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Background: Biochemical analysis of S. cerevisiae MMR mutants has been limited by a lack of reconstituted MMR
reactions.
Results: 3� nick-directed Mlh1-Pms1-dependent endonuclease and reconstituted MMR reactions were developed.
Conclusion: 3� nick-directed MMR required the Mlh1-Pms1 endonuclease and was eliminated by mutations inactivating
Exo1-independent MMR.
Significance: The reconstituted MMR reactions facilitated analysis of uncharacterized MMR mutants and the mechanism of
Exo1-independent MMR.

Previous studies reported the reconstitution of an Mlh1-
Pms1-independent 5� nick-directed mismatch repair (MMR)
reaction using Saccharomyces cerevisiae proteins. Here we
describe the reconstitution of a mispair-dependent Mlh1-Pms1
endonuclease activation reaction requiring Msh2-Msh6 (or Msh2-
Msh3), proliferating cell nuclear antigen (PCNA), and replication
factor C (RFC) and a reconstituted Mlh1-Pms1-dependent 3� nick-
directed MMR reaction requiring Msh2-Msh6 (or Msh2-Msh3),
exonuclease 1 (Exo1), replication protein A (RPA), RFC, PCNA,
and DNA polymerase �. Both reactions required Mg2� and Mn2�

for optimal activity. The MMR reaction also required two reaction
stages in which the first stage required incubation of Mlh1-Pms1
with substrate DNA, with or without Msh2-Msh6 (or Msh2-Msh3),
PCNA, and RFC but did not require nicking of the substrate, fol-
lowed by a second stage in which other proteins were added. Anal-
ysis of different mutant proteins demonstrated that both reactions
required a functional Mlh1-Pms1 endonuclease active site, as well
as mispair recognition and Mlh1-Pms1 recruitment by Msh2-
Msh6 but not sliding clamp formation. Mutant Mlh1-Pms1 and
PCNA proteins that were defective for Exo1-independent but not
Exo1-dependent MMR in vivo were partially defective in the Mlh1-
Pms1 endonuclease and MMR reactions, suggesting that both
reactions reflect the activation of Mlh1-Pms1 seen in Exo1-inde-
pendent MMR in vivo. The availability of this reconstituted MMR
reaction should now make it possible to better study both Exo1-
independent and Exo1-dependent MMR.

DNA mismatch repair (MMR)2 plays a critical role in main-
taining genome stability by excising nucleotides that are misin-

corporated as a result of DNA replication errors. Because MMR
targets repair to the newly synthesized DNA strands, it reduces
the frequency of mutations that occur as a result of these DNA
replication errors (1–5). As a consequence, mismatch repair
defects underlie the development of cancers associated with
high rates of base substitution and frameshift mutations, with
the latter often occurring in microsatellite sequences, resulting
in a diagnostic phenotype called microsatellite instability
(6 –9). MMR also corrects mispaired bases in heteroduplex
recombination intermediates, thus playing a role in gene con-
version, and MMR helps to prevent recombination between
divergent sequences preventing genome rearrangements
formed by nonallelic homologous recombination (10 –15).
Whether MMR defects lead to genome rearrangements that
play a role in the development of cancer is not clear, although
MMR defective cancer cell lines have been described that have
both microsatellite instability and increased genome rearrange-
ments, suggesting that it does play a role (16).

The process of eukaryotic MMR initiates with the identifica-
tion of mispairs in the genome by two different heterodimeric
protein complexes that are homologs of the bacterial MutS
dimer protein complex, the Msh2-Msh6 (MutS homolog)
(sometimes called MutS�) and Msh2-Msh3 (sometimes called
MutS�) complexes (5, 17–22). These two complexes have dis-
tinct but overlapping mispair binding specificities and are par-
tially redundant (5, 17, 18, 22–26). After mispair recognition,
ATP binding by the Msh2-Msh6 and Msh2-Msh3 complexes
induces a conformational change, which converts these com-
plexes to a clamp form that slides along the DNA and licenses
them to recruit a complex that is related to the bacterial MutL
dimer protein complex (27–34). In Saccharomyces cerevisiae,
the major MutL-related complex that functions in MMR is
Mlh1-Pms1 (Mlh1-Pms2 in humans, sometimes called MutL�)
(35, 36). Two other MutL-related complexes exist (37–39): the
first, Mlh1-Mlh3, can substitute for Mlh1-Pms1 to a very lim-
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ited extent (37, 39), and the second, Mlh1-Mlh2, has been pro-
posed to be an accessory factor that acts in conjunction with
Mlh1-Pms1 (40). Mlh1-Pms1 (and hMlh1-Pms2) has an Mn2�-
dependent endonuclease activity that is activated in vitro on
supercoiled circular DNA by the sliding clamp proliferating cell
nuclear antigen (PCNA) and the clamp loader replication factor
C (RFC) and an endonuclease activity that is activated on
nicked, mispair-containing DNA by Msh2-Msh6 or Msh2-
Msh3, PCNA, and RFC in the absence of added Mn2� (41– 45).
This endonuclease nicks the strand containing a pre-existing
nick, presumably to provide an entry site for a mispair excision
reaction (4, 46). However, the role of additional nicks in the
DNA is unclear given that pre-existing nicks, and in particular
those that would occur at high density on the lagging DNA
strand because of discontinuous DNA synthesis, can in princi-
ple provide an entry site for the mispair excision reaction.

Exonuclease 1 (Exo1) is thought to play a role in the excision
step of MMR (47–51). However, in S. cerevisiae, deletion of
EXO1 causes only a minimal MMR defect, resulting in an
increase in mutation rate ranging from 0.1 to 10% of the
increase caused by complete loss of MMR (48, 52). Defects in
murine Exo1 also cause only a partial loss of MMR (53), and
similarly, mutations in human Exo1 have not been linked to the
development of cancer (54). These results suggest that addi-
tional excision mechanisms must play a role in MMR. The pro-
posed alternative excision mechanisms include strand displace-
ment synthesis past a mispaired site by DNA polymerase � (55),
excision by the editing exonuclease activities of DNA polymer-
ases (56), and a mechanism that might involve iterative nicking
by the Mlh1-Pms1 endonuclease (44, 45). However, additional
studies will be required to establish which if any of these mech-
anism(s) act as alternatives to Exo1-mediated excision.

Biochemical reconstitution studies have defined two types of
mispair-directed excision/repair reactions. In one reaction,
reconstituted with both S. cerevisiae and human proteins, a
combination of Msh2-Msh6 or Msh2-Msh3, Exo1, DNA poly-
merase �, the single-stranded DNA binding protein replication
protein A (RPA), PCNA, and RFC can promote the repair of a
circular mispaired substrate containing a nick on the 5� side of
the mispair (57–59). In this reaction, the mispair recognition
factors and other proteins appear to stimulate excision by Exo1
past the mispair followed by repair DNA synthesis (50, 57). In a
second reaction that has thus far only been reconstituted with
human proteins, a combination of Msh2-Msh6, hMlh1-Pms2
(MutL�), Exo1, DNA polymerase �, RPA, PCNA, and RFC can
promote the repair of a circular mispaired substrate containing
a nick on the 3� side of the mispair (58). In this reaction, the
hMlh1-Pms2 endonuclease is activated to generate nicks 5� to
the mispair, which then allows 5� excision and subsequent gap
filling to occur (41).

In comparison to human MMR, the genetics of S. cerevisiae
MMR has been extensively characterized, but the lack of a com-
plete range of reconstituted MMR systems has limited the abil-
ity to biochemically characterize the diversity of hypomorphic
mutations available in different S. cerevisiae MMR genes. Here,
we have reconstituted an Mlh1-Pms1 endonuclease-dependent
MMR reaction in vitro using purified S. cerevisiae proteins. In
addition, we used this system to study mutations that affect

steps in the activation of the Mlh1-Pms1 endonuclease, includ-
ing mutations that selectively inactivate Exo1-independent
MMR (44, 45, 52, 60), to further characterize the role of the
Mlh1-Pms1 endonuclease in facilitating MMR.

Experimental Procedures

Protein Purification—Mutations resulting in the Pms1-A99V
or Pms1-G19D amino acid substitutions were introduced into
the Pms1 expression vector pRDK1099 LEU2 GAL10-PMS1-
FLAG by standard site-directed mutagenesis methods, and the
expected sequences of the mutant PMS1 genes were verified by
DNA sequencing essentially as previously described (44). The
methods for purifying Exo1, DNA polymerase �, RPA, Msh2-
Msh6, Msh2-Msh6-F337A, Msh2-Msh3, RFC-�1N, and PCNA
have been described previously (57) and in some cases were
adapted from methods described in other studies (24, 61– 66);
many of the preparations of these proteins used were those
described previously (57). Mlh1-Pms1, Mlh1-Pms1-A99V,
Mlh1-Pms1-G19D, Mlh1-Pms1-E707K, and Mlh1-Pms1-
C848S were purified as described previously (33, 44), and many
of the protein preparations used were those described previ-
ously (33, 44). Msh2-Msh6-FF33AA was the protein prepara-
tion described in Ref. 61, and Msh2-Msh6-S1036P and Msh2-
Msh6-G1142D were the protein preparations described in Ref.
33.

Nick-directed Endonuclease Assays—Mlh1-Pms1 endonu-
clease assays were performed in 40-�l reactions containing 20
mM HEPES-KOH, pH 7.6, 140 mM KCl, 5 mM MgCl2, 0.5 mM

MnSO4, 2 mM ATP, 1 mM DTT, 0.2 mg/ml BSA, 1.2% (w/v)
glycerol, 195 fmol of Msh2-Msh6, 145 fmol of Mlh1-Pms1, 110
fmol of RFC-�1N, 145 fmol of PCNA (PCNA trimers), and 100
ng (52 fmol) of a pBS-SK-derived �1 (�T) mispaired plasmid
substrate with a nick in the �T strand at the AflIII site con-
structed as previously described (57, 67). For one experiment, a
homoduplex DNA containing an AT base pair with the A in the
strand containing the nick at the AflIII site was constructed as
previously described (57, 67). All of the reaction components
including the substrate DNA were combined in a master mix
followed by addition of the proteins and any reaction compo-
nents that were varied in individual experiments. The reactions
were incubated at 30 °C for 30 min and then terminated by
addition of 30 �l of 0.35% SDS, 0.3 mg/ml proteinase K, 400 mM

NaCl, 0.3 mg/ml glycogen, and 13 mM EDTA followed by incu-
bation at 55 °C for 15 min. The DNA present in the samples was
then purified by phenol extraction and ethanol precipitation
and linearized by digestion with ScaI. The digestion products
were then analyzed by electrophoresis through a 1% denaturing
agarose gel followed by Southern blotting with probes specific
for either the nicked or continuous strands of the substrate
DNA (41).

Denaturing Agarose Gels—To perform denaturing agarose
gel electrophoresis (41), a melted 1.1% agarose gel was first
made in distilled water. The liquid agarose was cooled to
�55 °C; NaOH and EDTA were added to final concentrations
of 50 and 2 mM, respectively, resulting in a final agarose con-
centration of 1%; and the solution was poured into an appropri-
ate slab gel. Once solidified, the gels were equilibrated in run-
ning buffer consisting of 50 mM NaOH and 2 mM EDTA for 30
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min. Ten nanograms of DNA from the endonuclease reaction
was then combined with denaturing agarose gel loading dye
consisting of 200 mM NaOH, 40 mM EDTA, 10% Ficoll (w/v)
and 0.1% bromcresol blue and loaded onto the gel, which was
then subjected to electrophoresis at 25 V for 3 h. Next, the gels
were neutralized using a buffer consisting of 1.5 M NaCl and 0.5
M Tris, pH 7, for 30 min. DNA from the neutralized gels was
then transferred to nylon membranes and probed with singly
biotinylated probes for either the nicked (5�-attatcccgtattgacg-
ccgggcaagagcaactcggtcgccgcatacact) or continuous strand (5�-
agtgtatgcggcgaccgagttgctcttgcccggcgtcaatacgggataat), which
hybridized to the substrate DNA adjacent to the ScaI site, on
the NaeI side of the ScaI site following a previously published
procedure (41) (see Fig. 1). Visualization of the Southern blots
was performed using a Thermo Scientific chemiluminescent
nucleic acid detection module, and the chemiluminescent sig-
nal was detected in the linear range using a Bio-Rad ChemiDoc
MP imaging system. The percentage of nicked product DNA
was calculated as the amount of nicked product DNA that was
smaller than 1.55 kb (nicked strand) or 2.92 kb (continuous
strand) divided by the combined signal of both the nicked and
linear DNAs. In many experiments, the amount of nicked pro-
duct observed was normalized to the amount of nicked product
observed in the complete wild-type protein reaction. In these
experiments, 100% nicking ranged from 4% (2 fmol) to 34% (18
fmol) of the substrate nicked (for an example of an individual
experiment, see Figs. 3 and 7). The standard error was calcul-
ated from the results of three or more independent experiments
and is indicated by the error bars in individual figures.

Reconstituted Mlh1-Pms1-dependent MMR Assays—Reac-
tions were performed essentially as previously described (57)
with the modification that the reactions were performed in two
stages. In the first stage, 195 fmol of Msh2-Msh6, 145 fmol of
Mlh1-Pms1, 110 fmol of RFC-�1N, and 145 fmol of PCNA were
incubated for 10 min at 30 °C with 100 ng (52 fmol) of �T
mispaired substrate with a strand discontinuity at the AflIII site
(57) in a final volume of 5 �l. The proteins and DNA were
combined in 2.5 �l and mixed with 2.5 �l of a master reaction
buffer mix containing 33 mM Tris, pH 7.6, 75 mM KCl, 2.5 mM

ATP, 1.66 mM glutathione, 8.3 mM MgCl2, 80 �g/ml BSA, 200
�M dNTPs, and 1 mM MnSO4. Following the 10-min incubation
period at 30 °C, 195 fmol of Msh2-Msh6, 145 fmol of Mlh1-
Pms1, 110 fmol of RFC-�1N, 145 fmol of PCNA (PCNA trim-
ers), 40 fmol of DNA polymerase �, 2.1 fmol of Exo1, and 900
fmol of RPA were added to the initial 5 �l along with H2O as
required and 2.5 �l of a modified version of the above master
reaction buffer mix lacking MnSO4 bringing the final reaction
volume to 10 �l followed by a 2-h incubation period at 30 °C.
The first stage reaction contained final concentrations of 0.5
mM MnSO4 and 4.2 mM MgCl2, and the second stage reaction
contained final concentrations of 0.25 mM MnSO4 and 4.2 mM

MgCl2; we did not add additional MnSO4 to the second stage
reaction because the MnSO4 present in the first stage reaction
was sufficient to support full activity. In reactions with Zn2�,
ZnSO4 was substituted for MnSO4 at the same concentration as
indicated above for MnSO4. Note that because KCl was present
in the different protein dilutions, the final KCl concentration in
the repair reaction was 100 mM. Repair was monitored by mea-

suring the extent of restoration of a PstI site located at the site of
the mispair by agarose gel electrophoresis as previously
described. In many experiments, the amount of repair observed
was normalized to the amount of repair observed in the com-
plete reaction. In these experiments, 100% repair ranged from
7.7% (4.1 fmol) to 29% (15.3 fmol) of the substrate repaired (for
an example of an individual experiment, see Fig. 1). The S.E. was
calculated from the results of three or more independent exper-
iments and is indicated by the error bars in individual figures.

Results

Mlh1-Pms1-dependent MMR Catalyzed by Purified S. cerevi-
siae Proteins—In a previous study, we demonstrated that a
combination of six purified S. cerevisiae proteins including
Msh2-Msh6 (or Msh2-Msh3), Exo1, RPA, DNA polymerase �,
PCNA, and RFC-�1N (or RFC) catalyzed mismatch-dependent
repair of a mispaired substrate containing a nick at either an
NaeI site 343 bp 5� or at an AflIII site 442 bp 3� (i.e. 2,479 bp 5�)
from the mispair (57). Both repair reactions were mediated by
5�3 3� excision catalyzed by Exo1, and addition of the Mlh1-
Pms1 endonuclease to either reaction had no effect on the effi-
ciency or extent of repair (57). In the present study, we aimed to
develop an Mlh1-Pms1 endonuclease-dependent MMR reac-
tion using a mispaired substrate containing a �1 (�T) insertion
mispair and a nick at the AflIII site 3� to the mispair. To achieve
this, three reaction parameters were investigated including: 1)
reducing the amounts of Exo1 to prevent mispair-dependent 5�
3 3� excision initiating at the AflIII site from reaching the mis-
pair, which would mask any repair initiating from nicks intro-
duced by Mlh1-Pms1; 2) separating the reaction into two reac-
tion stages to allow for the interaction of Mlh1-Pms1 with
substrate DNA; and 3) inclusion of Mn2� in the reactions at the
concentrations previously used to support the Mn2�-depen-
dent nicking activity of Mlh1-Pms1 (or human Mlh1-Pms2)
(41, 42, 44) in addition to Mg2�, to achieve optimal Mlh1-Pms1
endonuclease activation. This facilitated the development of an
optimal reaction in which a 10-min first stage reaction contain-
ing Mlh1-Pms1, Msh2-Msh6, PCNA, RFC-�1N, Mn2�, Mg2�,
ATP, and substrate DNA was then added to a second stage
reaction mixture containing Msh2-Msh6, PCNA, RFC-�1N,
Exo1, RPA, DNA polymerase �, Mg2�, and ATP followed by
incubation for different times. Mlh1-Pms1-dependent repair of
the nicked strand of the substrate DNA occurred over a 2-h
period and was detected by cleavage with PstI, whose recogni-
tion sequence in the discontinuous strand was restored by
MMR at the mispair site and ScaI to produce a diagnostic pair of
1.1- and 1.8-kb fragments (Fig. 1).

To further evaluate the reaction conditions, the requirement
of different proteins and divalent cations in the first stage reac-
tion were examined (Fig. 2). The �T mispair was repaired to
varying but significant levels when Mlh1-Pms1 alone, Mlh1-
Pms1, and Msh2-Msh6 or Mlh1-Pms1, PCNA, and RFC-�1N
were present in the first stage reaction, but the level of repair in
each case was below that observed when Mlh1-Pms1, Msh2-
Msh6, PCNA, and RFC-�1N were present in the first stage
reaction (Fig. 2A). A lower but significant amount of repair
above that seen in reactions without Mlh1-Pms1 was observed
when no protein was present in the first stage reaction, and all
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seven proteins were present in the second stage reaction (Fig.
2A), indicating that the two-stage experimental design results
in maximum levels of repair but is not absolutely required for
Mlh1-Pms1-dependent repair to occur. Interestingly, the
requirement for divalent cations in the first stage reaction
depended on whether ATP was also present in the first stage
reaction (Fig. 2B). In the presence of ATP in the first stage re-
action, a divalent cation was also required in the first stage
reaction; adding either Mn2� or Mg2� to first stage reactions
containing ATP supported repair provided both Mn2� and
Mg2� were ultimately present in the second stage reaction. In
the absence of ATP in the first stage reaction, no divalent cation
was required in the first stage, provided Mn2�, Mg2�, and ATP
were present in the second stage reaction. Although significant
levels of repair were observed when only Mg2� (or Mn2�) was

present in the repair reactions, the highest level of repair was
observed in reactions that contained ATP, Mg2�, and Mn2� in
the first stage and additional Mg2� in the second stage of the
reaction, and therefore these conditions were used in the stan-
dard repair reaction in this study. We also found that Zn2�

would fully substitute for Mn2� (Fig. 2B).
Efficient Activation of Nick-directed Mlh1-Pms1 Endonu-

clease Activity Requires Msh2-Msh6, RFC-�1N, PCNA, Mg2�,
and Mn2�—To investigate the relationship between the Mlh1-
Pms1-dependent repair reaction and the introduction of nicks
by the Mlh1-Pms1 endonuclease, we developed an assay to mea-
sure endonucleolytic processing of the nicked strand of the
AflIII mispaired substrate similar to assays described in previ-
ous studies (41, 42, 46). This endonuclease assay was similar to
the first stage of the repair assay except that the reaction volume
was 40 �l, the final salt concentration was 140 mM KCl, and the
enzymatic activity was monitored by Southern blotting using a
probe that hybridized to the nicked strand of the mispaired
substrate adjacent to the unique ScaI site (Fig. 1). This allowed
detection of smaller molecular weight species resulting from
nicks on the 1.55-kb mispair-containing fragment between the
ScaI and AflIII sites. Using this method, we observed the accu-
mulation of up to 18 fmol of nicked product (Fig. 3C, inset) in
reactions containing Mlh1-Pms1, Msh2-Msh6, PCNA, RFC-
�1N, ATP, Mn2�, and Mg2�. Mn2� was used at the concentra-
tion that was previously shown to support the Mn2�-depen-
dent nicking activity of Mlh1-Pms1 (or human Mlh1-Pms2)
(41, 42, 44). No smaller molecular weight species were observed
when the reaction products were hybridized with a probe spe-
cific for the continuous strand of the substrate DNA, indicating
that nicking only occurred on the strand containing the pre-
existing nick (Fig. 3C). In addition, nicking of the already nicked
strand was only observed above background when the substrate
contained a mispair and was not observed when the substrate
did not contain a mispair (Fig. 3D).

To further characterize the endonuclease activity, we tested
the protein and divalent cation requirements for the activation
of the Mlh1-Pms1 endonuclease. The endonuclease activity of
Mlh1-Pms1 was completely dependent on the addition of
Msh2-Msh6, RFC-�1N, and PCNA. Mlh1-Pms1 alone, Mlh1-
Pms1 together with Msh2-Msh6, or Mlh1-Pms1 with RFC-
�1N and PCNA did not did not have endonuclease activity (Fig.
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3A). Msh2-Msh3, which was not previously tested for its ability
to activate the Mlh1-Pms1 endonuclease but is known to acti-
vate the hMlh1-Pms2 endonuclease (43), was able to com-
pletely substitute for Msh2-Msh6 (see Fig. 6A). Finally,
although a significant level of endonuclease activity was
observed when either Mg2� or Mn2� alone was added to the
reactions, higher levels of endonuclease activity were observed
when both Mn2� and Mg2� were added to the reactions (Fig.
3B), and hence we included Mn2� and Mg2� in our standard
reaction conditions.

Mlh1-Pms1 and PCNA Mutants That Are Defective in Exo1-
independent MMR Have Defects in Activating the Mlh1-Pms1
Endonuclease and in Reconstituted MMR Reactions—To gain
insights into the protein requirements and mechanisms of
Mlh1-Pms1-dependent MMR in vitro, we investigated the
effects of a series of mutations in different MMR genes on the
ability of the respective MMR proteins to support MMR and
activation of the Mlh1-Pms1 endonuclease in vitro. All of the
experiments investigating MMR in vitro utilized the two-stage
repair reaction conditions described above in which the first
stage contained Msh2-Msh6, Mlh1-Pms1, PCNA, RFC-�1N,
ATP, Mg2�, and Mn2� and the second stage contained Msh2-
Msh6, PCNA, RFC-�1N, Exo1, RPA, DNA polymerase �, ATP,
and Mg2�.

We initially investigated whether four different mutant
Mlh1-Pms1 proteins could support MMR and Mlh1-Pms1
endonuclease activation in vitro. The Mlh1-Pms1-E707K and
Mlh1-Pms1-C848S proteins that have amino acid substitutions
that inactivate the endonuclease active site (44) were com-
pletely defective for endonuclease activation (Fig. 4A) and were
as defective for repair as omitting Mlh1-Pms1 (Figs. 1C and 4B),
indicating that the Mlh1-Pms1 endonuclease activity is
required for MMR in vitro. We also tested the Mlh1-Pms1-
A99V and Mlh1-G19D-Pms1 proteins, which have amino acid

substitutions that cause defects in Exo1-independent MMR but
not Exo1-dependent MMR (52). The Mlh1-Pms1-A99V and
Mlh1-G19D-Pms1 proteins were partially defective for Mlh1-
Pms1 endonuclease activation (Fig. 4A). Consistent with this
result, substituting the Mlh1-Pms1-A99V and Mlh1-G19D-
Pms1 proteins for Mlh1-Pms1 in the reconstituted MMR reac-
tion resulted in modestly reduced repair but not to the extent
observed in the endonuclease active site mutants (Fig. 4B); this
difference likely reflects the fact that Mlh1-Pms1-A99V and
Mlh1-G19D-Pms1 are only partially defective for endonuclease
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active site and Exo1-independent MMR on activation of the Mlh1-Pms1
endonuclease and Mlh1-Pms1 dependent-MMR in vitro. A, four-protein
Mlh1-Pms1 endonuclease reactions with the �1 (�T) substrate containing a
3� nick at the AflIII site, 0.5 mM MnSO4, and 5 mM MgCl2 were performed for 30
min as described in Fig. 3A and under “Experimental Procedures.” In all cases,
the level of nicking obtained was normalized to the level of nicking observed
in the complete, standard reaction. The presence of wild-type or mutant
Mlh1-Pms1 complexes containing the indicated amino acid substitutions in
the reactions is indicated by the key below the histogram. B, two-stage repair
reactions with the �1 (�T) substrate containing a 3� nick at the AflIII site were
performed for 2 h as described in Fig. 1 and under “Experimental Procedures.”
In all cases, the level of repair obtained was normalized to the level of repair
observed in the complete, standard repair reaction. The presence of wild-
type or mutant Mlh1-Pms1 complexes containing the indicated amino acid
substitutions in the first stage reaction is indicated by the key below the
histogram.
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activation and given the longer incubation times used in the
reconstituted MMR reactions likely contribute enough nicking
to allow significant levels of repair to occur.

Because the mutant Mlh1-Pms1 proteins that have defects in
Exo1-independent but not Exo1-dependent MMR had reduced
activity in both mispair-directed Mlh1-Pms1 endonuclease
activation and reconstituted MMR reactions, we next analyzed
two mutant PCNA proteins, PCNA-E143K and PCNA-C81R.
PCNA-E143K was originally identified in genetic screens for
pol30 mutations causing defects in Exo1-independent but not
Exo1-dependent MMR (52), and PCNA-C81R was originally
identified in a screen for pol30 mutations causing general MMR
defects (68). The pol30-C81R mutation was later found to cause
much stronger defects in Exo1-independent MMR compared
with Exo1-dependent MMR (45, 69). These two mutants were
previously shown to have altered interactions with Msh2-Msh6
but to be fully proficient for supporting Mlh1-Pms1-mediated
nicking of supercoiled homoduplex DNA substrates in reac-
tions containing Mlh1-Pms1, RFC-�1N, and PCNA (45). The
PCNA-E143K mutant was severely, but not completely, com-
promised in Mlh1-Pms1 endonuclease activation, whereas the
PCNA-C81R mutant was almost completely defective in Mlh1-
Pms1 endonuclease activation (Fig. 5A). Consistent with this
observation, the PCNA-E143K mutant was partially defective
in supporting MMR in vitro, whereas the PCNA-C81R showed
an even greater defect in supporting MMR in vitro, but neither
was completely defective for supporting MMR in vitro, even
when the level of PCNA present in the repair reactions was
reduced to 25% of the amount of PCNA present in the standard
repair reaction (Fig. 5B). A control experiment showed that
these mutant PCNA proteins were proficient for supporting
repair of the 5� nicked substrate whose repair does not require
Mlh1-Pms1 (57), indicating that these mutant PCNA proteins
are proficient in the PCNA-dependent gap filling reaction (Fig.
5C). This indicates that the PCNA-E143K and PCNA-C81R
defects specifically reduced the ability of PCNA to support the

activation of the Mlh1-Pms1 endonuclease on nicked mis-
paired substrates.

Mispair Recognition and Mlh1-Pms1 Recruitment but Not
Sliding Clamp Formation or Interaction with PCNA by Msh2-
Msh6 Are Required for Mlh1-Pms1 Endonuclease Activation
and MMR in Vitro—We next investigated a series of mutations
affecting the Msh2-Msh6 complex for their effects on activa-
tion of Mlh1-Pms1 endonuclease activity and Mlh1-Pms1-de-
pendent MMR by analyzing the following four mutant Msh2-
Msh6 complexes: 1) the Msh2-Msh6-FF33AA mutant that is
defective for interacting with PCNA through the Msh6 PIP Box
motif (61, 70); 2) the Msh2-Msh6-F337A mutant that has
defects in mispair recognition (19, 57); and 3) two dominant
mutant proteins including Msh2-Msh6-S1036P that has a
defect in binding ATP at the Msh2 ATP-binding site and that
does not form sliding clamps or recruit Mlh1-Pms1 (31–33);
and Msh2-Msh6-G1142D that can bind ATP at both ATP bind-
ing sites does not form sliding clamps but can still recruit Mlh1-
Pms1. We also tested whether Msh2-Msh3 could substitute
for Msh2-Msh6. Omission of Msh2-Msh6 or substitution
of Msh2-Msh6 with the mispair recognition defective Msh2-
Msh6-F337A resulted in a loss of activation of the Mlh1-Pms1
endonuclease and a significant reduction of repair in the recon-
stituted Mlh1-Pms1-dependent MMR reaction (Fig. 6). In addi-
tion, consistent with results obtained with human Msh2-Msh6
(MutS�) (71, 72), eliminating the ability of Msh6 to interact
with PCNA (Msh2-Msh6-FF33AA) did not reduce activation of
the Mlh1-Pms1 endonuclease or cause a defect in MMR in vitro
(Fig. 6). Msh2-Msh3 was able to substitute for Msh2-Msh6 in
both the Mlh1-Pms1 endonuclease activation and the reconsti-
tuted Mlh1-Pms1-dependent MMR reactions consistent with
previous analysis of the reconstituted 5� nick-driven MMR
reaction and studies on the activation of the hMlh1-Pms2
endonuclease (43, 59) (Fig. 6).

The two dominant Msh2-Msh6 mutants had distinctly dif-
ferent behaviors in the Mlh1-Pms1 endonuclease activation
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and reconstituted MMR reactions. The Msh2-Msh6-S1036P
mutant was highly defective for activating the Mlh1-Pms1
endonuclease, whereas the Msh2-Msh6-G1142D was profi-
cient for activating the Mlh1-Pms1 endonuclease, suggesting
that Mlh1-Pms1 recruitment but not sliding clamp formation is
required for activation of the Mlh1-Pms1 endonuclease (Fig.
6A). The Msh2-Msh6-S1036P and Msh2-Msh6-G1142D com-
plexes both fully supported MMR in vitro (Fig. 6B), which in the
case of the Msh2-Msh6-S1036P mutant was surprising because
this mutant was highly defective in activating the Mlh1-Pms1
endonuclease. We confirmed that the reconstituted MMR
reaction containing the Msh2-Msh6-S1036P complex required
the Mlh1-Pms1 endonuclease and was significantly reduced
when the endonuclease active site mutant Mlh1-Pms1-E707K
was substituted for wild-type Mlh1-Pms1 (Fig. 7A). After exam-
ining the differences between the Mlh1-Pms1 activation assay
and the in vitro MMR assay, we found that increasing the KCl

concentration in the reconstituted MMR reaction from 100 to
140 mM, which is the KCl concentration in the Mlh1-Pms1
endonuclease activation assays, reduced the amount of repair in
the presence of Msh2-Msh6-S1036P but not wild-type Msh2-
Msh6 (Fig. 7B). Additionally, lowering the KCl concentration in
the Mlh1-Pms1 endonuclease activation assay from 140 to 100
mM restored activation of the Mlh1-Pms1 endonuclease in the
presence of the Msh2-Msh6-S1036P protein (Fig. 7C). This
indicates that Msh2-Msh6-S1036P has a salt-sensitive defect in
the activation of the Mlh1-Pms1 endonuclease.

Discussion

A key challenge in elucidating MMR mechanisms is linking
the biochemical properties of purified MMR proteins and
reconstituted MMR reactions to MMR mechanisms in vivo.
Achieving this would allow determining whether the biochem-
ical properties of MMR proteins and reconstituted MMR reac-
tions can account for MMR in vivo and allow identification of
features of MMR that have not yet been reconstituted in vitro.
To facilitate these efforts, in the present study we have recon-
stituted Mlh1-Pms1-dependent 3� nick-directed MMR reac-
tions, as well as Msh2-Msh6-dependent, Mlh1-Pms1 endonu-
clease reactions using S. cerevisiae proteins. Critical to this
effort have been the development of a two-stage MMR reaction
and the identification of an essential divalent cation require-
ment for MMR in vitro. The availability of this reconstituted
MMR reaction now makes it possible to exploit the wealth of
MMR-defective mutations identified in genetic studies to
explore the relationships between the biochemical properties
of MMR proteins and MMR mechanisms in vivo.

We observed that a mixture of Msh2-Msh6 (or Msh2-Msh3),
Mlh1-Pms1, Exo1, RPA, PCNA, RFC, DNA polymerase �, ATP,
Mg2�, and Mn2� repaired a mispaired plasmid substrate con-
taining a �1 (�T) mispair and a 3� nick located 442 bp from the
mispair in an Mlh1-Pms1-dependent, Msh2-Msh6 mispair
recognition-dependent reaction. We also observed a
mispair-dependent, mispair-recognition-dependent, nick-
directed nicking reaction catalyzed by Msh2-Msh6 (or Msh2-
Msh3), Mlh1-Pms1, PCNA, and RFC under essentially the
same reaction conditions. Three modifications of our previ-
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FIGURE 6. Effect of mispair recognition, PCNA interaction, sliding clamp
formation, and Mlh1-Pms1 recruitment-defective msh6 mutations on
activation of Mlh1-Pms1 endonuclease activity and Mlh1-Pms1-depen-
dent MMR in vitro. A, four-protein Mlh1-Pms1 endonuclease reactions with
the �1 (�T) substrate containing a 3� nick at the AflIII site, 0.5 mM MnSO4, and
5 mM MgCl2 were performed for 30 min as described in Fig. 3A and under
“Experimental Procedures.” In all cases, the level of nicking obtained was
normalized to the level of nicking observed in the complete, standard reac-
tion. The presence of wild-type or mutant Msh2-Msh6 complexes containing
the indicated amino acid substitutions in the reactions is indicated by the key
below the histogram. B, two-stage repair reactions with the �1 (�T) sub-
strate containing a 3� nick at the AflIII site were performed for 2 h as described
in Fig. 1 and under “Experimental Procedures.” In all cases, the level of repair
obtained was normalized to the level of repair observed in the complete,
standard repair reaction. The presence of wild-type or mutant Msh2-Msh6
complexes containing the indicated amino acid substitutions or Msh2-Msh3
in the reactions is indicated by the key below the histogram.
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ously reported reconstituted 5� nick-directed MMR system
were required to observe Mlh1-Pms1-dependent MMR in vitro
(57). First, it was necessary to reduce the levels of Exo1 to limit
long-patch 5� nick-directed MMR from the AflIII nick that
potentially obscures Mlh1-Pms1-dependent repair; however, it
should be noted that this modification possibly reduces the effi-
ciency of excision from nicks introduced by Mlh1-Pms1. Sec-
ond, it was necessary to add both Mg2� and Mn2� to the reac-
tions to observe optimal Mlh1-Pms1-dependent nicking and
Mlh1-Pms1-dependent MMR in vitro. This is in contrast to
previous studies of MMR reconstituted with human proteins
and mispair-dependent nicking of DNA catalyzed by human
Msh2-Msh6 (or Msh2-Msh3), Mlh1-Pms2 (MutL�), PCNA,
and RFC or S. cerevisiae Msh2-Msh6, Mlh1-Pms1, PCNA, and
RFC, which only required Mg2�; however, these studies did not
appear to test whether addition of Mn2� or Zn2� would stim-
ulate the reactions reported (41, 42, 46, 58, 59). The most likely
explanation for this is that the divalent cation bound at the
Mlh1-Pms1 endonuclease active site was lost during our puri-
fication of Mlh1-Pms1, creating a requirement for Mn2� or
Zn2�, because this metal binding site is not expected to bind
Mg2� (41, 44, 73, 74). Finally, it was necessary to develop a
two-stage reaction where at a minimum, the first stage reaction
contained Mlh1-Pms1 and substrate DNA, and the second
stage reaction additionally contained all of the remaining reac-
tion components. The endonuclease activity of Mlh1-Pms1 was
required in the reconstituted MMR reaction and a combination
of Msh2-Msh6 (or Msh2-Msh3), PCNA, and RFC was required
to activate the Mlh1-Pms1 endonuclease to nick the mispaired
substrate on the nicked strand under the reaction conditions
used. The most likely mechanism of MMR under these condi-
tions involves nicking of the substrate on the nicked strand
close enough on the 5� side of the mispair for the previously
characterized short patch repair reaction to excise and resyn-
thesize the nicked DNA strand in the vicinity of the mispair as
previously shown for human MMR (41).

Optimal Mlh1-Pms1-dependent MMR required a first stage
reaction containing Msh2-Msh6 (or Msh2-Msh3), Mlh1-Pms1,
PCNA, RFC and substrate DNA, whereas inclusion of only
Mlh1-Pms1 and substrate DNA in the first stage reaction
resulted in �50% (Fig. 2A) of maximal activity. The inclusion of
ATP alone did not support a functional first stage reaction,
whereas the inclusion of ATP plus a divalent cation or divalent
cations alone supported functional first stage reactions.
Because the Mlh1-Pms1 endonuclease was inactive under sev-
eral of the functional first stage reaction conditions (Mlh1-
Pms1 alone with substrate DNA under any condition; Msh2-
Msh6, Mlh1-Pms1, PCNA, RFC, and substrate DNA without
ATP and divalent cations including Mn2�), the first stage reac-
tion does not likely involve nicking of the substrate DNA but
rather likely provides an opportunity for Mlh1-Pms1 to interact
with the substrate DNA.

The MutL N-terminal domains and the equivalent Mlh1 and
Pms1 N-terminal domains are known to associate on binding
ATP, resulting in a ring-like conformation in which the associ-
ated N-terminal domains are joined to the dimerized C-termi-
nal domains of MutL or Mlh1 and Pms1, respectively, by two
unstructured linkers (73, 75– 80). The N-terminal domains

then dissociate from each other upon hydrolyzing ATP, which
requires a divalent cation, and ADP release (76 –79). Interest-
ingly, the only conditions where the first stage reaction is func-
tional are when the ATP binding and hydrolysis-driven Mlh1
and Pms1 N-terminal domain association and dissociation
cycle is active (ATP and Mg2� or Mn2�) or when the N-termi-
nal domains of Mlh1 and Pms1 are not able to interact with
each other (�ATP). In contrast, conditions that support stable
association of the N-terminal domains of Mlh1 and Pms1 (ATP
without Mg2� or Mn2�) did not support a functional first stage
reaction. This suggests that either the free N-terminal domains
of Mlh1 and Pms1 or a region of one or both of the Mlh1 and
Pms1 linkers that is blocked by the associated N-terminal
domains of Mlh1 and Pms1 is critical for the activity of Mlh1-
Pms1 in the first stage reaction.

Consistent with previously published studies (41, 42, 46), a
combination of Msh2-Msh6 (or Msh2-Msh3), Mlh1-Pms1,
PCNA, and RFC was found to promote nicking of the nicked
strand of the mispaired substrate under essentially the same
reaction conditions as the complete MMR reaction, provided
the reactions contained ATP, Mg2�, and Mn2�. Analysis of
different mutant proteins revealed that activation of the Mlh1-
Pms1 endonuclease required mispair recognition by Msh2-
Msh6 and key amino acid residues of the Mlh1-Pms1 endonu-
clease active site. However, consistent with previous studies of
hMsh2-Msh6 (71), activation did not require the interaction
between PCNA and the Msh6 PIP Box, which is consistent with
a specific role of the PCNA-Msh6 PIP Box interaction in cou-
pling MMR proteins to DNA replication (61, 69). Analysis
of two dominant MMR-defective Msh2-Msh6 mutants (81)
showed that the ability to promote mispair-dependent recruit-
ment of Mlh1-Pms1 was important for activation of the Mlh1-
Pms1 endonuclease but that the formation of ATP-induced
mispair-dependent sliding clamps was not required (31–33).
Overall, these results suggest that a mispair recognition-depen-
dent ATP-induced conformational change in Msh2-Msh6,
most likely needed for recruitment of Mlh1-Pms1 but not for
sliding clamp formation, is required for activation of the Mlh1-
Pms1 endonuclease, similar to the activation of the MutH
endonuclease by MutS and MutL (82, 83). These results also
suggest that formation of Msh2-Msh6 sliding clamps (27, 28,
30), which is important for MMR (31–33), likely plays a yet
unknown role in MMR that is independent of recruitment and
activation of the Mlh1-Pms1 endonuclease.

To investigate the relationship between activation of the
Mlh1-Pms1 endonuclease in the four-protein system to the
Exo1-independent and Exo1-dependent MMR pathways that
have been identified in genetic studies, we investigated four
mutant proteins that are defective in Exo1-independent MMR
but are proficient in Exo1-dependent MMR (44, 45, 52). Two
mutant PCNA proteins, PCNA-E143K and PCNA-C81R,
which have altered interactions with Msh2-Msh6 but are fully
proficient in PCNA- and RFC-dependent activation of the
Mlh1-Pms1 endonuclease on supercoiled DNA substrates (45),
were significantly but not completely defective in activating the
Mlh1-Pms1 endonuclease on nicked mispaired substrates in
the presence of Msh2-Msh6 and RFC. These results raise the
possibility that some type of interaction between Msh2-Msh6
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and PCNA is important for the activation of the Mlh1-Pms1
endonuclease, even though the interaction between the Msh6
PIP Box and PCNA is not required for activation of the Mlh1-
Pms1 endonuclease. Similarly, two mutant Mlh1-Pms1 com-
plexes having amino acid substitutions in the N-terminal
domains of either Mlh1 or Pms1 that only compromise Exo1-
independent MMR (52) were significantly but not completely
defective in activation of the Mlh1-Pms1 endonuclease in the
four-protein nicking reaction. Little is known about the specific
biochemical defects caused by these two amino acid substitu-
tions, although because of their locations (52) they could affect
interactions between ATP and the N-terminal domains of
Mlh1 and Pms1 (78, 79). Overall, these results support the
hypothesis that higher levels of activation of the Mlh1-Pms1
endonuclease are required for Exo1-independent MMR com-
pared with the levels of Mlh1-Pms1 endonuclease activation
required to support Exo1-dependent MMR (44, 45).

The biochemical properties of the reconstituted Mlh1-
Pms1-dependent MMR reaction generally corresponded to
those of the Msh2-Msh6 (or Msh2-Msh3), PCNA, RFC, and
mispair-dependent activation of the Mlh1-Pms1 endonuclease.
These include the defects caused by the Msh6 mispair recogni-
tion-defective mutation, the Mlh1-Pms1 endonuclease active
site mutations, the Exo1-independent MMR-specific muta-
tions affecting PCNA and Mlh1-Pms1, and the defect caused by
the Msh6-S1036P amino acid substitution at high KCl concen-
trations, as well as the lack of an effect of the Msh6 PIP Box-
PCNA interaction-defective mutation and the Msh6-G1142D
defect. Overall, these results suggest that the reconstituted
Mlh1-Pms1-dependent MMR reaction corresponds to a reac-
tion in which Mlh1-Pms1 endonuclease activation, potentially
at the higher levels corresponding to that required for Exo1-
independent MMR (44, 45), is coupled to a 5� mispair-depen-
dent excision reaction requiring Exo1 in vitro (50, 57, 84).
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