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SIMULTANEOUS COMPUTATIONAL AND DATA LOAD1

BALANCING IN DISTRIBUTED-MEMORY SETTING2

MESTAN FIRAT Ç�ELIKTU�∗, M. OZAN KARSAVURAN† , SEHER ACER‡ , AND3

CEVDET AYKANAT†.4

Abstract. Several successful partitioning models and methods have been proposed and used5
for computational load balancing of irregularly sparse applications in distributed-memory setting.6
However, the literature lacks partitioning models and methods that encode both computational and7
data load balancing. In this article, we try to close this gap in the literature by proposing two8
hypergraph partitioning (HP) models which simultaneously encode computational and data load9
balancing. Both models utilize a two-constraint formulation where the �rst constraint encodes the10
computational load and the second constraint encodes the data load. In the �rst model, we introduce11
explicit data vertices for encoding data load and we replicate those data vertices at each recursive12
bipartitioning (RB) step for encoding data replication. In the second model, we introduce a data13
weight distribution scheme for encoding data load and we update those weights at each RB step. The14
nice property of both proposed models is that they do not necessitate developing a new partitioner15
from scratch. Both models can easily be implemented by invoking any HP tool that supports multi-16
constraint partitioning as a two-way partitioner at each RB step. The validity of the proposed models17
is tested on two widely-used irregularly sparse applications: parallel mesh simulations and parallel18
sparse matrix sparse matrix multiplication (SpGEMM). Both proposed models achieve signi�cant19
improvement over a baseline model.20

Key words. computational load balance, data load balance, distributed-memory systems, hy-21
pergraph partitioning, recursive bipartitioning, multi-constraint partitioning, general sparse matrix-22
matrix multiplication, mesh partitioning23

AMS subject classi�cations. 05C85,05C65,65F50,68R1024

1. Introduction. In a distributed-memory setting, task-to-processor assignment25

has a signi�cant role to attain high performance. This assignment a�ects multiple26

performance metrics such as computational load balance and communication costs27

which include bandwidth and latency components. Over the years, these metrics are28

widely studied alone or in a combination [1�3, 9�11, 14, 17, 20, 24, 36, 38, 39, 41�43].29

There also exist combinatorial models and works which target minimizing these met-30

rics under a given partial or complete data partition [6, 13, 18, 19, 21, 33]. In the high31

performance computing community, whenever load balance is pronounced it is almost32

always computational load balance [11,12,14,18,25,25�27,37]. In the cloud computing33

community, data load balance is considered, however, in that context data load bal-34

ance is usually the only objective of the partitioning [30,32,35]. That is, only data is35

partitioned across data centers without associated tasks. In the literature, data load36

is considered for data migration cost [12, 19, 25] and memory capacity [5, 22, 40]. To37

our knowledge, this is the �rst paper in which simultaneous balance on computational38

and data loads are considered.39

The target problem consists of atomic tasks and data elements to be assigned to40

the processors. Tasks do not have any computational dependency, whereas a data41

element might be needed by multiple tasks. If such tasks are assigned to di�erent42

processors, then that data element will be replicated to those processors. Tasks are43
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2 M. F. ÇELIKTU§, M. O. KARSAVURAN, S. ACER, AND C. AYKANAT

associated with computational weights, whereas data elements are associated with44

sizes. Then the problem is �nding the task-to-processor assignment in which maxi-45

mum computational and data loads of processors are minimized simultaneously.46

In this work, we propose two novel hypergraph partitioning (HP) based models47

which simultaneously consider computational and data loads of the processors in a48

distributed-memory setting. In the �rst model, there exist vertices representing com-49

putational tasks as well as data elements. There exist nets also representing data50

elements and their relations with tasks. A two-constraint formulation is utilized for51

simultaneous computational and data load balancing, where partitioning objective52

encodes minimization of the total data replication. We utilize the recursive biparti-53

tioning (RB) scheme to increase the performance of the proposed vertex replication54

scheme by applying it at each level. For the RB framework, we propose a novel data55

vertex replication scheme to encode better data load balancing in the further RB56

steps.57

In the second model, vertices represent computational tasks, whereas nets rep-58

resent data elements as well as their relations with tasks. In this model, a similar59

two-constraint formulation is also utilized. In order to model data loads, in contrast60

to the �rst model which contains explicit data vertices, we propose a data weight61

distribution to the vertex weights. Furthermore, we also utilize the RB framework for62

enabling utilization of the proposed weight distribution at each level.63

In two-constraint formulation utilized in both models, �nding balance on the com-64

putational loads through part weights encapsulates minimizing the computational load65

of the maximally loaded processor, since the total computational load is �xed. This is66

not true for the data load, because the total data load depends on the computational67

task partitioning. On the other hand, both proposed models minimize the amount68

of the data replication with the partitioning objective. In that way, proposed two-69

constraint formulation also encapsulates minimizing the data load of the maximally70

loaded processor.71

We evaluate the performance of the proposed models against a HP based baseline72

model which only tries to balance computational loads of the processors. We utilized73

two sample applications in which our target problem arises: Parallel Finite Element74

Method and Volume Element Method based simulations which involve partitioning75

irregular 2D or 3D meshes and row-row-parallel Sparse Generalized Matrix Matrix76

Multiplication which involves partitioning two irregularly sparse input matrices. Ex-77

tensive experiments conducted for a wide range of partitioning instances on up to 102478

processors show that both proposed models achieve signi�cantly better performance79

than the baseline model.80

The rest of the paper is organized as follows: Section 2 describes the framework81

and formally de�nes the target problem. We give preliminary information about HP82

and RB framework in section 3. We propose two HP models for the target problem in83

section 4. In section 5 experimental results are presented and discussed. We brie�y84

discuss related works in section 6. Finally, section 7 concludes the paper.85

2. Framework and problem de�nition. The target application is considered86

as a two-tuple A= (T ,D). Here, T = {t1, t2, · · · , tT } denotes a set of |T |= T inde-87

pendent computational tasks and D={d1, d2, · · · , dD} denotes a set of |D|=D data88

elements. Here and hereafter | · | denotes the cardinality of the respective set. There89

exists no computational dependency between tasks. However, there exists interaction90

among the tasks as multiple tasks may need the same data element(s) for their exe-91

cutions. In a dual manner, an individual data element may be required by multiple92

This manuscript is for review purposes only.



SIMULTANEOUS COMPUTATIONAL AND DATA LOAD BALANCING 3

tasks for execution. The set of data elements required by a task ti is denoted by93

Data(ti), whereas the set of tasks that need/require a data element dj is denoted by94

Tasks(dj). Tasks may be associated with di�erent computational costs, as well as95

data elements may be associated with di�erent memory sizes. Let exec(ti) denote the96

computational cost of task ti and let size(dj) denote the memory size of data element97

dj .98

Row-row-parallel Sparse Generalized Matrix Matrix Multiplication (SpGEMM)99

of the form C=AB is an example target application. That is, the pre-multiplication100

of individual A-matrix rows with the B-matrix constitute the tasks, whereas rows of101

the A and B matrices constitute the data elements. The details about the SpGEMM102

application is given in subsection 5.3.2. Figure 1a shows a sample SpGEMM instance103

with a 3×4 A-matrix and a 4×5 B-matrix.104

Figure 1b shows the A=(T ,D) representation of the SpGEMM instance given in105

Figure 1a with |T |=3 tasks and |D|=7 data elements. In the �gure, circles denote106

tasks and squares denote data elements, whereas lines denote the interaction among107

the tasks and data elements. Vertices d1, d2, and d3 respectively denote A-matrix rows108

rA1 , r
A
2 , and rA3 , whereas d4, d5, d6, and d7 respectively denote B-matrix rows rB1 , r

B
2 ,109

rB3 , and rB4 . The multiplication of the second row of the A-matrix with the B-matrix110

is represented by t2. This multiplication requires an A-matrix row rA2 and three B-111

matrix rows rB2 , r
B
3 , and rB4 . Therefore, Data(t2)={d2, d5, d6, d7}. The B-matrix row112

rB4 is required by the �rst and second rows of the A-matrix, so Tasks(d7)= {t2, t3}.113

exec(ti) and size(dj) values are also given for each element, for example exec(t2)=8114

since it consists of 1 + 3 + 4 = 8 multiply-add operations and size(d2) = 3 since rA2115

contains 3 nonzero elements.116
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(b) A=(T ,D)

Fig. 1. A sample SpGEMM instance and corresponding A=(T ,D) representation.

The target computing platform is a homogeneous distributed-memory parallel117

system consisting of K processors. The execution time of each computational task is118

assumed to be the same on every processor.119

The target problem is to �nd a computational-task-to-processor partition/assignment.120

Let Π(T )={T1, T2, · · · , TK} denote a K-way computational-task-to-processor assign-121

ment, where Tk denotes the set of tasks assigned to processor pk, for k=1, 2, · · · ,K.122

This task-to-processor assignment Π(T ) incurs a data replication schema determined123

by the data needs of the tasks assigned to individual processors. In this schema, each124

data element dj is replicated to each processor where at least one task assigned to125

that processor needs dj . Let WS (pk) denote the working set of processor pk, which126

corresponds to the set of data elements needed by pk for the execution of the tasks127

This manuscript is for review purposes only.



4 M. F. ÇELIKTU§, M. O. KARSAVURAN, S. ACER, AND C. AYKANAT

assigned to pk. That is,128

(2.1) WS (pk) =
⋃

ti∈Tk

Data(ti).129

Consider a given task-to-processor assignment Π(T ). The computational load130

CL(pk) of processor pk is computed as131

(2.2) CL(pk) =
∑

ti∈Tk

exec(ti).132

The data load DL(pk) of processor pk is computed as133

(2.3) DL(pk) =
∑

dj∈WS(pk)

size(dj).134

Note that DL(pk) corresponds to the memory footprint, which refers to the amount135

of main memory that processor pk references while executing the tasks assigned to136

itself.137

In a given assignment Π(T ), the maximum computational load and the maximum138

data load of processors are respectively de�ned as139

CLmax = max
k
{CL(pk)},(2.4)140

DLmax = max
k
{DL(pk)}.(2.5)141

142

After describing the framework and giving the notations, we formally de�ne the143

target problem as follows:144

Definition 1 (Simultaneous Computation and Data Load Balancing Problem).145

Given an application A = (T ,D) �nd a computation-task-to-processor assignment146

Π(Tk) that minimizes both CLmax and DLmax given in (2.4) and (2.5), respectively.147

3. Preliminaries.148

3.1. Hypergraph partitioning. A hypergraph H=(U ,N ) consists of a set U149

of vertices and a set N of nets. Each net nj connects a subset of vertices denoted as150

Pins(nj). The degree deg(nj) of a net nj denotes the number of vertices it connects,151

i.e., deg(nj) = |Pins(nj)|. A cost c(nj) is associated with each net nj . Nets(ui)152

denotes the set of nets that connect ui. This easily extends to a subset of vertices153

Uk ⊂ U so that Nets(Uk) =
⋃

ui∈Uk
Nets(ui). Multiple weights w1(ui), · · · , wC(ui)154

can be associated with each vertex ui, where w
c(ui) denotes the cth weight associated155

with ui.156

Π(H)={U1, · · · ,UK} is called K-way partition of H, if parts are mutually disjoint157

and mutually exhaustive. In Π(H), the connectivity set Λ(nj) of net nj consists of158

the parts that are connected by that net, i.e., Λ(nj)={Uk : Pins(nj) ∩ Uk ̸= ∅}. The159

number of parts connected by nj is denoted by λ(nj)= |Λ(nj)|. A net nj is said to be160

cut if it connects more than one part, i.e., λ(nj) > 1, and uncut otherwise. A vertex161

ui in Π(H) is said to be a boundary vertex if it is connected by at least one cut net.162

Among various cutsize de�nitions we focus on the connectivity metric as follows:163

(3.1) Cutsize(Π(H)) =
∑

nj∈N
c(nj)(λ(nj)− 1).164

This manuscript is for review purposes only.
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In a given partition Π(H), the weight W c(Uk) of part Uk is de�ned as the sum of165

the cth weights of the vertices in Uk. Π(H) is said to be balanced if166

(3.2) W c(Uk) ≤W c
avg(1 + ϵc), for k ∈ {1, 2, · · · ,K} and c ∈ {1, 2, · · · , C},167

where W c
avg = (

∑
k W

c(Uk))/K and ϵc is the predetermined imbalance ratio for the168

cth weight.169

The K-way multi-constraint HP problem [15] is then de�ned as �nding a K-way170

partition such that the cutsize (3.1) is minimized while the balance constraint (3.2) is171

maintained. For C=1, this reduces to the well-studied standard partitioning problem.172

3.2. Recursive bipartitioning (RB) framework. In the RB paradigm, the173

initial hypergraph is partitioned into two subhypergraphs. These two subhypergraphs174

are further bipartitioned recursively until K parts are obtained. This process forms175

a complete binary tree, which we refer to as an RB tree, with log2 K levels, where K176

is a power of 2.177

The RB-based HP tools/algorithms utilize a cut-net splitting scheme in order to178

correctly encode the total cutsize (3.1) at the end of the multi-way partitioning. That179

is, after each RB step, the cut nets of the respective vertex bipartition Π2={U1,U2}180

are split into the two parts of the bipartition. Then, vertex-induced (induced by181

U1 and U2) subhypergraphs H1 = (U1,N1) and H2 = (U2,N2) of H = (U ,N ) are182

constructed as follows:183

H1 = (U1,N1) N1 = {n′ : ∀n ∈ N , P ins(n) ∩ U1 ̸=∅, P ins(n′) = Pins(n) ∩ U1},184

H2 = (U2,N2) N2 = {n′′ : ∀n ∈ N , P ins(n) ∩ U2 ̸=∅, P ins(n′′) =Pins(n) ∩ U2}.185

4. Proposed hypergraph models. In this section, we describe the two di�er-186

ent hypergraph models proposed for solving the simultaneous computation and data187

load balancing problem.188

4.1. Hypergraph with data vertices (DV). In this model, the application189

A=(T ,D) is represented by a hypergraph HDV (A)=(U ∪ V,N ) on |T |+|D| vertices190

and |D| nets with the number of pins equal to191

(4.1)
∑

n∈N
|Pins(n)| =

∑

ti∈T
|Data(ti)|+ |D| =

∑

dj∈D
|Tasks(dj)|+ |D|.192

Vertex set U represents the computational tasks, where each computational task ti is193

represented by a task vertex ui ∈ U . Vertex set V and net set N represent the data194

elements. That is, each data element dj is represented by a data vertex vj ∈ V as well195

as a net nj ∈ N . Each net nj connects the set of vertices representing the tasks that196

require data element dj for their execution as well as data vertex vj . That is,197

(4.2) Pins(nj) = {vj} ∪ {ui : ti ∈ Tasks(dj)} = {vj} ∪ {ui : dj ∈ Data(ti)}.198

Therefore, each net connects one data vertex and one or more task vertices. Each199

net is associated with a cost which is equal to the memory size of the respective data200

element. That is,201

(4.3) c(nj) = size(dj).202

Without loss of generality, a given vertex partition Π(HDV ) = {U1 ∪ V1,U2 ∪203

V2, · · · ,UK ∪ VK} is decoded as a K-way task assignment, where the tasks corre-204

sponding to the vertices in Uk are assigned to processor pk for k = 1, · · · ,K. That205
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6 M. F. ÇELIKTU§, M. O. KARSAVURAN, S. ACER, AND C. AYKANAT

is Tk = {ti : ui ∈ Uk}. In this setting, Λ(nj) is interchangeably used for both the206

parts that net nj connects and the respective processors. Recall that this vertex207

partition also incurs a data assignment/replication schema. A data element dj is as-208

signed/replicated to each processor pk such that Uk ∈ Λ(nj). In other words, for each209

net nj that connects part Uk, data element dj is assigned/replicated to processor pk.210

That is,211

(4.4) WS (pk) = {dj : nj ∈ Nets(Uk)}.212

For a given partition Π(HDV ), consider an internal net nj in Uk ∪ Vk. Then, all213

tasks which need data element dj are assigned to the same processor pk which already214

holds dj . So, internal nets do not incur any replication.215

Consider a cut net nj and assume that vj is assigned to Vk ∈ Λ(nj). Then two216

cases occur as follows: Net nj connects at least one task vertex in Uk, net nj does217

not connect any task vertex in Uk. In the former case, each processor in Λ(nj) needs218

data element dj , whereas in the latter case, each processor Λ(nj) \ {pk} needs data219

element dj . So in both cases, the data element dj will be replicated to all processors220

in Λ(nj) \ {pk}. Hence, c(nj)(λ(nj) − 1) denotes the total amount of replication221

because of the data element dj . So, the partitioning objective of minimizing the222

cutsize (3.1) corresponds to minimizing the total data replication to be incurred by223

the task partition.224

Data vertices are included in the pin lists of the respective nets (e.g., vj ∈225

Pins(nj) as shown in (4.2)) for encoding the data loads of the processors through226

a two-constraint partitioning formulation as follows: The �rst weight of a task vertex227

is set equal to the execution time of the respective task, whereas its second weight is228

set to zero. The �rst weight of a data vertex is set to zero, whereas its second weight229

is set equal to the memory size of the respective data element. That is,230

w1(ui) = exec(ti) w1(vj) = 0(4.5)231

w2(ui) = 0 w2(vj) = size(dj).(4.6)232

So, the �rst partitioning constraint of maintaining balance on parts' �rst weights233

encodes balancing computational loads of processors, whereas the second partitioning234

constraint of maintaining balance on parts' second weights relates to balancing data235

loads of processors.236

Figure 2a shows the HDV hypergraph for the sample application A = (T ,D)237

given in Figure 1. In the �gure, circles denote task vertices, squares denote data238

vertices and dots denote the nets, whereas lines denote pins. For example, Pins(n6)=239

{u1, u2, u3, v6} since Tasks(d6)={t1, t2, t3}. The array of two weights associated with240

each vertex is displayed next to the corresponding vertex, where the upper weight241

denotes w1(·) and the lower weight denotes w2(·). For example, w1(u2) = 8 since242

exec(t2)=8 and w2(v6)=3 since size(d6)=3.243

In a straightforward partitioning of HDV , the relation between second constraint244

and balancing processors' data loads is rather loose since each data vertex is assigned245

to only one part and does not encode replication of data elements according to the246

task partition. We enhance this two-constraint formulation with a novel boundary247

data vertex replication scheme utilized in an RB framework for enabling the second248

constraint to better encode balancing processors' data loads. In this scheme, the249

bipartition of the computational task vertices obtained at each RB step is utilized to250

determine data vertex replication in the further RB steps. The data vertex replication251

is performed together with the conventional cut-net splitting scheme as follows:252
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Fig. 2. Hypergraph models for the sample application A=(T ,D) given in Figure 1.

Consider a bipartition Π2 = {U1∪V1,U2∪V2} of HDV at the end of the current253

RB step. Consider a cut net nj in Π2. Cut net nj possibly connects task vertices254

in both parts, whereas it connects the respective data vertex vj which is a boundary255

vertex in one of the two parts. In the conventional net splitting, net nj will be split256

into both parts as n′
j and n′′

j with Pins(n′
j)=Pins(nj) ∩ (U1 ∪ V1) and Pins(n′′

j )=257

Pins(nj)∩ (U2∪V2), respectively. In the proposed scheme, boundary vertex vj in one258

part will be replicated to the other part (as v′j) so that both of the split nets n′
j and259

n′′
j connect data vertex vj or v

′
j , both of which represent data element dj . That is,260

Pins(n′
j) = (Pins(nj) ∩ U1) ∪ {vj},(4.7)261

Pins(n′′
j ) = (Pins(nj) ∩ U2) ∪ {v′j}.(4.8)262

So, bipartition Π2 = {U1∪V1,U2∪V2} obtained at a particular RB step induces the263

hypergraphs HDV 1 and HDV 2 for further bipartitioning in the following RB steps:264

HDV 1 = ((U1∪V1)∪VB
2 ),N1) and HDV 2 = ((U2∪V2)∪VB

1 ),N2), where265

N1 = {n′ :∀n ∈ N , P ins(n)∩(U1 ∪ V1) ̸=∅, P ins(n′)=Pins(n) ∩ (U1∪V1∪VB
2 )}266

N2 = {n′′ :∀n ∈ N , P ins(n)∩(U2 ∪ V2) ̸=∅, P ins(n′′)=Pins(n) ∩ (U2∪V2∪VB
1 )}.267

Here, VB
1 and VB

2 respectively denote boundary data vertex sets of V1 and V2. So,268

((U1∪V1)∪VB
2 ) denotes the replication of boundary data vertex set of V2 to HDV 1 and269

in a dual manner (U2∪V2)∪VB
1 ) denotes the replication of the boundary data vertex270

set of V1 to HDV 2. The weights of vertices remain the same after the RB step.271

j
′n j
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1∪ V1U 2∪ V2U

xu

jv

yu

1
B∪ V2∪ V2U2
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j
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Fig. 3. Proposed data vertex replication together with cut-net splitting.
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Figure 3 shows the usage of the RB framework through a sample bipartition in272

terms of a single cut net nj which connects two task vertices and one data vertex in273

the left part and two task vertices in the right part. Here and hereafter part 1 and274

part 2 of the bipartition are respectively referred to as left and right parts for clarity275

of the presentation. As seen in the �gure, this cut net is split as n′ and n′′ to the276

left and right parts, respectively. The boundary data vertex vj connected by nj in277

the left part is replicated to the right part as v′j so that Pins(n′
j) = {uz, ut, vj} and278

Pins(n′′
j )={ux, uy, v

′
j}.279

In the conventional cut-net splitting scheme [14], after an RB step, if a cut net280

nj connects only one vertex in one of the parts, then nj is not split to that part since281

it will incur a single-pin net in that part and single-pin nets do not contribute to the282

cutsize in the further RB steps. However, in the proposed scheme, such cases should283

be handled di�erently depending on whether the only vertex connected by a cut net284

in one of the parts of the bipartition is a data vertex or task vertex.285

Special case 1: This case occurs when the only vertex connected by a cut net286

nj in one part is a data vertex vj . The proposed scheme replicates vj to the other287

part. However, vertex vj connected by a single-pin split net n′
j corresponds to a data288

element assigned to a processor that is not assigned any computation task which needs289

the data element dj . Hence, we move (instead of replicating) data vertex vj to the290

other part so that the cut net nj becomes internal. Note that this move operation will291

decrease the cutsize but has the potential of increasing the imbalance on the second292

part weights.293

j
′n j

′′n
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jv
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jn

1∪ V1U 2∪ V2U

xu

jv yu

1
B∪ V2∪ V2U2

B∪ V1∪ V1U

j
′v

xu

jv

yu

1
B∪ V2∪ V2U2

B∪ V1∪ V1U

jn

a) special case is not handled

b) special case is handled

Fig. 4. Special case 1: the only vertex connected by a cut net in one of the parts of the
bipartition is a data vertex. a) special case not handled, b) special case handled

Figure 4 shows the handling of the special case 1 through a sample bipartition294

in the context of a single cut net nj . Cut net nj connects only a data vertex vj on295

the left part, whereas it connects two task vertices ux and uy on the right part. The296

upper arrow shows the splitting of nj as well as the replication of vj , if the special297

case is not handled. The lower arrow shows the proposed handling of the special case,298

where the data vertex vj on the left part moved to the right part so that nj becomes299

an internal net of the right part.300

Special case 2: This case occurs when the only vertex connected by a cut net301

nj in one part is a task vertex ui. The proposed scheme replicates vj in the other302

part to this part. However, this replication will incur a two-pin split net connecting303

task vertex ui and data vertex v′j , which refers to a data vertex needed by a single304

task vertex. The trivial solution for such two-pin nets is to maintain them inter-305
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nal in further RB steps by avoiding this net splitting together with the data vertex306

replication while assigning the second weight of data vertices to the second weight of307

the task vertices. That is, ui will contain two nonzero weights w1(ui)= exec(ti) and308

w2(ui)=w2(ui) + size(dj), on the contrary the initial two-constraint formulation in309

the top-most level where each vertex has one nonzero and one zero weight.310
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Fig. 5. Special case 2: the only vertex connected by a cut net in one of the parts of the
bipartition is a task vertex, whereas special case 3: a cut net connects only one task vertex together
with the data vertex in one of the parts. a) special case not handled, b) special case handled

Figure 5 shows the handling of special case 2 after a sample RB step through a311

sample bipartition in the context of a single cut net nj . Cut net nj connects only a312

task vertex on the left part, whereas it connects two task vertices and a data vertex313

on the right part. The upper arrow shows the splitting of nj as well as the replication314

of vj , if the special case is not handled. The lower arrow shows the proposed handling315

of the special case, where neither vj is replicated to the left part nor nj is split to the316

left part. Instead the second weight of data vertex vj on the right part is added to317

the second weight of the task vertex on the left part.318

Special case 3: This case occurs when a cut net nj connects only one task vertex319

uz together with the data vertex vj in one of the parts. The proposed scheme will320

incur a two-pin split net connecting task vertex uz and data vertex vj in that part. So321

this case becomes very similar to the special case 2 and handled in the same manner322

by moving vj to the other part and add its second weight to the second weight of uz.323

Figure 5 shows the handling of special case 3 which is equivalent to the special324

case 2 except moving vj from the right part to the left part so that handled and325

unhandled split partitions will be the same.326

Algorithm 4.1 shows the RB-based partitioning of HDV utilizing the proposed327

data vertex replication scheme. If-statements at lines 11-14, 15-19, and 20-26 respec-328

tively show the handling of the special cases 1, 2, and 3. Statements at lines 28-30329

show the replication of the data vertex to the other part. Note that data vertex330

replication is performed only if none of the special cases occur for the respective net.331

4.2. Hypergraph model with inverse data weight (IW) distribution. In332

this model, the applicationA=(T ,D) is represented by a hypergraphHIW (A)=(U ,N )333
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Algorithm 4.1 Partition HDV with proposed data vertex replication

Input: HDV = (U ∪ V,N , w1, w2), K
Output: Π(HDV )

1: H0
0 = HDV

2: for ℓ← 0 to log2 K − 1 do
3: for k ← 0 to 2ℓ − 1 do
4: Π2 ← BIPARTITION(Hℓ

k) ▷ Π2 = {UL ∪ VL,UR ∪ VR}
5: for each cut net nj ∈ N ℓ

k do
6: flag ← true
7: if vj ∈ VL then
8: x← L; y ← R
9: else
10: x← R; y ← L
11: if Pins(nj) ∩ Ux = ∅ then ▷ special case 1

12: Vy ← Vy ∪ {vj}
13: Vx ← Vx \ {vj} ▷ move data vertex vj to the other part

14: flag ← false ▷ Net nj becomes internal

15: if |Pins(nj) ∩ Uy| = 1 then ▷ special case 2

16: ui ← Pins(nj) ∩ Uy
17: w2(ui)← w2(ui) + w2(vj)
18: Pins(nj)← Pins(nj) \ {ui}
19: flag ← false ▷ Net nj becomes internal

20: if |Pins(nj) ∩ Ux| = 1 then ▷ special case 3

21: ui ← Pins(nj) ∩ Ux
22: w2(ui)← w2(ui) + w2(vj)
23: Vy ← Vy ∪ {vj}
24: Vx ← Vx \ {vj} ▷ move data vertex vj to the other part

25: Pins(nj)← Pins(nj) \ {ui}
26: flag ← false ▷ Net nj becomes internal

27: if flag then
28: v′j ← vj
29: Vy ← Vy ∪ {v′j} ▷ replicate vj to other part

30: Pins(nj)← Pins(nj) ∪ {v′j}
31: Form Hℓ+1

2k = (UL ∪ VL,NL) induced by UL ∪ VL
32: Form Hℓ+1

2k+1 = (UR ∪ VR,NR) induced by UR ∪ VR

on |T | vertices and |D| nets with the number of pins equals to334

(4.9)
∑

n∈N
|Pins(n)|=

∑

ti∈T
|Data(ti)|=

∑

dj∈D
|Tasks(dj)|.335

Vertex set U represents the computational tasks. Net set N represents the data336

elements. That is, each computational task ti is represented by a task vertex ui ∈ U337

and each data element dj is represented by a net nj ∈ N . Each net nj connects338

the set of vertices representing the tasks that require the data element dj for their339

execution. That is,340

(4.10) Pins(nj) = {ui : ti ∈ Tasks(dj)} = {ui : dj ∈ Data(ti)}.341

Comparison of (4.10) and (4.2) shows that HDV and HIW topologically di�ers342

This manuscript is for review purposes only.



SIMULTANEOUS COMPUTATIONAL AND DATA LOAD BALANCING 11

by vertex set V, which corresponds to data elements of HDV . That is, HDV becomes343

topologically the same with the HIW when data vertices in V and corresponding pins344

are removed.345

Each net is associated with a cost which is equal to the memory size of the346

respective data element. That is,347

(4.11) c(nj) = size(dj).348

Without loss of generality, a given vertex partition Π(HIW )={U1,U2, · · · ,UK} is349

decoded as a K-way task partition, where the tasks corresponding to the vertices in350

Uk are assigned to processor pk for k=1, · · · ,K. Recall that this vertex partition also351

incurs a data assignment/replication schema. In other words, for each net nj that352

connects part Uk, data element dj is assigned/replicated to processor pk. That is,353

(4.12) WS (pk) = {dj : nj ∈ Nets(Uk)}.354

For a given partition Π(HIW ), λ(nj) denotes the number of processors that need355

the data element dj . So λ(nj) − 1 denotes the number of times the data element dj356

needs to be replicated. Hence, c(nj)(λ(nj)−1) denotes the total amount of replication357

because of the data element dj . So, the partitioning objective of minimizing the cutsize358

according to (3.1) corresponds to minimizing the total data replication to be incurred359

by the task partition.360

In this model, a two-constraint partitioning formulation is also used, where the361

�rst and second weights of each vertex refer to the computational and data loads of362

the respective task. Since HIW does not contain data vertices, we propose a novel363

inverse data weight distribution model for estimating the second weights of vertices.364

In this model, the cost of a net, which corresponds to the size of the respective data365

element, is distributed evenly among the second weights of the vertices connected by366

that net. That is, a net nj of cost c(nj), which represents data element dj of size(dj),367

contributes c(nj)/deg(nj) to each vertex it connects. Finally, the �rst weight of a task368

vertex is set equal to the execution time of the respective task, whereas its second369

weight is set to sum of the contributions from each net nj connecting that vertex by370

c(nj)/deg(nj). That is,371

w1(ui) = exec(ti) w2(ui) =
∑

nj∈Nets(ui)

c(nj)

deg(nj)
(4.13)372

373

So, the �rst partitioning constraint of maintaining balance on parts' �rst weights374

encodes balancing computational loads of processors, whereas the second partitioning375

constraint of maintaining balance on parts' second weights relates to balancing data376

loads of processors.377

Figure 2b shows the HIW hypergraph for the sample application A = (T ,D)378

given in Figure 1. For example, Pins(n7) = {u2, u3} since Tasks(d7) = {t2, t3}. For379

example, w1(u2)= 8 since exec(t2)= 8. Regarding the second weight of u2; the nets380

n2, n5, n6, and n7, which connect u4, respectively contribute c(n2)/deg(n2)=3/1=3,381

c(n5)/deg(n5) = 1/1 = 1, c(n6)/deg(n6) = 3/3 = 1, and c(n7)/deg(n7) = 4/2 = 2 to382

w2(u2). That is, w
2(u2)=3 + 1 + 1 + 2=7.383

The motivation behind the proposed inverse data weight distribution model can384

be described as follows: In a given partition of HIW , consider an internal net nj of385

Uk. This net refers to the case where all tasks requiring data element dj are assigned386

to the same processor pk. Net nj will contribute a total weight of c(nj) to the second387
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weight of Uk which in turn will correspond to contributing c(nj) = size(dj) to the388

data load DL(pk) of processor pk. So, internal nets correctly encode the data loads389

of the processors to which they are internal.390

However, consider a cut net nj with connectivity set Λ(nj). Net nj will contribute391

fractional weights to the second weights of parts/processors in Λ(nj). The distribution392

of the weight c(nj) will be proportional to the number of pins it connects in those393

parts. That is, for each Uk ∈ Λ(nj), net nj will contribute394

(4.14)
|Pins(nj) ∩ Uk|
|Pins(nj)|

c(nj)395

to the second weight W 2(Uk) of part Uk. This in turn corresponds to net nj con-396

tributing size(dj)|Pins(nj) ∩ Uk|/deg(nj) to the data load DL(pk) of processor pk.397

That is, data load of a processor is correctly encoded by internal nets in the398

corresponding part, whereas an error is made by the cut nets connecting that part.399

This is because data weight is encoded partially by the vertices assigned to that part.400

Note that the partitioning objective of minimizing the cutsize will minimize this error401

due to the cut nets. Also, errors made due to the fractional weight distribution of the402

cut nets can be expected to cancel each other. Consider two nets nj and nh of equal403

degree deg(nj)=deg(nh)=deg and equal cost c(nj)= c(nh)=size. Assume that in404

the given partition, these two nets become cut and connect only the same two parts405

Uk and Uℓ in the partition. Also assume that nj connects α pins in Uk and deg−α pins406

in Uℓ, whereas nh connects deg−α pins in Uk and α pins in Uℓ. Despite the erroneous407

fractional data load contributions because of these two cut nets to the data loads408

of processors pk and pℓ, they together contribute the same amount of data load of409

size to both processors pk and pℓ. Although the actual aggregate contribution of nj410

and nh should be 2size to both processors, assigning the same load of size to both411

parts enables partitioner's load balancing mechanism to indirectly encode balancing412

data loads of processors. This discussion can be extended for the nets with di�erent413

number of pins and costs.414

Here we exploit the RB framework in order to improve the proposedHIW model as415

follows: Recall that the proposed model distributes the cost of each net evenly among416

the second weights of the vertices that it connects. The degrees of the nets decrease417

each time they become cut during the RB process because of the cut-net splitting418

scheme adopted. So, updated degree information of the split nets should be used419

for a more accurate net cost distribution. Therefore, after each RB step, the second420

weights of vertices in each of the two subhypergraphs are computed from scratch by421

taking into account the updated degree information of the split nets. Although the422

contributions of the internal nets to the second vertex weights do not change since423

their degrees remain the same, computing the second weights from scratch seems to424

be more e�cient.425

Figure 6 shows the usage of the RB framework through a sample bipartition in426

terms of a single cut net nj of degree �ve. As seen in the �gure, nj evenly distributes427

its cost 30 among the second weights of those �ve vertices as 30/5 = 6 before the428

current bipartitioning step. After the RB step, the degrees of the split nets n′ and429

n′′ become three and two, respectively. Therefore, in the left part, n′
j contributes430

30/3= 10 to the second weights of the vertices uz, ut and, us, whereas, in the right431

part, n′′
j contributes 30/2=15 to the second weights of the vertices ux and uy.432

Algorithm 4.2 shows the RB-based partitioning of HIW with the proposed inverse433

data weight distribution. The for loop at lines 6-9 computes the inverse data weight434

of each net and then distributes this weight to those vertices that it connects.435
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Fig. 6. Proposed inverse data weight distribution together with cut-net splitting.

Algorithm 4.2 Inverse Data Weight Distribution Algorithm

Input: HIW = (U ,N , w1, c), K
Output: Π(HIW )

1: H0
0 = HIW

2: for ℓ← 0 to log2 K − 1 do
3: for k ← 0 to 2ℓ − 1 do
4: for each vertex ui ∈ Uℓ

k do
5: w2(ui)← 0
6: for each net nj ∈ N ℓ

k do
7: idwContr ← c(nj)/deg(nj);
8: for each ui ∈ Pins(nj) do
9: w2(ui)← w2(ui) + idwContr
10: Π2 ← BIPARTITION(Hℓ

k) ▷ Π2 = {VL,VR}
11: Form HL = Hℓ+1

2k = (VL,NL) induced by VL
12: Form HR = Hℓ+1

2k+1 = (VR,NR) induced by VR

4.3. Discussion. As mentioned earlier, the two proposed models are topologi-436

cally similar, where nets represent data elements. So, in both models, the partitioning437

objective of minimizing the cutsize encodes the minimization of the total amount of438

data replication via clustering the tasks that require the same data elements to the439

same parts under the given balancing constraints. This partitioning objective also440

encodes the amount of communication volume to incur for realizing the required data441

replication among processors. We should note here that the same data element re-442

quired by multiple tasks assigned to the same processor necessitates the replication443

of that data element only once. Both proposed hypergraph models encapsulate this444

replication correctly, whereas a similar bipartite graph model would overestimate.445

As discussed earlier, both models utilize a two-constraint formulation, where the446

�rst and second weights of vertices are respectively used to encode the computational447

and the data loads of parts/processors. Since the total amount of computation is448

constant, the partitioning constraint on maintaining balance on the parts' �rst weights449

encodes minimizing the computational load of the maximally loaded processor within450

the given computational load imbalance ratio (ϵ1). However, the total amount of data451

load of processors, which is the sum of the second weights of the parts, is not constant452

and it depends on the quality of the task partitioning. So, a naive balancing on the453

seconds weights of the parts might not encode the minimization of the data load of454

the maximally loaded processor. For example, a very tight balance on the data loads455
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of the processors might yield a very high data load on the maximally loaded processor456

if the underlying partition produces a high amount of data replication. Therefore,457

the second partitioning constraint on maintaining balance on parts' second weights458

under the partitioning objective that encodes the minimization of the total amount459

of data replication corresponds to minimizing the data load of the maximally loaded460

processor within the given data load imbalance ratio (ϵ2).461

The two hypergraph models di�er in the second vertex weighting scheme they462

utilize for estimating processors' data loads. Both models correctly encode the pro-463

cessors' data loads corresponding to the data elements that are required by a single464

processor. Both models utilize the RB framework to increase the accuracy of their465

schemes utilized to estimate processors' data loads corresponding to the data elements466

that are required by multiple processors. After each RB step, the HDV model corrects467

the topology of the subhypergraphs by augmenting the subhypergraphs with the repli-468

cated data vertices according to the induced task vertex bipartition. At the beginning469

of each RB step, the HIW model utilizes the topology of the current hypergraph to470

predict the di�erence between data loads of the two parts of the bipartition. That is,471

the HDV model tries to encode data loads of processors after the RB step, whereas472

the HIW model tries to encode data loads of processors before the RB step.473

5. Experiments.474

5.1. Baseline model. The baseline model is the conventional HP model widely475

used for the parallelization of irregularly sparse applications. The topology of this476

hypergraph model is exactly the same with that of the HIW model described in sub-477

section 4.2. However, this model is a single constraint model, where the vertices are478

weighted with the computational loads of the respective tasks they represent. In this479

way, the partitioning constraint of balancing part weights encodes computational bal-480

ance among processors. The cost of the nets is set to be equal to the size of the481

data elements they represent. So, the partitioning objective of minimizing the cutsize482

according to connectivity metric (3.1) encodes minimizing total communication vol-483

ume [15]. Note that this partitioning objective also encodes minimizing total amount484

of data replication. So, the baseline model di�ers from the proposed models in not485

considering data load balancing at all. Here and hereafter, we refer to this hypergraph486

model as HBase.487

5.2. Experimental setup. The hypergraph models proposed in subsections 4.1488

and 4.2, as well as the baseline hypergraph model mentioned in subsection 5.1 are par-489

titioned using the HP tool PaToH [14,16] for obtaining K ∈ {64, 128, 256, 512, 1024}-490

way partitions. PaToH is used with default parameters for all models except for491

the HDV model described in subsection 4.1. For the HDV model, we set PaToH's492

vertex visit order to the continuous/sequential vertex order (increasing vertex ID or-493

der) for the coarsening phase instead of the random vertex visit order which is the494

default [16]. The objective behind this is to prioritize matching of computational ver-495

tices with other computational or data vertices. In order to maintain randomness in496

vertex visit order, we randomly permute computational and data vertices separately497

before invoking PaToH. In all partitioning instances, we used maximum allowable498

imbalance ratio ϵ= 0.05 for both computation and data weights, i.e., ϵ1 = 0.05 and499

ϵ2 = 0.05. All experiments have been conducted by use of random seed. As PaToH500

utilizes randomized algorithms, we partitioned each instance �ve times with di�erent501

seeds and we report the geometric average of the results.502
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5.3. Dataset. The performance of the two proposed models are validated against503

the baseline model on two sample applications: Parallel Finite Element Method504

(FEM) and Volume Element Method (VEM) based simulations which involve par-505

titioning irregular 2D or 3D meshes and parallel Sparse Generalized Matrix Matrix506

Multiplication (SpGEMM) which involves partitioning two irregularly sparse input507

matrices.508

5.3.1. Mesh partitioning instances. In the FEM/VEM applications, compu-509

tations associated with each mesh/volume element (cell) constitute an atomic com-510

putational task. These applications implement ghost layering methods which involve511

replicating cells according to the cell-to-cell neighborhood relation determined by the512

target application [22]. Hence, such FEM/VEM applications fall within the frame-513

work in section 2 since computations associated with each element are independent514

but they share data elements determined by the neighborhood relation.515

In order to obtain mesh partitioning instances, we utilize sparse matrices which516

have either 2D or 3D coordinate values so that the sparsity patterns of those matrices517

are considered as representing the neighborhood structures of the meshes arising in518

FEM or VEM applications. Such matrices are selected from the SuiteSparse Matrix519

Collection [23]. These matrices are symmetric matrices so that rows and columns520

respectively represent mesh elements and data elements or vice versa. So, for a selected521

sparse matrix A=(aij), we have522

(5.1) Data(ti) = {dj : aij ̸= 0}.523

Here, ti denotes the atomic task associated with mesh cell ci and dj denotes the data524

associated with cell cj .525

We should note that SuiteSparse Matrix Collection [23] does not contain any526

information about computational cost and data size distribution. Various computa-527

tional cost and data size weighting schemes are utilized depending on the application528

nature of mesh computations [7,22,29,34]. In this paper, we use the weighting scheme529

produced by a heuristic for generating realistic weight distributions for �Particles-in-530

Cells�-like simulations [7]. The computational cost of a mesh element is reported to531

be equal to the square of its memory size for the weighting [34] and the amount of532

memory needed for holding a cell is linear with the number of particles located in533

this cell [7]. Reasoning behind this is data size is related to the number of particles534

located in a cell, while computational cost associated with a cell generally increases535

with the square of the number of particles in this cell. That is,536

exec(ti) = npic2(ci) size(dj) = npic(cj),(5.2)537

where npic(ci) denotes the number of particles in cell ci.538

We did not include matrices with less than 100×K matrix rows so that each539

processor will be assigned at least 100 rows on average. That is, we have matrices540

that have at least 6400 rows for 64-way partitioning and 12800 rows for 128-way541

partitioning. As a result of this selection criterion, the experiments are conducted for542

a total of 464 partitioning instances (117, 108, 94, 82, and 63 instances for 64-, 128-,543

256-, 512-, and 1024-way partitions, respectively).544

5.3.2. SpGEMM partitioning instances. Consider the SpGEMM applica-545

tion of the form C=AB, where input matrices A and B are of sizes q×r and r×s. In546

row-row-parallel SpGEMM, the atomic computational task ti is the pre-multiplication547

of row i of matrix A with the whole matrix B. Then, the task set T ={t1, t2, · · · , tq}548
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contains q tasks {rA1 B, rA2 B, · · · , rAq B}, where rAi denotes row i of A matrix. The549

sparse-vector-matrix multiplication rAi B requires row rAi as well as those B-matrix550

rows that correspond to the column indices (cols) of the nonzeros of row rAi . That is,551

(5.3) Data(ti) = {ai,∗} ∪ {bx,∗ : x ∈ cols(ai,∗)}.552

So, the sets of A- and B-matrix rows constitute the set of q + r data elements. That553

is, D = {d1, d2, · · · , dq+r} = {rA1 , rA2 , · · · , rAq , rB1 , rB2 , · · · , rBr }. Hence, this row-row-554

parallel SpGEMM application falls within the framework in section 2, since vector-555

matrix multiplications are independent but they share B-matrix rows. The computa-556

tional costs for atomic tasks and sizes for data elements are easily de�ned as follows:557

exec(ti) =
∑

x∈cols(ai,∗)

nnz(bx,∗),(5.4)558

size(dj) = nnz(aj,∗) for 1 ≤ j ≤ q,(5.5)559

size(dj) = nnz(bj−q,∗) for q + 1 ≤ j ≤ q + r.(5.6)560

Here, we consider two types of SpGEMM instances: C=AB and C=AA. For C=561

AB, we generate 69 instances from the SuiteSparse matrix collection [23] in a similar562

way to [3]. Matrices amazon0302 and amazon0312 are used as A matrices which563

represent the similarity between items and B matrices are generated utilizing a Zipf564

distribution (with exponent set to 3.0) to determine the item preferences and a uniform565

distribution to determine the users that prefer a speci�c item [31]. In this setting,566

C =AB gives the candidate items to be recommended to each user. We generated567

66 instances by considering the setup phase of Algebraic Multigrid methods [8] which568

involves the Galerkin product of the form RAP that necessitates two consecutive569

SpGEMM operations. 11 of these instances are of the form C = RA, whereas the570

remaining 55 instances are of the form C =AP . The last instance in this category571

contains two di�erent matrices, namely thermomech_dK and thermomech_dM, which572

are conformable for multiplication.573

For the C=AA type of instances, we selected 12 matrices from the SuiteSparse574

Matrix Collection [23]. The number of rows/columns and number of nonzeros are575

in the range of 88K - 1.5M, and 2.5M - 30M, respectively. For the C = AA type576

of instances, the fact that the B matrix is actually the A matrix can be exploited577

in order to reduce the memory footprint of the application. On the other hand, for578

the sake of computational e�ciency, our parallel SpGEMM implementation does not579

exploit this fact. That is, we partition C = AA instances as we partition C = AB580

instances.581

The same partitioning granularity principle utilized for mesh instances is also582

used for SpGEMM instances. So, experimental results of the C =AB instances are583

reported for a total of 259 partitioning instances (69, 63, 54, 45, and 28 instances for584

64-, 128-, 256-, 512-, and 1024-way partitions, respectively). Experimental results of585

the C=AA instances are reported for a total of 59 partitioning instances (12, 12, 12,586

12, and 11 instances for 64-, 128-, 256-, 512-, and 1024-way partitions, respectively).587

5.3.3. Data size variation. Here, we compare and discuss the irregularity of588

the datasets in terms of coe�cient of variation (CV) values on the data sizes, where589

CV values are computed as standard deviation divided by mean. The purpose is to590

observe the relation between load balancing performance of the proposed algorithms591

and the irregularity of the datasets de�ned as the size variation of the data elements.592
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Table 1 displays average CV values as well as the number of partitioning instances593

for each dataset and for each number of processors. Here higher CV values correspond594

to higher irregularity of the data sizes. As seen in the table, the C=AA dataset has595

the largest average CV (0.90 on K = 64 processors), the C = AB dataset has the596

smallest average CV (0.32 on K = 64 processors), and the mesh dataset has the in-597

between average CV (0.68 on K=64 processors). So, in terms of data size variation,598

the C=AA dataset is the most irregular dataset, whereas the C=AB and the mesh599

datasets are respectively least and in-between irregular datasets.600

Table 1
Number of partitioning instances and average coe�cient of variation (CV) values for each dataset

mesh dataset C=AB dataset C=AA dataset

K # of ins. CV # of ins. CV # of ins. CV

64 117 0.68 69 0.32 12 0.90
128 108 0.66 64 0.34 12 0.90
256 94 0.65 54 0.34 12 0.90
512 82 0.65 45 0.35 12 0.90
1024 63 0.60 28 0.36 11 0.81

5.4. Performance comparison.601

5.4.1. Performance metrics. For each application, we evaluate the perfor-602

mance of the partitioning models in terms of maximum computational load CLmax603

and maximum data load DLmax handled by a processor (given in (2.4) and (2.5),604

respectively). For a simpler presentation, we give ratios of those metrics to their605

averages. That is,606

CLr
max =

CLmax

CLavg
, where CLavg =

1

K
CLtot =

1

K

∑

ti∈T
exec(ti),(5.7)607

DLr
max =

DLmax

DL∗
avg

, where DL∗
avg =

1

K
DLtot =

1

K

∑

dj∈D
size(dj).(5.8)608

609

Here, CLavg denotes the average computational load per processor under perfect load610

balance. DL∗
avg denotes average data load per processor without data replication611

under perfect load balance. So, DL∗
avg denotes the ideal average data load.612

We also report the total data size (original total size together with replicated data613

size) incurred by the models as the ratio to original total data size as follows:614

(5.9) DLr
rep =

K∑
k=1

DL(pk)

DLtot
=

K∑
k=1

∑
dj∈WS(pk)

size(dj)

DLtot
.615

This metric also de�nes a lower bound for the DLr
max metric. That is, under perfect616

data load balance DLr
max=DLr

rep . It is clear that, in each of these three metrics, a617

smaller value refers to a better performance.618

Recall that both proposed models HDV and HIW utilize the RB framework to in-619

crease their e�ectiveness. So, we also report the performance results for these models620

without utilizing the RB framework in order to show the relative performance improve-621

ment attained by the use of the RB framework. These experiments are performed by622
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directly K-way partitioning the hypergraph constructed at the very beginning. We623

use RB and Dr subscripts to refer to models which utilize RB and which do not utilize624

RB, respectively. That is, HDVRB
and HIWRB

refer to the models that utilize the RB625

framework, whereas HDVDr
and HIWDr

refer to the models that do utilize the RB626

framework.627

5.4.2. Average performance comparison. Table 2 displays average perfor-628

mance comparison for the mesh partitioning instances. As seen in the table, both pro-629

posed models perform much better data load balancing than the baseline model with-630

out any performance degradation in computational load balance. The performance631

gap between the proposed models and the baseline model increases with increasing632

number of processors in favor of the proposed models. For example, performance633

improvement of HDVRB
over HBase in the DLr

max metric is 28%, 30%, 34%, 39%, and634

45% on respectively K∈{64, 128, 256, 512, 1024} processors, .635

Table 2
Average performance comparison for the mesh partitioning instances

K
number of
instances

HBase HDVDr
HDVRB

HIWDr
HIWRB

DLr
max: maximum data load ratio

64 117 1.83 1.33 1.31 1.29 1.25
128 108 2.02 1.44 1.41 1.40 1.34
256 94 2.28 1.56 1.51 1.50 1.42
512 82 2.59 1.69 1.58 1.61 1.49
1024 63 2.88 1.71 1.59 1.66 1.50

DLr
rep: total replication ratio

64 117 1.11 1.18 1.16 1.18 1.16
128 108 1.15 1.24 1.21 1.24 1.22
256 94 1.18 1.29 1.26 1.29 1.27
512 82 1.21 1.34 1.29 1.35 1.31
1024 63 1.18 1.33 1.26 1.33 1.28

CLr
max: maximum computational load ratio

64 117 1.04 1.03 1.04 1.03 1.04
128 108 1.04 1.03 1.04 1.03 1.04
256 94 1.05 1.03 1.05 1.04 1.05
512 82 1.06 1.04 1.05 1.05 1.06
1024 63 1.06 1.03 1.05 1.04 1.06

As seen in Table 2, the proposed models considerably increase the total amount636

of data replication compared to the baseline model. This is expected since two-637

constraint formulation limits the search space during the partitioning. For example, on638

K=1024 processors, HBase incurs only 18% replication, whereas HDVRB
and HIWRB

639

incur 26% and 28% replication, respectively. On the other hand, this increase is not640

important since the proposed models signi�cantly reduce the load of the maximally641

loaded processor via much better data load balancing. The gap between the DLr
max642

and DLr
rep metrics, which shows how close the model approaches to the lower bound,643

is smaller for both proposed models compared to the baseline model. For example,644

on K = 1024 processors, HBase achieves average DLr
max value of 144% (2.88 versus645

1.18) above the lower bound determined by the DLr
rep value, whereas HDVRB

and646
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HIWRB
respectively achieve DLr

max values of only 26% (1.59 versus 1.26) and 17%647

(1.50 versus 1.28) above the lower bounds.648

As also seen in the Table 2, the use of the RB framework leads to considerable per-649

formance improvement in both proposed models and this performance improvement650

increases with increasing number of processors as expected. For example, performance651

improvement of HIWRB
over HIWDr

in the DLr
max metric is 3.1%, 4.3%, 5.3%, 7.5%,652

and 9.6% respectively on K∈64, 128, 256, 512, 1024} processors.653

Table 3
Average performance comparison for the C=AB SpGEMM partitioning instances

K
number of
instances

HBase HDVDr
HDVRB

HIWDr
HIWRB

DLr
max: maximum data load ratio

64 69 1.19 1.12 1.10 1.12 1.09
128 64 1.23 1.16 1.13 1.15 1.11
256 54 1.25 1.19 1.14 1.19 1.13
512 45 1.28 1.24 1.17 1.22 1.15
1024 28 1.30 1.28 1.19 1.26 1.17

DLr
rep: total replication ratio

64 69 1.05 1.07 1.06 1.07 1.06
128 64 1.06 1.09 1.07 1.09 1.07
256 54 1.07 1.11 1.08 1.11 1.09
512 45 1.09 1.13 1.10 1.13 1.10
1024 28 1.09 1.14 1.10 1.14 1.11

CLr
max: maximum computational load ratio

64 69 1.03 1.02 1.02 1.02 1.03
128 64 1.03 1.02 1.03 1.02 1.03
256 54 1.03 1.02 1.02 1.02 1.03
512 45 1.03 1.02 1.02 1.02 1.03
1024 28 1.03 1.02 1.03 1.02 1.03

Table 3 displays average performance comparison for the C=AB type of SpGEMM654

partitioning instances. As seen in the table, DLr
max values for this dataset are much655

less than those for mesh partitioning instances, which is because of the considerably656

less data size irregularity of C =AB type of SpGEMM partitioning instances com-657

pared to that of mesh partitioning instances. For example, on K =1024 processors,658

the DLr
max values attained by the di�erent models vary between 1.30 and 1.17 on659

the C = AB type of SpGEMM partitioning instances, whereas those values for the660

mesh partitioning instances vary between 2.88 and 1.50. As seen in the table, the661

proposed models perform about 10% better compared to the baseline model in the662

DLr
max metric. Similar to the mesh instances, use of the RB framework increases the663

performance of the proposed model, as expected. For example, on 1024 processors,664

HDVRB
performs 7.0% better than the HDVDr

model, whereas HIWRB
performs 7.1%665

better than the HIWDr
model. On the other hand, in the DLr

rep metric the proposed666

models do not increase the total replication considerably, in contrast to the mesh par-667

titioning instances. Similar to the mesh partitioning instances, CLr
max metric remains668

almost the same for all instances. Here, obtained improvement rates are signi�cantly669

less than compared to the mesh partitioning instances. This can be attributed to670

regularity of the C= AB type of SpGEMM instances.671

This manuscript is for review purposes only.



20 M. F. ÇELIKTU§, M. O. KARSAVURAN, S. ACER, AND C. AYKANAT

Table 4
Average performance comparison for the C=AA SpGEMM partitioning instances

K
number of
instances

HBase HDVDr
HDVRB

HIWDr
HIWRB

DLr
max: maximum data load ratio

64 12 3.81 3.06 2.61 3.09 2.44
128 12 4.85 4.06 3.30 4.20 3.14
256 12 6.50 5.59 4.72 6.02 4.39
512 12 9.58 8.23 7.11 8.41 6.53
1024 11 12.51 10.88 9.07 11.24 8.91

DLr
rep: total replication ratio

64 12 1.81 2.12 1.99 2.10 2.02
128 12 2.09 2.56 2.36 2.54 2.42
256 12 2.50 3.21 2.90 3.17 2.98
512 12 3.10 4.15 3.65 4.08 3.81
1024 11 3.86 5.20 4.59 5.12 4.83

CLr
max: maximum computational load ratio

64 12 1.03 1.03 1.03 1.03 1.04
128 12 1.03 1.03 1.05 1.03 1.06
256 12 1.04 1.03 1.06 1.04 1.06
512 12 1.05 1.03 1.06 1.05 1.09
1024 11 1.06 1.03 1.05 1.04 1.13

Table 4 displays average performance comparison for the C=AA type of SpGEMM672

partitioning instances. Much higher irregularity in data size distribution of this673

dataset incurs much higher DLr
max values as seen in Tables 2 to 4. For example,674

on K = 1024, HBase obtains DLr
max values of 12.51, 1.30, and 2.88 respectively for675

C=AA, C=AB, and mesh partitioning instances. Such partitioning instances with676

high data size variation incur hard partitioning instances and justify the importance677

of the target optimization problem.678

As seen in Table 4, both proposed models perform much better data load balanc-679

ing than the baseline model with almost no performance degradation in computational680

load balance. The computational load balance becomes considerably worse forHIWRB
681

model only on 512 and 1024 processors. The proposed models HIWRB
and HDVRB

682

perform 27% and 29% better than HBase model on 1024 processors.683

As seen in Table 4, the total amount of data replication increases considerably684

compared to the baseline model. For example, on K = 1024 processors, HBase in-685

curs 286% replication, whereas HDVRB
and HIWRB

incur 359% and 383% replication,686

respectively. The much higher di�erence in the DLr
max and DLr

rep values for this687

dataset (for example, 9.07 versus 4.59 for HDVRB
on 1024 processors) compared to688

the other two datasets is because of the much higher data size variation in this dataset.689

As also seen in Table 4, HIW bene�ts more from the RB framework compared690

to HDV . For example, on K =1024 processors, the RB framework increases the691

performance of HDV and HIW by 17% and 21%, respectively. This can be also692

observed for mesh and C = AB instances. For example, on K = 1024 processors,693

for the mesh dataset, RB framework increases the performance of HDV and HIW by694

7.0% and 9.6%, respectively. Higher sensitivity of the use of the RB framework on the695

HDV model on the C=AA dataset makes HDVDr
model perform better than HIWDr

,696
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although HIWRB
performs better than HDVRB

on average for each K value. This is697

because, as we discussed earlier (in subsection 4.3), the HDV model tries to encode698

data loads of processors after the RB step depending on the resulting bipartition,699

whereas the HIW model estimates data loads of processors before the RB step and700

then corrects its estimation depending on the resulting bipartition for the following701

RB level.702

Table 5
Number of instances for which each model attains the best performance on DLr

max

mesh dataset C=AB dataset C=AA dataset

K HBase HDV HIW HBase HDV HIW HBase HDV HIW

64 2 40 75 5 22 42 1 0 11
128 6 31 71 5 12 47 1 3 8
256 6 22 66 4 11 39 1 3 8
512 6 25 51 5 11 29 1 1 10
1024 3 18 42 5 5 18 0 2 9

The relative performance comparison of the two proposed models HDV and HIW703

is as follows: As seen in Tables 2 to 4, HIW display slightly better average performance704

than HDV for each dataset and for each K value, except for the C=AA dataset where705

HDVDr
performs slightly better than HIWDr

for each K value on average. Table 5 is706

presented to show the number of partitioning instances for which each model attains707

the best performance in the DLr
max metric. As seen in the table, although HIW708

attains the highest number of best DLr
max values, HDV attains considerably high709

number of best DLr
max values especially on the mesh and the C =AB datasets. So710

both proposed models should be considered for attaining simultaneous computational711

and data load balancing depending on the nature of the application and the dataset.712

5.4.3. Performance pro�le comparison. In Figures 7 and 8, we provide per-713

formance pro�les for each of the �ve models in terms of the DLr
max and DLr

rep metrics714

on K ∈ {64, 128, 256, 512, 1024} processors. In each �gure, each column corresponds715

to a di�erent dataset, whereas each row corresponds to a di�erent K value. We do716

not include performance pro�les for the CLr
max metric, since each of the �ve models717

perform similarly as discussed earlier. That is, performance pro�les for the CLr
max718

metric are almost on top of each other.719

Performance pro�les [28] are widely used in comparing multiple models over a720

large collection of test cases. In a di�erent way from the average performance com-721

parison given above, in the performance pro�les we compare �ve models according to722

the best performing model for each partitioning instance on one of the metrics and723

measure in what fraction of the test cases a model performs within a factor of the724

best observed performance. A point (x,y) in a curve means that the respective model725

is within an x factor of the best result in a fraction y of the dataset. For example,726

consider the point (x= 1.05, y = 0.70) on the performance curve for HDVRB
for the727

mesh dataset on K=1024 processors for the DLr
max metric. This point means that728

for 70% of the partitioning instances HDVRB
attains DLr

max values at most 5 percent729

larger than the best DLr
max values achieved. Thus, a model that is closer to the730

top-left corner is better.731

As seen in Figures 7 and 8, the performance pro�les corroborate the above discus-732

sion about the relative performance of the models. For example, comparison of pro�le733

curves for HDVRB
and HDVDr

as well as for HIWRB
and HIWDr

on the DLr
max metric734
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show that the performance improvement obtained from the use of the RB framework735

increases with increasing number of processors for the mesh and the C=AB datasets,736

whereas this improvement remains almost the same for the C=AA dataset. Further-737

more, comparison of pro�le curves for HDVDr
and HIWDr

on DLr
max metric shows738

that the performance obtained by the HDVDr
becomes superior than the performance739

obtained by HIWDr
for about more than 20% of the C=AA dataset within a factor740

of approximately 1.20.741

As seen in Figure 7, onK=1024 processors, HIWRB
achieves the best solutions for742

DLr
max metric for the 60% of all datasets, whereas HDVRB

attains solutions within743

factors of 1.04, 1.02, and 1.08 for the mesh, C = AB and C = AA partitioning in-744

stances, respectively. As seen in Figure 8, the HBase performs the best on the DLr
rep745

metric, whereas HIWRB
and HDVRB

follows. Furthermore, this di�erence increases746

with increasing irregularity of the dataset.747

6. Related work. Chevalier et al. [22] consider memory constraints during the748

task partitioning with the objective of balancing computational load of processors.749

They propose a multilevel bipartite graph partitioning algorithm as follows: In the750

coarsening phase, computational vertices match with other computational vertices751

according to their data element share. Data elements are matched with other data752

elements similar to the identical net detection in HP. They perform initial partition-753

ing by greedily assigning sorted tasks to parts/processors considering the memory754

capacity. In the re�nement phase, tasks are moved between parts/processors with the755

objective of decreasing the computational load. Note that this work does not balances756

the data load rather abides by the memory constraint.757

Angel et al. [4, 5] also consider memory constraints while minimizing the com-758

putational load of the maximally loaded processor. In [4], a dynamic programming759

based Fixed-Parameter Tractable algorithm with respect to the path-width of the760

neighborhood graph is utilized. Note that this is an approximation since the problem761

is NP-hard. In [5], they focus on the case when the neighborhood graph has bounded762

tree-width. In that way tree decomposition of the graph and its traversal in a speci�c763

way which may be useful on its own allows to �nd a solution within a factor of epsilon.764

Tzovas et al. [40] target heterogeneous distributed systems for which sparse ma-765

trices or graphs will be distributed. Also in this work, memory capacity is a constraint766

where the objective is maximizing utilization of each processing unit with minimum767

communication cost. For this purpose, they propose a two phase algorithm: In the768

�rst phase, they greedily compute block size for each processing unit. In the second769

phase, they feed these sizes to variety a of existing partitioning tools.770

7. Conclusion. In high performance computing applications, computational771

load balancing is well studied in the literature, however data load balancing has be-772

come a concern recently. In that sense, to our knowledge, this is a pioneer work773

in which we simultaneously balance processors' computational and data loads in774

distributed-memory setting. We proposed two di�erent hypergraph partitioning based775

models both utilizing a two-constraint formulation for load balancing. The �rst con-776

straint encodes balancing the computational load, whereas the second constraint en-777

codes balancing the data load. The partitioning objective encodes minimizing the778

total amount of data replication. We utilized the well known recursive bipartition-779

ing framework for increasing the accuracy of the both proposed models. Instead of780

developing a new partitioner from scratch both proposed models can easily be im-781

plemented by invoking any HP tool that supports multi constraint partitioning as782

a two-way partitioner at each RB step. Extensive experiments show that both pro-783
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Fig. 7. Performance pro�les for the DLr

max metric on K ∈ {64, 128, 256, 512, 1024}
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Fig. 8. Performance pro�les for the DLr

rep metric on K ∈ {64, 128, 256, 512, 1024}
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posed models perform signi�cantly better than a baseline model. We achieve up to784

49 percent better performance on 1024 processors.785

REFERENCES786

[1] S. Acer, O. Selvitopi, and C. Aykanat, Improving performance of sparse matrix dense787
matrix multiplication on large-scale parallel systems, Parallel Computing, 59 (2016), pp. 71788
� 96. Theory and Practice of Irregular Applications.789

[2] S. Acer, O. Selvitopi, and C. Aykanat, Optimizing nonzero-based sparse matrix parti-790
tioning models via reducing latency, Journal of Parallel and Distributed Computing, 122791
(2018), pp. 145 � 158.792

[3] K. Akbudak, O. Selvitopi, and C. Aykanat, Partitioning models for scaling parallel sparse793
matrix-matrix multiplication, ACM Trans. Parallel Comput., 4 (2018).794

[4] E. Angel, C. Chevalier, F. Ledoux, S. Morais, and D. Regnault, FPT approximation795
algorithm for scheduling with memory constraints, in Euro-Par 2016: Parallel Processing,796
Cham, 2016, Springer International Publishing, pp. 196�208.797

[5] E. Angel, S. Morais, and D. Regnault, A bi-criteria FPTAS for scheduling with memory798
constraints on graph with bounded tree-width, arXiv preprint arXiv:2202.08704, (2022).799

[6] C. Aykanat, B. B. Cambazoglu, F. Findik, and T. Kurc, Adaptive decomposition and800
remapping algorithms for object-space-parallel direct volume rendering of unstructured801
grids, Journal of Parallel and Distributed Computing, 67 (2007), pp. 77�99.802

[7] R. Barat, Load Balancing of Multi-physics Simulation by Multi-criteria Graph Partition-803
ing, PhD thesis, Thèse de doctorat dirigée par Pellegrini, François et Chevalier, Cédric804
Informatique Bordeaux 2017, 2017. 2017BORD0961.805

[8] N. Bell, S. Dalton, and L. N. Olson, Exposing �ne-grained parallelism in algebraic multi-806
grid methods, SIAM Journal on Scienti�c Computing, 34 (2012), pp. C123�C152.807

[9] R. H. Bisseling, Parallel Scienti�c Computation: A Structured Approach using BSP (Second808
edition), Oxford University Press, USA, 2020.809

[10] R. H. Bisseling and I. Flesch, Mondriaan sparse matrix partitioning for attacking cryp-810
tosystems by a parallel block Lanczos algorithm � a case study, Parallel Computing, 32811
(2006), pp. 551 � 567. Algorithmic Skeletons.812

[11] R. H. Bisseling and W. Meesen, Communication balancing in parallel sparse matrix-vector813
multiplication, Electronic Transactions on Numerical Analysis, 21 (2005), pp. 47�65.814

[12] E. G. Boman and M. M. Wolf, A nested dissection partitioning method for parallel sparse815
matrix-vector multiplication, in 2013 IEEE High Performance Extreme Computing Con-816
ference (HPEC), 2013, pp. 1�6.817

[13] B. B. Cambazoglu and C. Aykanat, Hypergraph-partitioning-based remapping models for818
image-space-parallel direct volume rendering of unstructured grids, IEEE Transactions on819
Parallel and Distributed Systems, 18 (2007), pp. 3�16.820

[14] Ü. V. Çatalyürek and C. Aykanat, Hypergraph-partitioning-based decomposition for par-821
allel sparse-matrix vector multiplication, IEEE Transactions on Parallel and Distributed822
Systems, 10 (1999), pp. 673�693.823

[15] Ü. V. Çatalyürek and C. Aykanat, A hypergraph-partitioning approach for coarse-grain824
decomposition, in Proceedings of the 2001 ACM/IEEE Conference on Supercomputing, SC825
'01, New York, NY, USA, 2001, Association for Computing Machinery, p. 28.826

[16] Ü. V. Çatalyürek and C. Aykanat, PaToH (partitioning tool for hypergraphs), in Encyclo-827
pedia of Parallel Computing, Springer, 2011, pp. 1479�1487.828

[17] Ü. V. Çatalyürek, C. Aykanat, and B. Uçar, On two-dimensional sparse matrix parti-829
tioning: Models, methods, and a recipe, SIAM Journal on Scienti�c Computing, 32 (2010),830
pp. 656�683.831

[18] Ü. V. Çatalyürek, E. G. Boman, K. D. Devine, D. Bozdag, R. Heaphy, and L. A.832
Riesen, Hypergraph-based dynamic load balancing for adaptive scienti�c computations, in833
2007 IEEE International Parallel and Distributed Processing Symposium, 2007, pp. 1�11.834

[19] Ü. V. Çatalyürek, E. G. Boman, K. D. Devine, D. Bozda§, R. T. Heaphy, and L. A.835
Riesen, A repartitioning hypergraph model for dynamic load balancing, Journal of Parallel836
and Distributed Computing, 69 (2009), pp. 711�724.837

[20] Ü. V. Çatalyürek, M. Deveci, K. Kaya, and B. Uçar, UMPa: A multi-objective, multi-838
level partitioner for communication minimization, Graph Partitioning and Graph Cluster-839
ing, 588 (2013), p. 53.840

[21] A. Cevahir, C. Aykanat, A. Turk, and B. B. Cambazoglu, Site-based partitioning and841
repartitioning techniques for parallel pagerank computation, IEEE Transactions on Parallel842

This manuscript is for review purposes only.



26 M. F. ÇELIKTU§, M. O. KARSAVURAN, S. ACER, AND C. AYKANAT

and Distributed Systems, 22 (2011), pp. 786�802.843
[22] C. Chevalier, F. Ledoux, and S. Morais, A Multilevel Mesh Partitioning Algorithm Driven844

by Memory Constraints, pp. 85�95.845
[23] T. A. Davis and Y. Hu, The University of Florida sparse matrix collection, ACM Trans.846

Math. Softw., 38 (2011).847
[24] M. Deveci, K. Kaya, B. Uçar, and Ü. V. Çatalyürek, Hypergraph partitioning for mul-848

tiple communication cost metrics: Model and methods, Journal of Parallel and Distributed849
Computing, 77 (2015), pp. 69 � 83.850

[25] K. Devine, B. Hendrickson, E. Boman, M. St. John, and C. Vaughan, Design of851
dynamic load-balancing tools for parallel applications, in Proceedings of the 14th Interna-852
tional Conference on Supercomputing, ICS '00, New York, NY, USA, 2000, Association for853
Computing Machinery, p. 110�118.854

[26] K. D. Devine, E. G. Boman, R. T. Heaphy, B. A. Hendrickson, J. D. Teresco,855
J. Faik, J. E. Flaherty, and L. G. Gervasio, New challenges in dynamic load balanc-856
ing, Applied Numerical Mathematics, 52 (2005), pp. 133�152. ADAPT '03: Conference on857
Adaptive Methods for Partial Di�erential Equations and Large-Scale Computation.858

[27] K. D. Devine, E. G. Boman, and G. Karypis, Partitioning and load balancing for emerging859
parallel applications and architectures, in Parallel Processing for Scienti�c Computing,860
Society for Industrial and Applied Mathematics, 2006, pp. 99�126.861

[28] E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance pro�les,862
Mathematical programming, 91 (2002), pp. 201�213.863

[29] J. Flaherty, R. Loy, P. Scully, M. Shephard, B. Szymanski, J. Teresco, and864
L. Ziantz, Load balancing and communication optimization for parallel adaptive �nite865
element methods, in Proceedings 17th International Conference of the Chilean Computer866
Science Society, 1997, pp. 246�255.867

[30] S. jun Liang, J. Cheng, and J. wei Zhang, Research on data load balancing technology868
of massive storage system for wearable devices, Digital Communications and Networks,869
(2020).870

[31] G. Linden, B. Smith, and J. York, Amazon.com recommendations: item-to-item collabo-871
rative �ltering, IEEE Internet Computing, 7 (2003), pp. 76�80.872

[32] K. Liu, G. Xu, et al., An improved hadoop data load balancing algorithm, Journal of Net-873
works, 8 (2013), p. 2816.874

[33] H. Meyerhenke, Dynamic load balancing for parallel numerical simulations based on repar-875
titioning with disturbed di�usion, in 2009 15th International Conference on Parallel and876
Distributed Systems, 2009, pp. 150�157.877

[34] S. Morais, Etude et obtention d'heuristiques et d'algorithmes exacts et approchés pour un878
problème de partitionnement de maillage sous contraintes mémoire, theses, Université879
Paris Saclay, Nov. 2016.880

[35] N. Patel and S. Chauhan, A survey on load balancing and scheduling in cloud computing,881
Int. Journal for Innovative Research in Science and Technology, 1 (2015), pp. 185�189.882

[36] D. M. Pelt and R. H. Bisseling, A medium-grain method for fast 2D bipartitioning of sparse883
matrices, in 2014 IEEE 28th International Parallel and Distributed Processing Symposium,884
May 2014, pp. 529�539.885

[37] A. Pinar and B. Hendrickson, Improving load balance with �exibly assignable tasks, IEEE886
Transactions on Parallel and Distributed Systems, 16 (2005), pp. 956�965.887

[38] O. Selvitopi, S. Acer, and C. Aykanat, A recursive hypergraph bipartitioning framework888
for reducing bandwidth and latency costs simultaneously, IEEE Transactions on Parallel889
and Distributed Systems, 28 (2017), pp. 345�358.890

[39] O. Selvitopi and C. Aykanat, Reducing latency cost in 2D sparse matrix partitioning models,891
Parallel Computing, 57 (2016), pp. 1 � 24.892

[40] C. Tzovas, M. Predari, and H. Meyerhenke, Distributing sparse matrix/graph applica-893
tions in heterogeneous clusters - an experimental study, in 2020 IEEE 27th International894
Conference on High Performance Computing, Data, and Analytics (HiPC), 2020, pp. 72�81.895

[41] B. Uçar and C. Aykanat, Minimizing communication cost in �ne-grain partitioning of896
sparse matrices, in International Symposium on Computer and Information Sciences,897
Springer, 2003, pp. 926�933.898

[42] B. Uçar and C. Aykanat, Encapsulating multiple communication-cost metrics in partition-899
ing sparse rectangular matrices for parallel matrix-vector multiplies, SIAM Journal on900
Scienti�c Computing, 25 (2004), pp. 1837�1859.901

[43] B. Vastenhouw and R. H. Bisseling, A two-dimensional data distribution method for par-902
allel sparse matrix-vector multiplication, SIAM Review, 47 (2005), pp. 67�95.903

This manuscript is for review purposes only.


	Introduction
	Framework and problem definition
	Preliminaries
	Hypergraph partitioning
	Recursive bipartitioning (RB) framework

	Proposed hypergraph models
	Hypergraph with data vertices (DV)
	Hypergraph model with inverse data weight (IW) distribution
	Discussion

	Experiments
	Baseline model
	Experimental setup
	Dataset
	Mesh partitioning instances
	SpGEMM partitioning instances
	Data size variation

	Performance comparison
	Performance metrics
	Average performance comparison
	Performance profile comparison


	Related work
	Conclusion
	References



