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METHODOLOGY ARTICLE Open Access

A machine learning approach for accurate
and real-time DNA sequence identification
Yiren Wang1*, Mashari Alangari2, Joshua Hihath2, Arindam K. Das3 and M. P. Anantram1*

Abstract

Background: The all-electronic Single Molecule Break Junction (SMBJ) method is an emerging alternative to
traditional polymerase chain reaction (PCR) techniques for genetic sequencing and identification. Existing work
indicates that the current spectra recorded from SMBJ experimentations contain unique signatures to identify
known sequences from a dataset. However, the spectra are typically extremely noisy due to the stochastic and
complex interactions between the substrate, sample, environment, and the measuring system, necessitating
hundreds or thousands of experimentations to obtain reliable and accurate results.

Results: This article presents a DNA sequence identification system based on the current spectra of ten short
strand sequences, including a pair that differs by a single mismatch. By employing a gradient boosted tree classifier
model trained on conductance histograms, we demonstrate that extremely high accuracy, ranging from
approximately 96 % for molecules differing by a single mismatch to 99.5 % otherwise, is possible. Further, such
accuracy metrics are achievable in near real-time with just twenty or thirty SMBJ measurements instead of
hundreds or thousands. We also demonstrate that a tandem classifier architecture, where the first stage is a
multiclass classifier and the second stage is a binary classifier, can be employed to boost the single mismatched
pair’s identification accuracy to 99.5 %.

Conclusions: A monolithic classifier, or more generally, a multistage classifier with model specific parameters that
depend on experimental current spectra can be used to successfully identify DNA strands.

Keywords: Single Molecule Break Junction, All-electrical detection, Conductance probability distribution, DNA
sequence identification, Machine learning

Background
DNA (Deoxyribonucleic acid) is one of the most essential
and fundamental macromolecules for all forms of life.
Therefore, the method to determine the arrangement of ni-
trogenous bases, DNA sequencing, has become an indis-
pensable technique [1, 2]. Since the 1970 s, researchers
have developed polymerase chain reaction (PCR) based
methods to increase the throughput and accuracy and de-
crease both the time and cost of DNA sequencing. Current
sequencing technologies are divided into short-read and

long-read methods [3, 4]. Short-read methods have higher
accuracy, lower cost, and smaller processing time [5]. How-
ever, they need the creation of many copies of the same
DNA strand, a process known as amplification. Long-read
methods can sequence a DNA molecule with more than
30,000 base pairs at once and are able to more accurately
resolve complex regions of a DNA strand [6]. However, the
accuracy of current long-read methods is still lower than
short-read ones. The processing time and cost of the long-
read methods are also disadvantaged compared to short-
read methods [4]. Therefore, it has become critical to ex-
plore new methods to identify/sequence DNA strands. In
this article, we demonstrate that “current data obtained
from short-read sequences can be used for sequence
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identification with extremely high accuracies, without the
need for amplification.”
Currently, no molecular detection and identification

technique exists that can speedily, reliably, and without
the need for amplification steps, detect or identify a low
copy or a wide range of single biologically relevant mole-
cules. A promising technique is an all-electronic method
that would identify DNA or proteins based on the charac-
teristic measurements of current [7]. This all-electronic
DNA sequence identification system experiences nonlin-
ear interactions between the substrate, sample, environ-
ment, and measuring system that are inherently stochastic
[8, 9]. It has been extremely challenging for physics-based
models to capture the differences in current between
nominally different DNA strands. With the emergence of
machine learning tools over the last decade, there is an in-
creased interest in utilizing these methods to identify mol-
ecules from the current’s signature. Recently, surface-
enhanced Raman spectroscopy [10], scanning tunneling
spectroscopy (STS) [9, 11, 12], scanning tunneling micros-
copy break junction (STM-BJ) [13], and the measurement
of ionic current blockade in nanopores [14] have been
used to identify/sequence single-stranded DNA, RNA, and
peptides. Identification of small molecules from a mixture
was also recently demonstrated using machine learning
classification methods [15–17].
In this paper, we demonstrate that double-stranded DNA

molecules can be classified extremely accurately using ma-
chine learning methods operating on experimental quantum
transport data. Typical classification accuracies for mole-
cules which are structurally different exceed 99.9 %. Even in
the case of DNA-RNA hybrids from E. coli with a single
base pair mismatch, our methods are able to differentiate
between them with an accuracy of over 96 %. The overall ac-
curacy over ten datasets of different molecules is 98.85 %,
with an average classification time of 27.49 µs (on a 2.2 GHz
processor with 16 GB RAM) for each processed data input.
However, we demonstrate that the accuracies of ‘problem-
atic’ sequences such as S3 and S4 can be boosted to around
99.5 % if a two-stage classifier (a multiclass model cascaded
with a binary model) is employed instead of a single-stage
classifier. Our analysis and simulation results demonstrate
the potential of combining current spectra and ML methods
as a diagnostic tool for real-time detection and classification
of genetic sequences.

Results and discussion
Overview of classification approach
Raw current traces from SMBJ experiments [18] (Sup-
plementary Figure S1) are first converted to conductance
traces through a series of pre-processing steps, details of
which are available in Supplementary Information Secs. 1
and 2. Histograms are then derived from the conduct-
ance traces. Figure 1 shows the empirical large sample

conductance histograms for our ten datasets (see Table 1
for details) using an R2 test threshold of β = 0.95. We
refer to these histograms as large sample histograms
since these are based on thousands of conductance
traces for each dataset (see Supplementary Table S11 for
number of traces). From a practical perspective, how-
ever, strand level identification needs to be made from
reasonably accurate histograms constructed from the
fewest number of conductance traces possible. This is
necessary to avoid imposing a costly experimental bur-
den, which can potentially detract from adoption of
current-based methods for applications which demand
almost real-time genetic sequence determination.
Ideally, we would like to conduct a successful (with mo-

lecular binding) experiment once and be able to predict the
strand from the resulting conductance values. However,
given the substantial noise and uncertainty inherently asso-
ciated with the current state of SMBJ experimentation, a
compromise is necessary. We train and evaluate our classi-
fiers based on H-sample conductance histograms - histo-
grams constructed from randomly sampled H ‘valid’
conductance traces (whether a trace is deemed valid or not
is determined by the R2 test threshold β) - and study the
impact of the parameter H on classifier accuracy. Hence-
forth, we will refer to histograms constructed from reason-
ably small values of H, e.g. H ≤ 20, as small sample
histograms. Additionally, we define any histogram based on
H = 30 as a baseline histogram. Figure 2 shows a represen-
tative large sample, baseline, and small sample (H = 10) his-
tograms for datasets S1 and S8. We observe that while the
conductance distribution of S8 changes significantly at H =
30 (note the multiple peaks in the conductance range
10�4; 10�2½ �G0), the distribution of the baseline histogram
for S1 appears to be relatively consistent with its large sam-
ple counterpart. The significant change in the conductance
histogram for S8 at H = 30 probably alludes to unique con-
tact configurations between DNA and electrodes. Neverthe-
less, expecting consistently perfect experimental conditions
is a luxury in practice and classifier models need to be rela-
tively robust to such uncertainties.

Starting with ten datasets, we trained classifier
models using two different target class labeling
schemes. In the first scheme (TLS-1), unique DNA
strands were assigned different class labels, irrespect-
ive of the voltage bias used for current measurement
during SMBJ experiments, resulting in six target clas-
ses. In the second scheme (TLS-2), the datasets are
assigned unique class labels based on the (strand,
voltage bias) tuple, resulting in eight classes. Add-
itional details and justification for using the different
labeling schemes are available in Supplementary Infor-
mation Sec. 2.1. For both labeling schemes, we ran-
domly partitioned our conductance traces, 70 % for
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Table 1 Details of the ten datasets used in this paper

Label Sequence Bias Note Solvent / Buffer

S1 Octanedithiol 0.30 V Not a DNA/RNA mesitylene

S2 5’-CCC GGG CCC GGG-3’
3’-GGG CCC GGG CCC-5’

0.01 V 100mMP + 100uL + 30uL

S3 5’-CGA CCC CTC UUG AAC-3’
3’-GCT GGG GAG AAC TTG-5’

0.05 V E. coli O157:H7 10uL + 75 μm+ 600MC_50BC_20RR

S4 5’-CGA CCC CTC UUG AGC-3’
3’-GCT GGG GAG AAC TTG-5’

0.05 V E. coli O175:H28
One mismatch from S3

30ul + 7.5 μm+ Rg

S5 5’-CGA CCC CCC UUG AAC-3’
3’-GCT GGG GAG AAC TTG-5’

0.30 V E. coli ED1a
One mismatch from S3

75 μm+ 10uL

S6 5’-CCC GGG CCC GGG-3’
3’-GGG CCC GGG CCC-5’

0.10 V Same as S2 100mMP + 100uL + 30uL

S7 5’-CCC GGG CCC GGG-3’
3’-GGG CCC GGG CCC-5’

0.20 V Same as S2 100mMP + 100uL + 30uL

S8 5’-CCC GGG CCC GGG-3’
3’-GGG CCC GGG CCC-5’

0.01 V Same as S2 100mMP + 100uL + 20uL

S9 5’-CCC GGG CCC GGG-3’
3’-GGG CCC GGG CCC-5’

0.10 V Same as S2 100mMP + 100uL + 50uL

S10 5’-GGG TTT GGG-3’ 0.01 V G-quadruplex secondary structures 100mMP + 100uL + 30uL

Fig. 1 Large sample histograms of all data classes. The R2 test is: ‘accept current trace if R2≤ β = 0.95’. After the current traces are R2 filtered, one
histogram is constructed per class, using all available current traces, which are converted to conductance traces after low pass filtration (see
Figures S2 and S3 for details)
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training and 30 % for testing. To reduce any potential
bias due to the initial split, each simulation was re-
peated 100 times with a random train/test split. For
each simulation, H traces were sampled randomly
from each class to generate a conductance histogram.
This process was repeated for a total of Nhist = 700
times per class, where Nhist is the number of histo-
grams. The total number of training samples is, there-
fore, 4200 for TLS-1 (six classes) and 5600 for TLS-2
(eight classes). A similar procedure was adopted for
evaluating classifier performance, except we chose
Nhist = 300 per class. The total number of testing
samples is therefore 1800 for TLS-1 and 2400 for
TLS- 2. All accuracy metrics reported in this paper
are averaged over 100 random test splits.
We experimented with three different classification

paradigms, (i) multilayer perceptron artificial neural net-
work (ANN), (ii) support vector machine (SVM) with a
radial basis function kernel, and (iii) extreme gradient
boosting (XGboost). Since the performances of ANN
and SVM methods were generally at par with or slightly
worse than XGboost, we will concentrate on the per-
formance of the boosted method in this article. Broadly
speaking, XGboost [19] is a fast and scalable implemen-
tation of a gradient boosted decision tree framework
[20]. Gradient boosting is an ensemble learning method
wherein weak base learners (usually decision trees) are

added sequentially, one at each iteration, to minimize a
suitably defined loss function evaluated on the previous
learner. Within XGboost, the loss function is cross en-
tropy for multiclass classification problems. For details
on gradient boosting in general, we refer the reader to
Hastie’s article [21]. We used the Python implementa-
tion of the XGboost package [22]. Two critical hyper-
parameters within an XGboost framework are the
number of trees/estimators, Nest, and the depth of each
tree/estimator, Dest. Based on extensive hyperparameter
optimization, we chose Nest = 200 and Dest = 2. Add-
itional details can be found in the Methods section.
Let Nbins denote the number of bins for a conductance

probability histogram. We define a baseline classifier as
one which is characterized by the following parameters:
(i) Nbins = 600 (i.e., each training sample is a 600 dimen-
sional probability vector), (ii) R2 ≤ β = 0.95 in the pre-
processing sequence, and (iii) H = 30. On a finer note,
we add that the first and last bins of the histograms were
removed to avoid any spikes induced by current clipping
in the first pre-processing step (see Supplementary Fig-
ures S2 and S3). Therefore, the actual number of histo-
gram bins used is 598, or in general, Nbins – 2, whatever
be the value of Nbins reported in this paper.
In the subsequent sections, we first discuss the perfor-

mances of the baseline classifiers for both target class la-
beling schemes, followed by an analysis of their

Fig. 2 Comparison of large sample, baseline, and small sample histograms.(a), (d) Large sample, (b), (e) baseline (H = 30) and (c), (f) small sample
(H = 10) conductance probability histograms for datasets S1 (a-c) and S8 (d-f)
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sensitivities to the choice of Nbins, β, and H. Irrespective
of the choice of Nbins, β, and H, we have consistently
used Nhist = 700 per class for training and Nhist = 300
per class for testing. All classifier accuracy results re-
ported are averaged over 100 evaluations. Finally, we
refer the reader to Supplementary Information Sec. 3 for
t-SNE and multidimensional scaling maps of our data.
These low dimensional visualizations provide broad in-
sights into the structure of the data and are useful in de-
riving insights into classifier performance.

Performance of baseline classifiers
Figure 3 shows the confusion matrices of the baseline
classifiers for both target class labeling schemes. We re-
call that datasets S2, S6, S7, S8, and S9 pertain to the
same DNA strand, though with three different bias volt-
ages. First, we observe that classifier accuracies for these
five datasets are not affected by choice of the labeling
scheme. Highly accurate strand level identification is
possible whether the data is labeled based purely on
strand type or a finer (strand type, bias voltage) tuple.
Any ML framework should be able to utilize data from
instrumentation that uses less sensitive current ampli-
fiers. Lower sensitivity current amplifiers require a larger
bias to record current. As the bias increases, molecular
conformation may change in manners that are not yet
fully understood or characterized. Consequently, the
ability to detect a strand independent of the bias applied
is invaluable. Second, we observe that classes S3 and S4
can be differentiated with an accuracy exceeding 96.5 %,
despite the fact that S4 is just a single mismatch mutant
of S3. Although TLS-2 seems to enjoy a slight edge in
performance as far as S3 and S4 are concerned, the dif-
ference is not appreciable to claim a definite advantage
for any particular labeling scheme. Third, we note that

class S5 poses no issues for the baseline classifiers and is
always identified perfectly. Fourth, whenever (S2, S8) is
misclassified, it is predicted to be S10, and vice versa.
This is consistent with the low dimensional visualiza-
tions shown in Supplementary Figures S4 and S5. Fi-
nally, we observe that, barring S3 and S4, the XGboost
baseline classifiers work phenomenally well with individ-
ual class accuracies exceeding 99.5 % for H = 30. For S3
and S4, the accuracies are within 96.2–96.7 %. Our in-
vestigations indicate that instead of a single classifier, a
tandem classifier architecture, consisting of a primary
classifier involving all classes and a secondary binary
classifier operating only on S3 and S4 (see Supplemen-
tary Table S2), can significantly boost the prediction ac-
curacies of classes S3 and S4 to approximately 99.5 %.
Additional details are available in Supplementary Infor-
mation Sec. 4 (see in particular, Supplementary Figures
S6 and S7).

Performance analysis of baseline classifiers with respect
to the R2 test threshold parameter, β
Figure 4(a) and (b) show the accuracy of the baseline
classifiers with respect to (w.r.t) the R2 test threshold
parameter, β, corresponding to the two different target
labeling schemes, maintaining Nbins = 600 and H = 30
(for detailed confusion matrices, see Supplementary Fig-
ure S8). Intuitively, we should expect a higher number
of invalid (no molecule) or somewhat invalid (traces
which are substantially similar to an exponential decay)
traces to be rejected for lower values of β. Provided an
adequate number of traces are retained after this step,
this should yield a clean pool of valid traces to sample
from, which should translate to improved or similar clas-
sifier accuracies. However, we observe that the accuracy
for S1 drops significantly for lower values β with both

Fig. 3 Confusion matrices for baseline classifiers. (a) Confusion matrices corresponding to target labeling scheme TLS-1 with 6 classes. (b)
Confusion matrices corresponding to target labeling scheme TLS-2 with 8 classes
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Fig. 4 Performance analysis of baseline classifiers with respect to (w.r.t) β, Nbins, and H. (a), (b) Accuracy of baseline classifiers w.r.t the R2 test
threshold parameter, β, corresponding to target labeling scheme TLS-1 with 6 classes (a) and TLS-2 with 8 classes (b). We chose the same color
but different line types to distinguish between datasets [S2,S8], [S6,S9], and [S7], which are of the same strand but use different bias voltages. (c),
(d) Accuracy of baseline classifiers w.r.t the number of histogram bins, Nbins, corresponding to target labeling scheme TLS-1 with 6 classes (c)
and TLS-2 with 8 classes (d). Similar color scheme and line types as in (a, b) have been used to distinguish between datasets [S2,S8], [S6,S9], and
[S7]. (e), (f) Accuracy of baseline classifiers w.r.t the number of traces used to compute a conductance histogram, H, corresponding to target
labeling scheme TLS-1 with 6 classes (e) and TLS-2 with 8 classes (bs). We chose the same color but different line types to distinguish between
datasets [S2,S8], [S6,S9], and S7, which are of the same strand but use different bias voltages.
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labeling schemes, as does the accuracy for S7 for TLS-2.
This can be explained by the fact that only 103 and 207
current traces remain for S1 and S7 respectively, when
β = 0.87. Even though Nhist = 700 for all classes during
training, the shallow pool of traces to sample from
means that a substantial number of the training histo-
grams for these two classes are reasonably similar and
do not contribute to classifier learning. On the other
hand, datasets S3 and S4 show an almost 8 % improve-
ment in accuracy as β is lowered from 1.0 to 0.87. This
result can be further understood by observing the t-SNE
visualization (see Supplementary Figure S4), which
shows a mostly clean separation between the S3 and S4
clouds at β = 0.87. At the lower end of β, 532 and 874
current traces remain for S3 and S4 respectively, enough
for meaningful repeated sampling. We postulate that, for
reasonably high values of β, small/medium sample train-
ing histograms of these two classes are somewhat con-
taminated by invalid or substantially invalid traces,
which masks out the true differences we expect between
the two classes. A lower value of β which aggressively fil-
ters out raw traces, decreases the odds of histogram con-
tamination, and allows the classifier to discover subtle
differences, leading to a substantial enhancement in ac-
curacy. Therefore, we conclude that a ‘one β fits all’ pol-
icy need not be the most prudent choice for all classes
of data.

Performance analysis of baseline classifiers with respect
to the number of histogram bins, Nbins

Figure 4(c) and 4(d) show the accuracy of the baseline
classifiers w.r.t the number of histogram bins, Nbins, cor-
responding to the two different target labeling schemes,
maintaining β = 0.95 and H = 30 (for detailed confusion
matrices, see Supplementary Figure S9). Typically, histo-
grams with small bin-widths are preferred because they
closely resemble the underlying probability distribution.
This is affirmed in Fig. 4(c) and 4(d), where we observe
that the accuracies are generally highest when the num-
ber of bins is large (600), except for classes 3 and 4. For
these two classes, we observe that a coarse binning strat-
egy with just 60 bins has better accuracy for both label-
ing schemes, which is evidence that ‘finer is not always
better’ when it comes to choosing the granularity of the
conductance histograms. While we do not have a defin-
ite explanation for why a fewer number of bins is better
for S3 and S4, we conjecture that a fine binning strategy,
especially when coupled with smallish values of H, gen-
erates ‘pseudo-features’ which are detrimental to learn-
ing by overfitting due to curse of dimensionality. We
conjecture that a coarse binning strategy with its inher-
ent noise averaging properties appears to avoid this issue
and maybe a better choice for distinguishing between
molecules which differ in one or few mismatches.

It is also interesting to note that Nbins = 200 appears
to be a reasonable choice for all classes for both labeling
schemes, except S3, S4, and S10. While we have ad-
dressed the issues with (S3, S4) in the preceding para-
graph, we hypothesize that the increased accuracy of S10
as Nbins increases is related to the low-dimensional over-
lap of S2, S8, and S10, as illustrated in Supplementary
Figures S4 and S5. Stated differently, these three classes
benefit from a sufficiently high number of dimensions
(bins), which allows the classifier to narrow in on the
fine differences between (S2, S8) and S10. In general,
coarse binning has the effect of smoothing out these
subtle differences, resulting in a drop of class accuracy.

Performance analysis of baseline classifiers with respect
to the number of traces used to compute a conductance
histogram, H
Figure 4(e) and 4(f) show the accuracy of the baseline
classifiers w.r.t the number of traces used to compute a
conductance histogram, H, corresponding to the two dif-
ferent target labeling schemes, maintaining Nbins = 600
and β = 0.95 (for detailed confusion matrices, see Supple-
mentary Figure S10). In this case, we expect ‘more is bet-
ter’ from a performance perspective when it comes to
choosing a proper value for H, since histograms con-
structed from a sufficiently large number of traces
should more closely approximate the underlying con-
ductance distribution. This is corroborated in Fig. 4(e)
and 4(f), with the only exception being S7 for TLS-2. For
this class, the accuracy shows a consistently decreasing
trend, dropping from almost 100–98.9 % as H is in-
creased from 10 to 50. From our simulations, we find
that the misclassification probabilities for S7 are 0.009
and 0.011 for H = 40 and 50 respectively, and in both
cases, the probability that S7 is predicted to be S5 is
0.007, based on results averaged over 100 runs. There-
fore, whenever S7 is misclassified, about 70 % of the
time, it is incorrectly predicted to be S5. At first glance,
the reason for this exception might appear to be related
to data scarcity since dataset S7 has 538 valid conduct-
ance traces to sample from at β = 0.95. With larger
values of H such as 40 or 50, it is plausible that the cor-
pus of training histograms for S7 is not diverse enough
for the ensemble classifiers to properly learn to distin-
guish S7 from other classes in the database. However, if
we observe the accuracy of S1, it does not exhibit a simi-
lar performance degradation as S7, despite the fact that
only 528 valid traces remain at β = 0.95. An explanation
for this contradictory behavior can be derived from a
visual examination of the large sample conductance his-
tograms shown in Fig. 1. To the naked eye, the large
sample histograms for S5 and S7 appear somewhat simi-
lar, while S1 stands out from all other datasets due to its
pronounced peak at a conductance value of
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approximately10�6G0. For smaller values of H, we be-
lieve that the inherent small sample variability induces
small differences (which can be viewed as additive noise)
between S5 and S7 histograms, which aids with classifier
generalization. Stated differently, we suspect that the
XGboost classifier may be overfitting on S7 at larger
values of H, which could be compounded by the data
scarcity issue. On the other hand, we hypothesize that
the acuity of the signature dominant peak at 10�5G0 for
S1 is relatively immune to the choice of H, which en-
sures that its classification accuracy remains consistently
high across H.
While a higher value of H may be generally better

from a performance perspective, it imposes an undue
burden in practice since an SMBJ experiment needs to
be conducted multiple times to make a highly accurate
visual prediction. Specifically, if the probability of any
experiment being valid (with molecular binding) is p,
which of course depends on the R2 test threshold param-
eter β, the average number of times an experiment needs
to be conducted is H/p.

Conclusions
Identification of genetic material from signatures in
current traces has been pursued for over a decade. The
conductance histograms from experimentally measured
currents are intrinsically noisy, with values ranging over
three orders of magnitude. Further, physics-based theory
and modeling approaches have so far been ineffective in
capturing the noisy nature of experimental data with
enough accuracy to reveal sequence information. This is
because the number of atoms involved is extremely
large, the environment fluctuates, and there are a large
number of DNA-contact configurations, which makes it
impossible to model the system in a realistic manner. As
a result, identifying genetic material from current spec-
tra has remained a challenge. In this work, we have dem-
onstrated that a ML based approach using
experimentally obtained current spectra is extremely
successful in identifying DNA strands. Conductance
traces were sampled randomly (H at a time) to construct
the conductance histograms and an XGboost classifier
was trained on the histograms. The computational time
for strand identification from raw experimental data
using a trained model is as small as 28 µs, which makes
our approach suitable for real-time implementation. For
molecules which are sufficiently different structurally,
we obtain an accuracy of 99.8 % with β ≥ 0.95 and H as
small as 20–30. For DNA-RNA hybrids from E. coli with
just a single base pair mismatch, our methods can
achieve similar accuracy, but with a more stringent set
of parameters, β = 0.90 and H = 50. In general, we ob-
serve that a monolithic classifier model trained on

multiple data classes may not provide comparably high
accuracy for genetic samples which differ by a single
mismatch, especially if H is kept reasonably low in the
interest of rapid detection and classification in practice.
Our investigations reveal that a tandem classifier ap-
proach, where the first stage is a multiclass classifier and
the second stage is a binary classifier operating exclu-
sively on molecules with single base pair mismatches,
can be an attractive architectural proposition for boost-
ing the accuracies of such samples to around 99.5 % with
a reasonable H = 30. Overall, our approach shows tre-
mendous potential for accurate, fast, cheap, and amplifi-
cation free DNA strand identification. Extremely short
computational times, along with demonstrated high ac-
curacies, makes single-molecule sensing using the
current spectra possible in real-time and establishes it as
a feasible candidate for diverse time-critical sequence
identification applications, including clinical diagnostics.

Methods
Data acquisition
The SMBJ experiments are conducted at room
temperature using a Molecular Imaging Pico-STM. The
STM probe is connected to a Digital Instruments Nano-
scope IIIa controller which records the current traces.
For a more detailed experiment setup, please refer to
[18]. Subsequently, the current traces are converted to
conductance traces, details of which are available in Sup-
plementary Information Secs. 1 and 2.
For each experiment, a small volume of RNA:DNA hy-

brid molecule is first injected between two gold elec-
trodes (the tip and substrate), meeting a desired
concentration level. A bias voltage within the range of
50–300 mV is applied between the two gold electrodes.
The STM probe, which is controlled by the LabView
program, is then moved towards the substrate at a rate
of approximately 80 nm/s until the current saturates the
preamplifier (~ 100 nA). The tip is then retracted at the
same rate until the current reaches the lower limit of the
preamplifier (~ 10 pA). The whole process is repeated
until the tip reaches the edge of the substrate. Among
the thousands of collected traces, a significant number
shows a predominantly exponentially decaying form,
which implies that no molecules were captured between
the tip and the substrate (invalid experiment). A small
number of current traces shows steps and flat regions
(in general, substantial deviations from an exponentially
decaying characteristic), which is indicative of a success-
ful molecular binding between the tip and the substrate.

Data pre-processing
A series of pre-processing steps were used to convert
the experimentally obtained SMBJ current traces to
conductance histograms. Since the recorded current
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values are the outputs of a preamplifier, which has a
noise floor of 10 pA and an upper limit of 100 nA,
all current traces were first limited to the threshold
range [10 pA − 100 nA].
Due to uncertainties in the data acquisition process,

sometimes an experiment is conducted even when no
molecule is attached to the electrode. Such experiments
are deemed to be invalid. Invalid current traces exhibit a
predominantly exponential decay over time. Since our
datasets had a mix of valid and invalid traces for each
molecule, in the second pre-processing step, we fit an
exponential model to the current traces and adopted an
R2 test with a suitable threshold to accept/reject a trace.
In the third pre-processing step, all accepted current

traces were low pass filtered. Traces for data classes S1
to S9 were filtered with a cutoff frequency of 9 kHz,
while those for data class S10 were filtered with a cutoff
frequency of 3 kHz. In both cases, the cutoff frequencies
correspond to 60 % of the folding frequencies (half the
sampling rate). Since the sampling rate during the data
acquisition phase for S10 was 10 kHz., compared to
30 kHz. for S1−S9, all S10 current traces were linearly
interpolated by a factor of 3 after low pass filtration.
Finally, the processed current traces were converted to

conductance traces, which were then sampled randomly
to generate the conductance histograms normalized to
probabilities. Additional details on the pre-processing
phase are available in Supplementary Information Sec. 2.

XGboost
We used the Python implementation of the XGboost
package available at19. Two critical hyperparameters
within XGboost are the number of trees/estimators, Nest,
and the depth of each tree/estimator, Dest. Optimal
values of these parameters were determined based on an
exhaustive grid search on values indicated below:

Dest ¼ 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 16; 18; 20

Nest ¼ 10; 50; 100; 150; 200; 250; 300; 350; 400; 500; 600; 700

Based on validation accuracies, we determined that
reasonable values are (Nest = 200, Dest = 2) or (Nest =
150, Dest = 3). For all simulations, we chose the first par-
ameter combination to reduce the computational time.
All other parameters were left at their default values. In
particular, the default value of the learning rate or
shrinkage parameter is 0.3.
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