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Common genetic variants in the CLDN2 and PRSS1-PRSS2 loci 
alter risk for alcohol-related and sporadic pancreatitis

A full list of authors and affiliations appears at the end of the article.

Abstract

Pancreatitis is a complex, progressively destructive inflammatory disorder. Alcohol was long 

thought to be the primary causative agent, but genetic contributions have been of interest since the 

discovery that rare PRSS1, CFTR, and SPINK1 variants were associated with pancreatitis risk. We 

now report two significant genome-wide associations identified and replicated at PRSS1-PRSS2 

(1×10-12) and x-linked CLDN2 (p < 1×10-21) through a two-stage genome-wide study (Stage 1, 

676 cases and 4507 controls; Stage 2, 910 cases and 4170 controls). The PRSS1 variant affects 

susceptibility by altering expression of the primary trypsinogen gene. The CLDN2 risk allele is 

associated with atypical localization of claudin-2 in pancreatic acinar cells. The homozygous (or 

hemizygous male) CLDN2 genotype confers the greatest risk, and its alleles interact with alcohol 

consumption to amplify risk. These results could partially explain the high frequency of alcohol-

related pancreatitis in men – male hemizygous frequency is 0.26, female homozygote is 0.07.

The exocrine pancreas is a simple digestive gland of only two primary cell types, each with 

a single function (Supplementary Figure 1). Recurrent acute pancreatic inflammation can, 

but does not always, progress to irreversible damage of the gland, including fibrosis, 

atrophy, pain, and exocrine and endocrine insufficiency,1-3 known as chronic pancreatitis 

Different genetic and environmental factors produce the same clinical phenotype4.
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We collected biological samples and phenotypic data from 1000 patients with recurrent 

acute pancreatitis and chronic pancreatitis plus controls in the North American Pancreatitis 

Study 2 (NAPS2)5. The primary environmental risk factor identified was heavy alcohol 

drinking when symptoms of pancreatitis began, based on the assessment of the study 

physician, called here alcohol-related pancreatitis.

To further define genetic risk, we conducted a two-stage (discovery/replication) 

genomewide association study (GWAS). The final data set for the Stage 1 cohort included 

676 chronic pancreatitis cases and 4507controls of European ancestry (Supplementary Figs. 

2-3) genotyped at 625,739 SNPs (Table 1; Supplementary Table 1). Genomewide significant 

associations (p-value < 5 × 10-8) were identified at two loci. The most highly associated 

SNP fell in Xq23.3, dubbed the CLDN2 locus, the other in 7q34, the PRSS1-PRSS2 locus 

(Fig. 1; Table 2; Supplementary Figs. 4-5, Supplementary Table 2). CLDN2 encodes the 

protein claudin-2, while PRSS1 encodes cationic trypsinogen, and PRSS2 encodes anionic 

trypsinogen.

The Stage 2 cohort included 910 cases (331 chronic pancreatitis, 579 recurrent acute 

pancreatitis; Table 1, Supplementary Table 1), again genotyped at 625,739 SNPs, and 4170 

controls, most genotyped previously on the Illumina 1M. All subjects were of European 

ancestry as determined by genetic analyses. Recurrent acute pancreatitis and chronic 

pancreatitis were modeled as having common susceptibilities, with chronic pancreatitis 

occurring over time in the presence of additional disease-modifying factors.6 It is possible 

that this assumption reduces power relative to a study comprising solely chronic pancreatitis 

or recurrent acute pancreatitis cases. Our primary targets in Stage 2 were the PRSS1-PRSS2 

and CLDN2 loci, although we also conducted a joint analysis7 of Stage 1 and Stage 2 data to 

uncover any new risk loci. After controlling for ancestry, these data demonstrated significant 

effects for the CLDN2 and PRSS1-PRSS2 loci (Figure 1; Supplementary Table 2-3; 

Supplementary Figs. 6-7). Quality of SNP genotypes supported the association 

(Supplementary Fig. 8). The frequencies of the putative risk alleles at these 2 loci were 0.57 

for the C allele at rs10273639 (PRSS1-PRSS2 locus), with the minor T allele reducing risk, 

and 0.26 for the T allele at rs12688220 (CLDN2 locus). No other locus shows association 

after accounting for SNP genotype quality (Supplementary Figs. 6-8).

PRSS1 gain-of-function mutations, such as p.R122H, increase risk for recurrent acute 

pancreatitis and chronic pancreatitis8, as do increased copy number9,10. Rare loss-of-

function mutations in PRSS2 are protective11. However, rs10273639 is in the 5′ promoter 

region of PRSS1. Because it is the only highly associated SNP in the locus, we validated its 

genotypes by independent TaqMan genotyping and also genotyped two SNPs in linkage 

disequilibrium with it (footnote, Supplementary Table 4)1213. We screened PRSS1 for rare 

variants in 1138 subjects: 418 chronic pancreatitis, 350 recurrent acute pancreatitis, and 379 

controls. Three known disease-associated variants (A16V, N29I, R122H) were identified in 

23 subjects (Supplementary Table 4). These gain-of-function variants occur almost solely in 

cases (22 out of 23), and two of them, A16V and R122H, likely fall on the C or risk 

haplotype of this locus (Supplementary Table 4). Nonetheless, with only 19 A16V and 

R122H events in cases, these rare alleles cannot account for the association observed at this 

locus.
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Sixty-nine control pancreas tissue samples from three sources were genotyped at 

rs10273639, and cDNA was used to quantify PRSS1 and control gene expression 

(Supplementary Table 5). For all three sets of quantitative PCR data, the slope relating count 

of genotype C allele to PRSS1 expression level was positive; together, the samples provide 

evidence (p = 0.01) that alleles at rs10273639 affect expression of PRSS1: expression levels 

were highest in patients with two C alleles at rs10273639, intermediate in heterozygotes, and 

lowest in subjects with two T alleles. Based on this evidence, we posit that reduced 

trypsinogen production protects the pancreas from injury, as has been observed in genetic 

mouse models14.

CLDN2 is considered the primary candidate gene within our CLDN2 locus. Claudin-2 is 

attractive because it serves as a highly regulated tight junction protein forming low-

resistance, cation-selective ion and water channels between endothelial cells15,16 and is 

normally expressed at low levels between cells of the pancreatic ducts and in pancreatic 

islets17,18. The CLDN2 promoter includes an NFκB binding site19, and gene expression is 

enhanced in other cells under conditions associated with injury or stress20-22. Claudin-2 can 

also be expressed by acinar cells when stressed, as reported in porcine models of acute 

pancreatitis23. Other genes within the CLND2 locus include MORC4, RIPPLY1, and 

TBC1D8B. MORC4 is expressed at low levels in most tissues, including the pancreas, with 

higher levels in the placenta and testis24. The MORC4 protein contains a CW four-cysteine 

zinc-finger motif, nuclear localization signal, and nuclear matrix-binding domain, 

suggesting that it may be a transcription factor24, but its expression does not appear to 

correlate with pancreatitis (Supplementary Fig. 9). RIPPLY1 and TBC1D8B are not known 

to be expressed in the pancreas.

To our knowledge, genetic variations in CLDN2 have never been associated with disease in 

humans. We assessed DNA sequence variants around CLDN2, RNA, and protein expression 

for claudin-2 in control tissue classified by histology and genotype (Supplementary Table 6, 

Supplementary Fig. 10). Evaluating 1000 Genomes data, no exonic variation was identified 

that could explain the association signal. Using materials and methods described previously 

for PRSS1 expression, CLDN2 expression levels in control tissues did not correlate with the 

CLDN2 locus risk genotype (p-value = 0.32). Protein was extracted from the tissue, and only 

one protein band of the appropriate size was observed with anti-claudin-2 antibodies on 

Western blot, which correlated with tissue inflammation as determined by systematic 

grading of histology in adjacent tissue (Fig. 2A, Supplementary Fig. 10). 

Immunohistochemical staining with anti-claudin-2 antibodies was verified in normal tissue 

(Fig. 2B), with kidney, duodenum, and bile ducts serving as additional positive controls (not 

shown). Protein localization was assessed in 12 GWAS cases who underwent pancreatic 

surgery: 6 with the CLDN2-containing high-risk genotype and 6 without. Claudin-2 

cytoplasmic granular staining was markedly increased in both duct and acinar cells in 

chronic pancreatitis cases (Fig. 2C-E). Only chronic pancreatitis cases with the high-risk 

CLDN2 genotype demonstrated moderate-to-strong claudin-2 staining along the basolateral 

membrane of acinar cells (Fig. 2D, 2E, Supplementary Table 6). Claudin-2 was also 

expressed in macrophages, which could contribute to the pathologic inflammatory process25 

(Fig. 2C, F).
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Most studies report excessive alcohol consumption as the major risk factor for adult-onset 

chronic pancreatitis26-29. However, only 3% of patients who are alcoholics develop chronic 

pancreatitis30, suggesting a pancreas-targeting risk factor. We compared genotypes based on 

whether pancreatitis was alcohol-related (yes/no) 5,31. Setting control genotypes counts as 

the baseline category to be compared with case genotypes, the jointly estimated odds ratios 

for cases with a positive alcohol-related pancreatitis was greater for both rs10273639 

(PRSS1-PRSS2 locus) and rs12688220 (CLDN2 locus) than those estimated for cases with a 

negative alcohol-related pancreatitis (Table 3). Thus, the effects of both loci appeared to be 

amplified by alcohol consumption. In a case-only analysis, both loci appear to interact with 

alcohol-related pancreatitis (Table 3), the CLDN2 locus most prominently (p-value = 

4×10-7).

We conclude that a common allele in the PRSS1-PRSS2 locus is associated with lower 

PRSS1 gene expression and that this effect is independent of the previously reported rare 

gain-of-function PRSS1 variants that increase susceptibility to both recurrent acute 

pancreatitis and chronic pancreatitis8. For this reason, and because risk variants at the 

PRSS1-PRSS2 locus exert a similar effect in patients with recurrent acute pancreatitis or 

chronic pancreatitis, it is reasonable to conjecture that variation at rs10273639 or variation 

in linkage disequilibrium with it directly affects risk for chronic pancreatitis and recurrent 

acute pancreatitis through its impact on trypsinogen expression. Variation at the CLDN2 

locus, however, is much more strongly associated with chronic pancreatitis than recurrent 

acute pancreatitis, suggesting that it likely acts as a disease modifier to accelerate transition 

from recurrent acute pancreatitis to chronic pancreatitis. The significant association of the 

CLDN2 locus with alcohol suggests that the high-risk allele in the CLDN2 locus may modify 

risk through a non-trypsin-dependent process. Thus, we have characterized two common 

genetic risk modifiers for sporadic and alcohol-related chronic pancreatitis.

Online Methods

Subject recruitment

Details of recruitment of cases and controls are reported in Supplementary Table 1. All 

studies were conducted under institutional review board-approved protocols.

Stage 1 samples

All N = 758 Stage 1 case samples were from the North American Acute Pancreatitis Study 

(NAPS2 5) were diagnosed with chronic pancreatitis, and were characterized for alcohol-

related pancreatitis (Table 1). chronic pancreatitis occurs in less than 0.05% of the 

population, so a convenience sample provides essentially identical power as a same-sized 

sample of controls selected for the absence of chronic pancreatitis 32. For controls, we used 

genotypes from 4076 cases and controls from the Alzheimer Disease Genetics Consortium 

(ADGC) and 493 NAPS2 subjects, all genotyped on the same platform as the chronic 

pancreatitis samples.
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Stage 2 samples

The Stage 2 samples consisted of N=343 chronic pancreatitis and N=627 recurrent acute 

pancreatitis cases (Table 1, Supplementary Table 1) as well as 4191 control subjects (3986 

from the NeuroGenetics Research Consortium, NGRC, and 205 NAPS2 controls).

Genotypes

All cases and NAPS2 controls were genotyped by the University of Pittsburgh Genomics 

and Proteomics Core Laboratories using the Illumina HumanOmniExpress Beadchip. 

Samples were processed and scanned using the manufacturer's recommended protocols with 

no modifications. ADGC samples33 were also genotyped using Illumina 

HumanOmniExpress Beadchips, whereas NGRC samples 34 were genotyped on the Illumina 

Human1M-Duo DNA Analysis BeadChip.

Quality Control (QC) for Stage 1

QC was performed for individuals and then SNPs to determine which samples and SNPs 

should not be included in the analysis (“dropped’). Assessing sex miscalls based on × 

chromosome genotypes using Plink35, 7 chronic pancreatitis cases and 20 controls (10 

NAPS2; 10 ADGC) were dropped. Based on the requirement for ≥ 95% complete genotypes 

per individual, 40 cases and 27 controls (20 NAPS2 controls and 7 ADGC controls) were 

dropped. Searching duplicate or highly related samples based on genotype and using GCTA 

software 36 (Genetic Relationship Matrix score GRM > 0.4), 35 cases and 78 controls (2 

NAPS2, 76 ADGC) were dropped. After these QC filters, 676 cases and 4507 controls 

remained for association analysis.

SNP QC was first performed using NAPS2 and ADGC samples separately.. Ancestry was 

estimated using dacGem37 based on 9700 SNPs that had a genotype completion rate of 

≥99.9%, a minor allele frequency MAF ≥ 0.05, and were separated by at least 500Kb. 

Analysis of genotypes from NAPS2 subjects identified 1 significant dimensions of ancestry 

and clustered subjects into 3 groups (Supplementary Fig. 1). Groups A and B, illustrated in 

Supplementary Figure 1, delineate 764 and 282 subjects, respectively, of European ancestry 

(self-identified); SNP QC for MAF and Hardy Weinberg Equilibrium (HWE) were 

performed on data from these subjects. Of 731,442 SNPs received, 633,790 passed QC 

filters. SNPs were dropped for the following reasons: 3165 for map location; 11,977 for call 

rate; 77,300 for MAF < 0.01; and 5219 failed HWE (p-value < 0.005).

ADGC data were received in three waves of 1763, 1110, and 1266 subjects. In the first 

wave, 659,224 SNPs were received, while in waves two and three, 730,525 SNPs were 

received. After QC as described for the chronic pancreatitis cohort, including harmonization 

with SNPs passing QC in the chronic pancreatitis cohort, 604,059, 632,761, and 633,023 

SNPs remained, respectively. After merging cohorts, 30 related subjects were dropped, 

leaving 4046 ADGC subjects. Of the 633,615 unique SNPs in this ADGC, QC filters 

dropped 5 for low MAF and 5316 for HWE, leaving 628,294 SNPs. Combining ADGC and 

chronic pancreatitis cohorts and performing another round of QC yielded 625,739 SNPs for 

analysis.
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QC for Stage 2

QC for individuals was performed as described for Stage 1. These individual-specific QC 

filters removed 60 cases, leaving 331 chronic pancreatitis and 579 recurrent acute 

pancreatitis cases for analysis; 14 controls were also removed, leaving 4177 controls for 

analysis. We analyzed all SNPs passing QC at Stage 1.

Association analysis

To control confounding due to ancestry, the first 10 major eigenvectors from the spectral 

decomposition were used as covariates in Stage 1 and Stage 2 analyses38, although only one 

was significant. We contrasted the genotypes of case subjects and controls via logistic 

regression and a log-additive (logit) model using Plink35. Genotypes for any SNPs showing 

association p-value < 5 × 10-7 were manually inspected for valid genotype clustering. SNPs 

showing poor-quality clustering were excluded. Following Skol et al. 7 and others, we take 

an overall significance level of 5 × 10-8 and 5 × 10-7 for strongly suggestive association.

To determine whether alcohol interacts with genetic variation to alter risk of pancreatitis, 

data from cases were fit to a general linear model in which count of alleles or genotypes 

predicted alcohol etiology (yes/no). The test statistic was obtained as a likelihood ratio chi-

square. Note that in these analyses and any analyses other than genomewide association, we 

model the male genotypes as 0 and 2 39,40. For the genomewide association, Plink encodes 

the count of minor alleles in males as 0 and 1 and includes a sex effect, but the 0/2 encoding 

for males is a more powerful approach39,40 .

DNA extraction

DNA was obtained using standard methods41.

Pancreatic tissue processing

Tissue was obtained from two sources [Pitt and Pancreatic Adenocarcinoma Gene-

Environment Risk (PAGER) from the University of Pittsburgh and PSU from Pennsylvania 

State University] and processed in three batches: banked (Pitt) and prospectively collected 

(PAGER) surgical waste from uninvolved pancreas and normal pancreas specimens from the 

Gift of Life Program that were not used for transplantation (PSU). PAGER samples were 

snap-frozen, placed in RNAlater solution (Ambion), and stored at –80°C. PSU pancreas 

samples were also snap frozen and preserved in formalin or placed in RNAlater solution. 

RNA was isolated using Trizol reagent (Invitrogen), and its quality examined in 1% agarose 

gel stained with ethidium bromide. cDNA was transcribed using oligo dt primers and the 

Superscript II reverse transcriptase kit (Invitrogen).

Gene Expression

Relative expression of PRSS1, PRSS2, CTRC, and 18S was determined by analyzing cDNA 

using Taqman®-based rtPCR assays (Applied Biosystems). Raw absolute quantitation 

results were analyzed and converted to relative expression results by software packages SDS 

V2.3 and DataAssist V1.0 (Applied Biosystems). Assays were repeated in triplicate or 

quadruplicate. Three sets of samples were assessed, two from Pitt (N=10 and 22) and one 
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from PSU (N=37). PSU results were normalized against 18S, Pitt against CTRC. From each 

of these three data sets, mean gene expression per sample was regressed against allele count 

to obtain an estimated slope, standard error, and z-score. We then calculated an overall z-

score as a weighted average of the individual z-scores, with weights determined by sample 

size.

Antibodies

Antibodies against claudin proteins (Invitrogen) were assessed using Western blot for mouse 

anti-claudin-2 (Catalog No. 32-5600), mouse anti-claudin-4 (Catalog No. 32-9400), and 

mouse alpha-tubulin antibody (Catalog no. AA12.1 The Developmental Studies Hybridoma 

Bank at the University of Iowa, http://dshb.biology.uiowa.edu/Antibody-list). 

Immunohistochemistry was performed using monoclonal antibodies for claudin-2 (Catalog 

#32-5600,1:1,000 dilution). Immunoflourescence was performed using mouse anti-claudin-2 

(Catalog No. 32-5600) and goat anti-human CD68 (Catalog #sc-7082, Santa Cruz 

Biotechnology Inc.). The secondary antibodies for Immunofluorescence were goat anti-

mouse CY3 and anti goat Cy5 from Jackson Immunoresearch.

SDS-PAGE and WESTERN Blotting

Protein homogenates for Western blotting were obtained from snap-frozen tissue that was 

homogenized and sonicated in lysis buffer supplemented with protease inhibitors. Protein 

concentration was determined by the Bradford method using a kit from Bio-Rad. Proteins 

were separated on 12% SDS-PAGE42 followed by transfer to polyvinylidene difluoride 

(PVDF) membranes43, for Western blotting44. Immunodetection of bound antibodies on 

PVDF membrane was performed using ECL reagents (Amersham Biosciences). All 

procedures were carried out according to manufacturer instructions.

Immunohistochemistry

Standard automated immunohistochemistry was performed for claudin 2 (antibodies listed 

above) on formalin-fixed, paraffin-embedded, 5 micron-thick tissue sections. Following 

deparaffinization in xylene and rehydration in ethanol, antigen retrieval was performed 

using EDTA pH8 buffer. The Dako Autostainer Plus was used; the slides were incubated for 

30 minutes with the primary antibodies, followed by incubation with the secondary reagent 

(Mach 2 Mouse HRP Polymer from Biocare Medical) for 30 minutes. The chromogen was 

developed (Dako DAB+) for 10 minutes. The immunohistochemical stains were reviewed 

by one of the authors (A.M.K.). Cytoplasmic, granular, and membranous staining, 

predominantly in the lateral cell membranes, were graded on an intensity scale of 0-4 (0, 

negative; 1, weak; 2, moderate; 3, strong). The staining intensity was very patchy from 

lobule to lobule in most cases.

Immunofluorescence

Cryostat sections (5 micron) of pancreas were washed 3 times with phosphate-buffered 

saline (PBS), followed by 3 washes with solution of .5% BSA in PBS. Sections were 

blocked with 2% BSA solution for 30 minutes. The slides were incubated for 1 hour at room 

temperature with primary antibody for claudin-2 1:100 and goat anti-human CD68 in 0.5% 
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BSA solution. Slides were washed 3 times with BSA solution and incubated for 1 hour at 

20°C with 1:500 dilution anti-goat CY5 and 1:1000 dilution goat anti-mouse CY3 secondary 

antibodies in BSA solution. Nuclei were stained with Hoeschts dye (bisbenzamide 1mg/

100ml water) for 30 seconds. After 3 rinses with PBS, sections were cover slipped with 

Gelvatol mounting media. Fluorescent images were captured with an Olympus Fluoview 

1000 confocal microscope (software version 1.7a). The Cy5 signal (CD68) was 

pseudocolored as green to show colocalization with the red Claudin signal as yellow.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Manhattan plot showing the negative log (base 10) of the p-value for the association of SNP 

genotype with affection status for all SNPs passing quality control filters and falling within a 

selected region of the PRSS1-PRSS2 and CLDN2 loci. Regions selected to highlight the 

most associated SNPs. Squares indicate Stage 1 results, circles for Stage 2, diamonds for 

combined Stage 1 and 2 data. After accounting for the most highly associated SNP at each 

locus, no other SNP approached genomewide-significant association.
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Figure 2. 
Expression and localization of claudin-2 in the human pancreas using mouse anti-claudin-2 

antibodies based on rs12688220 genotype. A. Western blot of anti-claudin-2 antibody from 

3 control samples genotyped at rs12688220 (TT is high risk). The antibody reacts with a 

protein at ~22-23 kDa, consistent with claudin-2. Samples had inflammation and/or fibrosis 

on histology of adjacent tissue. α-tubulin, loading control. Blots from all controls are 

presented in Supplementary Figure 8. B. Anti-claudin-2 staining (brown color) of normal-

appearing control tissue localizing to ducts but not to acinar cells (scale bar=50μm). C. 

Severe chronic pancreatitis from a case with the high-risk (T male or TT female) genotype. 

Claudin-2 staining localizes to the intralobular duct (Duct), atrophic acini (*), and cells with 

morphologic appearance of macrophages (arrow)(scale bar=50μm). D. Chronic pancreatitis 

tissue from a patient with the low-risk genotype (CC or CT) with staining localizing to the 

duct and granular staining in acinar cells (scale bar = 100 μm). E. Chronic pancreatitis, high-

risk genotype with intense staining of acinar cell basolateral membrane (scale bar=100 μm, 

enlarged in inset, scale bar=10μm). F. Immunofluorescence staining of control human 

pancreatic tissue claudin-2 staining (red) localizing to the ducts (*) and co-localizing with 

the macrophage marker CD68 (green, colocalized with red is yellow, arrows. Nuclei stained 

with Hoechst's dye, blue, scale bar = 100μm).
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Table 3

Allele frequencies for rs10273639 (risk allele C) and rs12688220 (risk allele T) when data are stratified by 

controls or pancreatitis ± alcohol-related diagnosis.

Status Alcohol-related Number of individuals rs10273639
1
 (C) frequency rs12688220

1
 (T) frequency

Control -- 8029 0.576 0.261

Pancreatitis
No 1129 0.634 0.322

Yes 447 0.696 0.427

1
Using data from cases only and in a joint analysis of both SNPs, rs12688220 predicts alcohol-related pancreatitis as genotypes (χ2=29.57; DF=2; 

p-value = 4×10-7) or count of risk alleles (χ2=13.17; DF=1; p-value = 3×10-4). rs10273639 (PRSS1-PRSS2 locus) is a significant predictor (count 

of risk alleles: χ2=5.68; DF=1; p-value = 0.017; genotypes: χ2=6.05; DF=2; p-value = 0.049), even after accounting for the effects of rs12688220.
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