent research in the development of smart,
robust, and inexpensive systems that are easy to maintain, upgrade, and deploy, incorpo-
rating state-of-the-art technologies. A key to much of this work is the transfer of advances
in the fields of Advanced Manufacturing and Computational Science to food production. In
particular, digital twins, which refers to a digital replica of physical systems, blend artificial
intelligence, machine learning, and software analytics with data to create living digital com-
puter models that can update and change in tandem with their physical counterparts. We
will seek to enable real-time simulation of processing devices to operate in tandem with their

CHAPTER 3. MODELING, SIMULATION AND MACHINE LEARNING FOR RAPID
PROCESS CONTROL OF MULTIPHASE FLOWING FOODS 85

deployed response. Updates to the digital twin are made continuously in near real-time,
which necessitates rapid wireless communication, hyperspectral cameras and sensor fusion,
and rapid simulation of process behavior. The digital twin concept should quickly ascertain
fault behavior by utilizing the best available data. Today, there is no shortage of simulation
codes; however, the fundamental limitations are real-time accuracy and deployable in-the-
field use in harsh environments. A core issue across all domains of application is extreme
flexibility - the ability of a system to adapt to rapid changes in the environment and sys-
tem capabilities by autonomously modifying tasks and then apply various problem-solving
approaches. In this context, a goal will be to make fundamental advances in several coupled
autonomy-related fields to increase functional flexibility, while being constrained by the mul-
tiple aspects of variable system capabilities and operation in complex environments. These
methods should be benchmarked and validated against an extensive suite of experimental
tests.

CHAPTER 3. MODELING, SIMULATION AND MACHINE LEARNING FOR RAPID
PROCESS CONTROL OF MULTIPHASE FLOWING FOODS 86

Table 3.4: Parameter combinations of the test data (Qo = 0.008 (m3/s))

Data α vp σp0(Ω−1m−1) ρp(kg/m
3) Cp(J/(kgK)) kp0(W/(mK))

0 1.549 0.15 2.456 7759.404 3433.3 0.218
1 3.847 0.294 0.335 6105.349 4259.458 0.508
2 3.895 0.245 0.819 4181.942 5092.967 0.266
3 1.064 0.125 0.506 6140.392 5263.828 0.193
4 2.562 0.297 2.351 3775.15 3415.132 0.438
5 8.099 0.237 0.121 3727.23 2749.679 0.195
6 4.487 0.226 0.157 5545.354 3138.772 0.328
7 6.373 0.186 1.66 7784.213 5910.001 0.268
8 4.621 0.091 1.949 6439.95 4414.465 0.188
9 7.89 0.277 0.12 4903.641 1327.825 0.143
10 5.276 0.264 1.484 7035.64 3099.573 0.27
11 5.347 0.165 1.009 8632.634 5082.983 0.461
12 7.999 0.212 1.315 6683.187 1967.633 0.44
13 8.607 0.051 1.426 8422.895 3126.233 0.406
14 4.689 0.181 2.007 7584.325 5890.057 0.373
15 6.837 0.271 1.947 3265.004 4077.301 0.422
16 4.067 0.101 0.14 7968.876 3444.474 0.436
17 6.099 0.144 1.381 5948.694 4144.484 0.279
18 6.815 0.24 1.905 3973.045 3267.218 0.346
19 4.376 0.136 0.722 7860.504 2820.899 0.5
20 9.257 0.197 0.173 3092.617 2956.472 0.158
21 5.528 0.122 0.209 4989.043 5837.073 0.14
22 5.655 0.071 0.528 6727.897 5773.078 0.116
23 6.002 0.191 2.224 3335.19 3355.906 0.306
24 7.627 0.064 0.304 4873.36 1369.402 0.167
25 7.68 0.106 1.054 3243.908 4748.334 0.216
26 8.307 0.097 1.901 7089.897 2308.456 0.237
27 2.666 0.153 1.32 4057.853 1012.664 0.255
28 4.896 0.116 2.103 5193.494 5475.022 0.146
29 6.049 0.061 2.233 6832.804 4226.989 0.133
30 9.659 0.077 0.493 7077.536 3192.111 0.243
31 7.775 0.255 1.57 8566.101 1376.947 0.472
32 8.81 0.283 1.545 4493.745 5214.075 0.235
33 2.054 0.268 1.047 7779.834 1362.59 0.191
34 8.589 0.216 1.123 7107.375 3363.087 0.17
35 9.497 0.283 1.739 4630.313 1993.417 0.271
36 5.772 0.136 1.529 4635.428 4075.312 0.472

Continued on next page

CHAPTER 3. MODELING, SIMULATION AND MACHINE LEARNING FOR RAPID
PROCESS CONTROL OF MULTIPHASE FLOWING FOODS 87

Table 3.4 – continued from previous page
Data α vp σp0(Ω−1m−1) ρp(kg/m

3) Cp(J/(kgK)) kp0(W/(mK))
37 3.959 0.249 0.567 4696.297 1548.019 0.328
38 5.166 0.06 0.816 7087.657 5301.154 0.308
39 6.712 0.158 0.832 7776.77 2382.714 0.327
40 7.988 0.19 0.145 3634.772 1554.625 0.236
41 1.044 0.117 0.37 6138.783 4653.459 0.239
42 4.365 0.054 2.375 3587.32 5727.176 0.362
43 9.887 0.063 0.317 8819.026 5592.158 0.225
44 4.351 0.225 0.663 3033.798 5027.076 0.194
45 3.4 0.292 1.52 8851.484 2095.329 0.236
46 3.999 0.292 0.947 6391.476 4732.204 0.139
47 1.701 0.155 0.129 7762.79 5396.288 0.306
48 2.909 0.281 2.455 3551.428 2084.967 0.373
49 9.847 0.167 0.844 5712.906 4155.826 0.477
50 1.418 0.056 0.512 3089.134 5009.892 0.255
51 2.694 0.169 2.128 8402.041 2136.059 0.171
52 3.747 0.117 1.019 4391.483 4364.756 0.517
53 4.239 0.3 2.043 5246.343 4470.875 0.412
54 9.979 0.077 0.273 4239.395 2739.448 0.396
55 4.874 0.261 0.328 8498.197 5401.833 0.24
56 6.398 0.056 0.301 3232.287 3332.41 0.373
57 7.663 0.078 0.154 3122.636 2411.005 0.214
58 1.514 0.14 0.238 6034.478 5289.729 0.509
59 9.996 0.19 0.883 6812.561 5578.166 0.165
60 1.607 0.251 1.41 4849.983 3990.129 0.139
61 9.718 0.12 0.854 4394.153 2442.501 0.378
62 4.92 0.099 1.503 3621.493 4953.384 0.446
63 6.286 0.195 0.854 8390.804 5191.483 0.287
64 2.437 0.089 1.775 5797.98 1149.577 0.481
65 1.329 0.191 1.449 8568.115 5527.728 0.315
66 5.432 0.257 2.285 6038.271 4253.427 0.269
67 4.804 0.278 2.287 8215.119 3030.96 0.115
68 8.814 0.184 0.157 3068.411 2843.516 0.151
69 6.651 0.144 2.44 6823.313 3277.01 0.413
70 9.965 0.28 1.788 7031.894 3760.994 0.472
71 3.354 0.086 1.932 5018.222 3000.592 0.382
72 1.169 0.235 1.463 6540.024 4345.719 0.497
73 3.062 0.275 2.028 3219.607 3852.654 0.195
74 4.217 0.249 0.704 3738.223 3115.538 0.263
75 5.827 0.074 2.087 4486.627 4704.963 0.519

Continued on next page

CHAPTER 3. MODELING, SIMULATION AND MACHINE LEARNING FOR RAPID
PROCESS CONTROL OF MULTIPHASE FLOWING FOODS 88

Table 3.4 – continued from previous page
Data α vp σp0(Ω−1m−1) ρp(kg/m

3) Cp(J/(kgK)) kp0(W/(mK))
76 7.767 0.244 0.141 3435.857 1243.581 0.134
77 1.346 0.154 0.224 6231.153 4732.696 0.224
78 1.27 0.241 1.288 8043.79 4691.051 0.481
79 5.676 0.24 1.278 8149.764 3998.937 0.463
80 5.215 0.081 0.316 4160.237 1821.958 0.512
81 5.495 0.149 1.72 6061.707 3496.811 0.309
82 9.217 0.153 0.451 5250.311 1459.664 0.467
83 7.969 0.069 1.825 7418.46 4914.177 0.509
84 3.173 0.183 2.44 8438.922 3141.411 0.483
85 1.882 0.141 2.28 4967.85 1073.279 0.38
86 5.487 0.156 1.35 3969.385 2644.987 0.238
87 6.69 0.281 1.166 8996.767 1632.565 0.362
88 5.602 0.092 0.341 7741.338 3433.192 0.111
89 4.442 0.284 1.206 8580.623 2926.173 0.357
90 1.573 0.082 1.427 4317.658 5299.801 0.179

CHAPTER 3. MODELING, SIMULATION AND MACHINE LEARNING FOR RAPID
PROCESS CONTROL OF MULTIPHASE FLOWING FOODS 89

Table 3.5: Parameter combinations of the test data (Qo = 0.010 (m3/s))

Data α vp σp0(Ω−1m−1) ρp(kg/m
3) Cp(J/(kgK)) kp0(W/(mK))

0 6.14 0.131 2.336 3580.736 1074.287 0.405
1 7.366 0.194 1.319 7920.128 3488.167 0.441
2 6.546 0.069 0.595 7439.564 1296.572 0.142
3 8.069 0.197 0.273 7197.536 2553.029 0.394
4 6.992 0.198 0.91 3704.36 5351.689 0.308
5 6.506 0.169 0.215 5782.7 5007.166 0.494
6 1.283 0.075 1.633 7819.798 4286.152 0.518
7 8.999 0.064 2.009 4702.403 2703.609 0.232
8 6.913 0.057 2.295 6070.889 3640.574 0.211
9 5.313 0.28 1.504 5434.051 4517.909 0.285
10 8.343 0.149 1.713 7696.903 3796.667 0.119
11 4.251 0.268 2.251 5347.55 5358.302 0.366
12 5.399 0.195 0.924 4955.521 5341.165 0.495
13 1.573 0.084 0.16 3933.561 1358.369 0.427
14 5.526 0.059 1.299 4417.878 5746.938 0.233
15 7.907 0.199 1.525 8347.193 5045.599 0.15
16 7.913 0.184 1.262 4081.202 5150.931 0.258
17 8.825 0.118 0.127 3679.186 3709.769 0.261
18 8.208 0.244 1.45 4764.49 4500.437 0.434
19 6.495 0.238 0.22 6225.841 4326.061 0.2
20 3.545 0.159 0.58 3533.284 1859.182 0.337
21 3.646 0.201 2.372 6478.118 3440.068 0.12
22 3.986 0.195 0.497 7797.545 1876.565 0.137
23 1.525 0.121 0.24 5680.408 5489.909 0.301
24 2.546 0.202 1.015 8919.161 3901.178 0.376
25 1.336 0.071 1.671 6119.824 2968.495 0.328
26 2.328 0.061 2.496 3945.234 4892.474 0.199
27 8.521 0.226 1.592 8861.208 4454.62 0.456
28 9.33 0.188 0.625 7597.352 1331.154 0.181
29 9.309 0.083 0.142 4597.605 3840.298 0.396
30 4.506 0.211 2.116 6237.805 1367.773 0.402
31 7.365 0.152 1.846 8430.727 1885.953 0.377
32 6.613 0.216 2.199 8504.861 2341.794 0.421
33 4.45 0.238 1.446 3544.603 4181.313 0.34
34 4.609 0.087 0.288 7393.452 1554.853 0.288
35 9.616 0.261 2.172 7403.373 5379.083 0.386
36 1.071 0.089 1.857 8608.928 1252.925 0.439

Continued on next page

CHAPTER 3. MODELING, SIMULATION AND MACHINE LEARNING FOR RAPID
PROCESS CONTROL OF MULTIPHASE FLOWING FOODS 90

Table 3.5 – continued from previous page
Data α vp σp0(Ω−1m−1) ρp(kg/m

3) Cp(J/(kgK)) kp0(W/(mK))
37 3.446 0.193 0.418 4291.864 3091.729 0.117
38 6.782 0.106 2.198 8922.436 3786.966 0.397
39 4.383 0.166 2.492 5042.57 1773.285 0.472
40 6.799 0.254 0.11 6127.599 1292.772 0.196
41 5.138 0.134 1.987 7621.284 2952.805 0.371
42 7.023 0.175 2.296 3309.995 4505.566 0.489
43 7.086 0.267 0.218 4201.604 2153.164 0.159
44 5.792 0.145 1.29 3216.131 1738.549 0.497
45 8.795 0.155 2.01 5458.378 2902.507 0.334
46 5.576 0.206 0.772 4151.183 1507.298 0.179
47 5.532 0.167 1.711 8743.86 2311.082 0.309
48 9.374 0.248 1.838 8682.585 2009.389 0.359
49 6.109 0.078 2.381 3636.448 2012.176 0.296
50 2.166 0.203 1.099 8702.51 3044.366 0.334
51 5.297 0.077 2.366 4051.802 3998.746 0.518
52 3.328 0.271 2.136 7263.344 2043.585 0.261
53 4.575 0.101 0.154 6912.569 2418.829 0.19
54 8.081 0.151 2.457 7083.64 2776.945 0.17
55 3.908 0.177 0.548 6635.572 3127.318 0.314
56 6.428 0.264 1.733 6713.824 2894.822 0.515
57 8.357 0.123 0.296 6581.155 2697.933 0.323
58 9.003 0.214 0.194 5955.788 1192.977 0.253
59 9.802 0.055 0.202 6481.557 5289.709 0.308
60 2.432 0.103 2.243 4260.709 3420.331 0.171
61 7.717 0.12 1.827 6263.439 2399.915 0.37
62 3.475 0.131 1.634 7523.677 4489.278 0.256
63 7.867 0.129 0.271 3663.054 1972.714 0.347
64 5.743 0.271 2.386 4490.073 1391.131 0.26
65 1.977 0.193 2.254 6120.876 4469.23 0.458
66 2.757 0.152 0.42 6308.862 1341.053 0.27
67 4.742 0.183 1.68 4413.228 1015.702 0.484
68 9.889 0.096 0.274 3253.247 1898.977 0.44
69 6.368 0.265 0.808 7856.217 5156.008 0.455
70 9.919 0.095 1.355 5642.983 1646.385 0.291
71 2.827 0.221 0.558 8795.148 4688.409 0.265
72 4.534 0.184 1.4 4462.572 1254.301 0.134
73 1.227 0.166 1.265 8281.254 3170.687 0.14
74 6.591 0.297 1.538 4557.043 5111.217 0.25
75 5.312 0.147 1.817 5661.513 1222.957 0.455

Continued on next page

CHAPTER 3. MODELING, SIMULATION AND MACHINE LEARNING FOR RAPID
PROCESS CONTROL OF MULTIPHASE FLOWING FOODS 91

Table 3.5 – continued from previous page
Data α vp σp0(Ω−1m−1) ρp(kg/m

3) Cp(J/(kgK)) kp0(W/(mK))
76 3.909 0.118 1.692 3771.867 3305.802 0.194
77 9.697 0.269 2.317 7709.971 5539.29 0.173
78 4.905 0.12 0.937 3135.147 5807.623 0.158
79 7.611 0.111 0.419 5335.717 5490.597 0.245
80 2.27 0.282 0.806 7178.22 5990.579 0.375
81 7.148 0.119 0.147 3693.587 2416.442 0.33
82 2.208 0.291 1.094 3544.886 3700.504 0.196
83 9.935 0.068 1.739 6036.328 2055.888 0.206
84 3.848 0.103 1.569 6220.79 1088.941 0.513
85 4.786 0.068 0.35 4669.444 3201.769 0.516
86 3.297 0.186 2.295 3256.407 1832.094 0.442
87 8.355 0.163 1.026 3105.065 5858.134 0.487
88 9.78 0.23 1.363 8354.454 4339.494 0.312
89 8.423 0.21 1.314 4572.152 3396.524 0.126
90 3.571 0.208 2.002 4743.436 4432.712 0.221

CHAPTER 3. MODELING, SIMULATION AND MACHINE LEARNING FOR RAPID
PROCESS CONTROL OF MULTIPHASE FLOWING FOODS 92

Table 3.6: Parameter combinations of the test data (Qo = 0.012 (m3/s))

Data α vp σp0(Ω−1m−1) ρp(kg/m
3) Cp(J/(kgK)) kp0(W/(mK))

0 6.4 0.067 0.522 7876.243 5294.28 0.195
1 8.78 0.24 1.116 3315.163 3814.936 0.241
2 1.915 0.132 2.017 5458.866 5279.052 0.474
3 5.979 0.146 2.487 4069.539 4539.445 0.317
4 4.064 0.115 2.412 3081.456 4120.004 0.327
5 3.761 0.085 0.371 3162.713 5162.42 0.458
6 2.31 0.069 0.104 4964.014 5683.006 0.335
7 4.44 0.151 0.919 8144.161 5741.744 0.308
8 1.221 0.209 0.376 8897.054 1056.524 0.116
9 6.439 0.21 0.847 5777.023 1814 0.321
10 8.849 0.288 0.183 7840.757 1727.002 0.258
11 7.487 0.171 0.55 8558.128 3965.964 0.121
12 7.588 0.169 1.783 6494.871 2374.835 0.338
13 8.981 0.216 0.99 7794.138 4990.806 0.472
14 8.75 0.139 1.734 5713.009 2484.315 0.17
15 4.216 0.093 0.442 6046.996 5614.149 0.493
16 5.844 0.282 0.22 3935.321 4672.811 0.256
17 4.761 0.191 1.158 7752.158 3894.048 0.431
18 4.763 0.269 2.057 3853.139 1174.468 0.152
19 5.056 0.214 1.258 4200.577 2981.031 0.413
20 6.769 0.206 1.161 8467.196 5783.529 0.388
21 9.673 0.101 0.352 5057.071 2211.53 0.189
22 3.21 0.297 2.194 3280.192 4266.42 0.318
23 9.994 0.273 1.797 4081.603 2730.073 0.178
24 4.713 0.188 1.656 5510.669 3933.104 0.159
25 1.086 0.188 0.581 5109.942 1802.562 0.365
26 9.754 0.291 1.306 8539.635 4946.283 0.269
27 6.067 0.3 0.765 3245.378 1794.394 0.517
28 3.226 0.283 0.529 7603.214 4977.732 0.179
29 7.635 0.114 2.404 6106.222 4012.162 0.235
30 8.139 0.288 0.121 3781.991 1329.161 0.147
31 8.736 0.26 1.823 8281.504 1041.569 0.359
32 8.915 0.206 0.463 6300.075 2275.214 0.257
33 6.199 0.123 1.633 8890.819 2525.629 0.197
34 5.162 0.235 1.417 4398.862 4607.633 0.146
35 8.868 0.062 1 3597.699 5313.489 0.27
36 3.883 0.146 0.627 6571.866 1986.721 0.379

Continued on next page

CHAPTER 3. MODELING, SIMULATION AND MACHINE LEARNING FOR RAPID
PROCESS CONTROL OF MULTIPHASE FLOWING FOODS 93

Table 3.6 – continued from previous page
Data α vp σp0(Ω−1m−1) ρp(kg/m

3) Cp(J/(kgK)) kp0(W/(mK))
37 2.454 0.153 0.578 3642.078 4549.263 0.276
38 1.263 0.145 0.207 4141.563 3678.891 0.372
39 5.341 0.089 0.959 4360.097 2066.179 0.438
40 1.107 0.183 0.205 8058.297 4336.652 0.302
41 7.514 0.088 2.165 7392.249 1587.091 0.498
42 4.528 0.294 1.271 5270.921 4601.011 0.234
43 8.451 0.133 0.204 5234.141 1257.345 0.195
44 9.383 0.076 0.184 6001.8 1902.392 0.341
45 9.766 0.11 1.323 5491.346 3151.914 0.112
46 8.075 0.121 1.084 4987.955 5017.741 0.142
47 8.623 0.141 1.427 5743.662 5370.107 0.447
48 8.812 0.177 2.22 4669.98 5199.864 0.291
49 4.039 0.26 2.427 5501.073 4214.584 0.494
50 3.25 0.168 1.554 7151.826 4625.882 0.491
51 1.659 0.296 1.132 6315.573 1746.152 0.305
52 5.033 0.06 2.072 5041.384 2139.78 0.286
53 5.723 0.265 1.25 8936.12 4446.507 0.13
54 7.419 0.195 1.261 6695.9 1515.017 0.249
55 6.283 0.054 0.949 4657.896 4149.641 0.511
56 8.674 0.191 2.111 4430.844 3077.662 0.261
57 3.723 0.136 2.064 4707.604 1925.808 0.329
58 1.435 0.266 1.987 6817.481 2040.755 0.43
59 8.294 0.198 0.958 7924.672 1850.88 0.135
60 5.616 0.16 2.158 7039.122 3272.005 0.15
61 8.249 0.225 0.383 4251.902 1873.476 0.314
62 7.484 0.2 1.954 7625.207 2127.711 0.507
63 8.496 0.267 0.382 3791.214 5095.26 0.49
64 9.224 0.147 1.351 8413.807 3864.131 0.358
65 4.129 0.081 2.221 7633.587 2446.464 0.506
66 3.505 0.059 1.365 5032.053 3032.907 0.415
67 3.215 0.109 0.23 7915.023 1055.042 0.471
68 5.79 0.059 1.71 6376.457 2151.38 0.213
69 2.214 0.178 1.516 5894.345 4671.929 0.35
70 3.621 0.098 1.716 8745.389 4080.627 0.309
71 2.539 0.179 0.465 6227.274 3531.866 0.225
72 9.306 0.274 1.967 3629.099 5095.89 0.135
73 7.608 0.055 2.16 8401.329 4750.897 0.487
74 2.708 0.066 2.313 6694.385 3688.736 0.117
75 2.993 0.15 1.284 3730.68 4412.211 0.292

Continued on next page

CHAPTER 3. MODELING, SIMULATION AND MACHINE LEARNING FOR RAPID
PROCESS CONTROL OF MULTIPHASE FLOWING FOODS 94

Table 3.6 – continued from previous page
Data α vp σp0(Ω−1m−1) ρp(kg/m

3) Cp(J/(kgK)) kp0(W/(mK))
76 2.232 0.258 2.491 8767.063 4597.317 0.194
77 6.972 0.251 0.256 7734.183 1171.318 0.185
78 4.931 0.171 1.98 4670.762 4427.269 0.394
79 7.116 0.168 2.029 8174.577 3866.464 0.174
80 7.671 0.241 0.107 4285.157 1597.274 0.142
81 4.819 0.116 0.28 3542.585 1363.044 0.156
82 4.388 0.225 0.355 7705.786 3898.758 0.179
83 3.838 0.129 1.132 3071.931 3060.07 0.182
84 7.787 0.223 0.106 3666.485 1475.339 0.133
85 3.691 0.283 2.366 7904.586 3782.818 0.199
86 1.286 0.195 1.802 3339.908 5903.523 0.456
87 5.092 0.114 0.203 3557.497 1379.287 0.166
88 2.214 0.265 1.511 4430.614 3331.978 0.242
89 6.272 0.207 0.895 7031.337 3987.298 0.195
90 7.152 0.068 0.624 3125.018 3860.56 0.437

95

Chapter 4

Tool Path Optimization of the
Selective Laser Sintering Process
using Deep Learning

4.1 Abstract

The contents of this chapter are from the journal paper, “Tool path optimization of Selective
Laser Sintering process using Deep Learning” by Kim, D.H., and Zohdi, T.I., which was
submitted to the Journal of Manufacturing Science and Engineering, ASME.

Advancements in additive manufacturing (3D printing) have enabled researchers to cre-
ate complex structures, offering a new class of materials that can surpass their individual
constituent properties. Selective Laser Sintering (SLS) is one of the most popular additive
manufacturing techniques and uses laser power to bond powdered material into intricate
structures. It is one of the fastest additive manufacturing processes for printing functional,
durable prototypes, or end-user parts. It is also widely used in many industries, due to its
ability to easily make complex geometries with little to no added manufacturing effort. In the
SLS process, tool path selection is important because it is directly related to the integrity of
a 3D printed structure. In this research, we focus on how to obtain an optimal tool path for
the SLS process from a numerical simulation. Also, we apply a Deep Learning technique to
accelerate the simulation of the SLS processes, while obtaining accurate simulation results.

4.2 Introduction

Selective Laser Sintering (SLS) is an additive manufacturing technique that uses a laser as
a power source to sinter powdered material,1 by directing the laser automatically at points

1PA12 is a widely used thermoplastic material for Selective Laser Sintering which is suitable for many
applications [154]

CHAPTER 4. TOOL PATH OPTIMIZATION OF THE SELECTIVE LASER
SINTERING PROCESS USING DEEP LEARNING 96

in space, dictated by a 3-D model.2 The original SLS process was invented in 1986 at the
University of Texas at Austin, with increasing applications as the technology matures [161].
Many researchers have proposed various ways to simulate the SLS process, to figure out the
mechanical/thermal behavior of the sintered material [162]. Dong et al. [163] developed a
transient three-dimensional Finite Element (FE) model to simulate the temperature evolu-
tion during the SLS process. Kolossov et al. [164] created a three-dimensional finite element
model for SLS processes, considering the non-linear behavior of thermal conductivity and
specific heat due to temperature changes and phase transformations. Matsumoto et al. [165]
proposed a FE model for calculating the temperature and stress distribution in a single layer
of metallic powder in selective laser processing. Simchi [166] and Simchi and Pohl [167]
used experimental results to observe microstructural evolution and densification during laser
sintering of metal powders. Gusarov and Kruth [168] employed a radiation transfer model to
calculate absorptances and deposited energy profiles while processing thin layers of metallic
powder, and provided an analytical equation of laser penetration as a function of particle
size and powder bed density. This work was followed by a finite difference simulation of heat
transfer during Selective Laser Melting [169]. There also have been Discrete Element Mod-
els, which is a good option for simulation of additive manufacturing processes, for modeling
and simulation of the laser processing of the powdered particles [70, 170–173]. That work
developed a coupled discrete element-finite difference model of SLS process [174].

As mentioned, tool path selection in additive manufacturing is important because it is
directly related to the durability of the 3D printed structure [74]. This research aims to
obtain an optimal tool path for the SLS process from numerical simulations. During laser
processing, temperature gradients occur within a 3-D printed structure, which can cause
unintended residual stresses. This is one of the major reasons for premature failure in parts
printed by additive manufacturing. In order to find an optimal laser path which minimizes
temperature gradients among a variety of tool paths, we first need to solve a dynamic
programming problem to find all the possible laser paths for the laser grid configuration of
a given geometry. After obtaining all possible laser paths, we could use numerical methods,
such as the Finite Difference Method, the Discrete Element Method, the Finite Element
Method, etc.,3 to calculate the thermal gradients or residual stresses of a printed geometry.

However, when the simulation system becomes excessively large, it can become computa-
tionally expensive to perform exhaustive simulations to calculate the temperature gradients
for large numbers of possible paths. Accordingly, in order to efficiently obtain an optimal
laser path for SLS processes, we apply Deep Learning techniques, which allow computers
to learn and detect patterns from noisy/complex data sets, and then to extract discovered
patterns to make predictions for future unknown data. Based on this idea, we can accelerate
the numerical simulations with high accuracy, as well as low computational cost. In order

2For the readers who are interested in comprehensive background of additive manufacturing, refer to
[155–160].

3For the readers who are interested in further numerical methods for solving partial differential equations,
refer to [129, 132, 175–177]. MATH 228A/B from the Department of Mathematics at UC Berkeley is also
helpful.

CHAPTER 4. TOOL PATH OPTIMIZATION OF THE SELECTIVE LASER
SINTERING PROCESS USING DEEP LEARNING 97

to efficiently process multi-dimensional data, we employ the Convolutional Neural Network
(CNN) to solve this manufacturing problem.

4.3 Technological Approaches

The main objective of this work is to develop a deep learning model to efficiently predict
the optimal tool path of the SLS process, which minimizes the average thermal gradient. In
order to achieve this, we first obtain all the possible laser paths needed to print the objective
geometry. We then solve a dynamic programming problem (which will be explained further
in the next section). After that, we model and simulate the SLS process in order to calculate
the average thermal gradient. Finally, based on the obtained simulation data, we construct
a deep learning model to predict the optimal laser path for the SLS process. The overall
flowchart is shown in Figure 4.1.

Figure 4.1: The overall algorithm flowchart

CHAPTER 4. TOOL PATH OPTIMIZATION OF THE SELECTIVE LASER
SINTERING PROCESS USING DEEP LEARNING 98

4.4 Tool Path Generation using Dynamic

Programming

In this section, we will focus on finding all the possible laser paths within the discretized
domain. Examples of the possible laser paths for a simple 4 by 4 grid is shown in Figure
4.2. After discretizing the domain into a structured grid, we can set the starting point of
the laser from any of the nodes in the grid. In order to simplify the problem, we set the
following restrictions on the laser path:

• The laser should visit all the nodes in the grid.

• The laser should visit each node only once.

• The laser cannot jump over nodes.

The main problem we encounter is that, as the laser moves from node to node, every single
path obtained so far branches down to the new points, as shown in Figure 4.3. For example,
if we have connected the points (0, 4, 8, 12, 13, 14, 10) so far, then there are three possible
next points 9,6, and 11. Therefore, (0, 4, 8, 12, 13, 14, 10) branches down to (0, 4, 8, 12, 13,
14, 10, 9), (0, 4, 8, 12, 13, 14, 10, 6), and (0, 4, 8, 12, 13, 14, 10, 11) in the next step. We
have to accumulate the cases to search for all the possible tool paths.

Due to this difficulty, we apply a dynamic programming technique to efficiently solve for
the laser path. Dynamic programming is a technique that simplifies a complicated problem
by breaking it down into simpler sub-problems in a recursive manner. Dynamic programming
was developed by Richard Bellman in the 1950s and has found applications in numerous
fields, ranging from aerospace engineering to economics.4

Memoization is used primarily to solve the dynamic programming problem by a top-down
approach. This accelerates computer programs by storing the results of expensive function
calls and returning the cached result, whenever the same inputs occur again. In order to
develop the tool path finder which could be applied for various kinds of complex geometries,
we employ memoization in order to store the previous movements of paths, so that all the
possible paths can be found efficiently.

There could be many possible starting points for the laser paths and the number of
starting points is equal to the number of points in the laser grid. However, since the laser
grid obtained from the geometry could be symmetric in either the x-axis, y-axis, or y = x
line, one can reduce the number of starting points to remove symmetrically overlapping laser
paths. For example, one can start from only three points marked in red, as shown in Figure
4.4, because the given laser grid in Figure 4.4 is symmetric about the x-axis, y-axis, and
y = x line. In other words, one does not need to consider all nodes as starting points.

4For the readers who are interested in comprehensive background of dynamic programming, refer to
[178–181].

CHAPTER 4. TOOL PATH OPTIMIZATION OF THE SELECTIVE LASER
SINTERING PROCESS USING DEEP LEARNING 99

Figure 4.2: Examples of the possible laser paths in a 4 by 4 laser grid

Figure 4.3: Laser path finding (RED: Accumulated path points, BLUE: New possible points)

CHAPTER 4. TOOL PATH OPTIMIZATION OF THE SELECTIVE LASER
SINTERING PROCESS USING DEEP LEARNING 100

Figure 4.4: Starting points considering the symmetric laser grid

The Trick for Finding Paths

This subsection deals with the trick I used in the path finding process. Even though we can
apply a dynamic programming technique to find all the possible laser paths, every single
path obtained so far branches off to the possible new points. Also, those new points are
added back to the current paths to create new current paths. They branch off again to the
new points in the next time steps. This process is iterated over and over until we obtain all
the final paths visiting all the nodes in a given laser grid.

For this reason, performing calculations to obtain all the possible paths could be compu-
tationally expensive when the size of the laser grid is large. To overcome this limitation, one
could perform early detection of the paths to be failed and remove them from the candidate
path set in advance. This work could prevent path finder from a huge amount of unnec-
essary calculations. The examples of the failed paths are shown in Figure 4.5. In Figure
4.5, red lines represent current paths and blue arrows represent possible next points. As
we can observe, they can not be included in the set of possible laser paths no matter what
direction of blue arrows they choose, since either paths or boundary of the geometry already
encompassed some node points in the laser grid.

To implement this, we could create a circular linked list (flag list) in either clockwise or
counterclockwise direction along with boundary nodes, which indicates whether the bound-
ary nodes of the laser grid are touched by the path. After that, we flag-up each boundary
node when the path touches them. If flags have any interval between ‘1’s (flagged-up), that
is a failed path. This is applied in the same way for inner boundaries for hollow geometries.
Also, a similar principle could be applied for detecting the self-colliding paths.

CHAPTER 4. TOOL PATH OPTIMIZATION OF THE SELECTIVE LASER
SINTERING PROCESS USING DEEP LEARNING 101

Figure 4.5: Failed paths to be removed from the candidate path set

4.5 Modeling and Simulation of the SLS Process

After obtaining all of the possible laser paths, one needs to mathematically model the laser
sintering process in order to perform numerical simulations for given laser paths. A schematic
of the laser processing is shown in Figure 4.6. As for the grid configuration, we adopt a
material grid that is three times finer and includes the laser grid nodes, as shown in Figure
4.7. In Figure 4.7, yellow circles represent the area covered by laser. While the laser grid
points are the positions through which a laser moves as time progresses, the material grid

CHAPTER 4. TOOL PATH OPTIMIZATION OF THE SELECTIVE LASER
SINTERING PROCESS USING DEEP LEARNING 102

points are the points where numerical simulations are actually performed to evaluate the
thermal gradients. The simulation parameters are shown in Table 4.1.

Figure 4.6: A schematic and the coordinate system of the laser processing

Figure 4.7: Grid configuration (RED: The laser grid, BLACK: The material grid)

The governing equation is as follows:

ρC
∂θ

∂t
= ∇ · (K∇θ) + Iabs, (4.1)

where

CHAPTER 4. TOOL PATH OPTIMIZATION OF THE SELECTIVE LASER
SINTERING PROCESS USING DEEP LEARNING 103

• θ: Temperature (K)

• ρ: Density (kg/m3)

• C: Specific heat capacity (J/(kgK))

• K: Heat conductivity (W/mK)

• Iabs: Absorbed laser energy within the laser zone (W/m3)

Assuming that we have a constant thermal conductivity k for simplicity, the boundary
conditions are as follows:

• Top surface: Convection

−kdθ
dz

= h(θ∞ − θ) (4.2)

• Other surfaces: Adiabatic

qs = −k dθ
dx

= 0 (4.3)

qs = −kdθ
dy

= 0 (4.4)

qs = −kdθ
dz

= 0, (4.5)

where θ∞ is the ambient temperature (K), and qS is heat flux at the surfaces (W/m2). As
for energy absorption Iabs, we use the Beer-Lambert penetration model for a Gaussian laser,
where

Iabs(r, z) = I0e
−βze

−2r2

w2 (4.6)

with

I0 =
2P

πw2
, (4.7)

where β is an optical extinction coefficient [182], P is the power of the laser, and w is the
laser radius. The optical extinction coefficient for a powder bed is modeled according to the
theory of Gusarov et al. [168, 169]. Also, we can rewrite Equation 4.1 as follows:

ρC
∂θ

∂t
= k
(∂2θ

∂x2
+
∂2θ

∂y2
+
∂2θ

∂z2

)
+ Iabs(r, z). (4.8)

CHAPTER 4. TOOL PATH OPTIMIZATION OF THE SELECTIVE LASER
SINTERING PROCESS USING DEEP LEARNING 104

When we discretize Equation 4.8 using finite difference method with a forward Euler scheme
for time integration,5 we obtain:

θ(t+ ∆t, x, y, z) = θ(t, x, y, z) + ∆t
[k
ρC

(
Ax + Ay + Az

)
+

1

ρC
Iabs(r, z)

]
, (4.9)

where

Ax =
∂2θ

∂x2
=
θ(t, x+ ∆x, y, z)− 2θ(t, x, y, z) + θ(t, x−∆x, y, z)

∆x2
(4.10)

and

Ay =
∂2θ

∂y2
=
θ(t, x, y + ∆y, z)− 2θ(t, x, y, z) + θ(t, x, y −∆y, z)

∆y2
(4.11)

and

Az =
∂2θ

∂z2
=
θ(t, x, y, z + ∆z)− 2θ(t, x, y, z) + θ(t, x, y, z −∆z)

∆z2
. (4.12)

The convective boundary condition [4.2] on the top surface is discretized as follows

h(θ∞ − θ) + k
θ1 − θ0

∆z
= 0, (4.13)

where θ1 is the temperature at the outermost inner node, which is adjacent to the boundary
node, and θ0 is the temperature at the boundary node.

After obtaining the final temperature values throughout the domain, we get the average
thermal gradient by calculating the average of the root mean squares of the temperature
gradients throughout the inner nodes of the 3D printed layer, as shown in Equation [4.14].
For each gradient component, we take a central difference from the adjacent nodes.

Average thermal gradient =
1

N

∑
i∈Z

√(
∂θ

∂x

)2

i

+

(
∂θ

∂y

)2

i

+

(
∂θ

∂z

)2

i

, (4.14)

where Z is a printing zone sintered by laser, and N is the number of material grid nodes
included in the printing zone. Also, in this work, we assume that we are printing a single
layer, which has a thickness of 4 ×∆L. The temperature gradient values are then used for
the labeling of the training/test data in the next section.

5Since the heat equation is stiff, explicit methods including the forward Euler method have the strict CFL
(Courant–Friedrichs–Lewy) condition [183, 184]. Therefore, implicit methods including the Crank-Nicholson
method [185] would be a good choice to relax the CFL condition. For more detail, refer to the chapter 9 of
[129].

CHAPTER 4. TOOL PATH OPTIMIZATION OF THE SELECTIVE LASER
SINTERING PROCESS USING DEEP LEARNING 105

Symbol Units Value Description

θ∞ K 300 Ambient temperature
θ0 K 300 Initial temperature
h W/m2K 10 Convection coefficient
K W/(mK) 0.22 Thermal conductivity of PA12
ρ kg/m3 1100 Density of PA12
C J/(kgK) 1590 Specific heat capacity of PA12
w m 0.0025 Laser radius
v mm/s 10 Laser scanning speed
P W 200 Power term in Iabs
β 1/m 80 Optical extinction coefficient

∆L m 0.00167 Material grid gap size (= ∆x = ∆y = ∆z)

Table 4.1: Simulation Parameters

4.6 Numerical Experiments

We implemented the simulation of the SLS process to print the example geometry shown
in Figure 4.8. We consider two example laser paths, even though there could be numerous
possible laser paths for this geometry and the corresponding laser grid. The possible starting
points on the laser grid, considering the symmetry of the geometry, are also shown in Figure
4.8. There were 66,464 possible laser paths in total for this geometry and corresponding laser
grid configuration, which were found by dynamic programming. The examples of laser paths
are shown in Figure 4.9. Also, the temperature plots of the powder bed for the corresponding
laser paths at the final processing time is shown in Figure 4.10.

CHAPTER 4. TOOL PATH OPTIMIZATION OF THE SELECTIVE LASER
SINTERING PROCESS USING DEEP LEARNING 106

Figure 4.8: LEFT: Example geometry, RIGHT: Corresponding laser grid

(a) Example path 1 (b) Example path 2

Figure 4.9: Examples of the possible laser paths for the given geometry

In the same way, we can perform the numerical simulations for all the other laser paths
to obtain the corresponding average thermal gradients described in Equation 4.14. The data
distribution of the temperature gradients for 66464 laser paths is shown in Figure 4.11.

CHAPTER 4. TOOL PATH OPTIMIZATION OF THE SELECTIVE LASER
SINTERING PROCESS USING DEEP LEARNING 107

0.00 0.01 0.02 0.03 0.04 0.05
x (m)

0.00

0.01

0.02

0.03

0.04

0.05

y
(m

)

Image plot of temperature

310

320

330

340

350

(a) Example path 1

0.00 0.01 0.02 0.03 0.04 0.05
x (m)

0.00

0.01

0.02

0.03

0.04

0.05

y
(m

)

Image plot of temperature

310

320

330

340

350

(b) Example path 2

Figure 4.10: Temperature plots of the top surfaces at the final processing time (37.5 (s))

3200 3400 3600 3800 4000
Temperature gradients (K/m)

0

200

400

600

800

1000

Th
e
nu

m
be

r o
f d

at
a
sa

m
pl
es

Distribution of temperature gradients

Figure 4.11: Distribution of the temperature gradients

CHAPTER 4. TOOL PATH OPTIMIZATION OF THE SELECTIVE LASER
SINTERING PROCESS USING DEEP LEARNING 108

Comments on Temporal Discretization

Temporal discretization refers to the discretization in the time domain for transient problems
as laser processing simulation in this work. For temporal discretization, we should also
consider how many time intervals will be included in every single material grid interval.
If temporal discretization is too coarse, it will give less accurate results even though the
simulation is fast. On the other hand, if temporal discretization is too fine, the simulation
will consume more computational power despite more accurate results. Therefore, it is
important to determine the optimal balance between these two in numerical simulations.

As mentioned above, the temperature gradient is a critical property in the SLS process
because it is directly related to the unintended residual stress that could cause premature
failure of a 3D printed structure. Therefore, we need to ensure reasonable accuracy for the
thermal gradient calculation.

We could do a temporal discretization based on the following steps.

1. Randomly select a possible laser path for the given geometry.

2. With the finest time step,6 run the simulation to obtain the temperature gradients for
the path. Consider them as true temperature gradients (GRADtrue).

3. Select the coarsest time step considering the CFL condition.7

4. Run the simulation to obtain the temperature gradients (GRAD) and calculate the
relative maximum error (Error) of the temperature gradients:

Error = max(
∣∣∣GRADtrue−GRADGRADtrue

∣∣∣).
5. Iterate Step 4 with finer time steps until Error falls below the Tolerance (Error ≤
Tolerance).8 If this is achieved, set this as a time step size for simulations.

4.7 Preprocessing of the Laser Paths

In deep learning, a Convolutional Neural Network (CNN, or ConvNet) is a class of deep
neural networks, most commonly applied to image classification and recognition [25–28].
The CNN processes data that has a known grid-like topology [32]. Our next step is to
convert the laser paths we found into gray-scale path map images to train the deep learning
model (CNN). The way to convert the laser paths (time data) into the image (space data) is
shown in Figure 4.12. The path maps (as shown in Figure 4.12) also help to visually check

6A large number of time steps between material grid points.
7The Courant–Friedrichs–Lewy (CFL) condition which is a necessary condition for convergence when

solving time-dependent partial differential equations. For more detail, refer to [183, 184], or MATH 228A
from the Department of Mathematics at UC Berkeley.

8For example, one could set the Tolerance as 2-3%.

CHAPTER 4. TOOL PATH OPTIMIZATION OF THE SELECTIVE LASER
SINTERING PROCESS USING DEEP LEARNING 109

that each node was visited only once by looking at each row. Node numbering goes from
the left to the right, and from the top to the bottom, starting from zero. On the converted
path map image, we identify the white points based on the laser path. In other words, the
white squares correspond to the laser location at each time step. For example, if the second
point of the laser path is node number 4, then the time-stamp identifier for this point is ‘1’
(since node numbering starts from zero), and the spatial identifier of this point is ‘4’.

Figure 4.12: Preprocessing of path data

Since the number of the laser grid nodes of the given geometry is 76, every single laser
path is preprocessed into 76 by 76 gray-scale images. The preprocessing of the previous
example paths for the given geometry is shown in Figure 4.13.

CHAPTER 4. TOOL PATH OPTIMIZATION OF THE SELECTIVE LASER
SINTERING PROCESS USING DEEP LEARNING 110

0 10 20 30 40 50 60 70
Time info

0

10

20

30

40

50

60

70

Sp
at
ia
l i
nf
o

(a) Image of example path 1

0 10 20 30 40 50 60 70
Time info

0

10

20

30

40

50

60

70

Sp
at
ia
l i
nf
o

(b) Image of example path 2

Figure 4.13: Preprocessing of the paths into path map images

4.8 A Deep Learning Model to Predict the Optimal

Tool Path

Deep learning is a branch of artificial intelligence based on a biologically-inspired learning
process based on how neurons communicate and learn in living things, allowing computers
to learn from the past data so that it could detect patterns and make predictions from noisy
and complex data sets [32, 137–140]. The deep learning approach deals with the design of
algorithms to learn from machine-readable data. Also, there has been some research on gen-
erating predictive models to solve a variety of engineering problems such as material design,
computer vision, pattern recognition, and spam filtering [142–148, 186], including those in
computational mechanics [187]. In our approach, we applied a deep learning algorithm to
efficiently and accurately predict the optimal laser paths for SLS. We implemented our deep
learning model with PyTorch (1.1.0 version), which is an efficient deep learning framework
for Python and competent in both usability and speed [49].

In the previous section, we converted laser paths into grayscale images. Those images
were processed in our deep learning model. Also, every path map image was ranked before
training with the deep learning model, based on the average thermal gradient described in
equation 4.14. The lower the average thermal gradient, the better the path. After that, we
gave each path two kinds of labels: half of the group was labeled as ‘good’ (a label of ‘1’)

CHAPTER 4. TOOL PATH OPTIMIZATION OF THE SELECTIVE LASER
SINTERING PROCESS USING DEEP LEARNING 111

and the other half was labeled as ‘bad’ (a label of ‘0’).
The architecture of the CNN that we used for training and prediction is shown in Figure

4.14. In order to reduce architectural complexity, we used a simple CNN structure having
three convolutional layers, which was followed by a fully connected neural network. In Figure
4.14, None represents the number of data samples, and FC Neural Network represents the
fully connected neural network. For initialization of the parameters, Xavier initialization was
used for the weight initialization, in order to obtain substantially faster convergence [152].
The configuration of the hyper-parameters is shown below.

Figure 4.14: CNN architecture

• Convolution filter size: (3,3)

• Pooling: max-pooling, (2,2)

• Padding: 1

• Stride: 1

• Learning rate: 0.001

• Training epochs: 25

• Batch size: 200

• The number of hidden layers in a FC neural network: 1

• The number of nodes in a hidden layer: 800

• Activation function: ReLu (Rectified Linear Unit)

• Weight initialization: Xavier uniform

• Loss function: cross entropy loss

CHAPTER 4. TOOL PATH OPTIMIZATION OF THE SELECTIVE LASER
SINTERING PROCESS USING DEEP LEARNING 112

• Optimization method: Adam optimizer

After passing through the CNN, we used the softmax function to convert neural network
output numbers to probabilities (of being either a good path or a bad path) for each image.
We not only used the softmax function to calculate the cross entropy loss function while
training, but also used it as a probability extractor to predict the probability of being a
good path for each path map image in a test data set. The softmax probability function is
described in equation 4.15.

Pθ(y
(m) = i) =

ez
(m)
i

1∑
k=0

ez
(m)
k

, (4.15)

where i is the label of either 1 (good) or 0 (bad), z
(m)
i is the output number of mth image

data for the label i from the CNN, and Pθ(y
(m) = i) is the predicted probability for mth

image to have label i. Also, for multi-class classification, we used the cross entropy loss as
in Equation 4.16.

L = − 1

N

N∑
m=1

1∑
i=0

P (y(m) = i) · logPθ(y(m) = i), (4.16)

where N refers to the number of data samples (path map images), and P (y(m) = i) is the
actual probability (either 0 or 1) for mth image to have label i.

In order to train the CNN with the cross entropy loss function, an Adam optimizer
was used for the optimization, which is computationally efficient and has little memory
requirements [153].

Also, note that the test data is brand new data for the trained model, which means they
were completely isolated from the training data set and training process. The training set
was randomly selected from all data sets.

4.9 Simulation Results

With the deep learning model described above, we predicted what the optimal laser path
should be, by ranking them based on the probability of being a good path, as obtained by
the softmax probability extractor in Equation 4.15. We compared the predicted results from
the CNN model with that of the linear model. The configuration of the linear prediction
model is shown below.

• Learning rate: 0.001

• Training epochs: 25

CHAPTER 4. TOOL PATH OPTIMIZATION OF THE SELECTIVE LASER
SINTERING PROCESS USING DEEP LEARNING 113

• Batch size: 200

• Weight initialization: Xavier uniform

• Loss function: cross entropy loss

• Optimization method: Adam optimizer

We first trained both the CNN model and the linear model with 33,000 point training
data set (49.7% of 66464 total data points). In this case, the rest of the data (33464 paths)
are what we actually make the predictions for. The ranking of the predicted results is shown
in Figure 4.15. Also, a closeup on the top-ranked path for Figures 4.15a and 4.15b are shown
in Figures 4.16a and 4.16b, respectively.

We observe that the linear model could not capture the actual optimal laser path well,
as shown in Figures 4.15a and 4.16a. That is because the system is highly nonlinear. Even
though the linear model is the least expensive machine learning model with the lowest
computational cost, we need to account for the accuracy. However, we can see that the
CNN model captures the highest-ranked laser path quite well, as shown in Figures 4.15b and
4.16b.

We also attempted to train both the CNN model and the linear model with quite small
data sets: 4000 training data points (only 6.02% of 66464 total data points). In this case,
the rest of the data (62464 paths, 93.98%) are used to make the predictions. A ranking of
the predicted results is shown in Figure 4.17. Also, a closeup on the top-ranked path for
Figures 4.17a and 4.17b are shown in Figures 4.18a and 4.18b, respectively.

CHAPTER 4. TOOL PATH OPTIMIZATION OF THE SELECTIVE LASER
SINTERING PROCESS USING DEEP LEARNING 114

0 10000 20000 30000 40000 50000 60000
Predicted rank

0

10000

20000

30000

40000

50000

60000

Ac
tu
al
 ra

nk
Linear Model (33000 training data)

Reference line
Test data (blue)
Training data (gray)

(a) Linear model

0 10000 20000 30000 40000 50000 60000
Predicted rank

0

10000

20000

30000

40000

50000

60000

Ac
tu
al
 ra

nk

CNN Model (33000 training data)
Reference line
Training data (gray)
Test data (blue)

(b) CNN model

Figure 4.15: Ranking prediction (33000 training data)

CHAPTER 4. TOOL PATH OPTIMIZATION OF THE SELECTIVE LASER
SINTERING PROCESS USING DEEP LEARNING 115

0 20 40 60 80
Predicted rank

0

20

40

60

80

Ac
tu

al
 ra

nk

Linear Model (33000 training data, Closeup)
Reference line
Training data (gray)
Test data (blue)

(a) Linear model

0 20 40 60 80
Predicted rank

0

20

40

60

80

Ac
tu

al
 ra

nk

CNN Model (33000 training data, Closeup)
Reference line
Training data (gray)
Test data (blue)

(b) CNN model

Figure 4.16: Ranking prediction (33000 training data, Closeup)

CHAPTER 4. TOOL PATH OPTIMIZATION OF THE SELECTIVE LASER
SINTERING PROCESS USING DEEP LEARNING 116

0 10000 20000 30000 40000 50000 60000
Predicted rank

0

10000

20000

30000

40000

50000

60000

Ac
tu
al
 ra

nk
Linear Model (4000 training data)

Reference line
Test data (blue)
Training data (gray)

(a) Linear model

0 10000 20000 30000 40000 50000 60000
Predicted rank

0

10000

20000

30000

40000

50000

60000

Ac
tu
al
 ra

nk

CNN Model (4000 training data)
Reference line
Test data (blue)
Training data (gray)

(b) CNN model

Figure 4.17: Ranking prediction (4000 training data)

CHAPTER 4. TOOL PATH OPTIMIZATION OF THE SELECTIVE LASER
SINTERING PROCESS USING DEEP LEARNING 117

0 20 40 60 80
Predicted rank

0

20

40

60

80

Ac
tu
al
 ra

nk

Linear Model (4000 training data, Closeup)
Reference line
Training data (gray)
Test data (blue)

(a) Linear model

0 20 40 60 80
Predicted rank

0

20

40

60

80

Ac
tu
al
 ra

nk

CNN Model (4000 training data, Closeup)
Reference line
Training data (gray)
Test data (blue)

(b) CNN model

Figure 4.18: Ranking prediction (4000 training data, Closeup)

CHAPTER 4. TOOL PATH OPTIMIZATION OF THE SELECTIVE LASER
SINTERING PROCESS USING DEEP LEARNING 118

We clearly observe that the linear model could not capture the actual optimal laser path
pattern, as shown in Figures 4.17a and 4.18a. This implies that the linear model becomes
less useful when the data set is even small. However, the CNN model still captures the
high-ranked laser paths reasonably well, in spite of a much smaller training set, as shown in
Figures 4.17b and 4.18b. The CNN model is quite successful in capturing the top 35 paths,
even though 34 paths of them were from the test data set. The top 4 paths which were
chosen by the linear model are shown in Figure 4.19, and the corresponding plots of the
temperature at the top surface of the powder bed are shown in Figure 4.20. Also, the top 4
paths which were chosen by the CNN model are shown in Figure 4.21, and the corresponding
plots of the temperature at the top surface of the powder bed are shown in Figure 4.22.

(a) Ranking 1 (b) Ranking 2

(c) Ranking 3 (d) Ranking 4

Figure 4.19: Top 4 paths of the linear model

CHAPTER 4. TOOL PATH OPTIMIZATION OF THE SELECTIVE LASER
SINTERING PROCESS USING DEEP LEARNING 119

0.00 0.01 0.02 0.03 0.04 0.05
x (m)

0.00

0.01

0.02

0.03

0.04

0.05

y
(m

)

Image plot of temperature

310

320

330

340

350

(a) Ranking 1

0.00 0.01 0.02 0.03 0.04 0.05
x (m)

0.00

0.01

0.02

0.03

0.04

0.05

y
(m

)

Image plot of temperature

310

320

330

340

350

(b) Ranking 2

0.00 0.01 0.02 0.03 0.04 0.05
x (m)

0.00

0.01

0.02

0.03

0.04

0.05

y
(m

)

Image plot of temperature

310

320

330

340

350

(c) Ranking 3

0.00 0.01 0.02 0.03 0.04 0.05
x (m)

0.00

0.01

0.02

0.03

0.04

0.05

y
(m

)

Image plot of temperature

310

320

330

340

350

(d) Ranking 4

Figure 4.20: Temperature plots at the top surfaces (Top 4, linear model)

CHAPTER 4. TOOL PATH OPTIMIZATION OF THE SELECTIVE LASER
SINTERING PROCESS USING DEEP LEARNING 120

(a) Ranking 1 (b) Ranking 2

(c) Ranking 3 (d) Ranking 4

Figure 4.21: Top 4 paths of the CNN model

CHAPTER 4. TOOL PATH OPTIMIZATION OF THE SELECTIVE LASER
SINTERING PROCESS USING DEEP LEARNING 121

0.00 0.01 0.02 0.03 0.04 0.05
x (m)

0.00

0.01

0.02

0.03

0.04

0.05

y
(m

)

Image plot of temperature

310

320

330

340

350

(a) Ranking 1

0.00 0.01 0.02 0.03 0.04 0.05
x (m)

0.00

0.01

0.02

0.03

0.04

0.05

y
(m

)

Image plot of temperature

310

320

330

340

350

(b) Ranking 2

0.00 0.01 0.02 0.03 0.04 0.05
x (m)

0.00

0.01

0.02

0.03

0.04

0.05

y
(m

)

Image plot of temperature

310

320

330

340

350

(c) Ranking 3

0.00 0.01 0.02 0.03 0.04 0.05
x (m)

0.00

0.01

0.02

0.03

0.04

0.05

y
(m

)

Image plot of temperature

310

320

330

340

350

(d) Ranking 4

Figure 4.22: Temperature plots at the top surfaces (Top 4, CNN model)

The computing times for all the above models are shown in Table 4.2. The computer
employed for the entire simulation was a MacBook Pro (Retina, 15-inch, Mid 2014), and the
corresponding CPU was a 2.8 GHz Intel Core i7. The exhaustive simulation time for all the
66,464 laser paths was 38,109.53 (s). The total time represents the entire simulation time,
including every single path simulation for the number of training data points, the training
time, and the prediction time. The acceleration represents how many times faster it is than
direct exhaustive simulations for 66,464 possible paths.

As we see in the table, the CNN model with 4000 training data (only 6.02% of 66464
total data) was more than 10 times faster than a brute force simulation for all the possible
laser paths needed to calculate the thermal gradients, with the desired accuracy. This implies

CHAPTER 4. TOOL PATH OPTIMIZATION OF THE SELECTIVE LASER
SINTERING PROCESS USING DEEP LEARNING 122

Model Training data Training (s) Prediction (s) Total time (s) Acceleration

CNN 33000 3872.44 747.45 23541.63 1.619
CNN 4000 473.13 752.91 3519.58 10.828

Linear 33000 12.58 0.52 18934.84 2.013
Linear 4000 1.98 0.47 2295.99 16.598

Table 4.2: Computation time comparison

that the deep learning model can learn the pattern of the preferable paths (which includes
the process of solving differential equations) and predict the optimal laser paths accurately
and efficiently, without knowing geometry and without having any mathematical or physical
knowledge to solve differential equations and optimization problems.

4.10 The Overall Outlook

As this work illustrated, optimal laser paths can be accurately predicted using a Deep
Learning technique, even with a very small amount of training data and binary information
(good/bad path). Furthermore, a Deep Learning simulation using the CNN was significantly
faster than a brute force simulation. These results illustrate the potential of Deep Learning
for tool path optimization, in particular the ability to learn the patterns of tool paths and
rebuild detailed path performances.

Clearly, Deep Learning techniques can be applied to many other fields of numerical
simulations, well beyond simple tool path optimization for additive manufacturing, and
deliver reduced simulation costs while ensuring desirable accuracy [187, 188]. However, there
will always be trade-offs between computational costs and accuracy. A more computational
effort may be required if we use complex and delicate deep learning models, yielding good
predictive capabilities, as opposed to simple deep learning models, with limited predictive
power. Determining the optimal balance between these competing interests is an ongoing
issue throughout this field.

123

Bibliography

[1] John Tromp and Gunnar Farnebäck. “Combinatorics of go”. In: International Con-
ference on Computers and Games. Springer. 2006, pp. 84–99.

[2] David Silver et al. “Mastering the game of Go with deep neural networks and tree
search”. In: nature 529.7587 (2016), pp. 484–489.

[3] Amazon Echo Dot. https://amazon.com/.

[4] Arthur L Samuel. “Some studies in machine learning using the game of checkers”. In:
IBM Journal of research and development 3.3 (1959), pp. 210–229.

[5] What is machine learning? https://lawtomated.com/a-i-technical-machine-

vs-deep-learning/.

[6] What is the difference between AI, machine learning and deep learning? https://

www.geospatialworld.net/blogs/difference-between-ai%EF%BB%BF-machine-

learning-and-deep-learning/.

[7] Machine Learning Crash Course. https://developers.google.com/machine-

learning/crash-course/.

[8] Linear Regression using Gradient Descent. https://towardsdatascience.com/

linear-regression-using-gradient-descent-97a6c8700931.

[9] Stanford CS231n - Fei-Fei Li, et al. http://cs231n.stanford.edu/.

[10] Concept of Overfitting and Underfitting. https : / / medium . com / @0885angjain /

concept-of-overfitting-and-underfitting-353d73cf4a8.

[11] Steve Smale and Ding-Xuan Zhou. “Learning theory estimates via integral operators
and their approximations”. In: Constructive approximation 26.2 (2007), pp. 153–172.

[12] Deep Learning Basics - Lecture 4: Regularization II. https://www.cs.princeton.
edu/courses/archive/spring16/cos495/slides/DL_lecture4_regularization_

II.pdf.

[13] David M Allen. “The relationship between variable selection and data agumentation
and a method for prediction”. In: technometrics 16.1 (1974), pp. 125–127.

[14] Mervyn Stone. “Cross-validatory choice and assessment of statistical predictions”.
In: Journal of the Royal Statistical Society: Series B (Methodological) 36.2 (1974),
pp. 111–133.

https://amazon.com/
https://lawtomated.com/a-i-technical-machine-vs-deep-learning/
https://lawtomated.com/a-i-technical-machine-vs-deep-learning/
https://www.geospatialworld.net/blogs/difference-between-ai%EF%BB%BF-machine-learning-and-deep-learning/
https://www.geospatialworld.net/blogs/difference-between-ai%EF%BB%BF-machine-learning-and-deep-learning/
https://www.geospatialworld.net/blogs/difference-between-ai%EF%BB%BF-machine-learning-and-deep-learning/
https://developers.google.com/machine-learning/crash-course/
https://developers.google.com/machine-learning/crash-course/
https://towardsdatascience.com/linear-regression-using-gradient-descent-97a6c8700931
https://towardsdatascience.com/linear-regression-using-gradient-descent-97a6c8700931
http://cs231n.stanford.edu/
https://medium.com/@0885angjain/concept-of-overfitting-and-underfitting-353d73cf4a8
https://medium.com/@0885angjain/concept-of-overfitting-and-underfitting-353d73cf4a8
https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/DL_lecture4_regularization_II.pdf
https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/DL_lecture4_regularization_II.pdf
https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/DL_lecture4_regularization_II.pdf

BIBLIOGRAPHY 124

[15] Early stopping. https://www.oreilly.com/library/view/hands-on-transfer-
learning/9781788831307/41172567-9482-4cad-ac87-1cfbd46026df.xhtml.

[16] Peter Bühlmann and Sara Van De Geer. Statistics for high-dimensional data: methods,
theory and applications. Springer Science & Business Media, 2011.

[17] Regularization in Machine Learning. https://towardsdatascience.com/regulari
zation-in-machine-learning-76441ddcf99a.

[18] Geoffrey E Hinton et al. “Improving neural networks by preventing co-adaptation of
feature detectors”. In: arXiv preprint arXiv:1207.0580 (2012).

[19] Nitish Srivastava et al. “Dropout: a simple way to prevent neural networks from
overfitting”. In: The journal of machine learning research 15.1 (2014), pp. 1929–1958.

[20] Sergey Ioffe and Christian Szegedy. “Batch normalization: Accelerating deep network
training by reducing internal covariate shift”. In: arXiv preprint arXiv:1502.03167
(2015).

[21] Understand Neural Networks & Model Generalization. https://towardsdatascien
ce.com/understand-neural-networks-model-generalization-7baddf1c48ca.

[22] Ethem Alpaydin. Introduction to Machine Learning. [Sl]. 2010.

[23] Why not Mean Squared Error(MSE) as a loss function for Logistic Regression? ht

tps://towardsdatascience.com/why- not- mse- as- a- loss- function- for-

logistic-regression-589816b5e03c.

[24] David H Hubel and Torsten N Wiesel. “Receptive fields, binocular interaction and
functional architecture in the cat’s visual cortex”. In: The Journal of physiology 160.1
(1962), p. 106.

[25] Yann LeCun et al. “Backpropagation applied to handwritten zip code recognition”.
In: Neural computation 1.4 (1989), pp. 541–551.

[26] Yann LeCun, Yoshua Bengio, et al. “Convolutional networks for images, speech, and
time series”. In: The handbook of brain theory and neural networks 3361.10 (1995),
p. 1995.

[27] Yann LeCun et al. “Gradient-based learning applied to document recognition”. In:
Proceedings of the IEEE 86.11 (1998), pp. 2278–2324.

[28] MV Valueva et al. “Application of the residue number system to reduce hardware costs
of the convolutional neural network implementation”. In: Mathematics and Computers
in Simulation (2020).

[29] A Comprehensive Guide to Convolutional Neural Networks. https://medium.com/
@RaghavPrabhu/understanding-of-convolutional-neural-network-cnn-deep-

learning-99760835f148.

[30] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification with
deep convolutional neural networks”. In: Advances in neural information processing
systems. 2012, pp. 1097–1105.

https://www.oreilly.com/library/view/hands-on-transfer-learning/9781788831307/41172567-9482-4cad-ac87-1cfbd46026df.xhtml
https://www.oreilly.com/library/view/hands-on-transfer-learning/9781788831307/41172567-9482-4cad-ac87-1cfbd46026df.xhtml
https://towardsdatascience.com/regularization-in-machine-learning-76441ddcf99a
https://towardsdatascience.com/regularization-in-machine-learning-76441ddcf99a
https://towardsdatascience.com/understand-neural-networks-model-generalization-7baddf1c48ca
https://towardsdatascience.com/understand-neural-networks-model-generalization-7baddf1c48ca
https://towardsdatascience.com/why-not-mse-as-a-loss-function-for-logistic-regression-589816b5e03c
https://towardsdatascience.com/why-not-mse-as-a-loss-function-for-logistic-regression-589816b5e03c
https://towardsdatascience.com/why-not-mse-as-a-loss-function-for-logistic-regression-589816b5e03c
https://medium.com/@RaghavPrabhu/understanding-of-convolutional-neural-network-cnn-deep-learning-99760835f148
https://medium.com/@RaghavPrabhu/understanding-of-convolutional-neural-network-cnn-deep-learning-99760835f148
https://medium.com/@RaghavPrabhu/understanding-of-convolutional-neural-network-cnn-deep-learning-99760835f148

BIBLIOGRAPHY 125

[31] Christian Szegedy et al. “Going deeper with convolutions”. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. 2015, pp. 1–9.

[32] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

[33] Understanding LSTM Networks. http : / / colah . github . io / posts / 2015 - 08 -

Understanding-LSTMs/.

[34] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In: Neural
computation 9.8 (1997), pp. 1735–1780.

[35] Felix A Gers and Jürgen Schmidhuber. “Recurrent nets that time and count”. In:
Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Net-
works. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New
Millennium. Vol. 3. IEEE. 2000, pp. 189–194.

[36] Kyunghyun Cho et al. “Learning phrase representations using RNN encoder-decoder
for statistical machine translation”. In: arXiv preprint arXiv:1406.1078 (2014).

[37] Mark A Kramer. “Nonlinear principal component analysis using autoassociative neu-
ral networks”. In: AIChE journal 37.2 (1991), pp. 233–243.

[38] David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski. “A learning algorithm
for Boltzmann machines”. In: Cognitive science 9.1 (1985), pp. 147–169.

[39] Geoffrey E Hinton. “Boltzmann machine”. In: Scholarpedia 2.5 (2007), p. 1668.

[40] Geoffrey E Hinton. “Deep belief networks”. In: Scholarpedia 4.5 (2009), p. 5947.

[41] Diederik P Kingma and Max Welling. “An introduction to variational autoencoders”.
In: arXiv preprint arXiv:1906.02691 (2019).

[42] Ian Goodfellow et al. “Generative adversarial nets”. In: Advances in neural informa-
tion processing systems. 2014, pp. 2672–2680.

[43] Yunjey Choi et al. “Stargan: Unified generative adversarial networks for multi-domain
image-to-image translation”. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2018, pp. 8789–8797.

[44] Deep Learning for Natural Language Processing. http://cs224d.stanford.edu/.

[45] Machine Learning - Andrew Ng. https://www.coursera.org/learn/machine-
learning.

[46] Deep Learning Zero To All (Korean). https://github.com/deeplearningzerotoa
ll.

[47] Deep Learning Tutorial. http://deeplearning.stanford.edu/tutorial/.

[48] Andrej Karpathy’s YouTube. https://www.youtube.com/channel/UCPk8m_r6fk
USYmvgCBwq-sw.

[49] Adam Paszke et al. “Pytorch: An imperative style, high-performance deep learning
library”. In: Advances in neural information processing systems. 2019, pp. 8026–8037.

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://cs224d.stanford.edu/
https://www.coursera.org/learn/machine-learning
https://www.coursera.org/learn/machine-learning
https://github.com/deeplearningzerotoall
https://github.com/deeplearningzerotoall
http://deeplearning.stanford.edu/tutorial/
https://www.youtube.com/channel/UCPk8m_r6fkUSYmvgCBwq-sw
https://www.youtube.com/channel/UCPk8m_r6fkUSYmvgCBwq-sw

BIBLIOGRAPHY 126

[50] Mart́ın Abadi et al. “Tensorflow: A system for large-scale machine learning”. In: 12th
{USENIX} symposium on operating systems design and implementation ({OSDI}
16). 2016, pp. 265–283.

[51] PyTorch. https://pytorch.org/.

[52] TensorFlow. https://www.tensorflow.org/.

[53] James Bergstra and Yoshua Bengio. “Random search for hyper-parameter optimiza-
tion”. In: The Journal of Machine Learning Research 13.1 (2012), pp. 281–305.

[54] Jost Tobias Springenberg et al. “Bayesian optimization with robust Bayesian neural
networks”. In: Advances in neural information processing systems. 2016, pp. 4134–
4142.

[55] Eric Brochu, Vlad M Cora, and Nando De Freitas. “A tutorial on Bayesian opti-
mization of expensive cost functions, with application to active user modeling and
hierarchical reinforcement learning”. In: arXiv preprint arXiv:1012.2599 (2010).

[56] Yoshua Bengio. “Practical recommendations for gradient-based training of deep ar-
chitectures”. In: Neural networks: Tricks of the trade. Springer, 2012, pp. 437–478.

[57] Jason Brownlee. Statistical methods for machine learning: Discover how to transform
data into knowledge with Python. Machine Learning Mastery, 2018.

[58] Bobak Shahriari et al. “Taking the human out of the loop: A review of Bayesian
optimization”. In: Proceedings of the IEEE 104.1 (2015), pp. 148–175.

[59] How to Implement Bayesian Optimization from Scratch in Python. https://machin
elearningmastery.com/what-is-bayesian-optimization/.

[60] Fernando Nogueira, bayesian-optimization: A Python implementation of global opti-
mization with gaussian processes. https://github.com/fmfn/BayesianOptimizati
on.

[61] Cognex Deep Learning Lab-KOR Research Blog. https://research.sualab.com/.

[62] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. “Practical bayesian optimiza-
tion of machine learning algorithms”. In: Advances in neural information processing
systems. 2012, pp. 2951–2959.

[63] Peter I Frazier. “A tutorial on bayesian optimization”. In:
arXiv preprint arXiv:1807.02811 (2018).

[64] Expected Improvement for Bayesian Optimization: A Derivation. http://ash-aldu
jaili.github.io/blog/2018/02/01/ei/.

[65] Jonas Mockus, Vytautas Tiesis, and Antanas Zilinskas. “The application of Bayesian
methods for seeking the extremum”. In: Towards global optimization 2.117-129 (1978),
p. 2.

[66] Daniel James Lizotte. Practical bayesian optimization. University of Alberta, 2008.

https://pytorch.org/
https://www.tensorflow.org/
https://machinelearningmastery.com/what-is-bayesian-optimization/
https://machinelearningmastery.com/what-is-bayesian-optimization/
https://github.com/fmfn/BayesianOptimization
https://github.com/fmfn/BayesianOptimization
https://research.sualab.com/
http://ash-aldujaili.github.io/blog/2018/02/01/ei/
http://ash-aldujaili.github.io/blog/2018/02/01/ei/

BIBLIOGRAPHY 127

[67] John Henry Holland et al. Adaptation in natural and artificial systems: an intro-
ductory analysis with applications to biology, control, and artificial intelligence. MIT
press, 1992.

[68] David E Goldberg and John Henry Holland. “Genetic algorithms and machine learn-
ing”. In: (1988).

[69] TI Zohdi. “An explicit macro-micro phase-averaged stress correlation for particle-
enhanced composite materials in loaded structures”. In: International Journal of En-
gineering Science 109 (2016), pp. 1–13.

[70] Tarek I Zohdi. Modeling and Simulation of Functionalized Materials for Additive Man-
ufacturing and 3D Printing: Continuous and Discrete Media: Continuum and Discrete
Element Methods. Vol. 60. Springer, 2017.

[71] TI Zohdi. “Electrodynamic machine-learning-enhanced fault-tolerance of robotic free-
form printing of complex mixtures”. In: Computational Mechanics 63.5 (2019), pp. 913–
929.

[72] TI Zohdi. “A machine-learning framework for rapid adaptive digital-twin based fire-
propagation simulation in complex environments”. In: Computer Methods in Applied
Mechanics and Engineering 363 (2020), p. 112907.

[73] TI Zohdi. “Genetic design of solids possessing a random–particulate microstructure”.
In: Philosophical Transactions of the Royal Society of London. Series A: Mathemati-
cal, Physical and Engineering Sciences 361.1806 (2003), pp. 1021–1043.

[74] TI Zohdi. “Dynamic thermomechanical modeling and simulation of the design of rapid
free-form 3D printing processes with evolutionary machine learning”. In: Computer
Methods in Applied Mechanics and Engineering 331 (2018), pp. 343–362.

[75] TI Zohdi. “The Game of Drones: Rapid agent-based machine-learning models for
multi-UAV path planning”. In: Computational Mechanics 65.1 (2020), pp. 217–228.

[76] Tarek I Zohdi. “CM Approaches: Estimation and Optimization of the Effective Prop-
erties of Mixtures”. In: Modeling and Simulation of Functionalized Materials for Addi-
tive Manufacturing and 3D Printing: Continuous and Discrete Media. Springer, 2018,
pp. 31–42.

[77] Z Hashin and S Shtrikman. “On some variational principles in anisotropic and nonho-
mogeneous elasticity”. In: Journal of the Mechanics and Physics of Solids 10.4 (1962),
pp. 335–342.

[78] Zvi Hashin and Shmuel Shtrikman. “A variational approach to the theory of the
elastic behaviour of multiphase materials”. In: Journal of the Mechanics and Physics
of Solids 11.2 (1963), pp. 127–140.

[79] Zvi Hashin. “Analysis of composite materials—a survey”. In: (1983).

BIBLIOGRAPHY 128

[80] James Kennedy and Russell Eberhart. “Particle swarm optimization”. In: Proceed-
ings of ICNN’95-International Conference on Neural Networks. Vol. 4. IEEE. 1995,
pp. 1942–1948.

[81] Yuhui Shi and Russell Eberhart. “A modified particle swarm optimizer”. In: 1998
IEEE international conference on evolutionary computation proceedings. IEEE world
congress on computational intelligence (Cat. No. 98TH8360). IEEE. 1998, pp. 69–73.

[82] Zeineb Abdmouleh et al. “Review of optimization techniques applied for the integra-
tion of distributed generation from renewable energy sources”. In: Renewable Energy
113 (2017), pp. 266–280.

[83] István Erlich, Ganesh K Venayagamoorthy, and Nakawiro Worawat. “A mean-variance
optimization algorithm”. In: IEEE Congress on Evolutionary Computation. IEEE.
2010, pp. 1–6.

[84] Mean Variance Mapping Optimization Algorithm. https://pypi.org/project/

MVMO/.

[85] Jaime C Cepeda et al. “Mean–Variance Mapping Optimization Algorithm for Power
System Applications in DIgSILENT PowerFactory”. In: PowerFactory Applications
for Power System Analysis. Springer, 2014, pp. 267–295.

[86] Neil A Thacker and Timothy F Cootes. “Vision through optimization”. In: BMVC
Tutorial Notes (1996).

[87] Andrew Blake and Andrew Zisserman. Visual reconstruction. MIT press, 1987.

[88] Hossein Mobahi and John W Fisher. “On the link between gaussian homotopy contin-
uation and convex envelopes”. In: International Workshop on Energy Minimization
Methods in Computer Vision and Pattern Recognition. Springer. 2015, pp. 43–56.

[89] Marco Dorigo, Mauro Birattari, and Thomas Stutzle. “Ant colony optimization”. In:
IEEE computational intelligence magazine 1.4 (2006), pp. 28–39.

[90] Son Duy Dao, Kazem Abhary, and Romeo Marian. “An innovative framework for de-
signing genetic algorithm structures”. In: Expert Systems with Applications 90 (2017),
pp. 196–208.

[91] Son Duy Dao, Kazem Abhary, and Romeo Marian. “Maximising Performance of
Genetic Algorithm Solver in Matlab.” In: Engineering Letters 24.1 (2016).

[92] Solving Optimization Problems. https://learnwithpanda.com.

[93] Dervis Karaboga. An idea based on honey bee swarm for numerical optimization. Tech.
rep. Technical report-tr06, Erciyes university, engineering faculty, computer . . ., 2005.

[94] Xin-She Yang and Suash Deb. “Cuckoo search via Lévy flights”. In: 2009 World
congress on nature & biologically inspired computing (NaBIC). IEEE. 2009, pp. 210–
214.

https://pypi.org/project/MVMO/
https://pypi.org/project/MVMO/
https://learnwithpanda.com

BIBLIOGRAPHY 129

[95] Paul E Black. “Greedy algorithm”. In: Dictionary of Algorithms and Data Structures
2 (2005), p. 62.

[96] Martin Pincus. “Letter to the editor—a Monte Carlo method for the approximate so-
lution of certain types of constrained optimization problems”. In: Operations research
18.6 (1970), pp. 1225–1228.

[97] Fred Glover. “Future paths for integer programming and links to ar tifi cial intelli g
en ce”. In: Computers operations research 13.5 (1986), pp. 533–549.

[98] Fred Glover and Manuel Laguna. “Tabu search”. In: Handbook of combinatorial op-
timization. Springer, 1998, pp. 2093–2229.

[99] Kaisa Miettinen. Nonlinear multiobjective optimization. Vol. 12. Springer Science &
Business Media, 2012.

[100] Matthias Ehrgott. Multicriteria optimization. Vol. 491. Springer Science & Business
Media, 2005.

[101] Philip E Gill, Walter Murray, and Margaret H Wright. Practical optimization. SIAM,
2019.

[102] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science & Busi-
ness Media, 2006.

[103] Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust optimization.
Vol. 28. Princeton University Press, 2009.

[104] Kalyanmoy Deb. “Multi-objective optimization”. In: Search methodologies. Springer,
2014, pp. 403–449.

[105] Singiresu S Rao. Engineering optimization: theory and practice. John Wiley & Sons,
2019.

[106] R Paul Singh and Dennis R Heldman. Introduction to food engineering. Gulf Profes-
sional Publishing, 2001.

[107] Beyond Meat. https://www.beyondmeat.com/.

[108] Impossible Foods. https://impossiblefoods.com/.

[109] Alessandro Leonardi et al. “Coupled DEM-LBM method for the free-surface simula-
tion of heterogeneous suspensions”. In: Computational Particle Mechanics 1.1 (2014),
pp. 3–13.

[110] Eugenio Oñate et al. “Lagrangian analysis of multiscale particulate flows with the
particle finite element method”. In: Computational Particle Mechanics 1.1 (2014),
pp. 85–102.

[111] B Avci and P Wriggers. “A DEM-FEM coupling approach for the direct numerical
simulation of 3D particulate flows”. In: Journal of Applied Mechanics 79.1 (2012).

[112] T Zohdi. “Embedded electromagnetically sensitive particle motion in functionalized
fluids”. In: Computational Particle Mechanics 1.1 (2014), pp. 27–45.

https://www.beyondmeat.com/
https://impossiblefoods.com/

BIBLIOGRAPHY 130

[113] Tarek I Zohdi and Peter Wriggers. An introduction to computational micromechanics.
Springer Science & Business Media, 2008.

[114] Tarek I Zohdi. “On simple scaling laws for pumping fluids with electrically-charged
particles”. In: International Journal of Engineering Science 123 (2018), pp. 73–80.

[115] Osborne Reynolds. “XXIX. An experimental investigation of the circumstances which
determine whether the motion of water shall be direct or sinuous, and of the law of
resistance in parallel channels”. In: Philosophical Transactions of the Royal society of
London 174 (1883), pp. 935–982.

[116] Hosahalli S Ramaswamy et al. Ohmic heating in food processing. CRC press, 2014.

[117] Peter John Fellows. Food processing technology: principles and practice. Elsevier, 2009.

[118] K Shiby Varghese et al. “Technology, applications and modelling of ohmic heating: a
review”. In: Journal of food science and technology 51.10 (2014), pp. 2304–2317.

[119] Albert Einstein. “A new determination of molecular dimensions”. In: Ann. Phys. 19
(1906), pp. 289–306.

[120] Salvatore Torquato and HW Haslach Jr. “Random heterogeneous materials: microstruc-
ture and macroscopic properties”. In: Appl. Mech. Rev. 55.4 (2002), B62–B63.

[121] Mark Kachanov and Behrouz Abedian. “On the isotropic and anisotropic viscosity of
suspensions containing particles of diverse shapes and orientations”. In: International
Journal of Engineering Science 94 (2015), pp. 71–85.

[122] Igor Sevostianov and Mark Kachanov. “Effective properties of heterogeneous materi-
als: Proper application of the non-interaction and the “dilute limit” approximations”.
In: International Journal of Engineering Science 58 (2012), pp. 124–128.

[123] C Sandu and RK Singh. “Energy increases in operation and cleaning due to heat-
exchanger fouling in milk pasteurization”. In: Food technology (Chicago) 45.12 (1991),
pp. 84–91.

[124] J Visser and Th JM Jeurnink. “Fouling of heat exchangers in the dairy industry”. In:
Experimental Thermal and Fluid Science 14.4 (1997), pp. 407–424.

[125] H Petermeier et al. “Hybrid model of the fouling process in tubular heat exchangers
for the dairy industry”. In: Journal of Food Engineering 55.1 (2002), pp. 9–17.

[126] Hatice Ozlem Ozden and Virendra M Puri. “Computational analysis of fouling by
low energy surfaces”. In: Journal of food engineering 99.3 (2010), pp. 250–256.

[127] Adel Fickak, Ali Al-Raisi, and Xiao Dong Chen. “Effect of whey protein concentration
on the fouling and cleaning of a heat transfer surface”. In: Journal of food engineering
104.3 (2011), pp. 323–331.

[128] W Ebert and CB Panchal. Analysis of Exxon crude-oil-slip stream coking data. Tech.
rep. Argonne National Lab., IL (United States), 1995.

BIBLIOGRAPHY 131

[129] Randall J LeVeque. Finite difference methods for ordinary and partial differential
equations: steady-state and time-dependent problems. SIAM, 2007.

[130] E Hairer, S Paul Nørsett, and G Wanner. “Solving Ordinary Differential Equations
I, Nonstiff Problems. 1993”. In: Springer-Verlag, Berlin, DOI 10 (), pp. 978–3.

[131] Gerhard Wanner and Ernst Hairer. Solving ordinary differential equations II. Springer
Berlin Heidelberg, 1996.

[132] Arieh Iserles. A first course in the numerical analysis of differential equations. 44.
Cambridge university press, 2009.

[133] DR Oliver and Stacey G Ward. “Relationship between relative viscosity and volume
concentration of stable suspensions of spherical particles”. In: Nature 171.4348 (1953),
pp. 396–397.

[134] TI Zohdi. “An upper bound on the particle-laden dependency of shear stresses at
solid–fluid interfaces”. In: Proceedings of the Royal Society A: Mathematical, Physical
and Engineering Sciences 474.2211 (2018), p. 20170332.

[135] Kalyanmoy Deb. Multi-objective optimization using evolutionary algorithms. Vol. 16.
John Wiley & Sons, 2001.

[136] Mohamed G Sahab, Vassili V Toropov, and Amir H Gandomi. “Optimum Design
of Composite Concrete Floors Using a Hybrid Genetic Algorithm”. In: Handbook of
Neural Computation. Elsevier, 2017, pp. 581–589.

[137] RS Mitchell, JG Michalski, and TM Carbonell. An artificial intelligence approach.
Springer, 2013.

[138] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

[139] Pat Langley et al. “Selection of relevant features in machine learning”. In: Proceedings
of the AAAI Fall symposium on relevance. Vol. 184. 1994, pp. 245–271.

[140] Igor Kononenko and Matjaz Kukar. Machine learning and data mining. Horwood
Publishing, 2007.

[141] David J Lary et al. “Machine learning in geosciences and remote sensing”. In: Geo-
science Frontiers 7.1 (2016), pp. 3–10.

[142] Grace X Gu, Chun-Teh Chen, and Markus J Buehler. “De novo composite design
based on machine learning algorithm”. In: Extreme Mechanics Letters 18 (2018),
pp. 19–28.

[143] Chun-Teh Chen and Grace X Gu. “Machine learning for composite materials”. In:
MRS Communications 9.2 (2019), pp. 556–566.

[144] Kaiming He et al. “Deep residual learning for image recognition”. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. 2016, pp. 770–778.

[145] Thiago S Guzella and Walmir M Caminhas. “A review of machine learning approaches
to spam filtering”. In: Expert Systems with Applications 36.7 (2009), pp. 10206–10222.

BIBLIOGRAPHY 132

[146] Igor Santos et al. “Machine-learning-based mechanical properties prediction in foundry
production”. In: 2009 ICCAS-SICE. IEEE. 2009, pp. 4536–4541.

[147] Arun Mannodi-Kanakkithodi et al. “Machine learning strategy for accelerated design
of polymer dielectrics”. In: Scientific reports 6 (2016), p. 20952.

[148] Ghanshyam Pilania et al. “Data-Based Methods for Materials Design and Discovery:
Basic Ideas and General Methods”. In: Synthesis Lectures on Materials and Optics
1.1 (2020), pp. 1–188.

[149] Masoud Sarveghadi et al. “Development of prediction models for shear strength of
SFRCB using a machine learning approach”. In: Neural Computing and Applications
31.7 (2019), pp. 2085–2094.

[150] Florent Pled et al. “Neural network prediction of cortical bone damage using a
stochastic computational mechanical model”. In: 3rd International Conference on Un-
certainty Quantification in Computational Sciences and Engineering (UNCECOMP
2019). 2019.

[151] Christian Soize. “A probabilistic learning on manifolds as a new tool in machine learn-
ing and data science with applications in computational mechanics”. In: UNCECOMP
2019, 3nd International Conference on Uncertainty Quantification in Computational
Sciences and Engineering, and COMPDYN 2019, 7th International Conference on
Computational Methods in Structural Dynamics and Earthquake Engineering. 2019.

[152] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training deep feed-
forward neural networks”. In: Proceedings of the thirteenth international conference
on artificial intelligence and statistics. 2010, pp. 249–256.

[153] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”.
In: arXiv preprint arXiv:1412.6980 (2014).

[154] Saleh Ahmed Aldahash. “Optimum manufacturing parameters in selective laser sinter-
ing of PA12 with white cement additives”. In: The International Journal of Advanced
Manufacturing Technology 96.1-4 (2018), pp. 257–270.

[155] Kaufui V Wong and Aldo Hernandez. “A review of additive manufacturing”. In:
International scholarly research notices 2012 (2012).

[156] William E Frazier. “Metal additive manufacturing: a review”. In: Journal of Materials
Engineering and performance 23.6 (2014), pp. 1917–1928.

[157] Tuan D Ngo et al. “Additive manufacturing (3D printing): A review of materi-
als, methods, applications and challenges”. In: Composites Part B: Engineering 143
(2018), pp. 172–196.

[158] Harry Bikas, Panagiotis Stavropoulos, and George Chryssolouris. “Additive manufac-
turing methods and modelling approaches: a critical review”. In: The International
Journal of Advanced Manufacturing Technology 83.1-4 (2016), pp. 389–405.

BIBLIOGRAPHY 133

[159] Sunpreet Singh, Seeram Ramakrishna, and Rupinder Singh. “Material issues in ad-
ditive manufacturing: A review”. In: Journal of Manufacturing Processes 25 (2017),
pp. 185–200.

[160] John J Lewandowski and Mohsen Seifi. “Metal additive manufacturing: a review of
mechanical properties”. In: Annual review of materials research 46 (2016).

[161] William M Steen and Jyotirmoy Mazumder. Laser material processing. springer sci-
ence & business media, 2010.

[162] Kai Zeng, Deepankar Pal, and Brent Stucker. “A review of thermal analysis meth-
ods in laser sintering and selective laser melting”. In: Proceedings of Solid Freeform
Fabrication Symposium Austin, TX. Vol. 60. 2012, pp. 796–814.

[163] L Dong et al. “Three-dimensional transient finite element analysis of the selective
laser sintering process”. In: Journal of materials processing technology 209.2 (2009),
pp. 700–706.

[164] Serguei Kolossov et al. “3D FE simulation for temperature evolution in the selective
laser sintering process”. In: International Journal of Machine Tools and Manufacture
44.2-3 (2004), pp. 117–123.

[165] M Matsumoto et al. “Finite element analysis of single layer forming on metallic pow-
der bed in rapid prototyping by selective laser processing”. In: International Journal
of Machine Tools and Manufacture 42.1 (2002), pp. 61–67.

[166] A Simchi. “Direct laser sintering of metal powders: Mechanism, kinetics and mi-
crostructural features”. In: Materials Science and Engineering: A 428.1-2 (2006),
pp. 148–158.

[167] A Simchi and H Pohl. “Effects of laser sintering processing parameters on the mi-
crostructure and densification of iron powder”. In: Materials Science and Engineering:
A 359.1-2 (2003), pp. 119–128.

[168] AV Gusarov and J-P Kruth. “Modelling of radiation transfer in metallic powders at
laser treatment”. In: International Journal of Heat and Mass Transfer 48.16 (2005),
pp. 3423–3434.

[169] AV Gusarov et al. “Model of radiation and heat transfer in laser-powder interaction
zone at selective laser melting”. In: Journal of heat transfer 131.7 (2009).

[170] Rishi Ganeriwala and Tarek I Zohdi. “Multiphysics modeling and simulation of selec-
tive laser sintering manufacturing processes”. In: Procedia Cirp 14 (2014), pp. 299–
304.

[171] Tarek I Zohdi. “Rapid simulation of laser processing of discrete particulate materials”.
In: Archives of Computational Methods in Engineering 20.4 (2013), pp. 309–325.

[172] Tarek I Zohdi. “Additive particle deposition and selective laser processing-a computa-
tional manufacturing framework”. In: Computational Mechanics 54.1 (2014), pp. 171–
191.

BIBLIOGRAPHY 134

[173] TI Zohdi. “A direct particle-based computational framework for electrically enhanced
thermo-mechanical sintering of powdered materials”. In: Mathematics and Mechanics
of Solids 19.1 (2014), pp. 93–113.

[174] Rishi Ganeriwala and Tarek I Zohdi. “A coupled discrete element-finite difference
model of selective laser sintering”. In: Granular Matter 18.2 (2016), p. 21.

[175] Claes Johnson. Numerical solution of partial differential equations by the finite ele-
ment method. Courier Corporation, 2012.

[176] Randall J LeVeque et al. Finite volume methods for hyperbolic problems. Vol. 31.
Cambridge university press, 2002.

[177] Tarek I Zohdi, Zohdi, and Ditzinger. A Finite Element Primer for Beginners. Springer,
2018.

[178] Dimitri P Bertsekas et al. Dynamic programming and optimal control. Vol. 1. 2.
Athena scientific Belmont, MA, 1995.

[179] Richard Bellman. “Dynamic programming”. In: Science 153.3731 (1966), pp. 34–37.

[180] Ronald A Howard. “Dynamic programming and markov processes.” In: (1960).

[181] Richard E Bellman and Stuart E Dreyfus. Applied dynamic programming. Princeton
university press, 2015.

[182] Jeff Hecht. Understanding lasers: an entry-level guide. John Wiley & Sons, 2018.

[183] Richard Courant, Kurt Friedrichs, and Hans Lewy. “On the partial difference equa-
tions of mathematical physics”. In: IBM journal of Research and Development 11.2
(1967), pp. 215–234.

[184] Carlos A De Moura and Carlos S Kubrusly. “The Courant–Friedrichs–Lewy (CFL)
Condition”. In: AMC 10 (2013), p. 12.

[185] John Crank and Phyllis Nicolson. “A practical method for numerical evaluation of
solutions of partial differential equations of the heat-conduction type”. In: Mathe-
matical Proceedings of the Cambridge Philosophical Society. Vol. 43. 1. Cambridge
University Press. 1947, pp. 50–67.

[186] Yongtae Kim et al. “Designing adhesive pillar shape with deep learning-based opti-
mization”. In: ACS Applied Materials & Interfaces (2020).

[187] Atsuya Oishi and Genki Yagawa. “Computational mechanics enhanced by deep learn-
ing”. In: Computer Methods in Applied Mechanics and Engineering 327 (2017), pp. 327–
351.

[188] Jackson K Wilt, Charles Yang, and Grace X Gu. “Accelerating Auxetic Metamaterial
Design with Deep Learning”. In: Advanced Engineering Materials (2020), p. 1901266.

	Contents
	List of Figures
	List of Tables
	Fundamentals of Deep Learning
	Introduction
	Machine Learning
	Regression
	Mini-batches
	Regularization
	Classification
	Convolutional Neural Networks (CNN)
	Recurrent Neural Networks (RNN)
	The Overall Outlook and Further Algorithms

	Fundamentals of Non-Convex Optimization
	Introduction
	Bayesian Optimization
	Genetic Algorithms
	Particle Swarm Optimization
	The Overall Outlook and Further Algorithms

	Modeling, Simulation and Machine Learning for Rapid Process Control of Multiphase Flowing Foods
	Abstract
	Introduction
	Technological Approaches
	Fluid through a Pipe of Radius R
	Induced Thermal Fields via Joule Heating
	Models for Effective Properties of Particle-Laden Fluids
	Approximate Effective Thermal Properties
	A Fouling Model
	Numerical Experiments
	A Simulation Algorithm
	The Genetic Algorithm for Optimization
	Simulation Results
	Prediction of Deposition Fouling on the Channel
	The Overall Outlook

	Tool Path Optimization of the Selective Laser Sintering Process using Deep Learning
	Abstract
	Introduction
	Technological Approaches
	Tool Path Generation using Dynamic Programming
	Modeling and Simulation of the SLS Process
	Numerical Experiments
	Preprocessing of the Laser Paths
	A Deep Learning Model to Predict the Optimal Tool Path
	Simulation Results
	The Overall Outlook

	Bibliography

