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ABSTRACT OF THE DISSERTATION

Data-driven approximation of transfer operators:
DMD, Perron–Frobenius, and statistical learning in Wasserstein space

By

Amirhossein Karimi

Doctor of Philosophy in Mechanical and Aerospace Engineering

University of California, Irvine, 2022

Professor Tryphon T. Georgiou, Chair

The Perron–Frobenius and Koopman operators provide natural dual settings to investigate

the dynamics of complex systems. In this thesis we focus on certain pertinent concepts and

strategies for obtaining dynamical models and approximating the transfer operators from

data.

First, we explain the setting and the assumptions that underlie the so-called Dynamic

Mode Decomposition (DMD); this methodology relates to Koopman-operator approxima-

tion through full-state observables. The goal is to highlight caveats as well as to suggest

metrics that indicate that the use of DMD on specific dataset is warranted. In many ap-

plications it is often the case that only a limited number of data samples is available for

modeling an otherwise exceedingly high dimensional process. The dimensionality of the

process, which may represent visual or distributional fields, in conjunction with the limited

observation record requires careful analysis. It is precisely this regime of “small data,” i.e.,

“few samples,” that has been a challenge in traditional signal analysis since its inception.

DMD is a recent development that aims to identify suitable linear dynamics that can explain

the data. We show how the concept of the gap metric can be used as a tool to quantify how

subspaces spanned by data impact modeling assumptions. Also, the gap metric provides

guidance in selecting appropriate dimensionality for models for such processes.

x



Next, we formulate and solve a regression problem with time-stamped distributional data.

Distributions are considered as points in the Wasserstein space of probability measures,

metrized by the 2-Wasserstein metric, and may represent images, power spectra, point clouds

of particles, and so on. The data sets may be thought to represent densities of particles whose

precise trajectories are not be available (e.g., partially observed). The regression seeks a curve

in the Wasserstein space that passes closest to the dataset. Our regression problem allows

utilizing general curves in a Euclidean setting (linear, quadratic, sinusoidal, and so on), lifted

to corresponding measure-valued curves in the Wasserstein space. It represents a relaxation

of geodesic regression in Wasserstein space. The apparently nonlinear primal problem can be

recast as a multi-marginal optimal transport, leading to a formulation as a linear program.

Entropic regularization and a generalized Sinkhorn algorithm can be effectively employed to

solve this multi-marginal problem.

The proposed framework can be used to estimate correlation between given distributional

snapshots. Potential applications of the theory are envisioned to aggregate data inference,

estimating meta-population dynamics, power spectra tracking, and more generally, system

identification.

Finally, we introduce a regression-type formulation for approximating the Perron-Frobenius

operator by relying on distributional snapshots of data. The Wasserstein metric is lever-

aged to define a suitable functional optimization in the space of distributions, weighing in

distances between successive distributional snapshots. The formulation allows seeking suit-

able dynamics so as to interpolate the distributional flow in function space. A first-order

necessary condition for optimality is derived and utilized to construct a gradient flow ap-

proximating algorithm. It should be noted that we assume no information on statistical

dependence between successive pairs of distributions. The method extends to search for

nonlinear dynamics assuming a suitable parametrization of the nonlinear state transition

map in terms of selected basis functions.
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Chapter 1

Introduction

1.1 Background and Motivation

Whereas the topic of “big data” dominates current headlines in research publications and

popular news analyses alike, the perennial challenge of obtaining reliable models with only

limited observation records persists in a wide range of time series applications. Indeed,

one often hears the admission from practitioners that the problem is not “big data” but

“small data.” A case in point is that of time series of flow fields where a exceedingly high-

dimension state is observed, or partially observed, albeit over a relatively short time window.

It is precisely for these types of applications that Dynamic Mode Decomposition (DMD) and

related frameworks were conceived to address [4–6].

DMD, as introduced by Schmid [7], is a formalism to identify dominant modes in a high-

dimensional time series xt ∈ RN , t ∈ {1, 2, . . . , L}, where the dimensionality N of the time

series is much larger than the number L of available observations. In its original formulation,

DMD takes xt as a convenient state of an underlying process and thereby dispenses of higher

order dynamics that may be hidden in differences between the time series data. The more
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general situation of higher order dynamics can be treated similarly [8]. The main issue that

we discuss in this thesis is the pertinence of the assumption in seeking such a state model,

and whether a reliable estimate of state dynamics should be expected to reflect the structure

of the data. Dynamic mode decomposition relates to the approximation of Koopman oper-

ator through full-state observables. The Perron–Frobenius and Koopman operators provide

natural dual settings to investigate the dynamics of complex systems. The focus of this

thesis is on certain pertinent concepts and strategies for obtaining dynamical models and

approximating the transfer operators from data. There are many realistic scenarios in which

the available data are time-stamped distributions which necessitates the extension of system

identification strategies such as regression to the space of distributions.

Regression analysis seeks a (non)linear correspondence between two sets of variables by

minimizing a suitable function of residuals. In case the data are probability distributions

lying on a nonlinear manifold, finding an appropriate metric, defining and interpreting the

structure of fitting model, and finding a tractable solution can be challenging. This is

pervasive for various applications such as in longitudinal image study [9] where the brain

development or tumor growth patterns need to be studied, power spectral tracking [10],

traffic control [11] and so on.

The Wasserstein metric is becoming increasingly popular in recent years due to a number of

natural and useful properties (e.g., being weakly continuous, allowing efficient computation

via entropic regularization) [12–14] which is the rationale behind its extensive use in sta-

tistical learning of distributional data. Most studies in the context of distribution learning

reckon upon their projections onto the tangent space at some reference point (usually the

barycenter of the dataset) [15–17]. This invokes the pseudo-Riemannian structure of Wasser-

stein space [18] which amounts to statistical learning in a Hilbert space. Another approach

is based on generalized geodesics as proposed in [19]. In [10], an approximation method

is presented for the measures supported on R to track the behavior of the power spectral
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densities of non-stationary time series. There are some issues with these methods accuracy,

reasonable interpretation and computational complexity which might lead to undesirable

results (see the introduction in [16]). In the following we touch upon some of the potential

applications of regression analysis in the space of distributions.

State tracking of individuals form one population (or sub-population) to another one plays

an important role in many areas, such as target tracking or (meta)population dynamics (e.g.

see [20] and [21]). In many practical scenarios the trajectories of individuals may not be

accessible due to different reasons, e.g. the population is huge or tracking the individuals

requires a prohibitive number of sensory equipment. For instance, in animal ecology, one

is often interested in movement of a group of animals based on studies of unmarked indi-

viduals [20]. In other words, the identity of individual animals are unavailable, and any

analysis should be based on the aggregate data. The regression-type methods in the space

of distributions can be employed to track the evolution of an ensemble of indistinguishable

individuals (mass particles, agents or so on). Namely, we can estimate the flow of individuals

(or mass particles) for which the one-time marginals resemble the distributional snapshots in

the sense of Wasserstein distance. In [20], optimal transport theory is utilized to estimate the

transition probabilities associated with indistinguishable populations moving among multi-

ple spatial locations at two points in time. Some other studies deal with steering the states

of a linear or non-linear dynamical system from an initial density to a target one. This can

be stated in both cases of interacting or non-interacting particles [22,23].

There are other studies conducted in order to account for the cases where more than two

(initail and final) one-time marginals are available. For instance, in [24] hidden Markov

models (HMMs) are used to describe the particle flows and aggregate observations where

the most likely paths that the agents have taken are sought. At the very high level, unlike

the problem of interest in this thesis which is regression-type, those studied in [21,24,25], are

interpolation-type problems where a flow is sought such that the one-time marginals meet
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a sequence of probability densities precisely. Despite being built on interesting ideas, this

might be problematic in cases of noisy data or a large number of snapshots where overfitting

may be inevitable.

This can also be useful to identify the coherent sets in the flow. These are non-dispersing

or minimally-dispersing regions in the flow’s domain, namely, the particles in these regions

are less likely to leave them [26]. The study in [27] deals with the case where the initial and

final densities of particles are the only available data, i.e., the underlying flow map is not

accessible. The unbalanced regularized optimal transport plans are used to find coherent

sets in evolving particle ensembles.

It is often the case that dynamics are to be inferred by the collective response of dynam-

ical systems (particles, agents, and so on) recorded as distributional snapshots of observ-

ables [28]. Regardless of whether the underlying dynamics is linear or not, provided there

is no interaction between particles, the distributional data on observables evolve under the

action of a linear operator. The two broadly-studied alternatives for this purpose are the

Perron-Frobenius and the Koopman operators, both known as transfer operators. They are

indeed linear, but defined on infinite-dimensional spaces of distributions and of observable

(functions), respectively, and are adjoint to one another [29].

Modeling and approximation of transfer operators often relies on samples of along collec-

tions of trajectories, e.g., see [4, 30–32]. This, in fluid mechanical systems, can be effected

via recording the motion tracers seeded in the flow; such tracers provide pointwise corre-

spondence among particles at different snapshots. However, perhaps equally often, in many

real-world situations, complete trajectories may not available. Labeling and tracking parti-

cles individually is simply not feasible. In such cases, distributions of ensembles at different

time instances is the only accessible data. This may also be the case in applications, as

in modeling flow/traffic, when density, average speed, and other parameters quantifying

congestion are being recorded and available, and not the path of individual drivers.
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Besides applicactions related to flows of particles and collections of dynamical systems, the

problems we consider are relevant in image registration, tumor growth monitoring, and sys-

tem identification from visual data [33]. Another instance is domain adaptation, which

aims at finding a model on a target data distribution, by training on a source data distribu-

tion [34,35].

As mentioned before, a popular and effective method in identifying dynamics using snap-

shots of data is DMD which relates to Koopman-operator approximation through full-state

observables. The Liouville operator [36] is another example of a linear operator associated

with non-linear dynamics; this is the infinitesimal generator for the Koopman operator [37].

In this context, we also mention the concept of occupation kernels which allows for the em-

bedding of a dynamical system into a Reproducing Kernel Hilbert Space (RKHS). For further

studies and taxonomy of the substantial and rapidly expanding literature we refer to [38].

A well-known method for the approximation of Perron-Frobenius operator is Ulam’s method,

in which the evolution of a set of test points within the discretized state-space under the

action of dynamics leads to a probability matrix in the discretized state-space [39,40]. There

are other methods to approximate Perron-Frobenius operator, most of which rely on Petrov-

Galerkin projections of infinite-dimensional operators onto some finite-dimensional subspace

(see for example [29, 41, 42]). Also, one can utilize one of the aforementioned techniques to

approximate the Koopman operator and use the duality property to find an approximate

representation for the Perron-Frobenius operator [28]. These approaches hypothesize the

existence of pointwise correspondence among the distributions at different snapshots as the

data are collected along one or several trajectories of the dynamics.

The long-term behavior of a dynamical system can be characterized by its associated invari-

ant measure supported on an invariant set. Indeed, this is the fixed point of Perron-Frobenius

operator which pushes forward distributions under the action of dynamics [43]. The invari-

ant sets, for example, can represent equilibrium points, periodic and quasi-periodic orbits
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sitting on some lower-dimensional manifolds [44]. There are a plethora of numerical meth-

ods to compute invariant measure and sets, most of which conducted for known dynamics,

or where the pointwise correspondence between the successive points in time is available

(See [45,46] and references therein).

1.2 Objectives and Contributions

In this thesis we focus on certain pertinent concepts and strategies for obtaining dynamical

models and approximating the transfer operators from data. First we explain the setting

and the assumptions that underlie the so-called Dynamic Mode Decomposition (DMD);

this methodology relates to Koopman-operator approximation through full-state observables.

Next we will discuss a regression-type formulation for the approximation of Perron-Frobenius

Operator using distributional snapshots of data. The data sets may be thought to represent

densities of particles whose precise trajectories are not be available (e.g., partially observed).

The Wasserstein metric is leveraged to define a suitable functional optimization in the space

of distributions. The formulation allows for seeking suitable dynamics so as to interpolate

the distributional flow in function space. The objectives and contributions of each chapter

are as follows.

• Chapter 2: The goal is to highlight caveats as well as to suggest metrics that indicate

that the use of DMD on specific dataset is warranted. We show how the concept of the

gap metric can be used as a tool to quantify how subspaces spanned by data impact

modeling assumptions. Also, the gap metric provides guidance in selecting appropriate

dimensionality for models for such processes.

• Chapter 3: We provide background on the theory of optimal mass transport (OMT)

that underlies the developments in the body of this thesis.

• Chapter 4: We present a regression model for the probability distributions indexed by

6



timestamps which enjoys a reasonable geometric interpretation and solution. To do

so, we define a probability measure on the space of curves with a specified complexity

(linear, quadratic or so on). A probability measure over this space is sought such that

its one-time marginals replicate the distributional snapshots at each timestamp. This

probability measure represents a flux, i.e., how much mass is flowing along each path.

This approach represents a least-squares minimization in Wasserstein space. Then,

using multi-marginal optimal transportation [47], this problem is recast as a linear

programming. Generalized Sinkhorn’s algorithm can be employed to solve efficiently

the entropy-regularized version of this problem.

Furthermore, to study metapopulation dynamics which consist of a group of local pop-

ulations, we will describe how our approach can be carried over to mixture distributions

especially Gaussian mixture models. The space of Gaussian mixtures can be equipped

with a Wasserstein-type distance [48,49] which we employ to lift our regression strategy

to this submanifold of probability distributions.

Also, We will delineate how to use the method of this paper to estimate the Perron-

Frobenius operators and invariant measures associated with dynamical systems. We

estimate the Perron-Frobenius operator and its corresponding invariant measure with-

out hypothesizing any information on the dynamics and by relying solely on a few

available distributional snapshots.

• Chapter 5: We deal with the problems where dynamics are to be inferred from data

on density flows. We advance a viewpoint that leverages the geometry of optimal

mass transport and the Wasserstein metric on distributions, to identify underlying

dynamics. Data are assumed to be probability distributions over a suitable state-space,

and that any statistical dependence between pairs of distributions is not available.

These observations (one-time marginal distributions) are the successive projections of

the flow generated by the underlying dynamics. We seek a suitable approximation of

7



Perron-Frobenius operator and, thereby, an embedding of the dynamics into a function

space based on these distributional snapshots. The Wasserstein metric is employed to

define an appropriate cost, by minimization of which, a desirable embedding can be

achieved. This notion of distance, which represents cost of transport, compares two

probability distributions based on the ground metric of the underlying state-space.
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Chapter 2

The Challenge of Small Data:

Dynamic Mode Decomposition,

Redux

2.1 The basic DMD rationale

Consider the basic linear dynamical model,

xt+1 = Axt + vt, for 1 ≤ t ≤ L− 1, (2.1)

where A ∈ RN×N , while vt ∈ RN signifies deviation from linear deterministic dynamics (via

the input term vt that may represent stochastic excitation or contribution of nonlinear terms).

The standard formulation of DMD is based on the assumption that the time series under

consideration, herein xt, is dominated by the linear transition mechanism and that, moreover,

the dimension of xt is much larger than the size of the observation window t ∈ {1, 2, . . . , L}.

The underlying premise of the DMD methodology is that the state vector xt concentrates
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along the directions that correspond to the dominant eigendirections of A and, thereby, DMD

aims (and has a viable chance) to identify the dynamics that are manifested by restricting

the recurrence relation in (2.1) onto the range of a data matrix

X1:n−1 := [x1, x2, . . . , xn−1] ,

for n possibly n ≤ L. Thereby, the dynamics are sought in a matrix A ∈ RN×N to satisfy

X2:n ' AX1:n−1. (2.2)

One readily observes that the operator A, restricted onto the orthogonal complement of

range(X1:n−1), namely,

A|range(X1:n−1)⊥ ,

is undefined, i.e., it cannot be determined from the data. DMD sets out to determine the

action of A precisely on the range of X1:n−1. To this end, complete the columns of X1:n−1

into a basis B := {x1, . . . , xn−1, yn, . . . , yN} for RN . We tacitly assume that {x1, . . . , xn−1}

are linearly independent. The matrix Yn:N = [yn, . . . , yN ] formed out of the added (column)

vectors is such that

T = [X1:n−1, Yn:N ]

is an invertible matrix. Selection of Yn:N can be accomplished by taking the singular value

decomposition

X1:n−1 = UΣV T ,

10



of X1:n−1, where U ∈ O(N), V ∈ O(n− 1), and

Σ =



σ1(X1:n−1) 0 0 . . .

0 σ2(X1:n−1) 0 . . .

0 0
. . .

...
...


is the N × (n− 1) matrix with the (non-increasing sequence of) singular values of X1:n−1 on

the main diagonal, and where O(k) denotes the group of k × k orthogonal matrices. Then,

if after partitioning

U = [U1:n−1, Un:N ] ,

the selection Yn:N = Un:N presents a convenient option.

Similarity transformation with T bring A into the form

 S S12

S21 S22

 ,
since

A [X1:n−1, Yn:N ] = [X1:n−1, Yn:N ]

 S S12

S21 S22

 .
Thus,

AX1:n−1 = X1:n−1S + Yn:NS21.
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Assuming that A leaves range(X1:n−1) invariant, the intertwining relation

AX1:n−1 = X1:n−1S,

holds and S represents the restriction of A onto the range(X1:n−1). Thus, assuming that

(2.2) holds with equality,

X2:n = X1:n−1S, (2.3)

captures the action of A on the range of X1:n−1 and can be used to determine S. Finally,

because the columns of X2:n−1 are shared with a shift between X1:n−1 and X2:n, S has the

companion structure

S =



0 0 0 . . . 0 −sn−1

1 0 0 . . . 0 −sn−2

0 1 0 . . . 0 −sn−3

...
. . .

...

0 0 0 . . . 1 −s1


,

where the last column can be easily identified by solving (2.3).

Since in general the linear transformation A does not leave range(X1:n−1) entirely invariant,

and thereby (2.2) does not hold with equality, suitable approximation is carried out to obtain

S. For instance, the vector s = (sn−1, . . . , s1)T can be obtained as

argmin{‖xn −X1:n−1s‖ | s ∈ Rn−1}, (2.4)

with ‖ · ‖ denoting (typically, and herein) the Euclidean norm, and to this end several

12



alternative numerical schemes have been proposed (such as Arnoldi and SVD based) [4, 7].

This is the typical scenario for DMD applications.

2.1.1 Regularizations

An alternative approach is to regularize the problem by penalizing perturbation from the

recorded values in data matrix X1:n−1 as well, e.g., by solving instead (the nonlinear problem)

argmin{‖xn − X̂1:n−1s‖+ ε‖X̂1:n−1 −X1:n−1‖},

over s ∈ Rn−1 and X̂1:n−1 ∈ RN×(n−1), for a choice of regularizing parameter ε > 0. This

option is especially reasonable in case (2.2) fails to hold with equality due to stochastic noise

or the (small) effect of nonlinear dynamics, or in cases where prior information dictates

specific structural features, e.g., see [50,51].

2.1.2 Higher order dynamics

We note that in cases when higher order dynamics are at play and RN is insufficient as a

choice of state-space, an option is to account for lagged values of xt and thereby select as a

candidate state vector, e.g., for the case of one lag,

ξt = [xTt , x
T
t−1]T .

Very little changes in the basic setting [8]. In this case, one seeks an A matrix of twice the

size to now satisfy Ξ3:n ' AΞ2:n−1, cf. (2.2). Thence, a matrix S as before, with companion

structure, such that

Ξ3:n = Ξ2:n−1S,
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with Ξk:` := [ξk, ξk+1, . . . , ξ`], assuming k < `, cf. (2.3). Thus, without loss of generality

we will only discuss the basic setting without further expanding neither on higher order

dynamics nor on the relevance of various choices for regularization.

2.1.3 Recap & concluding thoughts

The goal of DMD is to identify dominant modes that capture the relation between successive

vectors of the time series. These are the roots of the polynomial

s(λ) = λn−1 + s1λ
n−2 + . . .+ sn−1.

An underlying premise of the framework is that the time series does not depart significantly

from being quasi-stationary. This can only hold if the observed dynamics result from a

“tug-of-war” mechanism that provides excitation and saturation at the same time (a la

fluctuation-dissipation). Such a dynamical mechanism can be based in either or both, a

stochastic excitation or nonlinear contributions, as in (2.1), where vt may represent either.

This understanding suggests that the effectiveness of DMD and relevance of the underlying

dynamical structure may be quantified by the geometric relation between subspaces spanned

by successive collections of time series samples xt. From a more practical perspective, the

effectiveness of DMD, by necessity, rests on how close the subspaces spanned by X2:n and

X1:n−1 are.

To this end, below, we explore the use of geometric concepts that quantify how well the

above expectations are reflected in the data. Specifically, we introduce the analogue of

partial autocorrelation coefficients that can serve to identify the size of the state-space that

can usefully be exploited to identify dominant dynamics.
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2.2 Innovation parameters (IP’s)

The effectiveness of DMD in modeling the underlying dynamics rests on the relation between

the subspaces spanned by {x`, x`+1, . . . , xm}, over a progression of intervals [`,m] of indices

and over varying window sizes.

Consider first intervals [1, k − 1] and [2, k]. We seek to quantify the new information that is

contained in the last vector xk as compared to the previous ones. Specifically, we consider

how introducing these new data point xk impacts the distance (angle) between the subspaces

spanned by X1:k−1 and X2:k. Evidently, the angle between these subspaces relates to the

discrepancy in (2.2) from holding with identity.

We will similarly consider relations between subspaces corresponding to adjacent windows

[`, `+k−1] and [`+1, `+k], and how angles between such subspaces change with the indices

` and k.

2.2.1 Angles and the gap metric

The distance between subspaces X1,X2 ⊆ X , of a Hilbert space X , is naturally quantified

by the angle operator

R12 := ΠX1|X⊥2 ,

where ΠX1 denotes orthogonal projection onto X1 and |X⊥2 the restriction onto the orthogonal

complement of X2. Herein, we will be concerned with finite dimensional Euclidean spaces.

In this case, provided the subspaces have equal dimension,

‖ΠX1|X⊥2 ‖ = ‖ΠX2|X⊥1 ‖.
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This common value is equal to ‖ΠX1−ΠX2‖ and defines a bona fide metric between subspaces

[52,53]. This is referred to as the gap metric

d(X1,X2) := ‖ΠX1 − ΠX2‖.

Thence,

θ(X1,X2) := arcsin(d(X1,X2))

represents an angular distance between the two subspaces. In case their dimensions do not

match, the gap is the maximal norm of the two angle operators, and equals d(X1,X2) = 1,

giving θ(X1,X2) = π
2
.

We remark that the gap metric between the graphs (infinite dimensional subspaces) of dy-

namical systems is a natural metric to quantify uncertainty in the context of feedback theory,

and as such has been a chapter in modern robust control [54–56]. Herein we are only con-

cerned with the geometry of finite dimensional subspaces spanned by the vectorial entries of

a time series.

2.2.2 Innovation parameters and PARCOR’s

In order to assess the consistency of successive measurements of the time series we consider

gaps between subspaces spanned by successive segments, e.g., range(X1:k) and range(X2:k+1)

for different values of k. We refer to these as innovation parameters (IP)

rk := d(range(X1:k), range(X2:k+1))

In geometric terms, rk is the sine of the angular distance

θk := arcsin(rk)
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between Πspan(x2,...,xk)⊥x1 and Πspan(x2,...,xk)⊥xk+1, i.e., between the projections of x1, xk+1 onto

the orthogonal complement of the span of the intermediate vectors {x1, . . . , xk}. Similarly,

we define

r`,k := d(range(X`:`+k−1), range(X`+1:`+k))

to capture the same dependence between successive subspaces from a different starting point

`.

The innovation parameters relate to the partial correlation coefficients (PARCOR) in time-

series analysis [57]. Specifically, if Xk, for k ∈ Z, denotes a stationary time series, the

PARCOR’s are the cosines of the angles between

X` − E{X`|X`+1, . . . ,X`+k−1} and

X`+k − E{X`+k|X`+1, . . . ,X`+k−1},

where in the conditioning, for k = 1, we define the set {X`+1, . . . ,X`+k−1} as empty. Thus,

these also coincide with the cosines of the angles between the spans of the random variables

{X`, . . . ,X`+k−1} and {X`+1, . . . ,X`+k}.

Besides one set of parameters corresponding to sines and the other to cosines, the main

difference between IP’s and PARCORs is that the latter are typically defined for stationary

stochastic processes, in that the kernel

K(i, j) := 〈xi, xj〉

has a Toeplitz structure [57], unlike the case of IP’s which do not have necessarily a Toeplitz

structure, as the geometric relations in the data sequence x1, x2, . . . are not shift-invariant

in general, which often necessitates exploring the double indexing in r`,k.
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2.2.3 Recursive computation of innovation parameters

Efficient code for computing the innovation parameters for large data sets and size of vectors

can be devised based on a recursive scheme that orthonormalizes successive vectors in the

data base.

Specifically, consider a basis for the span of X1:k−1 to consist of x1 and the orthonormal

columns of a matrix U2:k−1. Likewise, the span of X2:k consist of xk and the orthonormal

columns of a matrix U2:k−1. Define the orthogonal projection onto the orthogonal complement

of the range of U2:k−1

Πrange(U2:k−1)⊥ = I − U2:k−1U
T
2:k−1.

Then the angle between the span of X1:k−1 and that of X2:k coincides with the angle between

(I − Πrange(U2:k−1)⊥)x1 and (I − Πrange(U2:k−1)⊥)xk.

The computation of the innovation parameters can be carried our recursively as follows:

Algorithm 1: Recursive computation of IP’s

Data: Given X1:n ∈ RN×n

Initialization: k = 1, u1 = x1/‖x1‖, u2 = x2/‖x2‖,
ufirst = u1 − 〈u1, u2〉u2, ulast = u2, U = [u2];
while k < n− 1 do

ulast = xk+2;
ulast = ulast − UU ′ulast;
ulast = ulast/‖ulast‖;
rk = sin(acos(〈ufirst, ulast〉));
U = [U ulast];
ufirst = ufirst − 〈ufirst, ulast〉ulast;
ufirst = ufirst/‖ufirst‖;
k = k + 1;

end
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Alternatively, the same computation can be carried out in Matlab utilizing the “econ” feature

that optimizes computations for large data sets. E.g., in order to compute rn set Y1 = X1:n−1

and Y2 = X2:n, and compute Ui for i ∈ {1, 2} with the command [Ui,Σi, Vi] = svd(Yi,
′ econ′).

Since,

Πrange(Yi) = UiU
′
i ,

with Ui an isometry, the gap between the two subspaces is

‖U1U
′
1(I − U2U

′
2)‖2 = ‖U ′1 − (U ′1U2)︸ ︷︷ ︸

M

U ′2‖2

= ‖(U ′1 −MU ′2)(U1 − U2M
′)‖

= ‖I −MM ′ −MM ′ +MM ′‖

= ‖I −MM ′‖

Therefore, the gap between range(Y1) and range(Y2) is

√
1− σmin(M)2

with M = U ′1U2 and σmin(M) denotes the smallest singular value of M .

We proceed to motivate and explain the use and relevance of the IP’s in selecting a suitable

size n for the dynamics sought via DMD on a case study. An additional technical result will

be presented along with the example, which highlights the fact that under- or over-estimating

the value for n leads to significant errors in identifying the correct dynamics. The example

we consider is that of an almost periodic series.
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(a) t = 1

(b) t = 5

(c) t = 9

Figure 2.1: Vorticity field around a cylinder wake.
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2.3 A case study

We consider time series data that represent a persistent vorticity of a periodically fluctuating

fluid flow field in the wake behind a circular cylinder. This dataset can be generated by pub-

licly accessible code in [58]. The two-dimensional Navier–Stokes equations are numerically

solved at Reynolds number 100, to obtain these data. At this Reynolds number the flow

undergoes a laminar vortex shedding which can be thought of as a stable limit cycle. The

data are collected after simulations converge to steady-state vortex shedding. The reader

is referred to [4] for more details on how these data set is extracted. At each of 151 snap-

shots, the values of vorticity are stacked up in a column of a data matrix X which is of

size 89351× 151. The images of the vorticity field at successive timestamps t ∈ {1, 5, 9} are

depicted in Fig. 2.1. The color-coded velocity fluctuations reveal the mechanism of vortex

shedding.

The DMD formalism, and specifically (2.4), is applied to identify the apparent modes of oscil-

lation. The resulting modes are dramatically affected by the choice of n in (2.4). Important

points that are highlighted below by this example are as follows:

i) The time series is very close to being periodic. This can been seen in a variety of

ways, including standard spectral or Fourier analysis. However, here, we compute the

sequence of innovation parameters that quantify how far the subspaces spanned by

sliding windows of data, of varying width, are from each other in the gap metric.

Fig. 2.2 shows rk = r1,k as a function of k. A dimple that repeats with period 30

indicates periodicity. It turns out that exact periodicity of the rk’s, even when the

time series is very close to being periodic is masked by numerical sensitivity that we

will comment later on (discussion leading to, and Proposition 2.3.1).

ii) Fig. 2.3 shows the color-coded values of r`,k as a function of ` vs. k. Specificaly, 50 snap-

shots are drawn as rows. The `th row corresponds to the gap d(range(X`:k), range(X`:k+1)),
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Figure 2.2: rk = d(range(X1:k), range(X2:k+1)) vs. k

Figure 2.3: d(range(X`:k), range(X`:k+1)) color-coded as function of starting time ` and win-
dow size k
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where k sweeps from ` + 1 to the last one. The first row, for instance, corresponds

to the values illustrated in Fig. 2.2. One can observe that at each row the minimum

gap occurs at the 30th timestamp. This strongly suggests the use of a time-window of

size n = 30 to find the DMD modes. Periodicity is evident in Fig. 2.3; the decreasing

dimples with period 30 are repeated with regularity starting from any chosen starting

point ` (cf. discussion leading to Proposition 2.3.1).

(a) DMD eigenvalues for n = 20 (b) DMD eigenvalues for n = 30

(c) DMD eigenvalues for n = 40

Figure 2.4: DMD eigenvalues from vorticity field data.

iii) The eigenvalues of S (DMD eigenvalues of the sought dynamics) are shown in Fig. 2.4

for n ∈ {20, 30, 40}. It is observed that their distribution is dramatically affected by

the chosen size of the subspaces to compare in (2.2), namely n.
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iv) For n = 30 the eigenvalues of S shown in Fig. 2.4 have modulus ' 1, in agreement

with the observed periodic structure of the flow field. Exact periodicity of the time

series results in equispaced eigenvalues, and this is (almost) the case here.

At this point we would like to explain the source of the apparent diminishing of periodic

dimples in Fig. 2.2 with period 30. As noted earlier, the gap

rk = d(range(X1:k−1), range(X2:k))

is the sine of the angle between

ξ1 := Πspan(x2,...,xk−1)⊥x1, and

ξk := Πspan(x2,...,xk−1)⊥xk.

Assuming that the series is k-periodic, the angle between ξ1 and ξk is zero and xk ∈

span(x1, . . . , xk−1). Likewise,

xk+1 ∈ span(x2, . . . , xk) = span(x1, . . . , xk−1).

Denote

ξnext := Πspan(x2,...,xk−1)⊥xk+1,

and observe that the angle to ξk, and therefore ξ1 too, is zero. Then

rk+1 = d(range(X1:k), range(X2:k+1))

= d(span(ξ1, X2:k−1, ξk), span(X2:k−1, ξk, ξnext))

= d(span(ξ1, ξk), span(ξk, ξnext)) = 0,
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with all three vectors ξ1, ξk, ξnext co-linear. However, a small perturbation in each has a

significant effect. Indeed, for arbitrarily small δ’s,

d(span(ξ1 + δ1, ξk + δk), span(ξk + δk, ξnext + δ))

= d(Πspan(ξk+δk)⊥(ξ1 + δ1),Πspan(ξk+δ)⊥(ξnext + δ))

can take any value on [0, 1]. We recast the claim as follows.

Proposition 2.3.1. Consider a vector ξ ∈ RN and perturbations ξi = ξ + δi, for i ∈ {1, 2},

with δi ⊥ ξ. Then

d(span(ξ + δ1, ξ), span(ξ + δ2, ξ) = d(span(δ1), span(δ2)).

The proof is elementary. What this statement helps exemplify (and prove) is that in cases

where elements that determine the span of interest are almost co-linear, the angles between

the subspaces are very sensitive to errors. A more precise mathematical statement can be

worked out that involves the conditioning number of the matrix X1:k in our earlier setting.
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Chapter 3

Preliminaries on optimal mass

transport

We herein provide background on the theory of optimal mass transport (OMT) that under-

lies the developments in the body of this thesis, and refer to [12, 59, 60] for more detailed

exposition.

Let X = Rd be equipped with the Borel σ-algebra B(X). Let µ0 and µ1 be two probability

measures in P2(X), the space of probability measures with finite second moments. We

consider the problem to minimize the quadratic cost

∫
X
‖T (x)− x‖2

2 dµ0(x)

over the space of transport maps

T : X→ X

x 7→ T (x)
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that are measurable and “push forward” µ0 to µ1, a property written as T#µ0 = µ1. This

means that for all A ∈ B(X), we have µ1(A) = µ0(T−1(A)) or, equivalently, that for all

integrable functions f(x) with respect to µ1,

∫
X
f(x)dµ1(x) =

∫
X
f(T (x))dµ0(x). (3.1)

If µ0 is absolutely continuous with respect to the Lebesgue measure, it is known that the

optimal transport problem has a unique solution T̂ (x) which turns out to be the gradient of

a convex function φ(x), i.e., T̂ (x) = ∇φ(x).

The problem is nonlinear and, in general, the optimal transport map may not exist. To this

end, in 1942, Kantorovich introduced a relaxed formulation in which, instead of a trans-

portation map T , one seeks a joint distribution (referred to as coupling) π on X×X, having

marginals µ0 and µ1 along the two coordinates. The Kantorovich formulation is

inf
π∈Π(µ0,µ1)

∫
X×X
‖x− y‖2dπ(x, y)

where Π(µ0, µ1) is the space of all couplings with the marginals µ0 and µ1. In case the

optimal transport map exists, the optimal coupling coincides with π̂ = (Id × T̂ )#µ0, where

Id denotes the identity map.

The square root of the quadratic transportation cost provides a metric on P2(X), known

as the Wasserstein 2-metric and denoted by W2, which makes P2(X) a geoesic space and

induces a formal Riemannian structure on P2(X) as discussed in [12, 18]. Specifically, a

constant-speed geodesic between µ0 and µ1 is given by

µt = {(1− t)x+ tT̂ (x)}#µ0, 0 ≤ t ≤ 1 (3.2)
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and is known as displacement interpolation or a McCann geodesic; i.e., it satisfies

W2(µs, µt) = (t− s)W2(µ0, µ1), 0 ≤ s < t ≤ 1.

In the Kantorovich formulation, the geodesic reads

µt = {(1− t)x+ ty}#π̂, 0 ≤ t ≤ 1. (3.3)

We recall the definition of weak convergence of probability measures: A sequence {µk}k∈N ⊂

P2(X) converges weakly to µ, written as µk ⇀ µ, if

lim
k→∞

∫
X
f(x)dµk =

∫
X
f(x)dµ for all f ∈ Cb(X),

where Cb(X) is the Banach space of continuous, bounded and real-valued functions on X.

Lemma 3.0.1 (Gluing lemma [12, 18]). Let X1, X2, and X3 be three copies of X. Given

three probability measures µi(xi) ∈ P2(Xi), i = 1, 2, 3 and the couplings π12 ∈ Π(µ1, µ2), and

π13 ∈ Π(µ1, µ3), there exists a probability measure π(x1, x2, x3) ∈ P2(X1×X2×X3) such that

(x1, x2)#π = π12 and (x1, x3)#π = π13. Furthermore, the measure π is unique if either π12

or π13 are induced by a transport map.

Thus, for any two given couplings, which are consistent along the shared coordinate, the

gluing lemma states that we can find a multi-coupling on the product space (X1 ×X2 ×X3)

whose projections onto each pair of coordinates match the given couplings. We now briefly

discuss three subtopics of interest in sequel.
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3.1 Gaussian marginals

In case µi ∼ N (mi, Ci) for i ∈ {0, 1} are Gaussian with mean µi and covariance Ci, respec-

tively, the solution to OMT can be given in closed form [61]

W2(µ0, µ1) =
√
||m0 −m1||2 + tr(C0 + C1 − 2S) (3.4)

where tr(.) stands for trace and S is an optimal (uniquely defined) cross-covariance term

which turns out to be

S = (C0C1)
1
2 = C

1/2
0 (C

1/2
0 C1C

1/2
0 )1/2C

−1/2
0 . (3.5)

The McCann geodesic µt for all 0 ≤ t ≤ 1 is a Gaussian distribution with mean mt =

(1− t)m0 + tm1 and covariance

Ct = C
−1/2
0 ((1− t)C0 + t(C

1/2
0 C1C

1/2
0 )1/2)2C

−1/2
0 . (3.6)

3.2 Discrete measures

Suppose the marginals are discrete probability measures on a finite set X ⊂ Rd, that is,

µ0 =
∑

x0∈X px0δx0 and µ1 =
∑

x1∈X qx1δx1 , where the non-negative weights px0 and qx1 are

such that
∑

x0∈X px0 =
∑

x1∈X qx1 = 1. The transport plan is now in the form of a matrix

(Πx0,x1)(x0,x1)∈X×X and its entries represent the amount of mass moved from x0 to x1. The
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Kantorovich problem in discrete setting can be written as the following linear program:

min
Π

∑
x0,x1∈X

c(x0, x1)Πx0,x1 (3.7)

s.t.
∑
x1∈X

Πx0,x1 = px0 , ∀x0 ∈ X

∑
x0∈X

Πx0,x1 = qx1 , ∀x1 ∈ X

Πx0,x1 ≥ 0, ∀x0, x1 ∈ X,

where c(x0, x1) = ||x0 − x1||22 is the transportation cost. (Throughout, we assume that

transportation costs are quadratic.) Although cast as a linear program, this problem suffers

from a heavy computational cost in large scale applications. It was pointed out in [62] that

there are computation advantages by introducing an entropy regularization term since, in

that case, the problem can then be solved efficiently using the Sinkhorn’s algorithm.

3.3 Multi-marginal optimal transportation

In multi-marginal optimal transport, a set of marginals are given and a law is sought that is

consistent with the given marginals and minimizes a cost. This problem and its applications

are surveyed in [47, 63]. The Kantorovich formulation of this problem for given marginals

{µi}Ni=1 and transportation cost c(x1, · · · , xN) is to minimize

∫
XN
c(x1, · · · , xN)dγ(x1, · · · , xN) (3.8)

where the multi-coupling γ ∈ P2(XN) is such that xi#γ = µi. This is a linear optimization

problem over a weakly compact and convex set for which the numerical methods to solve it

efficiently are well studied in [63,64].
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Chapter 4

Regression analysis of distributional

data

4.1 Regression in Wasserstein space using measure-

valued curves

We generalize regression problems, thought of in the setting of a Euclidean space, to the

space of probability measures. To this end, for a given set {µti}Ni=1 ⊂ P2(X) of probability

measures that are indexed by timestamps {ti}Ni=1 ⊂ [0, 1], we seek suitable interpolating

measure-valued curves. Notice that when µti is absolutely continuous with respect to the

Lebesgue measure, (by a slight abuse of notation) we use µti to denote both the measure

and its density function, depending on the context.

4.1.1 Measure-valued curves

We consider primarily two classes of functions (curves) from the time interval [0, 1] to the

state space X, linear and quadratic polynomials, denoted by Lin([0, 1],X) and Quad([0, 1],X),
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respectively. Generically, we use Ω to denote either class. In the sequel, we consider prob-

ability laws on linear, quadratic, and possibly other classes of functions, so as to build

corresponding classes of measure-valued curves.

For instance, in the case of Ω = Lin([0, 1],X), a probability law can be expressed as a

coupling between the endpoints of line segments, i.e., a probability law π on X2 := X × X.

This is due to the fact that there is a bijective correspondence (X0,1) between each element

in Ω and X2 using the endpoints at t = 0 and t = 1, i.e., x0 and x1 ∈ X, such that for any

ω = (ωt)t∈[0,1] ∈ Ω, we have X0,1(ω) := (x0, x1). We equip Ω with the canonical σ-algebra

generated by the projection maps (Xt)t∈[0,1], defined by Xt(ω) := ωt. In this study, we

consider only the probability measures with finite second moments over X2, that is, P2(X2),

and accordingly the induced probability measures over Ω. Given any probability measure π

on X2, the one-time marginals can be obtained through νt := ((1− t)x0 + tx1)#π, t ∈ [0, 1].

An alternative representation of a probability law on Ω = Lin([0, 1],X) may be given in

terms of a coupling between one endpoint, x0, and a velocity v. In this representation, the

one-time marginals are cast as νt := (x0 + tv)#π, t ∈ [0, 1]. In the rest of this chapter, we

use the first representation to define probability laws on Lin([0, 1],X).

Similar setting can be defined for Ω = Quad([0, 1],X) where Ω is, clearly, bijective to X3.

Herein, any probability law on Ω can be expressed as a probability measure over X3, namely,

π ∈ P2(X3). Also, the one-time marginals can be obtained via νt := (x0 + tx1 + t2x2)#π, t ∈

[0, 1]. For ease of notation, we use x0, x1, and x2 to denote the initial point, velocity, and

acceleration, respectively. Although one can consider other parameterizations of quadratic

curves, e.g. through three points lying on each curve with suitable timestamps, we derive

the results for the former representation without loss of generality.

In the next subsection, we detail the regression formalism of minimizing in the Wasserstein

sense the distance of distributional data from respective marginals of measure-valued linear
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and quadratic curves in P2(X), namely,

GLin := {(νt)t∈[0,1] ⊂ P2(X) | νt = ((1− t)x0 + tx1)#π, π ∈ P2(X2)}, (4.1)

and

GQuad := {(νt)t∈[0,1] ⊂ P2(X) | νt = (x0 + tx1 + t2x2)#π, π ∈ P2(X3)}. (4.2)

We point out that any (νt)t∈[0,1] in GLin, or GQuad, is absolutely continuous [1, Theorem 1],

which amounts to the fact that the metric derivative [65]

|ν ′|(t) := lim
s→t

W2(νs, νt)

|s− t|
≤ m(t)

is bounded by some function m(t) ∈ L1(0, 1) for almost all t ∈ (0, 1).

4.1.2 Regression problems

Regression analysis seeks to model the relationship between variables, which in our case are

probability measures. We consider time as the independent variable and, thereby, regression

in the space of probability measures amounts to identifying a flow of one-time marginals

which may capture possible underlying dynamics.

Thus, given a set of “points” {µti}Ni=1 ⊂ P2(X), we pose the regression problem

inf
ν∈G

N∑
i=1

λiW
2
2 (νti , µti), (4.3)

where G is either GLin or GQuad, and the “weights” λi > 0 (i = 1, · · · , N) satisfy
∑N

i=1 λi = 1.

Linear measure-valued curves represent linear-in-time flows which advance an initial proba-

bility measure at t = 0 to another one at t = 1, and generate correlations across the time
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interval. Conversely, these linear curves are specified by correlation of their end points, and

therefore, problem (4.3) becomes one of minimizing over π ∈ P2(X2) that represents the

coupling between the marginals at t = 0 and t = 1. Specifically, (4.3) can be cast as

inf
π∈P2(X2)

F1(π) :=
N∑
i=1

λiW
2
2 (((1− ti)x0 + tix1)#π, µti). (4.4)

In (4.4) we assume N ≥ 3 since, trivially, for N = 2 any coupling between the two endpoints

results in a zero cost.

Remark 4.1.1. It is important to contrast (4.4) with the geodesic regression problem [10,15–

17] that seeks a geodesic in Wasserstein space to likewise approximate the distributional data

µti (i ∈ {1, . . . , N}). To this end, note that a curve νt = ((1− t)x0 + tx1)#π is a Wasserstein

geodesic when π is an optimal coupling between two marginals (typically, the end-point ones);

the space of such optimal couplings is a strict subset of P2(X2). Thus, the formulation (4.4) is

a relaxation of the geodesic regression in a way that may be seen as analogous to Kantorovich’s

relaxation of Monge’s problem. Our motivation stems from the computational complexity of

geodesic regression rooted in the fact that F1(π) is not displacement convex (see [1, Section

III]). In contrast, in the next section, we will see that (4.4) can be recast as a multi-marginal

transport problem and solved efficiently using Sinkhorn’s algorithm.

Analogously, we define the regression problem for measure-valued quadratic curves by min-

imizing (4.3) over (νt)t∈[0,1] ∈ GQuad, leading to

inf
π∈P2(X3)

F2(π) :=
N∑
i=1

λiW
2
2 ((x0 + tx1 + t2x2)#π, µti). (4.5)

In this case, the hypothesis class consists of flows which are quadratic in time. It may

represent distributions of inertial (mass) particles moving in the space according to quadratic

functions in time under the influence of a conservative force field. As mentioned earlier, the

regression formalism can be generalized to any other hypothesis classes, e.g. higher-order
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curves (cubic, quartic), sinusoids with variable amplitudes and frequencies, and so on. In

the present work, however, we restrict our attention to linear and quadratic measure-valued

curves.

The existence of minimizers is stated next.

Proposition 4.1.1. Problems (4.4) and (4.5) have minimizing solutions.

Proof. The proof follows from Proposition 2.3 in [66]. For completeness, we detail the steps

of the proof for (4.4); the proof of (4.5) follows similarly.

Let {πn}∞n=1 be a minimizing sequence of (4.4). Since the data µti ∈ P2(X) (i ∈ {1, . . . , N}),

the sequence
{∫

X2 ‖x‖2
2dπn

}∞
n=1

remains bounded. This implies that {πn}∞n=1 is tight. There-

fore, Prokhorov’s theorem guarantees the existence of a sub-sequence weakly converging to

some π∗ ∈ P2(X2). The lower semi-continuity of Wasserstein distance shows that F1(π) in

(4.4) is a lower semi-continuous functional. As a result, F1(π∗) ≤ lim inf
n→∞

F1(πn) = inf
π
F1(π).

This proves that (4.4) has a minimizer.

Our next proposition states that (4.4) and (4.5) behave well with respect to scaling time. It

is stated for problem (4.4) and highlights the fact that changing the units of time does not

affect the solution.

Proposition 4.1.2. Suppose for given {µti}Ni=1 ⊂ P2(X), with {ti}Ni=1 ⊂ [0, T ], π̂T ∈ P2(X2)

is a minimizer of

inf
π∈P2(X2)

N∑
i=1

λiW
2
2 (((T − ti)x0 + tix1)#π, µti). (4.6)

Then, π̂1 := (Tx0, Tx1)#π̂
T is a minimizer of (4.4) for { ti

T
}Ni=1 ⊂ [0, 1].

Proof. For each term in (4.6), let η̂i(x0, x1, y) ∈ Π(π̂T , µti) be such that ((T−ti)x0+tix1, y)#η̂i
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is an optimal coupling between its marginals. Such η̂i exists due to Proposition 7.3.1 in [65].

Using (3.1), we have

W 2
2 (((T − ti)x0 + tix1)#π̂

T , µti) =

∫
X3

‖(T − ti)x0 + tix1 − y‖2
2dη̂i(x0, x1, y)

=

∫
X3

‖(1− ti
T

)(Tx0) +
ti
T

(Tx1)− y‖2
2dη̂i(x0, x1, y)

=

∫
X3

‖(1− ti
T

)x0 +
ti
T
x1 − y‖2

2d {(Tx0, Tx1, y)#η̂i} .

It follows that π̂1 = (Tx0, Tx1)#π̂
T .

The proposition above shows the regression problems behave nicely with respect to time

scaling and thus, without loss of generality, we can always assume the timestamps normalized

to lie within the interval [0, 1]. Analogous steps can be carried out to show that π̂1 =

(x0, Tx1, T
2x2)#π̂

T is a minimizer of (4.5) for { ti
T
}Ni=1 ⊂ [0, 1] when π̂T is a minimizer for a

corresponding problem with timestamps over a window [0, T ] with T > 1.

4.2 Multi-marginal formulation

In this section, we show that measure-valued regression can be recast as a multi-marginal

optimal transportation problem. Numerically, this is extremely beneficial when combined

with entropy regularization as described in the next section. First, we provide the result for

measure-valued quadratic curves in the following.

Theorem 4.2.1. Problem (4.5) can be recast as

inf
π
F2(π) = inf

γ

∫
XN+3

N∑
i=1

λi‖x0 + tix1 + t2ix2 − yi‖2
2dγ(x0, x1, x2, y1, · · · , yN)

s.t. yi#γ = µti , ∀i = 1, · · · , N, (4.7)

with γ ∈ P2(X(N+3)), π ∈ P2(X3). Moreover, a minimizer of the right-hand side (γ̂) exists
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and π̂ = (x0, x1, x2)#γ̂ is a minimizer of left-hand side.

Proof. First, suppose π ∈ P2(X3) and µt ∈ P2(X) are such that νt = (x0 + tx1 + t2x2)#π, t ∈

[0, 1] and ηt ∈ Π(π, µt), namely, a coupling between π and µt. Define

Wηt(νt, µt) :=

∫
X4

‖x0 + tx1 + t2x2 − y‖2
2dηt(x0, x1, x2, y).

for which we have W 2
2 (νt, µt) ≤ W 2

ηt(νt, µt), ∀t ∈ [0, 1]. We can show the tightness of this

inequality for some η̂t, namely, W 2
2 (νt, µt) = W 2

η̂t
(νt, µt). To do so, we assume that Λ̂t is an

optimal coupling between νt and µt. Also, we define ρt ∈ P2(X4) as

ρt := (x0 + tx1 + t2x2, x1, x2, y)#η̂t.

The existence of η̂t amounts to finding the probability measure ρt which fulfils the following

properties:

(z1, z4)#ρt = Λ̂t and (z1, z2, z3)#ρt = (x0 + tx1 + t2x2, x1, x2)#π

where (z1, z4)#ρt denotes the projection of ρt onto the product space of first and last coordi-

nates, and (z1, z2, z3)#ρt is its projection onto the product space of the first three coordinates.

Since the projections of Λ̂t and (x0 + tx1 + t2x2, x1, x2)#π onto their first coordinates are

consistent, i.e., equal to νt, by the application of Gluing Lemma (Lemma 5.2.1), we conclude

the existence of ρt. Moreover, as the map (x0 + tx1 + t2x2, x1, x2, y) is invertible, η̂t exists as

well.

Using the disintegration theorem [65, Theorem 5.3.1], we can extend this result to a family
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of measures {µti}
N
i=1 ⊂ P2(X) to show that for given π ∈ P2(X3),

N∑
i=1

λiW
2
2 (νti , µti) = min

γ∈P2(XN+3)
yi#γ=µti

(x0,x1,x2)#γ=π

N∑
i=1

λiW
2
γ (νti , µti)

A minimizer of problem above (γ̂) can be constructed as

dγ̂(x0, x1, , x2, y1, . . . , yN) = d(η̂x0,x1,x2t1 × . . .× η̂x0,x1,x2tN
)(y1, . . . , yN)dπ(x0, x1, x2). (4.8)

In (4.8), the disintegration of each measure η̂ti is written as dη̂ti(x0, x1, x2, yi) = dη̂x0,x1,x2ti (yi)dπ(x0, x1, x2).

According to Proposition 4.1.1, the minimizer π̂ of left-hand side in (4.7) exists. Thereby,

using (4.8), we can obtain a minimizer of the multi-marginal formulation in (4.7) (γ̂). This

proves existence of a solution for our multi-marginal formulation and also, π̂ = (x0, x1, x2)#γ̂.

The proof is complete.

Similarly, a multi-marginal formulation for (4.4) is provided in the following corollary. The

proof is skipped as it resembles that of Theorem 4.2.1.

Corollary 4.2.1. Problem (4.4) can be recast as

inf
π
F1(π) = inf

γ

∫
XN+2

N∑
i=1

λi‖(1− ti)x0 + tix1 − yi‖2
2dγ(x0, x1, y1, · · · , yN)

s.t. yi#γ = µti ,∀i = 1, · · · , N, (4.9)

with γ ∈ P2(X(N+2)), π ∈ P2(X2). Moreover, a minimizer of the right-hand side (γ̂) exists

and π̂ = (x0, x1)#γ̂ where π̂ is a minimizer of left-hand side.

The following proposition shows the consistency of our method with regression in Euclidean

space when the target distributions are Dirac measures.
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Proposition 4.2.1. If all the observations are Dirac measures, i.e., µti = δvi , i = 1, · · · , N

where {vi}Ni=1 ⊂ X, we have

inf
π∈P2(X2)

F1(π) = inf
x0,x1∈X

N∑
i=1

λi‖(1− ti)x0 + tix1 − vi‖2
2,

inf
π∈P2(X3)

F2(π) = inf
x0,x1,x2∈X

N∑
i=1

λi‖x0 + tix1 + t2ix2 − vi‖2
2.

Proof. See [1, Proposition 7] for the proof.

In the original formulation of multi-marginal optimal transport, constraints are typically

given on all marginals. However, in (4.7) and (4.9), constraints are only imposed on a subset

of marginals of multi-coupling γ. We show that these problems can be written in an original

formalism of multi-marginal transportation. The following proposition provides this result

for linear curves; similar argument holds for quadratic curves.

Proposition 4.2.2. For every y = (y1, · · · , yN) ∈ XN define

(x̂0(y), x̂1(y)) = arg min
(x0,x1)∈X2

N∑
i=1

λi‖(1− ti)x0 + tix1 − yi‖2
2

which is a well-defined map from XN to X2 (since the linear regression in Euclidean space

has a unique solution in a closed form). Then, we have

inf
π
F1(π) = inf

γ′∈P2(XN )

∫
XN

N∑
i=1

λi‖(1− ti)x̂0(y) + tix̂1(y)− yi‖2
2dγ′(y1, · · · , yN)

s.t. yi#γ
′ = µti ,∀i = 1, · · · , N, (4.10)

and also, π̂ = (x̂0(y), x̂1(y))#γ̂
′ where π̂ and γ̂′ are minimizers of the left- and right-hand

sides, respectively.
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Proof. The proof is straightforward by noticing that for any γ ∈ P2(XN+2) which respects

all the constraints on the marginals, we have

∫
XN+2

N∑
i=1

λi‖(1− ti)x0 + tix1 − yi‖2
2dγ(x0, x1, y1, · · · , yN)

≥
∫
X(N+2)

(
inf

z0,z1∈X

N∑
i=1

λi‖(1− ti)z0 + tiz1 − yi‖2
2

)
dγ(x0, x1, y1, · · · , yN)

=

∫
X(N+2)

N∑
i=1

λi‖(1− ti)x̂0(y) + tix̂1(y)− yi‖2
2dγ(x0, x1, y1, · · · , yN).

By taking the infimum of both sides of inequality above over γ ∈ P2(XN+2) and using

the identity γ′ = (y1, · · · , yN)#γ (projection onto the last N coordinates), we arrive at the

result.

Remark 4.2.1. One implication of Proposition 4.2.2 is that in case all the distributional

data are supported on a discrete set of points, so does γ̂′. Specifically, if each µti is supported

on a finite set Xi ∈ X for all i = 1, · · · , N , then supp(γ̂′), i.e., support of γ̂′, lies within

X1 × · · ·XN (it is straightforward to show this result, see Proposition 7 in [48]). Also,

π̂ = (x̂0(y), x̂1(y))#γ̂
′ is concentrated on a finite set, that is, the projection of supp(γ̂′)

under the map (x̂0(y), x̂1(y)). In this case, the problem of measure-valued curves admits a

solution in which only a finite number of measure-valued curves in X have non-zero measures.

Therefore, for discrete target measures the problem reduces to a finite-dimensional linear

programming as formulated in the following section. Figure 4.1 illustrates this concept for

three discrete measures as the distributional data at three instants of time. Two possible

trajectories for a mass particle at t0 are shown with dotted lines. The solid lines represent

the best fitting lines for each trajectory (resulted from linear regression in Euclidean space).

One can observe that comparing to the lower fitting line, the upper one leads to a smaller value

for the sum of squared residuals in X, as it passes closer to its three corresponding points.

By solving the multi-marginal problem in (4.10), a smaller probability measure (weight) is
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expected to be assigned to the lower fitting line to penalize its higher value for the sum of

squared residuals.

t
t0 t1 t2

Figure 4.1: Illustration of measure-valued curves for discrete one-time marginals. The dotted
lines show two different trajectories for a particle starting from t0. The solid lines are their
corresponding fitting lines resulted from linear regression in X. The sum of squared residuals
of the fitting line in the top has a lower value than that of the other one. The solution of
multi-marginal problem assigns a higher probability measure (weight) to this fitting line.
The thickness of lines is proportional to the likelihood of each line.

4.3 Discretization

In this section, we propose a strategy towards solving the multi-marginal problems introduced

in the previous section. First, we express a discretized version of the problem and then

invoke the entropy regularization to solve our multi-marginal formulation efficiently. This

is beneficial as in many practical situations we only have a set of samples available for each

one-time marginal. Thus, we can approximate each distributional data with a sum of Diracs

placed at the positions of the available samples.
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4.3.1 Discrete multi-marginal formulation

Suppose for a finite set X ⊂ X, µti =
∑

y∈X p
ti
y δy, i = 1, · · · , N are the given observations,

where for each i the non-negatives weights ptiy sum up to 1. Without of loss of generality, it

is assumed that all µtis are supported on X or a subset of it. We define the multi-marginal

problem as seeking a multi-dimensional array (Γx0,x1,y1,··· ,yN )(x0,x1,y1,··· ,yN )∈XN+2 with non-

negative real elements which solves the following linear programming problem,

min
Γ≥0

∑
x0,x1,y1,··· ,yN∈X

c(x0, x1, y1, · · · , yN)Γx0,x1,y1,··· ,yN (4.11)

s.t. Pyj(Γ) = ptjyj , ∀yj ∈ X, j = 1, · · · , N

where,

c(x0, x1, y1, · · · , yN) =
N∑
i=1

λi||(1− ti)x0 + tix1 − yi||2

is the cost of transport and

Pyj(Γ) =
∑

x0,x1,y1,··· ,yj−1,yj+1,··· ,yN∈X

Γx0,x1,y1,··· ,yj−1,yj ,yj+1,··· ,yN (4.12)

is the projection operator on the marginal of Γ associated with yj.

Notice that Γ is analogous to the multi-coupling γ in (4.9). Comparing to the definition

of π in continuous setting, we have Πx0,x1 = Px0,x1(Γ), ∀x0, x1 ∈ X as the projection of

multi-dimensional array Γ onto (x0, x1) obtained by summing over all the remaining entries.

This leads to a probability measure over the space of linear functions represented by the

endpoints in X.

Remark 4.3.1. Linear programming (4.11) is equivalent to (4.9) if X is chosen rich enough

to contain supp(π̂) as described in Remark 4.2.1. This assumption is not required if, instead
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of (4.9), we write the discrete version of (4.10) (see Remark 4.2.1). However, as explained

in the next subsection, we continue with the discrete formulation in (4.9) due to the struc-

ture of its transportation cost which entails a lower time and space complexities in order to

implement Sinkhorn’s algorithm.

The previous formalism deals with the case of measure-valued lines in discrete setting.

A similar formalism for quadratic curves seeks a multi-dimensional array Γ, such that

(Γx0,x1,x2,y1,··· ,yN )(x0,x1,x2,y1,··· ,yN )∈XN+3 , with non-negative elements which solves

min
Γ≥0

∑
x0,x1,x2,{yi}Ni=1∈X

c(x0, x1, x2, y1, · · · , yN)Γx0,x1,x2,y1,··· ,yN (4.13)

s.t. Pyj(Γ) = ptjyj , ∀yj ∈ X, j = 1, · · · , N

where,

c(x0, x1, x2, y1, · · · , yN) =
N∑
i=1

λi||x0 + tix1 + t2x2 − yi||2,

and

Pyj(Γ) =
∑

x0,x1,x2,y1,··· ,yj−1,yj+1,··· ,yN∈X

Γx0,x1,x2,y1,··· ,yj−1,yj ,yj+1,··· ,yN .

4.3.2 Entropy regularization

The linear programming problems in (4.11) and (4.13) suffer from a high computational

burden. However, the more efficient Sinkhorn iteration can be employed to converge to the

optimal solution of entropy-regularized problem as explained in the following.

Given two discrete probability measures µ =
∑

x∈X pxδx and ν =
∑

x∈X qxδx, supported on

a finite set X ⊂ X, the relative entropy (Kullback-Leibler divergence) of µ with respect to
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ν [67] is defined as

H(µ|ν) =


∑

x∈X px log px
qx

if µ� ν

+∞ otherwise,

where µ� ν indicates that µ is absolutely continuous with respect to ν and 0 log 0 is defined

to be 0. Also, define

H(µ) := H(µ|1) =
∑
x∈X

px log px,

which is effectively the negative of entropy of µ.

In the rest of this section, we present the results for measure-valued lines, however, one can

readily state analogous results for quadratic curves. The entropy regularized version of our

multi-marginal formulation is the convex problem

min
Γ≥0

∑
x0,x1,y1,··· ,yN∈X

c(x0, x1, y1, · · · , yN)Γx0,x1,y1,··· ,yN + εH(Γ) (4.14)

s.t. Pyj(Γ) = ptjyj , ∀yj ∈ X, j = 1, · · · , N,

where ε > 0 is a regularization parameter.

There are effective strategies to solve entropy regularized optimal transport problems, for

instance, the alternating projection method (iterative Bergman projections [13,68,69]), which

is based on projecting sequentially an initial Γ onto the subset corresponding to each marginal

constraint.

Sinkhorn’s algorithm [62] is another approach which enjoys a slightly better performance in

terms of space complexity and parallel computation as discussed in detail in [13]. In this

method, the optimal solution Γ̂ is expressed in terms of the Lagrange dual variables, which
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may be computed by Sinkhorn iterations. In the following, we first briefly touch upon this

method, then by presenting a similar idea to that used in [70], we explain how to improve

the performance of this algorithm in terms of time and space complexities.

It can be shown [70] that, for any x0, x1, y1, · · · , yN ∈ X, the minimizer of (4.14) is of the

form

Γ̂x0,x1,y1,··· ,yN = exp(−c(x0, x1, y1, · · · , yN)

ε
)× at1y1 × · · · × a

tN
yN
, (4.15)

for suitable values of a
tj
yj , j = 1, · · · , N . These are dual variables in the dual problem (see

e.g. [63]). In Sinkhorn’s algorithm, the a
tj
yj ’s in (4.17) can be found by iteratively updating

their values via

atjyj ← atjyj × p
tj
yj
/Pyj(Γ̂), ∀j = 1, · · · , N, yj ∈ X. (4.16)

It is known that in the scheme above, the sequence converges at least linearly to a minimizer

of (4.14) (see e.g. [69,70]).

The computational drawback of Sinkhorn’s algorithm lies in computing the projections

Pyj(Γ̂) in (4.16), as these grow exponentially in the number of snapshots (N). Further-

more, a large amount of memory is required to store the array Γ̂ at each iteration which

leads to a space complexity issue. However, the specific structure of the cost in (4.15) can

be exploited to mitigate the aforementioned bottlenecks. Similar ideas have been advanced

in [70,71].

Notice that we can partially decouple the cost as

c(x0, x1, y1, · · · , yN) =
N∑
i=1

λici(x0, x1, yi)
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where,

ci(x0, x1, yi) = ||(1− ti)x0 + tix1 − yi||2.

The first implication of this decoupling is that, it is now not needed to store all the elements

of c(x0, x1, y1, · · · , yN), but only those required to calculate cis. Moreover, the minimizer in

(4.15), can be decoupled as

Γ̂x0,x1,y1,··· ,yN =
N∏
i=1

atjyi exp(−ci(x0, x1, yi)

ε
). (4.17)

In the following, we explain how to leverage this structure to calculate Py1(Γ̂) more efficiently.

The same procedure can be utilized to compute other projections, i.e., Pyj(Γ̂), j = 2, · · · , N .

One can easily observe that Py1(Γ̂) for fixed x0, x1 ∈ X, reads

Py1|x0,x1(Γ̂) = at1y1 exp(−c1(x0, x1, y1)

ε
)
N∏
i=2

(∑
yi∈X

atjyi exp(−ci(x0, x1, yi)

ε
)

)
, (4.18)

for any y1 ∈ X, and hence,

Py1(Γ̂) =
∑

x0,x1∈X

Py1|x0,x1(Γ̂). (4.19)

The benefit of this approach is that the term

N∏
i=2

(∑
yi∈X

atjyi exp(−ci(x0, x1, yi)

ε
)

)

in (4.18) is independent of y1 and thus it is the same for all y1 ∈ X. The complexity of

computing this term for all x0, x1 ∈ X is O((N − 1)|X|3), where |X| is the cardinality

of the discrete set X. This leads to O(N |X|3) as the total computational complexity of

each Sinkhorn iteration by using (4.19) to compute the projections. Notice that computing
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the projections Pyj(Γ̂) by summing over all the indices x0, x1, y1, · · · , yj−1, yj+1, · · · , yN as

defined in (4.12) scales exponentially in the value of N , i.e., the computational complexity

of one Sinkhorn update in (4.16) is O(|X|N+2). Therefore, leveraging the structure of cost

in our multi-marginal formulation, decreases the computational complexity of the Sinkhorn

iterations substantially.

4.4 Gaussian case

Suppose the data are Gaussian distributions µti ∼ N(0, Cyi), i = 1, · · · , N , where the Cyi ’s

are symmetric and positive definite matrices. The means of distributions are assumed to be

zero for simplicity and without loss of generality. This is due to the fact that for Gaussian

measures, the means can be treated separately via ordinary regression in Euclidean space

and thereby, the means for the optimal curve in (P2(X),W2) can be computed as a function

of t.

In practical settings where for each marginal only a set of samples is available, we can

approximate each Cyi with the sample covariance. The following proposition recasts (4.7) as

a Semi-Definite Programming (SDP).

Proposition 4.4.1. Consider µti ∼ N(0, Cyi), i.e., Gaussian “points”. A minimizing γ̂ in

(4.7) is Gaussian with zero mean and covariance of the form

Cγ =


Cx0 Sx0x1 Sx0x2 Sx0y1 ... Sx0yN
STx0x1 Cx1 Sx1x2 Sx1y1 ... Sx1yN
STx0x2 STx1x2 Cx2 Sx2y1 ... Sx2yN
STx0y1 STx1y1 STx2y1 Cy1 ... Sy1yN

...
...

...
...

...
STx0yN

STx1yN
STx2yN

STy1yN
... CyN

 (4.20)
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that solves

min
Cγ�0

N∑
i=1

λi.tr(Cx0 + t2iCx1 + t4iCx2 + Cyi + 2tiSx0x1

+ 2t2iSx0x2 + 2t3iSx1x2 − 2Sx0yi − 2tiSx1yi − 2t2iSx2yi). (4.21)

where Cγ � 0 indicates that Cγ is positive semi-definite.

Notice that in Cγ, the sub-matrices Cyis are given, while the other blocks are unknown.

Proof. As the marginals {µti}
N
i=1 in (4.7) are Gaussian and the cost function is quadratic in

x0, x1, x2, y1, · · · , yN , it follows that γ̂ in (4.7) is also Gaussian as in the cost and constraints

only second-order moments are involved. Simple calculation shows the quadratic cost in

(4.7) can be written as that in (4.21).

It should be noted that since π̂ = (x0, x1, x2)#γ̂, one can express the optimal curve in GQuad

(defined in (4.2)) as

νt ∼ N(0, Cx0 +t2Cx1 +t4Cx2 +t(Sx0x1 +STx0x1)+t2(Sx0x2 +STx0x2)+t3(Sx1x2 +STx1x2)), (4.22)

for t ∈ [0, 1], for the optimal solution of (4.21).

Similar results can be derived for multi-marginal formulation of measure-valued lines in (4.9).

In particular, a minimizing γ̂ in (4.9) is Gaussian with zero mean and covariance of the form

Cγ =


Cx0 Sx0x1 Sx0y1 ... Sx0yN
STx0x1 Cx1 Sx1y1 ... Sx1yN
STx0y1 STx1y1 Cy1 ... Sy1yN

...
...

...
...

STx0yN
STx1yN

STy1yN
... CyN

 , (4.23)

48



that solves

min
Cγ�0

N∑
i=1

λi.tr((1− ti)2Cx0 + t2iCx1 + Cyi + 2ti(1− ti)Sx0x1

− 2(1− ti)Sx0yi − 2tiSx1yi). (4.24)

To exemplify our regression approach for Gaussian distributional data we consider a one-

dimensional Ornstein–Uhlenbeck process modeled by an Itô stochastic differential equation

dXt = −Xtdt+ 2dWt

where (Wt)t≥0 is a one-dimensional standard Wiener process. Such a process models the

dynamics of an over-damped Hookean spring in the presence of thermal fluctuations. Starting

from X0 = 0, the variance of Xt reads

σ2(t) = 2(1− exp(−2t)).

We consider the one-time marginals of this process at 20 different timestamps starting from

t = 0.1 to t = 1 with equal time steps. In practical settings where only a set of samples from

each one-time marginal is available, we can approximate the Gaussian distributions using the

sample means and variances. The SDPs in (4.21) and (4.24) are solved separately to obtain

the optimal multi-couplings γ̂ and π̂ in each case. In addition, for the sake of comparison we

find the best geodesic which passes as close as possible to these 20 Gaussian marginals. This

can be done easily as the marginals are one dimensional, noticing that the geodesic between

two Gaussian distributions with standard deviations σ0 and σ1 is Gaussian for all t ∈ [0, 1]

with standard deviation σt = (1−t)σ0+tσ1. Therefore, the geodesic regression in this setting

becomes a linear regression in R1 seeking the values of σ0, σ1 > 0. Figure 4.2 illustrates the

obtained curves in Wasserstein space for different values of t along with the dataset. Blue
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curves are the target marginals. One can notice that the measure-valued quadratic curves

capture the variation in the dataset better than measure-valued linear curves. Also, the

geodesic regression has the poorest performance among the three. This ensues from the fact

that in geodesic regression a curve in Wasserstein space with highest correlated endpoints is

sought. However, in the framework of this study, this constraint is relaxed which can also

moderate underfitting. In Fig. 4.2, some of the measure-valued linear or quadratic curves

are represented in each sub-figure. The intensity of color is proportional to the likelihood of

each path. From a fluid mechanical point of view, this can be thought of as a flux for the

mass particles. More amount of mass transports through the darker regions.

4.5 Gaussian mixtures

Linear combinations of Gaussian measures can model multi-modal densities, which are

broadly used to study properties of populations with several subgroups. More generally,

the set of all finite Gaussian mixture distributions (GM(X)) is a dense subset of P2(X)

in the Wasserstein metric [48]. In fact, in principle, we can approximate any measure in

P2(X) with arbitrary precision with parameters for the Gaussian mixture determined via

the Expectation-Maximization algorithm.

While the displacement interpolation of Gaussian distributions remains Gaussian, for Gaus-

sian mixtures this invariance does not hold. Nevertheless, we may want to retain the

Gaussian mixture structure of the interpolation due to their physical or statistical features.

In [48,49], a Wasserstein-type distance on Gaussian mixture models is proposed by restricting

the set of feasible coupling measures in the optimal transport problem to Gaussian mixture

models. This gives rise to a geometry that inherits properties of optimal transport while

it preserves the Gaussian mixture structure. Specifically, for positive integers K0 and K1,
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(a) Geodesic regression (b) Regression via measure-valued lines

(c) Regression via measure-valued quadratic curves

Figure 4.2: Regression results for one-dimensional Gaussian marginals. Blue curves are
the given distributions and red ones are the optimal curves in the Wasserstein space. The
intensity of color in linear and quadratic curves is proportional to the likelihood of each path.

consider the following Gaussian mixture models on X,

µ0 = p0
ν1
ν0

1 + · · ·+ p0
νK0

ν0
K0
, µ1 = p1

ν1
ν1

1 + · · ·+ p1
νK1

ν1
K1
,

where each νij is a Gaussian distribution and pi =
[
piνi · · · p

i
νKi

]T
, i = 0, 1, are probability

vectors. Now define a Wasserstein-type distance between the two Gaussian mixtures µ0 and
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µ1 ∈ GM(X) by minimizing

∫
X2

‖x− y‖2
2 dπ(x, y)

over π ∈ Π(µ0, µ1)
⋂
GM(X2). The square root of minimum defines a metric on GM(X)

denoted by WM(µ0, µ1) [48, 49]. Clearly,

W2(µ0, µ1) ≤ WM(µ0, µ1), ∀µ0, µ1 ∈ GM(X).

The problem above has an equivalent discrete formulation. In particular, by viewing the

Gaussian mixtures as discrete probability distributions on the Wasserstein space of Gaussian

distributions, we can show [48]

W 2
M(µ0, µ1) = min

w∈Π(p0,p1)

∑
i,j

wijW
2
2 (ν0

i , ν
1
j ), (4.25)

where Π(p0, p1) denotes the space of joint distributions between the probability vectors p0

and p1. The space of Gaussian mixtures equipped with this metric is a geodesic space for

which one can define the displacement interpolation (see [48,49] for further details).

This Wasserstein-type distance between the discrete distributions on the Wasserstein space

of Gaussian distributions, allows for the notion of measure-valued curves being carried over

into the case of Gaussian mixtures. In other words, in the space of Gaussian distributions,

the displacement interpolations (Eq. (3.6)) play the role of straight lines in Euclidean space.

Therefore, the goal is to find a probability measure over the space of geodesics of Gaussian

distributions, for which the one-time marginals approximate a set of Gaussian mixtures

indexed with timestamps. To do so, consider the set X = {νi}Ki=1 which consists of a finite
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number of Gaussian distributions. Also, the available data

{
µti =

∑
ν∈X

ptiν ν

}N

i=1

,

is a family of Gaussian mixtures, each associated with a timestamp ti ∈ [0, 1]. Each µti can

also be thought of as a discrete probability measure over the space of Gaussian measures

supported on X (or a subset of X). By analogy with the formalism for measure-valued lines

(Eq. (4.4)), we minimize

min
w∈Ω

N∑
i=1

λiW
2
M(

∑
j`

wj` g
νjν`
ti , µti ), (4.26)

where Ω =
{
w ∈ RK×K

+ |
∑

j`wj` = 1
}

and g
νjν`
t represents the displacement interpola-

tion between νj and ν`. This problem can be recast as a multi-marginal optimal trans-

port problem which enjoys a linear structure by pursuing the same strategy introduced

in Section 4.2. In particular, (4.26) is equivalent to seeking a multi-dimensional array

(Γσ0,σ1,ν1,··· ,νN )(σ0,σ1,ν1,··· ,νN )∈XN+2 with non-negative real elements which solves

min
Γ≥0

∑
σ0,σ1,ν1,··· ,νN∈X

c(σ0, σ1, ν1, · · · , νN)Γσ0,σ1,ν1,··· ,νN (4.27)

s.t. Pνj(Γ) = ptjνj , ∀νj ∈ X, j = 1, · · · , N

where

c(σ0, σ1, ν1, · · · , νN) =
N∑
i=1

λiW
2
2 (g

νjν`
ti , νi),

and Pνj(Γ) is the projection operator on the marginal of Γ associated with νj, cf. (4.12).

Also, the minimizer of (4.26) (ŵ) can be obtained by the projection ŵ = Pσ0,σ1(Γ̂), where Γ̂

is the minimizer of (4.27).
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The formalism above is a linear programming which can be solved efficiently as one can

solve the entropy regularized version of it by leveraging the generalized Sinkhorn algorithm

as described in Section 4.3.

We exemplify this approach for Gaussian mixtures with the following toy example. We

consider a finite set of probability measures which consists of 4 Gaussian distributions as

depicted in Fig. 4.3. The distributional data at 4 instants of time are constructed by choosing

some probability vectors over the elements of this set. These target distributions are shown

in Fig. 4.4. The linear programming in (4.27) is solved, which results in a curve in P2(X)

for which the one-time marginals are Gaussian mixtures. The result of regression for this

problem is illustrated in Fig. 4.5 at some timestamps. One can observe that the one-time

marginals of the obtained curve capture the variation of the distributional data in time.

Figure 4.3: Gaussian Basis

4.6 Estimation of invariant measures

As a potential application of the proposed regression, we describe an approach to approx-

imate the Perron-Frobenius operator and stationary distribution (if any exists) associated

with a dynamical system using a few available distributional snapshots. Most studies in
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(a) t = 1
10 (b) t = 1

3

(c) t = 2
3 (d) t = 9

10

Figure 4.4: Distributional data

the literature present numerical computation of invariant measures for known dynamics,

or where the pointwise correspondence between the successive points in time is available

(See [45] and references therein). In our approach, we hypothesize no information on the

underling dynamics or the trajectories of particles.

A discrete-time dynamical system

xk+1 = S(xk)

on the measure space (X,B(X), λ) is defined by a λ-measurable state transition map S :

X → X. This map is assumed to be non-singular, which guarantees that the push-forward

operator under S preserves the absolute continuity of (probability) measures with respect

to λ. In continuous-time setting, the state transition law can be represented by a flow map

xt+τ = Sτ (xt) for τ ≥ 0, where xt denotes the state of dynamics at time t. We assume
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(a) t = 0 (b) t = 1
10 (c) t = 2

10

(d) t = 1
3 (e) t = 2

3 (f) t = 8
10

(g) t = 9
10 (h) t = 1

Figure 4.5: The result of measure-valued geodesics regression for Gaussian mixtures.

that the dynamics is time-invariant. The evolution of probability measures under Sτ can be

written as µt+τ = Sτ#µt.

Let L1(X) := L1(X,B(X), λ) be the space of integrable functions on X, then the Perron-

Frobenius operator (PFO), Pτ : L1(X)→ L1(X), is defined by

∫
A

Pτf dλ =

∫
S−1
τ (A)

f dλ, ∀A ∈ Σ, (4.28)

for f ∈ L1(X). When f is a density associated with the probability measure µf , PFO can

be thought of as a push-forward map, that is, Pτµf = Sτ#µf . The connection between the
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dynamics and PFO can be seen in that the PFO translates the center of a Dirac measure

δx ∈ L1(X) in compliance with the underlying dynamics, that is, Sτ#δx = δSτ (x). It also

relates to the Koopman operator which acts on the observable functions through a duality

correspondence [72].

It is standard that PFO is a Markov operator, namely, a linear operator which maps prob-

ability densities to probability densities. It is also a weak contraction (non-expansive map),

in that, ‖Pτf‖L1 ≤ ‖f‖L1 for any f ∈ L1(X). If µ = Sτ#µ, then µ is an invariant measure

for Sτ . For many dynamical systems, the PFO drives the densities into an invariant one

(measure, in general), which is unique if the map Sτ is ergodic with respect to λ.

For non-deterministic dynamics where Sτ (x) is a an X-valued random variable on some

implicitly given probability space, the Perron-Frobenius operator reads

Pτf(x) =

∫
X
Kτ (y, x) f(y) dλ(y), (4.29)

where the transition density function is denoted byKτ (y, x) : X×X→ [0,∞]. The transition

density function exists, if Sτ (x) does not assign non-zero measures to null sets [73].

The most popular method in the literature to discretize PFO is Ulam’s method [39, 40].

In this approach, the state-space (X) is divided into a finite number of disjoint measurable

boxes {B1, ..., Bn}. The PFO is approximated with a n × n matrix with elements pij. To

do so, first we can choose a number (q) of test points (samples) {xil}
q
l=1 within each Box Bi

randomly. Then, the elements of this matrix can be estimated by

pij =
1

q

q∑
l=1

1Bj(S(xil))

where 1Bj denotes the indicator function for the box Bj.

Ulam’s method requires the trajectories of test points to be available, which is not the case in
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many practical situations, where the trajectories of test points (i.e., mass particles, agents,

or so on) are missing. We can use the method of this study for regression, to estimate

the Perron-Frobenius operator, and subsequently invariant measure corresponding to some

dynamical system based on the collective behavior of particles. In other words, we postulate

no knowledge of the underlying dynamics and assume that only a limited number of one-

time marginal distributions is available at different timestamps ti, i ∈ {1, . . . , N}. In fact,

these one-time marginals are the evolution of some initial distribution at t = 0 under the

action of discretized dynamics xt+τ = Sτ (xt). As mentioned in Proposition 4.1.2, the time

can be scaled to lie within the interval [0, 1]. These distributions are quantized by suitable

partitioning of the domain X =
⋃n
`=1B`, which is a compact set, followed by counting the

particles in each of the n boxes B` to obtain µti , with Diracs placed at the center of each

interval. The Minimizer of multi-marginal formulation of the regression problem (i.e., Eq.

(4.11)), provides a coupling π̂ between the distributions at two instants of time t = 0 and

t = 1. Also, this can be thought of as a probability measure over the space of linear curves

in X, which indicates how much mass is transporting along the lines from t = 0 to t = 1.

Putting these two views together, one can conclude that π̂ gives a correlation law between

the distributions of particles at t = 0 and t = 1, where the mass particles move at constant

speeds from t = 0 to t = 1. It should be noted that the entropy regularization of cost can

be employed to find π̂ efficiently, as discussed in Section 4.3.

Notice that π̂ contains the information on the distributions of the particles at t = 0 and

t = 1, namely, p{t=0} and p{t=1} respectively, as well as the correlation law between the two

end-points. Therefore, we can determine a transition probability matrix (of a Markov chain)

Q(`, `′) = π∗(`, `′)/p{t=0}(`), (4.30)

for `, `′ ∈ {1, . . . , n}. From a measure-theoretic point of view Q can be seen as the dis-
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integration of π̂. This transition probability matrix can be deemed as a finite-dimensional

approximation of the Perron-Frobenius operator corresponding to the underlying dynamics,

that is, Pτ in either (4.28) or (4.29) for τ = 1. Assuming that the underlying dynam-

ics is time-invariant (or time-homogeneous for non-deterministic dynamics), the invariant

distribution of dynamical system can be approximated by the stationary vector of Q.

To exemplify this approach, we apply it to logistic map in order to predict its asymptotic

statistical properties for different values of population-growth parameter. The logistic model

for population growth is

xk+1 = T (xk) = rxk(1− xk), (4.31)

where xk ∈ [0, 1], k ∈ {0, 1, . . .}, and r is the population-growth parameter, see [74]. The

behavior of dynamics changes from regular to chaotic as the parameter r varies from 0 to 4.

We visualize the results for two values of r, namely, r = 3 and r = 4.

For 2 ≤ r ≤ 3, starting from any initial point in (0, 1), the population will eventually ap-

proach the same value r−1
r

, so-called “attractor”. However, as r approaches 3 the convergence

becomes increasingly slow. For r = 4, it is known that this system displays highly chaotic

behavior; in fact, starting from any initial point x0 ∈ (0, 1), the sequence {xk | k = 1, 2, . . .}

covers densely the interval [0, 1], see [75]. Yet, the dynamical system is statistically stable in

that, any initial probability distribution tends towards an invariant measure with density

fs(x) =
1

π
√
x(1− x)

. (4.32)

Our aim is to estimate where the mass particles will eventually concentrate by the iterates

of logistic map using only a few probability distributions obtained from the evolution of an

initial distribution under the action of this map. We do not hypothesize any information on
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the correlations between each pair of the probability distributions. Namely, the logistic map

is only used to construct the distributional data. To do so, the interval [0, 1] is partitioned

into n sub-intervals of equal width and the evolution of 1000 points, uniformly selected in

[0, 1], is used to construct N distributional data under the successive iterates of logistic map.

We index the data with timestamps ti = i−1
N−1

, i = 1, · · · , N . The logistic map herein can

be though of as the flow map of a dynamical system for the time lag τ = 1
N−1

. We provide

the results for different values of N , n, and the regularization parameter ε in Sinkhorn’s

algorithm, to examine the sensitivity of the results to these parameters.

The transition probability matrix Q in Eq. (4.30) is computed for different values of N , n,

and ε and accordingly the stationary distribution of Q is obtained. The results are depicted

in Fig. 4.6 which show that the stationary distribution is concentrated around the stable

fixed point of the logistic map (xk+1 = 3xk(1 − xk)) at x = 2
3
. In particular, the results for

three values of n are illustrated in the first row. The second row represents the impact of

N on estimated stationary distribution. As the number of distributional data varies from 3

to 9, we observe the stationary distribution is concentrated more densely around the fixed

point. Finally, the third row relates to the sensitivity of results to regularization parameter ε.

Although for smaller values of ε the convergence of Sinkhorn iterates to the optimal solution

becomes slower, we achieve a better result for the stationary distribution in terms of having

a lower variance.

Figure 4.7 depicts the approximated invariant measure for the logistic map where r = 4. In

this case [0, 1] is partitioned into 50 equi-length sub-intervals and we construct 5 distribu-

tional data by the iterates of logistic map starting from a uniform distribution. The blue

curve represents the analytic invariant measure given in (4.32).
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(a) N = 5, n = 30, ε = 0.1 (b) N = 5, n = 100, ε = 0.1 (c) N = 5, n = 200, ε = 0.1

(d) N = 3, n = 100, ε = 0.05

25
(e) N = 6, n = 100, ε = 0.05 (f) N = 9, n = 100, ε = 0.05

(g) N = 6, n = 100, ε = 0.2 (h) N = 6, n = 100, ε = 0.1 (i) N = 6, n = 100, ε =
0.03

Figure 4.6: The stationary distribution of the Markov chain (histogram and red fitting
curve) for logistic map xk+1 = 3xk(1−xk). The figures show the concentration of stationary
distribution around the single stable fixed point of logistic map at x = 2

3
for different values

of N , n, and ε.

Figure 4.7: The stationary distribution of the Markov chain (histogram and red fitting curve)
is compared to the invariant density of the logistic map for r = 4 (blue).
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Chapter 5

Data-Driven Approximation of the

Perron-Frobenius Operator Using the

Wasserstein Metric

5.1 Transfer operators

In this section we discuss the Perron-Frobenius operator and Koopman operators. These

encode information on the underlying dynamical equations, which are nonlinear, in general.

The operators are linear albeit on infinite-dimensional spaces, the space of distributions

and observables, respectively. Although our study focuses on approximating the Perron-

Frobenius operator, we concisely summarize the duality between the two [29].

5.1.1 Notation

The three-tuple (X,Σ, λ) represents a measure space X ⊂ Rd equipped with a sigma-algebra

Σ and measure λ. Typically, and unless otherwise stated, X = Rd, Σ is the Borel algebra, and

λ the Lebesgue measure. The Banach space Lp(X) (1 ≤ p ≤ ∞) is the space of p-Lebesgue
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integrable functions endowed with the norm ‖ · ‖Lp . We denote by (P2(X),W2) the Wasser-

stein space where P2(X) is the set of Borel probability measures with finite second moments,

and W2 the Wasserstein distance. The push-forward of a measure ν by the measurable map

S : X→ X is denoted by ν ′ = S#ν ∈ P2(X), meaning ν ′(B) = ν(S−1(B)) for every Borel set

B. If a measure µf ∈ P2(X) is absolutely continuous with respect to the Lebesgue measure,

then we can assign to µf , a density f ∈ L1(X), that is, a positive function with unit L1-norm,

such that µf (B) =
∫
B
fdλ, for every Borel set B. The Dirac measure at point x is denoted

by δx.

5.1.2 Perron-Frobenius operator

A discrete-time dynamical system

xk+1 = S(xk)

on X is defined by a λ-measurable state transition map S : X→ X. This map is assumed to

be non-singular throughout this chapter, which guarantees that the push-forward operator

under S preserves the absolute continuity of (probability) measures with respect to λ. The

time is assumed to be discrete. In other words, for the time lag τ , the evolution of measures

under S can be written as µtk+τ = S#µtk , (k = 1, 2, . . .); for convenience we compress the

notation by writing µtk =: µk.

The Perron-Frobenius operator (PFO), P : L1(X)→ L1(X), is defined by

∫
A

Pf dλ =

∫
S−1(A)

f dλ, ∀A ∈ Σ

for f ∈ L1(X). When f is a density associated with the probability measure µf , PFO can

be thought of as a push-forward map, that is, Pµf = S#µf . The connection between the

dynamics and PFO can be seen in that the PFO translates the center of a Dirac measure
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δx ∈ L1(X) in compliance with the underlying dynamics, that is, S#δx = δS(x).

It is standard that PFO is a Markov operator, namely, a linear operator which maps proba-

bility densities to probability densities. It is also a weak contraction (non-expansive map), in

that, ‖Pf‖L1 ≤ ‖f‖L1 for any f ∈ L1(X). For many dynamical systems, the PFO drives the

densities into an invariant one (measure, in general) which is unique if the map S is ergodic

with respect to λ.

5.1.3 Koopman operator

The Koopman operator (KO) with respect to S, U : L∞(X) → L∞(X), is the infinite-

dimensional linear operator

Uf(x) = f(S(x)), ∀x ∈ X, ∀f ∈ L∞(X),

see e.g., [76]. This is a positive operator and a weak contraction, that is, ‖Uf‖L∞ ≤ ‖f‖L∞

for any f ∈ L∞(X).

It is straightforward to see that KO is the dual of PFO, namely,

〈Pf, g〉λ = 〈f, Ug〉λ, ∀f ∈ L1(X), g ∈ L∞(X)

where 〈·, ·〉λ is the duality pairing between L1(X) and L∞(X). To reconstruct the underlying

dynamics (S) from KO, we can pick the full-state observable g(x) = x, where g is a vector-

valued observable and KO acts on it componentwise.

5.1.4 Data-driven approximation of transfer operators

As mentioned earlier, the most popular method in the literature to discretize PFO is the

Ulam’s method [39, 40]. In this method, the state-space (X) is divided into a finite number
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of disjoint measurable boxes {B1, ..., Bn}. The PFO is approximated with a n × n matrix

with elements pij. To do so, first we choose a large number (k) of test points {xil}kl=1 within

each Box Bi randomly. Then, the elements of this matrix can be estimated by

pij =
1

k

k∑
l=1

1Bj(S(xil))

where 1Bj denotes the indicator function for the box Bj.

Extended dynamic mode decomposition (EDMD) [5], on the other hand, approximates the

Koopman operator for an available time series of data, i.e., {xi}mi=1. First, a dictionary of

observables D = {φi(·)}ki=1 is chosen. We then consider the vector-valued function Φ =

[φ1 φ2 . . . φk]
T . We stack up the values of this function at the snapshots in two matrices as

Φ[1,m−1] = [Φ(x1) . . . Φ(xm−1)],

Φ[2,m] = [Φ(x2) . . . Φ(xm)].

A finite-dimensional approximation of the restriction of the Koopman operator on the span

of D can be sought by considering a k × k matrix K that satisfies

Φ[2,m] = KΦ[1,m−1]. (5.1)

Depending on the values of m and k, the system of equations (5.1), may be over- or under-

determined. For example, if it is over-determined, K can be obtained by solving a corre-

sponding least-squares problem.
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5.2 Rudiments of Wasserstein space

In this section, we recall the definition and some properties of the Wasserstein distance

[59,60], which are used in this chapter.

Let µ0 and µ1 be two probability measures in P2(X). In the Monge’s formulation of optimal

transport, a mapping T ∗ : X→ X is sought such that T ∗#µ0 = µ1 and

∫
X
‖T ∗(x)− x‖2

2 dµ0 ≤
∫
X
‖T (x)− x‖2

2 dµ0

for any transport map T such that T#µ0 = µ1. This is the minimization of a quadratic cost

over the space of maps T : X → X which “transport” mass dµ0(x) at x so as to match

the final distribution µ1. If µ0 and µ1 are absolutely continuous, Brenier’s characterization

states that the optimal transport problem has a unique solution obtained as gradient of a

convex function φ, that is a monotone map T ∗ = ∇φ(x) [77].

In case a transport map fails to exist, as is the case when µ0 is a discrete probability measure

and µ1 is absolutely continuous, we consider a relaxation of Monge’s problem, known as the

Kantorovich’s formulation, in which one seeks a joint distribution (referred to as coupling)

π on X× X, having marginals µ0 and µ1 along the two coordinates, namely,

W 2
2 (µ0, µ1) := inf

π∈Π(µ0,µ1)

∫
X×X
‖x− y‖2dπ(x, y)

where Π(µ0, µ1) is the space of “couplings” with marginals µ0 and µ1. In this, a minimizer

always exists, and we use Π∗(µ0, µ1) to denote the space of optimal couplings between the

marginals µ0 and µ1. In case the optimal transport map for the Monge problem exists, the

consistency between the two problems can be realized through the relation π = (x, T ∗(x))#µ0.

The square root of the optimal cost, namely W2(µ0, µ1), defines a metric on P2(X) referred

to as the Wasserstein metric [12,18]. Moreover, assuming that T ∗ exists, the constant-speed
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geodesic between µ0 and µ1 is given by

µt = {(1− t)x+ tT ∗(x)}#µ0, 0 ≤ t ≤ 1,

and known as McCann’s displacement interpolation [78].

In the following, we state an important lemma from measure theory which will be used in

the proof of main theorem in this chapter.

Lemma 5.2.1 (Gluing lemma [12, 18]). Let X1, X2, and X3 be three copies of X. Given

three probability measures µi(xi) ∈ P2(Xi), i = 1, 2, 3 and the couplings π12 ∈ Π(µ1, µ2), and

π13 ∈ Π(µ1, µ3), there exists a probability measure π(x1, x2, x3) ∈ P2(X1×X2×X3) such that

(x1, x2)#π = π12 and (x1, x3)#π = π13. Furthermore, the measure π is unique if either π12

or π13 are induced by a transport map.

That is, the gluing lemma states that for any two given couplings, which are consistent

along one coordinate, we can find a measure on the product space (X1 × X2 × X3) whose

projections onto each pair of coordinates match the given couplings, respectively. With this,

we are ready to present the main results in the next section.

5.3 Main results

In this section, we formally define the problem of PFO approximation in the presence of

distributional snapshots for a dynamical system. As already noted, it is assumed that there

is no information on the correlation between each pair of data points (distributions). We

seek system dynamics, S : X→ X, as a λ-measurable map such that it can serve as a model

for the flow encoded in the sequence of data points µ1, µ2, . . . , µm. This is in the sense that,

either S#µk = µk+1 over the data set for k ∈ {1, . . . ,m − 1} (exact matching), or that the

discrepancy between S#µk and µk+1, for the successive data points, is small in the average
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over the available record of distributions. Below, in Section 5.3.1, we first develop the case

where S is a linear map

S : x 7→ Ax,

with A ∈ Rd×d. Then, in Section 5.3.2, we detail the approach for the case where S(·) =∑n
j=1 θjyj(·) is nonlinear (in general) expressed in terms of a linear combination of specified

basis functions yj, j ∈ {1, . . . , n}.

5.3.1 First-order approximation

We first draw an analogy with the EDMD problem by stating the problem to find a matrix

that satisfies the condition in Eq. (5.1). Thus, given a sequence of probability measures

{µi}mi=1 in P2(X), we seek to find a matrix A ∈M(d) (the space of real d× d matrices) such

that

[µ2 µ3 . . . µm] = (Ax)#[µ1 µ2 . . . µm−1]. (5.2)

In (5.2), similar to EDMD, the probability distributions (µ1, µ2,. . . ) are stacked in arrays,

where one is the shifted version of the other. The push-forward operator acts on “stacked

up” measures separately.

Typically, the problem is over-determined, in which case there might not exist a matrix A

that satisfies (5.2), we consider the following regression-type formulation.

Problem 1. Determine a matrix A ∈M(d) that minimizes

F (A) =
m−1∑
i=1

W 2
2 (Ax#µi, µi+1). (5.3)
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If (5.2) has a solution, it trivially coincides with the minimizer of Problem 1 and F (A) = 0.

If, on the other hand, all the measures are Dirac, that is, µi = δxi , i = 1, . . . ,m, the problem

to satisfy (5.2) reduces to an ordinary DMD problem. This shows the consistency of DMD

with our formulation on measures.

Next, we provide a stationarity condition that can be used to obtain the solution to Problem

1.

Theorem 5.3.1. Consider a sequence of absolutely continuous probability measures {µi}mi=1

in P2(X). If a minimizer A ∈ M(d) for (5.3) exists and is nonsingular, then there exist

unique ηi(xi, xi+1) ∈ Π(µi, µi+1) for each i ∈ {1, . . . ,m} such that

(Axi, xi+1)#ηi ∈ Π∗(Axi#µi, µi+1),

and moreover, A satisfies

m−1∑
i=1

∫
X×X

(Axi − xi+1)xTi dηi(xi, xi+1) = 0. (5.4)

In the theorem, each probability measure ηi is a coupling between two distributional snap-

shots µi and µi+1 such that the push-forward measure (Axi, xi+1)#ηi is an optimal coupling

between its marginals. In turn, since these marginals are absolutely continuous by virtue of

the fact that A is nonsingular, the latter coupling (i.e., (Axi, xi+1)#ηi) is singular and “sits”

on the graph of a “Monge map.” As explained in the proof of the theorem, application of the

Gluing lemma shows that each ηi exists and is unique. At this point, the absolute continuity

of the marginals is essential; later on, we will discuss how to relax this assumption so as to

include a class of discrete measures as well.

Proof of Theorem 5.3.1: According to the assumption that A is a minimizer of (5.3), the

69



Fermat’s condition

d

dε
F (A+ εδA)|ε=0 = 0 (5.5)

holds for any tangent direction δA, that is, any matrix in M(d). Without loss of generality,

we consider only one of the terms in (5.3) and define

G(A) = W 2
2 (Ax#µ1, µ2).

To calculate the directional derivative (Gateaux derivative) of G(A), first we show that for

any real ε and δA ∈M(d)

G(A+ εδA)−G(A) ≤ (5.6)

〈
∫
X×X

2(Ax1 − x2)xT1 dη1(x1, x2), εδA〉F +O(ε2)

where 〈·, ·〉F is the Frobenius inner product and η1 is as stated in the theorem. To do

so, let the measure γ1(x1, x
′
1, x2) ∈ P2(X3) be such that (x1, x

′
1)#γ1 = (x1, Ax1)#µ1 and

(x′1, x2)#γ1 ∈ Π∗(Ax1#µ1, µ2). Since these two constraints coincide along x′1, by application

of the Gluing lemma, we conclude that γ1 exists. Moreover, as the projection of γ1 onto

(x′1, x2) is the optimal coupling between two absolutely continuous measures, it is induced

by a transport map (Monge map), and thus the choice of γ1 is unique by once again invoking

the Gluing lemma. Then, η1 := (x1, x2)#γ1 where its uniqueness immediately results from

that of γ1. Hence,

G(A+ εδA)−G(A) ≤∫
X1×X2

(‖(A+ εδA)x1 − x2‖2
2 − ‖Ax1 − x2‖2

2)dη1(x1, x2).

This follows from the fact that G(A + εδA) is the Wasserstein distance (i.e., the minimum
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among all the couplings between (A+ εδA)x1#µ1 and µ2). Finally, by expanding the inte-

grand above with respect to ε, (5.6) is derived.

Without loss of generality we take ε > 0. According to (5.6), we can readily conclude that

lim sup
ε→0

G(A+ εδA)−G(A)

ε
≤

〈
∫
X1×X2

2(Ax1 − x2)xT1 dη1(x1, x2), δA〉F .

The next step of proof is to show that

lim inf
ε→0

G(A+ εδA)−G(A)

ε
≥

〈
∫
X1×X2

2(Ax1 − x2)xT1 dη1(x1, x2), δA〉F .

This last inequality follows from the semi-concavity of the squared Wasserstein distance [65,

Proposition 7.3.6].

By combining the “lim inf” and “lim sup” results, it readily follows that

d

dε
G(A+ εδA)|ε=0 = (5.7)

〈
∫
X×X

2(Ax1 − x2)xT1 dη1(x1, x2), δA〉F .

Finally, writing the directional derivative for all the terms in (5.3) and using Fermat’s con-

dition the proof is complete. 2

Remark 5.3.1. In the statement of Theorem 5.3.1 we assume the existence of a minimizer

A to Problem 1. We now explain that this assumption holds in many reasonable settings, as

for instance, in the case where the probability measures have compact support. To see this,

note that F (A) is coercive, i.e., F (A)→ +∞ as ‖A‖F → +∞ for absolutely continuous µi’s
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with compact support. Further, using the lower semi-continuity of W2 (see Proposition 7.1.3

and Lemma 5.2.1 in [65]), we conclude the lower semi-continuity of F (A) with respect to the

Frobenius norm. These two observations guarantee the existence of a solution to Problem

1. 2

Remark 5.3.2. Equation (5.7) shows how to generate a gradient flow, and thereby a steepest

descent direction for minimizing F (A). Specifically,

∇AF (A) = 2
m−1∑
i=1

∫
Xi×Xi+1

(Axi − xi+1)xTi dηi(xi, xi+1), (5.8)

allows us to construct a gradient-type numerical optimization to find the minimizer of (5.3).

2

Remark 5.3.3. We note in passing that the setting of our approximation Problem 1, can

be used to construct pseudo-metrics for various applications. Specifically, an admissible set

of transformations F may be available (e.g., rotations, translations, scalings of images and

so on), and that these are natural for the problem at hand, and thought to “incur no cost.”

Thence, a distance can be defined between distributions as follows

W 2
F(µ0, µ1) = inf

S∈F
W 2

2 (S#µ0, µ1).

Such a construction is relevant in image registration where alignment/scaling may be desired.

2

5.3.2 Higher-order approximations

In this subsection, we extend the previous result to non-linear models for the underlying

dynamics.

We consider system dynamics, S : X→ X, a λ-measurable map, to be expressed as a linear

72



combination of basis functions yj : X→ X, with j ∈ {1, . . . , n}, i.e.,

S(x; Θ) =
n∑
j=1

θjyj(x).

where Θ = [θ1 . . . θn]T ∈ Rn.

The set of basis functions may be chosen to include polynomials. In such a case, the

corresponding-order moments of the distributional snapshots need to exist, so that integrals

remain finite.

Extending (5.3) to this new setting, we now consider the problem to minimize

F (Θ) =
m−1∑
i=1

W 2
2 (S(x; Θ)#µi, µi+1), (5.9)

over Θ ∈ Rn. We follow a strategy that is similar to that in the proof of Theorem 5.3.1, to

derive a first-order optimality condition for Θ in the form

m−1∑
i=1

∫
X×X

(Y (xi))
T (S(xi; Θ)− xi+1)dηi(xixi+1) = 0. (5.10)

Here, Y (xi) = [y1(xi) . . . yn(xi)] ∈ Rd×n and, as before, ηi(xi, xi+1) ∈ Π(µi, µi+1) is such

that

(S(xi; Θ), xi+1)#ηi ∈ Π∗(S(xi; Θ)#µi, µi+1).

In a similar manner, the absolute continuity of µi’s guarantees the existence and uniqueness

of all the ηi’s.

Equation (5.10) extends our formalism to nonlinear dynamics, parametrized by the span of

Y , for approximating the PFO. In a way similar to (5.8), we consider the gradient of F (Θ)

73



in (5.9) with respect to Θ,

∇ΘF = 2
m−1∑
i=1

∫
X×X
(Y (xi))

T (S(xi; Θ)− xi+1)dηi(xi, xi+1), (5.11)

and employ a gradient-type descent to find the minimizing value for Θ.

5.4 Simulation results

5.4.1 Gaussian distributions

Figure 5.1: Value F (An) as a function of iterated steps in (5.15).

We exemplify our framework with numerical results for the case where the distributional

snapshots are Gaussian. In this case, the Wasserstein distance between distributions can be

written in closed-form.

Consider1 µ0 = N (m0, C0) and µ1 = N (m1, C1). The transportation problem admits a

solution in closed-form [61,79], with transportation (Monge) map

T ∗ :x→ C−1
0 (C0C1)1/2= C

−1/2
0 (C

1/2
0 C1C

1/2
0 )1/2C

−1/2
0 x,

1N (m,C) denotes a Gaussian distribution with mean m and covariance C
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Figure 5.2: The rows exemplify the convergence of (Anx)#µ1 → µ2 and
(Anx)# ((Anx)#µ1) → µ3, respectively, as n = 1, . . . , 8, towards µ2 and µ3, which are dis-
played on the right and separated by a vertical line (with µ2 on top of µ3).

and transportation cost W2(µ0, µ1) given by

√
‖m0 −m1‖2 + tr(C0 + C1 − 2(C

1/2
1 C0C

1/2
1 )1/2) (5.12)

where tr(.) stands for trace.

We begin with a collection µi = N (0, Ci), i = 1, . . . ,m as our distributional snapshots; for

simplicity we have assumed zero-means. The cost (5.3) reads

F (A) =
m−1∑
i=1

tr(ACiA
T + Ci+1 − 2(C

1/2
i+1ACiA

TC
1/2
i+1)1/2). (5.13)

The gradient ∇AF (A), for the case of Gaussian snapshots, is expressed below directly in

terms of the data Ci, i ∈ {1, . . . ,m}.

Proposition 5.4.1. Given Gaussian distributions µi = N (0, Ci), i = 1, . . . ,m, and a non-
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singular A ∈M(d),

∇AF = 2

{
A
m−1∑
i=1

Ci − (
m−1∑
i=1

(Ci+1ACiA
T )1/2)A−T

}
. (5.14)

To determine a minimizer for (5.13), we utilize a first-order iterative algorithm, taking steps

proportional to the negative of the gradient in (5.14), namely,

An+1 = An − α∇AF (An), n = 1, 2, . . . (5.15)

for a small learning rate α > 0.

As a guiding example, and for the sake of visualization, we consider the two-dimensional

state-space X = R2, in which probability measures are evolving according to linear non-

deterministic dynamics,

xk+1 =

 −1
2

2

−1 3
2

xk +
2

5

 ∆ω1
k

∆ω2
k

 , k = 1, 2, . . .

starting from µ1 = N (0, I2), with I2 a 2× 2 identity matrix. We take ∆ω1
k, ∆ω2

k = N (0, 1)

to be independent white noise processes.

This dynamical system is an example of a first-order autoregressive process (AR(1)) which

can also be thought of as an Euler-Äı̀Maruyama approximation of a two-dimensional Ornstein-

Uhlenbeck stochastic differential equation where ∆ω1
k and ∆ω2

k are the increments of two

independent Wiener processes with unit step size.

We note that A is neither symmetric nor positive definite, which implies that it is not a

“Monge map” and, thus, the flow of distributions is not a geodesic path in the Wasserstein

metric.
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Using the first five iterates (m = 6), we employ (5.15) to obtain dynamics solely on the basis

of these 5 distributional snapshots. We initialize (5.15) with α = 0.1 and experimented with

different starting choices for A1. Specifically, we took A1 to be the identity matrix I2, and

also, the average A1 = 1
m−1

∑m−1
i=1 C−1

i (CiCi+1)1/2, without any perceptible difference in the

convergence to a minimizer. For the first choice, A1 = I2, the values of F (An) in successive

iterations is shown in Fig. 5.1.

Our data Ci (i ∈ {1, . . . , 6}) is generated starting from µ1 = N (0, C1) with C1 = I2, i.e., the

2× 2 identity matrix, and the gradient search for the minimizer is initialized using A1 = I2

as well. In Fig. 5.2 we display contours of probability distributions. Specifically, on the right

hand side, separated by a vertical line, we display the contours for µ2 = N (0, C2) and µ3 =

N (0, C3), with µ2 on top of µ3. Then, horizontally, from left to right, we display contours

corresponding to the approximating sequence of distributions. The first row exemplifies the

convergence

(Anx)#µ1 → µ2,

whereas the second row, exemplifies the convergence

(Anx)# ((Anx)#µ1)→ µ3,

as n = 1, . . . , 8.

5.4.2 Non-linear dynamics

For our second example, to highlight the use of the approach, we consider the C1 (continu-

ously differentiable) map S : x 7→ S(x), on X = R with

S(x) = 0.7 + 0.6(1− x)− 0.8(1− x)3. (5.16)
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(a) (b)

Figure 5.3: The two maps in (a) transport a uniform distribution on [0, 1] to the same
discontinuous density in (b). Monge map (blue) is injective but not in C1 everywhere. The
non-injective map (red) is in C1.

Figure 5.4: The evolution of uniform distribution under S(x; Θ) at different iterations of
the algorithm. On the right-hand side the target density is depicted. In the beginning (left)
no jump discontinuity is observed.

The idea for this example has been borrowed from [80]. The map S is depicted in Fig. 5.3(a),

in red solid curve, and pushes forward a uniform distribution on [0, 1] to distribution with

discontinuous density. This density is shown in Fig. 5.3(b). Due to the fact that the density

is discontinuous, the optimal transport (Monge) map has a “corner” (not smooth) and is

displayed in Fig. 5.3(a), with a dashed blue curve.

The method outlined in this chapter allows us to seek a transportation map, within a suitably

parametrized class of functions, that pushes forward µ1 (here, this is the uniform distribution
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Figure 5.5: The transport map S(x; Θ) at different iterations of the algorithm. This shows
the convergence to the non-injective map.

on [0, 1]) to µ2 displayed in Fig. 5.3(b). To this end, we select the representation

S(x; Θ) = θ3 + θ2(1− x) + θ1(1− x)3,

in the basis Y = {1, (1−x), (1−x)3}, and seek to determine the parameters θk (k ∈ {1, 2, 3})

via a gradient-descent as in (5.11).

The two probability distributions are approximated using 100 sample points (drawn inde-

pendently). We initialize with θ1 = −2, θ2 = 0, and θ3 = 2. A discrete optimal transport

problem is solved to find the joint distributions ηi in (5.11) at each time step. The conver-

gence is depicted in Fig. 5.5, where successive iterants are displayed from left to right below

the resulting pushforward distribution. On the right hand side, separated by vertical lines,

the target µ1 is displayed above the cubic map in (5.16).

It is worth observing that, as illustrated in Fig. 5.5, our initialization corresponds to an

injective map resulting in no discontinuity in the first pushforward distribution. In succes-

sive steps however, as the distributions converge to µ1 and the maps to S(x) in (5.16), a

discontinuity appears tied to the non-injectivity of the maps with updated parameters.
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Chapter 6

Conclusion and Future work

6.1 Conclusion

In this dissertation we focused on related concepts and strategies for obtaining dynamical

models and approximating the transfer operators from data, namely, the Perron–Frobenius

and Koopman operators which provide natural dual settings to investigate the dynamics of

complex systems.

Chapter 2 considers the case that only a limited number of data samples are available for

modeling an otherwise exceedingly high dimensional process. The dimensionality of the

process, which may represent visual or distributional fields, in conjunction with the limited

observation record requires careful analysis. It is precisely this regime of “small data,” i.e.,

“few samples,” that has been a challenge in traditional signal analysis since its inception [81],

and has led to entropic regularization among other methodologies. DMD represents a more

recent development that aims to identify suitable linear dynamics that can explain the data.

Historically, DMD has roots and ramifications that relate to theory of the Koopman oper-

ator [82–84]. Data that originate from periodic and quasi-periodic attractors of nonlinear
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dynamics can also be dealt with in the same framework [4]. Thus the concept of the gap

metric, as a tool to quantify how subspaces spanned by data impact modeling assumptions,

is expected to be applicable in this more general setting. This chapter summarizes some of

the findings in a developing treatise into the topic of extracting dynamics from high dimen-

sion distributional fields [85], specifically, the relevance of the gap metric as a tool to provide

guidance in selecting appropriate dimensionality for models for such processes.

In Chapter 4 we presented an approach to estimate flow from distributional data. It can be

seen as a generalization of Euclidean regression to the Wasserstein space relying on measure-

valued curves. It represents a relaxation of geodesic regression in Wasserstein space. The

apparently nonlinear primal problem can be recast as a multi-marginal optimal transport,

leading to a formulation as a linear program. Entropic regularization and a generalized

Sinkhorn algorithm can be effectively employed to solve this multi-marginal problem.

The proposed framework can be used to estimate correlation between given distributional

snapshots. Potential applications of the theory are envisioned to aggregate data infer-

ence [24], estimating meta-population dynamics [20], power spectra tracking [10], and more

generally, system identification [46]. The framework encompasses the case where probability

laws are sought for dynamical systems, generating curves to approximate data sets.

In Chapter 5, we proposed an approach to interpolate distributional snapshots by identifying

suitable underlying dynamics. It is assumed that no information on statistical dependence

between successive pairs of distributions is available. The scheme we propose aims at model-

ing a Perron-Frobenius operator associated with underlying unknown dynamics. It is based

on formulating a regression-type optimization problem in the Wasserstein metric, weighing

in distances between successive distributional snapshots. A first-order necessary condition

is derived that leads to a gradient-descent algorithm. The method extends to search for

nonlinear dynamics assuming a suitable parametrization of the nonlinear state transition

map in terms of selected basis functions. Two academic examples are presented to highlight
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the approach as applied in two cases, the first specializing to Gaussian distributions and

the second dealing with more general distributions (albeit with one-dimensional support for

simplicity).

6.2 Future work

The present work follows a long line of contributions within the data-driven modeling field

to approximate the transfer operators, see e.g. [29–31]. There is a wide range of possible

applications as well as extensions of the theory that lay ahead.

• In Chapter 2 we considered the case that only a limited number of data samples

are available for modeling an otherwise exceedingly high dimensional process. It was

assumed that a linear mechanism underlies the data. The other potential scenario is

the case where the data are observed along the trajectories of a nonlinear mechanism.

In this setting, the Koopman operator plays an important role as it is a linear operator

acting on the observable functions. There is a wide range of studies focusing on the

approximation of Koopman operator from data using a dictionary of functions. The

notion of gap metric can be employed in a more general setting to check the underlying

assumptions in approximating the Koopman operator.

• In Chapter 4 we presented an approach to estimate flow from distributional data.

Future research along these lines, of utilizing higher-order curves and general dynam-

ics, should prove useful in application that may include weather prediction, modeling

traffic, besides more traditional ones in computer vision.

• In Chapter 5, we proposed an approach to interpolate distributional snapshots by

identifying suitable underlying dynamics. This method can be combined with deep

neural networks to estimate the distribution of high-dimensional data. This is a very

important problem to approximate the underlying distribution for high-dimensional
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data such as images when only a set of samples is the only available data. There

is a very rich literature on this topic among which we can mention the generative

adversarial nets [86, 87] and normalizing flows [88,89].
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and in the space of probability measures. Springer Science & Business Media, 2008.

[66] Martial Agueh and Guillaume Carlier. Barycenters in the Wasserstein space. SIAM
Journal on Mathematical Analysis, 43(2):904–924, 2011.

[67] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory (Wiley Series
in Telecommunications and Signal Processing). Wiley-Interscience, USA, 2006.

[68] Jean-David Benamou, Guillaume Carlier, and Luca Nenna. A numerical method to solve
multi-marginal optimal transport problems with Coulomb cost. In Splitting Methods in
Communication, Imaging, Science, and Engineering, pages 577–601. Springer, 2016.

[69] Heinz H Bauschke and Adrian S Lewis. Dykstra’s algorithm with Bregman projections:
A convergence proof. Optimization, 48(4):409–427, 2000.

[70] Isabel Haasler, Axel Ringh, Yongxin Chen, and Johan Karlsson. Multi-marginal optimal
transport and Schrödinger bridges on trees. arXiv preprint arXiv:2004.06909, 2020.

[71] Filip Elvander, Isabel Haasler, Andreas Jakobsson, and Johan Karlsson. Multi-marginal
optimal transport using partial information with applications in robust localization and
sensor fusion. Signal Processing, 171:107474, 2020.
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