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Algorithm for rapid tomography of gas concentrations.

Phillip N. Price; Marc L. Fischer, Ashok J. Gadgil, and Richard G. Sextro
Indoor Environment Department, Lawrence Berkeley National Laboratory

Berkeley CA 94720

June 28, 2000

Abstract

We present a new computed tomography method, the low third derivative (LTD)
method, that is particularly suited for reconstructing the spatial distribution of gas
concentrations from path-integral data for a small number of optical paths. The method
finds a spatial distribution of gas concentrations that (1) has path integrals that agree
with measured path integrals, and (2) has a low third spatial derivative in each direction,
at every point. The trade-off between (1) and (2) is controlled by an adjustable parameter,
which can be set based on analysis of the path-integral data. The method produces a set
of linear equations, which can be solved with a single matrix multiplication if the
constraint that all concentrations must be positive is ignored; the method is therefore
extremely rapid. Analysis of experimental data from thousands of concentration
distributions shows that the method works nearly as well as Smooth Basis Function
Minimization (the best method previously available), yet is 100 times faster.

Keywords: computed tomography, concentration mapping, airflow, pollutant dispersion

1 Introduction

For over a decade, researchers have investigated the use of computed tomography (CT) as a
way of mapping tracer gas or pollutant distributions in air (Todd and Leith 1990, Yost et al.
1994, Drescher et al. 1996). Path-integrated concentrations of the gas of interest are
measured-often, though not always, with a Fourier-transform infrared spectrometer
(FTIR)-typically along a few dozen optical paths. A computer algorithm is used to solve the
inverse problem of determining a spatial distribution of gas concentrations that could have
produced the observed set of path integrals.

Due to the time required to orient the FTIR, and the time required to measure an
individual optical path in order to obtain a sufficiently high signal-to-noise ratio, FTIR
experiments have usually taken several minutes to measure all of the optical paths, and some
have taken over an hour. Given these speed limitations in collecting the data, there has not
been a strong need for CT algorithms that work quickly. In particular, Smooth Basis
Function Minimization (SBFM), the method that has so far been most successful for CT of
gas concentrations in air, is computationally intensive, typically requiring several minutes (on
a Pentium-class 300 MHz personal computer running compiled Mathematica code) to
generate a reconstruction.

A recent set of experiments, fully described by Fischer et al. (2000), used a new
instrument that carries out a complete measurement cycle of 28 optical paths in only 7 s,

• Address correspondence to this author.
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during which each path is sampled for about 150 ms. In each of these experiments data were
collected for more than 30 minutes, thus generating data from over 300 measurement cycles.
Complete CT reconstruction of all of the measurement cycles, using SBFM with our current
computational machinery, takes over 7 hours. The delay between data collection and
reconstruction precludes real-time monitoring of experimental conditions, which would be
useful for trouble-shooting and for ensuring that the desired experimental conditions have
been attained. Also, practical industrial applications such as monitoring chemical plants will
require rapid CT.

In this paper, we introduce a reconstruction algorithm that uses techniques from Bayesian
modeling. Our innovations are (1) including prior information in a way that tends to remove
pixel-to-pixel oscillations in the reconstructions (which are usually artifactual) while still
allowing large concentration gradients (which are common in reality), and (2) a mathematical
statement of the CT problem that can often be solved in a single step, thus avoiding the need
for iterative convergence.

2 Methods

Several computational methods have been suggested for reconstruction of gas concentrations
based on path integral data. Most methods divide a planar area of interest into pixels and
attempt to assign a gas concentration to each pixel in such a way that the predicted path
integrals match the observed integrals, while also satisfying other criteria related to
smoothness of the spatial distribution.

The problem of pixel-based CT is to predict the vector of pixel concentrations I (where
Ij denotes the concentration in pixel j) from y, the vector of measurements Yi of
path-integrated concentrations along rays indexed with i. Let 8 be the "system matrix," so
that Si,j is the path length of path i through pixel j. Predicted path integrals fJ can be
calculated from predicted pixel concentrations i with

fJ = 8i· (1)

With a sufficiently large number of rays, and if some conditions on the spatial arrangement of
rays are met, then the CT problem can be solved by finding the set of pixel concentrations
that best fit the ray integrals, subject to the constraint that Ij 2': 0; that is, by finding the
vector i that minimizes

(2)

where Wi is the statistical weight given to measurement i, as we discuss below.
Unfortunately, minimizing the mean-squared difference between measured and predicted

path integrals does not lead to a unique solution: in order to attain a spatial resolution that is
high enough to be useful, the number of pixels will be much larger than the number of
measured path integrals. For instance, the experiments performed by Fischer et al. use 28
optical paths in a plane, for a chamber of 65 m2 , so if each pixel represents 1m2 the system is
underdetermined by more than a factor of two. There is therefore no unique set of I values
that minimizes ¢({), even under the constraint that all of the concentrations must be
nonnegative.

Although many sets of pixel values can lead to the path integrals being fit about equally
well, most are non-physical or at least highly improbable, for instance involving
concentrations that alternate between high and low values for adjacent pixels. This problem
has previously been noted and discussed (Todd and Ramachandran 1994, Drescher et al. 1996,
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Park et al. 2000) for the Algebraic Reconstruction Technique (ART) and related methods
(Herman et al. 1973), all of which generate reconstructions that are far too "noisy," in the
sense of having too much concentration variability on small spatial scales.

Drescher et al. (1996) developed SBFM to constrain the CT reconstruction to physically
plausible solutions. SBFM writes the predicted concentration as a superposition of a small
number of smooth basis functions, whose parameters are estimated so as to minimize the
weighted or unweighted mean-squared difference between predicted and measured path
integrals. Previous work has used 2-dimensional Gaussian distributions, for which the
parameters are position, amplitude, width in each direction, and the angle between the x-axis
and the major axis of the Gaussian (Drescher et al. 1996 and 1997, Price 1999, Hashmonayet
al. 1999). High predicted concentration gradients can be attained with small values for
Gaussian widths, but oscillatory solutions are avoided because the number of local maxima
cannot be more than the number of Gaussian basis functions, which is usually restricted to 5
or less. (Drescher et al. 1996, suggested a method of determining the best number of
Gaussians to use, but in practice we have had success by fixing the number at 4 or 5). SBFM
works quite well, but is unfortunately computationally intensive, as the search for the best-fit
set of parameters must contend with many local minima of the goodness-of-fit function.
Current computational methods for SBFM rely on simulated annealing (Metropolis et al.,
1953; see Press et al., 1986) and a single CT reconstruction takes 100-200 seconds on a 300
MHz computer running compiled Mathematica code. Although improvements in computer
speed, re-coding in a more efficient computer language, or algorithmic improvements that
eliminate the need for simulated annealing may eventually allow rapid SBFM reconstructions,
that prospect is still in the future. Moreover, extending SBFM to three dimensions will
greatly increase the computational burden. We don't expect rapid 3-D SBFM to be attainable
in the near future.

2.1 Including prior information in computed tomography

The fundamental problem of CT is to select the desired reconstruction (or reconstructions)
from among the large number of unlikely or unphysical reconstructions that generate similar
path integrals. Since the path integrals alone cannot determine the desired reconstruction,
some additional information must be included. One approach, Bayesian modeling, uses
so-called "informative prior information": knolwedge that is used to fit a model but that is
external to the data at hand. One can think of informative prior information as addressing
the question "before seeing any data, what can I say about the spatial distribution of
concentrations?" Highly certain beliefs can be given high statistical weight, while less certain
information can be given lower weight (and thus is easily overcome if contradictory data are
available) .

Although none of the previously suggested gas concentration CT methods were derived
from a Bayesian approach, they do implicitly include prior information. For example, SBFM
with Gaussian basis functions assumes that the gas concentration distribution has a small
number of local maxima, falls away smoothly from these maxima, and indeed has a specific
mathematical form.

Park et al. (2000) recently applied Penalized Weighted Least-Squares (PWLS), a
technique developed by Sauer and Bauman (1993) and Fessler (1994), to data collected by
Drescher et al. (1996). Using a "penalty function" suggested by Fessler in the context of
medical imaging, they searched for reconstructions with small concentration differences
between adjacent pixels. This penalty assumes that concentration gradients should be small,
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with the strength of this assumption being controlled by a parameter (3. Reconstructions
using this method had systematic errors, such as substantially underestimating the peak
concentrations.

Other methods, such as ART and its relatives, are harder to analyze in terms of prior
information, but they nevertheless fit some implicit model of what the spatial distribution of
the gas should look like.

Ideally, prior information would comprise a complete statistical description of gas
concentration distributions. Currently no such description exists, and in fact it is difficult to
picture what mathematical form such a description would take. In principle, almost any
two-dimensional map could represent actual concentrations; for example, one could construct
an experimental chamber with laminar upward airflow, and release gas into it from a grid of
release locations. Any distribution of gas concentrations in a plane could be attained by this
method. Thus, given the underdetermined nature of CT reconstructions using current
experimental technology, there is no method that will work perfectly for all realizable
concentration distributions. Instead, the goal is to find a method that works for the types of
gas distributions that are likely to be encountered in practice.

Examination of gas concentration distributions in a plane as directly measured in
experiments (Drescher et al. 1996, Drescher et al. 1997, Fischer et al. 2000), calculated with
computational fluid dynamics (Gadgil et al. 2000), and simulated with dye distributions in a
scale-model water tank (Gadgil et al. 2000), reveals several features:

1. concentrations can have very large spatial gradients;

2. where very large gradients occur they are usually near sources of gas, whereas areas far
from all sources generally have lower gradients, even if they have fairly high gas
concentrations;

3. even with a single source, concentrations can have several local maxima in a plane.

Any CT method must be able to accomodate at least the features mentioned above. SBFM
fits this description, but at great computational cost. Is there an alternative?

We propose a CT method that seeks reconstructed concentration distributions in which
the third spatial derivative of concentration is near zero in each direction, at every location.
We refer to this approach as the "low third derivative" (LTD) method. If the third derivative
is zero, then the second derivative is constant, so the concentration itself is a quadratic
function of position. Setting the third derivative exactly to zero everywhere won't allow good
fits, as that would force a single global quadratic form to fit the whole concentration
distribution, whereas the intent is instead to generate solutions that are locally quadratic, at
least approximately.

2.2 LTD algorithm and computation

The notation "fj for the pixel concentrations hides the spatial relationship of the pixels, so we
introduce an alternative notation. The plane is gridded into pixels, with n r rows and n c

columns. Pixels are numbered from 1 to npix == n r x n c , with pixel 1 in the upper left corner
of a map, and pixel npix in the lower right. Pixels can be specified by row k and column l,
with the concentration in a pixel written as "f(k,l) == "fndk-l)+l. Note that k and l denote row
and column, not position along the x and y axes. Each pixel corresponds to an area in the x-y
plane, but we use the notation that is standard for matrices, not for algebraic geometry.
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The concentration difference between adjacent pixels approximates the first spatial
derivative of concentration at the midpoint of the pixels. In order to convert this derivative
into a physical units, it must be divided by the distance between pixel centers; for now, we
remain in pixel units, so this derivative represents the concentration change per pixel, not (for
example) per meter. If the pixels are square (as we recommend, and as is the case in the data
analyses discussed below) then this distinction is merely a matter of scaling

The difference between first derivatives is a measure of the second derivative, and the
difference between second derivatives is a measure of the third derivative. For example, the
third derivative in the l-direction at the juncture between pixels (k, l) and (k, 1+ 1) is given by

d3,(k, l)
dl3 = ,(k,l + 2) - 3,(k,l + 1) + 3,(k,l) - I(k,l-1). (3)

Any prior information that can be expressed as the expected value of a linear combination
of pixel values can be included in a linear model through matrix augmentation, a standard
technique of Bayesian regression (e.g. see Gelman et al., 1995). In essence, we are adding
more terms to the sum in Eq. 2; these terms penalize d3, / dl3 terms in proportion to their
distance from zero. This is implemented as follows. Create a new matrix M by appending
rows to the system matrix S; a new data vector y' by appending elements to y; and assign
statistical weight W for each of the new rows. Each row appended to the system constitutes a
mathematical statement; for example, the statement that d3,(k, l)jdl3 = °is implemented by
constructing a row r of the M matrix that has 1, -3,3, and 1 in columns corresponding to
pixels (k, 1+ 2) through (k, 1- 1), and setting the rth element of the y' vector to zero; the
statistical weight for this statement is controlled by W r . We refer to the weight W r as the
"prior weight," and to equations such as Eq. 3 as "prior equations."

The third-derivative prior equations defined above cannot be used for pixels near the
walls, in the direction perpendicular to the wall (because, for example, pixels (k, 1+ 1) and
(k, 1+ 2) would be outside the boundary of the room for 1 > n c - 2). Using third-derivative
prior equations alone would thus leave the pixel values at the edges of the room relatively
unconstrained, possibly allowing a lot of variation in concentration among those pixels, which
would probably be non-physical. Several remedies are available; the one we selected is, for the
pixels near the walls, to include prior equations so that the second derivative perpendicular to
the walls is small, and assign this prior equation twice the statistical weight as is given to the
third-derivative prior equations.

Including prior information for every pixel makes the matrix system overdetermined, as
required for a least-squares solution: given some measured path integrals, plus prior
information about the third derivative in each direction for every pixel, there are now more
equations (rows of the M matrix) than unknowns (pixel concentrations Ii)' Finding the pixel
values i that minimize ¢h), the weighted squared difference between y' and ff' == M i, is
just the problem of weighted least-squares regression. If we ignore the constraint that all
Ij 2:: 0, the solution can be found analytically (see Gelman et al. 2000, for example): define

(4)

where W is a diagonal matrix whose diagonal elements are Wi. (Non-diagonal weight matrices
can be used to model covariance between pixels~the W matrix is the inverse of the
variance-covariance matrix~but we ignore that issue here). The value of ¢(/) is minimized
by letting

i=Hy'.
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For most reconstructions, all of the predicted pixel concentrations are positive or only
slightly negative (in which case we simply set them to zero).

Solving a linear least-squares problem by direct calculation of H, as suggested by
Equation 5, is ordinarily not recommended because much more computationally efficient
methods are available-matrix inversion is a slow procedure for a large matrix. Although
usually not recommended, in our case it is actually highly efficient to directly compute H
since the calculation needs to be done only once for a given arrangement of optical paths and
set of prior equations and weights; then a matrix multiplication is all that is required in order
to perform a reconstruction.

A statistical weight Wi must be assigned to each equation-that is, to each row of M.
Short optical paths tend to have low path integrals (e.g. in a completely mixed room, path
integrals are proportional to path length), so weighting all optical paths equally would give
shorter paths less influence on the reconstruction. Indeed, a (hypothetical) point sample
would fail to influence the reconstruction at all! To counteract this effect, we assign weights
inversely proportional to path length, scaled so that the longest path has weight 1. For our
current experimental set-up this is not a major issue, since the longest paths are only a few
times longer than the shortest. Setting all of the weights of the path-integral equations equal
instead does not alter the solutions substantially in any of the cases we have examined.

We assign a statistical weight w to each of the third-derivative prior equations (using the
same w for every pixel). For pixels near the walls, we constrain the second derivative
perpendicular to the wall, with weight equal to 2w. The prior weight for the third-derivative
prior equations, w, is then the only adjustable parameter.

The experiments of Fischer et al. (2000) included short-path measurements (which are
nearly point measurements) throughout the plane. In principle, one could select the weight w
in order to maximize the agreement with the point measurements, but such reliance on point
measurement would largely defeat the purpose of CT. Fortunately, alternatives exist. In
particular, we select the highest weight for the prior equations that still allows a good fit to
the measured long-path integrals. In fact, because the reconstructions vary only slowly with
the prior weights, precise selection of the weights is not necessary. Instead, we calculate and
store H for three or four widely varying prior weights, and use the one that produces
reconstructions that give suitable agreement with the long-path integrals.

2.3 Performing reconstructions from a complete experiment

To perform reconstructions for an entire experiment, consisting of many measurements of
every optical path, the approach is as follows. First, calculate and store H matrices for three
or four widely varying prior weights (e.g. w values of 1, 10, 100, 500). Then, for each time
step:

1. Construct the data vector y', by appending the prior values (a vector of zeroes, in the
present application) to the long-path measurements y.

2. Calculate predicted pixel concentrations i = Hy';

3. Handle negative predicted concentrations, either by setting them to zero or by using the
predictions as the initial guess for a constrained optimization;

4. Calculate predicted long-path measurements if = Si;
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5. Calculate the agreement between predicted and measured long-path integrals,
Rfong = Correlation(y, y)2;

(a) If Rfong < 0.92, choose a H matrix that was pre-calcuated with lower prior weights,
and return to step 2;

(b) if Rfong > 0.96, choose a H matrix with higher prior weights, and return to step 2;

6. Accept the reconstruction i. Read in the data for the next time step, and go to step 1.

2.4 Including other prior information

Matrix augmentation allows the use of prior information other than (or in addition to) the
second- and third-derivative priors suggested above. For example, the functional equivalent of
PWLS with the penalty function suggested in Fessler (1994), and applied to gas concentration
CT by Park et al. (2000), can be attained by including prior information that the first
derivatives should be small. This is implemented by augmenting the system matrix with one
row for each pixel, and the data vector with one entry for each pixel, so that each new row
corresponds to a statement such as ,(k, l + 1) - ,(k, l) = O. The statistical weights for these
rows play the role of Fessler's f3 parameter.

Prior information on individual pixel concentrations is trivial to add; such information
might come from a CT reconstruction based on earlier data, or from a computational fluid
dynamics solution.

3 Results and Discussion

To investigate the performance of the LTD algorithm, we analyzed data from the experiments
described in Fischer et al. (2000). In these experiments, a tracer gas (methane) was released
from a square-meter area source near the floor of a 7m x 9m x 11m room. During every
7-second interval, the path-integrated methane concentration was optically measured along
each of 28 "long-path" rays that cross the room in a plane about 2m above the floor. In
addition to the long-path measurements, the concentration was determined along each of 28
0.5-meter "short-path" rays, using telescopes and receiving optics suspended from cables in
the interior of the room. The short-path measurements are used to examine the performance
of the CT reconstructions, as follows: (1) perform a reconstruction using only the long-path
measurements, (2) calculate the predicted short-path concentration, based on the
reconstruction, and (3) quantify the agreement between predicted and measured short-path
concentration.

Figure 1 shows a map of the long-path rays. In the figure, each ray is plotted with a
width proportional to its concentration measurement (the path integral divided by the path
length) during a 7-second measurement cycle during which each path integral was measured
once. This figure illustrates the input data to the CT algorithm.

Figure 2 shows CT reconstructions, along with short-path measurements, for four
consecutive 7-second measurement cycles in experiment 3. Methane was released just above
the floor near x = 4m, y = 2m; a persistent eddy in the experimental chamber carries the gas
counterclockwise after release, so concentrations in the measurement plane tend to be highest
along the wall at x = 7m.

No single goodness-of-fit parameter provides an adequate summary of fit between
predictions and measurements. For simplicity, here we discuss R;hort' the coefficient of
determination between the short-path predictions and measurements, since this addresses one
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major question of interest: is the actual gas concentration low where the reconstruction says it
is low, and high where the reconstruction says it is high? The R;hort values for the sequence of
reconstructions shown in Figure 2 vary over a wide range: they are 0.59,0.45,0.62, and 0.77.
For the experiment as a whole, the median R;hort value is 0.68.

The short-path data sometimes show rapid temporal variability. For example, the
measured concentration for the short-path sensor near x = 6m, y = 1m changes by more than
a factor of 2.5 from the second to the third measurement cycle in Figure 2. Gas movement
during the measurement cycle can affect both the reconstruction itself and the amount of
agreement between the reconstruction and the short-path measurements. Each optical path is
sampled for only 150 ms during each cycle, so the measurement along a path does not
represent the average concentration over the 7-second interval that it takes to measure all of
the path integrals. If a high-concentration wisp of gas passes through the measurement path
during the short interval during which the path is measured, the path integral will be higher
than the 7-second average. The temporal variability can thus cause a discrepancy between the
short-path measurements and their predicted values based on the reconstruction, even if the
reconstruction does accurately reproduce the time-average gas distribution.

Table 1 summarizes the performance of the method in reconstructing several experiments
performed by Fischer et al. (2000). For each experiment, we performed reconstructions
beginning with the first appearance of substantial gas concentrations in the measurement
plane, and ending 30 minutes later. To help assess the significance of temporal variability, we
performed two series of reconstructions. In the first series, each reconstruction was based on
data collected over a 7-second interval, and thus uses one measurement of each optical path.
In the second series, each reconstruction was based on a moving average of data collected over
a 21-second interval, in 7-second steps (so that each path is measured three times, and the
average of the three is used for the reconstruction). Reconstructions were compared to
short-path data collected during the 7-second or 21-second time interval, respectively.
Averaging over three measurement cycles removes some of the rapid temporal variation in the
gas concentrations that can reduce the agreement between the CT reconstructions and the
short-path measurements.

As Table 1 shows, averaging over three measurement cycles substantially improves the
worst reconstructions (those with the lowest 5 to 10% of R;hort values), while leaving R;hort
for most of the rest essentially unaffected. This suggests that temporal variation is one of the
reasons the poorest reconstructions are as poor as they are, but such variability is not a major
factor in causing discrepancies between predicted and actual concentration distributions for
most of the reconstructions.

Somewhat remarkably, ignoring the constraint that all,i must be non-negative almost
never causes a problem: in practice, the matrix solution to the unconstrained problem rarely
predicts any pixel concentrations that are substantially negative (e.g. with magnitude greater
than 0.1 times that of the predicted peak). As discussed above, when negative pixel
predictions do occur, we set them to zero. We have also solved the constrained system when
the unconstrained solutions generated negative predictions, but the resulting solutions took
more computer time and were no better, in terms of agreement with the short-path
measurements, than were obtained from the unconstrained solutions with negatives set to zero.

To compare the LTD method to SBFM, we calculated SBFM reconstructions for the same
experiments whose LTD reconstructions are summarized in Table 1. The SBFM
reconstructions are consistently slightly better: the SBFM R;hort values exceed those from the
LTD method for every experiment and every quantile except for the 0.05 and 0.10 quantiles of
Experiment 1. SBFM's superiority (by this measure) is remarkably similar for all quantiles
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and all experiments: the SBFM R;hort value is higher by about 0.05 ± 0.02. For example,
whereas the median R;hort values when the LTD pixel method is applied to the four
experiments in Table 1 are 0.64, 0.73,0.68 and 0.70, respectively, the corresponding SBFM
values are higher by 0.08,0.06,0.04 and 0.03. A similar pattern is present in the other
quantiles.

The similarity between SBFM and the LTD method goes beyond the similar values of
R;hort for each quantile; in fact, both methods perform similarly for each individual
reconstruction-when one method produces relatively poor reconstructions, the other tends to
do so as well. In terms of reconstruction accuracy, SBFM remains the gold standard for CT of
gas concentrations by a narrow margin. However, the enormous speed advantage of the LTD
method, which is more than 100 times faster than SBFM, makes the LTD method appealing
for most applications in which large amounts of data require analysis or when real-time
reconstructions are desired.

The LTD method produces CT reconstructions in which path integrals agree with
measurements and third spatial derivatives of the gas concentration are low. The method
works well for data we have analyzed so far: measured average concentrations over an array of
short optical paths are in good agreement with predicted concentrations from CT
reconstructions. Modifications might improve the method. For example, currently the same
prior weight is used for every pixel, in each direction. Allowing the weight to vary with
position could probably create better reconstructions, but for this approach to be useful it
must be possible to determine the best spatial variation of weights by analysis of the path
integral data alone, without reference to point-sample data. It is not obvious how that can be
done. One possibility is to produce a reconstruction with uniform weights, calculate the third
spatial derivatives of the reconstruction, and check the extent to which the derivatives are
consistent with the prior equations. If there are areas over which most of the derivatives are of
small (large) magnitude, better fits may be possible by decreasing (increasing) the prior
weights for pixels in those areas. Alternatively, spatial correlation in derivative values could
be incorporated by using a non-diagonal weight matrix W; again, this will be a useful
approach only if the spatial covariance of derivatives can be estimated without reference to
point-sample data.

By combining hardware allowing measuring all 28 optical paths in an experimental
chamber within about 7 seconds (see Fischer et al., 2000), with the LTD algorithm described
here for performing very rapid CT reconstructions from the resulting data, we have taken CT
mapping of air pollutant concentrations out of the realm of proof-of-principle experiments and
into the world of actual application. We now use these tools at Lawrence Berkeley National
Laboratory to investigate airflows and gas dispersion in a large experimental chamber.
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Figure 1: Plan view of the experimental chamber of Fischer et al., showing long-path rays.
Each ray's width is proportional to the average gas concentration along the ray (i.e. the ray
integral divided by the path length) as measured during a 7-second interval of one experiment.
Distances are in meters.
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Figure 2: Measured (left column) and reconstructed (middle column) concentration at the
location of each of the short-path sensors: the height of each bar shows the concentration (in
ppm) at that sensor. Four consecutive 7-second time intervals are shown. The scatterplot
in the right column plots measurement against prediction for each short-path sensor location.
The diagonal line is the 1- to-1 line representing perfect agreement between prediction and

measurement.
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Table 1: Quantiles of R;hort for four of the experiments discussed by Fischer et al. (2000). For
each experiment, reconstructions were performed from data in which each path integral was
measured once (a 7-second interval), and from the average of three measurements (a 21-second
interval). In each case, the reconstructions are based on data acquired for 30 minutes after the
first appearance of tracer gas in the measurement plane.

Experiment Integration Quantiles of R;hort
number time (sec.) 0.05 0.10 0.25 0.50 0.75 0.90 0.95

1 7 0.34 0.46 0.57 0.64 0.73 0.79 0.82
21 0.41 0.50 0.61 0.67 0.75 0.81 0.85

2 7 0.52 0.58 0.65 0.73 0.80 0.83 0.86
21 0.58 0.62 0.68 0.76 0.81 0.85 0.87

3 7 0.32 0.43 0.57 0.68 0.74 0.79 0.82
21 0.45 0.50 0.62 0.71 0.76 0.83 0.85

4 7 0.30 0.41 0.59 0.70 0.77 0.83 0.86
21 0.37 0.49 0.63 0.73 0.80 0.85 0.87
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