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Segmentation, tracking, 
and sub‑cellular feature extraction 
in 3D time‑lapse images
Jiaxiang Jiang 1*, Amil Khan 1, S. Shailja 1, Samuel A. Belteton 2,3, Michael Goebel 1, 
Daniel B. Szymanski 2 & B. S. Manjunath 1*

This paper presents a method for time‑lapse 3D cell analysis. Specifically, we consider the problem 
of accurately localizing and quantitatively analyzing sub‑cellular features, and for tracking individual 
cells from time‑lapse 3D confocal cell image stacks. The heterogeneity of cells and the volume of 
multi‑dimensional images presents a major challenge for fully automated analysis of morphogenesis 
and development of cells. This paper is motivated by the pavement cell growth process, and building 
a quantitative morphogenesis model. We propose a deep feature based segmentation method to 
accurately detect and label each cell region. An adjacency graph based method is used to extract 
sub‑cellular features of the segmented cells. Finally, the robust graph based tracking algorithm using 
multiple cell features is proposed for associating cells at different time instances. We also demonstrate 
the generality of our tracking method on C. elegans fluorescent nuclei imagery. Extensive experiment 
results are provided and demonstrate the robustness of the proposed method. The code is available on 
GitHub and the method is available as a service through the BisQue portal.

The sizes and shapes of leaves are key determinants of the efficiency of light capture in plants, and the overall 
photosynthetic rates of the canopy is a key determinant of  yields1. The rates and patterns of leaf expansion are 
governed by the epidermal  tissue2 but understanding how the irreversible growth properties of its constituent 
jig-saw-puzzle piece cells related to organ level shape change remains as a major challenge.

The epidermal cell, also known as pavement cell, undergoes a dramatic transformation from a slightly irregu-
lar polyhedral cell to a highly convoluted and multi-lobed morphology. The interdigitated growth mode is 
widespread in the plant  kingdom3, and the process by which lobing occurs can reveal how force patterns in the 
tissue are converted into predictable shape  change4. To analyze the slow and irreversible growth behavior across 
wide spatial scales, it is important to track and map lobing events in the epidermal tissue. It has been shown 
that cell walls perpendicular to the leaf surface, the anticlinal wall as illustrated in Fig. 1, can be used to detect 
new lobe  formations5,6.

Time-lapse image stacks from 3D confocal imagery provide a good resource to study the pavement cell 
growth process, and build the quantitative cell morphogenesis  model4,7. 3D confocal microscopy data contain 
large amount of cell shape and sub-cellular cell wall structure information. Cell analysis requirements include 
detecting sub-cellular features such as junctions of three cell walls and segments shape of anticlinal cell walls 
used to detect lobes, all of which depends on accurate segmentation. These sub-cellular features are illustrated 
in Fig. 1. Currently, these features are usually acquired manually from 3D image stacks. Manual extraction and 
analysis is not only laborious but also prevents evaluation of large amounts of data necessary to map relationships 
between lobe formation to leaf growth.

Existing automatic time-lapse cell analysis methods include mainly two steps: (1) Recognizing and localizing 
cells and cell walls spatially (segmentation) and tracking cells in temporal dimension, (2) cellular/sub-cellular 
feature extraction. Both of which are existing challenges with automated analysis systems.

There is an extensive literature on cell  segmentation8–17 and  tracking18,19.  In9–11,15 morphological operations 
are first used to denoise the images followed by watershed or level set segmentation methods to get the final cell 
segmentation.  In17, the nuclei information is provided for accurate cell segmentation. However, these methods do 
not provide accurate localization of the cell wall features with only cell boundary information that are needed for 
quantification.  In8,13,14, they focus on improving the cell boundary segmentation accuracy.  In13,14, they treat the 
cell segmentation problem as a semantic segmentation problem, using Generative Adversarial Networks (GAN) 
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to differentiate between boundary pixels, cell interior, and background. These methods provide respectable 
accuracy on cell boundaries but they are not guaranteed to give a closed cell surface. The method proposed  in16 
can provide closed 2D surface while maintaining good 2D cell segmentation boundary results. It is challenging 
to do the downstream cell analysis such as cell tracking without a closed 3D cell surface. Based on segmentation 
or detection of  cells18,19, rely on Viterbi algorithm to track cells. They require the global optimization which is 
inefficient to get the cell trajectory.

This paper presents a robust, time-lapse cell analysis method building upon our earlier  work8.  In8 we use 
Conditional Random Field (CRF) to get the improved cell boundaries while maintaining a closed cell surface. 
To make the segmentation method more robust to different datasets, we propose a modification  to8 that incor-
porates rotation invariance in the 3D convolution kernels. A segmentation map labeling each individual cell 
in the 3D stack is thus created and a cell adjacency graph is constructed from this map. The adjacency graph is 
an undirected weighted graph with each vertex representing a cell and the weight on the edge representing the 
minimum distance between two cells. Based on this adjacency graph, sub-cellular features illustrated in Fig. 1 are 
computed. The cells are tracked by comparing the corresponding adjacency graphs in the time sequence similar 
to our previous  work20. Details of the complete workflow will be described in section 3.

We demonstrate the performance of the proposed segmentation method on multiple cell wall tagged data sets. 
To demonstrate generality of our tracking method, we apply our tracking method on both cell wall tagged and 
nuclei tagged imagery. Compared to our previous  work8, tracking and sub-cellular feature extraction are new 
problems considered. This paper additionally proposes a novel cell segmentation network architecture, using 
3D rotation-equivariant layers. This paper also contains more experimental results of segmentation, tracking, 
and sub-cellular feature extraction.

In summary, the main contributions of this paper include:

• The first deep learning enabled end-to-end fully automated time-lapse 3D cell analysis method.
• A new 3D cell segmentation network with rotation equivariance that is robust to different imaging conditions.
• A novel graph based method for multiple instance tracking and sub-cellular feature extraction as well as the 

novel evaluation metrics to evaluate sub-cellular feature extraction accuracy.
• We will release a new membrane tagged imagery with partially (expert) annotated sub-cellular features and 

fully annotated by our computational method.

Method
Our cell analysis method is illustrated in Fig. 1. First, we segment cells from each image stack in the time 
sequence. Second, the adjacency graph is built based on segmented images and is used to compute sub-cellular 
features and cell tracking features. Finally, quantitative measurements of the cell segmentation (cell wall, cell 
count, cell shape), sub-cellular features (junctions of three cell walls detection accuracy, anticlinal wall segment 
shape), and tracking results are provided.

Segmentation. We adopt the cell segmentation workflow  from8 with rotation equivariance constrained 
enforced as shown in Fig. 2. 3D U-Net is a reliable method for semantic segmentation specifically for biomedi-
cal images, and 2D rotation equivariance has shown its robustness to input image  orientation21. Therefore, we 
first use a rotation equivariance 3D U-Net to generate a probability map of each voxel being a cell wall. The full 
3D U-Net rotation equivariance is achieved by replacing all convolution layers with rotation-equivariant layers 
described in the next paragraph. Second, to make sure we can get closed cell surfaces, a 3D watershed algorithm 
whose seeds are generated automatically is applied to the cell wall probability map, and outputs the initial cell 
segmentation result. The initial cell segmentation boundary is closed but may not be smooth because watershed 
segmentation is sensitive to noise. Finally, a conditional random field (CRF) model is used to refine the cell 
boundaries of the initial cell segmentation. The CRF model takes the cell wall probability map and initial cell seg-

Figure 1.  Workflow of proposed method. Modified  from4. Given a sequence of 3D image stacks, deep feature 
based rotation equivariance deep learning model with CRF refinement is used to segment each cell. Then 
adjacency graph is built based on segmented image and used for sub-cellular feature extraction and tracking. 
Sub-cellular features such as junction of three cell walls and anticlinal wall segment are illustrated in the figure. 
Next detected segments will be used  in5 to detect lobes. This paper mainly focuses on Step 1 to Step 3.
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mentation labels as input and outputs a smooth and closed cell wall. In the following section, we will discuss the 
details of our rotation-equivariant convolution layers and the use CRF to refine the cell segmentation boundary.

3D rotation-equivariant layers are a generalization of convolution layers and are equivariant under general 
symmetry groups, such as the group of four 90° 2D  rotations21. The corresponding 3D rotation group has 24 
rotations as illustrated in Fig. 2 (A cube has 6 faces and any of those 6 faces can be moved to the bottom, and 
then this bottom face can be rotated into 4 different positions). To achieve this, convolution operations on feature 
maps are operating on a group of features which implies that we should have feature channels in groups of 24, 
corresponding to 24 rotations in the group.

For a given cell wall probability map Q and cell labels X, the conditional random field is modeled by the 
Gibbs distribution,

where denominator Z(Q) is the normalization factor. The exponent is the Gibbs energy function and we need 
to minimize the energy function E(X) to get the final refined label assignments (for notation convenience, all 
conditioning is omitted from this point for the rest of the paper). In the dense CRF model, the energy function 
is defined as

(1)P(X|Q) =
1

Z(Q)
exp(−E(X|Q))

(2)E(X) =
∑

i

ψu(xi)+
∑

i<j

ψp(xi , xj)

Figure 2.  (A) Segmentation workflow includes rotation equivariant 3D U-Net, 3D watershed, and CRF 
refinement. (B) In 3D equivariant U-Net, all convolution layers are rotation equivariant convolution layers. The 
raw 3D image stack is truncated into 16 slices and then input to 3D equivariant U-Net.
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where i and j are the indices of each voxel which iterate over all voxels in the graph, and xi and xj are the cell labels 
of vertices i and j. i, j ∈ {1, 2, . . . ,N} and N is the total number of voxels in the image stack. xi , xj ∈ {0, 1, 2, . . . , L} 
and L is the total number of cells identified by the watershed method (0 is the background class). The first 
term of Eq. (2), the unary potential, is used to measure the cost of labeling ith voxel as xi and it is given by 
ψu(xi) = − logP(xi), where P(xi) is the probability of voxel i having the label xi . It is initially calculated based 
on the cell wall probability map Q and the label image of the watershed X0 (The superscript 0 is used to denote 
the initial cell label assignment after watershed). P(x0i ) = 1− qi if voxel i is inside the cell with label x0i  after the 
watershed or if x0i  is the background label, and P(x0i ) = 0 otherwise. qi is the ith voxel value in the probability 
map from the rotation equivariant 3D U-Net. 1− qi represents the probability of voxel being the interior point 
of the cell. The pairwise potential in Eq. (2) takes into account the label of neighborhood voxels to make sure 
the segmentation label is closed and the boundary is  smooth22. It is given by:

where the penalty term µ(xi , xj) = 1 if xi  = xj , and µ(xi , xj) = 0 otherwise. w(m) is the weight for each segmen-
tation label m ∈ {0, 1, 2, . . . , L} , and k(m) is the pairwise kernel term for each pair of voxels i and j in the image 
stack regardless of their distance that capture the long-distance voxel dependence in the image stack. fi and fj are 
feature vectors from the probability map Q. fi incorporates location information of voxel i and the correspond-
ing value in the probability map: fi =< pi , qi > where pi =< xi , yi , zi > , and xi , yi and zi are the voxel i in the 
normalized coordinates in the range [0, 1]. Specifically, the kernel k(fi , fj) is defined as

where the first term depends on voxel location and the corresponding voxel value in probability map. The second 
term only depends on the voxel location. σα , σβ , σγ , γ1 , and γ2 are the hyperparameters in Eq. (4). Based on our 
experiments, we have empirically chosen σα = 3 and σβ = 5 , as these values work over a wide range of experi-
mental data. These two hyperparameters control the degree of nearness and similarity of the probability map 
within a segmented region. σγ is determined by the smallest possible segmentation region (cell size) allowed. 
γ1 , and γ2 are weights for the loss function. The detailed explanations of each hyperparameter can be found  in22. 
Finally, we pick the best label assignment X∗ as the final cell segmentation that minimizes energy function E(X) . 
The efficient CRF inference algorithm described  in22 is used to find X∗ which is the final cell segmentation mask. 
In our experiments, σγ is set to be 10, and γ1 , γ2 are set to be 1 and 1.

Tracking and feature computation. After segmentation of 3D image stacks, the cells are detected and 
labeled in 3D space. Next, we utilize 3D spatial location of cells to build the adjacency graph for sub-cellular 
feature extraction and tracking as illustrated in Fig. 3.

Adjacency graph G(V, E) is a weighted undirected graph. The vertex vi ∈ V  represents the i− th cell. For each 
pair of vertices (vi , vj) , there is an edge ei ∈ E connecting them. The weight wi ∈ W of the edge ei is the distance 
between cell i and j. The distance between two cells is computed as the number of morphology dilation opera-
tions needed of cells i and j until cell i and j become a single connected component. The details of this adjacency 
graph construction are given in Algorithm 1 below.

(3)ψp(xi , xj) = µ(xi , xj)
∑

m

w(m)k(m)(fi , fj)

(4)k(fi , fj) = γ1 exp

(

−
||pi − pj||

2

2σ 2
α

−
||qi − qj||

2

2σ 2
β

)

+ γ2 exp

(

−
||pi − pj||

2

2σ 2
γ

)
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Sub‑cellular feature extraction using adjacency graph. Sub-cellular feature extraction is based on the graph rep-
resentation of the segmented image. To compute the anticlinal wall segments of cell i, we find all neighbor cells 
of cell i. The neighbor cells Ni are defined to be all cells that are at a distance 1 from cell i. The anticlinal wall 
segments is found by collecting all points in the segmentation image shared by cell i and cell j where cell j ∈ Ni . 
To compute the junctions of 3 cell walls, we first pick cell j ∈ Ni . Then the junctions of 3 cell walls is computed 
as the points in the segmentation image shared by cell i, cell j, and cell k where cell k is Ni ∩Nj.

Tracking using adjacency graph. The assumption we make for the cell tracking is that in consecutive image 
stacks, cells should have similar relative location. For this, we will focus on computing features floc that represent 
cell relative location information derived from the adjacency graph.

Cell location feature vector floc is a two dimensional vector (N, D), where N is the total number of neighbor 
cells and D is the average distance from all other cells. Consider the adjacency graph G(V, E) of the segmented 
image stack. For node i in the graph, the location feature vector can be expressed as:

Figure 3.  Constructing adjacency graph from the segmentation image and tracking cells/nuclei in consecutive 
frames using adjacency graph node features. Color of nodes denote the label/track of the cell/nuclei. Initially, 
random labels are assigned for each node in the adjacency graph. For T + 1 frame, after node matching for time 
T, track IDs are assigned to each node in T + 1.
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where vi ∈ V  , deg(vi) is the cardinality of Ni , and wdeg(vi) is the weighted degree of the vertex vi . The weighted 
degree of the vertex vi is defined as:

where degree(vi) represents the degree of the vertex vi . Then we compute the cell size by counting number of 
voxels within the cell. Combining the cell location feature and cell size feature, we get the three dimensional 
feature vector ftrack . The details of algorithm used for calculating ftrack is described below.

After computing f itrack for all nodes in two consecutive frames, we link two nodes from different frames based 
on the following similarity measurement sim(i, j) defined as

where i and j denote two nodes from two consecutive frames. We define sim so that we can allow different units 
of entries in f itrack . We find i∗ and j∗ that minimizes sim. i∗ and j∗ are linked only when their sim is below a set 
threshold value. In our experiments, the threshold we use is between 0.1 and 0.5.

Dataset
There are three datasets used in this paper. We use different evaluation for different datasets based on these 
datasets’ imaging subjects and annotations. Table 1 summarizes the datasets and their usage in this paper.

Plasma‑membrane tagged dataset. Two 3D confocal image stack datasets of fluorescent-tagged 
plasma-membrane cells are used in this paper. In both datasets, only the plasma-membrane signal is used and is 
represented by voxels with high intensity values. The first  dataset7 (Dataset 1) consists of a long-term time-lapse 
from A. thaliana’s leaf epidermal tissue that spans over a 12 h period with a xy-resolution of 0.212 μm and 0.5 μm 
thick optical sections. There are 5 sequences of image stacks. Each sequence has 9-20 image stacks and each stack 
has 18 to 25 slices containing one layer of cells, and the dimension of each slice is 512× 512 . Partial ground truth 
sub-cellular features are provided for this dataset. Details of this dataset are described in Table 2.

The second dataset (Dataset 2) contains cells in the shoot apical meristem of 6 Arabidopsis thaliana23. There 
are 6 image sequences. Each image sequence has 20 image stacks. In each image stack, there are 129 to 219 slices 
containing of 3 layers (L) of cells: outer layer ( L1 ), middle layer ( L2 ), and deep layer ( L3 ), and the dimension of 
each slice is 512× 512 . The available resolution of each image in x and y direction are 0.22 μm and in z is about 
0.26 μm. The ground truth voxel-wise cell labels are provided, and each cell has a unique label. Each cell track 
also has a unique track ID. Details of this dataset are described in Table 3.

(5)f iloc = (N ,D) = (deg(vi), wdeg(vi))

(6)wdeg(vi) =

∑

j wij

degree(vi)

(7)sim(i, j) =
|S1i − S2j|

S1i
+

|deg1(vi)− deg2(vj)|

deg1(vi)
+

|wdeg1(vi)− wdeg2(vj)|

wdeg1(vi)

Table 1.  Datasets summary and usage (note that TRA definition will be described in “Results” section).

Dataset Dataset source Brief description Segmentation evaluation
Sub-cellular feature extraction 
evaluation Tracking evaluation

Dataset 1 Membrane-tagged confocal 
single layer pavement cells

5 time sequences, each sequence 
has 9–20 image stacks, and each 
stack with 18–30 slices

Cell count and cell shape as 
evaluation metrics

Sub-cellular feature extraction 
results are provided

Full annotation is unavailable, 
so TRA score is not provided

Dataset 2 Membrane-tagged confocal 
multi layer pavement cells

6 time sequences, each sequence 
has 20 image stacks, and each 
stack with 119–139 slices

Segmentation boundary evalua-
tion metrics

Sub-cellular feature annotations 
are not available, so evaluation 
is not possible

TRA evaluation metric is 
provided

Dataset 3 Nuclei-tagged C. elegans dataset
4 time sequences, each sequence 
has 140–250 image stacks, and 
each stack with 31–35 slices

not applicable not applicable TRA score provided
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Cell nuclei dataset. The 3D time-lapse video sequences of fluorescent nuclei microscopy image of C. ele‑
gans developing embryo (Dataset 3). Each voxel size is 0.09× 0.09× 1.0 in microns. Time points were collected 
once per minute for five to six hours. There are two videos in the training set and two videos in the testing 
dataset. Details of this dataset are described in Table 4. This dataset is used to evaluate our tracking algorithm 
performance.

3D visualization of three datasets are shown in Fig. 4.

Results
Segmentation. Since Dataset 1 does not have fully annotated 3D cell boundaries, we train all machine 
learning models using the entire Dataset 2. To evaluate different methods’ performance on Dataset 2, we use 
the following train/test split. We randomly divide the whole datasets into three folds (train, validation, and test). 
To evaluate segmentation performance on test fold, we train models on all image stacks (volumes) of other two 
folds. We use the validation set to pick the best trained model with smallest validation error. We use above strat-
egy three times for each layer and compute average and standard deviation with respect to evaluation metrics in 
Table  6. 3D visualization of the segmentation results on Dataset 1 and 2 are shown in Fig. 5.

We apply our proposed method to the Dataset 1 for the purpose of identifying and analyzing cells based on the 
segmentation. The segmentation results of our proposed method and other state-of-the-art methods are shown in 
Fig. 6. Our proposed method has visually better segmentation performance with closed cell surface and smooth 
boundary, and our method is able to identify the inter-cellular spaces and protrusions in the 3D cell image stack. 
For Dataset 1, we do not have full cell annotations, so we only evaluate the cell counting accuracy on this dataset.

For each sequence, there are a fixed number of cells for all time points. Therefore, we want segmentation 
algorithms to generate average cell counting results close to ground truth counting numbers, and the variance 
of counting results for one sequence should be as small as possible. Details of the cell counting results are in 
Table  5. Clearly, our method has the best cell counting performance.

Table 2.  Single layer pavement cell  dataset7. It consists of a long-term time-lapse from A. thaliana’s leaf 
epidermal tissue that spans over a 12 h period with a xy-resolution of 0.212 μm and 0.5 μm thick optical 
sections. The time step is 2 h for sequence#2 and is one hour for all other sequences. Anticlinal cell walls are 
partially annotated for all sequences. In addition to that, cells are partially annotated for sequence 5.

Dataset Number of Time points Image stack dimension (voxels)

Sequence 1 20 512× 512× 20

Sequence 2 9 512× 512× 18

Sequence 3 10 512× 512× 30

Sequence 4 13 512× 512× 21

Sequence 5 20 512× 512× 25

Table 3.  Multi layer pavement cell  dataset23. It contains three layers of cell walls in the shoot apical meristem 
of A. thaliana’s that spans over 80 h with with a xy-resolution of 0.22 μm and 0.26 μm thick optical sections. 
The time step is 4 h for all sequences and each sequence has 20 frames. Cells with track IDs are fully provided.

Dataset Image stack dimension (voxels)

Sequence 1 512× 512× 134

Sequence 2 512× 512× 219

Sequence 3 512× 512× 119

Sequence 4 512× 512× 129

Sequence 5 512× 512× 139

Sequence 6 512× 512× 134

Table 4.  C. elegans developing embryo nuclei  dataset31,32. The resolution of each image stack is 
0.09µm× 0.09µm× 1.0µm . Sequence 1 and 2 are training set which contains partial nuclei segmentation 
with track IDs for training. Sequence 3 and 4 are testing set so no annotations available.

Dataset Time step (min) Number of frames Image stack dimension (voxels)

Sequence 1 1 250 512× 708× 35

Sequence 2 1.5 250 512× 712× 31

Sequence 3 1 190 512× 712× 31

Sequence 4 1.5 140 512× 712× 31
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In order to verify if the output of the segmentation can be used for time lapse sequence analysis, we calculate 
basic cell shape information from the maximum area plane of the cells to compare with the expert annotations. 
The maximum area plane of a cell is the image plane which has the largest cell area across all z-slices. The shape 
information includes area, perimeter, circularity, and solidarity. Figure 7 shows the comparison. Note that not 
all cells are annotated so that some cell comparisons are missed. The average shape difference is 4.5 percent and 
the largest shape difference is within 10 percent.

Figure 4.  The figure shows two 3D example image stacks from each dataset. The left column is Dataset 1, mid 
column is Dataset 2, and right column is from Dataset 3.

Figure 5.  The figure shows three 3D segmentation image stacks. The top row is 3D view of confocal images, 
and bottom row is the 3D view of segmentation results. Left three samples are from Dataset 1 and right three 
samples are from Dataset 2.

Table 5.  Cell counting accuracy for different methods. For each time sequence, there is a fixed number of 
cells. Due to segmentation error, the algorithms can generate different number of cells for different time points 
of the sequence. The table shows average number of detected cells (standard deviation values in parenthesis) 
for the entire sequence.

Sequence Ground truth ACME10 MARS11 Supervoxel  method12 Our method

Sequence 1 23 21.5 (3.2) 25.5 (2.2) 24 (1.1) 23.5 (0.9)

Sequence 2 30 41.1 (3.1) 35.1 (2.8) 32 (2.1) 30.1 (0.8)

Sequence 3 25 22.6 (2.1) 27.5 (3.2) 24 (1.5) 25 (0.5)

Sequence 4 18 18.8 (1.2) 18.5 (1.2) 18.2 (1.2) 18 (0.6)

Sequence 5 28 31.5 (2.9) 24.5 (2.3) 26.2 (1.1) 27.8 (1.0)
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Next, we apply our cell segmentation method on Dataset 2. Boundary precision, recall, and F1 score are used 
to evaluate the boundary segmentation accuracy. Specifically, given a ground truth boundary image G and a 
computed boundary image B, we can define the following measurements:

• True positives (TP): Number of boundary pixels in G for which exist a boundary pixel in B in range R.
• False negatives (FN): Number of boundary pixels in G for which does not exist a boundary pixel in B in range 

R.
• False positives (FP): Number of boundary pixels in B for whose does not exist a boundary pixel in G in range 

R

Then boundary precision is defined to be: TP
(TP+FP) and recall: TP

TP+FN .
In our experiment, we set R to be 5. Table 6 shows the comparison of the final segmentation boundary result 

using our proposed method and other methods including  ACME10,  MARS11 and a supervoxel-based  algorithm12 
on L1 to L3 respectively. In terms of cell wall accuracy, our model shows at least 0.03 improvement in the F-score 
measure on average in terms of cell wall segmentation accuracy.

It is noted that the average segmentation time of our proposed model is significantly shorter compared to the 
supervoxel-based  method12. Our proposed method takes approximately 0.8 seconds to segment one 512 × 512 
image slice on average, whereas supervoxel-based method takes approximately 6 seconds on a NVIDIA GTX 
Titan X with an Intel Xeon CPU E5-2696 v4 @ 2.20GHz. We have also integrated the proposed segmentation 
method into BisQue. There are three hyperparameters in the BisQue segmentation module. “Minimum Distance” 
is σγ in Eq. (4). “Label Threshold” relates to the variation in the cell volumes within the datasets. This is used to 
ensure small regions such as protrusions are not labeled as cells. Intensity values below “Threshold” are ignored. 
“Threshold” is typically between 0 and 0.1 for a normalized image.

Figure 6.  The figure shows the segmentation results of the cell image with inter-cellular space or protrusion 
indicated by a red arrow. (A) Inverted raw image in xy orientation, (B) MARS, (C) ACME, (D) supervoxel-
based method, (E) proposed method.
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Tracking and feature extraction. We apply our whole workflow on Dataset 1 to extract sub-cellular fea-
tures like anticlinal wall segments and junctions of 3 cell walls. Qualitative results of the extracted sub-cellular 
features are shown in Fig. 8.

The quantitative measurement of accuracy of junctions of 3 cell walls is also provided. We compare our results 
with 3D corner detection based  method24 on the raw image stack, and applying our 3 cell wall junction detection 
method using the segmentation image from other state-of-the-art  methods10–12. The 3 cell wall junction detec-
tion results are shown in Table 7. If 3 cell wall junctions are detected within 5 voxels of a ground truth 3 cell wall 
junction, it is a correct detection. Then we define false positive (FP), and false negative (FN) based on the binary 
detection of 3 cell walls junction. The error (E) is defined by the summation of FP and FN and normalized by total 
number of true 3 cell wall junctions. The results in the Table 7 are average values across all image stacks. From 
the table, we can see our method has the best 3 cell wall junction detection accuracy in terms of F1. Compared 
to the method that directly computes 3 cell wall junctions from raw image, our method has significantly better 
performance in terms of FP. This is because not all corner points are junctions of three cell walls. For example, 
corner detection based method gives false positive in the case shown in Fig. 9. Our graph based image feature 
extraction model not only uses low level image features but also some semantic information.

The anticlinal wall segment is defined by two neighboring junctions of 3 cell walls are also computed. The 
partial annotation of such segments are provided. We would like to note that such manual annotations are very 

Table 6.  3D segmentation performance on L1 , L2 , and L3. The bold values represent the best performing 
method for each of the metrics. If there is a detected boundary voxel by algorithms within 5 voxels of a ground 
truth boundary voxel, then it is considered as a correct detection, otherwise it is considered as a miss detection. 
If there is a detected boundary voxel by algorithms within 5 voxels of a voxel that is not ground truth boundary 
voxel, then it is considered as a false detection. Numbers in brackets are standard deviation values.

L1 Precision Recall F-score

ACME10 0.805 0.966 0.878

MARS11 0.910 0.889 0.899

Supervoxel  method12 0.962 0.932 0.947

Our method 0.961 (0.012) 0.973 (0.012) 0.967 (0.012)

L2 Precision Recall F-score

ACME10 0.775 0.980 0.866

MARS11 0.921 0.879 0.900

Supervoxel  method12 0.910 0.932 0.921

Our method 0.955 (0.012) 0.971 (0.012) 0.963 (0.012)

L3 Precision Recall F-score

ACME10 0.745 0.976 0.845

MARS11 0.909 0.879 0.894

Supervoxel  method12 0.982 0.881 0.929

Our method 0.955 (0.011) 0.942 (0.018) 0.949 (0.013)

Figure 7.  3D segmentation evaluation using cell shape descriptors including area, perimeter, circularity, aspect 
ratio, and solidity (ratio between cell area and its convex hull area). The difference is in terms of percentage.
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labor intensive and it is impractical to annotate all anticlinal cell wall segments (see Fig. 1) even in a single 3D 
volume. The practical difficulties include lack of support for 3D visualization and annotation tools for tracing. The 
ground truth segments were annotated by going through each slice in the image stack, finding the approximate 
slice where neighboring cell walls touch, and then tracing the segment in that single slice. Each segment in the 
ground truth is represented by a collection of coordinates of the segment in that image slice. Note that differ-
ent segments can be on different slices. In contrast, each of our computed segments can span multiple Z slices, 
hence providing a more accurate 3D representation than is manually feasible. This also makes it challenging to 
compare the manual ground truth with the computed results.

Evaluation metrics for anticlinal wall segments. We propose a set of evaluation metrics for the 
detected anticlinal wall segments as there are no prior works on this topic. 

1. End‑point Displacement error (EDE) in the end points of the two segments. Given two segments P with m 
points and Q with n points, two end points of P are p1 and pm and two end points of Q are q1 and qn . EDE is 
defined as 

 where � · � is l2 norm.
2. Fréchet distance (FD)25 between the two segments. FD is a measure of shape similarity of two curves and 

it takes into account the location and ordering of points along the curves. Mathematically, consider two 
curves P with m points and Q with n points. P contains a sequence of points (p1, . . . , pm) and Q contains a 
sequence of points (q1, . . . , qn) . A coupling L between P and Q is a sequence (pa1 , qb1), (pa2 , qb2), . . . , (paz , qbz ) 

(8)EDE(P,Q) =
1

2
(�p1 − pm� + �q1 − qn�)

Figure 8.  (A) Extracted junctions of three cell walls, (B) Extracted anticlinal wall segment.

Figure 9.  Example of computing 3 cell wall junctions from raw image (A), and (B) using our method.

Table 7.  Quantitative analysis on error of junctions of three cell walls. The bold values represent the best 
performing method for each of the metrics. Precision, recall, and F1 score are used to evaluate the detection of 
those junctions. Number in parenthesis are standard deviation values across all images stacks.

Algorithm Precision Recall F1

Corner  Detection24 0.893 (0.013) 0.962 (0.008) 0.926 (0.01)

ACME10 0.829 (0.015) 0.964 (0.009) 0.891 (0.011)

MARS11 0.823 (0.014) 0.980 (0.006) 0.895 (0.009)

Supervoxel  method12 0.933 (0.009) 0.911 (0.012) 0.922 (0.01)

Our Method 0.980 (0.007) 0.945 (0.006) 0.962 (0.006)
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of distinct pairs from P and Q such that a1 = 1 , b1 = 1 , az = m , and bz = n , and for all i = 1, . . . , z − 1 we 
have ai+1 = ai or ai+1 = ai + 1 , and bi+1 = bi or bi+1 = bi + 1 . Thus the order of those points are kept in 
the coupling L. The length ‖L‖ of the coupling L is the length of the longest Euclidean distance in L: 

 where d is the Euclidean distance. Then FD F is defined as: 

 where L is a coupling of P and Q.
3. Length difference (LD), absolute difference in lengths between the two segments.
4. Percentage difference in length (DP), length difference normalized by ground truth length.

Figure 10 illustrates the definition of FD.
Average EDE between the results using our method and the ground truth is 3.03 voxels, average FD is 3.7 

voxels, average LD is 2.24 voxels, and average DP is 2.3 percent. Evaluation results of different time series are 
shown in Table 8 and evaluation result for each segment is in the supplemental materials.

We also apply our tracking method on Dataset 2 and Dataset 3. Table 9 shows the quantitative comparison 
of our method with other state-of-the-art cell/nuclei tracking methods. The evaluation metric we use is track-
ing accuracy (TRA), proposed  in26. TRA measures how accurately each cell/nuclei is identified and followed 
in successive image stacks of the sequence. Ground truth tracking results and tracking results generated from 
algorithms are viewed as two acyclic oriented graphs and TRA measures the number of operations needed to 
modify one graph to another. More specifically, TRA is defined on Acyclic Oriented Graph Matching (AOGM) as

where AOGM0 is the AOGM value required for creating the reference graph from scratch. TRA ranges between 
0 to 1 (1 means perfect tracking). Our method shows a rough 0.05 TRA measurement improvement on Dataset 
2. To demonstrate the robustness of our tracking method, we also apply it on Dataset 3, a cell nuclei dataset, 
and achieve a TRA of 0.895 which is comparable to state-of-the-art tracking methods on IEEE ISBI CTC2020 
cell tracking challenge. State-of-the-art  methods27,28 are based on the traditional Viterbi cell tracking algorithm 
whose complexity is O(TM4) where T is the length of the sequence and M is the maximum number of cells/
nuclei. In contrast, the complexity of our method is O(TM2) . Sequence 1 and 2 are the training data released 
from the challenge and we run the state-of-the-art methods on the individual sequence to get TRA evaluation 
metric. Sequence 3 and 4 are testing data that is not published by the challenge and TRA values are given by the 
challenge organization.

In summary, we did extensive experiments and used different evaluation metrics to demonstrate the perfor-
mance of our method. For segmentation, we use cell counting accuracy in Table  5, cell shape evaluation metric 
Fig. 7, and cell boundary segmentation accuracy in Table 6 to show the performance of our method. For sub-
cellular feature extraction, we use precision, recall, and F1 score as in Table  7 to evaluate 3 cell wall junctions 

(9)�L� = max
i=1,...,z

d(pai , qbi )

(10)F(P,Q) = min{�L�}

(11)TRA = 1−
min(AOGM,AOGM0)

AOGM0

Figure 10.  The figure shows two examples of coupling L. Dashed lines represent distinct pairs. ‖L‖ is the length 
of the longest distance of those pairs. Finally, FD is the minimum of those ‖L‖.

Table 8.  Anticlinal cell wall segment evaluation on Dataset 1 using EDE, FD, LD, DP.

Sequence EDE FD LD DP

Sequence 1 2.8 4 2.32 2.9

Sequence 2 6.4 8.4 4.19 6.1

Sequence 3 3.05 3.9 1.74 2.4

Sequence 4 3.02 3.7 2.24 2.3

Sequence 5 2.33 3.4 2.11 2.1

Mean (standard deviation) 3.52 (1.64) 4.68 (2.09) 2.52 (0.96) 3.16 (1.67)
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detection performance, and we use EDE, FD, LD, and DP in Table  8 to evaluate the segments detection perfor-
mance. For tracking, we use TRA in Table 9 as the evaluation metric.

Conclusion
In this paper, we present an end-to-end workflow for extracting quantitative information from 3D time-lapse 
imagery. The workflow includes 3D segmentation, tracking, and sub-cellular feature extraction. The 3D seg-
mentation pipeline utilizes deep learning models with rotation equivariance. Then an adjacency graph is built 
for cell tracking and sub-cellular feature extraction. We demonstrate the performance of our model on multiple 
cell/nuclei datasets. In addition, we also curate a new pavement cell dataset with partial expert annotations that 
will be made available to researchers.

The proposed segmentation method is implemented as a computational module in  BisQue29,30. Users can 
run the CellECT2.0 module using the following steps: (1) Navigate to BisQue on their web browser and create 
an account, (2) Upload their own data in TIFF format or use suggested example dataset, (3) Select an uploaded 
TIFF image or use our example, (4) Set hyper parameters of the module (default value to run Dataset 1) and select 
Run and the BisQue service will compute the segmentation results and display it in the browser. The runtime 
for a 512× 512× 18 image is approximately one minute using a CPU node with a 24 core Xeon processor and 
128GB of RAM. We provide screenshots of these steps in the Supplemental Materials.

Data availability
The code is available on GitHub. Dataset 1, Dataset 2, and Dataset 3 analyzed during the paper are available in 
the repository, Dataset 1, Dataset 2, and Dataset 3 separately.
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