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Rare variant phasing using paired
tumor:normal sequence data
Alexandra R. Buckley1,2, Trey Ideker5,6,7, Hannah Carter5,6,7 and Nicholas J. Schork2,3,4*

Abstract

Background: In standard high throughput sequencing analysis, genetic variants are not assigned to a homologous
chromosome of origin. This process, called haplotype phasing, can reveal information important for understanding
the relationship between genetic variants and biological phenotypes. For example, in genes that carry multiple
heterozygous missense variants, phasing resolves whether one or both gene copies are altered. Here, we present a
novel approach to phasing variants that takes advantage of unique properties of paired tumor:normal sequencing
data from cancer studies.

Results: VAF phasing uses changes in variant allele frequency (VAF) between tumor and normal samples in regions
of somatic chromosomal gain or loss to phase germline variants. We apply VAF phasing to 6180 samples from the
Cancer Genome Atlas (TCGA) and demonstrate that our method is highly concordant with other standard phasing
methods, and can phase an average of 33% more variants than other read-backed phasing methods. Using variant
annotation tools designed to score gene haplotypes, we find a suggestive association between carrying multiple
missense variants in a single copy of a cancer predisposition gene and earlier age of cancer diagnosis.

Conclusions: VAF phasing exploits unique properties of tumor genomes to increase the number of germline variants
that can be phased over standard read-backed methods in paired tumor:normal samples. Our phase-informed
association testing results call attention to the need to develop more tools for assessing the joint effect of multiple
genetic variants.

Keywords: Variant phasing, Cancer germline, Cancer genomics

Background
Humans have two copies of every chromosome, one
inherited maternally and the other paternally. Assigning
genetic variants to their homologous chromosome of ori-
gin is called phasing. Studying genetic variants in the
context of their phased haplotype, termed diplomics, can
yield important biological insights [1]. There are three
main strategies for phasing variants in unrelated indi-
viduals using next generation sequencing (NGS) data:
population-based, which relies on population linkage dis-
equilibrium structure, laboratory-based, which relies on
physical isolation of homologous chromosome segments,
and read-backed, which relies on paired-end sequencing
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reads that span multiple heterozygous loci [1, 2]. Each
method comes with a cost: population-based methods
perform poorly on rare and de novo variants and at phas-
ing distances greater than a haplotype block, laboratory-
based methods require sample preparation which can be
costly or impractical depending on the source of input
DNA, and read-backed methods generally can only phase
a fraction of possible variants at distances limited by read
and insert size.
Here we present VAF phasing, a method that uses

changes in variant allele frequency (VAF) between paired
tumor and normal samples in regions of somatic chro-
mosomal copy loss or gain to phase germline variants.
Similar to read-backed approaches, VAF phasing requires
only NGS data, and can phase both common and rare
variants. Unlike read-backed approaches, VAF phasing is
not limited by read and insert size, and can phase over
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long distances including whole chromosomes. VAF phas-
ing is limited to regions of somatic copy number alteration
(SCNA); however, SCNAs are widespread in cancer and
approximately 90% of solid tumors exhibit some degree of
aneuploidy [3]. The concept of using allelic ratios of het-
erozygous germline variants to infer somatic copy number
changes is the basis for many SCNA detection algo-
rithms [4, 5]. However, using this data to infer the phase
of germline variants has not been widely implemented.
While a similar method of using SCNAs to phase germline
variants exists, VAF phasing is a more simple approach
that can be run without training data [6].
There is growing interest in the role of germline vari-

ation in increasing cancer risk and influencing molec-
ular tumor phenotypes [7–10]. Many cancer-relevant
genes, such as DNA damage repair genes, are large and
often contain multiple missense variants [11, 12]. Phas-
ing damaging heterozygous variants in these contexts will
determine whether an individual carries variants in both
homologous copies of the gene, termed compound het-
erozygosity, or carries multiple variants in a single copy.
The biological consequences of compound heterozygosity
is exemplified by cancer predisposition syndromes involv-
ing deleterious germline alteration of the mismatch repair
(MMR) genes [13]. Germline compound heterozygosity of
MMR genes is associated with bi-allelic mismatch repair
deficiency (bMMRD) and childhood onset cancer [14, 15],
whereas mono-allelic germline altertion is associated with
Lynch syndrome and adult onset cancer [16]. If a gene
harbors multiple missense variants in a single copy, it is
possible the combined effect of these variants on pro-
tein structure and function is different than the predicted
independant effect of each variant. Further, non-coding
eQTL variants can alter the expression of genes in an
allele-specific fashion, modulating expression of the gene
copy that lies on the same homologous chromosome
[17, 18]. Determining which gene copy is under eQTL
regulation can provide important information, particu-
larly if one gene carryies inactivaing or dominant neg-
ative alleles [1]. Therefore, resolving the phase of both
coding and non-coding variants can provide important
insight into the biological consequences of germline
variation.
We apply VAF phasing to 6180 whole exome sequencing

(WXS) samples from the Cancer Genome Atlas (TCGA),
and benchmark VAF phasing against two read-backed
methods: HapCUT2 and phASER, one population-based
method: SHAPEIT, and one laboratory-based method:
10X Genomics sequencing [19–22]. VAF phasing is highly
concordant with all phasing methods assessed up to at
distances of 10 Mb. We demonstrate the value of phase
information by testing for association between germline
variation in cancer predisposition genes and age of can-
cer diagnosis. We find suggestive evidence that carrying

sets of non-compensatory missense variants in the same
gene copy is associated with an earlier age of cancer
diagnosis.

Results
Phasing with variant allele frequency
It has been shown that somatic amplifications predomi-
nantly originate from a single germline homologous chro-
mosome [6, 23]. Therefore, in SCNA regions of a tumor,
one homologous chromosome is physically more abdun-
dant than its partner. Due to this imbalance, sequencing
reads will be skewed toward the more abundant homolo-
gous chromosome (Additional file 1: Figure S1). It follows
that the somatic VAF of a heterozygous germline variant
will deviate from the expected value of 0.5 in a SCNA
region dependent which chromosome the variant lies on.
Germline variants on the chromosome that is more abun-
dant will appear to increase in VAF in the tumor, whereas
variants on less abundant chromosomes will appear to
decrease in VAF. Therefore, changes in VAF between
tumor and normal samples, which we refer to as � VAF,
can be used to infer chromosome of origin, or phase, of
germline variants (Fig. 1a). Germline variants that lie on
the same homologous chromosome (cis phase) will have
�VAF values of similar magnitude and direction, whereas
variants that lie on opposite homologous chromosomes
(trans phase) will have � VAF values of similar magnitude
but opposite direction. The VAF phasing method uses
this simple intuition to phase variants and consists of two
steps: 1) identify the coordinates of SCNAs 2) determine
which heterozygous germline variants have significantly
deviant � VAF to confidently phase and (Fig. 1b).
A number of methods exist to detect SCNAs from

SNP array or NGS data, many of which use differences
in signal intensity or read depth between normal and
tumor samples to identify SCNA segments [5, 24]. Simi-
larly, we reasoned that absolute � VAF could be used to
identify SCNAs, as within a single SCNA the absolute
� VAF of heterozygous germline variants should contigu-
ous and of a similar magnitude (Additional file 1: Figure
S2). While this approach does not distinguish amplifica-
tions from deletions, for the purposes of phasing germline
variants only the coordinates of SCNAs are of interest.
We applied circular binary segmentation (CBS), a method
to partition the genome into segments with similar val-
ues, using absolute � VAF as input, a method we refer to
as VAF-CBS [25]. While any SCNA calling method could
be used to identify SCNAs coordinates for VAF phasing,
we sought to provide a method that could be run entirely
on paired tumor:normal reference and alternate read
count data.
Identifying SCNA breakpoints using WXS data is diffi-

cult due to the sparse coverage of the genome, and this
problem is exacerbated when only using heterozygous
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Fig. 1 Overview of VAF phasing method. a The left panel illustrates two heterozygous germline SNVs in trans phase with the chromosome carrying
SNV1 somatically amplified. In the normal sample, both SNVs have a VAF of 0.5. In the tumor sample, SNV1 is overrepresented in the sequence data
(VAF = 0.75) and SNV2 is underrepresented (VAF = 0.25). The difference in VAF between the tumor and normal sample, which we refer to as � VAF,
indicates that the VAF of SNV1 is increased (� VAF = 0.25) and that the VAF of SNV2 is decreased (� VAF = -0.25) in the somatic sample. For a pair of
variants, somatic changes VAF in opposite directions suggest that the variants lie on different homologous chromosomes. b The right panel
illustrates two heterozygous germline SNVs in cis phase with the chromosome carrying both SNV1 and SNV2 somatically amplified. In this case, both
variants have an increased VAF (� VAF = 0.25). For a pair of variants, somatic changes VAF in the same direction suggest that the variants lie on the
same homologous chromosome. c The VAF phasing pipeline has two steps: a Fisher’s exact test to identify sites with significant � VAF, and circular
binary segmentation (CBS) on � VAF values to identify SCNA regions

variants as informative data points [5]. In an effort to
account for this known difficulty, we tested multiple
values of a smoothing parameter that allows the CBS
algorithm to join distant data points with similar � VAF
values (see methods, Additional file 1: Figure S3). Increas-
ing the smoothing distance resulted in longer predicted
SCNA segments and more variants able to be phased
overall (Additional file 1: Figure S3 and S4). However,
msmoothing also carries the risk of missing SCNA break-
points in regions not covered by exome capture. To
balance the assumptions made by smoothing with the

increased phasing capacity, we used a value of 1 Mb for
future analyses.
Changes in VAF between normal and tumor samples

may be due to a biased read sampling, not a physi-
cal change in chromosomal copy number in the tumor.
To determine a threshold to identify true SCNA seg-
ments above background noise, we utilized duplicated
normal WXS samples. A subset of individuals in TCGA
have multiple normal WXS samples, typically a blood
and normal tissue sample. As there should be no CNAs
in duplicated normal samples from the same individual,
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we used these samples to derive a null distribution for
VCF-CBS (Fig. 2a). Interestingly, we identified seven
duplicated normal samples with strong evidence of CNAs
(Additional file 1: Figure S5). Given that the CNA regions
observed in paired normal:normal samples were also
observed in paired tumor:normal samples, we suspect
this observation is due to tumor contamination of normal
tissue and excluded these samples from further analy-
sis (Additional file 1: Table S1). We ran VAF-CBS on
duplicated normal samples from 416 individuals and
observed 95% of segments identified have a mean abso-
lute � VAF value < 0.14 (Fig. 2b). Therefore, we expect
using a hard cutoff mean absolute � VAF of 0.14 to call
SCNA segments would result in a 5% error rate. In an
alternate approach, the mean absolute � VAF of each
segment identified by VAF-CBS was compared to the
mean absolute � VAF of the same genomic region in
the duplicated normal samples, generating a null distribu-
tion for that specific genomic region. While this method
has the advantage of accounting for region-specific read
sampling noise, it is likely only applicable for samples
within the TCGA cohort. We refer to these methods as
“hard cutoff” and “region-specific” and use the region-
specific null model for future analyses.

To identify variants with deviant � VAF, a Fisher’s
exact test was performed for each germline heterozygous
variant comparing reference and alternate read counts
between tumor and normal samples. Only variants with
a nominally significant p-value were considered for phas-
ing. We used the duplicated normal samples mentioned
above to confirm that the assumptions of the Fisher
exact test were not violated. Indeed, the Fisher p-values
for all heterozygous germline variants in duplicated nor-
mal samples followed the expected distribution, with a
median 6% of heterozygous loci significant at a p < 0.05
cutoff (Fig. 2c). In contrast, a median 17% of heterozy-
gous loci were significant in paired tumor:normal samples
(Fig. 2d, e). By requiring that a variant both have a nom-
inally significant p-value and be in a VAF-CBS SCNA
region to be considered for phasing, we further reduce
false positives due to read sampling noise. Applying VAF
phasing with the hard cutoff null model to the dupli-
cated normal samples, we observe only 0.3% of variants
erroneously meet criteria for phasing.

VAF phasing is concordant with other methods
We ran VAF phasing on 6180 TCGA samples using a
range of smoothing parameters and both region-specific

A

C D E

B

Fig. 2 Using duplicated normal samples to identify SCNAs. a The expectation in diploid regions is that that the VAF of heterozygous SNVs will be 0.5;
however, due to read sampling error, VAF greater or less than 0.5 is frequently observed. Duplicated normal samples in TCGA can be used as a null
model to estimate how often read sampling error resembles an SCNA event by chance. b Distribution of mean segment absolute � VAF for 249,471
segments identified from n = 416 duplicated normal samples. Segments were identified using VAF-CBS with a smoothing parameter of 1 Mb. The
solid line represents the 95% percentile (absolute VAF = 0.14). QQ plots showing p-values obtained from a Fisher’s exact test on tumor and normal
read counts for an example sample c paired tumor:normal tissue, d tumor:normal blood, e normal tissue:normal blood
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and hard cutoff null model approaches for SCNA identifi-
cation. As there is no gold standard phasing dataset with
paired tumor:normal sequence data, we assessed accuracy
of our phase calls by comparing to TCGA germline phase
calls generated by HapCUT2, phASER, and SHAPEIT
(see methods) [19–21]. We observed a median 99% con-
cordance between VAF phasing and both HapCUT2 and
phASER (Additional file 1: Table S2). We observe the VAF
method can phase on average 9% of variants phased by
either HapCUT2 or phASER. Samples with poor con-
cordance were largely those with few variants phased in
common between methods (Additional file 1: Figure S6)).
Choice of the smoothing parameter did not have a large
effect on concordance; however concordance was lower
when using the hard cutoff null model (Additional file 1:
Table S2).To assess how robust our hard cutoff model
concordance results were to changes in the mean abso-
lute � VAF value parameter, we determined concordance

between VAF phasing, HapCUT2, and phASER for mean
absolute � VAF cutoff values from 0 - 0.6 (Additional
file 1: Figure S7). We observe that higher cutoff values of
mean absolute � VAF result in higher concordance, but
fewer variants phased. Our chosen value of 0.14 aims to
balance concordance with number variants phased.
There is considerable SCNA burden in TCGA samples,

allowing VAF phasing to phase a median 1276 variants
per sample (Additional file 1: Figure S8). The addition
of VAF phasing to HapCUT2 and phASER increased the
cumulative number of variants phased by 33% on aver-
age, and VAF phasing phased a median 942 variants not
accessible to other methods (Fig. 3a,b). We observed sim-
ilar results when restricting to rare variants (Additional
file 1: Figure S9). The number of variants phased by VAF
phasing is variable between samples and across genomic
regions, consistant with the SCNA-dependant nature of
the method (Additional file 1: Figure S10). We performed

Fig. 3 Comparison of phasing methods. Comparison of VAF phasing to read backed, population based, and laboratory phasing methods. a The
fraction of germline heterozygous variants phased by HapCUT2 alone, HapCUT2 and phASER, and by HapCUT2, phASER, and VAF in n = 6180
samples. b The fraction of germline variants phased that are unique to each method. c Pairwise discordance between VAF phasing and SHAPEIT for
n = 6263 samples as a function of distance and allele frequency. Pairs of variants were binned according to distance between the variants in base
pairs and binned according to minimum allele frequency of the variant pair. Colors represent allele frequency bins. Solid lines represent the mean
discordance, dotted lines are mean += 2 s.e.m. d Pairwise discordance between VAF phasing and 10X Genomics phasing for the COLO829 cell line
as a function of distance and allele frequency
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linear regression to identify factors underlying the per-
formance of VAF phasing and found that the number
of variants phased is largely determined by CNV bur-
den and estimated tumor sample purity (Additional file 1:
Table S3). We compared the performance of VAF phasing
using SCNA calls derived from VAF-CBS vs. SCNA calls
from TCGA SNP6 array data. A median 63% of variants
were phased using both methods of SCNA identifica-
tion (Additional file 1: Figure S11). However, the variants
uniquely phased using VAF-CBS had higher concordance
with HapCUT2 and phASER, suggesting that VAF-CBS
identifies SCNA segements that produce more accurate
phase calls (Additional file 1: Table S4).
We measured long range phasing performance using

SHAPEIT phase calls and a pairwise approach to mea-
suring phase accuracy (see methods, Additional file 1:
Figure S12). VAF phasing and SHAPEIT are highly con-
cordant up to approximately 10 kb (Fig. 3c). At distances
larger than 10kb discordance between VAF phasing and
SHAPEIT sharply increases, likely due to the fact that
median haplotype block size in humans is 45 kb [26].
As expected, discordance was also higher for very rare
and singleton variants, which are not amenable to phas-
ing using population-based methods. To validate VAF
phasing in a separate dataset, we compared VAF phasing
to 10X Genomics phasing in COLO829, a tumor:normal
pair of cell lines generated from a melanoma patient
[22, 27]. Overall concordance between VAF phasing and
10X Genomics phasing was 99.23% (Additional file 1:
Table S5). Pairwise discordance was largely unaffected
by allele frequency and distance up to approximately
10 Mb (Fig. 3d). Supporting our previous finding that
choice of VAF-CBS smoothing parameter doesn’t sig-
nificantly impact phasing accuracy, we observe that
discordance between VAF phasing and 10X Genomics
phasing is similar for smoothing values between 0.5-2 Mb
(Additional file 1: Figure S13, Table S5). Finally, to assess
what genomic features of variants are associated with VAF
phasing errors, we examined all phased variant pairs in
the COLO829 sample. We observe that distance between
variants is the feature most strongly associated with phase
errors (Additional file 1: Table S6). This suggests that
VAF phasing is less reliable at longer distances, which can
potentially be ameliorated using WGS data to determine
SCNA breakpoints.

Application of VAF phasing to cancer predisposition
In genes that carry multiple variants, phase information
disambiguates whether a single copy or both copies of
the gene are altered. To demonstrate the value of phasing
for biological analysis, we performed a phase-informed
analysis relating germline variants in a set of 114 cancer
predisposition genes to age of cancer diagnosis [12]. We
first identified compound heterozygosity events, which we

defined as carrying a variant with a CADD score ≥ 15 in
both copies of a gene [28]. Using all read backed phasing
methods combined, we were able to phase resolve 50% of
all possible compound heterozygosity events exome-wide,
and identified a total of 54,284 compound heterozygosity
events in 4873 genes (Additional file 1: Figure S14). As we
found few compound heterozygosity events for any sin-
gle gene, we categorized individuals into four hierarchical
mutually exclusive groups based on type of alteration in
the predisposition gene set: those carrying a compound
heterozygosity event (Trans), those with two or more
phased CADD damaging variants in the same gene copy
(Cis), those carrying mono-allelic ClinVar pathogenic or
loss-of-function variants (ClinVar/LOF), and those carry-
ing mono-allelic CADD damaging variants (CADD). We
found no association between carrying a compound het-
erozygosity event in a cancer predisposition gene and age
of cancer diagnosis (Fig. 4a, Additional file 1: Table S7).
We next asked whether carrying multiple missense vari-

ants in a single gene copy may be more deleterious than
carrying a single variant. Variant scoring tools such as
CADD scores are not designed to address this ques-
tion, as they score variants independently [28]. Instead
we used HMMvar, a variant scoring tool that assesses
the collective effect of multiple missense variants and
identifies sets of variants that collectively have a differ-
ent score than expected based on single variant scores
[29]. HMMvar identifies both compensatory variant sets,
which collectively are less damaging than independently,
and non-compensatory variant sets, which collectively
are more damaging than independently. Similar to the
previous analysis, we categorized individuals into four
hierarchical mutually exclusive groups based on type of
alteration in the predisposition gene set: those carrying
a non-compensatory variant set (Non-Compensatory),
those carrying a compensatory variant set (Compen-
satory), those carrying mono-allelic ClinVar pathogenic
or loss-of-function variants (ClinVar/LOF), and those
carrying mono-allelic CADD damaging variants (CADD).
We found a significant association between carrying a
non-compensatory variant set in a predisposition gene
and an earlier age of cancer diagnosis (Fig. 4b, Additional
file 1: Table S8). However, this may be in part due to
six individuals who carry both a non-compensatory vari-
ant set and a ClinVar/LOF germline variant in different
predisposition genes. Removing these samples reduces
this association below nominal significance (Additional
file 1: Figure S15, Table S9). BRCA1/2 is one of the
most frequently studied cancer predisposition genes
[13, 30, 31]. Limiting analysis to BRCA1/2 identified three
non-compensatory variant sets and a suggestive, but not
significant, association between carrying a BRCA1/2 non-
compensatory variant set and earlier age of diagnosis
(Additional file 1: Figure S16, Table S10). Interestingly,
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Fig. 4 Leveraging Phase to Identify Cancer Predisposing Germline Variation. Association between germline compound heterozygosity events and
non-compensatory cis variants and age of diagnosis. a-b Age of cancer diagnosis Z-score in n = 6093 TCGA individuals grouped by type of
germline alteration in a set of 144 cancer predisposition genes. a Individuals were grouped into four hierarchical mutually exclusive groups based
on compound heterozygosity status: those carrying a compound heterozygosity event (Trans), those with two or more phased CADD damaging
variants in the same gene copy (Cis), those carrying mono-allelic ClinVar pathogenic or loss-of-function variants (ClinVar/LOF), and those carrying
mono-allelic CADD damaging variants (CADD). b Individuals were grouped using HMMvar cis variant scores: those carrying a non-compensatory
variant set (Non-Compensatory), those carrying a compensatory variant set (Compensatory), those carrying mono-allelic ClinVar pathogenic or
loss-of-function variants (ClinVar/LOF), and those carrying mono-allelic CADD damaging variants (CADD). The number of samples is shown in
parentheses. * = p < 0.05; p-values were determined using a linear model to predict age of diagnosis while accounting for cancer type

all variants in the predicted BRCA1/2 non-compensatory
variant sets are individually predicted to be benign in
ClinVar (Additional file 1: Table S11). Our results are
suggestive that multiple missense variants that appear
benign based on individual variant scores may collectively
contribute to cancer predisposition.

Discussion
A major assumption of VAF phasing is that SCNAs
detected using VAF-CBS originate from a single germline
homologous chromosome. This assumption is based off
previous work showing somatic amplifications are pre-
dominantly mono-allelic [6, 23]. If VAF-CBS SCNA calls
represent copy number alterations of similar magnitude
from both homologs, phase switch errors will occur
(Additional file 1: Figure S17). Given our high concor-
dance with 10X Genomics long-range phasing, we believe
our mono-allelic SCNA assumption is largely valid. Due
to the sparse genomic coverage of the WXS data used
in this study, we primarily apply VAF phasing to phase
variants within a single gene. However, VAF phasing
could be applied to paired tumor:normal whole genome
sequencing (WGS) data, such as the 2800 WGS samples
in PCAWG, to potentially phase up to entire chromo-
somes [32].While the goal in developing VAF phasing was
to create a straightforward and highly specific method,
our model could be improved to incorporate uncertainty

and increase sensitivity. Heterozygous variants in SCNA
regions with a non-significant Fisher’s exact test could
be given an estimated phase confidence score based on
read count and population haplotype data. From a sample
preparation perspective, VAF phasing could be improved
by better isolation of tumor from normal tissue and with
deeper sequencing depth.
VAF phasing can be used to extract more value from the

numerous existing paired tumor:normal datasets. Phas-
ing germline variants from individuals with cancer is not
only of interest to understanding cancer predisposition,
as we demonstrated, but also to population genetics as
a whole. Phased germline variants obtained from can-
cer data can serve as a reference dataset of phased gene
haplotypes. The human leukocyte antigen (HLA) locus is
of great importance to many diseases, including autoim-
mune diseases, infection, and cancer [33]. The complex
nature and high degree of polymorphism of this region
makes phasing difficult [34]. In the TCGA samples we
examined, 3651 individuals have SCNA of chromosome
6p spanning the major histocompatibility locus (MHC)
region, including 602 ethnically-diverse samples. VAF
phasing could potentially be incorporated into existing
HLA phasing methods to facilitate phasing of this region
and increase the knowledge base of known HLA haplo-
types. HLA typing of cancer patients has become increas-
ing important in personalized immunotherapy [35]. VAF
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phasing could potentially also be leveraged for patients
with chromosome 6 SCNA to better estimate individual
HLA haplotypes.
Using phase information we identified compound het-

erozygosity events and sets of missense variants in the
same homologous gene copy predicted to negatively inter-
act. We found no significant association between carrying
a compound heterozygosity event in a cancer predispo-
sition gene and age of cancer diagnosis; however, we
found that individuals carrying non-compensatory mis-
sense variant sets had a significantly earlier age of diag-
nosis. While it seems counterintuitive that alteration of
both gene copies is less deleterious than alteration of a
single copy, it’s likely that our definition of compound
heterozyosity included missense variants that don’t fully
disrupt gene function. Using a more strict threshold to
identify damaging variants, we observe few individuals
carrying compound heterozygosity events, presumably
because dual inactivation of cancer predisposing genes
would result in childhood onset cancer [14] (Additional
file 1: Figure S18). We noted that different predisposition
genes were preferentially affected by compound heterozy-
gosity vs. those affected by non- compensatory missense
events, which may be in part due to selection against
dual alteration of specific genes key for survival. Further,
using VAF phasing we are unable to resolve all possible
compound heterozygosity events, thus we likely underes-
timated of the effect of compound heterozygosity.
We identified 42 missense variant sets in 20 predispo-

sition genes predicted to have a non-compensatory effect
on protein function. We investigated non-compensatory
BRCA1/2 missense variants in detail and noted that all
were independently annotated as benign in ClinVar. This
could indicate that there is a negative interaction between
variants or that some of the variants are miss-annotated as
benign in ClinVar. While there are a tremendous number
of tools aimed at predicting the functional effect of indi-
vidual missense variants, few methods exist that predict
the effect of multiple missense variants simultaneously
[28, 29, 36, 37]. There is some evidence in cardiovascu-
lar disorders that multiple missense variants in a gene are
more deleterious than single variants [38]. However, as it
is not routine to assess the potential for negative interac-
tions between multiple missense variants in a gene, the
importance is likely underestimated. High throughput in
vitro assays have been used to predict the effect of 2000
amino acid substitutions on BRCA1 E3 ubiquitin ligase
activity [39]. Similar approaches could be used to assess
the joint effect of multiple missense variants in a protein.

Conclusions
In this study we present a simple method to phase
germline variants in preexisting tumor:normal sequenc-
ing datasets. We demonstrate VAF phasing is highly

concordant with two read-backed and one laboratory-
based phasing method, and that the addition of VAF
phasing to existing read-backed methods increased the
number of variants phased by an average of 33%. VAF
phasing performs well on common and rare variants and
at long distances, with the potential to phase up to entire
chromosome lengths with WGS data. We identified indi-
viduals from TCGA that carry multiple missense variants
in a single gene copy predicted to collectively be more
deleterious than independently, and show that carrying
one of these non-compensatory variant sets in a cancer
predisposition gene is associated with an earlier age of
cancer diagnosis. Our work demonstrates the biological
relevance of phasing germline variants in cancer and high-
lights the need for better scoring tools to account for
multiple variants in a single

Methods
Data acquisition
Approval for access to TCGA case sequence and clinical
data were obtained from the database of Genotypes
and Phenotypes (project #8072: Integrated analysis of
germline and somatic perturbation as it relates to tumor
phenotypes). WXS germline variant calls from 8542 indi-
viduals were obtained using GATK v3.5 as described
previously [40]. Samples prepared using whole genome
amplification (WGA) were excluded from analysis due
to previous identification of technical artifacts in both
somatic and germline variant calls in WGA samples
[40]. Raw somatic WXS sequence data and somatic
RNA-seq data was downloaded from the legacy archive
of the genomic data commons (GDC) in BAM file
format aligned to the hg19 reference genome [41].
Segmented SNP6 array data were downloaded from
Broad Firehose (release stddata__2016_01_28, file exten-
sion: segmented_scna_hg19). Aggregate allele frequen-
cies and allele frequencies in 7 ancestry groups (African,
Admixed American, East Asian, Finnish, non-Finnish
European, South Asian, and other) were obtained from
ExAC v3.01 [42]. Clinical biospecimen histology slide
data for tumor purity measurements was downloaded
from GDC.

Variant annotation and filtering
Raw variant calls were filtered using GATK VQSR TS
99.5 for SNVs and TS 95.0 for indels. Putative germline
loss-of-function (LOF) variants were identified using the
LOFTEE plugin for VEP and Ensembl release 85 [43].
Only germline LOF variants with an AF < 0.05 in all
ancestry groups represented in ExAC were used in the age
of diagnosis association analyses. Gene, CADD score, and
ClinVar annotations were obtained using ANNOVAR and
ClinVar database v.20170905 [44]. A germline variant was
determined to be pathogenic using ClinVar annotations if
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at least half of the contributing sources listed the variant
“Pathogenic” or “Likely Pathogenic”.

Implementation of VAF phasing
Somatic reference and alternate read counts for germline
variants were obtained from the germline VCF and
somatic BAM files using samtools mpileup v1.3.1 (SNPs)
or varscan v2.3.9 (indels) [45, 46]. Germline variants not
present in the somatic sequence data were excluded from
further analysis. A two-way Fisher’s exact test compar-
ing reference and alternate read counts was performed
on all germline variants to test for deviation in VAF
between the normal and tumor sample. Only sites with a
nominally significant (p < 0.05) change in VAF between
tumor and normal sample were considered for phasing.
Circular binary segmentation (CBS) was performed on
absolute � VAF values, calculated as abs(somatic VAF-
germline VAF), of all heterozygous germline variants
using the R package ’PSCBS’, a process we refer to as VAF-
CBS [25]. Smoothing of gaps between heterozygous sites
was implemented using the function ‘findLargeGaps’ and
setting ‘minLength’ to the values of 0.5, 1, 2, or 3 Mb. For
all segments containing > 1 variants, the mean absolute
� VAF of all variants was calculated. Significant segments
were determined either directly using a region-specific or
a hard cutoff null model. In the region-specific model, the
absolute � VAF of each segment identified by VAF-CBS
is compared to the absolute � VAF of the same genomic
region in n = 416 paired normal replicate samples. Seg-
ments with an absolute � VAF in the 90th percentile
were considered significant and to represent true SCNA.
In the cutoff model, a hard cutoff of absolute � VAF ≥
0.14 was used to identify significant segments. Within
each SCNA segment, variants with a nominally signifi-
cant Fisher’s exact test were assigned to a chromosome
of origin using the sign of � VAF, such that all variants
with an increasing VAF are assigned to one chromosome
and all variants with a decreasing VAF are assigned to
the other. For analyses using TCGA SCNA calls, segments
with an estimated fold change value < 0.9 or > 1.1, which
corresponds to a single chromosome loss or gain in 20%
of tumor cells, were considered significant. VAF phasing
was applied to a total of 6180 TCGA samples with tumor
WXS, normal WXS, somatic RNA-seq, and evidence of
SCNA burden > 0.

10X genomics phasing
Germline WGS data phased using 10X Genomics
technology and paired tumor:normal WXS data from
COLO829 was obtained from Jonathan Keats and his
lab at TGEN in the form of VCFs [22, 27]. VAF phas-
ing was performed as previously described on the paired
tumor:normalWXS data. To create a set of variants to use
to compare VAF phasing with 10X Genomics phasing, the

WGS data was limited to coding regions +/- 100 bases at
each exon boundary. The WGS data was further filtered
to only include variants with a minimum 20X read depth
in the germlineWXS sample and at least 2X read depth in
the somatic WXS sample.

Comparison to other phasing methods
HapCUT2 was run with default parameters using
germline WXS BAM files from GDC and single sample
VCFs of germline variant calls generated as described pre-
viously [21]. PhASER was run with the parameters –mapq
255, –baseq 10, and –paired_end 1 [19]. The HLA region
was blacklisted with the –blacklist option and indels were
excluded from analysis. Phaser was run on somatic RNA-
seq BAM files and single sample germline VCFs. For
SHAPEIT phasing, the germline VCF from the full cohort
of 8542 individuals from TCGA was converted to PLINK
bed format, excluding multiallelic sites [20]. SHAPEIT
was run with default parameters on the full cohort with
the genetic HapMap phase II recombination map pro-
vided by SHAPEIT specified with the -M parameter.
To determine overall discordance between two meth-

ods, phase blocks in common between bothmethods were
found. Within a common block, the number of variants
with disagreeing phase orientation by the two methods
as well as the total number of variants phased in com-
mon were counted. Discordance was calculated as: 1 -
(the number of concordant phased variants/number of
phased variants in common) (Additional file 1: Figure
S12). To obtain pairwise discordance and features of indi-
vidual phase pairs, all unique pairwise combinations of
variants were identified within each common phase block.
Pairs with disagreeing phase orientation were considered
discordant (Additional file 1: Figure S12). Additional fea-
tures calculated for each phase pairs were: MinimumRead
Depth = lowest read depth of phase pair, Segment Size
= size of VAF-CBS segment in base pairs, Segment Abs.
� VAF = absolute � VAF of the VAF-CBS segment,
� � VAF = difference in � VAF between the phase pair
variants, Pair Distance = distance between phase pair
variants in base pairs, � Allele Frequency = difference in
allele frequency between phase pair variants, Minimum
Allele Frequency = lowest allele frequency of phase pair
variants.

HMMvar annotation and compound heterozygosity
analysis
HMMvar v.1.1.0 was used to jointly assess the func-
tional effect of multiple cis-phased nonsynonymous
variants [29]. HMMvar is a method that uses a hid-
den markov model computed from multiple sequence
alignment of homologous proteins to predict the effect
of multiple nonsynonmyous coding variants in a gene
based on amino acid conservation of the variant set.



Buckley et al. BMC Bioinformatics          (2019) 20:265 Page 10 of 11

For each gene and each individual, a gene variant set
was constructed using phased heterozygous and homozy-
gous nonsynonymous variants. For each gene, the RefSeq
standard transcript or the longest coding transcript
was used to calculate HMMvar scores. HMMvar scores
were calculated for individual variants and for variant
sets. Compensatory variant sets were defined as those
with a set score ≤ min (individual variant scores) -
1.5 * (max (individual variant scores) - min (individual
scores)), non-compensatory variant sets were defined
as those with a set score ≥ max (individual variant
scores) + 1.5 * (max (individual variant scores) - min
(individual scores)).
For identifying compound heterozygosity events, vari-

ants with a CADD score ≥ 15 were considered damaging.
Compound heterozygosity events were defined at the gene
level as possessing two damaging variants in trans config-
uration (one variant in each copy). Cis damaging events
were defined as possessing two damaging variants in cis
configuration (two variants in one copy). For compound
heterozygosity analyses that used phase calls from all read
backed phasing methods, phased variants were combined
as follows. For variants with VAF phasing, the VAF phas-
ing calls were used. For variants without VAF phasing,
HapCUT2 or phASER phase calls were used. For variants
with both HapCUT2 and phASER phase calls, phase calls
were only included if HapCUT2 and phASER agreed.

Statistical analyses
Principal Component Analysis (PCA) was performed on
common (AF > 0.01) germline variants using PLINK
v1.90b3.29 and the first two principal components
obtained from this analysis were used to control for ances-
try in all of the regressionmodels we fit to the data [47]. To
test for association between germline alteration and age of
diagnosis a linear model of the form A ~Gij + Xi was used
where A denotes age of diagnosis, Gij, is a binary indicator
for germline alteration status of gene j in sample i, and Xi
represents a vector of covariates for sample i (cancer type,
PC1, PC2).

Additional file

Additional file 1: This file contains supplemental Tables S1-S11, and
supplemental Figures S1-S16. (PDF 3482 kb)
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