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Abstract 

Functional Brain Network Organization Supporting Executive Control Processing 

by 

Courtney Leigh Gallen 

Doctor of Philosophy in Neuroscience 

University of California, Berkeley 

Professor Mark D’Esposito, Chair 

 

Executive control comprises a set of neural processes that are critical for goal-directed 
behaviors, such as attention and working memory. Such complex behaviors likely rely 
on the flexible communication within and between brain sub-networks, or modules. In 
this thesis, I present several projects that use graph theoretical methods to describe the 
brain as a complex network and examine the role of brain network organization in 
supporting aspects of executive control processing. Across these projects, I use a 
variety of methods, such as functional magnetic resonance imaging (fMRI), functional 
connectivity, and cognitive training. 

The first chapter of this thesis examines the influence of attention demands on brain 
network organization. Here, I show that brain network modules become more integrated 
during the processing of relevant stimuli compared with the processing of irrelevant 
distractors during a working memory N-back task. The strength of this reconfiguration is 
related to faster task performance, suggesting its importance in executive control. 

The second chapter of this thesis examines the influence of aging on reconfiguration of 
brain networks due to executive control (i.e., N-back load) demands. Here, I 
demonstrate that older adults exhibit changes in brain network organization at lower 
levels of demand compared with young adults. Further, brain network reconfiguration 
from a task-free ‘resting-state’ to an N-back task is related to better task performance 
and greater structural connectivity of a core frontal-posterior white matter tract. 

The final two chapters of this thesis examine how brain network organization can predict 
gains in executive control processing after cognitive interventions. The first project 
shows that the extent of segregation of brain network modules (i.e., higher network 
modularity) is predictive of greater training-related cognitive gains in older adults. The 
second project extends this predictive framework to healthy young adults. 

In sum, these projects demonstrate that brain networks flexibly reconfigure depending 
on executive control demands and that aspects of brain networks are predictive of 
training-related gains of executive control. These findings provide insight into how 
properties of large-scale brain networks allow for executive control processing.  
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Chapter 1 

INTRODUCTION 
Aspects of executive control processing, such as attention and working memory, are 
critical for guiding goal-directed behavior. It is thought that these and other complex 
behaviors rely on communication between groups of brain regions or brain sub-
networks (Mattar et al., 2015; Medaglia et al., 2015). Graph theoretical tools can be 
used to describe the brain as a complex network that is comprised of such sub-
networks, or modules. Analyses of structural MRI and resting-state fMRI data have 
found that the brain exhibits a modular organization (Sporns and Betzel, 2015), where 
highly modular networks have dense connections within, and sparse connections 
between, modules (Newman and Girvan, 2004). It is thought that this type of network 
organization allows for segregated processing of specialized behaviors within modules 
and integrated processing of complex behaviors across modules (Meunier et al., 
2009b). 

While functional brain networks exhibit modular organization during task-free resting-
states, there is growing evidence that this type of organization is flexible and 
reconfigures due to varying executive control demands (Kitzbichler et al., 2011; Stanley 
et al., 2014; Liang et al., 2015; Vatansever et al., 2015; Wen et al., 2015). Specifically, 
higher working memory demands (e.g., increasing N-back load) are associated with 
increased connectivity between network modules, thus decreasing their segregation or 
the ‘modularity’ of the network. Further, participants exhibiting greater network 
reconfiguration with increasing demands perform faster (Kitzbichler et al., 2011; 
Vatansever et al., 2015). This pattern of reconfiguration due to varying executive control 
demands has been interpreted to represent the formation of a global neuronal 
‘workspace’ (Dehaene et al., 1998) in which greater cognitive effort is supported by 
increased communication between network modules.  

However, the majority of these previous studies have examined reconfiguration that 
occurs across entire task blocks with varying cognitive demands and has not examined 
more rapid changes in network properties that can occur on an individual-trial basis due 
to changing task goals. The first project in this dissertation examined changes in 
network properties that occur during an N-back task with intervening distracting stimuli 
(Gallen et al., in preparation). I found that brain networks exhibit decreased modularity 
selectively to relevant stimuli compared to distractors. Moreover, the extent of this 
reconfiguration was related to faster task performance. These results suggest that brain 
networks can flexibly adopt a less modular, ‘workspace’, organization to guide behavior, 
depending on changing attention demands during working memory. 

In addition to reconfiguration due to cognitive demands, there is evidence that aging is 
associated with changes in the modular organization of the brain. Several studies of 
structural and functional brain networks have shown that older adults have less modular 
brain networks than young adults (Meunier et al., 2009a; Chen et al., 2011b; Onoda and 
Yamaguchi, 2013; Chan et al., 2014; Geerligs et al., 2014a), which is thought to reflect 
decreased segregation, or integrity, of brain network modules in aging. Despite this, the 



	 2 

majority of these studies have examined age-related changes in network properties in 
the absence of a task. As aging is associated with declines in executive control 
properties like working memory (Park et al., 2002; Grady, 2008; 2012), it is important to 
also examine how brain networks reconfigure during cognitive processing in older 
adults. The second project in this dissertation examined how aging alters the 
reconfiguration of brain networks due to working memory demands (Gallen et al., 2016). 
I found that, while young adults exhibit network reconfiguration between a task-free 
resting state and the most demanding N-back condition, older adults also exhibited this 
pattern of reconfiguration at lower levels of demand. In older adults, network 
reconfiguration was related to greater connectivity of a frontal-posterior white matter 
tract and faster task performance, suggesting that it is important for supporting 
executive processing in aging. 

While aging is associated with declines in various aspects of cognition, there is also 
evidence that these declines are not immutable. Previous studies have shown that 
interventions aimed to improve aspects of executive control processing can enhance 
functioning and underlying functional connectivity between brain regions in older adults 
(Chapman et al., 2015; Cao et al., 2016). However, while there is often variability in 
training responses across individuals, relatively few studies have examined neural 
predictors of training-related gains in older adults. One previous study in patients with 
traumatic brain injury (TBI) found that individuals with more modular brain networks 
during a task-free resting-state exhibited greater training-related gains in aspects of 
executive control processing (Arnemann et al., 2015). In the final two projects in this 
dissertation, I examined whether this predictive framework could be extended to healthy 
populations, namely older and young adults. In the first of these projects (Ch. 4), I found 
that older adults who had more modular brain networks exhibited greater training-
related gains in aspects of strategic reasoning, particularly in sub-networks thought to 
mediate ‘associative’ functions compared with those involved in sensory-motor 
processing (Gallen et al., submitted). In the second project (Ch. 5), we found a similar 
relationship between pre-training network modularity and training-related gains in 
attention in a group of young adults (Baniqued, Gallen et al., in preparation). The 
findings of these two projects suggest that brain network modularity may be a unifying 
biomarker that can predict training-related outcomes across a variety of interventions 
and populations. 

Together, these projects provide evidence for the importance of functional brain network 
organization in successful executive control processing. Reconfiguration of brain 
networks due to varying cognitive demands supports behavioral performance in both 
young and older adults. Further, properties of brain networks during a task-free resting-
state can be used to index gains in executive control after cognitive interventions. The 
results of these studies add to evidence that examination of functional brain networks is 
critical for understanding complex behavior. 
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Dissertation Outline 

• Ch. 2: Effects of attention on brain network organization during working memory 
(Gallen et al., in preparation) 

• Ch. 3: Reconfiguration of brain networks to support executive control in aging 
(Gallen et al., 2016) 

• Ch. 4: Brain network predictors of training-related cognitive gains in older adults 
(Gallen et al., submitted) 

• Ch. 5: Brain network predictors of training-related cognitive gains in young adults 
(Baniqued, Gallen et al., in preparation) 

	  



	 4 

Chapter 2 

INFLUENCE OF SELECTIVE ATTENTION ON BRAIN NETWORK RECONFIGURATION 
DURING WORKING MEMORY 

	

2.1 Abstract 

Selective attention underlies our ability to attend relevant stimuli while ignoring irrelevant 
stimuli, a critical process for prioritizing information in working memory. Prior work has 
shown that visual cortical areas are modulated by attention demands during working 
memory; however, it is not yet understood how large-scale brain networks reconfigure 
between the processing of relevant versus irrelevant information in the service of 
working memory. Here, we investigated the effects of selective attention on brain 
network structure during working memory performance. Using task-related functional 
connectivity and graph theoretical measures, we quantified changes in network 
modularity, a measure of the integrity of modular network organization, that occurred 
depending on task conditions. Network modularity was reduced while subjects were 
engaged in a 1-back condition with varying attention demands compared to a baseline 
condition. Further, during the 1-back trials, network modularity was selectively reduced 
during the processing of relevant stimuli compared to irrelevant stimuli. This effect was 
strongest in default mode and visual sub-networks or modules. Finally, greater changes 
in network modularity between processing relevant versus irrelevant stimuli were related 
to more rapid task performance for relevant stimuli. These results suggest that brain 
networks reconfigure while attending relevant stimuli to adopt a more globally 
distributed organization in which there is greater communication between modules. 
More integration between network modules for attended stimuli supports better working 
memory performance. 

 

2.2 Introduction 

Goal-directed behavior is critical for guiding our actions within the capacity limitations of 
the brain. Selective attention enables us to focus on relevant information in the 
environment while ignoring distracting information, and it influences the perception and 
maintenance of information in working memory. Not surprisingly, a large body of work 
suggests that selective attention and working memory are intimately related (Gazzaley 
and Nobre, 2012). Varying selective attention demands have been shown to influence 
the activity of sensory cortical regions important for stimulus processing. Stimulus-
selective regions show increased activity when attending relevant information and 
decreased activity when ignoring irrelevant information (Gazzaley et al., 2005a; 
Gazzaley, 2011). These effects are not thought to be a property of sensory regions per 
se, but are instead guided by top-down modulatory connections from prefrontal and 
parietal control areas. Using task-based functional connectivity analyses (Rissman et 
al., 2004), regions of prefrontal cortex have been shown to be more connected to 
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scene-selective sensory regions when scenes were attended and less connected when 
scenes were ignored during the encoding phase of a working memory task (Gazzaley et 
al., 2007). Further work has aimed to characterize the connectivity changes between 
brain sub-networks and sensory regions depending on task goals. Visual regions were 
more connected with prefrontal and parietal cortex during the processing of relevant 
stimuli and were more connected to regions of the default mode network during the 
processing of irrelevant stimuli (Chadick and Gazzaley, 2011), suggesting that sensory 
regions are differentially connected with brain sub-networks depending on task goals. In 
line with this work, it is thought that the effects of attention on goal-directed behavior, 
such as working memory, emerge from the interactions between multiple brain regions 
or distributed brain networks (Buschman and Kastner, 2015). However, the interactions 
among large-scale brain networks during varying attention demands during working 
memory have not been fully examined. 

Communication among brain sub-networks can be quantified with graph theoretical 
tools that model the brain as a complex network comprised of separable sub-networks 
or modules. Modular network organization is thought to be important for guiding 
behavior in that it enables local processing within modules for more specialized 
functions and global processing between modules for more complex functions (Meunier 
et al., 2009b; 2010). The integrity of modular network organization can be quantified 
with a modularity metric—highly modular networks have dense connections within 
modules and sparser connections between modules.  

Neuroimaging studies have shown that the brain exhibits a modular organization in 
terms of both structural connections and functional connections measured during task-
free resting states (Sporns and Betzel, 2015). There has also been a recent effort to 
examine how this modular organization changes during task performance, particularly 
working memory tasks. Work using N-back tasks has shown that the modular network 
structure of the brain is affected by increasing task demands (i.e., N-back load) 
(Kitzbichler et al., 2011; Braun et al., 2015; Vatansever et al., 2015; Wen et al., 2015). 
In more demanding N-back conditions, brain networks exhibit decreased modularity, 
which is thought to reflect increased integration between network modules to support 
increased cognitive demands (Kitzbichler et al., 2011; Vatansever et al., 2015; Wen et 
al., 2015). Other task-based fMRI studies have also highlighted the behavioral 
importance of network modularity, such as auditory perception (Sadaghiani et al., 2015) 
and visual awareness (Godwin et al., 2015).  

Building on this previous work, we here sought to use task-related functional 
connectivity analyses (Rissman et al., 2004) to investigate how the modular 
organization of the brain changes with varying attention during working memory 
performance. Using a 1-back task with high selective attention demands and a 
comparison 0-back condition, we first examined how brain modularity is altered with 
task condition. We next examined how modularity fluctuates throughout the duration of 
a task condition depending on whether the stimuli are relevant or irrelevant. Finally, we 
examined how the reconfiguration of modularity with differing task goals is related to 
performance. 



	 6 

2.3 Materials and Methods 

2.3.1 Participants 

75 healthy young adults (49 females; age range = 18-38, three subjects over 30 years 
old) recruited for six separate studies were included in this analysis. Participants were 
screened to exclude those with any history of neurologic or psychiatric disorders, or, for 
Study 3, abnormal or infrequent menstrual cycles or use of a hormonal birth control. 
Informed consent was obtained from participants in accordance with the Committee for 
the Protection of Human Subjects at the University of California, Berkeley. 

We included participants with a minimum of four blocks for each cognitive task condition 
(see below). This resulted in 26 subjects from Study 1, 10 subjects from Study 2, 11 
subjects from Study 3, 15 subjects from Study 4, 5 subjects from Study 5, and 8 
subjects from Study 6.  

2.3.2 Cognitive task 

The cognitive task performed during fMRI scanning was an N-back task for faces and 
scenes that consisted of either 16 (N = 17 participants) or 20 (N = 58 participants) 
blocks lasting approximately two minutes each (Figure 2.1). Separate analyses using 
this cognitive task have been previously published for Studies 1-4 (Lee and D'Esposito, 
2012; Cohen et al., 2014). Each task block contained 20 trials of consecutively 
presented face and scene stimuli (10 of each) during which participants were instructed 
to either attend to and remember images from the relevant stimulus category, while 
ignoring images from the irrelevant category, or to attend both categories. Each 
stimulus was presented for 600 ms, with a 2.4, 4.4, or 6.4 s jittered delay (randomly 
ordered) between each stimulus presentation. The four conditions varied working 
memory and selective attention demands and were referred to as: ‘Categorize,’ ‘Select 
Scenes,’ ‘Select Faces,’ and ‘Select Both.’ As we were interested in the processing of 
relevant and irrelevant stimuli, we focused on analyzing data from the Select Scenes 
and Select Faces conditions and included data from Categorize as a baseline 
comparison condition. Data from the Select Both condition was not included in our task-
related functional connectivity analyses. 
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Figure 2.1. Experimental design for the cognitive task. Each task condition consisted of 20 sequentially 
presented stimuli (10 faces and 10 scenes). Colored lines under the stimuli are presented for illustrative 
purposes and were not present during performance of the cognitive task. Dashed red lines highlight 1-
back matches for the relevant stimulus condition.  

 

In Categorize blocks, participants indicated with a button press whether the current 
image was a face or a scene, with no attempt to remember the image. In Select Scenes 
blocks, participants were instructed to selectively attend to and remember images from 
the relevant category (scenes) and ignore images from the irrelevant category (faces). 
In Select Faces blocks, participants were instructed to selectively attend to and 
remember images from the relevant category (faces) and ignore images from the 
irrelevant category (scenes). In Select Scenes and Faces blocks, participants indicated 
if the currently attended image matched the previous image in the same category; 
participants responded to all ignored items with the ‘no-match’ button. Finally, in Select 
Both blocks, participants were instructed to attend to and maintain both the face and 
scene stimuli. If the current image matched the previous image of the same category, 
participants pressed the ‘match’ button. Participants completed four or five blocks of 
each condition during the scanning session, yielding a maximum of 40 or 50 face and 
scene stimuli for each task condition. 

2.3.3 MRI acquisition and preprocessing 

Imaging data were collected on 3T Siemens Trio scanners at the University of 
California, San Francisco Neuroscience Brain Imaging Center (Study 3) or the 
University of California, Berkeley Brain Imaging Center (all other studies). T1-weighted 
structural and T2*-weighted echo planar images (EPIs) were collected with a 12-
channel head coil for all studies.  
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Functional data were collected using GRAPPA with acceleration factor 2 for Studies 3, 
4, 6, and two subjects in Study 5 (TE = 27 ms) and no parallel imaging for Study 2 (TE = 
32 ms), Study 1 (TE = 24 ms), and three subjects in Study 5 (TE = 24 ms). All studies 
used 18 5 mm axial slices with a 0.5 mm gap (interleaved slices for Studies 2, 3, 4, 6, 
and two subjects in Study 5; descending slices for Study 1 and three subjects in Study 
5). All studies collected functional volumes with TR = 1000 ms and a 3.5 mm2 in-plane 
resolution. Four or five 114-volume runs of each of the four task conditions were 
collected, yielding a total of 30.4 or 38 minutes of task data. A high-resolution axial MP-
RAGE T1-weighted sequence was used to acquire structural images for all studies (TR 
= 2300 ms, TE = 2.98 ms, FA = 9°, 1 mm3 voxels). 

Standard preprocessing of EPI data was carried out with AFNI and FSL. EPI volumes 
were slice-time and motion corrected, co-registered to the T1-weighted structural image, 
and warped to the MNI template space using FSL's non-linear registration. Intensity 
spikes were removed and interpolated with AFNI after slice-time and motion correction. 
Functional data were resampled to 2 mm isotropic voxels, combining motion correction 
and atlas transformation in a single interpolation. MNI-warped functional data were 
spatially smoothed with a 6 mm full width at half maximum Gaussian kernel and scaled 
so that each voxel’s run mean was equal to 100.  

2.3.4 Task-related functional connectivity analyses 

We first parcellated the brain into a set of 264 atlas regions (Power et al., 2011). To 
calculate the task-related functional connectivity between each pair of ROIs for specific 
conditions, we implemented a beta-series correlation analysis (Rissman et al., 2004). 
For each subject, we modeled stimulus onsets for trials in which correct responses were 
made for all task conditions (i.e., face and scene stimuli for Categorize, Select Scenes, 
Select Faces, and Select Both). These regressors were created by convolving a double 
gamma function with the onset times for each trial type. We also separately modeled 
incorrect or missed trials. Motion parameters and run means and linear trends were 
included as nuisance regressors.  

This resulted in a parameter estimate, or beta value, for each trial. Beta values were 
averaged across all voxels within each ROI and concatenated for each condition of 
interest to create a ‘beta-series’ for each ROI. For examining effects of attention 
condition, we created beta-series from combined scene and face trials for Categorize, 
Select Scenes, and Select Faces conditions. This resulted in three beta series, one for 
each task condition. For examining effects of stimulus relevance, we created separate 
beta series for scene and face trials for Categorize (categorized scenes and categorized 
faces), Select Scenes (relevant scenes and irrelevant faces), and Select Faces 
(relevant faces and irrelevant scenes) conditions. This resulted in six beta series: a face 
and scene beta series for each of the three task conditions. Finally, task-related 
functional connectivity matrices were created for each participant and condition of 
interest by correlating the beta series between each pair of ROIs using Pearson’s 
correlation coefficient and applying a Fisher z-transform. ROIs were excluded from 
subsequent analyses if they were missing EPI coverage due to incomplete sampling of 
the whole brain during fMRI scanning in 90% or more voxels from the original 81-voxel 



	 9 

ROI across scanning runs in any subject. A total of 193 ROIs were included in the final 
network analyses.  

2.3.5 Module-based network metrics 

The 193 x 193 functional connectivity matrices were binarized to create adjacency 
matrices that indicate the presence or absence of a connection between a pair of 
regions. Matrices were binarized over a range of connection density thresholds, where 
thresholding of the matrices was achieved by matching the number of network 
connections across subjects (here, the top 2-10% of all possible connections in the 
network in 2% increments). Each of these thresholded matrices was used to create 
unweighted, undirected whole-brain graphs (defined as a set of nodes or ROIs and the 
edges or connections between them) with which network metrics were examined. 
Network metrics were created separately for each connection threshold and are 
presented as the average across connection density thresholds. 

We first quantified Newman’s modularity, a global network measure that compares the 
number of connections within to the number of connections between modules (Newman 
and Girvan, 2004). Modularity will be 1 if all connections fall within modules and it will be 
0 if there are no more connections within modules than would be expected by chance. 
We assigned each node to one module according to the modular partition identified with 
these nodes in Power et al. (2011). We then quantified global network modularity for 
each subject and condition of interest. We also examined the contribution of each 
module to global modularity, which is the sum of the modularity across network 
modules.  

We investigated the robustness of our findings by equating the number of beta values in 
each beta-series across conditions within subjects by randomly selecting a subset of 
beta values for conditions with higher accuracy (see Table 2.1). Finally, we examined 
the reliability of our findings by using a spectral algorithm (Newman, 2006) to identify 
the most optimal modular partition (i.e., maximal modularity) for each subject and 
condition separately, rather than imposing the Power et al. (2011) modular partition 
across all graphs. 

2.3.6 Statistical analysis 

Accuracy (percent correct trials) and reaction times (average reaction time for correct 
trials) on the task were assessed with separate repeated-measures ANOVAs with 
within-subject factors of Relevance (Categorize, Irrelevant, Relevant) and Stimulus 
(Faces, Scenes). The effect of attention condition on network properties was assessed 
with a repeated measures ANOVA with a within-subject factor of task Condition 
(Categorize, Select Faces, Select Scenes). The effect of relevance on network 
properties was assessed with a repeated measures ANOVA with within-subject factors 
of Relevance (Categorize, Irrelevant, Relevant) and Stimulus (Faces, Scenes). 

We also examined the behavioral correlates of changes in network organization, 
focusing on reaction time, in line with previous work (Kitzbichler et al., 2011; Vatansever 
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et al., 2015). We first calculated the reaction time for relevant stimuli (average of 
relevant face and relevant scene RTs) and the change in network modularity between 
(1) relevant and irrelevant and (2) relevant and categorized stimuli. We then performed 
Pearson’s correlations between reaction time and the change in modularity. 

 

2.4 Results 

2.4.1 Task performance 

Both accuracy and reaction times (RTs) were influenced by relevance and stimulus type 
(Table 2.1). An ANOVA with within-subject factors of Relevance (Categorize, Irrelevant, 
Relevant) and Stimulus (Scenes, Faces) on accuracy and RTs showed main effects of 
Relevance (accuracy: F = 15.346, p < 0.001; RTs: F = 40.080, p < 0.001) and Stimulus 
(accuracy: F = 71.592, p < 0.001; RTs: F = 136.074, p < 0.001). Participants were less 
accurate for relevant stimuli compared to categorized and irrelevant stimuli and were 
also less accurate for categorized stimuli compared to irrelevant stimuli. Participants 
were slower for relevant stimuli compared to categorized and irrelevant stimuli. 
Participants were more accurate and faster for face stimuli compared to scene stimuli.  

There was also an interaction between Relevance and Stimulus for accuracy (F = 
7.123, p = 0.001) and RTs (F = 49.898, p < 0.001), suggesting that the Stimulus effects 
depended on Relevance condition. For accuracy, participants were more accurate for 
faces in Categorize and Irrelevant conditions (p < 0.001; p = 0.001), but had equivalent 
accuracy for faces and scenes in the Relevant condition (p = 0.679). For RTs, 
participants were faster for faces in Categorize and Irrelevant conditions (p < 0.001), but 
were slower for faces in the Relevant condition (p < 0.001). 

Table 2.1. Task performance (mean ± SEM) 

 Scenes Faces 

 Categorize Irrelevant Relevant Categorize Irrelevant Relevant 

Accuracy (%) 95.0 ± 0.6 97.6 ± 0.4 93.4 ± 0.7 97.6 ± 0.4 98.8 ± 0.4 93.2 ± 0.7 

RT (ms) 652.2 ± 15.0 632.0 ± 16.5 746.1 ± 22.0 591.4 ± 13.6 591.6 ± 15.0 777.5 ± 22.5 

No. of betas 45.3 ± 0.5 46.6 ± 0.5 44.6 ± 0.6 46.6 ± 0.5 47.2 ± 0.5 44.5 ± 0.6 

 

2.4.2 Reconfiguration of modular network organization due to attention condition 

We first asked how the modular network structure of the brain was modulated by the 
task condition. We quantified task-related connectivity throughout the duration of the 
Categorize, Select Scene, and Select Faces conditions. The attention condition affected 
global brain modularity (F = 5.733, p = 0.004), in which modularity was lower for Select 
Scenes and Select Faces conditions compared to the Categorize condition (Figure 
2.2A; p = 0.007; p = 0.003). 
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2.4.3 Reconfiguration of modular network organization due to stimulus relevance 

We next investigated how brain network structure changed during the duration of the 
task condition depending on the relevance of the stimuli being encoded. Stimulus 
relevance altered global brain modularity (Figure 2.2B; main effect of Relevance: F = 
19.035, p < 0.001). Modularity was selectively reduced during the processing of relevant 
stimuli in Select Scenes and Select Faces compared to both irrelevant stimuli and 
categorized stimuli (p < 0.001). The Stimulus type (Face, Scene) did not affect 
modularity (main effect of Stimulus: F = 0.010, p = 0.922) and the effect of Relevance 
on modularity was consistent for both Face and Scene stimuli (Relevance x Stimulus 
interaction: F = 0.101, p = 0.891). 
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Figure 2.2. Network modularity for differing attention and relevance conditions. (A) Network modularity 
was lower during task conditions requiring working memory (1-back task) and had varying attention 
demands (i.e., both relevant and irrelevant stimuli in the Select Scenes and Select Faces conditions) 
compared to the Categorize condition. (B) Within the three task conditions, network modularity was 
selectively reduced for relevant stimulus processing compared to both irrelevant and categorized stimuli. 
Data are presented as mean ± SEM.  *** P < 0.001; ** P < 0.01. 
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We examined whether the effect of stimulus relevance on global modularity (the sum 
across all modules) was driven by particular brain sub-networks or modules by 
conducting an ANOVA with within-subject factors of Relevance (Categorize, Irrelevant, 
Relevant) and Module (N = 13). For this analysis, the modularity for face and scene 
stimuli were first averaged for each Relevance factor, as there was no main effect of 
Stimulus type for global modularity. Note that coverage of our functional data did not 
include the cerebellum, thus only permitting analysis of 13 of the 14 brain modules 
described in Power et al. (2011). A Relevance x Module interaction (F = 6.750, p < 
0.001) suggested that the Relevance effect on modularity differed across modules 
(Figure 2.3). We then conducted separate ANOVAs for each module with a factor of 
Relevance to identify modules with effects that mirrored the global modularity effects 
(i.e., reduced modularity for relevant stimuli compared to irrelevant and categorized 
stimuli). Effects of stimulus relevance were pronounced in default mode (F = 12.384, p < 
0.001) and visual (F = 4.938, p = 0.008) modules (Figure 2.4). In both the default and 
visual modules, modularity was reduced during processing relevant stimuli compared to 
irrelevant (default: p < 0.001; visual: p = 0.001) and categorized stimuli (default: p < 
0.001; visual p = 0.020). 
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Figure 2.3. Module-specific changes in network organization. (A) Changes in network modularity 
between relevant stimulus processing and categorize (left) and irrelevant (right) stimulus conditions. 
Nodes are grouped according to the module definitions from Power et al. (2011) and are colored 
according to the change in modularity between the respective conditions. (B) Changes in within- and 
between-module network connections between relevant stimuli and categorize (left) and irrelevant (right) 
stimulus conditions. Binarized matrices were averaged across subjects and edge-density thresholds for 
each condition to examine changes in network connections. The resulting plots suggest that there are 
differences in the modularity decreases for relevant stimuli across the 13 network modules.  
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We replicated these effects after equating the length of the beta-series, or number of 
beta values used correlate between ROIs, across task conditions within each subject 
(Table 2.1). We also confirmed these results after using a spectral partitioning algorithm 
to identify ‘optimal’ network modules (those with the maximum modularity) for each 
subject and condition, rather than using the Power et al. (2011) module definition for all 
networks. 

 

Figure 2.4. Network modularity for default mode and visual modules. Decreases in network modularity for 
relevant stimuli were most pronounced for default mode and visual modules. Data are presented as mean 
± SEM.  *** P < 0.001; ** P < 0.01; * P < 0.05. 

 

2.4.4 Relationship between network reorganization and task performance 

We next examined how the changes in network modularity were related to task 
performance. We focused on RTs for relevant stimuli (quantified as the mean RT across 
relevant face and relevant scene stimuli) as our metric of task performance, as it 
assesses the speed of performance on correct trials during a 1-back task. We first 
examined how the change in global network modularity for relevant stimuli (compared to 
both categorize and irrelevant) was related to performance. A greater decrease in 
modularity for relevant stimuli compared to irrelevant stimuli was related to faster task 
performance for relevant stimuli (Figure 2.5A; r = 0.337, p = 0.003), while there was no 
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relationship between performance and the change in modularity between relevant and 
categorized stimuli (r = 0.042, p = 0.719). 

We also examined the contribution of default and visual modularity in predicting task 
performance. To do so, we quantified the change between relevant and irrelevant 
modularity for each module and averaged these values across (1) default and visual 
modules and (2) all other network modules (N = 11). Greater decreases in modularity 
for relevant compared to irrelevant stimuli were related to RTs for relevant stimuli in 
default and visual modules (Figure 2.5B; r = 0.326, p = 0.004) but not across the 
remaining modules (Figure 2.5C; r = 0.161, p = 0.167). Further, examining correlations 
between modularity and performance separately for default and visual modules showed 
a similar relationship for both modules (r = 0.228, p = 0.049; r = 0.212, p = 0.068; 
respectively). 

 

Figure 2.5. Relationship between changes in network modularity and behavior. (A) Correlation between 
the change in global modularity from irrelevant to relevant stimulus processing and reaction time for 
relevant stimuli. Greater decreases in modularity for relevant stimuli were related to faster performance on 
relevant trials. (B) Correlation between the change in default and visual modularity (average of two 
modules) and relevant stimulus reaction time. (C) Correlation between the change in modularity for all 
other modules (N = 11) and relevant stimulus reaction time. Changes in modularity for relevant stimuli 
were related to behavior for default and visual modules but not the remaining modules. Data points 
represent individual subjects.  

 

Finally, to account for overall differences in performance across subjects, we also 
examined correlations between network reconfiguration between relevant and irrelevant 
stimulus processing and changes in RT between relevant and irrelevant stimuli. Note 
that here we assessed correlations with Spearman’s rho to account for two potential 
outliers in the performance difference between relevant and irrelevant stimuli. 
Examining the correlation between whole-brain modularity and performance changes 
showed that subjects who exhibited greater network reconfiguration (i.e., decrease in 
modularity for relevant stimulus processing) were those with less of a performance 
deficit for relevant compared to relevant stimuli (rho = 0.194; p = 0.100). Examining the 
correlation between default and visual network reconfiguration and performance 
changes showed a similar relationship for these modules (rho = 0.208, p = 0.073), while 
this relationship was not present for all other modules (rho = 0.145, p = 0.215). 
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2.5 Discussion 

Here, we provide evidence that selective attention demands alter the modular network 
organization of the brain during working memory performance. We first show that 
modularity is lower during performance of a more demanding 1-back task with varying 
attention demands compared to a 0-back task. Further, we show that modularity 
changes throughout the duration of the 1-back task depend on the relevance of the 
stimuli. Network modularity was selectively reduced during the encoding of relevant 
stimuli used for the 1-back task compared to irrelevant stimuli that were ignored. These 
effects were pronounced in default and visual sub-networks or modules. Finally, we 
show that the changes in modularity for relevant stimulus processing are related to for 
faster task performance, both in terms of global modularity and default and visual sub-
network modularity. 

Using all face and scene stimuli encoded throughout the duration of each task condition, 
we observed that network modularity was reduced during the performance of 1-back 
tasks that had varying attention and working memory components (Select Scenes and 
Select Faces) compared to the 0-back task (Categorize). This finding is in line with a 
growing literature that shows the modularity of the brain is influenced by working 
memory demands. Previous work has shown that network modularity is reduced during 
more demanding (i.e., higher load) N-back task conditions (Kitzbichler et al., 2011; 
Vatansever et al., 2015; Wen et al., 2015), suggesting that the brain adopts a more 
integrated network organization when more cognitive effort is required. Other network 
properties have also been shown to be modulated by n-back load, such as increases in 
long-range connectivity (Kitzbichler et al., 2011), lower local clustering (Kitzbichler et al., 
2011), and higher global efficiency (Kitzbichler et al., 2011; Wen et al., 2015) in more 
demanding N-back conditions. These studies point to a global ‘workspace’ configuration 
(Dehaene et al., 1998) of the brain during increased cognitive effort. 

Importantly, however, the majority of these previous studies have used block designs to 
assess the reconfiguration of brain networks during working memory performance (i.e., 
examine gross network changes between 1- and 2-back conditions). We expand on 
these observations by providing new evidence that brain networks dynamically 
reconfigure trial-by-trial during the 1-back task, depending on the relevance of the 
stimuli. By quantifying task-related connectivity separately for face and scene stimuli 
during the 1-back and 0-back tasks, we observed that network modularity was 
specifically reduced during the encoding of relevant face and scene stimuli that were 
used to guide working memory performance. Modularity quantified during the 
processing of irrelevant stimuli during the same 1-back task conditions was similar to 
that of the stimuli in the Categorize condition. These observations show that lower 
modularity during the 1-back task blocks may be driven by selective decreases in 
network modularity during the processing of relevant stimuli. Further, during these task 
blocks, brain networks are able to reconfigure on a trial-wise basis, as evident by 
increased modularity for irrelevant stimulus processing. 

Examining the individual module contributions to the global modularity findings, we 
observed that decreases in modularity for relevant stimulus processing were 
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pronounced in default mode and visual modules. These findings provide evidence that 
particular modules may become less segregated from the rest of the brain network 
during the processing of relevant information. Previous studies examining brain network 
properties have also reported decreased within-module (Liang et al., 2015) and 
increased between-module (Stanley et al., 2014) connectivity in default mode regions in 
the context of increasing n-back demands. We expand on this and other work that 
examined goal-related connectivity of visual regions (Chadick and Gazzaley, 2011), by 
showing that the balance of within- and between-module connections in these modules 
is affected by varying attention demands during an n-back task. Interestingly, these 
network modules have also been shown to underlie behaviorally-relevant changes in 
global modularity during an auditory detection task (Sadaghiani et al., 2015). 

Finally, our findings point to the behavioral importance of alterations in brain network 
modularity depending on stimulus relevance. Greater decreases in global modularity for 
relevant compared to irrelevant stimulus processing were related to faster performance 
on working memory trials. This behavioral relationship was not present when we 
quantified the change in modularity between stimuli in the Relevant and Categorize 
condition, potentially pointing to the significance of changes in modularity that occur on 
a trial-wise basis within a single task block. We further showed that these decreases in 
modularity were related to behavior for default mode and visual modules and not for the 
remaining modules. These results expand on previous graph theoretical analyses that 
have been limited to n-back block designs and showed that lower modularity at higher 
demands is beneficial for performance (Kitzbichler et al., 2011; Stanley et al., 2014; 
Vatansever et al., 2015). 

In conclusion, we find that the modular organization of the brain reconfigures during 
working memory performance depending on whether stimuli are attended or ignored as 
distractors. Modularity was selectively decreased when encoding relevant stimuli, 
suggesting that increased integration between brain network modules is important for 
subsequent behavior. These observations support theories of attention that posit goal-
directed behavior emerges from interactions between distributed large-scale networks 
of the brain (Buschman and Kastner, 2015). Further characterization of how brain 
networks reconfigure during other critical stages of working memory performance (e.g., 
maintenance and retrieval) are important questions for future work. 
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Chapter 3 

RECONFIGURATION OF BRAIN NETWORK ARCHITECTURE TO SUPPORT EXECUTIVE 
CONTROL IN AGING 

 

3.1 Abstract 

Aging is accompanied by declines in executive control abilities and changes in 
underlying brain network architecture. Here, we examined brain networks in young and 
older adults during a task-free resting state and an N-back task and investigated age-
related changes in the modular network organization of the brain. Compared with young 
adults, older adults showed larger changes in network organization between resting 
state and task. Although young adults exhibited increased connectivity between lateral 
frontal regions and other network modules during the most difficult task condition, older 
adults also exhibited this pattern of increased connectivity during less-demanding task 
conditions. Moreover, the increase in between-module connectivity in older adults was 
related to faster task performance and greater fractional anisotropy of the superior 
longitudinal fasciculus. These results demonstrate that older adults who exhibit more 
pronounced network changes between a resting state and task have better executive 
control performance and greater structural connectivity of a core frontal-posterior white 
matter pathway.  

 

3.2 Introduction 

Cognitive decline is pervasive in older adulthood, notably in executive control processes 
thought to be subserved by the frontal cortex (Park et al., 2002; Grady, 2008; 2012). 
Extensive alterations in brain structure and function are also observed in older adults. 
Functional changes in aging have been documented in the activation of individual brain 
regions and in the functional connectivity between brain regions (Spreng et al., 2010; 
Grady, 2012; Turner and Spreng, 2012; 2015). Alterations in functional connectivity are 
thought to be related, in part, to a decline in structural connectivity, such as through 
long-range white matter fiber tracts (Bennett and Madden, 2014).  

Further work in older adults has examined the functional communication among groups 
of brain regions by quantifying the connectivity of brain subnetworks (Andrews-Hanna et 
al., 2007; Damoiseaux et al., 2008; Ferreira and Busatto, 2013), such as the default-
mode and fronto-parietal networks. However, executive control processes rely on the 
integration of signals from frontal cortex to widely distributed brain regions, likely not 
limited to specific subnetworks as has been examined thus far (Fuster et al., 1985; 
Chao and Knight, 1998; Knight et al., 1999; Barceló et al., 2000; Miller and D'Esposito, 
2005; Lee and D'Esposito, 2012). Thus, changes in executive control processing in 
aging may be better examined by methods that quantify the large-scale (e.g., whole 
brain) network organization of the brain. Graph theoretical methods describe the brain 
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as a complex network, comprised of functionally separable subnetworks or modules. 
This type of organization is critical for supporting both local processing within and global 
processing be- tween modules. Using graph theory, the modularity of network 
organization can be quantified (Meunier et al., 2009b; 2010), where networks with high 
modularity have dense connections within modules and sparser connections between 
modules.  

Studies examining modular network organization during working memory have shown 
that increasing executive control demands (i.e., increasing N-back load) are supported 
by a more integrated network organization, manifested in decreased modularity 
(Kitzbichler et al., 2011; Vatansever et al., 2015; Wen et al., 2015) and increased 
connectivity between network modules (Stanley et al., 2014; Liang et al., 2015). This 
reconfiguration of brain networks has also been observed when comparing networks 
from a task-free ‘resting state’ to those during the performance of tasks with increasing 
demands (Wen et al., 2015).  

In older adults, analyses of structural MRI and resting-state fMRI data have 
demonstrated that aging is associated with declines in modularity (Meunier et al., 
2009a; Chen et al., 2011b; Onoda and Yamaguchi, 2013; Chan et al., 2014; Geerligs et 
al., 2014a).Importantly, these studies have not examined how networks reconfigure 
during the performance of a task in older adults. To understand how network-level 
changes contribute to age-related alterations in executive control, it is critical to 
investigate changes in brain network properties during cognitive processing.  

In this study, we examine how the modular organization of the brain reconfigures 
between the absence of a task (e.g., a resting state) and the performance of an N-back 
task in older and young adults. We first quantify the topological overlap of modules 
identified during resting state and task. We next examine changes in between-module 
connectivity with increasing cognitive demands, both across the entire brain (i.e., 
modularity) and in a subset of lateral frontal regions. We also examine how changes in 
between-module connectivity from a resting state to task are related to behavioral 
performance. Finally, as aging is associated with declines in white matter pathways 
(Bennett and Madden, 2014), we investigate how frontal-posterior structural connectivity 
is related to functional reconfiguration of brain networks in older adults.  

 

3.3 Materials and Methods 

3.3.1 Participants  

Eighteen young (10 females; mean age = 21.08, range = 18-26) and 38 older (24 
females; mean age = 66.97, range = 60-80) adults were included in this analysis. Young 
and older participants were matched on distribution of gender (Χ2(1, N = 56) = 0.30, p = 
0.59). Older participants had greater years of education compared with young 
participants (mean ± standard error of the mean, older: 17.42 ± 0.49; young: 14.53 ± 
0.48; t(54) = 3.67, p = 0.001). Participants were prescreened for the presence of 
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medical, neurological, or psychiatric illness (e.g., stroke, traumatic brain injury) and the 
use of prescribed drugs with known effects on cognition (e.g., benzodiazepines). Older 
participants were recruited through the Berkeley Aging Cohort and through the 
community (e.g., fliers, senior residences). Older participants were normal on cognitive 
screening (i.e., no score less than 1.5 standard deviations below expected performance 
in more than one cognitive domain for neuropsychological assessments of memory, 
concentration, verbal fluency, and visuospatial function). A complete neuropsychological 
evaluation was not available for one subject; however, this subject had a Mini-Mental 
State Examination score of 28. Young partici- pants were recruited after the collection of 
older subject data through research study postings at the University of California, 
Berkeley. Informed consent was obtained from all participants in accordance with the 
Committee for Protection of Human Subjects at the University of California, Berkeley.  

3.3.2 Cognitive task  

The cognitive task performed during fMRI scanning was an N-back task that consisted 
of 20 runs lasting approximately 2 minutes each (Chen et al., 2011a; Lee and 
D'Esposito, 2012). Each run contained a series of pseudo-randomly interleaved face 
and natural scene stimuli (10 of each) during which participants were instructed to either 
attend to and maintain images from the relevant stimulus category, while ignoring 
images from the irrelevant category, or to attend both categories. Each stimulus was 
presented for 600 ms, with a 2.4, 4.4, or 6.4 second jittered delay (randomly ordered) 
between each stimulus presentation. The 4 conditions varied in executive control 
demands and were referred to as: “CATEGORIZE,” “SCENES,” “FACES,” and “BOTH.” 
In CATEGORIZE, participants indicated with a button press whether the current image 
was a face or a scene, with no attempt to remember the image. In SCENES and 
FACES, participants were instructed to selectively attend to and maintain images from 
the relevant category (i.e., scenes or faces, respectively) and ignore images from the 
irrelevant category (i.e., faces or scenes, respectively). Participants indicated if the 
current-attended image matched the previous image in the same category. Participants 
responded to all unattended items in SCENES and FACES with the “no-match” button. 
Finally, in BOTH, participants were instructed to attend to and maintain both the face 
and scene stimuli. If the current image matched the previous image of the same 
category, participants pressed the “match” button. Participants completed 5 blocks of 
each condition during fMRI scanning.  

3.3.3 MRI acquisition and preprocessing  

MRI scans were collected with a 12-channel head coil on a 3T Siemens Trio scanner at 
the University of California, Berkeley. A high-resolution T1-weighted MP-RAGE 
sequence was used to acquire 3D anatomical images (repetition time [TR] = 2300 ms, 
echo time [TE] = 2.98 ms, flip angle = 9°, 1.00-mm3 voxels). A T2*-weighted echoplanar 
imaging (EPI) sequence was used to acquire resting state and task functional data (TR 
= 1000 ms, TE = 27 ms for older participants; 24 ms for young participants, 5.00-mm 
thick interleaved (descending for young participants) axial slices (0.50- mm gap), in-
plane resolution = 3.50 mm2). Functional data for older adults were collected using 
GRAPPA with an acceleration factor of 2. For the N-back task scans, five 114-volume 



	 22 

runs of each task condition were collected. For the resting state scans, one 300-volume 
run was collected for all young and 35 older adults. We collected the resting state scans 
for the remaining 3 older adults with the following parameters: 435 volumes, TR = 1370 
ms, TE = 26 ms, 3.50-mm thick interleaved axial slices (0.35-mm gap), in-plane 
resolution = 2.34 mm2.  

Standard preprocessing of EPI data was carried out with AFNI, versions 2.61-4.21 (Cox, 
1996). EPI volumes were slice-time and motion corrected, coregistered to the T1-
weighted structural image using a 12-parameter affine transformation, and scaled to 
have each voxel’s run mean be equal to 100. Structural scans were segmented into 
cerebrospinal fluid and gray and white matter components using SPM8 (Wellcome 
Department of Cognitive Neurology, London, UK). Functional data were spatially 
smoothed to a 6-mm full width at half maximum Gaussian kernel and signals (mean and 
temporal derivative) from white matter, cerebrospinal fluid, and motion were regressed 
out.  

Diffusion-weighted images were acquired for 32 older participants along 30 noncollinear 
diffusion-encoding directions (50 slices, TR = 6400 ms, TE = 87 ms, field of view: 256 x 
256 mm2, 128 x 128 matrix, 2-mm thick axial slices, in-plane resolution = 2.2 mm2). The 
data were preprocessed using the functional magnetic resonance imaging in the brain 
software library (FSL; (Smith et al., 2004; Woolrich et al., 2009)). First, the digital 
imaging and communications in medicine files of each acquisition were converted to a 
single multivolume 4D format in the MRIcron software (Rorden et al., 2007). Next, they 
were corrected for any effects of head movement and eddy current distortion using the 
eddy correct tool in functional magnetic resonance imaging in the brain’s diffusion 
toolbox (FDT). This tool conducts an affine registration of each individual volume to a 
specified b0 volume. Brain tissue was segmented using the Brain Extraction Tool 
(Smith, 2002) in FSL, and a brain mask was created at a threshold of 0.3 as 
recommended by FSL. Diffusion-weighted images were also collected for 16 young 
adults but not analyzed here.  

3.3.4 Functional connectivity analyses  

Participants’ T1-weighted anatomical scans were parcellated into 90 cortical and 
subcortical regions of interest (ROIs) from the automated anatomical labeling (AAL) 
atlas (Tzourio-Mazoyer et al., 2002). ROIs were reverse-normalized to each 
participant’s native space using the parameters from SPM segmentation (i.e., a reverse 
normalization from the warping to Montreal Neurological Institute (MNI) template space 
that was computed during segmentation). Individual time-series from each resting state 
and task run were averaged over the voxels in each ROI and bandpass filtered (0.009 – 
0.08 Hz) to remove physiological artifacts. Six ROIs were excluded from subsequent 
analyses because they were missing coverage in the EPI volumes in some scanning 
runs in either young or older participants (bilateral inferior occipital gyrus, left fusiform 
gyrus, right superior parietal gyrus, left middle temporal pole, left inferior temporal 
gyrus). Finally, functional connectivity matrices for resting state and task were created 
for each participant by correlating the time-series between each pair of ROIs using 
Pearson’s correlation coefficient and applying a Fisher z-transform. As there are 
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multiple methods for parcellating the brain into ROIs for network analyses, we also 
repeated our analyses with a commonly used atlas that is composed of functionally, 
rather than anatomically, defined regions from healthy young subjects (Power et al., 
2011). 

We matched whether resting state scans were acquired before or after the N-back task 
in the young and older groups. Resting- state scans were collected after the task for 26 
older and 13 young adults; the remaining participants had resting-state scans collected 
before the task (12 older and 5 young). The distribution of pre-task and post-task 
resting-state scans across participants was equivalent between the 2 age groups (Χ2(1, 
N = 56) = 0.08, p = 0.77). Additional follow-up analyses in Section 3.4.4 address the 
potential effects of pre-task and post-task resting-state scans on our results.  

To have similar numbers of volumes for resting state and task correlation analyses, 5.7 
minutes (342 volumes) of each task condition were analyzed, by demeaning and 
concatenating 3 of the 5 blocks for each condition before computing correlations 
between each ROI pair. Concatenating task volumes allows for additional task data to 
be used to more reliably estimate functional connectivity between ROIs. Furthermore, it 
makes the amount of data for correlation analyses similar between resting state and 
task conditions. For 11 young and 29 older adults, we used the first 3 runs of each task 
condition to generate the task time-series. In a portion of the first 3 runs for the 
remaining 9 older adults, there were suspected artifacts from movement during the 
GRAPPA reference scan (autocalibrating signal scan); we therefore used 1 or 2 of the 
subsequent runs to generate task time-series (12 total time-series across participants 
and task conditions). We matched the composition of the task time-series for these 
older participants in a set of 7 young adults. Furthermore, the distribution of whether 
task time- series were generated from the first 3 runs was matched between the age 
groups (Χ2(1, N = 56) = 1.38, p = 0.24). Additional follow-up analyses in Section 3.4.4 
address the potential effects of task-run selection on our results.  

3.3.5 Module-based network metrics  

The functional connectivity matrices were binarized to create adjacency matrices that 
indicate the presence or absence of a connection between a pair of regions. Matrices 
were binarized over a range of connection density thresholds, where thresholding of the 
matrices was achieved by matching the number of network connections across 
participants (here, the top 5%e25% of all possible connections in the network in 5% 
increments). Each of these thresholded matrices was used to create unweighted, 
undirected whole-brain graphs (defined as a set of nodes or ROIs and the edges or 
connections between them) with which network metrics were examined. Unless 
otherwise noted, network metrics were created separately for each connection threshold 
and are presented as the average across all 5 connection density thresholds.  

Each brain graph was then subdivided into modules using a simulated annealing 
algorithm (Kirkpatrick et al., 1983).We subsequently refer to the collection of modules as 
a “partition.” For each graph, we identified its “optimal” modular organization by 
choosing the partition with the highest modularity value across the algorithm iterations 
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(Newman and Girvan, 2004). Highly modular graphs have dense connections within 
modules and sparser connections between modules. We then investigated the 
reconfiguration of modular network structure between a resting state and task in the 2 
age groups.  

First, as our module-detection procedure allows for different partitions (groupings of 
nodes into modules) across individuals and task conditions, we investigated the overlap 
of modules between a resting state and task using mutual information (MI). MI 
quantifies the similarity of 2 partitions (Danon et al., 2005)with 1 representing identical 
partitions, and low values indicating that nodes tend to group together into different 
modules. We compared each subject’s resting-state network organization to those 
created from the 4 task conditions to examine the differences in modules between a 
resting state and task.  

Next, we investigated changes in network connections between resting state and task. 
We first quantified modularity, a whole-brain network measure that compares the 
number of connections within to the number of connections between modules (Newman 
and Girvan, 2004).Modularity will be 1 if all connections fall within modules, and it will be 
0 if there are no more connections within modules than would be expected by chance.  

Although modularity quantifies the balance of within- and between-module connections 
across the whole-brain network, there may also be changes in particular network 
connections in the brain. Thus, we also examined the properties of specific between- 
module connections that provide communication across network modules. To do so, we 
quantified the participation coefficient (PC) of individual brain regions, a measure of the 
distribution of a node’s connections across modules (Guimera and Amaral, 2005; 
Guimera et al., 2006). A node’s PC will be 1 if its connections are uniformly distributed 
across all network modules and it will be 0 if its connections are concentrated within its 
own module. In other words, a higher PC value suggests that a node’s connections are 
more distributed among network modules, whereas a lower PC value indicates that a 
node’s connections are more concentrated in its own module. We focused on examining 
PC of lateral frontal regions, as they play a critical role in top-down modulation of 
sensory cortices (Gazzaley and Nobre, 2012) to support executive control functions 
such as attention and working memory (Funahashi et al., 1993a; 1993b; Chao and 
Knight, 1998; Lee and D'Esposito, 2012). Further- more, older adults exhibit notable 
impairments in these functions (Gazzaley et al., 2005b; Clapp et al., 2011). We 
calculated PC for 10 lateral frontal regions in the AAL atlas: bilateral precentral, middle 
frontal, superior frontal, and pars opercularis and pars triangularis of the inferior frontal 
gyrus. PC was averaged across lateral frontal regions to examine general changes that 
occur in lateral frontal cortex with aging. To examine the specificity of lateral frontal 
changes, we also examined PC for 10 control regions in the occipital cortex: bilateral 
superior occipital, middle occipital, cuneus, calcarine, and lingual gyrus. We restricted 
our analyses to one set of control regions to limit the number of statistical tests 
conducted.  
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3.3.6 White matter connectivity analyses  

We were also interested in investigating the relationship between functional network 
changes and connectivity of long-range white matter association fiber tracts. We 
focused on the superior longitudinal fasciculus (SLF), as it has been shown to provide 
critical anatomical connections between frontal and posterior cortical regions (Makris et 
al., 2005), putative targets of frontal regions implicated in executive control (Mori et al., 
2008). After pre- processing, the FDT tool in FSL was used to fit a diffusion tensor 
model at each voxel in the brain-extracted images created with Brain Extraction Tool. 
Fractional anisotropy (FA) maps were derived for each participant. Voxel-wise statistical 
analysis of the FA data was carried out using tract-based spatial statistics (Smith et al., 
2006) in FSL. ROI masks for the left and right SLF were created using the JHU- ICBM-
DTI-81 Atlas. These masks were then used to extract the average FA value for the tract 
across hemispheres in each participant, which we speculate reflects variability in 
underlying structural connectivity or white matter architecture across participants.  

3.3.7 Statistical analysis  

Effects of aging on task performance (i.e., accuracy and reaction time) were assessed 
with a repeated-measures ANOVA with a within-subjects factor of task condition 
(CATEGORIZE, SCENES, FACES, BOTH) and a between-subjects factor of age group 
(OLDER, YOUNG). MI between a resting state and the 4 task network partitions was 
assessed with a repeated-measures ANOVA with a within-subjects factor of task 
condition (CATEGORIZE, SCENES, FACES, BOTH) and a between-subjects factor of 
age group (OLDER, YOUNG). Modularity and PC were assessed with repeated-
measures ANOVAs with a within-subjects factor of task condition (RESTING- STATE, 
CATEGORIZE, SCENES, FACES, BOTH) and a between-subjects factor of age group 
(OLDER, YOUNG). For ANOVAs that only include the 4 task conditions as factors (i.e., 
do not include resting state), we report both the overall within-subjects effects of task 
condition and the linear within-subjects contrasts, as we hypothesized that the task 
conditions would modulate outcome measures in a parametric fashion. We present 
descriptive statistics (mean and standard deviation) for these measures in Table 3.1.  

We set a significance threshold of p < 0.05 and also report nonsignificant trends at p < 
0.10. To ensure maximal transparency, we report uncorrected p-values and interpret 
results with caution when they do not pass a Bonferroni-corrected threshold for 3 tests 
(MI, modularity, and lateral frontal PC). For all ANOVAs, we also report estimates of 
effect size for each contrast as partial eta-squared (ηp

2). Significant interactions between 
age group and task condition were subsequently investigated with post hoc 
comparisons, focusing on age group differences across resting state and task 
conditions.  

Recent work has shown that in-scanner motion can spuriously affect measures of 
functional connectivity (Power et al., 2012; Van Dijk et al., 2012; Power et al., 2013; 
Satterthwaite et al., 2013). We took several steps to ensure that the reconfiguration of 
modular network structure was not related to motion. First, we examined age and task 
differences in head motion, quantified as the Euclidean norm of the derivatives of 
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motion parameters. Second, we conducted all network analyses with motion as a 
covariate of no interest.  

Finally, we examined behavioral and structural correlates of network reconfiguration in 
older adults. We quantified network reconfiguration as the change in lateral frontal PC 
between resting state and task (averaged across all task conditions). Correlations were 
quantified with Spearman’s rho instead of Pearson’s correlation coefficient to reduce the 
influence of extreme values. To examine the relationship between network 
reconfiguration and executive control, we conducted correlations between the change in 
lateral frontal PC and behavioral performance (reaction time) from the task. Differences 
in correlation values between older and young groups were evaluated using the formula 
described by Cohen (Cohen et al., 2003) after using the conversion from Spearman’s to 
Pearson’s coefficients described by Myers and Sirois (Myers and Sirois, 2004). To 
examine the relationship between white matter architecture and network reconfiguration 
in older adults, we conducted correlations between FA of the SLF (average of left and 
right hemispheres) and the change in lateral frontal PC.  

Plots were created with the Matplotlib package (http:// matplotlib.org/) in IPython 
(http://ipython.org/) and brain network graphs were visualized with BrainNet Viewer 
(http://www.nitrc.org/ projects/bnv/).  

 

3.4 Results 

3.4.1 Task performance  

Accuracy and reaction time (RT) analyses revealed main effects of age group 
(accuracy: F(1,54) = 5.74, p = 0.02, ηp

2 = 0.10; RT: F(1,54) = 5.03, p = 0.03, ηp
2 = 0.09) 

and task condition (accuracy: overall effect, F(3,162) = 28.50, p < 0.001, ηp
2 = 0.35 and 

linear contrast, F(1,54) = 60.04, p < 0.001, ηp
2 = 0.53; RT: overall effect, F(3,162) = 

141.90, p < 0.001, ηp
2 = 0.72 and linear contrast, F(1,54) = 200.92, p < 0.001, ηp

2 = 
0.79). Across all conditions, older adults had lower accuracy and longer RTs than young 
adults. Across all participants, accuracy was highest and RTs were shortest in the 
CATEGORIZE and SCENES conditions, followed by FACES and BOTH.  
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Figure 3.1. Task accuracy (A) and reaction time (B) for young and older adults. Data are presented as 
mean ± standard error of the mean. Pairwise comparisons between young and older groups across the 
task conditions were conducted for metrics showing significant age group by task condition interactions. 
**p < 0.01; ~p < 0.1.  

 

The age group by task condition interaction was also significant for both accuracy and 
RT (accuracy: F(3,162) = 7.75, p < 0.001, ηp

2 = 0.13; RT: F(3,162) = 10.47, p < 0.001, 
ηp

2 = 0.16), indicating that older adults performed worse than young adults, but not 
equally in all conditions. Older and young adults had equivalent accuracy and RT in the 
CATEGORIZE condition (accuracy: p = 0.85; RT: p = 0.65) but older adults had lower 
accuracy (Figure 3.1A) and longer RTs (Figure 3.1B) than young adults in the SCENES, 
FACES, and BOTH conditions (accuracy: p = 0.09, p = 0.005, p = 0.001; RT: p = 0.07, p 
= 0.05, p = 0.001). We also conducted non-parametric tests (Mann-Whitney U test) 
between the age groups for each task condition. These results confirmed that older 
adults performed less accurately and slower on all conditions except for CATEGORIZE 
(accuracy: CATEGORIZE, p = 0.85; SCENES, p = 0.02; FACES, p < 0.001; BOTH, p < 
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0.001; RT: CATEGORIZE, p = 0.66; SCENES, p = 0.03; FACES, p = 0.04; BOTH, p = 
0.001) 

3.4.2 Reconfiguration of modular network organization during executive control 
processing 

Mutual information between network partitions during resting-state and task 
performance. We first examined changes in modules between resting-state and task in 
young and older adults. More specifically, we quantified the mutual information (MI) 
between each subject’s resting network partition and those derived from the four task 
conditions, thus producing four MI values (each task condition compared to resting-
state) for each subject. A repeated-measures ANOVA on MI revealed main effects of 
age group and task condition (Figure 3.2A; age group: F(1,54) = 33.22, p < 0.001, ηp

2 = 
0.38; task condition: overall effect, F(3,162) = 2.11, p = 0.10, ηp

2 = 0.04 and linear 
contrast, F(1,54) = 4.33, p = 0.04, ηp

2 = 0.07). Across all task conditions, older adults 
had lower MI between resting-state and task than young adults. The significant linear 
contrast suggests that MI was modulated parametrically across the task conditions. 
Across all participants, MI between resting-state and task was higher for CATEGORIZE 
and SCENES compared to BOTH and higher in SCENES compared to FACES. The 
main effect of task condition on MI should be interpreted with caution, as it does not 
pass a Bonferroni-corrected significance threshold of p <0.05. There was no significant 
age group by task condition interaction (F(3,162) = 0.56, p = 0.64, ηp

2 = 0.01) 

Modularity of the brain during resting-state and task performance. We next examined 
changes in the balance of within- and between-module connections across the whole 
brain by quantifying the modularity of the network. ANOVAs on modularity revealed a 
main effect of age group (F(1,54) = 43.38, p < 0.001, ηp

2 = 0.45) and task condition 
(F(4,216) = 2.59, p = 0.04, ηp

2 = 0.05). Across all task conditions, older adults had lower 
modularity than young adults. Across all participants, RESTING-STATE, CATEGORIZE, 
SCENES, and FACES conditions were associated with higher modularity than the 
BOTH condition (Figure 3.2B). While the main effect of task condition on modularity 
using the AAL atlas does not pass a Bonferroni-corrected significance threshold of p < 
0.05, we replicated this result using the Power et al. (2011) atlas (main effect of task 
condition, corrected p < 0.05; see Supplementary Material). There was no significant 
age group by task condition interaction (F(4,216) = 1.12, p = 0.35, ηp

2 = 0.02).  
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Figure 3.2. Module-based network metrics during resting state and task. (A) Mutual information (MI) 
between resting state network partitions and those derived from the task conditions. Note that we 
quantified the MI between each subject’s resting network partition to those derived from the 4 task 
conditions. In this manner, MI during resting state would be equal to 1 because it is the network used for 
comparison and is therefore not plotted in (A). Modularity (B) and lateral frontal (C) and occipital (D) 
participation coefficient (PC) for resting state and task conditions. Centers of mass for lateral frontal and 
occipital AAL atlas nodes used to calculate PC are plotted on a sagittal view of the brain in C and D, 
respectively. Data are presented as mean ± standard error of the mean. Pairwise comparisons between 
young and older groups across the task conditions were conducted for metrics showing significant age 
group by task condition interactions. ***p < 0.001; *p < 0.05.  

 

Participation coefficient of lateral frontal regions during resting-state and task 
performance. To examine the specific contribution of lateral frontal connections to 
network reconfiguration, we quantified the distribution of between-module connections 
(i.e., participation coefficient, PC) from ten lateral frontal regions in the AAL atlas (Figure 
3.2C). An ANOVA on lateral frontal PC revealed main effects of age group (F(1,54) = 
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18.26, p < 0.001, ηp
2 = 0.25) and task condition (F(4,216) = 2.96, p = 0.02, ηp

2 = 0.05). 
Across all task conditions, older adults had higher frontal PC than young adults. Across 
all participants, frontal PC was lower during RESTING-STATE and SCENES compared 
to FACES and BOTH. The main effect of task condition on lateral frontal PC passes a 
marginal Bonferroni-corrected significance threshold of p < 0.1. 

There was also a significant age group by task condition interaction (F(4,216) = 4.68, p 
= 0.001, ηp

2 = 0.08), indicating that the increased frontal PC in older adults was not 
equivalent across all task conditions (Figure 3.3). Specifically, while there were no 
differences in lateral frontal PC between older and young adults during a RESTING-
STATE condition (p = 0.70), older adults showed increased frontal PC compared to 
young adults during the three less demanding task conditions (CATEGORIZE, p < 
0.001; SCENES, p < 0.001; FACES, p = 0.02). Further, there were no significant 
differences between older and young adults in the BOTH condition (p = 0.14). This 
suggests that older adults exhibited a task-related increase in lateral frontal PC during 
all conditions, while young adults only exhibited an increase during the most demanding 
condition. Importantly, this age group by task condition interaction was not present in 10 
control regions from the occipital cortex (Figure 3.2D; F(4,216) = 0.55, p = 0.70, ηp

2 = 
0.01), suggesting that the age-related reconfiguration of between-module connections 
may be specific to the lateral frontal cortex. 

 

Figure 3.3. Sagittal views of group partitions during resting state (top) and the least and most demanding 
task conditions (middle and bottom, respectively) for young and older adults. For visualization purposes, 
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group consensus partitions were created by averaging the AAL atlas correlation matrices across subjects 
in each group and thresholding at 20% of possible network connections (although note that all analyses 
presented in the results were done at the individual subject level at multiple connection thresholds as 
described in the methods). Within-module edges are colored to match that of nodes in their own module 
and between-module edges are colored gray, with lateral frontal between-module connections bolded. 
Older adults show more between-module lateral frontal connections at lower levels of demand 
(CATEGORIZE) compared with young adults. Young and older adults have similar amounts of lateral 
frontal connections during resting state and the more demanding task condition (BOTH).  

 

Behavioral correlates of network reconfiguration in older adults. To investigate how 
changes in between-module connections in lateral frontal cortex during task 
performance are related to individual differences in behavior, we correlated task-based 
reconfiguration of lateral frontal PC (i.e., difference between task and resting-state) and 
mean task RT. We averaged PC for each task condition given that older adults 
exhibited increases in PC across all task conditions. Older adults who exhibited greater 
task-based increases in lateral frontal PC had faster task performance (Figure 3.4A; 
rho(36) = -0.32, p = 0.05), while this relationship was not present in young adults 
(rho(16) = 0.31, p = 0.21). The difference in correlations between older and young 
groups was statistically significant (p = 0.03). Critically, the correlation in older adults 
was only present when quantifying the difference in lateral frontal PC between resting-
state and task; there was no correlation between task performance and lateral frontal 
PC during resting-state or task alone in older adults (RESTING-STATE, p = 0.14; TASK, 
p = 0.76). 

Replication analyses of changes in network reconfiguration. We reproduced the results 
of this study using a different brain parcellation scheme comprised of functionally 
defined ROIs (Power et al., 2011), with two separate approaches. First, we used 
spectral clustering to identify network modules for each subject and task condition. 
While simulated annealing is one of the most accurate methods to identify modules 
(Guimera and Amaral, 2005), it is computationally intensive. Thus, for this larger set of 
ROIs, we identified modules using a spectral clustering algorithm (Newman, 2006) that 
provides a tradeoff between accuracy and expediency, after thresholding the correlation 
matrices similarly to previous reports (Power et al., 2011): the top 2-10% of connections 
in 5% increments. This is an approach we have taken previously (Sadaghiani et al., 
2015). Second, we used predefined modules previously identified in a group of 
individuals (Power et al., 2011), thus applying the same modular partition across all 
individuals rather than identifying modules with a clustering algorithm. This approach 
allowed us to examine changes in the connections between modules that are not 
influenced by changes in the grouping of nodes into modules themselves. In other 
words, the modules were fixed for all subjects and we then examined changes in the 
connectivity between modules (i.e., modularity and lateral frontal PC). Using these two 
approaches, we reproduced our previous results for changes in module-based network 
metrics and correlations with task performance (see Supplementary Material). 
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Figure 3.4. Relationship between change in lateral frontal PC from resting state to task and executive 
control task performance (RT; A) and fractional anisotropy (FA) of the superior longitudinal fasciculus 
(SLF; B) in older adults. Abbreviations: PC, participation coefficient; RT, reaction time.  

 

3.4.3 Structural correlates of network reconfiguration in older adults 

To investigate how the age-related functional reconfiguration of between-module 
connections in lateral frontal cortex is related to structural connectivity, we correlated 
task-based reconfiguration of lateral frontal PC and FA of the SLF in older adults (mean 
± SD, 0.42 ± 0.02). Older adults who exhibited greater task-based increases in lateral 
frontal PC had marginally greater FA of the SLF (Figure 3.4B; rho(30) = 0.34, p = 0.06). 
While the correlation with 10 lateral frontal ROIs from the AAL atlas was marginally 
significant, we replicated this result using the 30 lateral frontal ROIs from the Power et 
al. (2011) atlas when modules were identified with spectral clustering. Using this atlas, 
greater task-based increases in lateral frontal PC were significantly related to greater 
SLF FA (p = 0.02; see Supplementary Material).  
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3.4.4 Consideration of confounds on network reconfiguration in older adults 

We first examined the effects of head motion on measurements of network organization. 
While head motion was higher in older adults across all task conditions (F(1,54) = 
13.37, p = 0.001), there was no effect of task condition or age group by task condition 
interaction on motion (F(4,216) = 0.22, p = 0.83; F(4,216) = 0.80, p = 0.46). Importantly, 
head motion did not differ between resting-state and task in either the older or young 
groups (p = 0.91; p = 0.98), suggesting that the age differences in network 
reconfiguration between resting-state and task were not driven by differences in head 
motion between conditions in the age groups. Further, including head motion as a 
covariate in the AAL network analyses did not substantially change any results.  

We also examined effects of the time period of resting data collection on measurements 
of network organization. While the proportion of resting-state scans pre- or post-task 
was matched in the older and young groups, it is possible that there were group 
differences (i.e., an age group by resting-state position interaction). To test this, we 
repeated all AAL network analyses with resting-state position (i.e., pre- or post-task) as 
an additional between-subjects factor. There was no significant two-way interaction 
between age group and resting-state position or three-way interaction between age 
group, resting-state position, and task condition for mutual information, modularity, or 
lateral frontal PC. This suggests that the effects reported are not differentially present 
whether the resting-state scan was collected pre- or post-task.  

Finally, we examined the effect of task run selection on measurements of network 
organization. We repeated all AAL network analyses with task-position (i.e., first three 
runs or containing some subsequent runs) as an additional between-subjects factor. 
There was no significant two-way interaction between age group and task-position or 
three-way interaction between age group, task-position, and task condition for mutual 
information, modularity, or lateral frontal PC. These results suggest that the results 
reported are not differentially present whether the task time-series were composed of 
the first three runs or subsequent runs. 

 

3.5 Discussion 

Here, we analyzed resting state and task-based fMRI data to characterize brain network 
reconfiguration that supports executive control functioning (i.e., performance of an N-
back task) in older adults. Recent studies have shown that older adults have a less- 
modular brain network organization in a resting state compared with young adults 
(Onoda and Yamaguchi, 2013; Chan et al., 2014; Geerligs et al., 2014a). However, the 
extent to which this organization reconfigures during a cognitive task in older adults 
remains underspecified. We provide evidence that older adults exhibit larger changes in 
network organization at lower levels of N-back task demands compared with young 
adults. More specifically, older adults showed greater between-module connectivity of 
lateral frontal regions compared with young adults at low levels of executive control 
demands. In older adults, greater network reconfiguration (i.e., increased between-
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module connections of lateral frontal regions) from resting state to task was related to 
better task performance, suggesting that greater between-module integration during 
task performance is critical for successful executive control in aging. Finally, network 
reconfiguration from resting state to task in older adults was related to individual 
variability in white matter microstructure of the SLF, the main tract connecting frontal 
and posterior brain regions.  

3.5.1 Changes in topological overlap of modules between resting state and task  

We found that older adults had less overlap between modules present during a task-
free resting state and those present during the performance of an N-back task. In other 
words, the composition of modules identified during a resting state changed more 
during the task in older adults compared with young adults. This finding suggests that 
older adults exhibited greater reconfiguration of network modules detected during a 
resting state while performing a task.  

Furthermore, across both young and older adults, we found that modules identified 
during the more challenging task conditions had less overlap with resting-state modules, 
suggesting that resting modular organization changed more during higher task 
demands. This latter finding is consistent with a previous study in young participants 
showing that there was less overlap of modules across subjects (e.g., more variability in 
the modules across subjects) during a more difficult N-back condition (Stanley et al., 
2014). This result and ours adds to a growing literature suggesting that the modular 
organization of the brain shows more pronounced reconfigurations with increasing 
cognitive demands.  

3.5.2 Reconfiguration of modular brain network organization during resting state and 
task  

We found that older adults exhibited lower modularity than young adults during a resting 
state, which supports accumulating evidence that aging reduces the segregation of 
networks into distinct modules when measured in the absence of a task (Onoda and 
Yamaguchi, 2013; Chan et al., 2014; Geerligs et al., 2014a). Decreased modularity in 
older adults has been hypothesized to reflect reduced functional integrity of brain 
network modules, in which brain subnetworks are less segregated in older adults 
compared with young adults. We further found that older adults had lower modularity 
than young adults during the N-back task, suggesting that such global age differences 
in brain network organization are also present throughout task performance.  

In addition, across both young and older adults, we found that modularity decreased 
with increasing task demands. This is consistent with previous findings in young adults 
examining network changes during task performance. First, prior work has shown that 
within-module connections decrease and between-module connections increase from 
resting state to task (Cole et al., 2014). Second, studies have shown that modularity 
decreases with increasing working memory load and that this reconfiguration is related 
to better task performance (Kitzbichler et al., 2011; Stanley et al., 2014; Vatansever et 
al., 2015). We found a similar pattern of results, in which the most demanding 
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conditions of the N-back task were associated with the lowest modularity and extend 
this work by showing similar effects across both young and older adults. Changes in 
modularity due to increasing cognitive demands are proposed to reflect increased 
integration between brain network modules to support higher processing demands. 
Furthermore, it has been proposed that reductions in modularity with increasing 
cognitive effort represent the formation of a neuronal “workspace” (Dehaene et al., 
1998) that supports more efficient communication across the brain (Kitzbichler et al., 
2011). 

3.5.3 Alterations in between-module connections with increasing task demands  

Although we found that modularity was reduced in older adults during a resting state 
and task performance, we also examined how specific between-module connections 
reconfigured during these conditions in young and older adults. We found that young 
and older adults had similar between-module connectivity (PC) of lateral frontal regions 
during a resting state, and that older adults exhibited increased connectivity during all 
task conditions. Specifically, older adults had greater between-module connectivity than 
young adults during the less-demanding conditions, but similar between-module 
connectivity in the most demanding condition (i.e., BOTH). These results suggest that 
older adults recruited additional between-module connections at all levels of task 
demand, whereas young adults only did so when task demands were highest. 
Furthermore, in older adults, greater network reconfiguration from a resting state to task 
was associated with better task performance. Not surprisingly, this relationship was not 
present in young adults, given that they did not show an increase in lateral frontal PC for 
most of the task conditions. Finally, we found that greater network reconfiguration from 
a resting state to task in older adults was associated with greater FA of the SLF, a core 
frontal-posterior white matter tract. Our results support the “workspace” hypothesis: 
increased cognitive effort is associated with increased between-module integration that 
is related to better task performance (Kitzbichler et al., 2011; Stanley et al., 2014; 
Vatansever et al., 2015). Here, we provide new evidence that older adults exhibit 
increased between-module integration at lower levels of cognitive demand than young 
adults and also show a relationship between structural connectivity and functional 
network changes in older adults. It should be noted that older adults showed this 
reconfiguration even when performance was equivalent to young adults in terms of 
accuracy and reaction time (e.g., during CATEGORIZE), suggesting that network 
changes were not merely due to the differences in performance between the older and 
young groups.  

Most studies examining age-related changes in brain function due to specific cognitive 
demands have examined the activation of individual brain regions, rather than using a 
large-scale network approach. In particular, numerous studies have shown that older 
adults exhibit increased frontal activity during less-demanding cognitive tasks compared 
with young adults (Mattay et al., 2006; Spreng et al., 2010; Turner and Spreng, 2012; 
2015). Together, these studies have been interpreted to reflect the recruitment of 
additional neural resources that support cognition at lower levels of cognitive demand 
(Reuter-Lorenz and Cappell, 2008). Our results further support the idea of 
compensatory recruitment and, importantly, suggest a large-scale network-level 
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mechanism by which the aging brain reorganizes to support executive control 
processing. Although our correlation analyses cannot provide information about 
directionality, we propose that greater structural connectivity of frontal-posterior white 
matter pathways enables older adults to appropriately reconfigure brain networks 
between a resting state and task performance, depending on the task demands. 
Specifically, older adults showed greater increases in lateral frontal between-module 
connections at lower levels of demand compared with young adults. We postulate that 
this pattern of increased connectivity between frontal regions and other modules is 
reflective of a more integrated network architecture that is important for successful 
executive control processing in aging.  

Future work should investigate how other changes that occur with aging (e.g., 
reductions in cerebral gray matter) are related to functional network reconfiguration. 
Furthermore, as aging is associated with cognitive changes in other domains, such as 
long- term memory, an important future step would be to quantify network changes 
during other cognitive tasks. There is some evidence that older adults show larger 
connectivity changes in nonfrontal regions (i.e., parietal and somatosensory cortex) with 
increasing task demands compared with young adults (Geerligs et al., 2014b). The 
network reconfiguration reported here could be a domain-general response to 
increasing cognitive demands or there could be unique changes for the processing of 
specific cognitive functions.  

3.5.4 Methodological considerations  

There are many valid approaches to examine brain network properties with fMRI data. 
Regarding methods for parcellating the brain into ROIs, we demonstrated that our 
results are reproducible for both anatomically (Tzourio-Mazoyer et al., 2002) and 
functionally (Power et al., 2011) defined ROIs. Although the larger ROIs in the AAL atlas 
may encompass multiple functional regions, there may also be drawbacks to using a 
functionally defined atlas when comparing groups of young and older adults. 
Specifically, most functionally defined atlases have been created using data from young 
subjects. Thus, differences in functional boundaries in older adults could bias network 
measures in a way that an anatomically defined atlas would not. Given this, the 
replication of our results using an anatomical and functional atlas demonstrates the 
robustness of our findings. Future work should examine how potential changes in the 
functional boundaries of brain regions in older adults influence network measures.  

Regarding methods for identifying brain network modules, subject-level modular 
networks may be noisier than those derived at the group level (e.g., identifying modules 
after averaging correlation matrices across subjects). Furthermore, if the modules are 
different across subjects, changes in network connections could arise from differences 
in the modules themselves and/or changes in connectivity. Although we examined the 
overlap in modules with MI, we also replicated our results after imposing the same 
modular organization across all subjects.  

Finally, although our primary findings demonstrated an inter- action between age group 
and task condition, we reported several main effects of age group on network 
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organization (e.g., MI and modularity). We cannot rule out the possibility that these 
effects are due to age-related changes in vasculature that may impact the BOLD signal, 
anatomical changes in gray and white matter (D'Esposito et al., 2003), or differences in 
functional image acquisition between older and young adults.  
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3.6 Supplemental Material 

3.6.1 Replication analyses of changes in network reconfiguration using a functionally 
defined brain atlas. 

We reproduced the results from Section 3.4.2 using a different brain parcellation 
scheme comprised of functionally defined ROIs (Power et al., 2011), with two separate 
approaches. First, we used spectral clustering (Newman, 2006) to identify network 
modules for each subject and task condition. MI between resting-state and task 
conditions revealed a main effect of age group (older less than young; F(1,54) = 106.66, 
p < 0.001) and a marginal effect of task condition (CATEGORIZE and SCENES greater 
than BOTH; linear effect, F(1,54) = 3.22, p = 0.08). There were also main effects of age 
group (F(1,54) = 54.23, p < 0.001) and task condition (F(4,216) = 4.43, p = 0.003) on 
modularity. Across all task conditions, modularity was lower in older adults. Across all 
participants, modularity was highest during RESTING-STATE and higher in 
CATEGORIZE, SCENES, and FACES compared to BOTH. We identified 30 lateral 
frontal ROIs in this atlas to examine the changes in PC between resting-state and task 
as in Section 3.4.2 Comparing lateral frontal PC between older and young adults, older 
and young adults had similar lateral frontal PC during RESTING-STATE (p = 0.78). 
Older adults exhibited greater lateral frontal PC than young adults during all task 
conditions but BOTH (CATEGORIZE, p = 0.03; SCENES, p = 0.03; FACES, p = 0.03; 
BOTH, p = 0.41). Increases in lateral frontal PC from resting-state to task in these 30 
regions was marginally associated with faster task performance in older but not young 
adults (older, rho(36) = -0.30, p = 0.06; young, rho(18) = 0.30, p = 0.23), with the 
difference in correlations between older and young groups being statistically significant 
(p = 0.04). 

Second, we used predefined modules previously identified in a group of individuals 
(Power et al., 2011), thus applying the same modular partition across all individuals 
rather than identifying modules at the subject-level with a clustering algorithm. We 
reproduced our previous results for both modularity and lateral frontal PC (note that MI 
between resting-state and task is equal to 1 for this analysis, as the modules are 
identical for all subjects and task conditions). Modularity was lower in older adults 
compared to young adults (main effect of age group, F(1,54) = 75.95, p < 0.001). 
Further, modularity during RESTING-STATE was higher than FACES and BOTH and 
modularity was lowest in BOTH compared to all other conditions (main effect of task 
condition, F(4,216) = 6.31, p = 0.001). Comparing lateral frontal PC between young and 
older adults, older and young adults had similar PC for the 30 lateral frontal regions 
during RESTING-STATE (p = 0.77). Older adults exhibited greater lateral frontal PC 
than young adults during all task conditions but BOTH where there was only a marginal 
difference between the groups (CATEGORIZE, p = 0.005; SCENES, p = 0.01; FACES, 
p = 0.02; BOTH, p = 0.08). The increase in lateral frontal PC from resting-state to task in 
these 30 regions was not significantly associated with faster task performance in older 
or young adults (older, rho(36) = -0.25, p = 0.13; young, rho(18) = 0.13, p = 0.60). 
However, while the relationship between lateral frontal PC and reaction time was not 
significant after imposing a predefined partition in older adults, the correlation 
magnitude was not significantly different than what we observed using the Power et al. 
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(2011) atlas with modules identified by spectral clustering (i.e., rho = -0.25 compared to 
rho = -0.30, respectively; p = 0.82).  

3.6.2 Replication analyses of structural correlates of network reconfiguration using a 
functionally defined brain atlas. 

We replicated the results in Section 3.4.3 using the 30 lateral frontal ROIs from the 
Power et al. (2011) atlas when modules were identified with spectral clustering at the 
subject level (rho(30) = 0.43, p = 0.02). This correlation was not significant when 
predefined modules were applied to all subjects (rho(30) = 0.15, p = 0.42). While the 
relationship between lateral frontal PC and SLF FA was not significant after imposing a 
predefined partition in older adults, the correlation magnitude was not significantly 
different than what we observed using the Power et al. (2011) atlas with modules 
identified by spectral clustering (i.e., rho = 0.15 compared to rho = 0.43, respectively; p 
= 0.19).  
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Chapter 4 

MODULAR BRAIN NETWORK ORGANIZATION PREDICTS RESPONSE TO COGNITIVE 
TRAINING IN OLDER ADULTS 

	

4.1 Abstract 

Although cognitive deficits are common in aging, cognitive training interventions can 
mitigate these deficits to improve functioning in older adults. Baseline neural factors, 
such as properties of brain networks, may predict training outcomes. Here, we 
investigated the relationship between pre-training network modularity, a measure of the 
segregation of brain sub-networks, and training-related gains in cognition in older 
adults. We found that older adults with more segregated brain sub-networks (i.e., more 
modular networks) at baseline during a task-free resting-state exhibited greater training 
improvements in the ability to synthesize complex information. Further, the relationship 
between modularity and training-related gains was pronounced in modules mediating 
“associative” functions compared with those involved in sensory-motor processing. 
These results suggest that assessments of brain networks are a useful biomarker that 
can be used to guide the implementation of cognitive interventions and improve 
outcomes across individuals. More broadly, properties of brain networks may also 
capture individual differences in capacity for learning and neuroplasticity. 

 

4.2 Introduction 

Aging is associated with declines in various cognitive functions, such as attention, 
cognitive control, and memory (Grady, 2012). There is emerging evidence that 
characterization of large-scale brain network properties provides an important 
framework for understanding such complex behaviors, by examining the interactions of 
sub-networks, or modules, that span the whole brain (Mattar et al., 2015; Medaglia et 
al., 2015). Previous work has shown that brain networks exhibit a modular organization 
in that they are comprised of sub-networks, or modules. The extent of segregation and 
integration of brain network modules can be quantified with a modularity metric 
(Newman and Girvan, 2004), in which highly modular networks have many connections 
within modules and fewer connections to other modules. Studies examining changes in 
modularity with aging have shown that older adults have less modular networks than 
young adults (Onoda and Yamaguchi, 2013; Geerligs et al., 2014a), particularly in sub-
networks thought to mediate “associative” functions, such as  fronto-parietal control and 
dorsal and ventral attention modules (Chan et al., 2014). 

Although cognitive declines are common in older adulthood, growing evidence suggests 
that cognitive training can induce neural plasticity and improve aspects of cognition 
(Lustig et al., 2009; Brehmer et al., 2011; Kelly et al., 2014; Ballesteros et al., 2015; 
Bherer, 2015) and underlying connectivity within brain sub-networks (Chapman et al., 



	 42 

2015; Cao et al., 2016) in older adults, although changes in network modularity 
associated with training have not been directly assessed.  For example, we have shown 
that strategy-based gist reasoning training alters functional connectivity of default mode 
and executive sub-networks and improves abstract thinking, concept formation, and 
other executive functions in a group of healthy older adults (Chapman et al., 2015). 
Despite previous work showing that cognitive training can alter network connectivity in 
older adults, there has been little focus on identifying baseline neural factors that can 
predict training-related improvements in cognition. In a study with traumatic brain injury 
(TBI) patients, we found that brain network organization assessed at baseline predicted 
training-related gains. Specifically, individuals with higher brain network modularity 
showed greater improvements on tests of executive functioning after goal-oriented 
attention self-regulation training (Arnemann et al., 2015). These findings suggest that 
brain network modularity can be used as a biomarker to guide cognitive interventions. 
However, the utility of modularity as a predictor of training outcomes has not yet been 
tested in healthy individuals.  

In the present study, we examined the relationship between baseline brain network 
modularity and cognitive improvements in healthy older adults who participated in a 
previously published cognitive training protocol (Chapman et al., 2015). We 
hypothesized that older adults with higher baseline modularity would show greater 
training-related gains compared to those with lower modularity. 

 

4.3 Materials and Methods 

4.3.1 Participants 

A total of 29 cognitively normal older adults (age range: 57-70) were included in this 
study. Participants were randomized to wait-list control (N = 14; mean ± SD age: 64.36 
± 3.30; 9 females; mean ± SD IQ: 120.43 ± 11.67) or cognitive training (N = 15; mean ± 
SD age: 63.07 ± 2.87; 9 females; mean ± SD IQ: 122.13 ± 8.30). The groups were 
matched on age (t(27) = 1.13, p = 0.27), distribution of gender (Χ2(1, N = 29) = 0.06, p = 
0.81), and WASI IQ (t(27) = -0.46, p = 0.65). Participants were screened for dementia 
(Telephone Interview of Cognitive Status-Modified, TICS-M), early cognitive impairment 
(Montreal Cognitive Assessment, MoCA), and depressive symptoms (Beck Depression 
Inventory-II, BDI) and underwent a complete medical assessment by a physician to 
ensure good health. Criteria for inclusion were: right-handed, native English speaker, no 
history of neurological or psychiatric conditions, normal IQ range, normal cognitive 
status (TICS-M ≥ 28, MoCA ≥ 26, BDI ≤ 14), minimum of high school diploma, no MR 
scanning contraindications, and normal body mass (BMI ≤ 40). Informed consent was 
obtained from all subjects in accordance with the Institutional Review Boards of The 
University of Texas at Dallas, the University of Texas Southwestern Medical Center, 
and the Cooper Institute.  
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4.3.2 Cognitive training (SMART) 

The cognitive training group engaged in a 12-week course of Strategic Memory and 
Reasoning Training (SMART) (Vas et al., 2011). SMART is a strategy-based gist 
reasoning training that focuses on the use of strategic attention, integrated reasoning, 
and innovation to improve cognitive control processes related to gist reasoning. Each 
week, participants completed one-hour of small group training (n ≤ 5 in each group) and 
two one-hour sessions of home practice (Chapman et al., 2015). To examine cognitive 
changes specifically associated with SMART, these participants were compared to a 
group of wait-list control subjects. 

4.3.3 Neurocognitive measures 

A battery of neurocognitive measures was collected as described in Chapman et al. 
(2015). In this study, we focused on pre- and post-training assessments of gist 
reasoning and concept abstraction measures (Test of Strategic Learning (TOSL; (Vas et 
al., 2011)) and WAIS-III Similarities, respectively) that were previously shown to 
improve following SMART training (Chapman et al., 2015). Gist reasoning refers to 
synthesizing abstracted meanings from lengthy textual information (e.g., global ideas 
conveyed in an article) and concept abstraction refers to identifying categorical 
abstraction between two items (e.g., how a fly and an airplane are alike). 

4.3.4 MRI acquisition and preprocessing 

At baseline, MRI scans were collected with an 8-channel head coil on a 3T Philips 
scanner. A T1-weighted sequence was used to acquire anatomical images (in-plane 
resolution = 1 mm2, 160 1-mm thick sagittal slices, TR/TE = 8.3/3.8 ms). A T2*-weighted 
echoplanar imaging (EPI) sequence was used to acquire a four-minute resting-state 
scan (in-plane resolution = 3.44 mm2, 36 4-mm thick ascending axial slices, TR/TE = 
2000/30 ms). 

Standard preprocessing of MRI data was carried out with Configurable Pipeline for the 
Analysis of Connectomes (CPAC). Briefly, EPI data was slice-time and motion corrected 
and co-registered to the T1-weighted structural image. Then, signals from motion 
(Friston 24-parameter model), the top five principal components from white matter and 
CSF voxels (Behzadi et al., 2007), and linear and quadratic trends were regressed out. 
Lastly, EPI data was bandpass filtered (0.009 – 0.08 Hz), scaled to a whole-brain mode 
value of 1000, and warped to MNI space.  

4.3.5 Functional connectivity and network analyses 

Participants’ T1-weighted anatomical scans were registered to MNI space and 
parcellated into 264 regions of interest (ROIs) (Power et al., 2011). Time-series from 
EPI data were averaged over the voxels in each ROI. Nine ROIs were excluded from 
subsequent analyses due to incomplete EPI coverage in at least one subject (i.e., no 
ROI voxels remained). Correlation matrices were created for each participant by 
correlating the time-series between each pair of ROIs using Pearson’s correlation 
coefficient and applying a Fisher z-transform. Adjacency matrices were created by 
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thresholding each correlation matrix over a range of thresholds (the top 2-10% of 
connections in 2% increments), resulting in unweighted, undirected graphs. We then 
assigned each ROI to a module as defined in Power et al. (2011) and quantified each 
participant’s network modularity, a measure that compares the number of connections 
within to the number of connections between modules (Newman and Girvan, 2004). 
Modularity will be 1 if all connections fall within modules and it will be 0 if there are no 
more connections within modules than would be expected by chance. We also repeated 
these analyses using spectral clustering (Newman, 2006) to group ROIs into subject-
specific modules before quantifying modularity. Unless otherwise noted, modularity 
values are presented as the average across connection density thresholds. 

4.3.6 Statistical analysis 

To quantify the relationships between baseline modularity and training-related cognitive 
gains, we examined the correlation between pre-training modularity and cognitive gains 
in TOSL and Similarities, computed as the difference in post-training and pre-training 
scores, separately in the control and SMART groups. Due to the relatively small sample 
size in each group, we conducted non-parametric Spearman correlations to reduce the 
influence from extreme values. 

As aging has been shown to have a more pronounced effect on the modularity of 
association modules compared with sensory-motor modules (Chan et al., 2014), we 
also examined the differential contribution of the modularity of these sub-networks on 
predicting cognitive gains in older adults. The whole-brain modularity metric is 
computed as the sum of the modularity values for each module. Using the modules 
defined in Power et al. (2011), we computed the baseline modularity of sensory-motor 
and association modules as described in Chan et al. (2014). For sensory-motor network 
modularity, we computed the average modularity of the auditory, somato-motor (hand 
and mouth), and visual modules. For association network modularity, we computed the 
average modularity of the cingulo-opercular, default mode, dorsal attention, fronto-
parietal, salience, and ventral attention modules. We then examined the relationships 
between cognitive training gains and sensory-motor and association modularity in each 
group. 

 

4.4 Results 

4.4.1 Cognitive changes after SMART training 

As previously reported (Chapman et al., 2015), there were no group differences in 
baseline TOSL (p = 0.30) or Similarities (p = 0.82); however, the SMART group 
performance on TOSL (complex abstraction) and Similarities (simple concept 
abstraction) improved (group by time Interaction: F(1,27) = 5.82, p = 0.02; F(1,27) = 
4.03, p = 0.06). Within the SMART group, participants improved in TOSL (Figure 4.1A; p 
= 0.05) and Similarities (Figure 4.1B; p = 0.001), whereas control participants’ scores 
did not change (p = 0.15; p = 0.10, respectively).  
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Figure 4.1. Performance on Test of Strategic Learning (TOSL, A) and WAIS-III Similarities (B) for control 
and SMART groups pre- and post-training. Scores are presented as in Chapman et al. (2015), where 
TOSL is presented as raw scores and Similarities is presented as standard scores. Data are presented as 
mean ± SEM. 

 

4.4.2 Relationship between baseline whole-brain modularity and cognitive changes 

Baseline modularity was similar in the SMART and control groups (t(27) = 0.39, p = 
0.70) and was not related to participant age in either group (control: rho(13) = -0.29, p = 
0.31; SMART: rho(14) = -0.14, p = 0.62). In the SMART group, baseline modularity was 
positively correlated with training-related gains on TOSL (rho(13) = 0.65, p = 0.01), but 
not on Similarities (rho(13) = 0.03, p = 0.90). There was no relationship in the control 
group between baseline modularity and TOSL (rho(12) = -0.12, p = 0.68) or Similarities 
(rho(12) = -0.26, p = 0.37). As the correlation between baseline modularity and training 
gains was not significant for Similarities, we focus on training-related TOSL gains for the 
remaining analyses. 
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The modularity-TOSL gain correlations were significantly different between the control 
and SMART groups (Figure 4.2A; p = 0.03). While pre-training TOSL was related to 
TOSL gains in both groups when they were combined (p < 0.001), there was no 
relationship between baseline TOSL and modularity in either group (p > 0.23). We 
further confirmed the modularity-TOSL gain relationship was significant in the SMART 
group, but not control group, when controlling for pre-training TOSL (p = 0.03; p = 0.22). 

 

Figure 4.2. Relationship between baseline modularity (pre-training) and change in TOSL (difference of 
post-training and pre-training) in control and SMART groups (A). Here, modularity values were calculated 
for each connection threshold and averaged for each participant. Relationship between baseline 
modularity and change in TOSL at each connection threshold for each group (B).  
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We conducted several additional analyses to examine the robustness of our findings. 
First, to ensure that the relationship between modularity and cognitive gains was not 
significantly affected by a particular choice of connection density threshold, we 
examined the modularity-TOSL gain for each threshold separately in the two groups. 
The correlations between modularity and TOSL changes were consistent across the 
connection thresholds (Figure 4.2B). Second, as there are multiple methods for 
identifying network modules, we also identified subject-specific modules using a 
spectral clustering algorithm (Newman, 2006) instead of imposing the same modules for 
all subjects as defined in Power et al. (2011). In each group, the correlations between 
modularity and TOSL changes were similar when using the spectral method (control: 
rho(13) = -0.38, p = 0.18; SMART: rho(14) = 0.76, p = 0.001).  Finally, as in-scanner 
motion can spuriously affect functional connectivity estimates (Power et al., 2012; 
Satterthwaite et al., 2012; Van Dijk et al., 2012), we confirmed that motion (framewise 
displacement (Power et al., 2012)) was similar between the groups (mean ± SD FD: 
control: 0.16 ± 0.10; SMART: 0.15 ± 0.05; p = 0.80) and was not related to modularity in 
either group (p > 0.13). Controlling for motion did not substantially alter any of the 
modularity-TOSL gain correlations (control: r(11) = -0.16, p = 0.60; SMART: r(12) = 
0.55, p = 0.04).   

4.4.3 Relationship between sensory-motor and association modularity and cognitive 
changes 

As expected, examination of the adjacency matrices for SMART participants with the 
lowest and highest modularity showed that brain networks of subjects with high 
modularity were characterized by modules with many connections between regions 
belonging to the same module and relatively few connections between regions 
belonging to different modules (Figure 4.3). Further, the concentration of connections 
within and between modules varied across the modules themselves. We next examined 
the differential contribution of sensory-motor and association modularity on predicting 
TOSL changes, as there is evidence that association modules show more pronounced 
aging effects (Chan et al., 2014). Comparisons of baseline sensory-motor and 
association modularity in each group showed that modularity was greater in sensory-
motor compared with association sub-networks in control (t(13) = 8.52, p < 0.001) and 
SMART (t(14) = 5.71, p < 0.001) groups. Further, sensory-motor and association 
modularity were not significantly correlated in either group (control: rho(12) = -0.24, p = 
0.42; SMART: rho(13) = 0.04, p = 0.90). 
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Figure 4.3. Depictions of within- (left) and between- (right) module connections for SMART participants 
with lowest (top) and highest (bottom) brain network modularity. The presence or absence of a 
connection was calculated for each connection density threshold (i.e., an adjacency matrix) and averaged 
over thresholds for each subject. Brain regions are colored according to their module assignments in 
Power et al. (2011) and are grouped into sensory-motor and association modules as defined in Chan et 
al. (2014). SMART subjects with high modularity have many connections within modules and fewer 
connections between modules compared with subjects with low modularity. 



	 49 

Separate correlations of sensory-motor and association modularity and TOSL gains 
showed that the modularity-TOSL gain relationship in the SMART group was significant 
for association (rho(13) = 0.60, p = 0.02) but not sensory-motor (rho(13) = 0.19, p = 
0.49) modularity (Figure 4.4). There was no relationship between TOSL gains and either 
sensory-motor or association modularity in the control group (p = 0.45 and 0.94, 
respectively). To further examine how association and sensory-motor modularity 
contribute to the whole-brain modularity-TOSL gain correlation in the SMART group, we 
conducted the whole-brain modularity and TOSL gain correlation controlling for either 
association or sensory-motor modularity. Controlling for sensory-motor modularity did 
not substantially alter the relationship between whole-brain modularity and TOSL gain 
(r(12) = 0.58, p = 0.03), while controlling for association modularity reduced the 
relationship between whole-brain modularity and TOSL gain (r(12) = 0.12, p = 0.69). 

 

Figure 4.4. Relationship between sensory-motor (A) and association (B) modularity and TOSL gain in 
control and SMART groups. Cerebral cortex regions belonging to sensory-motor and association modules 
are plotted on on sagittal views of the brain in A and B, respectively. 
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4.5 Discussion 

Our findings demonstrate that older adults with more modular brain networks at 
baseline show greater improvements after cognitive training. Critically, this relationship 
was not present in a control group and remained significant when accounting for 
baseline cognitive functioning on measures that improved with training. These results 
are directly in-line with previous work showing that TBI patients with higher brain 
network modularity exhibited greater improvements in executive functioning after 
training (Arnemann et al., 2015). We also expand on this work by showing that the 
relationship between modularity and training-related cognitive gains in cognitively 
normal older adults was stronger for modularity of association cortex sub-networks 
compared with sensory-motor sub-networks. Together, these findings suggest that 
individuals who had a more modular brain network organization during a ‘resting-state’ 
were more likely to benefit from cognitive training.  
 
Modular brain network organization is thought to enable complex behavior by 
supporting both specialized functions through communication within network modules 
and globally-integrated functions through communication between network modules 
(Meunier et al., 2009b; 2010). Previous studies have provided support for the 
importance of this global network property by showing that resting-state modularity is 
related to aspects of memory (Stevens et al., 2010; Alavash et al., 2015), predicts 
perception (Sadaghiani et al., 2015), and dynamically reconfigures depending on task 
demands (Wen et al., 2015). In addition to whole-brain network modularity, specific 
network modules important for associative functions, such as the default mode network, 
have been shown to be related to memory (Power et al., 2011; Chan et al., 2014), 
exhibit reorganization during working memory performance (Stanley et al., 2014; Liang 
et al., 2015; Vatansever et al., 2015), and show pronounced changes with aging (Onoda 
and Yamaguchi, 2013; Chan et al., 2014; Geerligs et al., 2014a). Here, we add to this 
previous work by showing that network modularity, particularly that of associative 
systems, may represent a beneficial brain organization for improving cognitive 
functioning in older adults with training. 
 
More generally, our results also suggest that brain network properties may be related to 
learning, such that individuals with a more modular brain may have a greater learning 
capacity and, thus, ability to benefit from training. While previous studies have shown 
that neural factors (e.g., frontal alpha power and striatal volume) are related to skill 
learning (Erickson et al., 2010; Basak et al., 2011; Power et al., 2011; Vo et al., 2011; 
Mathewson et al., 2012), the aspects of brain structure and function that predicted 
learning are variable across studies. Given that we have found that brain network 
modularity is predictive of cognitive training gains in two types of training paradigms and 
populations, network modularity may provide a unifying framework that predicts training 
outcomes across a variety of interventions and groups. 
 
We propose that brain network modularity is a valuable biomarker that can inform the 
implementation of cognitive interventions, as assessments of modularity could be used 
to personalize interventions to maximize outcomes across individuals. For example, 
individuals with low network modularity might require a longer or repeated training 
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intervention. Although we have demonstrated that modularity is predictive of training 
gains in older adults and TBI patients (Arnemann et al., 2015), future work should also 
examine this relationship in healthy young subjects and other patient populations to 
further address the generalization of these findings. More broadly, our results also imply 
that modularity may index individual differences in neuroplasticity. To more directly 
address this, an important area of future research should be to examine the relationship 
between modularity and underlying training-related neural changes. 
 
There are several limitations to the present study. First, lack of an active control group 
limited full examination of the specificity of our results to SMART training. However, 
previous work showed that an active control group did not exhibit cognitive changes 
compared to SMART (Vas et al., 2011). In this study, TBI patients in the active control 
group participated in an 8-week information-based program (Brain Health Workshop, 
BHW)(Binder et al., 2008) in small groups. The content of BHW covered topics such as 
brain anatomy and function and brain health. Further, modularity has previously been 
shown to not be predictive of cognitive changes after BHW in TBI patients (Arnemann et 
al., 2015). Second, each group had a relatively small sample size. This may have 
limited our power to detect a relationship between modularity and Similarities gains, 
where the effect of training was smaller than that of TOSL. Future studies with larger 
samples may allow for examination of other relationships between modularity and 
training-related neural and cognitive changes.  
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Chapter 5 

BRAIN NETWORK PREDICTORS OF COGNITIVE TRAINING-RELATED GAINS IN YOUNG 
ADULTS 

 

5.1 Abstract 

The brain operates via networked activity in separable groups of regions called 
modules. The quantification of modularity compares the number of connections within 
and between modules, thus characterizing the balance of segregation and integration in 
a network. Previous work has demonstrated that baseline brain network modularity 
positively predicts cognitive training outcomes in older adults and in patients with 
traumatic brain injury. In healthy young adults, however, the functional significance of 
modularity in predicting training-related cognitive improvements is not yet known. Here, 
we quantified brain network modularity in young adults who underwent cognitive training 
with working memory and reasoning (WM-REAS) casual video games (e.g., games that 
are relatively easy to learn and freely available on the internet or handheld devices). 
After training, WM-REAS participants improved in divided attention measures relative to 
control groups. Network modularity assessed at baseline was positively correlated with 
this improvement in divided attention following training, even after controlling for 
baseline behavioral measures. The modularity-gain relationship was especially evident 
in individuals with lower baseline scores in fluid intelligence and divided attention. 
Finally, we assessed individual module contributions to predicting cognitive training 
gains and found that greater modularity of the default mode (DMN) sub-network was 
related to larger gains in divided attention. These results show that a more modular 
brain network organization may allow for greater adaptive reconfiguration during 
cognitive training. On a broader scale, these findings suggest that, in low-performing 
individuals, global network properties can capture aspects of brain function that are 
important in understanding individual differences in learning. 

 

5.2 Introduction 

Computer-based cognitive training in the form of video games and laboratory exercises 
is an increasingly popular approach to improve cognitive function, yet training-related 
benefits can vary greatly across studies and individuals (Boot and Kramer, 2014). To 
better inform the implementation of such interventions, it is important to examine 
individual differences that can predict training effectiveness. Pre-training patterns of 
neural activity (Vo et al., 2011; Mathewson et al., 2012) and brain volume (Erickson et 
al., 2010; Basak et al., 2011; Verghese et al., 2016) have been found to correlate with 
improvements after cognitive training, although these brain measures have often been 
limited to a single region or to a small group of regions which vary across studies. Since 
complex cognitive functions likely involve widespread interactions between groups of 
brain regions (Cole et al., 2013; Medaglia et al., 2015) or sub-networks, it is critical to 



	 53 

consider whether baseline global brain network properties can serve as a useful 
biomarker in assessing training outcomes. 

Graph theoretical tools can be used to describe the brain as a complex network, where 
individual brain regions represent network nodes and the structural or functional 
connections between them represent network edges. Previous work using structural 
and functional MRI has shown that brain networks exhibit a modular organization, 
comprised of separable sub-networks or modules, with dense connections within 
modules and sparser connections between modules (Newman and Girvan, 2004; 
Newman, 2006; Chen et al., 2008; Bullmore and Sporns, 2009; Meunier et al., 2010). 
Using graph theory, the extent of segregation of network modules can be quantified with 
a modularity metric. 

More generally, modularity has been found to be disrupted in patients with mental 
disorders (Alexander-Bloch et al., 2010; 2012; Fornito et al., 2015) and with damage to 
highly connected brain areas (Gratton et al., 2012). In healthy adults, lower modularity is 
also observed with increasing age (Meunier et al., 2009a; Betzel et al., 2014; Chan et 
al., 2014; Geerligs et al., 2014a). Across individuals, modularity predicts variability in 
working memory capacity (Stevens et al., 2012; Stanley et al., 2014) and has been 
observed to change during working memory task performance, showing a decrease in 
more cognitive-demanding conditions (Kitzbichler et al., 2011). Taken together, these 
results suggest that modularity is a critical component of learning, with a more modular 
structure potentially allowing for more efficient and greater adaptive reorganization in 
response to changing demands (Bassett et al., 2011; Russo et al., 2014). 

Recent work has shown that higher modularity at baseline predicts greater training-
related cognitive improvements in healthy older adults (Gallen et al., Submitted) and in 
patients with traumatic brain injury (TBI; Arnemann et al., 2015), above and beyond 
baseline behavioral measures. Previous studies also suggest that cognitive 
interventions can improve aspects of cognition in healthy young adults (Boot et al., 
2008; Strobach et al., 2012; Au et al., 2014; Karbach and Verhaeghen, 2014), but see 
(Melby-Lervåg and Hulme, 2013; Redick et al., 2013; Boot and Kramer, 2014; 
Dougherty et al., 2016). However, the functional significance of modularity in predicting 
training outcomes in young adults has not yet been examined.  

In the present study, we sought to test whether modularity is a useful predictor of 
training effectiveness in a healthy young, relatively high-functioning population. In a 
large sample of young adults (N = 68) who displayed improvements in divided attention 
after 15 hours of training with working memory and reasoning (WM-REAS) casual video 
games compared to an active control group (N = 37) and a no-contact control group (N 
= 38) (Baniqued et al., 2014), we examined whether pre-training modularity as 
measured during a task-free “resting state" can predict the observed training-related 
gains in divided attention. We hypothesized that, in line with previous findings, higher 
modularity will predict greater training-related gains in the WM-REAS group, but not in 
the control groups. 
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5.3 Materials and Methods 

5.3.1 Participants 

209 right-handed adults aged 18-30 participated in a multi-session study (see 
(Baniqued et al., 2014) and (Nikolaidis et al., 2016) for behavioral data and MR 
spectroscopy data published from this same cohort). Individuals were recruited from the 
University of Illinois at Urbana-Champaign and surrounding communities through paper 
and web-based announcements advertising a “cognitive training study.” Eligible 
applicants had normal or corrected-to-normal vision, no major medical, psychiatric or 
psychological conditions, and must have reported playing video and board games for 3 
hours or less per week in the last 6 months. Participants were compensated $15/hour if 
they completed all required sessions. To encourage study completion, individuals who 
discontinued study participation were paid $7.50/hr for every completed session. The 
University of Illinois Institutional Review Board approved study procedures and all 
participants provided written informed consent. Additional details about recruitment 
procedures (e.g., initial e-mail survey, phone screening) are provided in the original 
training report (Baniqued et al., 2014). In the publication of the behavioral training 
effects, participants were excluded from analysis if they reported in a post-experiment 
questionnaire that they 1) played any of the games used for training or testing and/or 2) 
were active video game players as defined by game play of more than 3 hours in the 
last 6 months, leaving 170 participants for analysis. We follow this procedure and other 
exclusionary criteria in the original study (including excluding behavioral measures 
greater than 4 standard deviations (SD) from the mean), and exclude more participants 
from analysis based on MRI data quality (N = 26, see MRI Preprocessing). Summary 
demographics for the remaining participants are presented in Table 5.1.  
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Table 5.1. Demographics 

  
 

WM-
REAS 

1 

WM-
REAS 

2 

Active 
Control 

No-
Contact  

Group Effect  
(4 groups) 

Group Effect 
(2 groups) 

Dropped due to 
video game play 
outside lab 

10 12 9 8 χ²(3)=1.07, 
p=.79 

χ²(1)=0.73, 
p=.39 

Dropped due to 
poor MRI data 
quality 

9 6 7 5 χ²(3)=1.60, 
p=.66 

χ²(1)=0.97, 
p=.33 

Final N 34 34 37 38 - - 

Age (SD) 21.32 
(2.21) 

21.5 
(2.49) 

20.70 
(1.87) 

20.71 
(2.17) 

F(3,139)=1.27 
p=.29 

t(141)=1.94, 
p=.06 

Years of 
education (SD) 

14.87 
(1.24) 

15.25 
(1.72) 

14.66 
(1.30) 

14.86 
(1.56) 

F(3,139)=0.98, 
p=.40 

t(141)=1.21, 
p=.23 

Females / Males 26 / 8 25 / 9 25 / 12 29 / 9 χ²(1)=0.98, 
p=.81 

χ²(1)=0.17, 
p=.69 

 

5.3.2 Behavioral Methods 

Protocol Summary. Participants completed four baseline testing sessions in a fixed 
session and task order (three behavioral sessions followed by one MRI session). For 
the training groups, participants then completed 10 sessions of casual game play. After 
training or after a comparable amount of time (3-4 weeks) elapsed for the no-contact 
control group, participants completed four testing sessions in reverse session order 
(MRI session followed by three behavioral sessions in reverse order as baseline 
testing).  

Training Games. Participants assigned to the training groups completed 10 sessions at 
a rate of two to three sessions per week. During each session, participants played four 
games in pseudo-random order for 20 minutes each. Training games were selected 
based on results from a study that correlated performance on casual games with 
performance on various tests of cognitive abilities (Baniqued et al., 2014). The WM-
REAS groups played casual games that were highly correlated with performance on 
working memory and reasoning tests, while the active control group played games that 
were not highly correlated with working memory and reasoning tests. As previously 
reported (Baniqued et al., 2014), the groups were comparable in their experience of the 
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games as assessed by feedback questions of enjoyment, motivation, and engagement. 
Table 5.2 contains brief descriptions of each game. The WM-REAS 1 and WM-REAS 2 
groups differed primarily in the adaptiveness of the training games, such that all WM-
REAS 2 games were adaptive across sessions. Since the two WM-REAS groups 
showed similar effects of training (Baniqued et al., 2014), they are analyzed together in 
this study. The no-contact group did not undergo any training and only completed pre- 
and post-testing.  

Table 5.2. Training games 

Games Group Description Source 

Silversphere WM-REAS 
1, WM-
REAS 2 

Move a sphere to a blue vortex by creating a 
path using blocks of different features and 
avoiding obstacles along the path. 

miniclip.com 

Digital Switch WM-REAS 
1 

Switch “digibot” positions to collect falling coins 
corresponding to the same “digibot” color.  

miniclip.com 

TwoThree WM-REAS 
1 

Target rapidly presented numbers by pointing 
the mouse to the numbers and subtracting the 
numbers down to exactly zero in units of 2 or 3.  

armorgames.com 

Sushi Go 
Round 

WM-REAS 
1 

Serve customers in the allotted time by learning 
and preparing recipes correctly, cleaning 
tables, and ordering ingredients. 

miniclip.com 

Aengie 
Quest 

WM-REAS 
2 

Move across the board and exit each level by 
pushing switches and boxes, finding keys, and 
opening doors. 

freegamesjungle.com 

Gude Balls WM-REAS 
2 

Remove all plates by filling a plate with four of 
the same colored balls and switching balls to 
other plates while navigating around obstacles.  

bigfishgames.com 

Block Drop WM-REAS 
2 

Move around a gem on three-dimensional 
blocks of varying shapes to remove all blocks 
except the checkered block.  

miniclip.com 

Alphattack Active 
Control 

Prevent bombs from landing by typing 
characters presented on approaching bombs.  

miniclip.com 

Crashdown Active 
Control 

Prevent the wall from reaching the top of the 
screen by clicking on groups of three or more 
same colored blocks. 

miniclip.com 

Music Catch 
2 

Active 
Control 

Earn points by mousing over streams of 
colored shapes and avoiding contiguously 
appearing red shapes. 

reflexive.com 
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Enigmata Active 
Control 

Navigate a ship while avoiding and destroying 
enemies, and collecting objects that provide 
armor or power. 

maxgames.com 

 

Cognitive Tests. Here, we focused on the behavioral measures that demonstrated 
training-related effects, although additional details about other behavioral measures 
assessed can be found in the original training report (Baniqued et al., 2014). Significant 
group by time interactions were found in three tests that tap aspects of divided attention: 
Attention Blink, Trail Making, and Dodge, with the WM-REAS groups showing better 
performance after training. Moreover, improvement in divided attention was negatively 
correlated with baseline fluid intelligence scores as assessed by six tests: Form Boards, 
Spatial Relations, Matrix Reasoning, Paper Folding, Shipley Abstraction, and Letter 
Sets. We re-analyzed these measures using the subset of participants with usable MRI 
data. In the next section are brief descriptions of each test and the measures used for 
analyses. All tests were completed before and after training (baseline cognitive testing 
was performed before baseline MRI testing), but here we focus on pre-test and post-test 
performance in the divided attention tests, and on pre-training performance in the fluid 
intelligence tests. We computed a composite measure of divided attention improvement 
for each participant by averaging standardized gain scores for each task. Standardized 
gain scores were computed by taking the difference between post-test and pre-test 
performance and dividing this gain measure by the standard deviation of pre-test 
performance (collapsed across all groups). To reduce the influence of remaining 
extreme values in the correlation analyses, the composite scores were then winsorized 
(Tukey, 1962; Wilcox, 2005): any value 3 SD away from the mean was replaced with 
the 3 SD cut-off value (we replaced the scores of only one subject with divided attention 
gain score > 3 SD from the mean and baseline divided attention gain score < 3 SD from 
mean).  

Attentional Blink (Shapiro et al., 1997). Participants were tasked to identify the white 
letter (target 1) in a sequence of rapidly presented black letters, and identify whether the 
white letter was followed by a black “X” (target 2). The attentional blink was computed 
from trials when target 1 was accurately detected, as the difference in target 2 accuracy 
when detection is easiest (lag 8 after target 1) and when detection is most difficult (lag 2 
after target 1).  

Trail Making (Reitan, 1958). In “Trails A”, participants connected numbered circles as 
quickly as possible by drawing a line between them in numerical order. In “Trails B,” 
participants connected both numbered and lettered circles by drawing a line between 
them, alternating between numbers and letters in numerical and alphabetical order. The 
trail-making cost was computed by taking the difference in Trails B and Trails A 
completion time.    

Dodge (Armor Games). In this game, participants were directed to avoid enemy missiles 
and destroy enemy ships by guiding enemy missiles (directed at the participant’s ship) 
into other enemies. Participants pressed four buttons to navigate around the screen, 
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which was increasingly populated with enemy ships and their missiles. Participants 
completed the first two levels on a laboratory computer, and practiced the same two 
levels in an MRI environment. Data used for analysis was the highest level reached 
after eight minutes of game play in an fMRI environment.  

Shipley Abstraction (Zachary and Shipley, 1986). Participants were given a list of 20 
word, letter, or number sequences and instructed to fill in the missing letters or numbers 
in each sequence. We analyzed the total number of correctly answered items within five 
minutes.   

Matrix Reasoning (Ravens, 1962; Crone et al., 2009). Participants were shown a 3 x 3 
matrix of abstract patterns with one cell missing, and instructed to select which among 
three options best completes the matrix along both the rows and columns. We analyzed 
the total number of correctly answered items. 

Paper Folding (Ekstrom et al., 1976). Participants were asked to select the pattern of 
holes that would result from a punch through a sheet of paper folded in a certain 
sequence. We analyzed the total number of correctly answered items within 10 minutes. 

Spatial Relations (Bennett, Seashore and Wesman, 1997). Participants were instructed 
to identify that 3-dimensional object that would match a 2-dimensional object when 
folded. We analyzed the total number of correctly answered items in 10 minutes.  

Form Boards (Ekstrom et al., 1976). Participants were instructed to choose pieces that 
will exactly fill a certain shape. We analyzed the total number of correctly answered 
items in 8 minutes.  

Letter Sets (Ekstrom et al., 1976). Participants were presented with five sets of letter 
strings and asked to determine which letter set was different from the other four.  We 
analyzed the total number of correctly answered items within 10 minutes. 

5.3.3 MRI Acquisition and Preprocessing  

During the fourth session of baseline testing, participants underwent MRI scanning on a 
3 Tesla Siemens Trio MR scanner with a 12-channel head array receive coil. 
Anatomical data consisting of T1-weighted MPRAGE images were acquired with the 
following parameters: GRAPPA acceleration factor 2, voxel size = 0.9 x 0.9 x 0.9 mm, 
TR = 1900 ms, TI = 900 ms, TE = 2.32 ms, flip angle = 9°, FoV = 230 mm). Functional 
data during a six-minute resting state scan were obtained using a T2*-weighted 
echoplanar imaging (EPI) pulse sequence with the following parameters: GRAPPA 
acceleration factor 2, 180 volumes, in-plane resolution = 2.4 mm2, TR = 2000 ms, TE = 
25 ms, flip angle = 80°, FoV = 220 mm; 38 3.5 mm ascending slices, no slice gap). 
Participants were instructed to close their eyes, stay awake, and remain as still as 
possible. The resting-state scan was performed after five MRI runs of the Attention 
Network Task (Fan et al., 2002), which lasted for six minutes each. We excluded three 
participants from analyses due to artifacts in the anatomical and functional scans (N=1 
in WM-REAS 1 group, N=2 in no-contact group). 
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Brain extraction of anatomical images was performed with Advanced Normalization 
Tools (ANTs; (Avants et al., 2011)) using the LPBA40 template (Shattuck et al., 2008). 
Subjects with remaining non-brain tissue after this step were instead run through ANTs 
brain extraction using the Kirby/MMRR template (Landman et al., 2011). The skull-
stripped structural images and raw functional images were preprocessed through the 
Configurable Pipeline for the Analysis of Connectomes (CPAC). Structural scans were 
registered to the MNI152 template using ANTs and segmented into grey matter 
(probability threshold = 0.7), white matter (probability threshold = 0.96) and CSF 
(probability threshold = 0.96) via FSL/FAST (Zhang et al., 2001). EPI scans were slice-
time corrected, motion-corrected using the Friston 24-Parameter Model (Friston et al., 
1996), and co-registered to the anatomical images. Nuisance signal correction was 
performed by regressing out the aforementioned motion parameters, signals from the 
first five principal components from white matter and CSF voxels (Compcor; (Behzadi et 
al., 2007)), and linear and quadratic trends. The functional data were then bandpass 
filtered from 0.009 to 0.08 Hz. Participants with maximum absolute displacement 
greater than 3.4 mm were excluded from analysis (N = 24, see Table 5.1 for group 
breakdown).  

5.3.4 Functional Connectivity and Modularity Analyses  

The functional scans were warped to the MNI template and parcellated into 264 regions 
of interest (Power et al., 2011). Time series were averaged for all voxels in an ROI. Due 
to uneven partial coverage of the cerebellum in the functional data, we excluded the 
four cerebellum module ROIs prior to running the network analyses. Nine additional 
ROIs were excluded due to lack of EPI coverage in at least one subject. For each 
participant, functional connectivity matrices were created by correlating the time-series 
between each pair of ROIs using Pearson’s coefficient and applying a Fisher z-
transformation.  

In the remaining 143 participants, the 251 x 251 functional connectivity matrices were 
binarized to create adjacency matrices that indicate the presence or absence of a 
connection between a pair of regions. Matrices were binarized over a range of 
connection density thresholds or ‘costs’ (here, the top 2-10% of all possible connections 
in the network in 2% increments, following Power et al., 2011). Each of these 
thresholded matrices was used to create unweighted, undirected whole-brain graphs 
with which network metrics were examined. Network metrics were created separately 
for each connection threshold to determine the consistency of results. Unless otherwise 
noted, we report results both at a 6% connection threshold and as the average across 
connection density thresholds. The NetworkX Python package and custom Python 
scripts were used for network analyses. 

To examine the role in modular network organization in predicting training-related gains, 
we quantified network modularity, a global network measure that compares the number 
of connections within to the number of connections between modules (Newman and 
Girvan, 2004). Modularity will be 1 if all connections fall within modules and it will be 0 if 
there are no more connections within modules than would be expected by chance.  
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As there are multiple methods for identifying network modules, we used several 
approaches. We first quantified modularity using a spectral algorithm (Newman, 2006) 
to identify the most optimal modular partition (i.e., maximal modularity) for each subject 
at each connection threshold. We also computed modularity by pre-defining modules by 
assigning each node to its module as identified in Power et al. (2011). Using this 
module definition, we also examined the contribution of each module to global 
modularity, which is the sum of the modularity across network modules.  

5.3.5 Statistical Analysis 

Training-related gains in divided attention measures were assessed at 1) a construct 
level using a one-way ANOVA with a between-subject factor of training group (WM-
REAS 1, WM-REAS 2, active control, no-contact) and with a composite score of divided 
attention gain as the dependent measure (described in Cognitive Tests) and at 2) a 
task-level using repeated-measures ANOVAs with a within-subject factor of time (pre- 
and post-test score) and a between-subject factor of training group. Effect size for 
ANOVAs is provided as partial-eta squared (η2p). 

The relationships between whole-brain baseline modularity and training-related gains 
were assessed with correlations between modularity identified with spectral clustering 
(6% cost threshold and averaged across thresholds) and a divided attention composite 
gain score. Specific module contributions to the relationship between modularity 
(averaged across thresholds) and training gains were assessed with the modularity of 
each sub-network as defined in Power et al. (2011). The majority of correlations were 
assessed with two-tailed Pearson correlations (r). Partial correlations are presented as 
rp. Further, follow-up correlation analyses were assessed controlling for motion or 
baseline cognitive ability.  

In the analysis of module contributions to global modularity in the WM-REAS group, we 
first tested if modularity values differed across the 12 modules using a repeated-
measures ANOVA with a between-subject factor of baseline cognitive ability group (fluid 
intelligence (Gf) or divided attention) group and a within-subject factor of module. F-
values and P-values in ANOVAs were corrected for sphericity using the Greenhouse-
Geisser method (GG).  

 

5.4 Results 

5.4.1 Behavioral Results  

Consistent with the previously published report (Baniqued et al., 2014), the WM-REAS 
groups showed greater gains in divided attention (Figure 5.1A) as assessed by a one-
way ANOVA with a between-subject factor of the four training groups on the composite 
improvement score, (F(3,139) = 5.253, p = 0.002, η2p = 0.102), and by repeated-
measures ANOVAs of pre- and post-test performance on each task (Trail Making: 
F(3,135) = 3.721, p = 0.013, η2p = 0.076; Attention Blink: F(3,139) = 3.464, p = 0.018, 
η2p = 0.070; Dodge: F(3,133) = 3.153, p = 0.027, η2p = 0.066).  
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Similarly to the previous study, baseline Gf was negatively correlated with divided 
attention gain (Figure 5.1B) in the WM-REAS groups (WM-REAS all: r(66) = -0.296, p = 
0.014, two-tailed; WM-REAS 1: r(32) = -0.307, p = 0.077; WM-REAS 2: r(32) = -0.280, p 
= 0.109) but not in the control groups (Figure 5.1C; CONTROL all: r(73) = 0.081, p = 
0.490, two-tailed; no-contact: r(36) = 0.055, p = 0.743; active: r(35) = 0.137, p = 0.417). 
Given their comparable training-related effects in divided attention and the reduced 
sample size after excluding participants with unusable MRI data, in the subsequent MRI 
analyses, we combined the two WM-REAS groups into one group and the active control 
group and no-contact control group into another group.  

 

Figure 5.1. Behavioral training effects. A) Mean divided attention gain for all four groups. Error bars are 
95% bootstrapped confidence intervals. The right panels (B, C) show the relationship between baseline 
fluid reasoning and divided attention gain in the WM-REAS groups (B) and control groups (C). The 
Pearson’s coefficient (r) and the two-tailed p-value are shown. Shaded areas represent 95% confidence 
region of the regression line.  

 

As a follow-up analysis, we probed the relationship between baseline divided attention 
and divided attention gain, finding that higher baseline performers showed smaller 
gains. A negative relationship was observed across all four groups (r(141) = -0.620, p < 
0.001, two-tailed) and within each of the two combined groups (WM-REAS: r(66) = -
0.665, p < 0.001, two-tailed; CONTROL: r(73) = -0.579, p < 0.001, two-tailed). Not 
surprisingly, across the whole sample, baseline divided attention was positively 
correlated with baseline Gf, r(141) = 0.306, p < 0.001, two-tailed. Including baseline Gf 
or baseline divided attention as a covariate in the analysis of group effects in divided 
attention improvement or post-training divided attention scores did not significantly alter 
the results. 
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5.4.2 Brain Network Modularity Results 

Baseline modularity and divided attention gain. First, we determined whether the 
observed improvements in divided attention could be predicted by pre-training brain 
modularity (i.e., global modularity identified with spectral clustering). In the combined 
WM-REAS groups, we found a significant relationship between divided attention gain 
and baseline modularity (Figure 5.2A; 6% cost: r(66) = 0.253, p = 0.037, two-tailed; 
average: r(66) = 0.215, p = 0.078, two-tailed). In the combined control groups, there 
was no significant relationship between divided attention gain and baseline modularity 
(Figure 5.2A; 6% cost: r(73) = -0.200, p = 0.086, two-tailed; average: r(73) = -0.207, p = 
0.074, two-tailed). We confirmed that this relationship was similar at different cost 
thresholds tested for the WM-REAS and control groups (Figure 5.2B). The correlations 
between baseline modularity and divided attention were significantly different between 
the two groups (6% cost: Z = 2.70, p = 0.007, two-tailed; average: Z = 2.50, p = 0.012, 
two-tailed).  

 

Figure 5.2. Baseline modularity effects. A) Relationship between baseline modularity (6% threshold) and 
divided attention gain. Pearson’s coefficients (r) and two-tailed p-values are shown. Shaded areas 
represent 95% confidence region of the regression line. B) Correlation (Pearson’s coefficient) between 
baseline modularity and divided attention gain for each tested threshold.  
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As in-scanner motion can spuriously affect functional connectivity estimates (Power et 
al., 2012; Satterthwaite et al., 2012; Van Dijk et al., 2012), we confirmed that the 
relationship between baseline modularity and training-related gains was not due to 
motion. Across the two groups, mean framewise displacement (FD; (Power et al., 
2012)) was negatively correlated with baseline modularity (6% cost: r(141)=-0.209, 
p=0.012, two-tailed; average: r(141) = -0.205, p = 0.014, two-tailed). To test whether our 
results were influenced by the relationship between modularity and motion, we re-
analyzed the data while controlling for mean FD. Controlling for motion did not 
substantially change the relationship between baseline modularity and divided attention 
gain in the WM-REAS group (6% cost: rp(65) = 0.230, p = 0.060, two-tailed; average: 
rp(65) = 0.195, p = 0.114, two-tailed) or the control group (6% cost: rp(72) = -0.196, p = 
0.096, two-tailed; average: rp(72) = -0.203, p = 0.082, two-tailed). Mean FD did not 
differ between the two groups, F(1,141) = 0.084, p = 0.772 , η2p = 0.001 (WM-REAS: M 
= 0.141, SD = 0.047; CONTROL: M = 0.143, SD = 0.052). 

Baseline modularity and baseline cognition. As previous studies have shown that 
modularity is a better predictor of training-related cognitive gains than behavioral 
measures (Arnemann et al., 2015; Gallen et al, Submitted), we examined the 
relationships between baseline cognition and training-related gains in this sample of 
young adults. Across the two groups, baseline modularity was not significantly 
associated with baseline Gf (6% cost: rp(141) = -0.074, p = 0.381, two-tailed; average: 
rp(141) = -0.083, p = 0.322, two-tailed) or baseline divided attention (6% cost: rp(141) = 
-0.133, p = 0.113, two-tailed; average: rp(141) = -0.125, p = 0.138, two-tailed). This 
relationship was similar even after controlling for mean FD (6% cost, baseline Gf: 
rp(140) = -0.075, p = 0.375, two-tailed; baseline divided attention: rp(140) = -0.133, p = 
0.115, two-tailed; average, baseline Gf: rp(140) = -0.085, p = 0.317, two-tailed; baseline 
divided attention: rp(140) = -0.124, p = 0.140, two-tailed).  

As baseline Gf was strongly correlated with divided attention gain in the WM-REAS 
group (Figure 5.1B; (Baniqued et al., 2014)) and we have previously found a 
relationship between modularity and training-related gains in populations exhibiting 
cognitive declines (Arnemann et al., 2015), we examined the relationship between 
modularity and divided attention gain in the WM-REAS group while controlling for 
baseline Gf and re-examined this relationship within low and high Gf groups. Overall, 
the relationship between modularity and divided attention gain remained after controlling 
for baseline Gf (6% cost: rp(65) = 0.236, p = 0.054, two-tailed; average: rp(65) = 0.197, 
p = 0.110, two-tailed). A median split based on baseline Gf (N = 34 in each group) 
revealed that the correlation between baseline modularity and divided attention gain 
(controlling for baseline Gf) was more pronounced in the low Gf group (Figure 5.3A; 6% 
cost: rp(31) = 0.299, p = 0.092, two-tailed; average: rp(31) = 0.268, p = 0.146, two-
tailed) than the high Gf group (Figure 5.3A; 6% cost: rp(31) = 0.163, p = 0.364, two-
tailed; average: rp(31) = 0.126, p = 0.484, two-tailed), although the correlations did not 
significantly differ between the groups (6% cost: Z = 0.57, p = 0.569, two-tailed; 
average: Z = 0.58, p = 0.562, two-tailed). Further, baseline modularity did not 
significantly differ between Gf groups (6% cost: F(1,66) = 1.041, p = 0.311, η2p = 0.016, 
low Gf: M = 0.417, SD = 0.071, high Gf: M = 0.401, SD = 0.059; average: F(1,66) = 
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0.909, p = 0.344, η2p = 0.014, low Gf: M = 0.432, SD = 0.070, high Gf: M = 0.417, SD = 
0.059). 

 

Figure 5.3. Baseline modularity (6% threshold) and divided attention gain relationships in the WM-REAS 
group based on a median split on baseline fluid intelligence (A) and baseline divided attention (B).  
Pearson’s coefficients (r) and two-tailed p-values are shown. Correlations displayed do not control for any 
other factors. Shaded areas represent 95% confidence region of the regression line. Gf = fluid 
intelligence, DivAtt = Divided Attention. 

 

Within the WM-REAS high and low Gf groups, the relationship between baseline 
modularity and divided attention remained the same when controlling for mean FD in 
addition to controlling for baseline Gf, with a numerically greater relationship between 
modularity and divided attention gain in the low Gf group (6% cost: rp(30) = 0.250, p = 
0.168, two-tailed; average: rp(30) = 0.215, p = 0.238, two-tailed) compared to the high 
Gf group (6% cost: rp(30) = 0.161, p = 0.378, two-tailed; average: r(p30) = 0.124, p = 
0.498, two-tailed), although these correlations were not significantly different from each 
other (6% cost: Z = 0.354, p = 0.723, two-tailed; average: Z = 0.357, p = 0.721, two-
tailed. Mean FD did not differ between the Gf groups, F(1,66) = 0.132, p = 0.718, η2p = 
0.002 (low Gf: M = 0.139, SD = 0.055; high Gf: M = 0.143, SD = 0.039). 

Since baseline divided attention was also correlated with divided attention gain, we 
examined the relationship between modularity and divided attention gain in the WM-
REAS group while controlling for baseline divided attention and re-examined this 
relationship within low and high divided attention groups. Unlike controlling for baseline 
Gf, controlling for baseline divided attention attenuated the relationship between 
baseline modularity and divided attention gain (6% cost: rp(65) = 0.038, p = 0.758, two-
tailed; average: rp(65) = 0.002, p = 0.984, two-tailed). These results may have been 
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driven by a potential behavioral ceiling effect in divided attention performance, where 
higher performers at baseline show smaller gains. To test this, we performed a median 
split on baseline divided attention in the WM-REAS group (N = 34 in each group). 
Examining the correlations between baseline modularity and divided attention gain 
within each group (controlling for baseline divided attention) revealed a positive, but not 
significant, correlation in the low divided attention group (Figure 5.3B; 6% cost: rp(31) = 
0.198, p = 0.268, two-tailed; average: rp(31) = 0.173, p = 0.334, two-tailed) and a 
negative, but not significant, correlation in the high divided attention group (6% cost: 
rp(31) = -0.147, p = 0.412, two-tailed; average: rp(31) = -0.150, p = 0.404, two-tailed). 
The correlations were not significantly different from each other (6% cost: Z = 1.35, p = 
0.177; average: Z = 1.26, p = 0.208). The groups significantly differed in baseline 
modularity (6% cost: F(1,66) = 11.156, p = 0.001, η2p = 0.145; average: F(1,66) = 
13.367, p = 0.001, η2p = 0.168), with higher baseline modularity in the low performers 
(6% cost, low Gf: M = 0.434, SD = 0.060, high Gf: M = 0.384, SD = 0.063; average, low 
Gf: M = 0.451, SD = 0.054; high Gf: M = 0.398, SD = 0.064).  

Controlling for FD, in addition to baseline divided attention, revealed a marginally 
positive correlation in the low divided attention group (Figure 5.3B; 6% cost: rp(30) = 
0.233, p = 0.198, two-tailed; average: rp(30) = 0.214, p = 0.240, two-tailed) but not in 
the high divided attention group (6% cost: rp(65) = -0.147, p = 0.422, two-tailed; 
average: rp(65) = -0.148, p = 0.418, two-tailed), although the correlations were not 
significantly different from each other (6% cost: Z = 1.517, p = 0.129, two-tailed; 
average: Z = 1.443, p = 0.149, two-tailed). The high and low divided attention groups 
did not differ in mean FD, F(1,66) = 1.214, p = 0.275, η2p = 0.018 (low divided attention: 
M = 0.134, SD = 0.043; high divided attention: M = 0.147, SD = 0.052). 

Exploratory analyses: contributions of each module to the relationship between global 
modularity and divided attention gain. In the WM-REAS group, we examined the 
contribution of each module to global modularity, which is the sum of contributions from 
all modules. Here, instead of using the spectral algorithm to maximize modularity, we 
used 13 pre-defined modules (Power et al., 2011) to compute modularity. This approach 
yielded modularity measures that were highly correlated with the spectral maximization 
approach in the WM-REAS group (r(66) = 0.884, p < 0.001, two-tailed). A repeated 
measures ANOVA revealed that modularity differed across the 12 modules (excluding 
“Uncertain” module; F(3.086,203.693) = 382.950, p(GG) < 0.001, η2p = 0.853), 
suggesting that there may be a differential contribution the modules to training-related 
gains. For each module, we examined the relationship between modularity and divided 
attention gain and found a positive correlation in the DMN (Figure 5.4A; r(66) = 0.271, p 
= 0.026, two-tailed).   

To examine whether this relationship differed in high and low baseline cognition groups 
(i.e., Gf or divided attention), we next tested for an interaction between module and 
baseline cognitive ability group (Gf or divided attention). There was a marginally 
significant interaction between module and Gf group, F(3.086,203.693) = 2.276, p(GG) 
= 0.079, η2p=0.033. Inspecting the DMN-gain relationship within each Gf group showed 
that the DMN-gain relationship was driven by the low Gf group (Figure 5.4A; r(32) = 
0.338, p = 0.050, two-tailed; high Gf: r(32) = 0.024, p = 0.894, two-tailed), although the 
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correlations were not significantly different from each other (Z = 1.29, p = 0.197, two-
tailed). There was also a significant interaction between module and divided attention 
group (F(3.132,206.688) = 4.162, p(GG) = 0.006, η2p = 0.069). Similar to the Gf group 
analyses, the DMN-gain relationship was driven by the low divided attention group 
(Figure 5.4A; r(32) = 0.265, p = 0.130, two-tailed; high divided attention group: r(32) = -
0.075, p = 0.674, two-tailed), although the correlations did not significantly differ from 
each other (Z = 1.36, p = 0.174, two-tailed).  

 

Figure 5.4. A) Module contributions to the relationship between global modularity and divided attention 
gain. Shown is the correlation between divided attention gain and the degree of within-to-between 
connectivity (averaged across thresholds) in each module. A high negative correlation between divided 
attention gain and CO connectivity was observed in the high DivAtt group (r > 0.5, p < 0.001), but this is 
effect is not discussed since this effect was not present when collapsed across baseline cognitive ability 
groups, and because of the small training gains observed in the high DivAtt group. B) Shown is the 
correlation between divided attention gain and connectivity between DMN and all other modules. Gf = 
fluid intelligence, DivAtt = Divided Attention. 

 

Although DMN modularity was predictive of training gains in the WM-REAS group, 
‘modularity’ provides a summary measure of the balance of within-module and all 
between-module connections. Thus, we next separately examined how connectivity 
within DMN regions and connectivity between DMN regions and each individual other 
module (N = 11, excluding ‘Uncertain’) was related to divided attention gain. Across the 
entire WM-REAS group (Figure 5.4B), no significant associations between intra-module 
or between-module DMN connectivity and divided attention gain were found. Breaking 
down the analyses by baseline cognitive ability (i.e., Gf and divided attention), revealed 



	 67 

predominantly negative, but not statistically significant, associations between divided 
attention gain and DMN connectivity in the low Gf and low divided attention groups 
(Figure 5.4B). Controlling for mean FD in the aforementioned exploratory analyses 
yielded qualitatively similar results. It is important to note, however, that the correlations 
in these exploratory analyses are not statistically significant after Bonferroni correction 
for multiple comparisons across modules. 

 

5.5 Discussion 

Here, we demonstrate that higher baseline modularity predicts larger gains in divided 
attention after training with working memory and reasoning casual games in young 
adults. This modularity-gain relationship was more prominent in lower-performing 
individuals and remained significant after controlling for baseline cognitive ability. 
Critically, this relationship was not present in a control group. These results are 
consistent with previous findings in smaller samples of TBI patients (Arnemann et al., 
2015) and cognitively normal older adults (Gallen et al., Submitted), and more 
importantly, demonstrate the predictive power of modularity for training intervention 
outcomes in a young, high-functioning population. On a broader scale, these findings 
suggest that global network properties can capture unique aspects of brain function that 
are important in understanding individual differences in learning and neuroplasticity. 

5.5.1 Baseline Whole-Brain Modularity and Training-Related Gains 

Considering individual differences is important for determining and maximizing 
intervention effectiveness. Here, we show that modularity provides useful information 
about training-related cognitive gains beyond those captured by behavioral measures. 
Specifically, controlling for baseline Gf, which also significantly predicted divided 
attention gain, still produced a positive relationship between modularity and divided 
attention gain in the WM-REAS group. Re-examining this relationship within high and 
low Gf groups showed that the modularity-gain relationship may be driven by low 
performers, although the correlations between the low and high groups were not 
significantly different. Further, modularity was not correlated with baseline Gf and was 
also comparable between Gf groups, suggesting that a relationship baseline between 
modularity and Gf was not driving the modularity-divided attention gain prediction in the 
WM-REAS group.  

Moreover, although controlling for baseline divided attention, instead of baseline Gf, 
attenuated the modularity-gain relationship in the whole WM-REAS sample, this was 
likely due to a very high correlation between divided attention baseline scores and 
training-related divided attention gain. Re-evaluating this relationship within high and 
low divided attention groups also showed that the modularity-gain relationship may be 
driven by low performers. It is important to note, however, that we observed a ceiling 
effect in high-performing individuals (i.e., high performers tended to not improve in 
divided attention with training), which may have prevented us from detecting any 
potential relationships between modularity and cognitive improvement in this group. 
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Unlike the Gf groups, the divided attention groups significantly differed in baseline 
modularity, which suggests that modularity may be sensitive to more state-like aspects 
of cognition, as observed in previous work (Kitzbichler et al., 2011; Stevens et al., 
2012). Baseline modularity and baseline divided attention were not significantly 
correlated, however, which indicates that baseline modularity only partly captures 
individual differences in baseline divided attention. Together with findings in TBI patients 
(Arnemann et al., 2015) and healthy older adults (Gallen et al., Submitted), these results 
suggest that modularity may be a useful biomarker for predicting training outcomes in 
lower-performing individuals and may be used to better inform interventions, for 
example, by increasing training intensity or duration in an individual with lower baseline 
modularity.  

Modular brain network organization is thought to be critical for supporting a range of 
behaviors (Meunier et al., 2009b; Sporns and Betzel, 2015). In particular, modular 
organization has been hypothesized to support specialized functions, such as vision, 
through local processing within modules and complex functions, such as working 
memory, through global processing across modules (Meunier et al., 2009b; 2010). Such 
a configuration is also thought to allow for a system that is more adaptable to new 
environments (Kashtan and Alon, 2005; Clune et al., 2013). Previous work has shown 
that whole-brain modular organization is altered by increasing cognitive demands, such 
that there is more communication between network modules to support task 
performance (Kitzbichler et al., 2011; Cohen et al., 2014; Vatansever et al., 2015). In 
this sense, a more modular organization may also be able to more effectively 
reconfigure in response to complex task demands, such as those encountered during 
learning or cognitive training. 

In previous functional connectivity studies, individual differences in brain network 
properties have been shown to be predictive of learning an artificial language (Sheppard 
et al., 2012) and learning a new motor skill (Bassett et al., 2011). Unlike these studies, 
however, the intervention in the current study involved more complex training that 
targeted cognitive control processes rather than a specific skill, similar to previous work 
from our group that also found a relationship between baseline modularity and training-
related gains. Although other studies have examined how individual differences in 
neural measures predict training-related improvements in more complex tasks, these 
studies have often focused on a single brain region or small set of brain regions thought 
to be relevant to the training task (Erickson et al., 2010; Basak et al., 2011; Baldassarre 
et al., 2012). Our study goes a step further in examining how whole-brain network 
properties can predict training gains, which may better capture individual variations that 
support complex task processing. Overall, given that we have found similar 
relationships between modularity and training gains in previous studies, we speculate 
that network modularity may be generally useful, across interventions and populations, 
for characterizing individual differences in neuroplasticity and, consequently, training 
outcomes. 
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5.5.2 Baseline DMN Network Properties and Training-Related Gains 

In addition to examining whole-brain modularity, we also examined each module’s 
contribution to predicting training gains and found that individuals with greater 
modularity of DMN regions showed greater divided attention gains. The DMN’s 
involvement is not surprising given the well-documented high connectivity within DMN 
regions during task-free ‘resting’ states (Fox et al., 2005; Raichle and Snyder, 2007). 
Despite being traditionally tied to resting states, DMN regions have also been found to 
play active roles during task performance. Previous studies examining the 
reconfiguration of brain network properties due to cognitive demands have reported 
decreased within-module (Liang et al., 2015) and increased between-module (Anon, 
2014) connectivity in DMN regions with increasing n-back load. These findings suggest 
that the integrity of the DMN is reflected in a highly modular organization during resting 
states, but that this structure is also capable of adaptive reconfiguration, for example, 
during learning or training (Chapman et al., 2015).  

Finally, we examined whether the connectivity within DMN or connectivity from DMN to 
other modules was also correlated with training-related gains. We found no significant 
relationships between divided attention gain and DMN connectivity within or to other 
modules. The lack of significant correlations may be partly due to statistical power, but it 
may also suggest that global network measures (i.e., modularity) are more predictive of 
individual differences in training responses than the connectivity of individual modules. 
Previous work has also suggested that network modularity is more predictive of 
behavior (i.e., working memory capacity) than the strength of individual network 
connections (Stevens et al., 2012). Although we did not find a similar relationship 
between baseline modularity and baseline cognition in the current study, we also find 
that modularity significantly accounted for training gain while measures of connectivity 
for individual modules did not, which may suggest that whole-brain modularity can 
capture critical aspects of cognitive function. Taken together, these results point to the 
importance of a baseline, intrinsic structure in enabling complex behavior.  

5.5.3 Limitations and Future Directions  

Although this study involved a fairly large sample, functional connectivity was assessed 
during a relatively short resting-state scan. It is possible that more information regarding 
network structure, particularly in higher performing individuals, could be gleaned from a 
longer scan period (Birn et al., 2013). Further, a larger sample size would allow for 
examination of a variety of demographic and lifestyle factors (e.g., income, physical 
health; (Smith et al., 2015)), that in addition to modularity, could provide more reliable 
and converging information regarding individual differences in training-related cognitive 
gains and, potentially, neuroplasticity. Here, we focused on training outcomes assessed 
immediately after completion of training; ultimately, it will also be important to determine 
if baseline network properties are predictive of longer-lasting benefits from training as 
well. It also remains to be seen whether the relationship between modularity and 
training outcomes is generalizable to other interventions (e.g., exercise) aimed to 
improve cognitive function (Hillman et al., 2008; Lustig et al., 2009; Voss et al., 2013). 
Finally, more research is needed to determine the neural changes that accompany the 
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observed behavioral outcomes and to examine the mechanisms by which pre-
intervention modularity supports these neural alterations. 
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Chapter 6 

Conclusions and Future Directions 

In this dissertation, I have provided evidence for the importance of the modular 
organization of functional brain networks in supporting executive control processing and 
plasticity. First, I have shown that brain networks reconfigure during working memory 
performance and that this pattern of reconfiguration is altered by attention demands 
(Ch. 2) and aging (Ch. 3). Second, I have shown that individual differences in modular 
organization are predictive of training-related gains in aspects of executive control 
processing in older (Ch. 4) and young (Ch. 5) adults. 

Several follow-up projects related to the findings in this dissertation are currently in 
progress or planned. First, the findings in Chapters 4 and 5 as well as those from 
Arnemann et al. (2015) suggest that network properties can predict training-related 
gains after cognitive interventions. In addition to cognitive training, there is also 
evidence that physical exercise plays an important role in cognitive functioning 
(Colcombe et al., 2004; Erickson et al., 2011; Esteban-Cornejo et al., 2014; Hartanto et 
al., 2015). We are currently examining the relationship between pre-intervention 
modularity and training-related gains after physical fitness interventions (e.g., aerobic 
exercise and walking, stretching, and toning) in a group of older adults. Preliminary 
analyses have shown that modularity is also predictive of executive control gains after 
physical fitness interventions, suggesting that network properties may be related to 
general individual differences in neuroplasticity. 

A second line of work that follows from these findings is to examine whether network 
properties are also predictive of neural alterations that arise from more acute 
perturbations in addition to longer cognitive and physical fitness interventions. Previous 
work has shown that individual differences in TMS-induced changes in cerebral blood 
flow (CBF) are related to changes in resting-state functional connectivity after TMS 
(Gratton et al., 2014). I plan to examine whether network modularity prior to TMS is 
predictive of the neural changes associated with TMS (i.e., CBF and functional 
connectivity). This work would provide further evidence for the role of brain network 
organization in individual differences in neuroplasticity associated with stimulation. 

In addition to these projects, the findings presented in this dissertation raise broad 
questions for future research. First, the predictive power of brain network modularity 
could be used to enhance the therapeutic effects of cognitive interventions. Two 
projects presented in this dissertation (Ch. 4 and Ch. 5) were retrospective 
assessments of the relationship between pre-training network modularity and training 
outcomes. These results suggest that subjects with lower modularity may require 
additional or modified training to show training-related cognitive gains. Along this line, 
subjects with low modularity could be identified prior to training and enrolled in a longer-
duration or modified intervention that would enhance training gains. It would therefore 
be hypothesized that these subjects would ultimately show training-related gains similar 
to subjects with high modularity who participated in a standard intervention.  
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Second, a multimodal approach using fMRI and EEG could allow for further 
characterization of the mechanisms underlying individual differences in modularity. As in 
several of the analyses in this dissertation, investigation of fMRI-derived networks 
typically entails the examination of ‘static’ network organization assessed over an entire 
scanning run. The brain is a dynamic system (Deco et al., 2011) and there is evidence 
that the functional connectivity of brain networks reconfigures on shorter timescales 
(Hutchison et al., 2013) than can typically be assessed using fMRI. An important line of 
future research would be to combine higher temporal resolution neuroimaging (e.g., 
EEG) with fMRI to examine how fluctuations in EEG-derived connectivity over short 
timescales are related to ‘static’ fMRI network organization. It is possible that subjects 
with more modular fMRI-derived networks are more temporally stable (i.e., show fewer 
fluctuations as assessed with EEG), while those with lower modularity show have less 
stable connectivity over time. 

These future directions could further our understanding of the role of modular brain 
network organization in supporting executive control functions as well as the neural 
mechanisms underlying individual differences in network modularity. 
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