
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Detecting, Diagnosing, Deflecting and Designing Adversarial Attacks

Permalink
https://escholarship.org/uc/item/3q68c6mr

Author
Qin, Yao

Publication Date
2020

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3q68c6mr
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Detecting, Diagnosing, Deflecting and Designing Adversarial Attacks

A dissertation submitted in partial satisfaction of the
requirements for the degree of Doctor of Philosophy

in

Computer Science

by

Yao Qin

Committee in charge:

Professor Garrison Cottrell, Chair
Professor Manmohan Chandraker
Professor Kamalika Chaudhuri
Professor Lawrence Saul
Professor Zhuowen Tu

2020

Copyright

Yao Qin, 2020

All rights reserved.

The Dissertation of Yao Qin is approved, and it is acceptable in quality and form

for publication on microfilm and electronically:

Chair

University of California San Diego

2020

iii

DEDICATION

To my family.

iv

EPIGRAPH

A man should look for what is, and not for what he thinks should be.

Albert Einstein

v

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . ix

List of Tables . xi

Acknowledgements . xii

Vita . xv

Abstract of the Dissertation . xvi

Chapter 1 Introduction . 1

Chapter 2 Detecting Adversarial Attacks . 4
2.1 Introduction . 4
2.2 Related Work . 6
2.3 Preliminaries . 8

2.3.1 Adversarial Examples . 8
2.3.2 Capsule Networks . 8
2.3.3 Threat Model . 9

2.4 Detecting Adversarial Images by Reconstruction . 9
2.4.1 Models . 9
2.4.2 Detection Threshold . 11

2.5 Experiments . 11
2.5.1 Evaluation Metrics . 12
2.5.2 Test Models and Datasets . 12
2.5.3 Implementation Details . 13
2.5.4 Standard White-box Attacks . 14
2.5.5 Corruption Attacks . 15
2.5.6 Reconstructive Attacks . 16
2.5.7 Black-box Attacks . 21
2.5.8 CIFAR-10 Dataset . 22

2.6 Discussion . 23
2.7 Conclusion . 24

Chapter 3 Diagnosing Adversarial Attacks . 25
3.1 Introduction . 25

vi

3.2 Visual Coherence of the Reconstructive Attack . 25
3.3 Conclusion . 27

Chapter 4 Deflecting Adversarial Attacks . 29
4.1 Introduction . 29
4.2 Network Architecture . 32

4.2.1 Cycle-consistent winning-capsule reconstructions 34
4.3 Detection Methods . 35

4.3.1 Global Threshold Detector . 35
4.3.2 Local Best Detector . 36
4.3.3 Cycle-Consistency Detector . 36

4.4 The Defense-Aware CC-PGD Attack . 37
4.5 Experiments . 39

4.5.1 Evaluation Metrics and Datasets . 39
4.5.2 Training Details and Test Accuracy . 39
4.5.3 Threat Model . 40
4.5.4 Adversarial Attacks . 40
4.5.5 Sanity Checks for PGD and CC-PGD Attack . 41
4.5.6 Ablation Study . 43
4.5.7 Detection of White-box Attacks . 46
4.5.8 Detection of black-box Attacks . 48
4.5.9 Examples of Adversarial Attacks and Reconstructions 49

4.6 Deflected Attacks . 50
4.6.1 Human Study on SVHN . 51
4.6.2 Deflected Attacks on CIFAR-10 . 52

4.7 Conclusion . 53

Chapter 5 Designing Adversarial Attacks . 55
5.1 Introduction . 55
5.2 Related Work . 56
5.3 Background . 58

5.3.1 Problem Definition . 58
5.3.2 ASR Model . 58
5.3.3 Threat Model . 59
5.3.4 Adversarial Example Generation . 59

5.4 Imperceptible Adversarial Examples . 60
5.4.1 Psychoacoustic Models . 60
5.4.2 Masking Threshold . 61
5.4.3 Optimization with Masking Threshold . 64
5.4.4 Implementation Details . 67

5.5 Robust Adversarial Examples . 68
5.5.1 Acoustic Room Simulator . 68
5.5.2 Optimization with Reverberations . 68

5.6 Imperceptible and Robust Attacks . 70

vii

5.7 Evaluation . 73
5.7.1 Datasets and Evaluation Metrics . 73
5.7.2 Imperceptibility Analysis . 74
5.7.3 Robustness Analysis . 77

5.8 Conclusion . 79

Chapter 6 Conclusion . 81

Bibliography . 84

viii

LIST OF FIGURES

Figure 2.1. Histograms of the `2 distance between the input and the reconstructions . . 5

Figure 2.2. Network architectures for CapsNet and CNN based networks 13

Figure 2.3. Examples of Corrupted MNIST . 17

Figure 2.4. Examples of Corrupted MNIST (Continued) . 18

Figure 2.5. Success rate and undetected rate changes as the hyperparameter beta 20

Figure 2.6. Undetected rate vs. False Positive Rate of white-box targeted R-PGD attack 21

Figure 2.7. Undetected rate vs. False Positive Rate on the CIFAR-10 23

Figure 3.1. Visualization of the adversarial success rate for each source/target pair for
targeted reconstructive attacks . 26

Figure 3.2. Successful and undetected reconstructive attacks with a target class of 0 . . 27

Figure 3.3. Reconstructive attacks against CapsNet with various target classes. 28

Figure 4.1. Results of an adversarial attack against three different defense approaches. 30

Figure 4.2. Deflected adversarial attacks on the SVHN dataset . 31

Figure 4.3. Network architecture of our deflecting model . 32

Figure 4.4. An example of a clean input, an adversarial example generated via PGD . . 36

Figure 4.5. Sanity Checks for PGD and CC-PGD attack . 41

Figure 4.6. Hyperparameters in defense-aware CC-PGD attack 42

Figure 4.7. Abalation study for detection methods . 44

Figure 4.8. Ablation study for cycle-consistency loss . 45

Figure 4.9. Undetected Rate for white and black-box attacks vs. False Positive Rate
on SVHN and CIFAR-10 . 47

Figure 4.10. Successful but detected adversarial EAD and CW attacks and their corre-
sponding capsule reconstructions on SVHN. 49

Figure 4.11. Successful but detected adversarial PGD and our CC-PGD attacks and their
corresponding capsule reconstructions on CIFAR-10. 50

ix

Figure 4.12. Human study results on SVHN . 52

Figure 4.13. Deflected adversarial attacks on SVHN and CIFAR-10 53

Figure 5.1. Results of human study for imperceptibility . 77

x

LIST OF TABLES

Table 2.1. Test accuracy on clean images . 14

Table 2.2. Success rate and undetected rate of white-box attacks 14

Table 2.3. Error rate and undetected rate on the Corrupted MNIST 15

Table 2.4. Success Rate and undetected rate of white-box reconstructive attacks 21

Table 2.5. Success rate and undetected rate of black-box attacks 22

Table 4.1. Network architecture of the deflecting model for SVHN 33

Table 4.2. Network architecture of the deflecting model for CIFAR-10 34

Table 4.3. Success rate of the white and black-box attacks for deflecting model 47

Table 4.4. Comparison of state-of-the-art detection methods on CIFAR-10 48

Table 5.1. Examples of the original and targeted phrases on the LibriSpeech dataset. . 73

Table 5.2. Sentence-level accuracy and WER for 1000 clean and (imperceptible) ad-
versarially perturbed examples, fed without over-the-air simulation 74

Table 5.3. Sentence-level accuracy and WER for 100 clean and adversarially perturbed
examples, fed with over-the-air simulation . 78

xi

ACKNOWLEDGEMENTS

First, I would like to thank my advisor Professor Garrison Cottrell, who offered me the

great opportunity to join the family of Gary’s Unbelievable Research Unit (GURU). He is very

supportive of every decision that I made during my Ph.D. and gave me great freedom to pursue

the research area that I am interested in. He could not be more supportive of my internships

and attendance at the top conferences in machine learning. On the other hand, when I got lost

in my research work, I will always go for his suggestions. Without his insightful guidance and

incredible help, I would not have been able to mature into an independent researcher. Many

thanks to Professors Manmohan Chandraker, Kamalika Chaudhuri, Lawrence Saul and Zhuowen

Tu for serving on my thesis committee and offering their time and insightful comments. I also

want to thank Professor Huchuan Lu for inspiring and guiding me to work on the research work

related to AI while I was an undergraduate student.

During my Ph.D., I am very fortunate to have the chance to intern at different places and

greatly broaden my horizon. I would like to thank Haifeng Chen and Dongjin Song who provide

me the chance to intern at NEC Labs America. This is my first internship and from which I

become more confident in doing independent research work. Great thanks to Aditya Nori and

Antonio Criminisi, who are my mentors at Microsoft Research, Cambridge. They are always

very appreciated for my research work and help me explore an incredible opportunity to better

continue my Ph.D. I am also very grateful to Jingdong Wang for my internship at Microsoft

Research, Asia. Lastly, I want to thank my internship mentors and collaborators at Google

Brain, they are Geoffrey Hinton, Ian Goodfellow, Colin Raffel, Nicholas Frosst, Nicholas Carlini,

Suharsh Sivakumar, Raghu Krishnamoorthi, etc. I could not be more fortunate to have the chance

to work with these excellent researchers, who show me how to go for high-quality research work.

I have to give my special thanks to three people who play a pretty important role in

offering me big opportunities during my Ph.D. career. First, I would like to thank Christopher

Bishop, who is the director of the Microsoft Research Lab in Cambridge, UK. After a brief chat

at the MSR reception in NIPS 2016, he contacted me the next day about a chance to intern at

xii

MSR, Cambridge. I was really overwelmed by that unexpected favor since I was a very junior

Ph.D. student at that time. At the end of my internship, Chris also offered me an incredible

chance to continue my Ph.D. with the support of MSRC.

My sincere gratitude also goes to Ian Goodfellow, who shows me how to play the leading

role in a research area and ignites me the interests in the research topic in this thesis. I could feel

his help in many details and in every possible way. The biggest gift that he provides with me is

the huge opportunity, including the chance to join the family of Red Team, the chance to work

under the supervision of Geoffrey Hinton and the chance for further collaborations. Additionally,

as a busy manager, I feel highly respected and valued because he would like to share his precious

time for a weekly meeting and a weekly lunch.

I am also extremely fortunate and would like to give my special thanks to Geoffrey

Hinton, who is my advisor while I was interning at Brain Toronto for half a year. It is almost

every Ph.D. student’s dream to work with such a big name in his/her research field and learn

from him about the attitude towards research. When I had lunch with Geoff one-to-one on the

first day of my internship, my dream came true and I could not enumerate everything that I

learned from him!

I want to thank all the team members in Gary’s Unbelievable Research Unit (GURU):

Ben Cipollini, Davis Liang, Tomoki Tsuchida, Panqu Wang, Yufei Wang, Amanda Song, Yan

Shu, etc. Many thanks to the graduate and visiting students at UCSD: Julaiti Alafate, Silvia

Chyou, Kun Huang, Di Huang, Xun Huang, Wang-Cheng Kang, Guo Li, Zhengqin Li, Jianmo

Ni, Meng Song, Tiancheng Sun, Saining Xie, Ling-Qi Yan, Songbai Yan, Luning Yang, Chicheng

Zhang, Qianren Zhou, Shilin Zhu and many others for their suggestions and encouragement. I

would greatly thank the Ph.D. students at UCSD: Sai Bi, Mengting Wan, Lifan Wu and Zexiang

Xu for tons of meals together and their help in every details of my daily life. I am very grateful

to get even closer with my old friend Minghan Song when she starts working at San Diego. I am

also very fortunate to have my old friend Xiangchen Zhao at San Diego who truly shares my

happiness and sadness and stays with me during the hardest time of my PhD. San Diego is more

xiii

like my second hometown because of my lovely friends here.

During my internships, I am very fortunate to make friends with a lot of interesting

people: Siddharth Ancha, Betty Chen, Ricky Tian Qi Chen, Qi Dou, Changwon Jang, Yang

Li, S Mehdi Hosseini M, Yunchen Pu, Yang Song, Qi Sun, Yeming Wen, Yaohai Xu, Zhen

Xu, Yuchen Yao, Xinchen Yan, Sherry Yang, Wenchao Yu, Chiyuan Zhang, Guodong Zhang,

Ru Zhang, Yizhe Zhang, Judy Zhu and many others, who enlightened my various internships

across the world. I also want to give my sincere thanks to my old friends Mengfei Tong, Qiuyi

Wu, Bofan Wei, Peng Lu, Yiqun Xu, He Wang and many others who witnessed my growth and

demonstrated to me how wonderful the friendship could be!

Finally, I also want to give my deepest thanks to my parents: Qin Qin and Quying Zhang

and my sister Lu Qin for their love and support all the time. I could not be luckier to have them

as my family.

Chapter 2 and Chapter 3, are based on the material as it appears in the Proceedings of

the International Conference on Learning Representations (ICLR20) (Yao Qin, Nicholas Frosst,

Sara Sabour, Colin Raffel, Garrison Cottrell and Geoffrey Hinton, “Detecting and Diagnosing

Adversarial Images with Class-Conditional Capsule Reconstructions”). The dissertation author

was the co-primary investigator and author of this paper.

Chapter 4, has been submitted for publication of the material as it may appear in the

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR20)

(Yao Qin, Nicholas Frosst, Colin Raffel, Garrison Cottrell and Geoffrey Hinton, “Deflecting

Adversarial Attacks”). The dissertation author was the primary investigator and author of this

paper.

Chapter 5, is based on the material as it appears in the Proceedings of the International

Conference on Machine Learning (ICML19) (Yao Qin, Nicholas Carlini, Ian Goodfellow,

Garrison Cottrell and Colin Raffel, “Imperceptible, Robust and Targeted Adversarial Examples

for Automatic Speech Recognition”). The dissertation author was the primary investigator and

author of this paper.

xiv

VITA

2011–2015 B.S. in Communications Engineering, Dalian University of Technology, China

2015–2017 M.S. in Computer Science, University of California San Diego, USA

2015–2020 Ph.D. in Computer Science, University of California San Diego, USA

PUBLICATIONS

Yao Qin*, Nicholas Frosst*, Sara Sabour, Colin Raffel, Garrison Cottrell and Geoffrey Hinton.
“Detecting and Diagnosing Adversarial Images with Class-Conditional Capsule Reconstructions”,
in International Conference on Learning Representations (ICLR), 2020. (* Equal contribution)

Yao Qin, Nicholas Frosst, Colin Raffel, Garrison Cottrell and Geoffrey Hinton. “Deflecting Ad-
versarial Attacks”, submitted to IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2020.

Yao Qin, Nicholas Carlini, Ian Goodfellow, Garrison Cottrell and Colin Raffel. “Imperceptible,
Robust and Targeted Adversarial Examples for Automatic Speech Recognition”, in International
Conference on Machine Learning (ICML), 2019.

Ian Goodfellow, Yao Qin, David Berthelot. “Evaluation Methodology for Attacks Against
Confidence Thresholding Models.” arXiv Preprints, 2018.

Yao Qin, Konstantinos Kamnitsas, Siddharth Ancha, Jay Nanavati, Garrison Cottrell, Antonio
Criminisi and Aditya Nori. “Autofocus Layer for Semantic Segmentation”, in International
Conference on Medical Image Computing & Computer Assisted Intervention (MICCAI), 2018.

Yao Qin*, Mengyang Feng*, Huchuan Lu and Garrison Cottrell. “Hierarchical Cellular Au-
tomata for Visual Saliency”, in International Journal of Computer Vision (IJCV), 2017. (* Equal
contribution)

Yao Qin, Dongjin Song, Haifeng Chen, Wei Cheng, Guofei Jiang and Garrison Cottrell. “A Dual-
Stage Attention-Based Recurrent Neural Network for Time Series Prediction”, in International
Joint Conference on Artificial Intelligence (IJCAI), 2017.

Qiuhui Pan, Yao Qin, Yiqun Xu, Mengfei Tong, Mingfeng He. “Opinion Evolution in Open
Community”, in International Journal of Modern Physics C, 1750003, 2016.

Yao Qin, Huchuan Lu, Yiqun Xu and He Wang. “Saliency Detection via Cellular Automata”, in
Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

xv

ABSTRACT OF THE DISSERTATION

Detecting, Diagnosing, Deflecting and Designing Adversarial Attacks

by

Yao Qin

Doctor of Philosophy in Computer Science

University of California San Diego, 2020

Professor Garrison Cottrell, Chair

There has been an ongoing cycle between stronger attacks and stronger defenses in the

adversarial machine learning game. However, most of the existing defenses are subsequently

broken by a more advanced defense-aware attack. This dissertation first introduces a stronger

detection mechanism based on Capsule networks which achieves state-of-the-art detection

performance on both standard and defense-aware attacks. Then, we diagnose the adversarial

examples against our CapsNet and find that the success of the adversarial attack is proportional

to the visual similarity between the source and target class (which is not the case for CNN-based

networks). Pushing this idea further, we show how it is possible to pressure the attacker to

produce an input that visually resembles the attacks target class, thereby deflecting the attack.

xvi

These deflected attack images thus can no longer be called adversarial, as our network classifies

them the same way as humans do. The existence of the deflected adversarial attacks also indicates

the `p norm is not sufficient to ensure the same semantic class. Finally, this dissertation discusses

how to design adversarial attacks for speech recognition systems based on human perception

rather than the `p-norm metric.

xvii

Chapter 1

Introduction

Adversarial examples are inputs to machine learning models that are specifically designed

by an adversary to cause an incorrect output [63, 21]. Initial work on adversarial examples

focused mainly on the domain of image classification, where adversarial examples can be

constructed by imperceptibly modifying images to cause misclassification, and are practical

in the physical world [33]. Since the discovery of the existence of the adversarial examples,

some research work focused on either the creation of more robust models to defend against

adversarial attacks [61, 41, 71], or designing a robust detection mechanism to detect adversarial

attacks [22, 16, 43, 37, 50, 52]. Specifically, to defend against adversarial attacks is to correctly

classified the adversarial input as the original class rather than the adversarial target class.

Instead, the detection algorithms aim to distinguish adversarial attacks from real data and then

flag the adversarial input. However, better defenses have led to the develpment of stronger attack

algorithms to break these defenses [41, 10]. After several iterations of creating and breaking

defenses, many state-of-the-art defenses and detection methods [52, 40, 37, 26] were broken

subsequently with a more advanced defense-aware attack [25, 9, 2].

To end this ongoing cycle between stronger attacks and stronger defenses in the adversar-

ial machine learning game, we first propose to detect adversarial examples or otherwise corrupted

out-of-distribution images based on a class-conditional reconstruction of the input in Chapter

2. Then, to attack our own detection mechanism, we propose the Reconstructive Attack, which

1

seeks both to cause a misclassification and a low reconstruction error. This reconstructive attack

produces undetected adversarial examples but with much smaller success rate compared to the

standard attacks. Among all these attacks, we find that Capsule networks (CapsNets) always

perform better than convolutional networks.

Since adversarial examples raise questions about whether neural network models are

sensitive to the same visual features as humans, we then diagnose the adversarial examples for

CapsNets in Chapter 3 and find that the success of the reconstructive attack was proportional to

the visual similarity between the source and target class. Additionally, the resulting perturbations

can cause the input image to appear visually more like the target class and hence become

nonadversarial. This is not the case for the CNN-based models. These extensive qualitative

studies suggest that CapsNets use features that are more aligned with human perception and

might have the potential to address the central issue raised by adversarial examples.

In Chapter 4, we present a new direction in defenses, which we argue is a step towards

ending this cycle by deflecting adversarial attacks, i.e. by forcing the attacker to produce an input

which visually resembles the adversarial target class. As we know for gradient-based attacks,

the attackers are following the gradient with regard to the input to construct the adversarial

example. Our deflecting model based on Capsule networks is able to force the attacker to

follow the gradients pointing towards changing the perceptual class rather than an imperceptible

adversarial noise. To this end, we first propose a stronger defense mechanism which combines

three detection mechanisms to achieve state-of-the-art detection performance on both standard

and defense-aware attacks. We then show that undetected attacks against our deflecting model

are often classified as the adversarial target class by performing a human study where participants

are asked to label the class of images produced by the attack. These attack images thus can no

longer be called adversarial, as our network classifies them the same way as humans do.

In order to differentiate properties of adversarial examples on neural networks in general

from properties which hold true only on images, it is important to study adversarial examples

in different domains. So far, adversarial examples are known to exist on various domains,

2

including image classification [5], speech recognition [11], reinforcement learning [26] and

reading comprehension [29]. In Chapter 5, we focus on studying the adversarial example in

the audio domain where Carlini and Wagner’s work [11] showed that any given source audio

sample can be perturbed slightly to attack an automatic speech recognition system into making

a targeted transcription. In contrast to the adversarial examples in the image domain, current

targeted adversarial examples applied to speech recognition systems are neither imperceptible

nor practical in the real world: humans can easily identify the adversarial perturbations, and

they are not effective when played over-the-air. In Chapter 5, we make advances on both of

these fronts. First, we develop effectively imperceptible audio adversarial examples (verified

through a human study) by leveraging the psychoacoustic principle of auditory masking, while

retaining 100% targeted success rate on arbitrary full-sentence targets. Next, we make progress

towards physical-world over-the-air audio adversarial examples by constructing perturbations

which remain effective even after applying realistic simulated environmental distortions.

In Chapter 6, we summarize the contributions of this thesis and discuss the promising

future work related to adversarial examples in order to increase the security of AI systems and to

help us understand deep neural networks.

3

Chapter 2

Detecting Adversarial Attacks

2.1 Introduction

Adversarial examples [64] are inputs that are designed by an adversary to cause a

machine learning system to make a misclassification. A series of studies on adversarial attacks

has shown that it is easy to cause misclassifications using visually imperceptible changes to an

image under `p-norm based similarity metrics [21, 34, 41, 10]. Since the discovery of adversarial

examples, there has been a constant “arms race” between better attacks and better defenses. Many

new defenses have been proposed [61, 20, 22, 43], only to be broken shortly thereafter [9, 2].

Currently, the most effective approach to reduce network’s vulnerability to adversarial examples

is “adversarial training”, in which a network is trained on both clean images and adversarially

perturbed ones [21, 41]. However, adversarial training is very time-consuming because it requires

generating adversarial examples during training. It also typically only helps improve a network’s

robustness to adversarial examples that are generated in a similar way to those on which the

network was trained. [24] showed that capsule models are more robust to simple adversarial

attacks than CNNs but [44] showed that this is not the case for all attacks.

The cycle of attacks and defenses motivates us to rethink both how we can improve

the general robustness of neural networks as well as the high-level motivation for this pursuit.

One potential path forward is to detect adversarial inputs, instead of attempting to accurately

classify them [58, 52]. Recent works [28, 18] argue that adversarial examples can exist within

4

CapsNet CapsNet CNN+CR CNN+R

(a) (b)

Figure 2.1. (a) The histogram of `2 distances between the input and the reconstruction using
the correct capsule or other capsules in CapsNet on the real MNIST images. Notice the stark
difference between the distributions of reconstructions of the capsule corresponding to the correct
class and other capsules. (b) The histograms of `2 distances between the reconstruction and the
input for real and adversarial images for the three models explored in this chapter on the MNIST
dataset. We use PGD [41] with the `∞ bound ε = 0.3 to create the attacks.

the data distribution, which implies that detecting adversarial examples based on an estimate of

the data distribution alone might be insufficient. Instead, in this chapter we develop methods

for detecting adversarial examples by making use of class-conditional reconstruction networks.

These sub-networks, first proposed by [54] as part of a Capsule Network (CapsNet), allow a

model to produce a reconstruction of its input based on the identity and instantiation parameters

of the winning capsule. Interestingly, we find that reconstructing an input from the capsule

corresponding to the correct class results in a much lower reconstruction error than reconstructing

the input from capsules corresponding to incorrect classes, as shown in Figure 2.1(a). Motivated

by this, we propose using the reconstruction sub-network in a CapsNet as an attack-independent

detection mechanism. Specifically, we reconstruct a given input from the resulting capsule

pose parameters of the winning capsule and then detect adversarial examples by comparing

the difference between the reconstruction distributions for natural and adversarial (or otherwise

corrupted) images.

We extend this detection mechanism to standard convolutional neural networks (CNNs)

and show its effectiveness against black box and white box attacks on three image datasets;

MNIST, Fashion-MNIST and SVHN. We show that capsule models achieve the strongest attack

detection rates and accuracy on these attacks. We then test our method against a stronger attack,

5

the Reconstructive Attack, specifically designed to attack our detection mechanism by generating

adversarial examples with a small reconstruction error. With this attack we are able to create

undetected adversarial examples, but we show that this attack is less successful in fooling the

classifier than a non-reconstructive attack.

In this chapter, we mainly focus on:

• proposing a class-conditional capsule reconstruction based detection method to detect

standard white-box/black-box adversarial examples on multiple datasets. This detection

mechanism is attack-agnostic and is successfully extended to standard convolutional neural

networks.

• testing our detection mechanism on the corrupted MNIST dataset and show that it can

work as a general out-of-distribution detector.

• designing the reconstructive attack, which is specifically designed to attack our detection

mechanism but becomes less successful in fooling the classifier.

2.2 Related Work

Adversarial examples were first introduced in [5, 64], where a given image was modified

by following the gradient of a classifier’s output with respect to the image’s pixels. [21] then

developed the more efficient Fast Gradient Sign method (FGSM), which can change the label of

the input image X with a similarly imperceptible perturbation which is constructed by taking an

ε step in the direction of the gradient. Later, the Basic Iterative Method (BIM) [34] and Project

Gradient Descent [41] can generate stronger attacks improved on FGSM by taking multiple steps

in the direction of the gradient. In addition, [10] proposed another iterative optimization-based

method to construct strong adversarial examples with small perturbations.

An early approach to reducing vulnerability to adversarial examples was proposed by

[21], where a network was trained on both clean images and adversarially perturbed ones. Since

6

then, there has been a constant “arms race” between better attacks and better defenses; [35]

provide an overview of this field. However, many defenses against adversarial examples have

been demonstrated to be an effect of “obfuscated gradients” and can be further circumvented

under the white-box setting [2].

A recent thread of research focuses on the generation of (and defense against) adversarial

examples which are not simply slightly-perturbed versions of clean images. For example, several

approaches were proposed which utilize generative models to create novel images which appear

realistic but which result in a misclassification [55, 27, 42]. These adversarial images are not

imperceptibly close to some existing image, but nevertheless resemble members of the data

distribution to humans and are strongly misclassified by neural networks. [53] also consider

adversarial examples which are not the result of pixel-space perturbations by manipulating the

hidden representation of a neural network in order to generate an adversarial example. Also

they show that adversaries exist for a network with random weights. Therefore, susceptibility to

adversarial attacks is not caused by learning and the convolution neural network architectures

are fragile.

Another line of work attempts to circumvent adversarial examples by detecting them

with a separately-trained classifier [20, 22, 43] or using statistical properties [23, 38, 16, 22].

However, many of these approaches were subsequently shown to be flawed [9, 2]. The most

recent work in detecting adversarial examples [52] that has 99% true positive rate in CIFAR10

dataset [32] has also been fully bypassed by later work [25] which decreased the true positive

rate to less than 2%.

Similar to our work, [58] also investigated the effectiveness of a class-conditional genera-

tive model as a defense mechanism for MNIST digits. However, we differ in some important

ways. Their model is in some ways the opposite of ours - they first attempt to generate the input,

and then make a classification on the resultant generations, whereas our method attempts to first

classify the input, making use of an otherwise unchanged capsule classification model, and then

generates the input from a high level representation. As such our method does not increase the

7

computational overhead of classifying the input, compared to the approach of [58], which results

in a 10x increase in computation. In addition, the work of [58] is only applied to MNIST, so our

results on the more complex datasets represent an improvement.

2.3 Preliminaries

2.3.1 Adversarial Examples

Given a clean test image x, its corresponding label y, and a classifier f (·) which predicts a

class label given an input, we refer to x′ = x+δ as an adversarial example if it is able to fool the

classifier into making a wrong prediction f (x′) 6= f (x) = y. The small adversarial perturbation

δ (where “small” is measured under some norm) causes the adversarial example x′ to appear

visually similar to the clean image x but to be classified differently. In the unrestricted case

where we only require that f (x′) 6= y, we refer to x′ as an “untargeted adversarial example”. A

more powerful attack is to generate a “targeted adversarial example”: instead of simply fooling

the classifier to make a wrong prediction, we force the classifier to predict some targeted label

f (x′) = t 6= y. In this chapter, the target label t is selected uniformly at random as any label

which is not the ground-truth correct label. As is standard practice in the literature, we test our

detection mechanism on three `∞ norm based attacks (fast gradient sign method (FGSM) [21],

the basic iterative method (BIM) [34], projected gradient descent (PGD) [41]) and one `2 norm

based attack (Carlini-Wagner (CW) [10]).

2.3.2 Capsule Networks

Capsule Networks (CapsNets) are an alternative architecture for neural networks [54, 24].

In this work we make use of the CapsNet architecture detailed by [54]. Unlike a standard neural

network which is made up of layers of scalar-valued units, CapsNets are made up of layers of

capsules, which output a vector or matrix. Intuitively, just as one can think of the activation of

a unit in a normal neural network as the presence of a feature in the input, the activation of a

8

capsule can be thought of as both the presence of a feature and the pose parameters that represent

attributes of that feature. A top-level capsule in a classification network therefore outputs both a

classification and pose parameters that represent the instance of that class in the input. This high

level representation allows us to train a reconstruction network.

2.3.3 Threat Model

In this chapter, we test our detection mechanism against both white-box and black-box

attacks. For white-box attacks, the adversary has full access to the model as well as its parameters.

In particular, the adversary is allowed to compute the gradient through the model to generate

adversarial examples. To perform black-box attacks, the adversary is allowed to know the

network architecture but not its parameters. Therefore, we retrain a substitute model that has

the same architecture as the target model and generate adversarial examples by attacking the

substitute model. Then we transfer these attacks to the target model. For `∞ based attacks, we

always control the `∞ norm of the adversarial perturbation to be within a relatively small bound

ε∞, specific to each dataset.

2.4 Detecting Adversarial Images by Reconstruction

2.4.1 Models

To detect adversarial images, we make use of the reconstruction network proposed

in [54], which takes pose parameters v as input and outputs the reconstructed image r(v). The

reconstruction network is simply a fully connected neural network with two ReLU hidden layers

with 512 and 1024 units respectively, with a sigmoid output with the same dimensionality as

the dataset. The reconstruction network is trained to minimize the `2 distance between the input

image and the reconstructed image. This same network architecture is used for all the models

and datasets we explore. The only difference is what is given to the reconstruction network as

input.

9

• CapsNet

The reconstruction network of the CapsNet is class-conditional: It takes in the pose

parameters of all the class capsules and masks all values to 0 except for the pose parameters

of the predicted class. We use this reconstruction network for detecting adversarial

attacks by measuring the Euclidean distance between the input and a class conditional

reconstruction. Specifically, for any given input x, the CapsNet outputs a prediction f (x)

as well as the pose parameters v for all classes. The reconstruction network takes in

the pose parameters and then selects the pose parameter corresponding to the predicted

class, denoted as v f (x), to generate a reconstruction r(v f (x)). Then we compute the `2

reconstruction distance d(x) = ‖r(v f (x)),x‖2 between the reconstructed image and the

input image, and compare it with a pre-defined detection threshold p (described below in

Section 2.4.2). If the reconstruction distance d(x) is higher than the detection threshold p,

we flag the input as an adversarial example. Figure 2.1 (b) shows example histograms of

reconstruction distances for natural images and typical adversarial examples.

• CNN+CR

Although our strategy is inspired by the reconstruction networks used in CapsNets, the

strategy can be extended to standard convolutional neural networks (CNNs). We create

a similar architecture, CNN with conditional reconstruction (CNN+CR), by dividing the

penultimate hidden layer of a CNN into groups corresponding to each class. The sum of

each neuron group serves as the logit for that particular class and the group itself serves

the same purpose as the pose parameters in the CapsNet. We use the same masking

mechanism as [54] to select the pose parameter corresponding to the predicted label v f (x)

and generate the reconstruction based on the selected pose parameters. In this way we

extend the class-conditional reconstruction network to standard CNNs.

10

• CNN+R

We can also create a more naı̈ve implementation of our strategy by simply computing the

reconstruction from the activations in the entire penultimate layer without any masking

mechanism. We call this model the ”CNN+R” model. In this way we are able to study the

effect of conditioning on the predicted class.

2.4.2 Detection Threshold

We find the threshold θ for detecting adversarial inputs by measuring the reconstruction

error between a validation input image and its reconstruction. If the distance between the input

and the reconstruction is above the chosen threshold θ , we classify the data as adversarial.

Choosing the detection threshold θ involves a trade-off between false positive and false negative

detection rates. The optimal threshold depends on the probability of the system being attacked.

Such a trade-off is discussed by [17]. In our experiments we don’t tune this parameter and simply

set it as the 95th percentile of validation distances. This means our false positive rate on real

validation data is 5%.

2.5 Experiments

In this section, we first introduce the evaluation metrics, test models and datasets that are

used to evaluate the performance of our models. Then, we explain the implementation details to

generate the adversarial attacks. Next, we demonstrate how reconstruction networks can detect

standard white-box and naturally corrupted images. In addition, we introduce the “reconstructive

attack”, which is specifically designed to circumvent our defense and show that it is a more

powerful attack in this setting. We also report the performance of our detection methods towards

black-box standard and reconstructive attacks. Finally, we show the detection performance on

the CIFAR-10 dataset and discuss the effectiveness of the class-conditional information in the

reconstruction network.

11

2.5.1 Evaluation Metrics

We use Accuracy to represent the proportion of clean examples that are correctly classi-

fied. In addition, We use Success Rate to measure the success of attacks. For targeted attacks,

the success rate St is defined as the proportion of inputs which are classified as the target class,

St =
1
N ∑

N
i (f (x′i) = ti), while the success rate for untargeted attacks is defined as the proportion

of inputs which are misclassified, Su =
1
N ∑

N
i (f (x′i) 6= yi). Previous works [9, 25] used True

Positive Rate to measure the proportion of adversarial examples that are detected, which alone

is insufficient to measure the ability of different detection mechanism because the unsuccessful

adversarial examples do not have to be detected. Therefore, we propose to use Undetected Rate:

the proportion of attacks that are successful and undetected to evaluate the detection mechanism.

For targeted attacks, the undetected rate is defined as Rt =
1
N ∑

N
i (f (x′i) = ti)∩ (d(x′i)≤ θ), where

d(·) computes the reconstruction distance of the input and p denotes the detection threshold

introduced in section 2.4.2. Similarly, the undetected rate for untargeted attacks Ru can be defined

as Ru =
1
N ∑

N
i (f (x′i) 6= yi)∩ (d(x′i)≤ θ). The smaller the undetected rate Rt or Ru is, the stronger

the model is in detecting adversarial examples. The undetected rate can also be used to evaluate

the attacks (higher is better). We also plot the Undetected Rate vs. False Positive Rate curve

to compare the detection performance between different models, where False Positive Rate is

defined as the proportion of clean examples that are misclassified as the adversarial example by

the detection method.

2.5.2 Test Models and Datasets

In all experiments, all three models (CapsNet, CNN+R, and CNN+CR) have the same

number of parameters and were trained with Adam [31] for the same number of epochs. The

details of the model architectures on three datasets: MNIST [36], FashionMNIST [68], and

SVHN [47] are shown in Figure 2.2. MNIST and FashionMNIST have exactly the same

architectures while we use larger models for SVHN. Note that the only difference between

12

Figure 2.2. The architecture for the CapsNet, CNN+R and CNN+CR model used for our
experiments on MNIST [36], FashionMNIST [68], and SVHN [47].

the CNN reconstruction (CNN+R) and the CNN conditional reconstruction (CNN+CR) is the

masking procedure on the input to the reconstruction network based on the predicted class.

We display the test error rate for each model on these three datasets in Table 2.1. In

general, all models achieved similar test accuracy. We did not do an exhaustive hyperparameter

search on these models, instead we chose hyperparameters that allowed each model to perform

roughly equivalently on the test sets.

2.5.3 Implementation Details

For all the `∞ based adversarial examples, the `∞ norm of the perturbations is bound

by ε , which is set to 0.3, 0.1, 0.1 for MNIST, Fashion MNIST and SVHN dataset respectively

following previous works [41, 61]. In FGSM based attacks, the step size c is 0.05. In BIM-based

13

Table 2.1. The test accuracy of each model when the input are clean test images in each dataset.

Dataset CapsNet CNN+CR CNN+R

MNIST 99.4% 99.3% 99.4%
FashionMNIST 90.4% 90.5% 90.7%

SVHN 89.3% 90.7% 90.5%

[34] and PGD-based [41] attacks, the step size c is 0.01 for all the datasets and the number of

iterations are 1000, 500 and 200 for MNIST, Fashion MNIST and SVHN dataset respectively.

We choose a sufficiently large number of iterations to ensure the attacks has converged.

We use the publicly released code from the authors of [10] to perform the CW attack for

our models. The number of iterations are set to 1000 for all three datasets.

Table 2.2. Success rate and undetected rate of white-box targeted and untargeted attacks. In the
table, St/Rt is shown for targeted attacks and Su/Ru is presented for untargeted attacks.

Networks
Targeted (%) Untargeted (%)

FGSM BIM PGD CW FGSM BIM PGD CW

MNIST Dataset

CapsNet 3/0 82/0 86/0 99/2 11/0 99/0 99/0 100/19
CNN+CR 16/0 93/0 95/0 89/8 85/0 100/0 100/0 100/28
CNN+R 37/0 100/0 100/0 100/47 64/0 100/0 100/0 100/63

FASHION MNIST Dataset

CapsNet 7/5 54/9 55/10 100/26 35/29 86/50 87/51 100/68
CNN+CR 19/13 89/28 89/28 87/37 74/33 100/25 100/24 100/72
CNN+R 23/16 98/19 98/19 99/81 62/48 100/35 100/34 100/87

SVHN Dataset

CapsNet 22/20 83/45 84/46 100/90 74/67 99/70 99/68 100/94
CNN+CR 24/23 99/90 99/90 99/93 87/82 100/90 100/89 100/90
CNN+R 26/24 100/86 100/86 100/94 88/82 100/92 100/92 100/95

2.5.4 Standard White-box Attacks

We present the success and undetected rates for several targeted and untargeted attacks on

MNIST, FashionMNIST, and SVHN in Table 2.2. Our method is able to accurately detect many

14

Table 2.3. Error rate/undetected rate on the Corrupted MNIST dataset.

Corruption Clean Gaussian
Noise

Gaussian
Blur Line Dotted

Line
Elastic

Transform

CapsNet 0.6/0.2 12.1/0.0 10.3/4.1 19.6/0.1 4.3/0.0 11.3/0.8
CNN+CR 0.7/0.3 9.8/0.0 6.7/4.2 17.6/0.1 4.2/0.0 11.1/1.1
CNN+R 0.6/0.4 6.7/0.0 8.9/6.4 18.9/0.1 3.1/0.0 12.2/2.1

Corruption Saturate JPEG Quantize Sheer Spatter Rotate

CapsNet 3.5/0.0 0.8/0.4 0.7/0.1 1.6/0.4 1.9/0.2 6.5/2.2
CNN+CR 1.5/0.0 0.8/0.5 0.9/0.1 2.1/0.4 1.8/0.4 6.1/1.6
CNN+R 1.2/0.0 0.7/0.5 0.7/0.2 2.2/0.7 1.8/0.4 6.5/3.4

Corruption Contrast Inverse Canny Edge Fog Frost Zigzag

CapsNet 92.0/0.0 91.0/0.0 21.5/0.0 83.7/0.0 70.6/0.0 16.9/0.0
CNN+CR 72.0/32.6 78.1/0.0 34.6/0.0 66.0/0.5 37.6/0.0 18.4/0.0
CNN+R 73.4/49.4 88.1/0.0 23.4/0.0 65.6/0.1 36.2/0.0 17.5/0.0

attacks with very low undetected rates. Capsule models almost always have the lowest undetected

rates out of our three models. It is worth noting that this method performs best with the simplest

dataset, MNIST, and that the highest undetected rates are found with the Carlini-Wagner attack

on the SVHN dataset. This illustrates both the strength of this attack and a shortcoming of our

defense, namely that our detection mechanism relies on `2 image distance as a proxy for visual

similarity, and in the case of higher dimensional color datasets such as SVHN, this proxy is less

meaningful.

2.5.5 Corruption Attacks

Recent work has argued that improving the robustness of neural networks to `p norm

bounded adversarial attacks should not come at the expense of increasing error rates under

distributional shifts that do not affect human classification rates and are likely to be encountered

in the “real-world” [17]. For example, if an image is corrupted due to adverse weather, lighting,

or occlusion, we might hope that our model can continue to provide reliable predictions or

detect the distributional shift. We can test our detection method on its ability to detect these

distributional shifts by making use of the Corrupted MNIST dataset [46]. This data set contains

15

many visual transformations of MNIST that do not seem to affect human performance, but

nevertheless are strongly misclassified by state-of-the-art MNIST models. Our three models can

almost always detect these distributional shifts (in all corruptions CapsNets have either a small

undetected rate or an undetected rate of 0). The error rate (the proportion of misclassified input)

and undetected rate of three test models on the Corrupted MNIST dataset is shown in Table 2.3.

We also visualize the examples from Corrupted MNIST dataset [46] and the corresponding

reconstructed images for each model in Figure 2.3 and Figure 2.4.

2.5.6 Reconstructive Attacks

Thus far we have only evaluated previously-defined attacks. Following the suggestion

in [9] that detection methods need to show effectiveness towards defense-aware attacks, we

introduce an attack specifically designed to take into account our defense mechanism. In order to

construct adversarial examples that cannot be detected by the network, we propose a two-stage

optimization method to generate a “reconstructive attack”. Specifically, in each step, we first

attempt to fool the network by following a standard attack which computes the gradient of

the cross-entropy loss function with respect to the input. Then, in the second stage, we take

the reconstruction error into account by updating the adversarial perturbation based on the `2

reconstruction loss. In this way, we endeavor to construct adversarial examples that can fool the

network and also have a small `2 reconstruction error. The untargeted and targeted reconstructive

attacks based are described in more detail below.

Untargeted Reconstructive Attacks

To construct untargeted reconstructive attacks, we first update the perturbation based on

the gradient of the cross-entropy loss function following a standard FGSM attack [21], that is:

δ ← clipε(δ + c ·β · sign(∇δ `net(f (x+δ),y))), (2.1)

16

Clean

CapsNet

Gaussian Noise

CNN+R

CNN+CR

CapsNet

CNN+R

CNN+CR

Gaussian Blur

CapsNet

CNN+R

CNN+CR

Line

CapsNet

Dotted Line

CNN+R

CNN+CR

CapsNet

CNN+R

CNN+CR

CapsNet

CNN+R

CNN+CR

Elastic Transform

Saturate

CapsNet

JPEG

CNN+R

CNN+CR

CapsNet

CNN+R

CNN+CR

Quantize

CapsNet

CNN+R

CNN+CR

Sheer

CapsNet

Spatter

CNN+R

CNN+CR

CapsNet

CNN+R

CNN+CR

CapsNet

CNN+R

CNN+CR

Rotate

Figure 2.3. Examples of Corrupted MNIST and the reconstructed image for each model. A red
box represents that this input is flagged as an adversarial example while a green box represents
that this input has been misclassified and not been detected.

17

Contrast

CapsNet

Inverse

CNN+R

CNN+CR

CapsNet

CNN+R

CNN+CR

Canny Edge

CapsNet

CNN+R

CNN+CR

Fog

CapsNet

Frost

CNN+R

CNN+CR

CapsNet

CNN+R

CNN+CR

CapsNet

CNN+R

CNN+CR

Zigzag

Figure 2.4. Examples of Corrupted MNIST and the reconstructed image for each model
(continued). A red box represents that this input is flagged as an adversarial example while a
green box represents that this input has been misclassified and not been detected.

where `net(f (·),y) is the cross-entropy loss function, ε is the `∞ bound for our attacks, c is

a hyperparameter controlling the step size in each iteration and β is a hyperparameter which

balances the importance of the cross-entropy loss and the reconstruction loss (explained further

below). In the second stage, we focus on constraining the reconstructed image from the newly

predicted label to have a small reconstruction distance by updating δ according to

δ ← clipε(δ − c · (1−β) · sign(∇δ (‖r(v f (x+δ))− (x+δ)‖2))), (2.2)

where r(v f (x+δ)) is the class-conditional reconstruction based on the predicted label f (x+δ)

in a CapsNet or CNN+CR network. The δ used here is the optimized δ from the first stage.

‖r(v f (x+δ))− (x+δ)‖2 is the `2 reconstruction distance between the reconstructed image and

the input image. Since the CNN+R network does not use the class conditional reconstruction,

we simply use the reconstructed image without the masking mechanism. According to Eqn 2.1

18

and Eqn 2.2, we can see that β balances the importance between the success rate of attacks and

the reconstruction distance. This hyperparameter was tuned for each model and each dataset in

order to create the strongest attacks.

Targeted Reconstructive Attacks

We perform a similar two-stage optimization to construct targeted reconstructive attacks,

by defining a target label and attempting to maximize the classification probability of this label,

and minimize the reconstruction error from corresponding capsule. In the first stage, we use a

standard targeted attack to update the perturbation by computing the gradient of the cross-entropy

loss function. Specifically, in the first stage of each step, we update the adversarial perturbation

via:

δ ← clipε(δ − c ·β · sign(∇δ `net(f (x+δ),y))). (2.3)

Then in the second stage, we focus on constraining the `2 distance to be small between the

reconstructed and the input image. Here, we use the capsule corresponding to the targeted label

to perform the reconstruction, that is:

δ ← clipε(δ − c · (1−β) · sign(∇δ (‖ry(x+δ)− (x+δ)‖2)), (2.4)

where ry(x+ δ) is the reconstructed image that using label y to mask out the capsules/layers

corresponding to all the other classes in CapsNet and CNN+CR models. Instead, CNN+R

network uses the entire penultimate layer for reconstruction. Similarly, β is to balance the

importance between the success rate and the detected rate of the constructed adversarial example.

Figure 2.5 shows the plot of success rate and undetected rate versus the hyperparameter β which

balances the importance between success rate and undetected rate in the targeted reconstructive

PGD attacks on the MNIST dataset.

Because the targeted label is given, another way to construct targeted reconstructive

attacks is to combine these two stages into one stage via minimizing the loss function ` =

19

(a) (b)

Targeted Reconstructive PGD Attack on the MNIST Dateset

Figure 2.5. An example shows the plot of the success rate in (a) and undetected rate in (b)
of targeted reconstructive PGD attack vesus the hyperparameter beta β for each model on the
MNIST test set. We set the max `∞ norm ε = 0.3 to create the attacks.

β · `net(f (x+δ),y)+(1−β) · ‖r(v f (x+δ))− (x+δ)‖2. We implemented both of these targeted

reconstructive attacks and found that the two-stage version is a stronger attack. Therefore,

all the Reconstructive Attack experiments performed in this chapter are based on two-stage

optimization.

We build our reconstructive attack based on the standard PGD attack, denoted as R-PGD,

and test the performance of our detection models against this reconstructive attack in a white-

box setting. Comparing Table 2.2 and Table 2.4, we can see that the Reconstructive Attack is

significantly less successful at changing the models prediction (lower success rates than the

standard attack). However, this attack is more successful at fooling our detection method. For

all attacks and datasets the capsule model has the lowest attack success rate and the lowest

undetected rate.

In addition, we report the undetected rate of the white-box targeted defense-aware R-PGD

attack versus the False Positive Rate on the MNIST, Fashion-MNIST and SVHN datasets in

Figure 2.6. We can clearly see that the undetected rate of the defense-aware attack against

CapsNet is significantly smaller than the CNN-based networks, which suggests that CapsNets

are more robust against adversarial attacks. Furthermore, CNN with class-conditional reconstruc-

tion (CNN+CR) has smaller undetected rate at the same False Positive Rate compared to the

20

Table 2.4. Success rate and the worst case undetected rate of white-box targeted and untargeted
reconstructive attacks. Below St/Rt is shown for targeted attacks and Su/Ru is presented for
untargeted attacks.

Networks
Targeted (%) Untargeted (%)

R-FGSM R-BIM R-PGD R-FGSM R-BIM R-PGD

MNIST Dataset

CapsNet 1.8/0.3 51.0/33.8 50.7/33.7 6.1/1.0 84.5/35.1 88.1/37.9
CNN+CR 7.6/0.5 98.0/68.1 98.6/68.1 41.7/3.2 96.5/86.8 99.4/87.7
CNN+R 16.9/3.3 86.3/65.9 95.5/71.2 25.9/8.1 82.9/67.8 95.1/70.5

FASHION MNIST Dataset

CapsNet 6.5/5.8 53.3/28.4 53.7/29.8 33.3/29.9 85.3/75.9 84.9/75.5
CNN+CR 17.7/14.0 80.3/72.4 78.1/72.0 68.0/57.3 89.8/84.4 91.5/86.0
CNN+R 19.4/17.6 95.2/88.8 94.6/88.4 58.6/53.5 98.8/90.1 98.9/90.0

SVHN Dataset

CapsNet 21.6/21.2 81.1/78.3 82.0/79.2 71.6/68.3 98.9/97.5 98.9/97.5
CNN+CR 24.2/22.6 98.5/97.6 99.0/97.9 86.0/82.3 99.9/99.5 99.9/99.5
CNN+R 26.6/25.8 99.6/99.4 99.5/99.3 87.1/84.5 100.0/99.9 100.0/99.9

CNN without class-conditional reconstruction (CNN+R), which suggests the class-conditional

information is helpful in our models to improve the robustness against adversarial attacks.

2.5.7 Black-box Attacks

We also tested our detection mechanism results on black box attacks, shown in Table 2.5.

Given the low undetected rates in the white-box settings, it is not surprising that our detection

Figure 2.6. The undetected rate of the white-box targeted defense-aware R-PGD attack versus
the False Positive Rate on the MNIST, Fashion-MNIST and SVHN datasets.

21

Table 2.5. Success rate and undetected rate of black-box targeted and untargeted attacks on
the MNIST dataset. In the table, St/Rt is shown for targeted attacks and Su/Ru is presented for
untargeted attacks. All the numbers are shown in %.

Targeted CapsNet CNN-CR CNN-R Untargeted CapsNet CNN-CR CNN-R

PGD 1.5/0.0 7.8/0.0 7.4/0.0 PGD 8.5/0.0 32.6/0.0 27.6/0.0
R-PGD 4.2/1.0 18.3/11.0 11.3/4.8 R-PGD 10.4/2.4 42.7/24.9 25.2/8.9

method is able to detect black box attacks as well. In fact, on the MNIST dataset the capsule

model is able to detect all targeted and untargeted PGD attacks. Both the CNN-R and the

CNN-CR models are able to detect the black box attacks as well, but with a relatively higher

undetected rate.

2.5.8 CIFAR-10 Dataset

In order to show that our method based on CapsNet is capable to scale up to more

complex datasets, we test our detection method with a deeper reconstruction network on CIFAR-

10 [32]. The classification accuracy on the clean test dataset is 92.2%. In addition, we display

the undetected rate of the white-box/black-box defense-aware R-PGD attack against CapsNets

versus the False Positive Rate in Figure 2.7 (Left), where we can see a significant drop of the

undetected rate of black-box R-PGD compared to the white-box setting. This indicates the

CapsNets greatly reduce the attack transferability and the threat of black-box attacks.

Class-conditional Information

To investigate the effectiveness of the class-conditional information in the reconstruction

network, we compare our CapsNet based on [54] with the other two variants of CapsNets:

“CapsNet All” and “DeepCaps” [51]. In “CapsNet All”, we remove the masking mechanism in the

CapsNet and use all the capsules to do the reconstruction. In “DeepCaps”, we extract the winning-

capsule information as a single vector and used it as the input for the reconstruction network

instead of using a masking mechanism to mask out the losing capsules information. In this way,

the class information is not explicitly fed into the reconstruction network. As shown in Figure 2.7

22

Figure 2.7. Left: The undetected rate of white-box/black-box defense-aware R-PGD versus the
Fasle Positive Rate for the clean examples. The test model is our CapsNet. Right: The undetected
rate of white-box defense-aware R-PGD versus the Fasle Positive Rate for the clean examples.
The test model is our CapsNet using class-conditional reconstruction, “CapsNet All” using all
capsule information, and the DeepCaps [51] using class-independent capsule information. The
defense-aware R-PGD attack is tested on the CIFAR-10 dataset with ε∞ = 8/255.

(right), our CapsNet has the best detection performance (the lowest undetected rate at the same

False Positive Rate) compared to the other two Capsule models. “DeepCaps” performs slightly

worse that our “CapsNet” and “CapsNet All” has the worst detection performance. Therefore, we

conclude that the class-conditional information used in the reconstruction network increases the

model’s robustness to adversarial attack. This also holds true to CNN-based networks because

CNN+CR has a better detection performance than CNN+R, shown in Figure 2.6.

2.6 Discussion

Our detection mechanism relies on a similarity metric (i.e. a measure of reconstruction

error) between the reconstruction and the input. This metric is required both during training

in order to train the reconstruction network and during test time in order to flag adversarial

examples. In the four datasets we have evaluated, the distance between examples roughly

correlates with semantic similarity. This however might not the case for images in more complex

dataset such as SUN dataset [69] and ImageNet [15], in which two images may be similar

in terms of semantic content but nevertheless have significant `2 distance. A better similarity

23

metric [67, 74] can be further explored to extend our methods to more complex problems.

Furthermore our reconstruction network is trained on a hidden representation of one class but is

trained to reconstruct the entire input. In datasets without distractors or backgrounds, this is not

a problem. But in the case of ImageNet, in which the object responsible for the classification is

not the only object in the image, attempting to reconstruct the entire input from a class encoding

seems misguided.

2.7 Conclusion

We have presented a class-conditional reconstruction-based detection method that does

not rely on a specific predefined adversarial attack. We have shown that by reconstructing the

input from the internal class-conditional representation, our system is able to accurately detect

black-box and white-box FGSM, BIM, PGD, and CW attacks. We then proposed a new attack

to beat our defense - the Reconstructive Attack - in which the adversary optimizes not only the

classification loss but also minimizes the reconstruction loss. We showed that this attack was

able to fool our detection mechanism but with a much smaller success rate than a standard attack.

Compared to CNN-based models, we showed that the CapsNet was able to detect adversarial

examples with greater accuracy on all the datasets we explored.

This chapter is based on the material as it appears in the Proceedings of the International

Conference on Learning Representations (ICLR20) (Yao Qin, Nicholas Frosst, Sara Sabour,

Colin Raffel, Garrison Cottrell and Geoffrey Hinton, “Detecting and Diagnosing Adversarial

Images with Class-Conditional Capsule Reconstructions”). The dissertation author was the

co-primary investigator and author of this paper.

24

Chapter 3

Diagnosing Adversarial Attacks

3.1 Introduction

Adversarial examples raise questions about whether neural network models are sensitive

to the same visual features as humans. In the previous Chapter, we find that CapsNets always

perform better than convolutional networks among all the attacks. To explain the success of

CapsNets over CNNs, we further diagnose the adversarial examples for CapsNets and find that

1) the success of the targeted reconstructive attack is highly dependent on the visual similarity

between the source image and the target class. 2) many of the resultant attacks resemble members

of the target class and so cease to be “adversarial” – i.e., they may also be misclassified by

humans. These findings suggest that CapsNets with class conditional reconstructions have the

potential to address the real issue with adversarial examples – networks should make predictions

based on the same properties of the image as people use rather than using features that can be

manipulated by an imperceptible adversarial attack. Based on extensive qualitative studies, we

conclude that CapsNets is better at detecting adversarial examples compared to CNNs, suggesting

the features captured by CapsNets are more aligned with human perception.

3.2 Visual Coherence of the Reconstructive Attack

The great success of CapsNet over CNN-based models motivates us to further diagnose

the generated adversarial examples for CapsNets. If our true aim in adversarial robustness

25

Figure 3.1. This diagram visualizes the adversarial success rates for each source/target pair for
targeted R-PGD attacks on Fashion-MNIST with ε∞ = 25/255. The size of the box at position x,
y represents the success rate of adversarially perturbing inputs of class x to be classified as class
y. Almost all source/target We can see that there is significantly higher variance for the CapsNet
model than for the two CNN models.

research is to create models that make predictions based on reasonable and human-observable

features, then we would prefer models that are more likely to misclassify a “shirt” as a “t-shirt”

(in the case of FashionMNIST) than to misclassify a “bag” as a “sweater”. For a model to

behave ideally, the success of an adversarial perturbation would be related to the visual similarity

between the source and the target class. By visualizing a matrix of adversarial success rates

between each pair of classes (shown in Figure 3.1), we can see that for the capsule model there

is a great variance between the source and target class pairs and that the success rate of attacks is

highly related to the visual similarity of the classes. However, this is not the case for either of the

other two CNN-based models.

Thus far we have treated all attacks as equal. However, a key component of an adversarial

example is that it is visually similar to the source image, and that it does not resemble the

adversarial target class. The adversarial research community makes use of a small epsilon

bound as a mechanism for ensuring that the resultant adversarial attacks are visually unchanged

from the source image. For standard attacks this heuristic is sufficient, because taking gradient

steps in the image space in order to have a network misclassify an image normally results in

26

Figure 3.2. These are randomly sampled (not cherry picked) successful and undetected ad-
versarial attacks created by R-PGD with a target class of 0 for each model on the SVHN
dataset(ε∞ = 25/255). We can see that for the capsule model, many of the attacks are not
“adversarial” as they resemble members of the target class.

something visually similar to the source image. But this is not the case for adversarial attacks

which take the reconstruction error into account: As shown in Figure 3.2, when we use R-PGD

to attack the CapsNet, many of the resultant attacks resemble members of the target class. In this

way, they stop being “adversarial”. As such, an attack detection method which does not detect

them as adversarial is arguably behaving correctly. This puts the previously undetected rates

presented earlier in a new light, and illustrates a difficulty in the evaluation of adversarial attacks

and defenses. In addition, it should be noted that this phenomenon rarely occurs in a standard

convolutional neural network, which suggests that the features captured by CapsNet are more

aligned with human perception.

In Figure 3.3, we display sample images and the result of adversarially perturbing them

with targeted R-PGD against the CapsNet model. We can see the visual similarity between many

of the attacks and the target class.

3.3 Conclusion

In this chapter, we further explain the success of CapsNet by qualitatively showing that

the success of the reconstructive attack was proportional to the visual similarity between the

target class and the source class for the CapsNet. In addition, we showed that images generated

by this reconstructive attack to attack the CapsNet are not typically adversarial, i.e. many of

27

Figure 3.3. These are randomly sampled (not cherry picked) inputs (top row) and the result of
adversarially perturbing them with targeted R-PGD against the CapsNet model (other rows).
Many of these attacks are not successful.

the resultant attacks resemble members of the target class even with a small `∞ norm bound.

These are not the case for the CNN-based models. The extensive qualitative studies indicate that

the gradient of the reconstructive attack may be better aligned with the true data manifold, and

implies that the capsule model relies on visual features similar to those used by humans. We

believe this is a step towards solving the true problem posed by adversarial examples.

This chapter is based on the material as it appears in the Proceedings of the International

Conference on Learning Representations (ICLR20) (Yao Qin, Nicholas Frosst, Sara Sabour,

Colin Raffel, Garrison Cottrell and Geoffrey Hinton, “Detecting and Diagnosing Adversarial

Images with Class-Conditional Capsule Reconstructions”). The dissertation author was the

co-primary investigator and author of this paper.

28

Chapter 4

Deflecting Adversarial Attacks

4.1 Introduction

Adversarial attacks have been the subject of constant research since they were first

discovered [64, 21, 34, 41]. Most of this research has been focused on the creation of more robust

models to defend against adversarial attacks [61, 41, 71], where the input image is correctly

classified as the original class rather than the adversarial target class, as illustrated in Figure 4.1

(a). However, better defenses have led to the development of stronger attack algorithms to break

these defenses [41, 10, 13, 2]. After several iterations of creating and breaking defenses, some

research focused on adversarial attack detection [22, 16, 43, 37, 50, 52]. Detection algorithms

aim to distinguish adversarial attacks from real data and then flag the adversarial input, instead

of attempting to correctly classify such inputs, as shown in Figure 4.1 (b). However, this

strategy fell into the same creating/breaking cycle: Many state-of-the-art methods [52, 40, 37]

claiming to detect adversarial attacks were broken shortly after publication with a defense-aware

attack [25, 9, 2]. We attempt to get ahead of this cycle by focusing on the deflection of adversarial

attacks, shown in Figure 4.1 (c): If the result of the adversarial optimization of an image looks to

a human like the adversarial target class rather than its original class, then the image can hardly

be called adversarial anymore. We call such attacks “deflected”. Some examples are shown in

Figure 4.2. Although visually there is a big difference between clean input and deflected attacks,

we have confirmed the maximal adversarial perturbation is bounded by 16/255 via reading the

29

46

Clean Adversarial
Input

0 0
Classifier 0 0

(a) Defend

Clean Adversarial
Input

(b) Detect

Clean Adversarial
Input

(c) Deflect

Clean Adversarial Adversarial Adversarial

Human 0 0 0 8
Classifier 0 0 8 8

(a) Defend (b) Detect (c) Deflect

Figure 4.1. Different results of an adversarial attack against three different defense approaches.
The original class is 0 and the adversarial target class is 8.

clean image and its corresponding deflected attack and computing the difference of their pixel

value.

In this chapter, we propose a network and detection mechanism based on Capsule

layers [54, 50] that either detects attacks accurately or, for undetected attacks, often causes the

attacker to produce images that resemble the target class (thereby deflecting them). Our network

architecture is made up of two components: A capsule classification network that classifies

the input, and a reconstruction network that reconstructs the input conditioned on the pose

parameters of the predicted capsule. Apart from the classification loss and `2 reconstruction

loss used in [54, 50], we introduce an extra cycle-consistency training loss which constrains

the classification of the winning capsule reconstruction to be the same as the classification of

the original input. This new auxiliary training loss encourages the reconstructions to more

closely match the class-conditional distribution and helps the model detect and deflect adversarial

attacks.

In addition, we propose two new attack-agnostic detection methods based on the discrep-

ancy between the winning-capsule reconstruction of clean and adversarial inputs. We find that a

detection method that combines ours with the one proposed by [50] performs best. We show

that this method can accurately detect white-box and black-box attacks based on three different

distortion metrics (EAD [13], CW [10] and PGD [41]) on both the SVHN and CIFAR-10 datasets.

30

2 2 9 2 1 6 3 0 0 8

0 1 2 3 4 5 6 7 8 9

Clean
Input

Correct Label

Deflected
Attacks

Target Label

2 2 9 1 1 6 3 6 0 8

0 1 2 3 4 5 6 7 8 9

Clean
Input

Correct Label

Deflected
Attacks

Target Label

2 2 9 2 1 6 3 0 0 8

0 1 2 3 4 5 6 7 8 9

Clean
Input

Correct Label

Deflected
Attacks

Target Label

2 2 9 1 1 6 3 6 0 8

0 1 2 3 4 5 6 7 8 9

Clean
Input

Correct Label

Deflected
Attacks

Target Label

0 1 2 3 4 5 6 7 8 9

Figure 4.2. Deflected adversarial attacks on the SVHN dataset. These images were generated by
a defense aware attack and the maximal adversarial perturbation is bounded by 16/255.

Following the suggestions in [2, 9], we also propose defense-aware attacks for our new detection

method. We find that our detection methods significantly outperform state-of-the-art methods on

defense-aware attacks. Finally, we perform a human study to verify that many of the undetected

adversarial attacks against our model have been successfully deflected, i.e. adversarial images

from both defense-aware and standard attacks against our detection mechanism are frequently

classified as the target class by humans. In contrast, successful attacks against baseline models

do not have this property.

To summarize, in this chapter:

• We introduce the notion of deflecting adversarial attacks, which presents a step towards

ending the battle between attacks and defenses.

• We propose a new cycle-consistency loss which trains a CapsNet to encourage the winning-

capsule reconstruction to closely match the class-conditional distribution and show that

this can help detect and deflect adversarial attacks.

• We introduce two attack-agnostic detection methods based on the discrepancy between

the winning-capsule reconstruction of the clean and adversarial inputs, and design a

defense-aware attack to specifically attack our detection mechanisms.

• We show through extensive experiments on SVHN and CIFAR-10 that our detection

mechanism can achieve state-of-the-art performance in detecting white-/black-box standard

31

and defense-aware attacks.

• We perform a human study to show that our approach, unlike previous methods, is able to

deflect a large percentage of undetected adversarial attacks.

4.2 Network Architecture

In order to design a model that is strong enough to deflect adversarial attacks, we build

our network based on CapsNet [54]. Figure 4.3 shows the pipeline of our network architecture.

Classification
Network

…

0
1

1

0
0
1
0…

Input Reconstruction

Winning

Losing
Capsules

…Background

Mask

…

Reconstruction
Network

Classified as 2

Losing

Losing

Losing

Background

Figure 4.3. The network architecture with cycle-consistent winning capsule reconstructions.

The final layer of our classifier is a Capsule layer (“CapsLayer” for short) which includes both

class capsules and background capsules. These capsules are intended to encode feature attributes

corresponding to the class and the background respectively. Given an input x, the output of a

CapsLayer is a prediction f (x) and a pose parameter v for all the classes and the background,

where vi denotes the pose parameter for class i. As in the initial Capsules proposed in [54],

the magnitude of the activation vector of a capsule encodes the existence of an instance of

the class and the orientation of the activation vector encodes instantiation parameters of the

instance, such as its pose. Therefore, the magnitudes of the capsules’ activations are used to

32

perform classification while the activation vector of the winning class capsule together with

the activation vectors of the background capsules are used as the input to the reconstruction

network. We use r(vi= f (x)) and r(vi6= f (x)) to represent the reconstruction from the winning

capsule and a losing capsule respectively. The reconstruction network uses the activations of

all the background capsules as well as the activation of one class capsule but we omit this to

simplify the notation. The details of the network architecture used in this chapter are provided in

Table 4.1 and Table 4.2.

Table 4.1. The network architecture for the SVHN dataset.

Layer Name Configurations

Classification
Network

Conv
filter size: 3x3, number of filters: 64x4, stride size: 1x1,
activation: leaky relu

Conv
filter size: 3x3, number of filters: 64x8, stride size: 1x1,
activations: leaky relu

Avg Pooling pool size: 2x2, stride size: 2x2

Conv
filter size: 3x3, number of filters: 64x2, stride size: 1x1,
activation: leaky relu

Conv
filter size: 3x3, number of filters: 64x4, stride size: 1x1,
activation: leaky relu

Avg Pooling pool size: 2x2, stride size: 2x2

Conv
filter size: 3x3, number of filters: 64x1, stride size: 1x1,
activation: leaky relu

Conv
filter size: 3x3, number of filters: 64x2, stride size: 1x1,
activation: leaky relu

CapsLayer
number of input capsules: 16, input atoms: 512,
number of output capsules: 25, output atoms: 4,
number of dynamic routing: 1

Reconstruction
Network

fully connected input size: 100, output size:1024
fully connected input size: 1024, output size:16384

deconv filter size: 4x4, number of filters: 64, stride size: 2x2
deconv filter size: 4x4, number of filters: 32, stride size: 2x2

conv
filter size: 4x4 number of filters: 3, stride size: 1x1,
activation: sigmoid

33

Table 4.2. The network architecture for the CIFAR-10 dataset.

Layer Name Configurations

Classification
Network

Conv
filter size: 3x3, number of filters: 128x4,
stride size: 1x1, activation: leaky relu

Conv
filter size: 3x3, number of filters: 128x8,
stride size: 1x1, activations: leaky relu

Avg Pooling pool size: 2x2, stride size: 2x2

Conv
filter size: 3x3, number of filters: 128x2,
stride size: 1x1, activation: leaky relu

Conv
filter size: 3x3, number of filters: 128x4,
stride size: 1x1, activation: leaky relu

Avg Pooling pool size: 2x2, stride size: 2x2

Conv
filter size: 3x3, number of filters: 128x1,
stride size: 1x1, activation: leaky relu

Conv
filter size: 3x3, number of filters: 128x2,
stride size: 1x1, activation: leaky relu

CapsLayer
number of input capsules: 16, input atoms: 512,
number of output capsules: 25, output atoms: 8,
number of dynamic routing: 1

Reconstruction
Network

fully connected input size: 200, output size:1024
fully connected input size: 1024, output size:16384

deconv filter size: 4x4, number of filters: 64, stride size: 2x2
deconv filter size: 4x4, number of filters: 32, stride size: 2x2

conv
filter size: 4x4 number of filters: 3, stride size: 1x1,
activation: sigmoid

4.2.1 Cycle-consistent winning-capsule reconstructions

The CapsNet [54] is trained with two loss terms: a marginal loss for the classification

and an `2 reconstruction loss. To encourage the reconstruction to more closely match the class

conditional distribution and help the model detect and deflect adversarial attacks, we additionally

incorporate an extra cycle-consistency loss `cyc which constrains the reconstruction from the

winning capsule to be classified as the same class as the input, formulated as:

`cyc = `net(f (r(vi= f (x))), f (x)), (4.1)

34

where `net is the cross-entropy loss function and i∈ {0,1, . . . ,n}, n denotes the number of classes

in the dataset. This can be achieved by feeding the reconstruction corresponding to the winning

capsule back into the classification network, shown as the dotted red line in Figure 4.3. This extra

training loss together with our Cycle-consistent Detector (introduced in Section 4.3.3) can help

detect adversarial attacks. In addition, since the winning-capsule reconstructions are optimized

to more closely match the class conditional data distribution, it becomes easier for our model to

deflect adversarial attacks.

4.3 Detection Methods

In this chapter, we use three reconstruction-based detection methods to detect standard

attacks. They are: Global Threshold Detector (GTD), first proposed in [50], Local Best Detector

(LBD) and Cycle-Consistency Detector (CCD).

4.3.1 Global Threshold Detector

When the input is adversarially perturbed, the classification given to the input may be

incorrect, but the reconstruction is often blurry and therefore the distance between the adversarial

input and the reconstruction is larger than that would be expected from normal input. This allows

us to detect the input as adversarial with the Global Threshold Detector. This method, proposed

in [50], measures the reconstruction error between the input and its reconstruction from the

winning capsule. If the reconstruction error is greater than a global threshold θ , that is:

‖r(vi= f (x))− x‖2 > θ , (4.2)

then the input is flagged as an adversarial example.

35

Input

Reconstruction

(a) Detecting Model

41 39 7 17 4 61 48 20 13 16						ℓ3 Reconstruction Error

14 10 14 10 9 16 10 10 12 10 		ℓ3 Reconstruction Error

0 1 2 3 4 5 6 7 8 9 Capsule Index

Reconstruction

Clean

PGD

Input

Reconstruction

(b) Deflecting Model

0 1 2 3 4 5 6 7 8 9 Capsule Index

Reconstruction

Clean

PGD

353 405 279 2 258 127 277 254 274 288 		ℓ3 Reconstruction Error

12 21 179 9 192 162 234 175					134				 193 	ℓ3 Reconstruction Error

Input

Reconstruction

(a) Detecting Model

41 39 7 17 4 61 48 20 13 16						ℓ3 Reconstruction Error

14 10 14 10 9 16 10 10 12 10 		ℓ3 Reconstruction Error

0 1 2 3 4 5 6 7 8 9 Capsule Index

Reconstruction

Clean

PGD

Input

Reconstruction

(b) Deflecting Model

0 1 2 3 4 5 6 7 8 9 Capsule Index

Reconstruction

Clean

PGD

353 405 279 2 258 127 277 254 274 288 		ℓ3 Reconstruction Error

12 21 179 9 192 162 234 175					134				 193 	ℓ3 Reconstruction Error

Figure 4.4. An example of a clean input, an adversarial example generated via a PGD attack,
and the reconstructions for the clean and adversarial inputs from each class capsule. The
reconstruction corresponding to the winning capsule is surrounded by a red box. Under each
reconstruction is its `2 reconstruction error; the smallest reconstruction error is highlighted in red.
Both the clean input and its winning capsule reconstruction are classified as ‘4’. The PGD attack
is classified as the target class ‘3’ but its winning capsule reconstruction is classified as ‘4’.

4.3.2 Local Best Detector

When the input is a clean image, the reconstruction error from the winning capsule is

smaller than that of the losing capsules, where an example is shown in the first row of Figure 4.4.

This is likely because the `2 reconstruction objective only minimizes the reconstruction from

the winning capsule during training. However, when the input is an adversarial example, the

reconstruction from the capsule corresponding to the correct label can be even closer to the input

compared to the reconstruction corresponding to the winning capsule (see the second row in

Figure 4.4). Therefore, we propose the “Local Best Detector” (LBD) to detect such adversarial

images whose reconstruction error from the winning capsule is not the smallest, that is:

argmin j‖r(v j)− x‖2 6= f (x), j ∈ {0,1, . . . ,n}, (4.3)

where n is the number of classes in the dataset.

4.3.3 Cycle-Consistency Detector

If the input is a clean image, the reconstruction from the winning capsule will resemble

the input. Our model should ideally assign the same class to the reconstruction of the winning

capsule as the clean input. This behavior is reinforced by training with the cycle-consistency loss.

36

For example, as shown in Figure 4.4 both the clean input and its winning-capsule reconstruction

are classified as 4. However, when the input is an adversarial example which is perceptually

indistinguishable from the clean image but causes the model to predict the target class, the

reconstruction of the winning capsule often appears closer to the clean input and/or is blurry.

As a result, the reconstruction of the winning capsule is often not classified as the target class.

As shown in Figure 4.4, the adversarial input has been classified as the target class “3” while

the reconstruction corresponding to the winning capsule is classified as “4”. Therefore, the

Cycle-Consistency Detector (CCD) is designed to flag the input as an adversarial example if the

input x and its reconstruction of the winning capsule r(vi= f (x)) are not classified as the same

class:

f (r(vi= f (x))) 6= f (x). (4.4)

In this chapter, we use these three detectors together to detect adversarial examples.

In other words, we flag any input as adversarial if it is classified as adversarial by any of the

detection mechanisms. As a result, an adversarial input can only go undetected if it passes all

three detection mechanisms.

4.4 The Defense-Aware CC-PGD Attack

In order for an attack mechanism to generate an adversarial example x′ = x+δ (where δ

is a small adversarial perturbation) that can both cause a misclassification and is not detected by

our detection mechanisms, the constructed adversarial attack must:

• successfully fool the classifier: f (x′) = t and f (x) 6= t, where t is the target class.

• avoid being detected by the Global Threshold Detector (GTD), the attack needs to constrain

the reconstruction of the winning capsule to be close to the input.

• fool the Local Best Detector (LBD), the attack should encourage the reconstructions from

all the losing capsules to be far away from the input to ensure the reconstruction error of

37

the winning capsule is the smallest.

• circumvent the Cycle-Consistency Detector (CCD) by fooling the classifier into making

the target prediction when it is fed the winning-capsule reconstruction of the adversarial

input, that is: f (r(vi= f (x′))) = f (x′) = t.

To generate such an attack, we follow [50] and devise attacks which consist of two stages

at each gradient step. The first stage attempts to fool the classifier by following a standard attack

(e.g., a standard PGD attack) which follows the gradient of the cross-entropy loss function with

respect to the input. Then, in the second stage, we focus on fooling the detection mechanisms by

taking the reconstruction error and cycle-consistency into consideration. This can be formulated

as minimizing the reconstruction loss `r, which consists of three components: the reconstruction

loss corresponding to the Global Threshold Detector `g, the reconstruction loss corresponding

to the Local Best Detector `l and the cycle-consistency classification loss corresponding to the

Cycle-Consistency Detector `cyc. Specifically, the reconstruction loss is defined as:

`r(x′) = α1 · `g(x′)+α2 · `l(x′)+α3 · `cyc(x′)

= α1 · ‖r(vi= f (x′))− x′‖2−α2 ·
∑

n
k 6= f (x′)‖r(vk)− x′‖2

n−1

+α3 · `net(f (r(vi= f (x′))), f (x′))

(4.5)

where x′ = x + δ is the adversarial example, n is the number of the classes in the dataset,

‖r(vi= f (x′))− x′‖2 is the winning-capsule reconstruction error and ‖r(vk 6= f (x′))− x′‖2 is the

losing-capsule reconstruction error. The hyperparameters α1, α2 and α3 are used to balance the

importance of attacking each detector. Then, the adversarial perturbation can be updated in the

second stage as:

δ ← clipε∞
(δ − c · sign(∇δ (`r(x+δ))), (4.6)

where ε∞ is the `∞ norm bound and c is the step size in each iteration.

38

4.5 Experiments

Now that we have proposed our new defense model, we first verify its detection perfor-

mance on the SVHN and CIFAR-10 datasets on a variety of attacks. Then, we use a human study

to demonstrate that our model frequently causes attacks to be deflected.

4.5.1 Evaluation Metrics and Datasets

In this chapter, we use Accuracy to represent the proportion of clean examples that are

correctly classified by our network. We use Success Rate to measure the performance of an

attack, which is defined as the proportion of adversarial examples that successfully fool the

classifier into making the targeted prediction. In order to evaluate the performance of different

detection mechanisms, we report both False Positive Rate (FPR) and Undetected Rate. The

False Positive Rate is the proportion of clean examples that are flagged as an adversarial example

by the detection mechanism. The Undetected Rate, first proposed in [50], denotes the proportion

of adversarial examples that successfully fool the classifier and also go undetected. Finally, we

perform a human study in Section 4.6 in order to show that our model is able to effectively

deflect adversarial attacks.

4.5.2 Training Details and Test Accuracy

We set the batch size to be 64 and the learning rate to 0.0001 to train the network on

SVHN. For CIFAR-10, the batch size is set to be 128 and the learning rate is 0.0002. We use

the Adam optimizer [31] to train all models. The cycle-consistency loss `cyc is multiplied with

0.0005 before being added to the margin loss and the `2 reconstruction loss used as in the original

CapsNets [54].

We test our deflecting models on the SVHN [47] and CIFAR-10 datasets [32]. The

classification accuracy on the clean test set is 96.5% on SVHN and 92.6% on CIFAR-10, which

show that our deflecting models are reasonably good at classifying clean images.

39

4.5.3 Threat Model

In this chapter, we consider two commonly used threat models: white-box and black-

box. For white-box attacks, the adversary has full knowledge of the network architecture and

parameters and is allowed to construct the adversarial attack by computing the gradient of

model’s output with respect to its input. In the black-box setting, the adversary is aware of

the network architecture of the target model but does not have direct access to the model’s

parameters.

4.5.4 Adversarial Attacks

Following the suggestions in [7], we test our attack-agnostic detection mechanisms on

three standard targeted attacks based on different distance metrics:

• `1 norm-based EAD [13],

• `2 norm-based CW [10],

• `∞ norm-based PGD [41].

In addition, we follow the suggestions in [9] to report the performance of our detection

mechanisms against defense-aware attacks. We use CC-PGD (described in Section 4.4) as our

defense-aware attack. For the `∞ norm-based attacks, we set the maximal perturbation ε∞ to be

16/255 on SVHN and 8/255 on CIFAR-10 as is typically used [6, 41].

To generate EAD and CW attacks, we follow the previous work [13, 10] to set the binary

search steps to be 9, maximum iterations to be 1000 and learning rate to be 0.01. To construct `∞

norm-based attacks (PGD and our defense-aware CC-PGD), we use a step size 0.01 (2.55/255)

in each iteration as [41].

40

4.5.5 Sanity Checks for PGD and CC-PGD Attack

In this section, we perform basic sanity checks to ensure the adversarial attacks are

correctly implemented and our proposed defense-aware CC-PGD is tuned well. In this section,

we test attacks against our proposed deflecting model on the CIFAR-10 dataset.

Figure 4.5. (a) The success rate of white-box PGD and CC-PGD changes as the number of
iterations increases for our deflecting model on CIFAR-10 dataset. (b) The success rate of
white-box PGD and CC-PGD changes as ε∞ increases for our deflecting model on CIFAR-10
dataset. (c) The Undetected Rate of the defense-aware attack CC-PGD optimized by a two-
stage optimization and one-stage optimization vs. False Positive Rate for the clean data on the
CIFAR-10 dataset.

• Convergence of attacks.

Figure 4.5 (a) shows the success rate of white-box PGD and CC-PGD varies as the number

of iterations increases on the CIFAR-10 dataset. We can see that the attacker has almost

plateaued after 200 iterations. Therefore, we set the total number of attack steps to be 200

in generating PGD and CC-PGD attack for efficiency.

• 100% success rate with non-constraint `∞ norm.

In Figure 4.5 (b), we show that the success rate of white-box PGD and CC-PGD varies

as the `∞ bound of the adversarial perturbation ε∞ increases. We can see that when ε∞ is

greater than 50/255, the success rate is 100%. However, when ε∞ is set to be 8/255 (which

is typically used [6, 41]), the attack success rate against our deflecting model is below

50%.

41

47

O# Od

Figure 4.6. The undetected rate of our white-box defense-aware CC-PGD attack versus
False Positive Rate (FPR) for clean input on the CIFAR-10 dataset when we change the
hyperparameter α2 in (a) and hyperparameter α3 in (b). These hyperparameters control
the importance of attacking each detector in Eqn. 5.13.

• Two-stage optimization

To demonstrate the effectiveness of our used two-stage optimization in generating defense-

aware CC-PGD, we compare the attack performance of two-stage optimization introduced

in Section 4.4 and a one-stage optimization which uses a single loss function which

combines the cross-entropy loss to fool the classifier with the reconstruction loss `r

in Eqn. 5.13 to fool the detectors. In Figure 4.5 (c), we construct the defense-aware

CC-PGD against our deflecting model on the CIFAR-10 dataset using one-stage and

two-stage optimization respectively. We can see that the defense-aware CC-PGD attack

that is optimized by the two-stage optimization has a higher undetected rate than that

optimized by the one-stage optimization. Therefore, we use two-stage optimization in all

the experiments to construct CC-PGD attack.

• Hyperparameters

In Eqn. 5.13, the hyperparameters α1, α2 and α3 are used to balance the importance

of attacking each detector. We set α1 = 1 and then show the attack performance when

we change α2 (see Figure 4.6 (a)) and α3 (see Figure 4.6 (b)). We can see that when

we set α2 = 0, the attack performance is the best (higher undetected rate at a low False

42

Positive Rate). In addition, the attack performance of our CC-PGD is not sensitive to

the hyperparameter α3. Therefore, we simply set α3 = 20, which is slightly better at a

low False Positive Rate. In all the following experiments, we set the hyperparameter α1,

α2 and α3 in Eqn. 5.13 to be 1, 0 and 20 respectively to balance the importance among

three detectors in generating our defense-aware CC-PGD. Since the Cycle-Consistency

Detector is the most effective detector (discussed later in Section 4.5.6), we assign a

much higher weight to α3, which controls the importance of attacking Cycle-Consistency

Detection in generating our defense-aware CC-PGD attack. In addition, we observe that

increasing α2 (controlling the importance of attacking the Local Best Detector) leads to a

decrease of the attack performance). Therefore, α2 is set to be 0. This might result from

the contradiction between minimizing the winning-capsule reconstruction and maximizing

the losing-capsule reconstruction, where they share the background capsule information.

Lastly, α1 is set to be a very small value as 1 for the best attack performance for CC-PGD.

The parameter that balances the importance of the two stages in CC-PGD is empirically set

to be 0.5 on SVHN and 0.75 for the first stage and 0.25 for the second stage on CIFAR-10.

4.5.6 Ablation Study

• Detection methods

In this section, we study the effectiveness of our proposed detection mechanisms: Local

Best Detector (LBD) and Cycle-Consistency Detector (CCD) and compare them with the

Global Threshold Detector (GTD) from [50].

Since the False Positive Rate (FPR) of clean input flagged by the Global Threshold Detector

(GTD) varies as the chosen global threshold, in Figure 4.7 we plot the undetected rate

of white-box adversarial attacks flagged by different detectors versus the False Positive

Rate (FPR) of the clean input. The global threshold θ is chosen from the range [0, 20]

with a step size of 0.4. We can clearly see that: 1) A single Global Threshold Detector

(GTD) proposed in [50] is not enough to effectively detect adversarial attacks. 2) In the

43

Figure 4.7. The Undetected Rate of different detectors for white-box attacks versus False
Positive Rate (FPR) for clean input on the SVHN dataset. “All” denotes GTD, LBD and
CCD are all used to detect adversarial attacks. The better detection mechanism has a
smaller FPR for clean input and smaller undetected rate for attacks.

standard EAD, CW and PGD attack, the CCD is the most effective detector at a low False

Positive Rate. However, it becomes less effective than LBD when the inputs are created

with the defense-aware CC-PGD attack which is designed to specifically attack the three

detection mechanisms. 3) In all the attacks, the combination of all three detectors always

performs the best. Therefore, we only report the performance of the undetected rate of the

combination of all three detectors in the following experiments.

• Cycle-consistency loss

To demonstrate the effectiveness of the proposed cycle-consistency loss, we construct a

baseline Capsule model that has the same network architecture as our deflecting model

44

but is trained without the extra cycle-consistency loss. The False Positive Rate of the

Cycle-Consistency Detector on the CIFAR-10 test set is 33.46%, which represents that

33.46% of the clean test images are incorrectly flagged as an adversarial example by the

Cycle-Consistency Detector. This means the Cycle-Consistency Detector is not suitable

for a model that is trained without cycle-consistency loss. Therefore, to compare the

detection performance between the baseline Capsule model and our deflecting model, we

use a combined Global Threshold Detector (GTD) and Local Best Detector (LBD) for the

baseline Capsule model and all three detectors for the deflecting model. The undetected

rate of the white-box defense-aware attack versus the False Positive Rate (FPR) of the clean

input on the CIFAR-10 dataset is shown in Figure 4.8, where we can see that our deflecting

model together with all three detectors has a better detection performance compared to the

baseline model trained without the cycle-consistency loss.

Figure 4.8. Ablation study for cycle-consistency loss. The Undetected Rate of the defense-aware
attack vs. False Positive Rate for baseline Capsule model trained without cycle-consistency loss
and our deflecting model on the CIFAR-10 dataset. GTD and LBD are used to detect adversarial
examples in baseline Capsule model. GTD, LBD and CCD are all used to detect adversarial
attacks for our deflecting model.

45

4.5.7 Detection of White-box Attacks

Before showing that our defense produces deflected attacks, we must first validate that it

improves detection performance. Therefore, we test our model on standard and defense-aware

attacks and compare it with state-of-the-art detection methods in this section.

• Standard attacks

As shown in Figure 4.9, our detection method has a very small undetected rate for standard

white-box attacks on both the SVHN and CIFAR-10 dataset. For PGD attacks, we achieve

an undetected rate below 10% with a small False Positive Rate on the SVHN dataset. The

undetected rate for white-box PGD is around 22% with the smallest False Positive Rate on

the CIFAR-10 dataset. These demonstrate that our detection mechanism is very effective

in detecting standard white-box attacks that are based on different `p norms.

• Defense-aware attacks

Following the suggestions in [9], we test our detection mechanism in the setting where

the adversary is fully aware of the defense (“defense-aware attacks”) using the CC-PGD

attack. Since the PGD attack is stronger than EAD and CW, the first stage of our CC-PGD

attack is to construct an adversarial image via standard PGD and then, in the second stage,

take the reconstruction error and cycle-consistency into consideration in order to fool

the detection methods. In Figure 4.9 we can clearly see the undetected rate of CC-PGD

increases compared to a standard PGD attack. However, there is a significant performance

drop in the success rate of White-box CC-PGD (from PGD: 96.0% to CC-PGD: 69.0% on

SVHN) as shown in Table 4.3. This indicates that the adversary needs to sacrifice some

success rate in order not to be detected by our detection mechanism.

46

SVHN Dataset

CIFAR10 Dataset

Figure 4.9. The Undetected Rate for white-box and black-box attacks versus False
Positive Rate (FPR) for clean input on the SVHN and CIFAR-10 datasets. The strongest
attack has the largest area under the line.

Table 4.3. Success rate of the white-box and black-box attacks for our deflecting model on
the SVHN and CIFAR-10 dataset.

Dataset
EAD CW PGD CC-PGD

White Black White Black White Black White Black

SVHN 100.0% 10.1% 97.6% 1.7% 96.0% 28.7% 69.0% 37.0%

CIFAR-10 100.0% 6.9% 78.0% 1.6% 49.3% 15.5% 46.8% 12.9%

47

Table 4.4. Comparison of the Undetected Rate of the state-of-the-art detection methods on
the CIFAR-10 dataset. For all the models, the maximum `∞ perturbation is ε∞ = 8/255 of the
pixel dynamic range and the False Positive Rate of the clean input are 5%. The best detection
performance are highlighted in bold. (Smaller numbers indicate better detection performance.)

Detection Methods Statistical Test Classifier-based Ours

CW 0.1% 0.0% 4.6%
Defense-aware PGD 97.8% 98.4% 28.9%

• Comparison with State-of-the-Art Detection Methods

We compare our detection methods with the most recent statistical test-based detection

method [52] and a classifier-based detection method proposed in [25]. In Table 4.4, we can

see that although the statistical test [52] and the classifier-based detection method [25] can

detect standard attacks successfully, they both fully fail against defense-aware attacks1. In

contrast, our proposed reconstruction-based detection mechanism has the best undetected

rate in detecting defense-aware adversarial attacks and a very small undetected rate of

4.6% in detecting CW attacks.

4.5.8 Detection of black-box Attacks

To study the effectiveness of our detection mechanisms, we also test our models on

black-box attacks. In Figure 4.9 we can see an over 50% performance drop in the undetected

rate when the inputs are black-box CC-PGD attacks on both datasets. The highest undetected

rate of a black-box attack is around 13% on the CIFAR-10 dataset, which demonstrates that

our detection mechanism can successfully detect black-box defense-aware attacks. In addition,

the great gap of the success rate between white-box and black-box attacks shown in Table 4.3

indicates our defense model significantly reduces the transferability of all kinds of adversarial

attacks.
1The numbers of statistical test and classifier-based detection in the Table 4.4 are extracted from [25]. Since the

success rate of the attacks are close to 100%, the undetected rate is roughly (1 - True Positive Rate).

48

4.5.9 Examples of Adversarial Attacks and Reconstructions

We display successful adversarial attacks but detected by our detection mechanism, and

display all the reconstructions when the input are EAD attacks (on the left) and CW attacks

(on the right) in Figure 4.10 for the SVHN dataset. We also show the successful and detected

adversarial PGD attacks (on the left) and our CC-PGD attacks (on the right) in Figure 4.11 for

CIFAR-10 dataset.

Figure 4.10. Successful but detected adversarial EAD attacks (on the left) and CW attacks (on
the right) and the corresponding capsule reconstructions on SVHN. The first column is the clean
input, the second column is the adversarial example, the third column is the winning-capsule
reconstruction, the last ten columns are the reconstructions corresponding to class 0 to 9.

49

Figure 4.11. Successful but detected adversarial PGD attacks (on the left) and our CC-PGD
attacks (on the right) and the corresponding capsule reconstructions on CIFAR-10. The first
column is the clean input, the second column is the adversarial example, the third column is the
winning-capsule reconstruction, the last ten columns are the reconstructions corresponding to
class 0 to 9. The maximal `∞ bound to the adversarial perturbation is 8/255.

4.6 Deflected Attacks

The numbers that presented earlier in this chapter have implicitly assumed all adversarial

attacks still resemble the initial class, and therefore classifying them as the target class would

constitute a mistake. This assumption may not be true in practice. We have discussed the ability

of our model to deflect adversarial attacks by having adversarial gradients aligned with the class

conditional data distribution, thereby making adversarial attacks resemble the target class. In

order to quantify these claims we need to evaluate human performance on the adversarial attacks

against our model.

50

4.6.1 Human Study on SVHN

In order to validate our claim that our method can deflect adversarial attacks, we per-

formed a human study. We made use of the Amazon Mechanical Turk web service to recruit

participants and asked people to label SVHN digits. Each time, they were shown a single image

which was randomly sampled from the following five different sets: 1) clean images from the

SVHN test set, 2) the undetected and successful black-box PGD and CC-PGD adversarial attacks

against our deflecting model, 3) the undetected and successful white-box PGD and CC-PGD

adversarial attacks against our deflecting model, 4) the successful black-box PGD attacks gener-

ated to attack a standard CNN classifier2, 5) the successful white-box PGD attacks for the CNN

classifier. The maximal adversarial perturbation of all the `∞ norm-based attacks are bounded by

the same ε∞ = 16/255. The recruiters were asked to classify each image as a digit between 0

and 9. If multiple digits occurred in one image, we asked people to label the digit closest to the

center of the image. We did not limit the time that people could spend in labeling each image

and we did not explain the purpose of this study to the users other than it was a research study. In

this way, we had 1500 images labeled in total and each image was labeled by five different users.

We then calculated the percentage of uniformly labeled images that were classified as either the

original class or the adversarial target class. The results are summarized in Figure 4.12.

We can see that 69.7% of successful and undetected black-box attacks against our model

were classified as the adversarial target. This means that when our defense is attacked with

adversarial attacks generated within a standard `∞ bound, not only are the results visibly different

than the source image, they resemble the target class. In this way, these attacks are successfully

deflected and can hardly be said to be adversarial, as the network is classifying them the same

way our human testers classified them. This is not the case for the baseline CNN model, where

only 14.3% of the successful black-box PGD attacks were labeled as the target class. In addition,

compared to the white-box attacks, more undetected and successful adversarial attacks generated

2The CNN classifier has the same network architecture as the classification network in our deflecting model
except that we replace the CapsLayer with a convolutional layer.

51

Figure 4.12. The human study results on SVHN. The maximal `∞ perturbation is 16/255.

under the black-box setting are deflected to resemble the target class. This suggests that to attack

our deflecting model in a more practical and challenging setting (black-box), the attack ends up

being deflected in order not to be detected. Some examples of deflected adversarial attacks on

SVHN are shown in Figure 4.13.

4.6.2 Deflected Attacks on CIFAR-10

To show that our model can effectively deflect adversarial attacks on the CIFAR-10

dataset, we have chosen a deflected adversarial attack for each class with a maximal `∞ norm

as 25/255, displayed in Figure 4.13. It is apparent that the clean input has been perturbed to

have the representative features of the target class, in order to fool both the classifier and our

detection mechanisms. As a result, these adversarial attacks are also successfully deflected by

our model. Unlike SVHN, for which human evaluators reliably classified the attacks as the target

label, the generated adversarial attacks against our deflecting model on the CIFAR-10 do not

reliably resemble the target class, though they are much harder to identify than the clean data.

52

Deflected
Attacks

Target Label

Clean
Input

Correct Label

0 1 2 3 4 5 6 7 8 9

8 2 1 2 3 3 0 6 1 8

Deflected
Attacks

Target Label

Clean
Input

Correct Label

automobile bird cat deer dog airplane frog horse ship truck

ship deer frog dog ship ship deer airplane airplane ship

Figure 4.13. Deflected adversarial attacks on SVHN and CIFAR-10. The maximal `∞ perturba-
tion is 16/255 for SVHN and 25/255 for CIFAR-10.

4.7 Conclusion

In this chapter, we introduce a new approach which presents a step towards ending

the battle between defenses and attacks by deflecting adversarial attacks. To this end, we

propose a new cycle-consistency loss to encourage the winning-capsule reconstruction of the

CapsNet to closely match the class-conditional distribution. By making use of the three detection

mechanisms, we are able to detect standard adversarial attacks based on three different distance

metrics with a low False Positive Rate on the SVHN and CIFAR-10 datasets. To specifically

attack our detection mechanisms, we propose a defense-aware attack and find that our model

achieves drastically lower undetected rates for defense aware attacks compared to state-of-the-art

methods. In addition, a large percentage of the undetected and successful attacks are deflected

by our model to resemble the adversarial target class, so they cannot be considered as adversarial

any more. This is verified by a human study showing that 70% of the successful and undetected

black-box adversarial attacks are classified unanimously by humans as the target class on the

SVHN dataset.

This chapter has been submitted for publication of the material as it may appear in the

53

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR20)

(Yao Qin, Nicholas Frosst, Colin Raffel, Garrison Cottrell and Geoffrey Hinton, “Deflecting

Adversarial Attacks”). The dissertation author was the primary investigator and author of this

paper.

54

Chapter 5

Designing Adversarial Attacks

5.1 Introduction

Adversarial examples [63] are inputs that have been specifically designed by an adversary

to cause a machine learning algorithm to produce a misclassification [5]. Initial work on adver-

sarial examples focused mainly in the domain of image classification. In order to differentiate

properties of adversarial examples on neural networks in general from properties which hold

true only on images, it is important to study adversarial examples in different domains. Indeed,

adversarial examples are known to exist on domains ranging from reinforcement learning [26] to

reading comprehension [29] to speech recognition [11]. This paper focuses on the latter of these

domains, where [11] showed that any given source audio sample can be perturbed slightly so

that an automatic speech recognition (ASR) system would transcribe the audio as any different

target sentence.

To date, adversarial examples on ASR differ from adversarial examples on images in

two key ways. First, adversarial examples on images are imperceptible to humans: it is possible

to generate an adversarial example without changing the 8-bit brightness representation [63].

Conversely, adversarial examples on ASR systems are often perceptible. While the perturbation

introduced is often small in magnitude, upon listening it is obvious that the added perturbation

is present [57]. Second, adversarial examples on images work in the physical world [33] (e.g.,

even when taking a picture of them). In contrast, adversarial examples on ASR systems do not

55

yet work in such an “over-the-air” setting where they are played by a speaker and recorded by a

microphone.

In this chapter, we improve the construction of adversarial examples on ASR and match

the power of attacks on images by developing adversarial examples which are imperceptible,

and make steps towards robust adversarial examples1.

In order to generate imperceptible adversarial examples, we depart from the common

`p distance measure widely used for adversarial example research. Instead, we make use of

the psychoacoustic principle of auditory masking, and only add the adversarial perturbation to

regions of the audio where it will not be heard by a human, even if this perturbation is not “quiet”

in terms of absolute energy.

Further investigating properties of adversarial examples which appear to be different

from images, we examine the ability of an adversary to construct physical-world adversarial

examples [33]. These are inputs that, even after taking into account the distortions introduced

by the physical world, remain adversarial upon classification. We make initial steps towards

developing audio which can be played over-the-air by designing audio which remains adversarial

after being processed by random room-environment simulators [56].

Finally, we additionally demonstrate that our attack is capable of attacking a modern,

state-of-the-art Lingvo ASR system [59].

5.2 Related Work

We build on a long line of work studying the robustness of neural networks. This research

area largely began with [5, 63], who first studied adversarial examples for deep neural networks.

This paper focuses on adversarial examples on automatic speech recognition systems.

Early work in this space [19, 14] was successful when generating untargeted adversarial examples

that produced incorrect, but arbitrary, transcriptions. A concurrent line of work succeeded at

1The project webpage is at http://cseweb.ucsd.edu/∼yaq007/imperceptible-robust-adv.html

56

http://cseweb.ucsd.edu/~yaq007/imperceptible-robust-adv.html

generating targeted attacks in practice, even when played over a speaker and recorded by a

microphone (a so-called “over-the-air” attack) but only by both (a) synthesizing completely new

audio and (b) targeting older, traditional (i.e., not neural network based) speech recognition

systems [8, 73, 60].

These two lines of work were partially unified by [11] who constructed adversarial

perturbations for speech recognition systems targeting arbitrary (multi-word) sentences. However,

this attack was neither effective over-the-air, nor was the adversarial perturbation completely

inaudible; while the perturbations it introduces are very quiet, they can be heard by a human (see

§ 5.7.2). Concurrently, the CommanderSong [72] attack developed adversarial examples that are

effective over-the-air but at a cost of introducing a significant perturbation to the original audio.

Following this, concurrent work with ours develops attacks on deep learning ASR systems

that either work over-the-air or are less obviously perceptible.

• [70], create adversarial examples which can be played over-the-air. These attacks are

highly effective on short two- or three-word phrases, but not on the full-sentence phrases

originally studied. Further, these adversarial examples often have a significantly larger

perturbation, and in one case, the perturbation introduced had a higher magnitude than the

original audio.

• [57] work towards developing attacks that are less perceptible through using “Psychoa-

coustic Hiding” and attack the Kaldi system, which is partially based on neural networks

but also uses some “traditional” components such as a Hidden Markov Model instead of

an RNN for final classification. Because of the system differences we can not directly

compare our results to that of this paper, but we encourage the reader to listen to examples

from both papers.

Our concurrent work manages to achieve both of these results (almost) simultaneously:

we generate adversarial examples that are both nearly imperceptible and also remain effective

after simulated distortions. Simultaneously, we target a state-of-the-art network-based ASR

57

system, Lingvo, as opposed to Kaldi and generate full-sentence adversarial examples as opposed

to targeting short phrases.

A final line of work extends adversarial example generation on ASR systems from the

white-box setting (where the adversary has complete knowledge of the underlying classifier) to

the black-box setting [30, 66] (where the adversary is only allowed to query the system). This

work is complementary and independent of ours: we assume a white-box threat model.

5.3 Background

5.3.1 Problem Definition

Given an input audio waveform x, a target transcription y and an automatic speech

recognition (ASR) system f (·) which outputs a final transcription, our objective is to construct an

imperceptible and targeted adversarial example x′ that can attack the ASR system when played

over-the-air. That is, we seek to find a small perturbation δ , which enables x′ = x+δ to meet

three requirements:

• Targeted: the classifier is fooled so that f (x′) = y and f (x) 6= y. Untargeted adversarial

examples on ASR systems often only introduce spelling errors and so are less interesting

to study.

• Imperceptible: x′ sounds so similar to x that humans cannot differentiate x′ and x when

listening to them.

• Robust: x′ is still effective when played by a speaker and recorded by a microphone in an

over-the-air attack. (We do not achieve this goal completely, but do succeed at simulated

environments.)

5.3.2 ASR Model

We mount our attacks on the Lingvo classifier [59], a state-of-the-art sequence-to-

sequence model [62] with attention [4] whose architecture is based on the Listen, Attend and

58

Spell (LAS) model [12]. It feeds filter bank spectra into an encoder consisting of a stack of

convolutional and LSTM layers, which conditions an LSTM decoder that outputs the transcription.

The use of the sequence-to-sequence framework allows the entire model to be trained end-to-end

with the standard cross-entropy loss function. The Lingvo system achieves the state-of-the-art

performance for automatic speech recognition. The detailed parameter settings of the Lingvo

classifier is introduced in [59].

The key improvement of LAS over previous CTC-based models (e.g., DeepSpeech) is that

it can outputs the character sequences without making any independence assumption between

the characters. Each character is predicted based on a probability distribution conditioned on

all the characters seen previously. Therefore, the LAS model can output the full transcription

without specific post processing.

5.3.3 Threat Model

In this chapter, as is done in most prior work, we consider the white box threat model

where the adversary has full access to the model as well as its parameters. In particular, the

adversary is allowed to compute gradients through the model in order to generate adversarial

examples.

When we mount over-the-air attacks, we do not assume we know the exact configurations

of the room in which the attack will be performed. Instead, we assume we know the distribution

from which the room will be drawn, and generate adversarial examples so as to be effective on

any room drawn from this distribution.

5.3.4 Adversarial Example Generation

Adversarial examples are typically generated by performing gradient descent with respect

to the input on a loss function designed to be minimized when the input is adversarial [63].

Specifically, let x be an input to a neural network f (·), let δ be a perturbation, and let `(f (x),y)

be a loss function that is minimized when f (x) = y. Most work on adversarial examples focuses

59

on minimizing the max-norm (‖·‖∞ norm) of δ . Then, the typical adversarial example generation

algorithm [63, 10, 41] solves

minimize `(f (x+δ),y)+α · ‖δ‖

such that ‖δ‖< ε

(where in some formulations α = 0). Here, ε controls the maximum perturbation

introduced.

To generate adversarial examples on ASR systems, [11] set ` to the CTC-loss and use the

max-norm which has the effect of adding a small amount of adversarial perturbation consistently

throughout the audio sample.

5.4 Imperceptible Adversarial Examples

Unlike on images, where minimizing `p distortion between an image and the nearest

misclassified example yields a visually indistinguishable image, on audio, this is not the case [57].

Thus, in this work, we depart from the `p distortion measures and instead rely on the extensive

work which has been done in the audio space for capturing the human perceptibility of audio.

5.4.1 Psychoacoustic Models

A good understanding of the human auditory system is critical in order to be able to

construct imperceptible adversarial examples. In this chapter, we use frequency masking, which

refers to the phenomenon that a louder signal (the “masker”) can make other signals at nearby

frequencies (the “maskees”) imperceptible [45, 39]. In simple terms, the masker can be seen

as creating a “masking threshold” in the frequency domain. Any signals which fall under this

threshold are effectively imperceptible.

Because the masking threshold is measured in the frequency domain, and because audio

signals change rapidly over time, we first compute the short-time Fourier transform of the raw

60

audio signal to obtain the spectrum of overlapping sections (called “windows”) of a signal. The

window size N is 2048 samples which are extracted with a “hop size” of 512 samples and are

windowed with the modified Hann window. We denote sx(k) as the kth bin of the spectrum of

frame x.

Then, we compute the log-magnitude power spectral density (PSD) as follows:

px(k) = 10log10

∣∣∣∣ 1
N

sx(k)
∣∣∣∣2 . (5.1)

The normalized PSD estimate p̄x(k) is defined by [39]

p̄x(k) = 96−max
k
{px(k)}+ px(k) (5.2)

5.4.2 Masking Threshold

In this section, we detail how we compute the frequency masking threshold for construct-

ing imperceptible adversarial examples. This procedure is based on psychoacoustic principles

which were refined over many years of human studies. For further background on psychoacoustic

models, we refer the interested reader to [39, 45].

Given an audio input, in order to compute its masking threshold, first we need to identify

the maskers, whose normalized PSD estimate p̄x(k) must satisfy three criteria: 1) they must be

local maxima in the spectrum; 2) they must be higher than the threshold in quiet; and 3) they

have the largest amplitude within 0.5 Bark (a psychoacoustically-motivated frequency scale)

around the masker’s frequency. Then, each masker’s masking threshold can be approximated

using the simple two-slope spread function, which is derived to mimic the excitation patterns of

maskers. Finally, the global masking threshold θx(k) is a combination of the individual masking

threshold as well as the threshold in quiet via addition (because the effect of masking is additive

in the logarithmic domain).

61

• Step 1: Identifications of Maskers

In order to compute the frequency masking threshold of an input signal x(n), where

0 ≤ n ≤ N, we need to first identify the maskers. There are two different classes of

maskers: tonal and nontonal maskers, where nontonal maskers have stronger masking

effects compared to tonal maskers. Here we simply treat all the maskers as tonal ones to

make sure the threshold that we compute can always mask out the noise. The normalized

PSD estimate of the tonal maskers p̄m
x (k) must meet three criteria. First, they must be local

maxima in the spectrum, satisfying:

p̄x(k−1)≤ p̄m
x (k)≤ p̄x(k+1), (5.3)

where 0≤ k < N
2 .

Second, the normalized PSD estimate of any masker must be higher than the threshold in

quiet ATH(k), which is:

p̄m
x (k)≥ ATH(k), (5.4)

where ATH(k) is approximated by the following frequency-dependency function:

ATH(f) = 3.64(
f

1000
)−0.8−6.5exp{−0.6(

f
1000

−3.3)2}+10−3(
f

1000
)4. (5.5)

The quiet threshold only applies to the human hearing range of 20Hz≤ f ≤ 20kHz. When

we perform short time Fourier transform (STFT) to a signal, the relation between the

frequency f and the index of sampling points k is

f =
k
N
· fs, 0≤ f <

fs

2
(5.6)

where fs is the sampling frequency and N is the window size.

62

Last, the maskers must have the highest PSD within the range of 0.5 Bark around the

masker’s frequency. Human’s main hearing range between 20Hz and 16kHz is divided into

24 non-overlapping critical bands, whose unit is Bark, varying as a function of frequency

f as follows:

b(f) = 13arctan(
0.76 f
1000

)+3.5arctan(
f

7500
)2. (5.7)

As the effect of masking is additive in the logarithmic domain, the PSD estimate of the

masker is further smoothed with its neighbors by:

p̄m
x (k̄) = 10log10[10

p̄x(k−1)
10 +10

p̄m
x (k)
10 +10

p̄x(k+1)
10] (5.8)

• Step 2: Individual masking thresholds

An individual masking threshold is better computed with frequency denoted at the Bark

scale because the spreading functions of the masker would be similar at different Barks.

We use b(i) to represent the Bark scale of the frequency index i. There are a number

of spreading functions introduced to imitate the characteristics of maskers and here we

choose the simple two-slope spread function:

SF[b(i),b(j)] =

27[b(j)−b(i)], if [b(j)−b(i)]≤ 0.

G(b(i)) · [b(j)−b(i)], otherwise
(5.9)

where G(b(i)) = [−27+0.37max{ p̄m
x (b(i))−40,0}] and b(i) and b(j) are the Bark scale

of the masker at the frequency index i and the maskee at frequency index j respectively.

Then, T [b(i),b(j)] refers to the masker at Bark index b(i) contributing to the masking effect

on the maskee at Bark index b(j). Empirically, the threshold T [b(i),b(j)] is calculated by:

T [b(i),b(j)] = p̄m
x (b(i))+∆m[b(i)]+SF[b(i),b(j)], (5.10)

63

where ∆m[b(i)] =−6.025−0.275b(i) and SF[b(i),b(j)] is the spreading function.

• Step 3: Global masking threshold

The global masking threshold is a combination of individual masking thresholds as well

as the threshold in quiet via addition. The global masking threshold at frequency index i

measured with Decibels (dB) is calculated according to:

θx(i) = 10log10[10
AT H(i)

10 +
Nm

∑
j

10
T [b(j),b[i]]

10], (5.11)

where Nm is the set of all the selected maskers. The computed θx is used as the frequency

masking threshold for the input audio x to construct imperceptible adversarial examples.

When we add the perturbation δ to the audio input x, if the normalized PSD estimate of

the perturbation p̄δ (k) is under the frequency masking threshold of the original audio θx(k), the

perturbation will be masked out by the raw audio and therefore be inaudible to humans. The

normalized PSD estimate of the perturbation p̄δ (k) can be calculated via:

p̄δ (k) = 96−max
k
{px(k)}+ pδ (k). (5.12)

where pδ (k) = 10log10 | 1N sδ (k)|2 and px(k) = 10log10 | 1N sx(k)|2 are the PSD estimate of the

perturbation and the original audio input.

5.4.3 Optimization with Masking Threshold

• Loss function

Given an audio example x and a target phrase y, we formulate the problem of constructing

an imperceptible adversarial example x′ = x+δ as minimizing the loss function `(x,δ ,y),

which is defined as:

`(x,δ ,y) = `net(f (x+δ),y)+α · `θ (x,δ) (5.13)

64

where `net requires that the adversarial examples fool the audio recognition system into

making a targeted prediction y, where f (x) 6= y. In the Lingvo model, the simple cross

entropy loss function is used for `net . The term `θ constrains the normalized PSD estima-

tion of the perturbation p̄δ (k) to be under the frequency masking threshold of the original

audio θx(k). The hinge loss is used here to compute the loss for masking threshold:

`θ (x,δ) =
1

bN
2 c+1

bN
2 c

∑
k=0

max
{

p̄δ (k)−θx(k),0
}
, (5.14)

where N is the predefined window size and bxc outputs the greatest integer no larger than

x. The adaptive parameter α is to balance the relative importance of these two criteria.

• Stability

The existence of the log function in the threshold θx(k) and the normalized PSD estimate

of the perturbation p̄δ (k) leads to instability during back-propagation. Therefore, we

remove the term 10log10 in the PSD estimate of pδ (k) and px(k) and then they become:

pδ (k) =
∣∣∣∣ 1
N

sδ (k)
∣∣∣∣2 , px(k) =

∣∣∣∣ 1
N

sx(k)
∣∣∣∣2 (5.15)

and the normalized PSD of the perturbation turns into

p̄δ (k) =
109.6 pδ (k)

maxk{px(k)}
. (5.16)

Correspondingly, the threshold θx(k) becomes:

θx(k) = 10
θx
10 (5.17)

65

• Two Stage Attack

Empirically, we find it is difficult to directly minimize the masking threshold loss function

via backpropagation without any constraint on the magnitude of the perturbation δ . This is

reasonable because it is very challenging to fool the neural network and limit a very large

perturbation to be under the masking threshold in the frequency domain at the same time.

In contrast, if the perturbation δ is relatively small in magnitude, then it will be much

easier to push the remaining distortion under the frequency masking threshold.

Therefore, we divide the optimization into two stages: the first stage of optimization

focuses on finding a relatively small perturbation to fool the network (as was done in prior

work [11]) and the second stage makes the adversarial examples imperceptible.

In the first stage, we set α in Eqn 5.13 to be zero and clip the perturbation to be within a

relatively small range. As a result, the first stage solves:

minimize `net(f (x+δ),y)

such that ‖δ‖< ε

(5.18)

where ‖δ‖ represents the ‖·‖∞ max-norm of δ . Specifically, we begin by setting δ = 0

and then on each iteration:

δ ← clipε(δ − lr1 · sign(∇δ `net(f (x+δ),y))), (5.19)

where lr1 is the learning rate and and ∇δ `net is the gradient of `net with respect to δ . We

initially set ε to a large value and then gradually reduced during optimization follow-

ing [11].

The second stage focuses making the adversarial examples imperceptible, with an un-

bounded max-norm; instead, δ is only constrained by the masking threshold constraints.

66

Specifically, initialize δ with δ ∗im optimized in the first stage and then on each iteration:

δ ← δ − lr2 ·∇δ `(x,δ ,y), (5.20)

where lr2 is the learning rate and ∇δ ` is the gradient of ` with respect to δ . The loss

function `(x,δ ,y) is defined in Eqn. 5.13. The parameter α that balances the network loss

`net(f (x+δ),y) and the imperceptibility loss `θ (x,y) is initialized with a small value, e.g.,

0.05, and is adaptively updated according to the performance of the attack. Specifically,

every twenty iterations, if the current adversarial example successfully fools the ASR

system (i.e. f (x+δ) = y), then α is increased to attempt to make the adversarial example

less perceptible. Correspondingly, every fifty iterations, if the current adversarial example

fails to make the targeted prediction, we decrease α . We check for attack failure less

frequently than success (fifty vs. twenty iterations) to allow more iterations for the network

to converge.

5.4.4 Implementation Details

In order to construct imperceptible adversarial examples, we divide the optimization into

two stages. In the first stage, the learning rate lr1 is set to be 100 and the number of iterations T1

is 1000 as [11]. The max-norm bound ε starts from 2000 and will be gradually reduced during

optimization. In the second stage, the number of iterations T2 is 4000. The learning rate lr2 starts

from 1 and will be reduced to be 0.1 after 3000 iterations. The adaptive parameter α which

balances the importance between `net and `θ begins with 0.05 and gradually updated based on the

performance of adversarial examples. Adam optimizer [31] is used to construct the imperceptible

adversarial examples. Algorithm ?? shows the details of the two-stage optimization.

67

5.5 Robust Adversarial Examples

5.5.1 Acoustic Room Simulator

In order to improve the robustness of adversarial examples when playing over-the-air,

we use an acoustic room simulator to create artificial utterances (speech with reverberations)

that mimic playing the audio over-the-air. The transformation function in the acoustic room

simulator, denoted as t, takes the clean audio x as an input and outputs the simulated speech

with reverberation t(x). First, the room simulator applies the classic Image Source Method

introduced in [1, 56] to create the room impulse response r based on the room configurations

(the room dimension, source audio and target microphone’s location, and reverberation time).

Then, the generated room impulse response r is convolved with the clean audio to create the

speech with reverberation, to obtain t(x) = x∗ r where ∗ denotes the convolution operation. To

make the generated adversarial examples robust to various environments, multiple room impulse

responses r are used. Therefore, the transformation function t follows a chosen distribution T

over different room configurations.

5.5.2 Optimization with Reverberations

In this section, our objective is to make the perturbed speech with reverberation (rather

than the clean audio) fool the ASR system. As a result, the generated adversarial examples

x′ = x+δ will be passed through the room simulator first to create the simulated speech with

reverberation t(x′), mimicking playing the adversarial examples over-the-air, and then the

simulated t(x′) will be fed as the new input to fool the ASR system, aiming at f (t(x′)) = y.

Simultaneously, the adversarial perturbation δ should be relatively small in order not to be

audible to humans.

In the same manner as the Expectation over Transformation in [3], we optimize the

68

expectation of the loss function over different transformations t ∼T as follows:

minimize `(x,δ ,y) = E
t∼T

[
`net(f (t(x+δ)),y)

]
such that ‖δ‖< ε.

(5.21)

Rather than directly targeting f (x+δ) = y, we apply the loss function lnet (the cross entropy

loss in the Lingvo network) to the classification of the transformed speech f (t(x+δ)) = y. We

approximate the gradient of the expected value via independently sampling a transformation t

from the distribution T at each gradient descent step.

In the first Ir1 iterations, we initialize ε with a sufficiently large value and gradually

reduce it following [11]. We consider the adversarial example successful if it successfully fools

the ASR system under a single random room configuration; that is, if f (t(x+δ)) = y for just

one t(·). Once this optimization is complete, we obtain the max-norm bound for δ , denoted as

ε∗r . We will then use the perturbation δ ∗r as an initialization for δ in the next stage.

Then in the following Ir2 iterations, we finetune the perturbation δ with a much smaller

learning rate. The max-norm bound ε is increased to ε∗∗r = ε∗r +∆, where ∆> 0, and held constant

during optimization. During this phase, we only consider the attack successful if the adversarial

example successfully fools a set of randomly chosen transformations Ω = {t1, t2, · · · , tM}, where

ti ∼T and M is the size of the set Ω. The transformation set Ω is randomly sampled from the

distribution T at each gradient descent step. In other words, the adversarial example x′ = x+δ

generated in this stage satisfies ∀ti ∈ Ω, f (ti(x+δ)) = y. In this way, we can generate robust

adversarial examples that successfully attack ASR systems when the exact room environment is

not known ahead of time, whose configuration is drawn from a pre-defined distribution.

It should be emphasized that there is a tradeoff between imperceptibility and robustness

(as we will show experimentally in Section 5.7.2). If we increase the max amplitude of the

perturbation ε∗∗r , the robustness can always be further improved. Correspondingly, it becomes

much easier for humans to perceive the adversarial perturbation and alert the ASR system.

69

In order to keep these adversarial examples mostly imperceptible, we therefore limit the `∞

amplitude of the perturbation to be in a reasonable range.

• Implementation Details

To develop the robust adversarial examples that could work after being played over-the-air,

we also optimize the adversarial perturbation in two stages. The first stage intends to find

a relatively small perturbation while the second stage focuses on making the constructed

adversarial example more robust to random room configurations. The learning rate lr1 in

the first stage is 50 and δ will be updated for 2000 iterations. The max-norm bound ε for

the adversarial perturbation δ starts from 2000 as well and will be gradually reduced. In

the second stage, the number of iterations is set to be 4000 and the learning rate lr2 is 5. In

this stage, ε is fixed and equals the optimized ε∗r in the first stage plus ∆. The size of the

transformation set Ω is set to be M = 10.

5.6 Imperceptible and Robust Attacks

By combining both of the techniques we developed earlier, we now develop an approach

to generate both imperceptible and robust adversarial examples. This can be achieved by

minimizing the loss

`(x,δ ,y) = E
t∼T

[
`net(f (t(x+δ)),y)+α · `θ (x,δ)

]
, (5.22)

where the cross entropy loss function `net(·) is again the loss used for Lingvo, and the impercep-

tibility loss `θ (·) is the same as that defined in Eqn 5.14. Since we need to fool the ASR system

when the speech is played after random perturbations, the cross entropy loss `net(f (t(x+δ)),y)

forces the transcription of the transformed adversarial example t(x+δ) to be y (again, as done

earlier).

70

To further improve these adversarial examples to be imperceptible, we optimize `θ (x,δ)

to constrain the perturbation δ to fall under the masking threshold of the clean audio in the

frequency domain. This is much easier compared to optimizing the hinge loss `θ (t(x), t(δ)) =

max{p̄t(δ)(k)−θt(x)(k),0} because the frequency masking threshold of the clean audio θx(k)

can be pre-computed while the masking threshold of the speech with reverberation θt(x)(k)

varies with the room reverberation r. In addition, optimizing `θ (x,δ) and `θ (t(x), t(δ)) have

similar effects based on the convolution theorem that the Fourier transform of a convolution

of two signals is the pointwise product of their Fourier transforms. Note that the speech with

reverberation t(x) is a convolution of the clean audio x and a simulated room reverberation r,

hence:

F{t(x)}= F{x∗ r}= F{x} ·F{r} (5.23)

where F is the Fourier transform, ∗ denotes the convolution operation and · represents the

pointwise product. We apply the short-time Fourier transform to the perturbation and the raw

audio signal first in order to compute the power spectral density p̄t(δ) and the masking threshold

θt(x) in the frequency domain. Since most of the energy in the room impulse response falls

within the spectral analysis window size, the convolution theorem in Eqn 5.23 is approximately

satisfied. Therefore, we arrive at:

(p̄t(δ)−θt(x))≈ (p̄δ −θx) ·F{r}. (5.24)

As a result, optimizing the imperceptibility loss `θ (x,δ) can help in finding the optimal

δ and in constructing the imperceptible adversarial examples that can attack the ASR systems in

the physical world.

Specifically, we will first initialize δ with the perturbation δ ∗∗r that enables the adversarial

examples to be robust in Section 5.5. Then in each iteration, we randomly sample a transformation

71

t from the distribution T and update δ according to:

δ ← δ − lr3 ·∇δ

[
`net(f (t(x+δ),y))+α · `θ (x,δ))

]
, (5.25)

where lr3 is the learning rate and α , a parameter that balances the importance of the robust-

ness and the imperceptibility, is adaptively changed based on the performance of adversarial

examples. Specifically, if the constructed adversarial example can successfully attack a set of

randomly chosen transformations, then α will be increased to focus more on imperceptibility

loss. Otherwise, α is decreased to make the attack more robust to multiple room environments.

• Implementation Details

To construct imperceptible and robust adversarial examples, we begin with the robust

adversarial examples generated in Section. 5.5. In the first stage, we focus on reducing

the imperceptibility by setting the initial α to be 0.01 and the learning rate is set to be 1.

We update the adversarial perturbation δ for 4000 iterations. If the adversarial example

successfully attacks the ASR system in 4 out of 10 randomly chosen rooms, then α will

be increased by 2. Otherwise, for every 50 iterations, α will be decreased by 0.5.

In the second stage, we focus on improving the less perceptible adversarial examples to

be more robust. The learning rate is 1.5 and α starts from a very small value of 0.00005.

The perturbation will be further updated for 6000 iterations. If the adversarial example

successfully attacks the ASR system in 8 out of 10 randomly chosen rooms, then α will

be increased by 1.2.

72

Table 5.1. Examples of the original and targeted phrases on the LibriSpeech dataset.

Original phrase 1 the more she is engaged in her proper duties the less leisure will she
have for it even as an accomplishment and a recreation

Targeted phrase 1 old will is a fine fellow but poor and helpless since missus rogers had
her accident

Original phrase 2 a little cracked that in the popular phrase was my impression of the
stranger who now made his appearance in the supper room

Targeted phrase 2 her regard shifted to the green stalks and leaves again and she started
to move away

5.7 Evaluation

5.7.1 Datasets and Evaluation Metrics

• Datasets

We use the LibriSpeech dataset [48] in our experiments, which is a corpus of 16KHz

English speech derived from audiobooks and is used to train the Lingvo system [59]. We

randomly select 1000 audio examples as source examples, and 1000 separate transcriptions

from the test-clean dataset to be the targeted transcriptions. We ensure that each target

transcription is around the same length as the original transcription because it is unrealistic

and overly challenging to perturb a short audio clip (e.g., 10 words) to have a much longer

transcription (e.g., 20 words). Examples of the original and targeted transcriptions are

available in Table 5.1.

• Evaluation Metrics

For automatic speech recognition, we evaluate our model using the standard word error

rate (WER) metric, which is defined as WER = S+D+I
NW
×100%, where S, D and I are the

number of substitutions, deletions and insertions of words respectively, and NW is the total

number of words in the reference.

We also calculate the success rate (sentence-level accuracy) as Accuracy = Ns
Na
×100%,

where Na is the number of audio examples that we test, and Ns is the number of audio

73

Table 5.2. Sentence-level accuracy and WER for 1000 clean and (imperceptible) adversarially
perturbed examples, fed without over-the-air simulation into the Lingvo model. In “Clean”,
the ground truth is the original transcription. In“Adversarial”, the ground truth is the targeted
transcription.

Input Clean Adversarial

Accuracy (%) 58.60 100.00
WER (%) 4.47 0.00

examples that are correctly transcribed. Here, “correctly transcribed” means the original

transcription for clean audio and the targeted transcription for adversarial examples.

5.7.2 Imperceptibility Analysis

To attack the Lingvo ASR system, we construct 1000 imperceptible and targeted adversar-

ial examples, one for each of the examples we sampled from the LibriSpeech test-clean dataset.

Table5.2 shows the performance of the clean audio and the constructed adversarial examples. We

can see that the word error rate (WER) of the clean audio is just 4.47% on the 1000 test examples,

indicating the model is of high quality. Our imperceptible adversarial examples perform even

better, and reach a 100% success rate.

Qualitative Human Study

Of the 1000 examples selected from the test set, we randomly selected 100 of these with

their corresponding imperceptible adversarial example. We generate then generate an adversarial

example using the prior work of [11] for the same target phrase; this attack again succeeds

with 100% success. We perform three experiments to validate that our adversarial examples are

imperceptible, especially compared to prior work.

• Experimental Design.

We recruit 80 users online from Amazon Mechanical Turk. We give each user one of the

three (nearly identical) experiments, each of which we describe below. In all cases, the

74

experiments consist of 20 “comparisons tasks”, where we present the evaluator with some

audio samples and ask them questions (described below) about the samples. We ask the

user to listen to each sample with headphones on, and answer a simple question about the

audio samples (the question is determined by which experiment we run, as given below).

We do not explain the purpose of the study other than that it is a research study, and do not

record any personally identifying information.2 We randomly include a small number of

questions with known, obvious answers; we remove 3 users from the study who failed to

answer these questions correctly.

In all experiments, users have the ability to listen to audio files multiple times when they

are unsure of the answer, making it as difficult as possible for our adversarial examples to

pass as clean data. Users additionally have the added benefit of hearing 20 examples back-

to-back, effectively “training” them to recognize subtle differences. Indeed, a permutation

test finds users are statistically significantly better at distinguishing adversarial examples

from clean audio during the second half of the experiment compared to the first half of the

experiment, although the magnitude of the difference is small: only by about 3%.

Figure 5.1 summarizes the statistical results we give below.

• Experiment 1: clean or noisy.

We begin with what we believe is the most representative experiment of how an attack

would work in practice. We give users one audio sample and ask them to tell us if it has

any background noise (e.g., static, echoing, people talking in the background).

As a baseline, users believed that 19% of original clean audio samples contained some

amount of noise, and 66% of users believed that the adversarial examples generated by

[11] contained some amount of noise. In comparison, only 23% of users believe that

the adversarial examples we generate contain any noise, a result that is not statistically

2Unfortunately, for this reason, we are unable to report aggregate statistics such as age or gender, slightly
harming potential reproducibility.

75

significantly different from clean audio (p > .05). That is, when presented with just one

audio sample in isolation, users do not believe the adversarial examples we generate are

any noisier than the clean samples.

• Experiment 2: identify the original.

We give users two audio samples and inform them that one of the audio samples is a

modified version of the other; we ask the user to select the audio sample corresponding

to the one which sounds like the more natural audio sample. This setup is much more

challenging: when users can listen to both the before and after, it is often possible to pick

up on the small amount of distortion that has been added. When comparing the original

audio to the adversarial examples generated by [11], the evaluator chose the original audio

82% of the time. When we have the evaluator compare the imperceptible adversarial

examples we generate to those of [11], our imperceptible examples are selected as the

better audio sample 83% of the time—a difference that is not statistically distinguishable

from comparing against the clean audio.

However, when directly comparing the adversarial examples we generate to the clean audio,

users prefer the clean audio still 66% of the time. Observe that the baseline percentage,

when the samples are completely indistinguishable, is 50%. Thus, users only perform 16%

better than random guessing at distinguishing our examples from clean examples.

• Experiment 3: identical or not.

Finally, we perform the most difficult experiment: we present users with two audio files,

and ask them if the audio samples are identical, or if there are any differences. As the

baseline, when given the same audio sample twice, users agreed it was identical 85% of

the time. (That is, in 15% of cases the evaluator wrongly heard a difference between the

two samples.) When given a clean audio sample and comparing it to the audio generated

by [11], users only believed them to be identical 24% of the time. Comparing clean audio

76

to the adversarial examples we generate, user believed them to be completely identical

76% of the time, 3× more often than the adversarial examples generated by the baseline,

but below the 85%-identical value for actually-identical audio.

19%

66%

23%

82%
66%

83% 85%

24%

76%

(a) (b) (c)

Clean Baseline Ours Clean
vs Baseline

Clean
vs Ours

Ours
vs Baseline

Clean
vs Clean

Clean
vs Baseline

Clean
vs Ours

Pe
rc
en
ta
ge

of
N
oi
sy

Ex
am
pl
es
(%
)

Pe
rc
en
ta
ge
of
A
is
ch
os
en

as
m
or
e
na
tu
ra
l(
A
vs
B)
(%
)

Pe
rc
en
ta
ge
of
id
en
tic
al

ex
am
pl
es
(%
)

Figure 5.1. Results of human study for imperceptibility. Here baseline represents the adversarial
example generated by [11], and ours denotes the imperceptible adversarial example generated
following the algorithm in Section. 5.4.

5.7.3 Robustness Analysis

To mount our simulated over-the-air attacks, we consider a challenging setting that the

exact configuration of the room in which the attack will be performed is unknown. Instead, we

are only aware of the distribution from which the room configuration will be drawn. First, we

generate 1000 random room configurations sampled from the distribution as the training room

set. The test room set includes another 100 random room configurations sampled from the same

distribution. Adversarial examples are created to attack the Lingvo ASR system when played in

the simulated test rooms. We randomly choose 100 audio examples from LibriSpeech dataset to

perform this robustness test.

As shown in Table 5.3, when fed non-adversarial audio played in simulated test rooms, the

WER of the Lingvo ASR degrades to 15.42% which suggests some robustness to reverberation.

In contrast, the success rate of adversarial examples in [11] and our imperceptible adversarial

examples in Section 5.4 are 0% in this setting. The success rate of our robust adversarial

examples generated based on the algorithm in Section 5.5 is over 60%, and the WER is smaller

77

Table 5.3. Sentence-level accuracy and WER for 100 clean and adversarially perturbed examples,
fed with over-the-air simulation into the Lingvo model. The ground truth for “clean” inputs is
the original transcription while the ground truth is the targeted transcription for the adversarial
inputs. The perturbation is bounded by ‖δ‖< ε∗r +∆.

Input Clean
Robust

(∆ = 300)
Robust

(∆ = 400)
Imperceptible

& Robust

Accuracy (%) 31.37 62.96 64.64 49.65
WER (%) 15.42 14.45 13.83 22.98

than that of the clean audio. Both the success rate and the WER demonstrate that our constructed

adversarial examples remain effective when played in the highly-realistic simulated environment.

In addition, the robustness of the constructed adversarial examples can be improved

further at the cost of increased perceptibility. As presented in Table 5.3, when we increase the

max-norm bound of the amplitude of the adversarial perturbation ε∗∗r = ε∗r +∆ (∆ is increased

from 300 to 400), both the success rate and WER are improved correspondingly. Since our

final objective is to generate imperceptible and robust adversarial examples that can be played

over-the-air in the physical world, we limit the max-norm bound of the perturbation to be in a

relatively small range to avoid a huge distortion toward the clean audio.

To construct imperceptible as well as robust adversarial examples, we start from the

robust attack (∆ = 300) and finetune it with the imperceptibility loss. In our experiments, we

observe that 81% of the robust adversarial examples 3 can be further improved to be much less

perceptible while still retaining high robustness (around 50% success rate and 22.98% WER).

Qualitative Human Study

We run identical experiments (as described earlier) on the robust and robust & impercep-

tible adversarial examples.

In experiment 1, where we ask evaluators if there is any noise, only 6% heard any noise

3The other 19% adversarial examples lose the robustness because they cannot successfully attack the ASR
system in 8 randomly chosen training rooms in any iteration during optimization.

78

on the clean audio, compared to 100% on the robust (but perceptible) adversarial examples and

83% on the robust and imperceptible adversarial examples. 4

In experiment 2, where we ask evaluators to identify the original audio, comparing clean

to robust adversarial examples the evaluator correctly identified the original audio 97% of the

time versus 89% when comparing the clean audio to the imperceptible and robust adversarial

examples.

Finally, in experiment 3, where we ask evaluators if the audio is identical, the baseline

clean audio was judged different 95% of the time when compared to the robust adversarial

examples, and the clean audio was judged different 71% of the time when compared to the

imperceptible and robust adversarial examples.

In all cases, the imperceptible and robust adversarial examples are statistically signifi-

cantly less perceptible than just the robust adversarial examples, but also statistically significantly

more perceptible than the clean audio. Directly comparing the imperceptible and robust adver-

sarial examples to the robust examples, evaluators believed the imperceptible examples had less

distortion 91% of the time.

Clearly the adversarial examples that are robust are significantly easier to distinguish

from clean audio, even when we apply the masking threshold. However, this result is consistent

with work on adversarial examples on images, where completely imperceptible physical-world

adversarial examples have not been successfully constructed. On images, physical attacks require

over 16× as much distortion to be effective on the physical world (see, for example, Figure 4 of

[33]).

5.8 Conclusion

In this chapter, we successfully construct imperceptible adversarial examples (verified

by a human study) for automatic speech recognition based on the psychoacoustic principle
4Evaluators stated they heard noise on clean examples 3× less often compared to the baseline in the prior study.

We believe this is due to the fact that when primed with examples which are obviously different, the baseline
becomes more easily distinguishable.

79

of auditory masking, while retaining 100% targeted success rate on arbitrary full-sentence

targets. Simultaneously, we also make progress towards developing robust adversarial examples

that remain effective after being played over-the-air (processed by random room environment

simulators), increasing the practicality of actual real-world attacks using adversarial examples

targeting ASR systems.

We believe that future work is still required: our robust adversarial examples do not play

fully over-the-air, despite working in simulated room environments. Resolving this difficulty

while maintaining a high targeted success rate is necessary for demonstrating a practical security

concern.

As a final contribution of potentially independent interest, this work demonstrates how

one might go about constructing adversarial examples for non-`p-based metrics. Especially

on images, nearly all adversarial example research has focused on this highly-limited distance

measure. Devoting effort to identifying different methods that humans use to assess similarity,

and generating adversarial examples exploiting those metrics, is an important research effort we

hope future work will explore.

This chapter is based on the material as it appears in the Proceedings of the International

Conference on Machine Learning (ICML19) (Yao Qin, Nicholas Carlini, Ian Goodfellow,

Garrison Cottrell and Colin Raffel, “Imperceptible, Robust and Targeted Adversarial Examples

for Automatic Speech Recognition”). The dissertation author was the primary investigator and

author of this paper.

80

Chapter 6

Conclusion

In this thesis, we mainly focused on adversarial defenses in the image domain and ad-

versarial attacks in the audio domain. In the image domain, we proposed a class-conditional

reconstruction-based detection method that does not rely on a specific predefined adversarial at-

tack. To specifically attack the detection method, we design a new defense-aware attack in which

the adversary not only optimizes the classification loss but also takes the reconstruction error

into consideration. We have shown that our detection method together with a Capsule network

can detect standard and defense-aware attacks very well. To further diagnose the adversarial

examples against Capsule networks and convolutional based networks, we qualitatively showed

that the success of the reconstructive attack was proportional to the visual similarity between the

target class and the source class for the CapsNet, which is not the case for convolutional based

networks. This indicates that the Capsule model relies on visual features similar to those used

by humans and has the potential to help us have a better understanding of how neural networks

work.

In addition, we propose a deflecting model which presents a new notion of deflecting

adversarial examples, which is a step towards ending the cycle between stronger defenses and

attacks in the adversarial game. To deflect adversarial examples is to pressure the attacker to

make the adversarial input resemble the target class and therefore, the adversarial input stops

being adversarial. The existence of deflected adversarial examples shows that the most commonly

81

used `p norm constraint to the adversarial perturbation does not ensure imperceptibility because

the deflected adversarial examples are within a standard small `p norm distance to the original

image but are classified by humans as a different class.

In the audio domain, we successfully construct imperceptible adversarial examples

(verified by a human study) for automatic speech recognition based on the psychoacoustic

principle of auditory masking, while retaining a 100% targeted success rate on arbitrary full-

sentence targets. Simultaneously, we also make progress towards developing robust adversarial

examples that remain effective after being played over-the-air (processed by random room

environment simulators), increasing the practicality of actual real-world attacks using adversarial

examples targeting ASR systems.

We believe that future work on adversarial examples is still required and below we mainly

discuss three promosing directions:

• Generalization

Most existing research work on adversarial examples has focused on the image domain.

The properties of image adversaial examples have not yet been tested to hold true in other

domains, e.g., audio or text domains. For example, transferability, a fact that frequently

adversarial examples designed for one network will work against another network, is a

property that significantly complicates finding robust defenses [49]. This should be further

studied to see if it can be successfully generalized to other domains. In addition, we must

seek methods that can combine domain-specific knowledge and the lessons learned from

image adversarial examples. For instance, when the input is discrete (text domain) rather

than continuous (image and audio domain), how to define, design and defend against

adversarial examples?

82

• Robustness

Designing more robust adversarial examples and more robust defense models is critical for

real-world applications. For example, our imperceptible adversarial examples do not work

while playing over-the-air. To construct robust adversarial examples, we can incorporate

the real room impulses, e.g., the BUT dataset [65], to help create adversarial examples that

remain effective while playing over-the-air. Resolving this difficulty while maintaining

a high target success rate is necessary for demonstrating a practical security concern. In

addition, our detection mechanism relies on a similarity metric (`2 reconstruction error)

between the reconstruction and the input. This metric is required both during training in

order to train the reconstruction network and during test time in order to flag adversarial

examples. In the datasets we have evaluated, the distance between examples roughly

correlates with semantic similarity. This is not the case, however, for images in more

complex datasets such as ImageNet [15], in which two images may be similar in terms of

semantic content but nevertheless have significant `2 distance. This issue will need to be

resolved for this method to scale up to more complex and practical datasets.

• Understanding

In this work, we have shown that Capsule networks rely on features that are more aligned

to human perception compared to convolutional based networks. Devoting efforts to study

the adversarial examples against these two different network architectures and find out the

underlying explanation for the superior performance is an interesting future direction. We

believe that it could also help us have a better understanding of how neural networks work.

In addition, the deflected adversarial examples have the potential to fall into the same

distribution as the clean data. Therefore, constructing a dataset of deflected adversarial

examples is an interesting direction that we hope future work could explore to see if it can

serve as a data augmentation method and benefit few-shot learning tasks.

83

Bibliography

[1] Jont B Allen and David A Berkley. Image method for efficiently simulating small-room
acoustics. The Journal of the Acoustical Society of America, 65(4):943–950, 1979.

[2] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false
sense of security: Circumventing defenses to adversarial examples. arXiv preprint
arXiv:1802.00420, 2018.

[3] Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthesizing robust
adversarial examples. In ICML, 2018.

[4] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[5] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić, Pavel Laskov,
Giorgio Giacinto, and Fabio Roli. Evasion attacks against machine learning at test time. In
Joint European conference on machine learning and knowledge discovery in databases,
pages 387–402. Springer, 2013.

[6] Jacob Buckman, Aurko Roy, Colin Raffel, and Ian Goodfellow. Thermometer encoding:
One hot way to resist adversarial examples. 2018.

[7] Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas Rauber, Dim-
itris Tsipras, Ian Goodfellow, and Aleksander Madry. On evaluating adversarial robustness.
arXiv preprint arXiv:1902.06705, 2019.

[8] Nicholas Carlini, Pratyush Mishra, Tavish Vaidya, Yuankai Zhang, Micah Sherr, Clay
Shields, David Wagner, and Wenchao Zhou. Hidden voice commands. In USENIX Security
Symposium, pages 513–530, 2016.

[9] Nicholas Carlini and David Wagner. Adversarial examples are not easily detected: By-
passing ten detection methods. In Proceedings of the 10th ACM Workshop on Artificial
Intelligence and Security, pages 3–14. ACM, 2017.

[10] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks.
In 2017 IEEE Symposium on Security and Privacy (SP), pages 39–57. IEEE, 2017.

[11] Nicholas Carlini and David A. Wagner. Audio adversarial examples: Targeted attacks on
speech-to-text. 2018 IEEE Security and Privacy Workshops (SPW), pages 1–7, 2018.

84

[12] William Chan, Navdeep Jaitly, Quoc Le, and Oriol Vinyals. Listen, attend and spell:
A neural network for large vocabulary conversational speech recognition. In Acoustics,
Speech and Signal Processing (ICASSP), 2016 IEEE International Conference on, pages
4960–4964. IEEE, 2016.

[13] Pin-Yu Chen, Yash Sharma, Huan Zhang, Jinfeng Yi, and Cho-Jui Hsieh. Ead: elastic-net
attacks to deep neural networks via adversarial examples. In Thirty-second AAAI conference
on artificial intelligence, 2018.

[14] Moustapha Cisse, Yossi Adi, Natalia Neverova, and Joseph Keshet. Houdini: Fooling deep
structured prediction models. arXiv preprint arXiv:1707.05373, 2017.

[15] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A
large-scale hierarchical image database. In IEEE Conference on Computer Vision and
Pattern Recognition, 2009.

[16] Reuben Feinman, Ryan R. Curtin, Saurabh Shintre, and Andrew B. Gardner. Detecting
adversarial samples from artifacts. arXiv preprint arXiv:1703.00410, 2017.

[17] Justin Gilmer, Ryan P. Adams, Ian Goodfellow, David Andersen, and George E. Dahl.
Motivating the rules of the game for adversarial example research. arXiv preprint
arXiv:1807.06732, 2018.

[18] Justin Gilmer, Luke Metz, Fartash Faghri, Samuel S. Schoenholz, Maithra Raghu, Martin
Wattenberg, and Ian Goodfellow. Adversarial spheres. arXiv preprint arXiv:1801.02774,
2018.

[19] Yuan Gong and Christian Poellabauer. Crafting adversarial examples for speech paralin-
guistics applications. arXiv preprint arXiv:1711.03280, 2017.

[20] Zhitao Gong, Wenlu Wang, and Wei-Shinn Ku. Adversarial and clean data are not twins.
arXiv preprint arXiv:1704.04960, 2017.

[21] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

[22] Kathrin Grosse, Praveen Manoharan, Nicolas Papernot, Michael Backes, and Patrick
McDaniel. On the (statistical) detection of adversarial examples. arXiv preprint
arXiv:1702.06280, 2017.

[23] Dan Hendrycks and Kevin Gimpel. Early methods for detecting adversarial images. arXiv
preprint arXiv:1608.00530, 2016.

[24] Geoffrey E. Hinton, Sara Sabour, and Nicholas Frosst. Matrix capsules with EM routing.
2018.

[25] Hossein Hosseini, Sreeram Kannan, and Radha Poovendran. Are odds really odd? by-
passing statistical detection of adversarial examples. arXiv preprint arXiv:1907.12138,
2019.

85

[26] Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan Duan, and Pieter Abbeel. Adversarial
attacks on neural network policies. arXiv preprint arXiv:1702.02284, 2017.

[27] Andrew Ilyas, Ajil Jalal, Eirini Asteri, Constantinos Daskalakis, and Alexandros G. Dimakis.
The robust manifold defense: Adversarial training using generative models. arXiv preprint
arXiv:1712.09196, 2017.

[28] Saumya Jetley, Nicholas A. Lord, and Philip HS Torr. With friends like these, who needs
adversaries? arXiv preprint arXiv:1807.04200, 2018.

[29] Robin Jia and Percy Liang. Adversarial examples for evaluating reading comprehension
systems. arXiv preprint arXiv:1707.07328, 2017.

[30] Shreya Khare, Rahul Aralikatte, and Senthil Mani. Adversarial black-box attacks for
automatic speech recognition systems using multi-objective genetic optimization. arXiv
preprint arXiv:1811.01312, 2018.

[31] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[32] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
University of Toronto, 2009.

[33] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the physical
world. arXiv preprint arXiv:1607.02533, 2016.

[34] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the physical
world. arXiv preprint arXiv:1607.02533, 2016.

[35] Alexey Kurakin, Ian Goodfellow, Samy Bengio, Yinpeng Dong, Fangzhou Liao, Ming
Liang, Tianyu Pang, Jun Zhu, Xiaolin Hu, Cihang Xie, et al. Adversarial attacks and
defences competition. arXiv preprint arXiv:1804.00097, 2018.

[36] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[37] Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework
for detecting out-of-distribution samples and adversarial attacks. In Advances in Neural
Information Processing Systems, pages 7167–7177, 2018.

[38] Xin Li and Fuxin Li. Adversarial examples detection in deep networks with convolutional
filter statistics. In Proceedings of the IEEE International Conference on Computer Vision,
2017.

[39] Yiqing Lin and Waleed H Abdulla. Principles of psychoacoustics. In Audio Watermark,
pages 15–49. Springer, 2015.

86

[40] Xingjun Ma, Bo Li, Yisen Wang, Sarah M Erfani, Sudanthi Wijewickrema, Grant
Schoenebeck, Dawn Song, Michael E Houle, and James Bailey. Characterizing adversarial
subspaces using local intrinsic dimensionality. arXiv preprint arXiv:1801.02613, 2018.

[41] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian
Vladu. Towards deep learning models resistant to adversarial attacks. arXiv preprint
arXiv:1706.06083, 2017.

[42] Dongyu Meng and Hao Chen. Magnet: a two-pronged defense against adversarial examples.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, pages 135–147. ACM, 2017.

[43] Jan Hendrik Metzen, Tim Genewein, Volker Fischer, and Bastian Bischoff. On detecting
adversarial perturbations. arXiv preprint arXiv:1702.04267, 2017.

[44] Felix Michels, Tobias Uelwer, Eric Upschulte, and Stefan Harmeling. On the vulnerability
of capsule networks to adversarial attacks. arXiv preprint arXiv:1906.03612, 2019.

[45] Joan L Mitchell. Introduction to digital audio coding and standards. Journal of Electronic
Imaging, 13(2):399, 2004.

[46] Norman Mu and Justin Gilmer. Mnist-c: A robustness benchmark for computer vision. In
ICML 2019 Workshop on Uncertainty and Robustness in Deep Learning, 2019.

[47] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng.
Reading digits in natural images with unsupervised feature learning. In NIPS workshop on
deep learning and unsupervised feature learning, volume 2011, page 5, 2011.

[48] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: an
asr corpus based on public domain audio books. In Acoustics, Speech and Signal Processing
(ICASSP), 2015 IEEE International Conference on, pages 5206–5210. IEEE, 2015.

[49] Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. Transferability in machine
learning: from phenomena to black-box attacks using adversarial samples. arXiv preprint
arXiv:1605.07277, 2016.

[50] Yao Qin, Nicholas Frosst, Sara Sabour, Colin Raffel, Garrison Cottrell, and Geoffrey Hinton.
Detecting and diagnosing adversarial images with class-conditional capsule reconstructions.
arXiv preprint arXiv:1907.02957, 2019.

[51] Jathushan Rajasegaran, Vinoj Jayasundara, Sandaru Jayasekara, Hirunima Jayasekara,
Suranga Seneviratne, and Ranga Rodrigo. Deepcaps: Going deeper with capsule networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
10725–10733, 2019.

[52] Kevin Roth, Yannic Kilcher, and Thomas Hofmann. The odds are odd: A statistical test for
detecting adversarial examples. arXiv preprint arXiv:1902.04818, 2019.

87

[53] Sara Sabour, Yanshuai Cao, Fartash Faghri, and David J. Fleet. Adversarial manipulation
of deep representations. arXiv preprint arXiv:1511.05122, 2015.

[54] Sara Sabour, Nicholas Frosst, and Geoffrey E. Hinton. Dynamic routing between capsules.
In Advances in Neural Information Processing Systems, pages 3856–3866, 2017.

[55] Pouya Samangouei, Maya Kabkab, and Rama Chellappa. Defense-gan: Protecting classi-
fiers against adversarial attacks using generative models. arXiv preprint arXiv:1805.06605,
2018.

[56] Robin Scheibler, Eric Bezzam, and Ivan Dokmanić. Pyroomacoustics: A python package
for audio room simulation and array processing algorithms. In 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 351–355. IEEE,
2018.

[57] Lea Schönherr, Katharina Kohls, Steffen Zeiler, Thorsten Holz, and Dorothea Kolossa.
Adversarial attacks against automatic speech recognition systems via psychoacoustic hiding.
arXiv preprint arXiv:1808.05665, 2018.

[58] Lukas Schott, Jonas Rauber, Wieland Brendel, and Matthias Bethge. Robust perception
through analysis by synthesis. arXiv preprint arXiv:1805.09190, 2018.

[59] Jonathan Shen, Patrick Nguyen, Yonghui Wu, Zhifeng Chen, Mia X Chen, Ye Jia, Anjuli
Kannan, Tara Sainath, Yuan Cao, Chung-Cheng Chiu, et al. Lingvo: a modular and scalable
framework for sequence-to-sequence modeling. arXiv preprint arXiv:1902.08295, 2019.

[60] Liwei Song and Prateek Mittal. Inaudible voice commands. arXiv preprint
arXiv:1708.07238, 2017.

[61] Yang Song, Taesup Kim, Sebastian Nowozin, Stefano Ermon, and Nate Kushman. Pixelde-
fend: Leveraging generative models to understand and defend against adversarial examples.
arXiv preprint arXiv:1710.10766, 2017.

[62] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural
networks. In Advances in Neural Information Processing Systems, pages 3104–3112, 2014.

[63] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian
Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199, 2013.

[64] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian
Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199, 2013.

[65] Igor Szoke, Miroslav Skacel, Ladislav Mosner, Jakub Paliesek, Jan Cernocky, et al. Building
and evaluation of a real room impulse response dataset. arXiv preprint arXiv:1811.06795,
2018.

88

[66] Rohan Taori, Amog Kamsetty, Brenton Chu, and Nikita Vemuri. Targeted adversarial
examples for black box audio systems. arXiv preprint arXiv:1805.07820, 2018.

[67] Lucas Theis, Aäron van den Oord, and Matthias Bethge. A note on the evaluation of
generative models. arXiv preprint arXiv:1511.01844, 2015.

[68] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

[69] Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun
database: Large-scale scene recognition from abbey to zoo. In 2010 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, pages 3485–3492. IEEE,
2010.

[70] Hiromu Yakura and Jun Sakuma. Robust audio adversarial example for a physical attack.
arXiv preprint arXiv:1810.11793, 2018.

[71] Yuzhe Yang, Guo Zhang, Dina Katabi, and Zhi Xu. Me-net: Towards effective adversarial
robustness with matrix estimation. arXiv preprint arXiv:1905.11971, 2019.

[72] Xuejing Yuan, Yuxuan Chen, Yue Zhao, Yunhui Long, Xiaokang Liu, Kai Chen, Shengzhi
Zhang, Heqing Huang, Xiaofeng Wang, and Carl A Gunter. Commandersong: A systematic
approach for practical adversarial voice recognition. arXiv preprint arXiv:1801.08535,
2018.

[73] Guoming Zhang, Chen Yan, Xiaoyu Ji, Tianchen Zhang, Taimin Zhang, and Wenyuan
Xu. Dolphinattack: Inaudible voice commands. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pages 103–117. ACM, 2017.

[74] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The
unreasonable effectiveness of deep features as a perceptual metric. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 586–595, 2018.

89

	Signature Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Detecting Adversarial Attacks
	Introduction
	Related Work
	Preliminaries
	Adversarial Examples
	Capsule Networks
	Threat Model

	Detecting Adversarial Images by Reconstruction
	Models
	Detection Threshold

	Experiments
	Evaluation Metrics
	Test Models and Datasets
	Implementation Details
	Standard White-box Attacks
	Corruption Attacks
	Reconstructive Attacks
	Black-box Attacks
	CIFAR-10 Dataset

	Discussion
	Conclusion

	Diagnosing Adversarial Attacks
	Introduction
	Visual Coherence of the Reconstructive Attack
	Conclusion

	Deflecting Adversarial Attacks
	Introduction
	Network Architecture
	Cycle-consistent winning-capsule reconstructions

	Detection Methods
	Global Threshold Detector
	Local Best Detector
	Cycle-Consistency Detector

	The Defense-Aware CC-PGD Attack
	Experiments
	Evaluation Metrics and Datasets
	Training Details and Test Accuracy
	Threat Model
	Adversarial Attacks
	Sanity Checks for PGD and CC-PGD Attack
	Ablation Study
	Detection of White-box Attacks
	Detection of black-box Attacks
	Examples of Adversarial Attacks and Reconstructions

	Deflected Attacks
	Human Study on SVHN
	Deflected Attacks on CIFAR-10

	Conclusion

	Designing Adversarial Attacks
	Introduction
	Related Work
	Background
	Problem Definition
	ASR Model
	Threat Model
	Adversarial Example Generation

	Imperceptible Adversarial Examples
	Psychoacoustic Models
	Masking Threshold
	Optimization with Masking Threshold
	Implementation Details

	Robust Adversarial Examples
	Acoustic Room Simulator
	Optimization with Reverberations

	Imperceptible and Robust Attacks
	Evaluation
	Datasets and Evaluation Metrics
	Imperceptibility Analysis
	Robustness Analysis

	Conclusion

	Conclusion
	Bibliography

