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Abstract

Objectives—To examine exposure–response relationships between surrogates of firefighting 

exposure and select outcomes among previously studied US career firefighters.
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Methods—Eight cancer and four non-cancer outcomes were examined using conditional logistic 

regression. Incidence density sampling was used to match each case to 200 controls on attained 

age. Days accrued in firefighting assignments (exposed-days), run totals (fire-runs) and run times 

(fire-hours) were used as exposure surrogates. HRs comparing 75th and 25th centiles of lagged 

cumulative exposures were calculated using loglinear, linear, log-quadratic, power and restricted 

cubic spline general relative risk models. Piecewise constant models were used to examine risk 

differences by time since exposure, age at exposure and calendar period.

Results—Among 19 309 male firefighters eligible for the study, there were 1333 cancer deaths 

and 2609 cancer incidence cases. Significant positive associations between fire-hours and lung 

cancer mortality and incidence were evident. A similar relation between leukaemia mortality and 

fire-runs was also found. The lung cancer associations were nearly linear in cumulative exposure, 

while the association with leukaemia mortality was attenuated at higher exposure levels and 

greater for recent exposures. Significant negative associations were evident for the exposure 

surrogates and colorectal and prostate cancers, suggesting a healthy worker survivor effect 

possibly enhanced by medical screening.

Conclusions—Lung cancer and leukaemia mortality risks were modestly increasing with 

firefighter exposures. These findings add to evidence of a causal association between firefighting 

and cancer. Nevertheless, small effects merit cautious interpretation. We plan to continue to 

follow the occurrence of disease and injury in this cohort.

INTRODUCTION

Firefighting has long been recognised as a high-risk profession relative to other occupations. 

A wide array of workplace hazards presents a serious threat of acute injury in the line of 

duty; therefore, much has been done by the fire service to characterise and mitigate this 

threat. In contrast, far less is known about latent chronic illnesses that may also be a 

consequence of firefighting. In particular, it is widely accepted that firefighters are 

potentially exposed to a number of known or suspected human carcinogens; yet the risk of 

cancer in the fire service is still poorly understood.

In its recent assessment of the literature, a working group of the International Agency for 

Research on Cancer (IARC) concluded that there was limited evidence for the 

carcinogenicity of exposures to firefighters.1 Among 42 studies reviewed by IARC, there 

were 14 municipal fire-fighter cohort studies that evaluated cancer mortality and five that 

assessed cancer incidence (some with multiple reports). IARC’s determination was based 

largely on these studies; however, only two23 included 500 or more cancer cases and 

eight4–11 reported fewer than 100 cases. Given small numbers of total cancers, analysis of 

specific cancers was limited. Most studies also lacked information on the relationship 

between firefighter exposures and cancer risks. Small study size, short length of follow-up, 

and lack of exposure–response information may have contributed to inconsistent findings 

and equivocal evidence of firefighting exposure carcinogenicity.1 Yet, despite these 

limitations, there were reports of modestly increased brain,812–14 digestive tract,281315 

genitourinary tract37131617 and lym-phohematopoietic2614 cancers among firefighters in 

these studies, suggesting that additional research may improve our understanding of 

firefighter cancer risk.
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To address previous limitations, recent studies have pooled information from multiple 

firefighting organisations for improved study power.1819 Daniels et al18 examined mortality 

and cancer incidence in a pooled cohort of about 30 000 US career firefighters followed 

from 1950 to 2009 and found modestly increased all-cancer risk compared with the general 

population. The excess risk was attributed to several cancer sites, including malignancies of 

the respiratory, digestive and urinary systems. In concert with the US study, Pukkala et al19 

reported excess all-cancer incidence in a pooled study with 45 years of follow-up of about 

16 000 firefighters from five Nordic countries. Among specific cancers assessed in the 

Nordic study, modest but statistically significant excess risk was observed for lung 

adenocarcinoma, melanoma of the skin and prostate cancer. Although both studies 

contributed additional evidence of increased firefighter cancer risk, neither study integrated 

exposure information into the epidemiological analyses.20

The current study continues to examine cancer in the previously assembled US multicenter 

cohort of career firefighters. We present findings from internal comparisons of this cohort 

that examine the exposure–response relation between select outcomes of interest and three 

surrogates of exposure. Our purpose is to clarify the relationship between occupational 

exposures and cancer risk, which would benefit future cancer prevention methods and 

ultimately reduce cancer among firefighters.

METHODS

Study cohort

The details on the cohort and case ascertainment are described elsewhere.18 Briefly, the 

cohort is comprised of all career fire-fighters from fire departments in Chicago (CFD), 

Philadelphia (PFD) and San Francisco (SFFD), who were on active duty at least 1 day 

between the years 1950 and 2009. To normalise the exposure time scale and limit 

information bias, eligibility for the current analysis was restricted to males of known race 

who were first hired on or after 1 January 1950. To account for differences in health status 

of short-term workers, eligibility was further limited to firefighters who were employed for 

one or more years. Mortality case status was defined by the underlying cause of death. 

Incidence cases were defined as the first occurring primary invasive cancer or in situ bladder 

cancer among firefighters matched to at least 1 of 11 state registries (ie, Arizona, California, 

Florida, Illinois Indiana, Michigan, Nevada, New Jersey, Oregon, Pennsylvania and 

Washington). Based on mortality data, these states provided about 95% coverage. For 

mortality analyses, the at-risk period began on the date of hire +1 year and ended the earliest 

of the date of death (DOD), the date last observed (DLO), or study end (31 December 2009). 

The at-risk period for cancer incidence began on the later of hire date +1 year or 1 January 

of the year in which the cancer registry in the state of the respective fire department 

achieved statewide ascertainment. (ie, California, 1988; Illinois, 1986; and Pennsylvania, 

1985) and ended on the earliest of date of first primary cancer diagnosis, DOD, DLO or 

study end.

Cancers were selected from the list of outcomes of a priori interest in the previous study that 

had 50 or more cases in the restricted cohort. Selected outcomes included: all-cancers; 

bladder, colorectal, oesophageal, lung, and prostate cancers; leukaemia; and non-Hodgkin’s 
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lymphoma (NHL). A sufficient number of cases were available to examine mortality and 

cancer incidence in all outcomes except bladder cancer, in which only incidence was 

evaluated. Mortality from chronic obstructive pulmonary disease (COPD), ischaemic heart 

disease (IHD), cerebrovascular disease (CeVD) and alcohol-related cirrhosis were also 

included to help elucidate effects from lifestyle-related risk factors. A complete description 

of the outcomes and their associated codes from Revision 10 of the International 

Classification of Diseases are shown in web appendix table S1.

Exposure

Job exposures matrices were used to derive surrogate variables of exposure based on 

combinations of job, location and fire-fighting apparatus assignments. All matrices were 

constructed by an industrial hygienist blinded to case status and each matrix was vetted by 

staff at participating fire departments. Data availability varied between departments; 

therefore, three exposure metrics or ‘scores’ were explored. First, the number of days 

worked in a job or location that had a potential for occupational exposure (exposed-days) 

was calculated using combinations of job title and location assignments. For example, days 

accumulated as a firefighter assigned to a fire station or fire apparatus were ‘exposed’, 

whereas days worked while assigned to headquarters as administrative support were not 

exposed. Employment information was sufficient to calculate exposed-days for participating 

firefighters from all three fire departments. A second exposure score used firefighter 

apparatus assignments and annual fire-run information to estimate the total number of fire-

runs made by each firefighter based on three-shift operations (fire-runs). A ‘run’ is any 

response to a call that deployed the apparatus. Data were available to calculate fire-runs for 

PFD and CFD firefighters. CFD apparatus records also included the amount of time the 

apparatus was deployed into the field. For the third metric, deployment time was assumed 

equivalent to time at fires. These data, in conjunction with firefighter apparatus assignments, 

were used to estimate the total time spent at fires (fire-hours) by each CFD firefighter.

Data on apparatus deployment were incomplete for certain combinations of apparatus and 

years and were unavailable prior to the mid 1950’s. Missing values were estimated by 

interpolation using trends of the two 5-year periods adjacent to the missing value. In the 

absence of 5 years of adjacent data, the average of the closest 5-year time period was used.

For each firefighter and eligible exposure metric, cumulative exposure scores were 

calculated by summing interval values from age at first exposure to attained age minus the 

exposure lag period. A 10-year lag was used for all outcomes except lym-phohematopoietic 

cancers, which used a 5-year lag.

Statistical methods

All statistical analyses were conducted using SAS software.21 For each selected outcome, 

risk sets were drawn from the study cohort using incidence density matching on attained age 

of the case.22 General relative risk models were developed using methods analogous to 

conditional logistic regression based on sampled risk sets comprised of 200 controls per 

case. These methods are an extension of the Cox proportional hazards model.2324 The 

general model form is: HR=H(D1)/H(D0) and H(Di)=f(Di)exp(θT Z), where the HR is the 
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ratio of the hazard rate at a specified dose D1 to the rate at the reference dose, D0. The 

hazard rate H(D) is the product of the dose function, f(D) and the exponentiated product of 

the p-dimensional covariate vector Z=(Z1,…, Zp) and transposed p-dimensional model 

covariate parameter, θ =(θ1, …, θp).

The initial approach (Model I, ‘loglinear’) assumed f(D)=exp (βD) where β is the estimated 

model parameter for the main exposure D. Other model forms were examined, including: 

1+βD (Model II ‘linear’), (1+D)β (Model III, ‘power’) and exp (β1D+β2D2)(Model IV, ‘log-

quadratic’). The shape of the dose–response was further examined using restricted cubic 

splines (RCS) with three knots at the 10th, 50th and 90th centiles of the exposure 

distribution among risk sets (Models V). All models controlled for race (Caucasian, other), 

fire department and birth cohort. Risk heterogeneity by fire department was examined by 

likelihood ratio test (LRT). Birth cohort effects were estimated using continuous variables 

constructed from terms calculated by RCS with three knots at the 10th, 50th, and 90th 

centiles of birth date.25 Among groups of models, the preferred model was selected based on 

the minimum Akaike Information Criterion (AIC).26 Model estimates included profile 

likelihood-based (PL-based) two-sided 95% CIs. In linear models, CI estimates were not 

calculable (NC) when the estimate was on the boundary of the parameter space.

Modelling was conducted for each outcome and exposure surrogate combination. To 

normalise scales across exposure scores in main analyses, HR values were reported at the 

75th centile of exposure compared with the 25th centile exposure, each rounded to the 

nearest 100 units (HR75:25). An exposed reference point was chosen because few career 

firefighters in our study were unexposed. Using an exposed referent also counters extreme 

changes in the slope of the exposure–response curve at very low doses that is a characteristic 

of power models.27

Time since exposure (TSE), age at exposure (AE) and exposure period (EP) were examined 

by piecewise constant loglinear models that divided cumulative exposure into time 

windows.28 TSE was defined as the time prior to reaching attained age, which was separated 

into three windows (lag to<lag+20, lag +20 to <lag+30, ≥lag+30 years). Two exposure 

windows were used for AE (<40, 40+ years) and EP (<1970, 1970+). Temporal effect 

modification was evaluated by LRT comparing the main analysis with one exposure 

parameter (base model) to models incorporating multiple exposure windows. Temporal 

analyses calculated HRs in each exposure-window of 4600 fire-runs using a null exposure 

referent.

RESULTS

There were 19 309 male firefighters under study (table 1). These firefighters were mostly 

Caucasian (78%) and had an average age at hire and employment period of about 28 and 21 

years, respectively. About 79% of the cohort was still alive at end of follow-up.

There were approximately 16 000 combinations of fire department, apparatus and year used 

to develop fire-runs and fire-hours for each firefighter. Employment histories were complete 

for exposed-days calculations; however, interpolation was necessary for about 20% of the 
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apparatus data. The average career cumulative exposures were about 5700 exposed-days (all 

departments), 6000 fire-runs (CFD and PFD only), and 1500 fire-hours (CFD only). These 

exposure scores were correlated, with highest agreement between fire-runs and fire-hours 

(Pearson coefficient=0.92, p<0.001), followed by fire-hours and exposed-days (Pearson 

coefficient=0.85, p<0.001) and fire-runs and exposed-days (Pearson coefficient=0.82, 

p<0.001). Poorer correlations existed between unadjusted employment duration and fire-

hours (Pearson coefficient=0.60, p<0.001), fire-runs (Pearson coefficient=0.67, p<0.001) 

and exposed-days (Pearson coefficient=0.77, p<0.001). Inspection of histograms revealed 

similar right-skewed exposure distributions among exposure scores; however, these 

distributions differed greatly from that for cumulative days worked. Approximately 6% of 

cohort members (mostly paramedics) were not exposed during the observation period. 

Excluding these persons from risk analyses did not appreciably change findings (results not 

shown).

Table 2 shows the results of the main analyses. There were 1333 decedents with cancer as 

the underlying cause and 2609 cancer incidence cases available for analysis. In general, 

results between mortality and cancer incidence were reasonably consistent; however, 

statistical significance was most often achieved in mortality analyses. Similar risk estimates 

and overlapping CIs were also evident across exposure scores. Risk heterogeneity between 

fire departments was evident in the relation between fire-runs and lung cancer mortality 

(LRT p=0.002) and incidence (LRT p=0.026). There was little evidence of an exposure–

response for all cancers combined (eg, fire-runs HR75:25=0.95, 95% CI 0.89 to 1.01) or in 

most separate malignancies, except for cancers of the lung, colorectal sites, prostate and 

leukaemia.

Modestly but monotonically increasing lung cancer and leukaemia mortality risk was 

apparent. Lung cancer mortality increased with career fire-runs (HR75:25=1.11, 95% CI 0.95 

to 1.29) and fire-hours (HR75:25=1.39, 95% CI 1.12 to 1.73), with differences mostly 

attributed to increased risk among CFD firefighters (eg, CFD fire-runs HR75:25=1.22, 95% 

CI 1.04 to 1.42) compared with PFD firefighters (eg, PFD fire-runs HR75:25=0.68, 95% CI 

0.47 to 0.97). Similar associations were observed in lung cancer incidence analyses (fire-

runs HR75:25=1.10, 95% CI 0.94 to 1.28; fire-hours HR75:25=1.39, 95% CI 1.10 to 1.74). 

The best fitted lung cancer models were consistently loglinear, although there was little 

difference in AIC values (<1.0) when comparing loglinear and linear forms. The HR for the 

relation between leukaemia mortality and fire-runs was marginally statistically significant 

(HR75:25=1.45, 95% CI 1.00 to 2.35). Leukaemia mortality HR estimates were reasonably 

consistent across all exposure scores; however, results for mortality and incidence end points 

did not agree. Model III was preferred in most leukaemia analyses, suggesting a nonlinear 

exposure–response relationship with risk attenuation at higher exposures. The exposure–

response relationships between fire-runs and mortality from lung cancer and leukaemia are 

shown in figure 1.

There was evidence of significantly decreasing mortality risk with exposure in colorectal 

(eg, fire-run HR75:25=0.58, 95% CI 0.42 to 0.80) and prostate cancers (eg, fire-runs 

HR75:25=0.71, 95% CI NC to 0.90).The negative response was strongest for colorectal 

cancer, with comparable statistically significant HRs observed across exposure scores 
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(exposed-days HR75:25=0.65, 95% CI 0.46 to 0.95; fire-hours HR75:25=0.63, 95% CI NC to 

0.93). The inverse relation for colorectal cancer persisted in incidence analyses but was 

weakened (eg, fire-runs HR75:25=0.89, 95% CI 0.72 to 1.09). There was no evidence of an 

exposure–response for prostate cancer incidence (eg, fire-runs HR75:25=1.02, 95% CI 0.91 

to 1.14). Among non-malignant diseases, IHD and cirrhosis also appeared inversely related 

to exposure; each had HRs less than unity across exposure scores.

The results for other non-malignant diseases were inconsistent. For COPD, the HR was 

elevated for fire-hours (HR75:25=1.47, 95% CI 0.86 to 2.59), which was limited to CFD 

firefighters, but there was little evidence of a relation between exposed-days (HR75:25=0.83, 

95% CI 0.59 to 1.19) or fire-runs (HR75:25=0.93, 95% CI 0.73 to 1.26). The HR for CeVD 

was also slightly elevated for fire-runs (HR75:25=1.18, 95% CI 0.75 to 1.89) but not in other 

exposure scores, although CIs overlapped and included unity.

The results of temporal analyses of mortality outcomes are presented in table 3 and in web 

appendix tables S2 and S3. None of the alternate models differed significantly from the base 

model. There was some evidence of attenuated leukaemia mortality risk corresponding to 

exposures 25 or more years prior to attained age (LRT p=0.123). An opposite effect was 

observed for IHD, in which risk appeared greatest for exposures 30 year prior to attained age 

(LRT p=0.120) or prior to 1970 (LRT p=0.150). In contrast, NHL mortality risk was greatest 

for exposures occurring in 1970 or later (LRT p=0.157). Finally, there was evidence that 

exposures after age 40 were more strongly related to lung cancer mortality than exposures 

occurring at earlier ages (LRT p=0.194).

DISCUSSION

The major limitation of most previous studies is a lack of integrating firefighter exposures in 

risk assessment.1 Simple external comparisons have been conducted most of the time for 

practical reasons due to small cohort sizes and a lack of exposure data. In studies that 

examined exposure–response relationships,26–810–13151718 most report standardised 

mortality ratios for categories of employment duration and few examined cancer 

incidence.8101117 These studies have failed to provide convincing evidence of a relation 

between cancer and occupational exposures encountered in firefighting. The current study 

draws from the largest group assembled for examining cancer mortality and incidence 

among firefighters and integrates additional information to derive exposure estimates 

suitable for use in general relative risk regression models. Using three surrogates of 

exposure, we examined the relation between firefighter exposure and several cancer 

outcomes and found evidence of monotonically increasing risk of lung cancer and leukaemia 

with exposure.

Previous studies of firefighters have generally lacked evidence of excess lung cancer or 

leukaemia. In a recent meta-analysis reviewing 32 studies, increased risk from firefighting 

was deemed ‘possible’ for leukaemia based on the synthesis of eight studies and ‘unlikely’ 

for lung cancer based on 19 studies.29 Summary relative risk estimates from random effects 

models did not statistically differ from unity for either outcome. Nevertheless, a few studies 

have reported increased lung cancer or leukaemia risks among groups of firefighters. Among 

Daniels et al. Page 7

Occup Environ Med. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cohort studies reviewed by IARC, one reported excess lung cancer risk among firefighters 

65 years or older6 and another found significant excess lung cancer mortality among 

firefighters with 35 or more years of service.7 Recently, Pukkala et al19 reported increased 

lung adenocarcinoma incidence primarily among firefighters aged 70 or above. Three 

mortality studies reported significant leukaemia risk in groups of firefighters; two reporting 

findings among firefighters with 30 or more years of service614 and another reporting excess 

risk among Philadelphia firefighters assigned to ladder companies.2 The latter study, which 

overlaps our study, also reported patterns of increasing leukaemia risk with increasing 

cumulative number of runs. In all three leukaemia studies, analyses were based on 15 deaths 

or less. The elusiveness of an association between lung cancer and firefighter exposures is 

intriguing given that most studies included lung cancer as an outcome of interest, case 

numbers tended to be sufficient for statistical analyses, and an association is plausible 

because of the large number of known lung carcinogens (eg, arsenic, asbestos, 

benzo[a]pyrene and cadmium) in inhaled smoke. Far less information is available on rare 

diseases such as leukaemia given a lack of studies with adequate sample size, although a 

causal link between firefighting and leukaemia is also plausible given the potential presence 

of known leukaemogens such as benzene, 1,3-butadiene and formaldehyde.1

Lung cancer had comparable results in incidence and mortality analyses and among models 

using fire-runs and fire-hours exposure scores. Best fitted models were loglinear, although 

there was little difference in model fit or point estimates between loglinear and linear model 

forms. We observed that CFD firefighters had greater lung cancer risk per unit exposure 

than others in the study. This pattern of risk was also evident in previous external 

comparisons.18 The cause of interdepartmental heterogeneity in lung cancer is unclear; but 

the observation suggests there are differences in exposures or other risk factors (eg, smoking 

habits) across departments that may be unaccounted for in the current analyses.

Given fewer cases, point estimates for leukaemia mortality were less precise than lung 

cancer; however, leukaemia mortality often yielded higher estimates of risk per unit 

exposure and risk estimates were similar across exposure scores. There was little evidence 

of significant risk differences among fire departments, which is consistent with leukaemia 

having fewer risk factors that could have confounded results. Interestingly, recent exposures 

(within 5–25 years of attained age) appeared more strongly related to increased leukaemia 

risk than distant ones. This finding is consistent with previous studies reporting similar 

temporal trends in risk for leukaemogens such as ionising radiation30–32 and benzene.33–35 

Nonlinear exposure-responses were also preferred in leukaemia analyses, suggesting an 

increasing slope at low or very low exposures followed by attenuated risk at higher 

exposures. This phenomenon is common to many occupational studies, with posited causes 

such as biological saturation, exposure misclassification, the influence of other risk factors, a 

healthy worker survivor effect (HWSE), and depletion of the susceptible population.3637 

The first four causes seem less likely to explain our findings given that protracted and 

fractionated low-dose exposures are not conducive to biological saturation; inspection of 

exposure distributions yielded no evidence of low exposure underestimation or high 

exposure overestimation; leukaemia has few risk factors, and the short latency period would 

tend to reduce a HWSE. The last cause suggests that positive associations between exposure 
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and certain leukaemia subtypes are restricted to a small subset of persons with a genetic 

predisposition to exposure-related disease.38 Under this hypothesis, leukaemia may be 

induced in the susceptible fraction of workers shortly following sufficient exposure while 

those resistant to the disease continue to work and accrue exposure. This phenomenon, 

which elegantly explains the observed pattern of risk attenuation with TSE and with 

increasing exposure, remains unproven. Future analyses that examine risk differences in 

leukaemia subtypes may help clarify findings.

Some outcomes had negative or attenuated exposure–responses that may have resulted from 

a HWSE. A HWSE stems from workers leaving employment prematurely due to ill-health. 

This process can lead to attenuated exposure–response relationships when the measure of 

interest is conditional on employment status. The effect is stronger in debilitating diseases 

that present at working ages or are preceded by and related to unhealthy lifestyles or 

comorbidities that also lessen the ability to work (eg, colorectal cancer, cirrhosis and IHD). 

Interestingly, attenuated risk patterns were less apparent for some cancers, which is 

consistent with a reduced HWSE in diseases occurring later in life. Nevertheless, negative 

exposure–responses were evident in relative risk models of colorectal and prostate cancer 

mortality. Both cancers have relatively high survival and are more likely to be diagnosed 

early following routine medical screening.39–41 Early diagnosis, followed by lengthy 

treatment-induced work restrictions, may have contributed to a HWSE in mortality analyses. 

Furthermore, risk-factors for colorectal cancers include inflammatory bowel disease, obesity 

and a sedentary lifestyle, all of which may be related to employment limitations.40 Future 

examinations of the exposure–response relations between colorectal and prostate cancers 

and firefighters exposure should include information on other important risk factors that 

may confound results and include improved methods to counter a potential HWSE.

There was reasonable agreement between mortality and incidence analyses except for 

leukaemia and cancers with a negative gradient of mortality exposure–response (ie, 

colorectal and prostate cancers). The latter cases may reflect differences in a HWSE, given 

that exposures may cease at cancer diagnosis, which can precede death by several years. As 

a possible explanation for differences in leukaemia mortality and incidence, we observe that 

mortality ascertainment and exposure began together in 1950, but cancer incidence data 

were not available until the mid-1980s. A number of exposure-related leukaemias may have 

been missed in incidence analysis given a long period of employment prior to the 

observation period and the relatively short latency of some leukaemia subtypes. This can 

affect the distribution of leukaemia subtypes that comprise leukaemia incidence cases, 

which differ by age at onset, latency, prognosis, exposure–response and other factors.42 For 

example, chronic lymphocytic leukaemia comprised 32% of incidence cases but only 17% 

of deaths. Restricting incidence analyses to more recent hires may counter these effects; 

however only eight (14%) leukaemia cases were first hired on or after 1980. Continued 

follow-up and expansion of the cohort would improve incidence analyses.

In the absence of direct information, we assessed the potential of confounding by lifestyle 

factors by examining patterns of diseases strongly related to smoking and alcohol use. An 

inverse association between exposure and cirrhosis was observed, suggesting a low potential 

for positive confounding by alcohol consumption. Likewise, exposure–response results for 
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some smoking-related outcomes (eg, bladder cancer and IHD) contradicted positive 

confounding of lung cancer results. In contrast, COPD and lung cancer results were similar 

in CFD-based run-hours analyses but not in other analyses. COPD results are difficult to 

interpret given that firefighter exposure may also be a risk factor.4344 Although confounding 

by smoking cannot be ruled out in this study, the inconsistencies in results among smoking-

related diseases suggests that a strong bias in either direction is unlikely.

Previous studies have used exposure measures similar to exposed-days671417 and fire-runs;28 

however, this is the first to use fire-hours (run-hours) in exposure-response analyses. An 

investigation of firefighter exposure measures has suggested that fire-hours, followed by 

fire-runs, are likely to best correlate with actual firefighter exposures, with exposed-days 

considered the least preferred metric.45 In our study, fire-runs appeared to perform best in 

most models; however, actual performance is difficult to gauge given that the availability of 

each measure varied by fire department and direct exposure information was not available 

for validation. Run-based scores included responses unrelated to exposure (eg, false alarms) 

and none of our measures accounted for differences in firefighting strategies and personal 

protective equipment usage that can affect exposures. Thus, our exposure scores are still 

crude surrogates that may poorly characterise individual firefighter exposures. Furthermore, 

in the absence of complete employment histories, we cannot rule out the possibility that 

occupational exposures accrued during employment outside of the fire service may have 

distorted risk estimates. The integration of additional information to fill gaps and better 

specify exposure potentials over time may reduce exposure misclassification. Data on 

department-specific factors, such as employment policies, type of fires, building materials, 

firefighting tactics, and the use of personal protective equipment would likely improve 

exposure estimates.

CONCLUSION

Among eight types of cancers examined, we found slight, but statistically significant 

positive exposure–responses for lung cancer and leukaemia risk. Near linear and comparable 

exposure–response curves were evident for lung cancer mortality and incidence; however, 

the leukaemia findings were limited to mortality analyses and the exposure–response was 

attenuated at higher exposures. This study is the first to integrate exposure information into 

general relative risk models examining the relation between cumulative firefighter exposure 

and several cancers of interest. These findings contribute to the evidence of a causal 

association between firefighting exposures and cancer. Nevertheless, the relatively small 

effects observed in this study merit cautious interpretation given increased susceptibility to 

potential biases that may be present. Future studies that continue to explore these findings in 

this and other cohorts will improve our understanding of cancer risks in the fire service.
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Refer to Web version on PubMed Central for supplementary material.
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What this paper adds

• The study addresses limitations in previous research regarding exposure–

response relationships by conducting internal analyses of disease rates among 

career firefighters in a large pooled cohort.

• Comprised of almost 20 000 career firefighters with over 1300 cancer-related 

deaths and 2600 cancer incidence cases, this study is among the largest 

assembled for the purpose of firefighter research and is the first with adequate 

statistical power for detailed examinations of exposure–response characteristics.

• Using department records, we derived three surrogates of exposure based on 

firefighter assignments and fire-run information. This is the first study to relate 

the time elapsed during fire-runs to cancer risk.

• We found previously unreported modest exposure–responses for lung cancer 

and leukaemia mortality. These findings add to evidence of a causal association 

between firefighting exposures and cancer.
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Figure 1. 
Relative risk of lung cancer (A) and leukaemia (B) mortality by career fire-runs. Models 

indicated by: solid line, loglinear; long dashed line, linear; short dashed line, log-quadratic; 

long dash followed by two dots, power; solid line with filled circles, RCS with knots 

indicated by filled circles. Vertical lines indicate 25th, 50th and 75th centiles of exposure. 

Plot truncated at the 95th centile. The shaded area shows the 95% CI for the preferred model 

(loglinear for lung cancer and power for leukaemia). RCS, restricted cubic splines.
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Table 1

Characteristics of the cohort and exposures by fire department and combined (1950–2009)

Description All SFFD CFD PFD

Study cohort 19 309 3101 10 332 5876

Race (%)

 Caucasian 15 123 (78.3) 2297 (74.1) 7972 (77.2) 4854 (82.6)

 Other 4186 (21.7) 804 (25.9) 2360 (22.8) 1022 (17.4)

Vital status

 Alive (%) 15 279 (79.1) 2640 (85.1) 7868 (76.1) 4771 (81.19)

 Deceased (%) 4030 (20.9) 461 (14.9) 2464 (23.9) 1105 (18.8)

Employment

 Average hire year 1978 1979 1978 1977

 Age at hire; average (SD) 28.3 (5) 29.3 (5.6) 29.0 (5.1) 26.6 (4.8)

 Employment years; average (SD) 20.7 (10.6) 20.3 (9.9) 21.4 (10.7) 19.5 (10.8)

Apparatus: run-years

 Available (%) 13 517 (79.9) NA 8430 (78.2) 5087 (82.8)

 Estimated (%) 3404 (20.1) NA 2348 (21.8) 1056 (17.2)

Exposure

 Exposed-days percentile

  Average (SD) 5721 (3690) 5929 (3722) 5486 (3583) 6024 (3827)

  10% 728 821 441 943

  25% 2511 2646 2539 2412

  50% 5626 6210 5157 6115

  75% 8751 9428 8372 8936

  100% 16 672 14 649 14 866 16 672

 Fire-runs percentile

  Average (SD) 5954 (4750) NA 5627 (4706) 6530 (4772)

  10% 490 NA 294 773

  25% 2107 NA 1937 2538

  50% 5164 NA 4693 5965

  75% 8795 NA 8197 9661

  100% 35 841 NA 35 841 27 213

 Fire-hours percentile

  Average (SD) 1548 (1144) NA 1548 (1144) NA

  10% 107 NA 107 NA

  25% 617 NA 617 NA

  50% 1381 NA 1382 NA

  75% 2322 NA 2322 NA

  100% 7417 NA 7417 NA

CFD, Chicago Fire Department; NA, not available; PFD, Philadelphia Fire Department; SFFD, San Francisco Fire Department.
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Table 3

HRs at 4600 fire-runs for temporal factors*

Temporal factor

MN lung base model HR=1.07 (0.97 to 1.19) Leukaemia base model HR=1.08 (0.78 to 1.44)

Exposure window HR (95%CI) Exposure window HR (95%CI)

TSE 10 to 20 years 1.06 (0.80 to 1.37) 5 to 15 years 1.51 (0.65 to 3.21)

20 to 30 years 1.08 (0.86 to 1.34) 15 to 25 years 1.52 (0.71 to 2.93)

>30 years 1.08 (0.88 to 1.32) >25 years 0.70 (0.38 to 1.19)

LRT p value† 0.987 LRT p value† 0.123

AE <40 years 0.97 (0.81 to 1.16) <40 years 0.95 (0.52 to 1.62)

40+ years 1.17 (0.99 to 1.37) 40+ years 1.19 (0.73 to 1.85)

LRT p value† 0.194 LRT p value† 0.598

EP <1970 1.06 (0.86 to 1.29) <1970 0.95 (0.48 to 1.72)

1970+ 1.08 (0.94 to 1.24) 1970+ 1.14 (0.76 to 1.66)

LRT p value† 0.922 LRT p value† 0.652

*
All temporal models are piecewise loglinear adjusted for race, fire department and birth cohort.

†
p Value of LRT comparing the base model to the model with two or more exposure windows.

AE, age at exposure; EP, exposure period; LRT, likelihood ratio test; MN, malignant neoplasm; TSE, time since exposure.
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