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ABSTRACT OF THE DISSERTATION

A Neuro-Genetic-Based Universally Transferable Freeway Incident

Detection Framework

by
Baher Abdulhai

Doctor of Philosophy in Engineering
University of California, Irvine, 1996
Professor Stephen G. Ritchie, Chair

A universal freeway incident detection framework is a task that remains
unfulfilled despite the promising approaches that have been recently
explored. The need for an operationally successful incident detection and
management system as a vital component of any advanced traffic
management system, is well established and recognized. Only recently
however, researchers and practitioners have begun to increasingly realize
that for an incident detection framework to be universally operational and
successful, it needs to fulfill all components of a set of recognized needs. It is
the objective of this research to define those universality requirements and
produce an incident detection framework that possesses the potential to
fulfill them.

A new potentially universal freeway incident detection framework has been
proposed. developed and evaluated. The research effort was started by

defining a comprehensive set of requirements that any universal incident

xiv



detection algorithm or framework should fulfill. Among these requirements,
an incident detection algorithm needs to be operationally accurate,
automatically transferable, and capable of automatically adapting to changes
in the freeway environment. This set of universality requirements was used
as a template against which all algorithms within the scope of this study
have been evaluated. Three major incident and loop detector databases were
heavily utilized, two of which are unprecedented real databases collected
from two major freeway sites in California and Minnesota, namely the
Alameda County’s I-880 freeway database and the Minneapolis' I-35W
database. The universality of the most well known existing incident
detection algorithms was tested using the above databases. Serious lack of
universality, particularly transferability, was detected in all existing
algorithms. Prior to the development of the new universal framework, limits
on acceptable performance were elicited from TMC surveys conducted as part
of this effort. Preliminary investigation of two promising advanced neural
networks, namely the LOGICON and the PNN, was conducted. The PNN
was more appealing due to its universality potential. The PNN was modified
using a principal components transformation layer that resulted in
performance enhancements. This together with its potential universality, led
to the choice of the modified PNN for in-depth development. The in-depth
development stage was divided into three phases. The first was the
extraction of a new and improved input feature set that produced more
distinct classes in the input feature space. The new features enhanced the
transferability of the PNN and made the framework more compliant with the
universality requirements. The second phase was the on-site real time
retraining of the PNN after transferability, a phase that produced near
optimal classification results and detection performance. The third phase
was the development of a post processor output interpreter that linked the
isolated 30 second outputs of the PNN and produced a sequentially updated



probabilistic measure of existence of an incident in the field. The overall
PNN-based framework was found to be fully compliant with the entire set of
universality requirements. Finally a new approach for training a multi-
smoothing-parameter version of the PNN was investigated. The approach
utilized genetic algorithms for optimizing the selection of the smoothing
parameters. Obtained results indicated an improvement in performance over
the single smoothing parameter PNN but at the expense of longer training
time.

The superiority and universality of a particular advanced neural network
model, namely the PNN. was concluded in this research, as compared to the
Logicon and the MLF neural networks, as well as existing conventional
freeway incident detection algorithms. Adding the principal components
transformation layer to the PNN was found to enhance its performance.
Although the genetically optimized version of the PNN showed better
transferability, both versions showed equally good performance after
retraining. The PNN was concluded to be more practical for TMC

implementation due to its instantaneous training capabilities.



CHAPTER 1
INTRODUCTION

1.1 BACKGROUND

A major source of traffic delay in many large urban freeway systems in the
United States is non-recurring congestion caused by incidents such as
accidents. disabled vehicles. spilled loads, temporary maintenance and
construction activities, and other special or unusual events, that disrupt the
normal flow of traffic. For example. estimates of the proportion of urban
freeway delay in the US attributable to non-recurring congestion range up to

about 60% (Lindly, 1987).

Successful automated detection of such incidents in their early stages is vital
for formulating effective response strategies. These may involve real-time
control of traffic entering and on the freeway, provision of real-time traveler
information, and timely dispatch of emergency services and incident removal
crews. An effective incident detection and management system is now a well
recognized key component of any successful Advanced Traffic Management
System (ATMS), the heart of any Intelligent Transportation System (ITS) in

general.
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Unfortunately, the performance of published conventional approaches to
automatic incident detection has proven inadequate for every day use at
Traffic Management Centers (TMCs). Such inadequacy is believed to stem
from three main sources: the first is the less-than-perfect performance at the

original site that the algorithm was developed for, while the second is the

lack of transferability to any other new site, and the third is the absence of
important issues such as the prior (predicted) probability of occurrence of
incidents. posterior probability of an incident after an alarm. and the
unequal costs of misclassifying a traffic pattern. amongst other issues that
will be discussed in due course. Less than perfect performance at any site is
characterized by unacceptably high False Alarm Rate (FAR) and/or low
Detection Rate (DR) and the conflict between the two, as well as
unacceptably long mean Time to Detection (TTD). At the original site. this is
often caused by lack of sufficiently representative real loop and incident data.
modest choice of input features to feed the algorithm, and modest pattern
recognition capabilities of the algorithms, on theoretical grounds or due to
poor training. By lack of transferability is meant that when an algorithm is
used in an environment that differs significantly from the one it was
developed for, without retraining, and the performance drops significantly.
This is a problem that calls for re-development or re-training of the algorithm
for every new environment. A new environment could be defined as any

freeway site that has significantly different statistics. Site statistics change,



of course. from site to site, and less evidently at the same site with long spans
of time, and may cause the existing knowledge content of the previously

trained system to become less relevant over time.

More advanced algorithms have been recently proposed and developed by
different researchers using approaches such as neural networks ( Cheu and
Ritchie, 1995), filtering techniques (Stephanedes and Hourdakis, 1996) and
catastrophe theory (Hall et al 1991). The neural network approach has
shown the highest potential for detecting lane blocking incidents. However.
all algorithms still lack several of the attributes that makes an incident
detection system universally acceptable. Even a comprehensive list of such
universality requirements is not readily available. Very recent research
plans have been made (Payne and Thompson 1996) to consolidate the
benefits of the different promising incident detection approaches in a
modular structure that would benefit from them all. However there is no one
single, stand alone algorithm that has shown any promise to fulfill all the
expectations simultaneously, and hence no one single algorithm, to date, is

universal.

Such lack of universality leads to operational failure that is manifested in
the lack of operator confidence in the detection system, wasted resources
verifying alarms that are not real incidents, and delayed or no response to

real incidents that remain undetected. The need for improved systems



remains pressing, particularly with the advent and progress of intelligent
transportation system (ITS) concepts for integrated freeway and arterial
networks. These will rely heavily on the ability to automatically detect non-
recurring traffic congestion in order to adjust traffic management plans in
real-time for optimal control and provision of traveler information systems.
More effective incident detection methods should result in responsive
emergency systems and traffic management. Ultimately this would result in
reduced motorist delay and expense. increased convenience, and increased

fulfillment of the prime objective of modern transportation.

It is the focus of this research to clearly define one comprehensive set of
universality requirements for automated incident detection systems. and
produce an improved framework that fulfills the defined requirements. The
proposed framework will have a core algorithm based on neural networks

and genetic algorithms.

Artificial neural networks (ANNSs) -from the field of Artificial Intelligence-
are newly emerging, rapidly advancing, parallel distributed information
processing structures based on a simplified model of the functioning of the
human brain. Neural networks consist of many processing elements (PEs)
interconnected with each other. The neurons are organized in groups. one
group receives external inputs, another group communicates the output to

some external sources. and the rest of the neurons are dedicated for internal



representation and processing of the input patterns and mapping them to the
output, and hence called hidden neurons. Each PE in the network receives
signals from other PEs, weighted by the interconnection weights. and
transmits the processed signal to other PEs. Information is thus represented
and processed in a parallel and distributed fashion across the network. The
major advantages of neural networks are: fast processing speed, parallel and
distributed representation and processing of information, the ability to be
trained to perform non-linear mappings of patterns, and the ability to
produce good classification results with imperfect input data (Hecht-Nielson.
1990, Simpson. 1990). They are capable of replicating rule-based-like
behavior while simultaneously considering all the contributing factors and
constraints. They do not rely on assuming specific statistical distributions.
They learn from examples. They are fault tolerant and degrade gracefully.
Most importantly, they outperform conventional pattern recognition

approaches, at least for the purpose of this research.

Genetic Algorithms - also from the field of Al - are inspired by evolution in
the real world. which is controlled by the process of natural selection.
Organisms most suited for their environment tend to live long enough to
reproduce, whereas less-suited organisms often die before producing children
or produce fewer and/or weaker children with less and less chances of
survival. Genetic algorithms (GA) can be defined as a problem-solving

method that uses genetics as its model for problem solving. They apply the



rules of reproduction, gene crossover, and mutation to a population of
candidate solutions or pseudo-organisms so that those organisms can pass
beneficial and survival-enhancing traits to new generations (Chambers
1996). The GA approach is a very powerful optimization method capable of
efficiently searching through a large solution space without getting stuck in
local minima, and does not require feedback links for training. Each
candidate solution to a problem is considered a point in the possible solution
space, or a chromosome. The first step in finding the optimum value is to
select a population of chromosomes at random. and compute the fitness
function (detection accuracy) for each of these points. The search proceeds by
picking two points at random, biasing the selection process toward those with
higher scores using a roulette-wheel-like mechanism. At this juncture. one
or both of two operations take place. The first is to create a third point by
randomly combining various parts of the two points which is called
reproduction by crossover. Alternatively, one of the two points can be
selected, and a certain number of its components randomly perturbed. which
is called mutation. This is equivalent to taking a small step in a random
direction from the initial point searching locally for a solution. After a new
point is generated by either process or a combination of processes. the new
point is evaluated. The search process proceeds until a pre-determined
stopping condition is reached. GA are used in this research to optimize

neural network parameters.



1.2 RESEARCH OBJECTIVE.

The purpose of this research is to develop an advanced universal freeway
incident detection framework, utilizing state of the art neural networks and
genetic algorithms. The research is focused on enhancing the transferability
of AID algorithms by improving the input features on statistical and traffic
flow grounds, and by using modern ANN paradigms that are capable of
adapting to new operating environments. Ties are established between these
new technologies and existing statistical theory in order to lighten the way to
advancements. Newly available. unprecedented real-world traffic and
incident databases collected from several major freeways in the U.S. are
heavily utilized in the development and testing of the proposed advanced

algorithms.

1.3 DISSERTATION ORGANIZATION

The dissertation consists of eight chapters, and is organized as follows:

Chapter 1 introduces the background to the problem and the objective of this

research.

Chapter 2 introduces a set of requirement that any incident detection system

should fulfill in order to be universal. Existing algorithms are reviewed and



evaluated against these requirements. The need for a new framework is

established.

Chapter 3 describes the freeway sites and the associated databases that are
used for the development and evaluation of the new system as well as

evaluating the existing ones.

Chapter 4 defines detectable incidents, the performance measures used in
the study, and draws the acceptable limits on these measures from traffic

management center surveys.

Chapter 5 examines promising advanced neural network architectures. the
possible modifications to improve them and selects the most promising

architecture for further in-depth development and investigation.

Chapter 6 describes the detailed development, testing and evaluation of the

proposed universal incident detection framework.

Chapter 7 introduces genetic algorithms and describes their use for training

an enhanced version of the system.

Chapter 8 summarizes the research, and presents the conclusions and the

recommendation for future research.



CHAPTER 2

UNIVERSALITY REQUIREMENTS AND EXISTING AID
ALGORITHMS

2.1 INTRODUCTION

This chapter defines one possible set of universality requirements for
Automated Incident Detection (AID) algorithms. These requirements are
used throughout this research. They represent goals for the new framework
to achieve. and an evaluation template for existing or even future AID
algorithms. The assumption is the more of these requirements any AID
algorithm fulfills the closer it is to being universal. Three existing AID
algorithms are reviewed in this chapter. namely. the MLF neural network
algorithm, the Minnesota filtering algorithm, and the California algorithm.
These algorithms are used in a comparative evaluation with the proposed
framework. From among the existing body of AID algorithms, the first is
chosen because of its recently demonstrated superiority (Cheu 1994): the
second is chosen because it uses a modern filtering approach; and the third
because of its wide spread use in the field which makes it a benchmark in
almost every study. Which of the universality attributes each of these
existing algorithms possess is then discussed. @ Absence of one or more
universality attributes is considered a limitation that the proposed

framework is designed to overcome.
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2.2 UNIVERSALITY REQUIREMENTS

Putting together TMC survey results, theoretical reasoning, intuition. and
experience, a set of universality attributes and capabilities is compiled. For
an incident detection algorithm to be universal, it needs to possess the

following:

1. High performance: in terms of high Detection Rate (DR%), low False
Alarm Rate (FAR%) and short mean Time To Detection (TTD). High
performance could only be achieved through careful selection of
distinctive input features, a powerful pattern recognition logic. and
training data that represents all possible scenarios. Acceptable limits on
the above performance indicators or variables (DR, FAR. and TTD) have
been elicited from a variety of Traffic Management Centers (TMCs) as will

be detailed later.

2. Fast, robust and automated training and retraining: training of the
algorithm should neither be complex nor tediously time consuming. In
fact, there are no known limits on what a reasonable training time would
be. However, the faster the training/retraining processes the better the
algorithm, and the higher the potential of its on-site real-time
adaptability, all other attributes being equal. Equally important, training
should not be dependent on the hand-crafting skills of the developer.

Such dependence necessitates an attended retraining after transferability
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and/or significant changes in site statistics, an obstacle that hinders the

on-site real-time updating of the knowledge content of the AID algorithm.

Reasonable TMC implementation requirements: no recalibration
requirements that require skilled system developers in a TMC is one
example previously discussed. No special site-dependent detector
placement configuration is another. Successful implementation of the
algorithm should not require special detector placement configuration in
the field. For instance, some algorithms require a special loop detector
placement configuration within a funneling freeway section (Wei-Hua
Lin, 1995). Such a requirement would limit the applicability of the

algorithm in the absence of the required configuration.

Transferable logic: the logic or theory on the basis of which the
algorithm is built should not be limited to certain operational

circumstances.

Reasonably transferable training/calibration parameters: an
algorithm trained on one site should be usable in other new environments
with as little performance deterioration as possible. A new environment
could be defined as any freeway site that has significantly different
statistics. Site statistics change, of course from site to site, and less
evidently at the same site as it undergoes significant changes with long

spans of time. The less the performance deterioration after transferability,
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the less the burden on any subsequent on-site recalibration/updating

processes.

Minimal initial training data requirements: as is well known. real
incident data are not only very sparse but also very difficult to obtain. It
would be very time consuming, if not impractical to try to collect real
incident data that are diverse enough to represent all possible scenarios,
and accurate enough to result in minimal calibration errors. It is easy to
realize that a serious limitation of most existing incident detection
algorithms is the quality of initial training due to the nature of the data
used for calibration. They are often calibrated using either a very limited
and/or inaccurate set of "real” incident data or a large set of artificially
simulated data with all the inherent simulation problems such as. for
instance, the ability of the embedded car-following or lane-changing
models to replicate actual driver behavior. This may limit the quality of
the resulting algorithms and perhaps also limit their transferability.
Hence, a successful algorithm should be capable of being up and running
using minimal incident data, and then automatically improve with time

in service as more usable data become available.

Account for prior probabilities of incidents: the algorithm should

incorporate into an incident alarm decision the predicted prior probability
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of occurrence of an incident based on such factors as weather condition,

traffic conditions. road surface conditions, and freeway geometry.

8. Account for the unequal costs of misclassifying traffic patterns:
Although a false alarm and a missed incident are both misclassifications.
their costs are not equal. One might be more costly than the other
depending on several factors a few of which might be the location of the
freeway section. the time of the day, TMC size, capabilities and

preferences.

9. Capable of producing the posterior probability of an incident:
there usually are varying extents of uncertainty associated with AID
algorithm-generated alarms. The certainty of an alarm depends among
other things on the prior probability of an incident, and the number of
preceding alarms (which may be correlated to the elapsed time since the
onset of the incident and extent of closure and queue formation on the
freeway). The algorithm should be capable of producing a probabilistic
estimate of the certainty associated with an alarm, and update this

probability in a continuous fashion during the incident event.

10.Estimate incident severity: a key requirement that helps prioritize the
allocation of TMC resources in response to several simultaneous incident

alarms.
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11.Capture incident duration: a key information required in order

indicate the restoration of normal traffic flow.

12. Statistical and theoretical soundness and clarity: key factors that
underlie its acceptability. The more consistent the calibration process is
and the fewer the number of heuristics involved, the more general the

algorithm would be.

13. Immunity to minor traffic fluctuations: the algorithm should not be
affected by minor, and very short term traffic fluctuations which tend to

cause false alarms.

14. Immunity to bottleneck effects: the algorithm should be capable of
distinguishing between true incident patterns and incident-like patterns
due to physical bottlenecks that cause queuing patterns similar to an
incident. It should also be immune to virtual bottleneck effects caused by
abrupt geometry changes or demand changes at major on and off ramp
locations. The latter scenario may be called a virtual bottleneck because
of the associated sudden change in the traffic flow variables from the
upstream loop station to the downstream loop station of the freeway
section, which is similar to the effect of an incident and the effect of

physical bottlenecks, despite the absence of both.

15. Immunity to consistent loop detector biases: the algorithm should

not be affected by consistent loop biases such as an upstream station
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giving consistently higher occupancy readings than the downstream

station for no obvious reasons. Such a situation has been observed in

field data.

The above template of requirements and attributes, if fulfilled, could yield a
complete, operationally successful incident detection algorithm. The presence
or absence of these attributes will be used to evaluate the proposed
framework as well as any other algorithm that might be used for comparative

purposes.

2.3 EXISTING AID ALGORITHMS

2.3.1 Neural Network Models and the MLF-Based AID Algorithm

Cheu (1994) demonstrated the potential of the artificial neural network
approach for automated detection of lane-blocking incidents on freeways.
Three types of neural network models, namely the multi-layer feed-forward
neural network (MLF), self-organizing feature map (SOFM), and adaptive
resonance theory 2 (ART2) were investigated. Each of the models was
trained to detect only lane-blocking incidents in any freeway section,
bounded by detector stations of up to one mile spacing. Training was

performed with data generated from the well known INTRAS microscopic
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freeway simulation model, calibrated to the SR-91 freeway study site in

Orange County, California.

The inputs to all the neural network models were the direct values of the
station average volume and occupancy accumulated over 30 seconds, for up to

the past five intervals.

Based on training results, the MLF with both upstream and downstream
station input achieved the highest detection and the lowest false alarm rate
among all the neural network models. The MLF also showed better
performance than the California algorithm #8. the McMaster algorithm and
Minnesota algorithm. Similar superiority of the MLF was reported by Cheu
(1995) from testing on a limited number of real incidents from different

freeway sites.

The topology of the recommended MLF network is shown in Figure 2.1. An
input layer, one hidden layer, and a single node output layer were used.
Uni-directional connections between layers without within-layer connections
were employed. Training of the network was achieved using the Back
Propagation method. @ The number of hidden neurons, the learning
parameters, and the transfer function, were all hand-crafted using extensive
trial and error runs. No systematic automated approach for optimizing their

selection was employed.
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2.3.2. The California Algorithms

A family of 11 algorithms developed by Payne et al. (1976) is known as the
California algorithms. These algorithms detect discontinuities in occupancy
values between the upstream and downstream loop stations of a freeway
section. Once a significant discontinuity is detected, an incident alarm is
issued. Input features to the algorithms are based on 60 second occupancy
averages, and take the form of absolute. relative and temporal differences in
occupancies from the two loop stations. These differences are compared
against calibrated thresholds. A decision tree is used to classify the traffic
condition at the given time interval into different states. The California
algorithm has been used by Cheu (1994) and is also used in this research
because of its widespread use in TMCs. The California #8 in particular was
selected because of its appealing five minute roll-wave suppression logic that
aims to reduce false alarms due to shock waves approaching from the down
stream. The structure of the decision tree, and the input features are shown
in Figure 2.2. Five thresholds were used and calibrated by Cheu (1994) from
historical data. Sixty second averages were used at 30 second application
intervals. A large number (68.607) threshold sets was first generated using
intermediate values within the probable range of each of the five thresholds.
For each set of thresholds, the algorithm was applied to simulated incident
databases. For each level of detection, the threshold set that gave the lowest

false alarms was selected.
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2.3.3. The Minnesota Algorithm

The Minnesota algorithm was developed at the University of Minnesota by
Stephanedes and Chassiakos (1993 a & b). The particular version used in
this study was calibrated by Cheu (1994). The algorithm operates at 30
second intervals, and uses as input one minute average occupancy across all

lanes, at the upstream and downstream stations.

At every 30 second interval (say, at time t), the one minute station average
occupancy at the upstream station, o, and at the downstream station.
o’,are used to compute the spatial occupancy difference (0'-0%). The

average spatial occupancy differences from t-5 to t, and from t-15 to t-6

intervals are next computed:

1 s
yi==2 (0k —0ly)
6 k=0
15

1
b S a . d
yl 10 ; (Ol—k Ol—k )

The Minnesota algorithm hypothesizes that, when an incident occurs at time
t-5, y° will increase and y’ would be greater than y;. Therefore, this

algorithm performs tests on two ratios:



RAT1=2:
ml
yi—-y;
RAT? =22

where m, is a normalization factor to account for traffic conditions prior to

the incident, defined by:

l 15 15 y
,nl = Emax(z Otn-lc ;Z Ot-lc )
k=6

k=6

The RATI1 tests the discontinuity in spatial occupancy over the past three
minutes (six intervals), while RAT2 evaluates the increase in spatial
occupancy difference between the two time windows. An incident warning is
declared at time t if both RATI and RAT2 are greater than their respective
thresholds, Thrl and Thr2 respectively. These thresholds have to be

calibrated with historical data prior to application.

Cheu (1994) calibrated the algorithm using simulation data. Probable ranges
for the two thresholds in the algorithm were first determined from the values
reported by bhassiakos and Stephanedes (1993), from which 550 pairs of
threshold values were obtained. For each pair of threshold values, the DR
and FAR were computed from all the incidents in the database. The initial
results showed that these threshold values gave a narrow range of high DRs.

and at the same time, very high FARs. The range of each of the two
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threshold values was then extended up to twice the largest value reported by
Chassiakos and Stephanedes (1993), resulting in a total of 2350
combinations. The calibrated threshold values were selected as described in
Chassiakos and Stephanedes (1993). First, the maximum FAR was varied
from 0% to 4% at 0.1% increments. For each value of maximum FAR, the
threshold set which resulted in the highest DR and yet had a FAR lower than

the maximum FAR was selected.

2.4. LACK OF UNIVERSALITY OF EXISTING ALGORITHMS

In this section the MLF, California, and Minnesota algorithms are evaluated
relative to the universality requirements defined earlier and in the same
sequence. In a previous study (Cheu 1994), the MLF was shown to
outperform both the California and Minnesota algorithms on a common
database, and is hence considered to be the best performing algorithm
available. However, as will become evident later in this research, none of the
algorithms satisfies the performance requirements or expectations of Traffic
Management Centers (TMCs). All three algorithms, without exception,
require careful hand crafting of the training parameters and thresholds, a
process that is very time consuming, requires skill, and lacks automation.
Customization of these algorithms by TMC personnel is not possible if they

do not have the necessary skills and background. There is no obvious reason
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to think that the logic underlying any of the algorithms is not transferable to
different sites, subject to availability of new data and a skilled system
developer to re-calibrate them. As will also be evident from results obtained
in this research none of the already trained/calibrated algorithms is
transferable to new sites. All algorithms require extensive data for training.
Because none of them has an underlying theory that relies on any distance
measure for classification, generalization on the basis of a few training data
vectors is not possible. None of the three algorithms is capable of accounting
for the varying prior probabilities of incidents in the field or the expected cost
of misclassifying an incoming input vector. All algorithms produce isolated
binary decisions every time interval, without any reflection on the confidence
in the decision or the posterior probability of existence of a certain condition
in the field. It is worthy to mention, however. that the MLF’s output is first
produced in a continuous fashion between 0 and 1, and is then translated to
either O or 1. Before this translation takes place, the continuous output could
be interpreted as a measure of confidence. Nevertheless, this is not an
explicit probability measure. Neither the California nor the Minnesota
algorithms is capable of reflecting the severity of an incident. However, due
to the nature of its continuous output, the MLF can reflect the severity of a
traffic blockage as the output gets closer to 1. All the three algorithms keep
indicating an incident condition as long as the incident’s effect is still in the

field, and the they all capture the temporal profile of an incident’s formation
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and presence in the field. The MLF has been accused of being a statistically
unclear black box algorithm because of the nature of the unexplainable way
it reaches a decision. The other two algorithms are empirical and are not
based on explicit theories. The MLF and the California algorithms use from
one to several persistence intervals to suppress the effects of minor traffic
fluctuations. The Minnesota algorithm achieves the same goal by smoothing
and filtering techniques. None of the algorithms is designed to handle
freeway bottlenecks due to an upstream demand that exceeds the existing
capacity of the given section. Virtual bottlenecks due to consistent loop biases
are not accounted for either. Table 2.1 summarizes the previous evaluation

of the universality of the three algorithms, or more precisely the lack of.

2.5 THE NEED FOR A UNIVERSAL FRAMEWORK

It is evident from the previous section: that non of the existing algorithms is
universal. Further improvements are needed for an AID algorithm to be
deployable, transferable, and successful. It is therefore the focus of this
research to produce such an algorithm. The development of the envisioned
algorithm will be guided by the universality requirements defined above. The
universality requirements list is by no means collectively exhaustive. It only
captures the most important and pressing issues pertinent to the problem of

automated incident detection on freeways.



Algorithm
Universality Attribute MLF A | Minne
#8 -sota

1. Highest performance. v X X
2. Fast. robust and automated training and retraining X X X
3. Reasonable TMC implementation requirements X X X
4. Transferable logic: v v v
5. Reasonably transferable training / calibration parameters X X X
6. Minimal initial training data requirements X X X
7. Account for prior probabilities of incidents X X X
8. Account for the unequal costs of misclassifyving traffic patterns X X x
9. Capable of producing the posterior probability of an incident % X X
10. Estimate incident severity % X X
11. Capture incident duration % % °%
12. Statistical and theoretical soundness and clarity X N.A | N.A
13. Immunity to minor traffic fluctuations effects v v N
14. Immunity to bottleneck effects X X X
15. Immunity to consistent loop detector biases X X X
X absent attribute
¥ fulfilled attribute
%: attribute fulfilled to some extent. but not fully.
N.A.:  Not Applicable.

Table 2.1. Lack of Universality of the MLF, CA, and Minnesota Algorithms




CHAPTER 3

FREEWAY STUDY SITES, INCIDENT AND LOOP
DETECTOR DATABASES

3.1 INTRODUCTION

The freeway sites chosen for this study and the associated incident and loop
detector databases are described in this chapter. First, the freeway test sites.
their geometry and instrumentation are described. The nature and details of
the available incident databases that represent the ground truth for the
study as well as the process of extraction of the corresponding incident-

related loop detector data are then discussed.

3.2 TEST SITE SELECTION

Three primary study sites and sources of incident and loop detector data
have been focused upon in this research. The three sites are: the I-880
(Nimitz) freeway in Alameda County, California, the I-35W freeway in
Minneapolis, Minnesota. and the SR-91 freeway in Orange County.
California. These sites have been selected due to their diverse geometric

configurations and the availability of traffic and incident information.

26
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3.2.1 The [-880 Freeway Test Site

Data from the first site has been recently made available in California. This
database is the result of a comprehensive data collection effort on a fully
instrumented section of the I-880 (Nimitz Freeway) in Alameda County,
California. The length of the selected section of the I-880 freeway is 49700
feet between the Marina exit and Wipple exit as shown in Figure 3.1. The
freeway section is instrumented with inductive loops buried in the pavement.
The instrumentation, however, is confined between the Lewelling and
Industrial exits. There are a total of 18 loop stations covering all lanes of
the freeway and selected on and off ramps. The spacing between the
different loop stations ranges from approximately 1000 feet to 3300 feet. On
the main line lanes the detectors are placed in pairs, but on the on and off
ramps they are single detectors. The data collected were vehicle counts,
occupancy, speeds, and loop-on times. Software specially developed at the
University of California, Berkeley can be used for converting the binary loop

data into readable ASCII format and for fixing any abnormalities.

3.2.3 The I-35W Freeway Test Site

The second study site is the Interstate 35W Freeway in Minneapolis,

Minnesota. The site is 12.5 miles in length between Co. Rd. 36 and the I-494
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Figure 3.1. The I-880 Freeway Site
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freeway. This freeway section is heavily traveled and is often congested. The
section is instrumented with both loops and cameras. It has three lanes
along most of its length. It includes 4 major bottlenecks. Loops are 0.3-0.7
miles apart. The locations of detector stations and cameras are shown in

Figure 3.2.

3.2.3 The SR-91 Freeway Test Site

The section selected from the SR-91 Riverside Freeway in Orange County,
California, is the westbound direction between the SR-57 and Interstate 5
Freeways. The average daily traffic on this study site is approximately
200,000 vehicles per day, both directions. The entire site is over 5.0 miles in
length and has eight loop detector stations. The spacing of detector stations
varies from 0.34 to 1.02 miles. A schematic showing the lane geometry,

together with detector station locations is shown in Figure 3.3.

As described above, all three sites have a variety of detector spacings,
distances between on-ramps and off-ramps, lane geometries, lane detector
instrumentation and bottleneck configurations, making them good locations
to test the performance of AID algorithms under a variety of conditions. All
the loop detector data used in this study from the sites above were 30 seconds

averages across all lanes of volumes and occupancies. Using the detector
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Figure 3.2. The I-356W Freeway Site
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stations as boundaries, all study sites were divided into segments or sections.
Each segment is bounded by detector stations at the upstream and
downstream ends. referred to as the upstream and downstream stations.
respectively. Detector data from both stations were utilized to form the input
features to all the AID algorithms under consideration. Incidents occurring
at the fringes of the test sites for which only data from one loop station were

available were excluded from the study.

3.3 TRAFFIC EVENT DATABASES DEVELOPMENT

3.3.1 The I-880 Database

The loop data consists of the output from different loop detectors arranged on
the freeway section. There is one binary (non-ASCII) file per cabinet per day
which is not readable. Therefore, the FSP software (described below) was
developed at U.C. Berkeley in order to analyze the data. Pairs of loops,
fourteen feet apart, known as speed traps, were available on the main lanes
only. On the on and off ramps there were single detectors only. From the
data the program calculates the number of cars that pass over the detectors.
their average speed. and the average occupancy per period. There were times
when the loops failed. For one reason or another, a loop would go out

periodically or count incorrectly. Thus, two fixes were incorporated in the
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FSP program developed at Berkeley in an attempt to restore the integrity of
the data. The first fix is termed a hole fix, which tries to fill in any missing
data by recreating data based on upstream and/or downstream data. The
second fix, the consistency fix. attempts to correct systematic errors in the
data, such as over or under counting. Using these fixes, more accurate loop

data was obtained.

The incident database was collected via drivers of the probe vehicles which
combed the freeway section during the entire data collection period. When a
driver passed an incident, he/she would radio the information to a command
center for all entries to be logged. The log data was coded into a standard
form for input into the database. Problems encountered with the incident
database included the accuracy of the location of the incidents and the
starting and ending times. To fix the first anomaly, the incident database
was correlated with the probe vehicle database to try and pinpoint the
location of the incident. In the probe vehicle database, as drivers traversed
the highway they pressed keys on portable computers indicating their
position. The starting and ending times were fixed in a similar manner. By
using the loop data in conjunction with the incident and car data, a

comprehensive data set emerged.

Analysis of the I-880 incident data revealed that only 45 lane-blocking

incidents produced congestion shockwaves and hence only 45 such incidents
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were usable. Some lane blocking incidents occurred at the fringe of the
instrumented section and hence did not have both an upstream and
downstream loop station. Such incidents were not used in this study. The
lane-blocking incidents are good candidates for training and testing the
incident detection algorithms because they usually produce congestion and
their effect on the traffic is detectable by loops. No attempt was made to
locate non-lane blocking but detectable incidents because of the
impracticality of doing so in such a large database with thousands of non-
lane-blocking incidents. Among the 45 lane blocking incidents that were
actually used, 15 incidents involved two or multi-vehicle collision resulting in
a lane blockage for a significant amount of time. Twenty five, mostly multi-
lane blocking incidents occurred in the south bound direction while 20 lane
blocking incidents occurred in the northbound direction mostly with one

blocked lane.

After the necessary fixes were made using the FSP program, a second phase
of visual analysis was conducted in order to accurately identify the starting
and ending times of each incident as well as the exact location. Three
dimensional graphs of occupancy-time-space were generated for every day in
which an incident was reported. The well known “Matlab” software was used
for this purpose. After the exact time and location of each incident were
identified, the corresponding loop data were extracted into separate files and

reformatted to suit the requirements of the different incident detection
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algorithms under investigation. It should be noted again that the extracted

data were average values across all lanes.

3.3.2 The I-35W Database

Data from this test site were collected over a period of 4 months, 7 days a
week, and 24 hours a day. The data collection process was administered by
the University of Minnesota. During the data collection period. 159
incidents, 94 south bound and 65 northbound were reported by the traffic
operator and entered in the incident database that represented the ground
truth of the study. The Minnesota database includes usual information
about location, date, time, and incident duration. It also includes
information on the type of incident and distinguishes amongst 10 types:
accidents, stall, lane closure, flat tire, mechanical, vehicle fire, patrol. roll

over, spilled load, and spinout.

The number and identity of the lanes affected by each incident are recorded,
and the roadway conditions reported as dry, wet, snow-ice, or including
construction. The database also includes a five-level entry describing the
impact of the incident on the traffic. The levels are: no impact, affecting
traffic but no congestion, resulted in limited congestion, resulted in severe
congestion, and added to existing problem. Additional information in the

data base includes the time at which all the vehicles were pushed to the
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shoulder and the “all clear” time marking the departure of all vehicles

involved.

Confirmation of incidents was accomplished mostly through CCTV cameras
along the freeway segment. Of the 139 incidents. 135 were classified
according to the impact they had on traffic. More specifically, 65 were found
to have an impact that was an addition to the existing problem. 6 resulted in
severe congestion, 27 limited congestion, 29 affected the traffic but without
congestion, and 8 had no impact on traffic. Within the 159 incidents there
were 68 accidents, 44 southbound and 24 northbound. Of the 68 accidents, 2
resulted in severe congestion, 16 limited congestion, 13 affected the traffic
but without congestion, 3 had no impact on the traffic. 31 were an addition to
an existing problem, and 5 were not classified. the incident database also
included 76 “stall” vehicles. Almost all stalls occurred on the shoulder, 8
resulted in limited congestion. 14 affected the traffic but without congestion.
5 had no impact on the traffic, 38 were an addition to an existing problem.

and 11 were unclassified

As was the case with the I-880 data, the reported location and time of each
incident were found to be not accurate. Some loop data were also missing as
reflected by “-9” entries in the data files. No automated process existed for
fixing holes in the loop data and inaccuracies in the incident data. The

entire data set had to be manually reviewed, incident by incident, in order to
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pinpoint the exact starting and ending time of each incident, the exact
location and the immediate upstream and downstream loop stations. Data
from malfunctioning loops were taken out from the database. Finally,

incidents that occurred at almost the same time and location, and hence

resulted one congestion shockwave, were combined as one event.

3.3.3 The SR-91 Database

Data from the SR-91 freeway can be divided into two parts: the large
simulation data set was prepared by Cheu (1994), and a small set of real data
obtained from Caltrans and the California Highway Patrol. The following is

only a brief summary.

The simulated data set was based on loop detector data generated from
INTRAS, a microscopic freeway traffic simulation model (Wicks and
Lieberman. 1980). INTRAS was calibrated with field data collected from the
study site during incident-free and incident conditions (Cheu et al., 1993). A
total of 400 simulations were made, each with a lane-blocking incident,
under a range of peak and off-peak volumes. These incident scenarios were
constructed as follows. First, 50 incidents were assigned to each of the seven
freeway sections in the study site, with the addition of 25 incidents each
upstream and downstream of the study site. Within a freeway section. the

longitudinal positions of the incidents were randomly distributed. For each
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position, the pattern of lane blockage was randomly selected from a
population of possible blockage patterns based on the lane geometry at that
location. For each freeway section, the volume and occupancy accumulated
over 30-second intervals at the upstream and downstream stations were
extracted to form the data set. The detector output of the seven sections was
combined to form the training data set 1. which had 35000 input vectors (of
30-second data). Independent data sets (data sets 2 & 3) were also generated
with different random number seeds and were used to monitor the progress

of training, and test the trained networks. respectively.

The real data set consisted of only nine incidents. In addition. a total of 63
hours of real incident-free data was derived to test for false alarms. Of the
nine incidents in this data set, one occurred on the shoulder, five resulted in
one-lane blockages, two involved two-lane blockages, and one had no

reported details on the extent of lane blockage.

3.4 CONCLUDING REMARK

One of the main objectives of this study is to heavily utilize several recent
unprecedented large real incident and related loop databases. These were
obtained from the I-880 freeway and the I-35W freeway. The large simulated
database and the limited real data base from the SR-91 freeway were also

included in the study for three main reasons. First, they were available.
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Second, they provide the opportunity to test the transferability of all
algorithms from a simulated environment to a real one. Finally, they
facilitate cross-comparison of the results between this study and the previous
ANN-related study by Cheu (1994). Such a large variety of data is very
useful for the results to be comprehensive and comparable and neither site-

specific nor study-specific.



CHAPTER 4

DETECTABLE INCIDENTS AND ACCEPTABLE
LIMITS ON DETECTION PERFORMANCE

4.1 INTRODUCTION

The most widely known and used evaluation criteria for AID algorithms are
the Detection Rate, False Alarm Rate, and mean Time to Detection. These
are also utilized in this study. However, no prior published attempt has been
made to establish operational boundaries on these criteria that would define
the border line between acceptable and unacceptable performance of a
particular AID algorithm. This problem greatly hinders the interpretation of
any AID results on an absolute scale, and limits their usefulness to
comparative evaluations only. Consequently, and regardless of the specific
performance results obtained from evaluating any AID algorithm, it remains
largely unknown whether this performance would be acceptable to
practitioners in the field or not. Therefore, this chapter is dedicated to such
needed a priori definitions. The basic definition of what is an incident, from a
traffic management perspective is first presented. —The performance
measures used for evaluating the detection performance of the different AID
algorithms are then explicitly defined. Finally, a selective TMC-survey to

elicit an acceptable set of limits on these performance measures is described.
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4.2 WHAT IS AN INCIDENT?

Despite the long history of incident detection research, the definition and
classification of incidents remain debatable. Depending on the perspective.
different definitions arise. From a traffic safety perspective, an incident is
any non-recurring event that could pose a hazard to motorists. This category
includes events such as accidents. disabled vehicles, spilled loads. and
temporary maintenance and construction activities. From a traffic
management perspective, the definition would be similar but limited to the
cases causing unexpected congestion shockwaves, queues and delays. If
maintenance activities are planned ahead of time, then they are not
unexpected and hence should be excluded from the definition. If an incident
causes no congestion, then it should be excluded as well. Since AID is
primarily a traffic management tool, it seems plausible therefore to define an
incident as “any unexpected non-recurring event that causes disruption to
the normal behavior of traffic, producing congestion shockwaves, queues, and

motorist delays”.

4.3. DETECTABLE CLASSES OF INCIDENTS

In general freeway traffic disturbances could be grouped into two major

categories (Ritchie and Stephanedes, 1996): incidents on the freeway, and all
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other disturbances that are not directly associated with an incident,
including bottlenecks, traffic pulses in uncongested flow, compression waves
in congested flow and random traffic fluctuations. The disturbances in the
second category are the ones that usually present problems to traffic
engineers in the development and implementation of incident detection
algorithms. This is attributable to the nature of the flow patterns they create
which can be similar to incident patterns. Existing algorithms confuse these

patterns, especially bottlenecks, with incidents and generate false alarms.

As discussed earlier. incidents unexpectedly reduce roadway capacity at the
affected location. If the reduced capacity is less than the upstream demand.
two regimes of traffic conditions are created, congested flow upstream (high
occupancies) and uncongested downstream (low occupancies). Two shock
waves are generated and propagate upstream and downstream. each
accompanying its respective regime. The boundary of the congested region
propagates upstream at an approximate speed of 10 miles per hour, where
the exact value depends on the characteristics of the incident, the geometry
of the freeway segment and the level of traffic at the time of the incident.
Downstream of the incident, the freeway is cleared of traffic; the boundary of

the cleared region propagates downstream at a higher speed.

Capacity reducing incidents are usually lane-blocking ones. This fact leads

to the usual classification of incidents into lane-blocking and non-lane
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blocking ones. However, real data reveals that some shoulder incidents and
incidents on the opposite side of the freeway that involve police and
emergency vehicles could also cause capacity reductions due to
rubbernecking and the fact that drivers behave extra-cautiously while
passing through the affected section. Thus, for an incident to be detectable
using a loop-detector-based system, it does not have to be restricted to the
lane blocking class. but must cause a capacity reduction. Moreover. the
reduced capacity must be less than the upstream demand, causing a
temporal bottle neck and propagating congestion shockwaves to the
upstream. On the other hand. however, lane blocking incidents are easier to
identify in a large incident database by knowing the lane at which the
incident occurred. It is very difficult for researchers to objectively identify all
“sensible” or detectable incidents, and hence they may reasonably restrict
themselves to lane-blocking ones. An incident detection system that is
trained to capture lane blocking incidents is in fact capable of capturing the
more general class of detectable incidents. Lane blocking incidents are used
as a mere representative of the larger class of detectable incidents.
Nonetheless, adding non-lane-blocking incidents to the training process of
AID algorithms would certainly help improve their performance. It is worthy
to mention at this point that of the databases used in this study, the I-880

database comprises strictly lane-blocking incidents, while on the other hand.
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the Minnesota database contains both lane-blocking and non-lane-blocking

incidents.

Bottlenecks are formed where the freeway demand/capacity ratio changes,
e.g., reduced capacity due to lane drops, or a significant demand change at an
entrance ramp with a substantial traffic input, or at an off-ramp with a
substantial traffic discharge. Like incidents, bottlenecks create a
discontinuity in the traffic parameters very similar to that created by
incidents, only lasting longer. Such bottlenecks are a primary cause of false
alarms and they need special attention while designing AID algorithms.
This problem will be addressed in due course in this research. Traffic pulses
are observed in uncongested flow and are created by platoons of cars moving
downstream. Compression waves occur in heavy, congested traffic, usually
following a small disturbance, and are associated with severe “slow-down and
speed-up” vehicle speed cycles. Waves are typically manifested by a sudden.
large increase in occupancy that propagates through the traffic stream in a
direction counter to the traffic flow as time progresses. Data reveal that
compression waves result in station occupancies of the same large magnitude
as in incident patterns. Compression waves constitute a primary source of
false incident alarms. Random fluctuations are often observed in the traffic
stream as short-duration peaks of traffic occupancy. These fluctuations,
although usually not large in magnitude, may occasionally form an incident

pattern or obscure real incident patterns.
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Detection system failures could also cause false alarms. For instance, a stuck
upstream sensor in the “on” position or a downstream sensor in the “off’

position could cause spatial patterns similar to incidents. Consistently biased

sensor reading (higher or lower than actual), could cause the same problem.

To summarize, this research focuses on developing AID algorithms that are
capable of detecting shockwave-producing incidents, both lane-blocking and
non-lane-blocking, and without confusing incident-similar patterns caused by
bottlenecks and loop biases for an incident. Achieving this objective would
improve incident detection in two ways, first by generalizing the detection
capability to include detectable non-lane blocking incidents, and second by
alleviating the confusion caused by physical and virtual bottleneck

situations.

4.4 PERFORMANCE MEASURES

The performance measures used are the Detection Rate (DR), False Alarm

Rate (FAR) and Time to Detection (TTD). The DR is defined as

DR = no. of .det.ected i-ncidents < 100%
total no. of incidents in the data set
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If the algorithm issues an incident warning for a freeway location at a
particular time, but in absence of an actual incident in the field, a false

alarm is said to have occurred. The FAR is generally defined as

FAR = no. ?f false alarms « 100%
total no . of applications of the algorithms

The TTD of an incident is the time between the actual occurrence of the
incident and the time it is detected by the algorithm. For multiple incidents
in the data set, the mean TTD of the detected incidents is always used. For

further details the reader is referred to (Cheu, 1994).

4.5 TMC-ACCEPTABLE LIMITS ON DETECTION PERFORMANCE

Despite research attempts to develop the ‘perfect’ incident detection
algorithm that would yield 100% Detection Rate (DR) and 0% False Alarm
Rate (FAR), with acceptable TTD, this ultimate performance has not been
reached yet. Even if such performance could be achieved on one particular
database, it would be improper to draw generalized conclusions. Therefore,
there always exists a trade-off between a low FAR and a high DR. It is not
clear which is more important to achieve at the expense of the other, high DR
or low FAR. Different Traffic Management Centers (TMCs) are expected to
have different emphases, requirements and constraints on the acceptable

limits of DR and FAR. Identifying or drawing representative limits on the
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performance measures is therefore concluded to be of high priority in order to
assist in evaluating AID algorithm performance. Towards this goal. the
following attempt was made to elicit such operational constraints and criteria
from freeway operations personnel. A short survey was prepared and sent
out to 15 TMCs all over the US that were thought to be interested in
automated freeway incident detection. The actual survey form is shown in
Figure 4.1. The three questions in the survey targeted the identification of
what might be an acceptable maximum limit on FAR and minimum limit on
DR. First the purpose of the survey was explained as well as the definition of
the terminology used together with representative numerical examples. The
first question aimed at sensing the general preference of the subject TMC
regarding high DR or low FAR. The second question presented to the TMC
personnel the actual performance of a variety of existing incident detection
algorithms, to see if any of the algorithms would be considered usable, and
again to detect their inclination towards either high DR or low FAR. The
third and last question asked for explicit specification of the absolute limits
on the evaluation variables in terms of an upper limit on the FAR, above
which the algorithm would be an unbearable ‘crying wolf and a lower limit
on the DR below which it would not be performing its intended function of

detecting incidents.

Seven replies were received to the date of this writing. Analysis of the

different replies indicated that, on the average, TMC personnel put more
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emphasis on a high DR, which is believed to be consistent with the prime
objective of incident detection. Out of the seven responses received, four
TMCs (57%) stated their preference for a high DR in response to question #1
in the survey form. In response to question #2, four TMCs chose system #1
which has a 100% DR despite of the relatively high FAR of 5%. Only one
TMC picked system #2, and the same for systems #3, and #4. The response
to the third question, which involved an explicit statement of the acceptable
boundaries on DR and FAR, varied from a TMC to another with an average
requirement of the DR to be at least 88.3% and of the FAR to be at most

1.8%. The actual responses are listed in table 4.1.

Average | Extreme

DR% at least: 80 |95 |max.e |70 |90 |95 |100 88.3% 100

min. b 1.8% 0.25

—
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FAR% at most:

s max attainable.
b min attainable.

Table 4.1. DR and FAR Limits Extracted from TMCs’ Responses.

The above results indicate that a reasonable set of limits on DR and FAR
would be 88% and 1.8% respectively. A more stringent set of limits could be
obtained from using the extreme value limits of 100% and 0.25% respectively
as shown in Table 4.1. All algorithms under consideration in this research

will be evaluated against both the two sets of limits.
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Despite research attempts to develop the “perfect’ incident detection algorithm that
would vield 100% Detection Rate (DR) and 0% False Alarm Rate (FAR), this uitimate
performance has not been reached yet. There exists a trade-off between a low FAR and a
high DR. We define DR as the ratio of the number of incidents successfully detected to the
total number of incidents that have occurred. Also the FAR is defined as the ratio of the
number of times the algorithm falsely indicates an incident to the totai number of times the
algorithm is appiied (usually once every 30 sec.). For instance, if 10 incidents occur. and the
algorithm detects only 8 of them. then the DR is 80%. The FAR computation is a fittle bit
more tricky. For instance. in one hour the algonthm is applied 120 times at a given section.
If the algorithm indicates an incident 3 times during this hour while there are no incidents in
the field, the FAR is 3/120 = 2.5%.

Please answer the following three questions related to DR and FAR:
« Which is more important to you? piease do not answer “equally important’.

Low FAR
High DR

o If you have access to different incident detection algorithms with the following
performances, which algorithm would you be most likely to implement?

#__ #2_ #3__ none of them
Algo#l | Algo#2 | Aleo #3
DR% 100% 70% 50%
FAR % 5% 1% 0.25%
Average number of false alarms per hour per mile* 12 2.4 0.6

* based on loop stangns .5 mile aport and 30 sec gpart applicanons

o Please give percentages for the boundaries of DR and FAR that you believe are
acceptable. (For instance DR should be at least 90% and FAR should be at most 1%)

DR should be at least: %
FAR should be at most: %
Traffic Management Center:
Contact Person Name & Title:
Signature: Date:

Figure 4.1. Survey Form Mailed to Different TMCs.



CHAPTER 5

INVESTIGATING ADVANCED NEURAL NETWORKS
FOR IMPROVED INCIDENT DETECTION

5.1. INTRODUCTION

This chapter is not meant to be an introduction to the basics of neural
networks, nor to their use for incident detection. A more introductory
treatment of both subjects can be found in Cheu (1994). The focus instead is
on advanced neural network architectures that have the potential to produce
the improved incident detection framework discussed earlier. Of the
universality requirements, the speed, and robustness of the training process,
and the potential of automating such a process are of prime importance.
Such qualities would allow for on-line adaptation of the resulting AID
algorithm to the local freeway site conditions. Hence, an algorithm trained to
be generic at first, could automatically tailor its parameters to the site-
specific needs without requiring attended retraining. Two promising new
models are investigated in this chapter, namely, the LOGICON™ Projection
Neural Network, and the Probabilistic Neural Network (PNN). The theory
underlying each network is presented first. Both networks are then trained
and tested on simulation data in order to facilitate comparison to the former
results from the Multi-layer Feed Forward (MLF) neural network used by

Cheu (1994). Finally, the more promising of the two architectures, in
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terms of universality, will be chosen for detailed investigation in the rest of

study using primarily real data.

5.2 THE LOGICON PROJECTION NETWORK™

5.2.1 Theory

The Logicon Projection Network™ was first introduced by Gregg, and Narbik
(1992) and is the subject of a patent application by Logicon RDA. It is
incorporated in the NeuralWare neural networks software package (1993) for
non-commercial research only. Details of the network can be found in the

above references. The following is a brief overview.

The prime motivation behind investigating this architecture is its faster
training as opposed to the MLF. The advanced input preprocessing
capabilities of this network architecture are inspired from a stereographic
projection of input patterns (James and Chris, 1991). The input pattern set
is transformed into another set where all the patterns lie on the surface of a
sphere (or any other body with positive curvature). This inevitably involves
increasing the dimensionality of the input space by unity, i.e. an N-
dimensional pattern vector X is transformed into an (N+1)-dimensional
vector X' subject to the constraint |X'| = R, where R is the radius of the

hypersphere.
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The projected or transformed vectors serve as inputs to a conventional MLF
with (N+1) nodes in the input layer instead of just N nodes as shown in
Figure 5.1. The geometrical interpretation of such a projection is shown in
Figure 5.2 for the case of 2-D inputs projected onto a 3-D sphere. The vector
X connects the origin of the 2-D space to the point X=(x1, x2). The 3-D vector
X' is obtained by connecting the center of the sphere and the point X and

extending the line to intersect the surface of the sphere.

As X'is 3-D (or (N+1)-dimensional ), the weight vector W' that connects the
modified input to the hidden layer is also 3-D. The net input to a hidden

layer node is :

[=WX-S

where S is the threshold for that node.

The output of the node is a non-linear function of the net input OI). A
sigmoidal or hypertangent function is often used. Obviously, the hidden
nodal output has a constant value when the nodal input has a constant
value. For instance, an intermediate node has an activation (output) value of
1/2 when the input to that node is 0. Thus, all inputs with 0 value define a
surface of a constant output of 1/2. Such a decision surface divides the input
space into two: input vectors which lie on one side of this surface will

produce activation greater than 1/2 and vice versa. In the original N-
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Figure 5.2. Stereographic projection in the Logicon network
(Gregg and Narbik, 1992)
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dimensional space, this decision surface is a hyperplane (a line in 2-D)

described by :

WX - S = constant.

The constant is 0 when the decision surface is chosen to correspond to an
activation of 1/2. In general, for a given activation and hence a given value of
the constant. the threshold S determines the location of the hyperplane.
With the constant chosen to be 0, the threshold is proportional to the distance

of the hyper plane from the origin.

In (N+1) dimensions, each hidden layer node still draws a hyperplanner
decision boundary that intersects with the hypersphere around X'. This is a
circle around X' in Figure 5.2. It should be emphasized that the threshold S
determines the position of this intersection, consequently the projection of
the surface resuiting from the intersection back onto the original N-
dimensional space is a function of the threshold S. In Figure 5.2. for
instance, if S is large, the resulting intersection circle is small and lies on one
side of the original 2-D plane. The projection of that circle on the 2-D plane
is an ellipse (closed boundary). On the other hand, if S is small, the
intersection circle approaches a great circle on the sphere and its projection

back on the 2-D plane is a curve or ultimately a line (open boundary).
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It is this ability to form hyperplanner or hyperspherical prototypes that
allows the Logicon network to be initialized rapidly to a good starting point
which is already close to a desirable minimum. Furthermore. during

learning, closed boundaries can become open ones and vice versa as the

weights and thresholds are adjusted.

5.2.2 Advantages of the Logicon Network

The MLF network suffers from slow training times, the potential to get
stuck at local error minima, and the need for a large number of nodes when
applied to complicated problems. However, in problems for which it does
converge to a solution, it offers the advantage of ensuring error minimization.
On the other hand, networks that start by placing a prototype train quickly
but do not guarantee minimization of the classification error (Gregg and
Narbik., 1992). The Logicon network has the following advantages

(NeuralWare 1993):

o It combines speed of hyperspherical networks with error minimization of

the MLF

o It learns faster (two orders of magnitude) by properly initializing the

network weights and thresholds to prototypes of the input set.
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e It partitions the input space into localized regions which allows for easy

separation of the inputs into different classes.

¢ It uses hidden layer nodes more efficiently (spares them for more complex

problems).

e It is quasi modular, allowing the combination of two or more networks or

the addition of new input classes and ranges.

o The advantage of speed-up and efficiency are enhanced for more complex

problems and higher dimensional inputs.

For the purpose of incident detection in particular, the Logicon network’s fast
training attribute is promising. As mentioned earlier, this could allow for on-
line adaptation of the resulting AID algorithm to the local conditions. The
network could be trained to be generic at first and then the fast training
capability could be capitalized upon in order to automatically tailor its

parameters to the site-specific needs.

5.3 THE PROBABILISTIC NEURAL NETWORK (PNN)

The Probabilistic Neural Network (PNN) is a pattern classifier that combines
the well known Bayes strategy for decision making with the also well known

Parzen non-parametric estimator of the probability density functions of the
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different classes. The PNN-variants used in this study are based on the
original PNN architectures introduced and successively enhanced by Specht
(1990, 1992, 1994, 1996). Unlike the MLF-family of networks, the PNN-
family asymptotically approaches the Bayes optimal decision surface without
the danger of getting trapped in local minima. It is also orders of magnitude

faster to train than the MLF-family of networks.

5.3.1 Theory: Multivariate Bayesian Discrimination and the PNN

The objectives of the PNN as well as any other pattern classifier are to: [1]
separate classes of objects, i.e. define the boundaries between the existing
classes, and [2] classify new objects to one of the existing classes in a way
that minimizes the expected risk. An object is defined by a vector in a p-
dimensional input space, where p is the number of features or variables. In
the following sections the mathematics will be explained for the case of 2-
classes in 2-dimensions. Extension to higher cases can be done in a straight

forward manner without loss of generality.

Let f,(x) and f,(x) be the probability density functions (PDFs) associated with
the p-dimensional input vector X for the populations n, and =. respectively.
The Bayes classification rule that minimizes the Expected Cost of

Misclassification (ECM) is to assign a new vector to either class =, or class =,
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based on the density ratio, the misclassification cost ratio, and the prior
probability ratio as follows :

X belongs to:
n if : £/ fx) 2 {[CAI2)/C2ID ] * [P./P]}
T, otherwise.

where :

- C(@lj) is the cost of misclassifying an object as belonging to
population m: while it belongs to population ;.

- P, is the prior probability of occurrence of population n

The key to using the above classification is the ability to estimate the PDF's
based on training patterns. Often the a priori probability can be estimated,

and the cost ratio requires subjective evaluation.

The accuracy of the decision boundaries and the subsequent classification
depends on the accuracy with which the underlying PDF's are estimated. A
good feature of this approach and the related PNN implementation is the
PDF estimation consistency. Consistency implies that the error in estimating
the PDF from a limited sample gets smaller as the sample size increases.
The estimated PDF (the class estimator) collapses on the unknown true PDF

as more patterns in the sample become available.
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An example of the Parzen estimation of the PDFs is given below for the
special case that the multivariate kernel is a product of the univariate
kernels. In the case of the Gaussian kernel, the multivariate estimates can

be expressed as :

m 3 _ Y y(y -
B
where :
k = class or category
1 = pattern number
m = total number of training patterns
Xy; = ith training pattern from category or population m
o = smoothing parameter
p = dimensionality of feature (input) space.

The estimated PDF for a given class, say f(x) is the sum of small
multivariate Gaussian distributions centered at each training sample.
However, the sum is not limited to being Gaussian. It can in fact
approximate any smooth density function. The smoothing factor o can alter

the resulting PDF. Larger o causes a vector X to have about the same
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probability of occurrence as the nearest training vector. The optimal ¢ can

be easily found experimentally.

An interesting feature of the PNN approach is that the estimated PDFs can
be used not only for classification but also to estimate the posterior
probability that a vector X belongs to class, say n;. If the classes are

mutually exclusive, we have from Bayes theorem :

P fi(X)
Plfl(X)‘*‘ szz(X)

Plz,1X]=

Also the maximum of f;(x) and f,(x) is a measure of the density of the training
samples in the vicinity of X which can be used to indicate the reliability of

the classification.

For more details on the theory the reader is referred to Johnson and Wichern

(1992), Specht (1990, 1996), and NeuralWare (1993).

The original neural network implementation of the above theory (Specht
1990) is shown Figure 5.3 for a 2-class problem. The input units are merely
distribution units that supply the same input values to all of the pattern
units. Each pattern unit forms a dot product of the input pattern vector X
with the weight vector Wi such that Z, = X.W,, and then performs a nonlinear
operation on Z, before outputting its activation level to the summation unit.

Instead of the sigmoid activation function commonly used for the MLF the
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nonlinear operation used here is exp{(Z, - 1) /a2]. Assuming that both X and
W, are normalized to a unit length, this is equivalent to using exp{- (W, -

X)TW, - X) /120 2] as follows:

the term

20

r T
exp{_‘X‘Wx) (X-m)]

can be rewritten as

[(zXTW, ~XTX-W'W)]
exp !

‘ 20" J

-

and since all inputs to the classifier have norm 1, both the dot products X™X

and W™W equal unity and the exponential term reduces to:

-
i

{(XTW, -1 J
expl =

o}

Each summation unit simply sums the outputs from the pattern units that
correspond to one of the classes. The output, or decision units are two-input

neurons that produce binary outputs. They have a single variable weight C, :

Ce= { [Cai2y/C2in ] * [P/P]* [m/m]}
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where :

n, = number of training patterns for category

n, = number of training patterns for category 7.

The network is trained by assigning a pattern unit for every training pattern,
and setting the W, weight vectors in each one of the pattern units equal to
the corresponding X pattern in the training set, and then connecting the

pattern unit output to the appropriate summation unit.

5.3.2 Advantages of the PNN-family of networks

The PNN above. as well as its variations that will be discussed shortly, have
several advantages, the most important of which is that training is easy and
instantaneous. Specht (1996) reports that the PNN can be used in real time
because as soon as one pattern representing each category has been
observed, the network can begin to generalize to new patterns. As new
patterns are observed and stored in the network, the generalization improves
and the decision boundary becomes more complex. The advantages of the

PNN can be summarized as follows:

e Both training and re-training are easy and instantaneous,

e It can be used in real time as discussed above,
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e The shape of the decision boundary can be made as complex as necessary

or as simple as desired, by choosing the appropriate value of the

smoothing parameter o,

¢ The decision surface approaches Bayes optimal,

¢ Erroneous samples are tolerated.

e Sparse samples are adequate for the network performance.

e o can be made smaller as the sample size gets larger,

¢ For time varying statistics (or statistics varying from site to site), old

patterns can be overwritten with new patterns, and

e The cost of misclassification could be varied with time as the relative
importance of detection versus false alarms changes with time of the day

and location of the freeway section relative to the network.

One more important advantage is the possible chip implementation of a
PNN-based AID framework. Unlike many other networks such as the MLF,
the PNN operates entirely in parallel, without the need for feedback from
individual neurons to the preceding layer of neurons. For systems involving
thousands of neurons that can not fit in a single semiconductor chip, such
feedback paths could quickly exceed the number of pins available on the chip.

With the PNN, any number of chips could be connected in parallel to the
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same inputs, a design that has been already implemented (Specht 1996).
The important implication of this is the possibility of incorporating real
parallel processor incident detection chips in a road-side cabinet. All the
necessary processing could hence be done on site and only the resulting
detection output would need to be transferred back to TMC in charge for
further action. This adds important flexibility to the incorporation of

incident detection into any intelligent Transportation System (ITS).

5.3.3 Statistical Distance and The Proposed Modified PNN2

The PNN described above uses a symmetric PDF estimation kernel. This
symmetric kernel is the result of using a single smoothing parameter ¢ that
applies equally to all input dimensions, and using Euclidean distance as a
measure of nearness of the different patterns. The use of such a symmetric
kernel is inappropriate for many applications because it doesn't account for
differences in variations along the axes nor the presence of correlation among
the variables constituting the pattern vector. This is illustrated heuristically
in Figure 5.4 where the use of Euclidean distance results in erroneous
classification. In this figure, the Euclidean distance from a point such as P to
the center of the cluster Q is larger than the Euclidean distance from the
origin O to Q. However, P appears to belong to the cluster more than O does

(Johnson and Wichern, 1992).
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Several approaches to solving this problem have been proposed in the
literature. Specht (1992, 1994, and 1996) used a different smoothing
parameter for each input dimension. Traven (1991) and Streit (1990 and
1994) estimated the PDFs of the different classes as a sum of gaussian
kernels with a full covariance matrix. All these approaches have in common
an iterative training procedure'similar to that used by the MLF. Although
performance improves, the training process is no longer instantaneous and is
also prone to getting trapped in local minima, in the same way as the MLF is.
Very recent training procedures using genetic algorithms overcome the local
minima problem and are faster than conventional training approaches.
However, genetic-based training is still not instantaneous. Potential benefits

from using genetic algorithms will be explored in due course in this study.

In this research. a new plausible possibility to solve this problem using
statistical distance instead of Euclidean distance is proposed. Statistical
distance is a nearness measure that accounts for the different variability of
each input variable as well the interdependence or correlation of these
variables. Details of this distance measure can be found in Johnson and
Wichern (1992). Using statistical distance is equivalent to rotating the axes
of the input space in such away that input variables appear uncorrelated as
in Figure 5.5, and then dividing each new dimension by its new variance in
the rotated space. The outcome of this transformation is a new input space

in which the use of symmetric kernels and Euclidean distance is appropriate.
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Two questions remain though. First, what kind of rotation would yield a set
of uncorrelated axes? Second, how to modify the PNN to account for this

distance measure?

The answer to the first question is to use the well known principal
components in place of the original variables. Algebraically, principal
components are particular linear combinations of the original set of random
variables. Geometrically, these linear combinations represent a new
coordinate system of axes by rotating the original ones. The new rotated
linear combinations are uncorrelated and their variances are maximized. The
following result gives the principal components given the original variables

and their covariance matrix (Johnson and Wichern, 1992):

Let T be the covariance matrix associated with the random vector X ;

Let ¥ have the eigenvalue - eigenvector pairs

(A e (A,e) s J(4,,e,)

where

The ith principal component is given by

Y =e/X=e, X, +e, Xi+... ... +e X 1=1,2u00enneeD

pep



and
Var(Y))=e/Ze, = 4 A W R |
Cov(Y, Y, )=¢e/Ze, =0

The original input vector X is transformed into the rotated vector Y using the
above relations. It should be emphasized that the original input vector is
unchanged. Instead, the coordinate system used for describing the vector is

changed. The component variables of the vector in terms of the rotated axes

are then divided by their standard deviations \/;l_ to equalize the variances.

Figure 5.6 shows the proposed modified version of the PNN (referred to as
PNN2) that takes the above transformations into account. The previous
input layer of the PNN is replaced by two layers: an input layer and a
transformation layer. The weights between the input layer and the
transformation layer are the eigenvectors of the training sample covariance

matrix. The transfer function in the units of the transformation layer simply

divides the weighted input to the unit by the standard deviations Jxl— .

Beyond this layer, computations are identical to those of the original PNN
described before, only using the principal components instead of the original
variables. Using these modifications, the new network accounts for the
effects of correlation and widely varying variances without losing its

instantaneous training edge as it still uses symmetric kernels.
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5.4 PRELIMINARY ANALYSIS OF THE LOGICON AND THE PNN

NETWORKS FOR INCIDENT DETECTION

The purpose of this section of the study is to train and test the proposed
networks, compare their performance relative to each other as well as
relative to the performance of the MLF by Cheu (1994). Several other
conventional algorithms were previously calibrated and tested using
simulated incident data, but their performances were reported to be inferior
to that of the MLF (Cheu 1994). Hence the performance of the MLF is used
here as an upper-end bench mark. To facilitate comparative analysis, the
study site, the simulated data set from the SR-91 freeway, and the
performance measures are kept exactly the same in this portion of the study
as well. The expected outcome from the comparative analysis in this phase is
the nomination of the most promising architecture which would be the core of
the proposed universal framework and the subject of further in-depth

investigation.

The Logicon, the PNN, and the modified PNN2 were implemented using the
simulation data previously described in chapter 3. Each network was trained
using a portion of the simulation data set, titled set 1. Another portion of the
data, titled set 2 was used to monitor the training progress during any
training session. A third portion of the data, titled set3, was used for the final

testing and evaluation of the trained networks.



5.4.1 Training the Logicon Network

The configuration design and training procedure for the Logicon network is
more sophisticated than both the MLF and the much simpler PNN. The

following sections describe the key steps underlying the training procedure.

5.4.1.1 Initialization and Choice of Prototypes

The projection operation in the Logicon architecture allows not only for the
formation of open and closed boundaries but also for a good near-optimal
setting of the weights and thresholds of the network. The latter is the key to
reducing the training time of the network. The maximum possible value of
the activation input to any hidden layer node occurs when W' = X' for any
given threshold value. Therefore, for classification problems, if the weight
vector W' of a node in the hidden layer is set equal to some input X' of class c,
then the output of that node will be maximum when the input is X'. That
node becomes a hyperspherical prototype of class ¢ with radius S/R, where S
is the threshold and R is the Radius of the hypersphere. The prototype node
gives an output greater than 0.5 for input points that fall inside the
prototype boundary and gives its maximum output when X' is the input. The
threshold S can then be varied during the training process such that the

projection of the boundary back on to the original input space is some desired
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open or closed region. Thus, the weights and thresholds are set according to
the desired positions and radii of the prototype. After the locations and radii
of the prototypes are chosen in the original input space, the weights are set
in the projected (N+1) space such that the projection of the prototype back

onto the original surface will be a hypersphere centered about the chosen

prototype.

Obviously the choice of the prototype locations is a key step in the training
process. Representative prototypes can be chosen either at random from the
training set or hand-selected by the network trainer, if desirable locations
are obvious. For the purpose of incident detection, the high overlap between
the classes of patterns hinders such a hand-selection process and hence
random choice was adopted. The radius of each prototype is determined
separately by averaging the distance between the prototype and its two

nearest neighbors and then setting the radius equal to half of that distance.

With a sufficient number of such prototypes in the hidden layer
corresponding to representative examples of the input vectors of each class,
the input space can be adequately covered and a good initial partitioning or
classification attained. Clearly, this initial setting of the weight vectors is
much better than a random guess and can be very close to a desirable
minimum of the error function. The subsequent training process translates.

expands, and shrinks the different hyperspherical prototypes to further



reduce the error. Through gradient descent learning, similar to that of the

MLF, the error function is minimized.

The above process yields a properly initialized set of weight vectors between
the input and the hidden layer. The weight vectors between the prototypes
in the hidden layer and the output layer need to properly initialized as well
to avoid negating the benefits from properly initializing the previous layer of
weights. For this purpose. a matrix inversion method (NeuralWare 1993)
was adopted. In this method. as the input vectors corresponding to each
prototype are presented, each output neuron receives a signal from every
prototype in the hidden layer. Each input has a corresponding desired
output. The solution for each weight is obtained by simultaneously solving a
set of equations, where each equation requires that the output node yields
the desired output for each prototype. This is equivalent to a matrix

inversion.

With such an initialization, the Logicon starts much closer to an optimal
solution than the MLF would, and hence saves orders of magnitude in the

training time.
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5.4.1.2 Setting the Learning Parameters

Although the Logicon network is trained using a back-propagation procedure
like the MLF, it requires much smaller learning and momentum rates. This
is because the weights and thresholds are initialized much closer to a desired
minimum. The appropriate rates for a Logicon network should be an order of
magnitude smaller than the typical values used for the MLF. If too large
learning and momentum rates are chosen, the weights change too quickly.
This leads to loss of the initial good weight setting and results in a rapid
increase in network error. When such a problem occurs, the Logicon becomes
no different from the conventional MLF network. Another possible
consequence of large rates is the instability possibility, that is, the prototype
boundaries tend to oscillate rather than settle down to the desired solution.
Too small rates are not desirable either because of the associated excessively
slow training. In this research the learning rate was changed from 0.005 to
0.05 and the best results obtained with a 0.01 learning rate. The momentum

rate was kept five times as large at a 0.05 value.

5.4.1.3 Designing the Hidden Layer and Training Strategy

It is difficult to determine in advance the number of processing elements in

the hidden layer. This, coupled with slow learning can lead to very time



consuming trials to achieve the optimal architecture. Another problem that
can occur with back-propagation and associated networks such as the MLF is
the problem of over-training. A symptom of this is when the network is
performing well on the training data, but poorly on independent test data.
Overtraining occurs when the network memorizes the peculiarities of the
training set. Using NeuralWare in this research for training the Logicon. the
over-training problem was solved. The idea was to start with a relatively
large number of hidden units, judged to be two hundreds in our particular
case, and incrementally train, test, and prune the unused connections and

processing elements as follows :

1. The network is initially tested to establish a "reference" level of

performance,

2. Trained for a chosen number of cycles,

3. Tested. (If the performance is better than the current "best" it is saved

and the re-try counter set to zero),

4. If the retry counter is less than a preset limit, repeat 2 & 3 above,

_ Reload the last best network. If there is none (network was never saved

[9]]

during this run), exat.



6. Test the network on both the training and test data sets,

7. For each processing element in the hidden layer : (a) disable the
processing element setting its output to 1.0, (b) test the network on both
training and test sets, if the performance degrades beyond a "tolerance
limit", add this processing element to candidate prune list, (c) set the
output of the processing element to -1.0, (d) test the network on both
training and test sets, if the performance degrades beyond a "tolerance
limit", add this processing element to the candidate prune list, (e) re-

enable the processing element and proceed with the next one,

8. Sort the candidate prune list into order based on performance on the test

set,

9. Select the top "n" units and prune them. If none, exit training,

10.Go to step 2.

Such a training process not only overcomes the problem of overtraining but
also yields an optimal set of hidden units. When the error reaches a minima
and starts to rebound, the weight set corresponding to the minimal error is
saved as the best attainable. It was also found that the best performance
was achieved when the number of hidden units was between 20 and 50.

Below that, the performance degraded and above that the extra units did not
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improve performance and were hence pruned. Training time was found to be
about half of that of the MLF on the same machine. Most of the error

reduction occurred fast at the beginning, followed by near-flat improvements.

5.4.2 Training the PNN Networks

Training of both versions, namely the PNN and PNN2, is much simpler than
the case for the MLF or the Logicon. The PNN needs only one pass through
the training data to learn, while the PNN2 needs to go through the data

twice. Training the PNN involves the following steps:

1. Normalize all vectors to norm 1.

2. Assign a pattern unit to each training exemplar.

3. Set the weight vector between the input layer and every pattern unit in

the pattern layer equal to one training exemplar.

4. Set the transfer function in the pattern units to exp[(Z, - 1) /o 2].

5. Set the weight vectors between the pattern units and the summation unit

for class k equal to 1/mk .

6. Assign the cost of misclassification and prior probabilities to the weights

between the summation units and the output units.
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7. Use the test data set to choose the best smoothing parameter ¢ by trying a
range of values and choosing the one that yields minimal classification

error.

At this stage the cost of misclassification ratio and the prior probability ratio
were both set to unity. Also, the range of ¢ within which the performance
peaked was found to be between 0.065 and 0.2 with the best performance

attained at ¢ =0.068.

Training of the PNN2 is similar except that it uses transformed patterns.
The transformation stage requires one pass through the training data to
compute the covariance matrix, and to obtain both the eigenvalues and
eigenvectors of this matrix. Once they are obtained, the eigenvectors are
assigned to the weights between the input and the transformation layer and
the reciprocal of the square root of the eigenvalues assigned to the transfer
functions in the transformation units. After the transformation stage is

completed, training proceeds in the exact same way as the PNN.

It is important to emphasize that many of the key parameters of the PNN
family of networks can be changed after training without the need for
retraining. For instance, if the training data is sparse, one can start with a
relatively large smoothing parameter, and as more data become available,

the smoothing parameter could be made smaller accordingly. Also if the cost
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of misclassification and/or the prior probabilities vary during operation, these

can be modified accordingly without disturbing the network.

5.4.3 Incident Detection Performance

After the training phase of the Logicon, PNN and PNN2 networks was
completed, all three networks were tested on a common subset of the SR-91
simulation database. namely set 3, as was previously described. The DR.
FAR, and average TTD were computed separately for single lane blocking
incidents and for multilane blocking incidents. Persistence tests of up to
three intervals were used to further reduce the FAR due to random
fluctuations of traffic. A persistence test of n-intervals means that an
incident alarm is declared only if the incident condition is found to persist for
(n+1) consecutive applications of the algorithm. Table 5.1 categorizes the
performance measures for one lane and multi-lane blocking incidents on data
set 3. The measures computed from these two categories were combined
using weights of 0.9 and 0.1 respectively to produce a final weighted DR,
FAR, and average TTD. This was based on a previous study in Los Angeles
which found that for lane blocking incidents, 90% were one lane blocking and
10% were multilane blocking (see Guiliano 1989, Cheu 1994). The
performance envelopes (DR versus FAR using different persistence tests) are

shown in Figure 5.7 for the Logicon, PNN, PNN2 and the MLF networks.
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One-lane-blocking Two-lane-blocking Combined
Net. Pers. | DR FAR | TTD | DR FAR | TTD | DR FAR | TTD
0 98.21 4.75 491 99.8| 3.38 81 983 4.63 48
Logicon 1 94.1| 262 971 994 | 180 2] 946 254 95
2 894 L79| 145] 99.0| 099| 102} 904| 1.71 141
3 78.8| 123} (88| 988| 064 133§ 808| 1.17 183
0 97.0 | 14.00 35| 100.0] 3.00 01 973 129 39
PNN 1 725 240 147| 976 096] 1053] 75.0| 2.26 143
2 67.01 L60| 176 96.3) 034 137y 70.0{ 1.47 172
3 355 084) 2221 959} 0.14| 173| 39.5( 0.77 217
0 100.0 | 4.80 73| 100.0 | 4.50 441 100.0 | 4.77 70
PNN2 1 95.1| 268 172| 99.8| 1.79 881 95.6| 2.39 163
2 83.7) 130 229{ 984 088| 121] 851 1.26 218
3 68.4| 066 260 982 ( 0350| 153} 714 0.64 249
0 780| 150 206]| 970 106 87| 79.7| 1.46 194
MLF 1 65.0| 0.44| 252| 96.0| 020 114§ 68.1| 0.42 238
2 56.0| 022 287) 950{( 0.16| 46| 599 0.21 273
3 46.0 0.18] 311 93.0 0.10 175 50.710.17 297

Table 5.1. Testing the Logicon, PNN, PNN2 and the MLF on Data Set 3.
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Figure 5.7 Logicon, PNN, PNN2 and MLF Performance on data set 3.
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5.4.4. Comparative Evaluation and Preliminary Conclusions

Careful investigation of the detection results in Table 5.1 and Figure 5.7

shows that:

1. The performance of the Logicon network is slightly better than the MLF.
However the improvement appears to be insignificant on detection
performance grounds alone. The speed advantage still gives the Logicon

an edge over the MLF.

2. The performance of the original PNN is lower than that of the MLF.

3. Using the modified PNN2 which incorporates the statistical distance
metric via principal component transformation, the performance improves
and becomes competitive with the Logicon and the MLF. The
instantaneous training of the PNN2 makes it the most promising amongst

the three architectures.

Table 5.2 below shows a universality comparison of the Logicon, PNN2, and
the MLF. All three networks are comparable in terms of performance.
Training complexity of the Logicon is even worse than that of the MLF. It
has more very sensitive parameters to be hand-crafted, and prototypes to be
selected, all of which require higher developer skills. In contrast. training of
the PNN family is very simple and robust. Principal components are unique

and require no hand-crafting of any kind. The smoothing parameter ¢ is a
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Algorithm

Universality Attribute MLF Logi. | PNN2
1. Highest performance. v N v
2. Fast. robust and automated training and retraining X X v
3. Reasonable TMC implementation requirements X X N
4. Transferable logic: N) N N
3. Reasonably transferable training / calibration parameters Not tested yet
6. Minimal initial training data requirements X X N
7. Account for prior probabilities of incidents X X v
8. Account for the unequal costs of misclassifving traffic patterns X X v
9. Capable of producing the posterior probability of an incident % % v
10. Estimate incident severity % % v
11. Capture incident duration % % %
12. Statistical and theoretical soundness and clarity X X v
13. Immunity to minor traffic fluctuations effects ) v v
14. Immunity to bottleneck effects X X X
15. Immunity to consistent loop detector biases X X X
X absent attribute
v fulfilled attribute
%: attribute fulfilled to some extent, but not fully.

N.A.:  Not Applicable.

Table 5.2. Universality Comparison of the Logicon, PNN2 and the MLF



single parameter, the choice of which is not confusing and it does not interact
with other parameters in a complex non-linear fashion as is the case for the
MLF and the Logicon. This simplicity and fastness of the training process
make it possible to retrain the network as needed on-line in order to adapt to
any changes in the freeway environment. The PNN family, as has been
described earlier, can generalize even if the training set has only one
exemplar from each category. Prior probabilities, cost of misclassification.
and posterior probabilities are inherent components of the structure of the
PNN networks. The posterior probability form of the PNN output will be
capitalized upon to indicate incident severity and continual presence in the
field as will be described later. The theory underlying the PNN is very well
established, understood and accepted. All of these advantages makes the
modified PNN more appealing than the Logicon or the MLF. It is therefore
chosen for further in-depth investigation in the rest of this study. The
modified PNN (hereafter referred to as simply the PNN) will be used as the
core of the proposed universal incident detection framework. A pre-processor
input feature extractor will be added to it that enhances it transferability
and makes it immune to both bottlenecks and virtual bottlenecks, and a post-
processor that translates the probabilistic outputs of the network into a
continuous estimate of existence of an incident in the field, not based on a
singular output but rather incorporating previous outputs into the current

decision. The transferability testing and enhancement, and the pre and post
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processor details will be the subject of the rest of this research. Also to be
investigated is a multi smoothing parameter version of the PNN optimized by

a genetic algorithm.



CHAPTER 6

DEATAILED DEVELOPMENT OF THE PNN-BASED
FRAMEOWRK

6.1 INTRODUCTION

This chapter is dedicated to an in-depth investigation of the PNN, and the
development of the complementing components of the proposed universal
AID framework. First, the transferability of the PNN as well as several other
well known algorithms is rigorously tested using real incident and loop
detector databases from the I-880 and I-35W freeways. The causes of the
high overlap between the incident and normal pattern classes in the
conventional input feature space are identified. A pre-processor feature
extractor is presented that reduces this overlap and significantly improves
transferability. The on-line learning in real-time capability of the PNN is
investigated and very promising results are presented. A post-processor
module that generates a continuously updated probabilistic estimate of the
presence of an incident in the field is presented. This post-processor uses the
probabilistic outputs from the previous application intervals as a prior-
probability for the current decision and generates a Bayesian estimate of the
current probability of an incident. Finally, the complete system is evaluated

and its universality assessed.

89
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6.2 TRANSFERABILITY TESTING AND EVALUATION

The objective of this phase is to asses the transferability of AID algorithms
from the site/data on which they were initially trained to new. previously
unseen, potentially different sites. As far as this research is concerned,
transferability is defined as the direct application of a given trained
algorithm to a new different site (or the same site after significant changes

with time) without recalibration of any parameters. Due to the fact that new

sites have different site-statistics. deterioration in the performance of any
algorithm is expected, and this section is dedicated to the assessment of the
extent of such deterioration, and the analysis of the underlying causes in

order to develop potential transferability-improvement techniques.

The real loop data and reported incidents from the I-880 freeway in Alameda
County, California and the I-35W in Minneapolis, Minnesota were used to
test the developed algorithms which were trained on simulation data from
the SR-91 freeway in Orange County. The loop data corresponding to the
real incidents were used to assess the DR and the TTD. One Hundred hours
of incident-free loop data from each site were also randomly extracted and
used for FAR testing. Both the PNN and the MLF were tested on these
incident and normal databases. To broaden and generalize the comparative
evaluation, two other algorithms studied by Cheu (1994) were also tested.

namely, the California algorithm #8 and the Minnesota (DELOS) algorithm.
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It is worthy to emphasize that the four algorithms were all trained on the
same simulation data set in order to enable a fair comparison on common

grounds.

Table 6.1 shows the results from testing the previous four algorithms on the
I-880 incident and incident free data sets. Table 6.2 shows the corresponding
results from testing on the [-35W database. Up to three intervals of

persistence were used where applicable.

Careful investigation of the above results reveals the following important

points:

1. Based on the acceptable performance limits established earlier from TMC
surveys, none of the algorithms showed acceptable performance or even

close to acceptable performance, either in the I-880 site or the I-35W site.

The nature of the incidents in the I-880 database caused such obviously low
performance. This was due to the fact that the upstream occupancies at the
I-880 test site were consistently low and did not exceed the 40-50% range
even during lane blocking incidents. On the other hand, the SR-91 data used
for training showed more pronounced effects of the incidents, as the
upstream occupancies were as high as 80-100%. The large difference

between the site-statistics of the training SR-91 data and the testing I-880
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California Alg. Minnesota Alg. MLF Net. PNN Net.
Pers. | DR | FAR|TTD | DR |[FAR|TTD | DR { FAR | TTD | DR | FAR | TTD
0 44 0 134 7 0 170 | 35 0 306 | 31 | 0.40 | 1080
i . . . . . 35 0 336 § 29 | 0.02| 1188
9 . . . . . 35 0 366 | 29 0 | 1218
3 . . . - - 35 0 396 | 27 0 902

Table 6.1. Testing Results on the I-880 Data Set.
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California Alg. Minnesota Alg. MLF Net. PNN Net.
Pers. | DR [FAR|TTD| DR |FAR |TTD| DR | FAR |TTD | DR | FAR | TTD
0 552 | 3.64 | 107 | 19.4 0 549 1 60.5 | 6.2 | 279 | 76.1 | 8.16 | 415
1 - - - - - 5307 | 4.1 | 308 | 400 | 2.7 | 348
2 - - . - 477 | 3.2 | 296 | 29.1 | 13 | 328
3 - - - . - - 13801 26 | 264 | 246 | 0.9 | 465

Table 6.2. Testing Results on the I[35W Data Set.
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1. data is the prime cause of the common low performance amongst all
algorithms on the I-880 site. On the other hand, the incident patterns for
[-35W were relatively closer to those of the [-880 site and therefore all
algorithms showed relatively better performance on the I-35W site as

opposed to the I-880 site.

2. Since the statistics of the traffic in the new testing sites are significantly
different from the training site as explained in “2” above, recalibration or
retraining on data from the new site is necessary for the algorithms to
show acceptable performance after their transfer. However. retraining or
recalibrating an incident detection algorithm for each and every new site
it is transferred to is not a trivial task, but is rather prohibitive. This
problem motivates the utilization of the instantaneous learning capability
of the PNN class of networks to counter balance the severe drop in
performance due to transferability while the network is in service in real

or pseudo real time, which is discussed next.

6.3 IN-SERVICE PERFORMANCE IMPROVEMENT OF THE PNN

6.3.1 On-Site Real-Time Retraining

As was briefly discussed earlier, the PNN family of neural networks use the

training patterns as connection weights to represent the knowledge content
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of the network. Other networks, such as the MLF for instance, use the
training patterns to optimize the connection weights through a search
mechanism such as gradient descent. This optimization process takes time
and the search or training parameters have to be set or hand-crafted by the
network developer, a process that requires experience and skill. For the
PNN, once the training patterns are assigned to the pattern units, the PDFs
of the different classes are known and the network is ready to generalize. If
the operating environment changes and hence the PDFs of the different
classes also change, new patterns from the new environment can replace the
older ones and therefore the new PDFs are instantly re-generated. There is
no time consuming search or optimization involved. This important feature
allows the PNN to adapt to changes in the operating environment as they
occur, be it due to transferability to a totally new site or due to temporal
changes in the same site. The problem is how to obtain data from the newly
changed environment or more specifically the new freeway site? Since the
performance of the PNN, as well as most other AID algorithms, deteriorates
after transferability, it will detect less than 100% of the incidents that occur
in the field. How much less than 100% the DR will be depends on how much
different is the new site and how far or close are the estimated PDFs during
initial training relative to the actual unknown PDFs from the new site.
Nevertheless, the algorithm will detect some incidents. If the traffic patterns

during the times of the detected incidents are used to update the knowledge
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content in the pattern units of the PNN by overwriting the older patterns in
real time, the performance would gradually improve as more and more
incidents get detected with time in service. Updating the non-incident

patterns is not a problem as normal traffic data is always available.

The philosophy presented here for training the PNN is therefore different
from the conventional approach in the field of AID. In the conventional
approach, the system developer attempts to collect incident and loop data
that would represent all possible incident scenarios in all possible field
operating conditions in order to produce a generic AID algorithm. This is
driven by the fact that once the network, say the MLF, is trained there would
be no room for changes. The case is different however with PNN. First the
network is trained to be generic, similar to the conventional training
approach, but this is used only as a starting step. Once copies of the generic
network are installed to operate at different sites, each local copy would
gradually change according to the specifics of the local site. As time goes on.
the local copies of the trained network would become less and less generic
and more and more site-specific. This overcomes the problems associated
with having a network that is trained to be generic to operate on a site with
peculiar needs. This also overcomes the lack of transferability problem as

the network gets a second chance to adapt to the changes at the new site.



To verify this theoretical hypothesis, emulated on-site training sessions on
the I-880 and the I-35W databases were conducted. Right after transferring
the PNN from the simulated SR-91 freeway site to the I-880 site, the network
detected about 30% of the total number of incidents as previously presented.
These detected incidents, together with an equivalent amount of incident-free
data were used for the updating process. Similarly, after transferring the
PNN from the simulated SR-91 freeway site to the I-35W site, the network
detected about 40% of the total number of incidents (at 1 persistence
interval). These detected incidents, together with an equivalent amount of
incident-free data were used for the updating process. One retraining session
was conducted for each site. After the network was instantly retrained on
the incident data that it managed to correctly recognize in the first round of
testing, a second round of testing was performed on the entire size of each
database in order to assess the improvements. As shown in Table 6.3 below
for the I-880 freeway, the retraining or updating process resulted in
significant improvement in the performance of the network. The DR
improved from only 30% to 98% and the FAR dropped to 0%. Similar
significant improvement in the TTD were also evident. Results from the I-
35W site also confirmed the benefits from the real-time on-site retraining
process as shown in Table 6.4. Figures 6.1 and 6.2 show the before and after

performance envelopes for the I-880 and I-35W sites respectively.
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PNN
Before On-Site Patterns Update After On-Site Patterns Update
Persistence] DR FAR TTD DR FAR TTD
0 31 0.4 1080 100 0.5 15
1 29 0.02 1188 98 0 79
2 29 0 1218 98 0 112
3 27 0 902 a8 0 142

880 Patterns.

Table 6.3. Performance Improvements After Real-Time Updating on the I-
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PNN2

Before On-Site Patterns Update

After On-Site Patterns Update

Persistence DR FAR TTD DR FAR TTD
0 76.12 8.16 415 98.51 0.011 48
1 40.0 2.7 348 98.51 0.009 85
2 29.1 1.3 328 98.51 0.006 116
3 24.6. 0.9 465 97.76 0.003 147

Table 6.4. Performance Improvements After Real-Time Updating of the

I35W Patterns.
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Figure 6.1 Performance Envelopes Before and After Real-Time Updating
on the I-880 Patterns.
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6.3.2 Discussion

Given the significant improvement from the real-time on-site retraining,

several important points should be noted:

1. Taking the I-880 site as an example, the amount of incident data needed
from the new site was less than one third of the number of incidents in a two
months period of data collection. Thus, had the updating process been
implemented on-line, the network would have taken only two months to
improve its performance from a totally unacceptable level of performance to
almost an ideal performance of 100% DR and 0% FAR. Dividing the amount
of improvement in the DR by the number of weeks in two months indicates
that the network improves at a fairly high rate of about 8.5% every week in

service. Even better rates are obtained from the I-35W site.

2. Testing the algorithm on the I-880 data set is a fairly harsh test since the
effects of the incidents on traffic conditions were not severe, resulting in
occupancies below 50%. In an average case, the drop in performance due to
transferability is expected to be less than the case of the I-880 test. Hence.
the on-line time required for the PNN to achieve ideal performance would
also be less than 2 months, assuming a similar rate of incident occurrence.
The I-35W site is an example of such a case where the performance drop after

transferability was not as bad as in the case for the I-880 site. A higher
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percentage of incidents were initially detected, which allows for faster

recovery of performance.

3. No other known algorithm or network can achieve similar on-line
improvement in performance without close attendance of a system developer.
This is due to the nature of the training process of the PNN detailed
previously. Unlike the PNN, the MLF uses the training patterns to develop
connection weights using an error minimization technique. When new
patterns become available at the new site, the network has to be retrained
off-line, by the user TMC, to reach a new set of weights that minimize the
error, given the new conditions. In fact, the MLF, when trained off-line on
the same data, achieved similar optimal performance. However, it is the
process of off-line re-training or re-calibration at each and every new site
that we are trying to avoid so long as there is not a significant difference in

the ultimate performance.

4. Since false alarms are possible, one might correctly argue that the
detected incidents should not be used directly to update the training patterns
without incident verification. If incident verification is a necessary step then
the updating process could only take place in pseudo-real time, delayed by
the amount of time required to verify the truth of an incident alarm, and
conditioned upon an “update permission” by a TMC operator, which may be

an effortless simple press of a button. However, it might be possible to avoid
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conditioning the update process on incident verification. This could be
achieved by utilizing the “cost of misclassification ratio” discussed earlier
which could be set in such a way that a 0% FAR is favored over a high DR.
This way, the network would have a 0% FAR right after transferability at the
expense of an initial low DR. As the network starts to detect a few true
incidents and update its weights the DR would start to improve gradually

with time in service.

6.4 ENHANCED FEATURE EXTRACTION FOR UNIVERSAL

TRANSFERABILITY

6.4.1 Causes of the Lack of Transferability Problem

Incident detection is essentially a pattern recognition problem. Loop-
detector-based traffic data, such as volume an occupancy, over several
minutes, are usually used as an input vector fed directly into the detection
algorithm. The dimensionality of the input vector defines the dimensionality
of the feature space of the problem. The role of the detection algorithm is to
partition the input feature space into two classes, one for incident-related
vectors, and the other is for incident-free vectors. Unfortunately, the two
classes of patterns are highly overlapping in the feature space. Figure 6.3.a

& 6.3.b illustrate the extent over which each class of patterns extends in a



Figure 6.3.b Normal Data in Two Dimensional Input Space
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simplified two dimensional input space. This simplified input space is
composed of upstream and downstream occupancies from a test section from
the SR-91 freeway in Orange County. Comparison of the figures (plotted
separately for clarity) clearly shows the high overlap extent between the two
classes. Such an overlap is believed to be attributed, at least in part, to the

following reasons:

e The shockwaves associated with each incident may take a few minutes to
travel from the actual incident location to the loop detector locations. The
boundary of the congested region for instance propagates upstream at an
approximate speed of 10 miles per hour, where the exact value depends on
the characteristics of the incident, the geometry of the freeway segment
and the level of traffic at the time of the incident. On the other hand, the
input patterns are usually marked as incident-related for calibration
purposes immediately following the onset of the incident. During the few
minutes of shockwave travel time, the input patterns at the loop detector
locations are effectively normal but yet are mistakenly marked as
incident-related. The result is a few points in the feature space that are
marked as incident-related but actually reside well in the heart of the
normal class of patterns. The opposite is also true for the clearance time
of an incident. Once the incident is physically removed. and before the
clearing shockwave reaches the detector locations, the input vectors are

marked as normal (or non-incident) while they in fact reside well in the
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heart of the incident class of patterns. Such an overlap confuses any

AID algorithm while being trained to separate the two classes of traffic

patterns.

The pre-incident conditions vary from one location to another and from
time to time at a given location. Consequently, the location of the
incident-free patterns varies widely and covers most of the input space.
On the other hand, and for the same pre-incident conditions, the extent to
which an incident affects the traffic conditions and hence the extent to
which the data points migrate in the feature space vary not only with the
characteristics of the incident but with the characteristics of the freeway
as well. Consequently the location of the incident patterns vary widely as
well and covers a wide range of the input space. The two widely dispersed
classes of patterns hence overlap and ambiguously share most of the
feature space. Figure 6.4 is a schematic illustration of such a problem
where point # 2 represents an incident condition that still resides in the
normal region and point # 3 is a normal point that is well inside the

incident region.

Sudden geometry changes on a freeway such as lane drops, bottlenecks, or
major on or off ramps create a transitional section on the freeway with
upstream occupancy and volume levels that are different from those at

the downstream side, even under incident-free conditions. For instance, if
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the capacity of a given bottle neck is exceeded during rush hours, the
occupancy levels on the upstream side far exceed those at the downstream
side of the section, a situation that is incident-free but yet resembles the
traffic patterns associated with incidents. The result is a set of incident-
free input vectors that reside within the incident-related class causing
false alarms. It is worthy to emphasize that incidents are nothing but

non-recurring capacity reducing events, i.e. bottlenecks.

¢ Some virtual bottleneck situations similar to the above could also arise
due to loop-detector biases. For instance, if the upstream loop detector
consistently reports higher occupancies than the downstream station
under normal incident-free conditions, the detection algorithm will

consistently generate false alarms at this location.

The above sources. combined, produce highly overlapping classes of traffic
patterns. Even worse, any boundary that gets generated by any classifier
will be location-dependent. In cases of transferring an already trained
algorithm to a new site, a process of re-calibration on local data might
therefore be essential. Although the PNN-based framework makes such
retraining simpler, it would be beneficial to try to enhance the transferability
to reduce the performance deterioration and to make role of the retraining
part of the overall process easier. The following section describes the details

of a transferability-enhancing input feature extraction process.
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6.4.2 Enhanced Feature Extraction

The objective of the proposed input features is to form an input feature space
in which the incident and normal pattern classes are as distinct and separate
as possible. The backbone of the proposed approach is twofold: [1] replacing
the volume and occupancy inputs with the volume and occupancy deviations
from their Averages-for-the-Time-and-Location (ATL), and [2] beginning the
marking of traffic patterns as incident-related only after the incident-related
shockwaves reach the detector locations and not at the physical onset of the

incident.

In the first case, a set of day-of-the-week-specific historical data files are
prepared at each loop detector location that holds location-specific incident-
free volume and occupancy averages over successive intervals (15 minutes for
instance). As the traffic data that needs to be classified become available,
and instead of feeding them directly into the detection algorithm, the
historical ATLs are first subtracted from the on-line values and only the
deviations from these ATLs are fed into the algorithm. These new features

have the following set of advantages:

1. Unify the pre-incident conditions at all locations and at all times. In the
input feature space, all the pre-incident patterns will be shifted to fall

around the origin. Consequently, all incident-free situations will look the
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same regardless of any local traffic pattern effects. Incident-related

patterns will evidently fall far from the origin of the feature space.

. Sudden changes in the geometry of the freeway such as lane drops, bottle
necks, or major on or off ramps will have no effect on the location of the
incident-free patterns in the feature space. For instance, if the capacity of
a bottle neck is usually exceeded during rush hours, i.e. the incident-free
occupancy levels on the upstream side far exceed those at the downstream
side of the section during this period, this will be reflected in the
historical ATLs file for this time period. Hence, under an incident-free
situation at this location and during this period of time, the deviation
from the ATLs will always be practically zero. If an incident occurs, the
already existing gap between the upstream and downstream occupancies
for instance will widen further, and the deviations from the historical
ATLs will start to be of considerable magnitude indicating the onset of an
incident. This way, bottleneck situation and funneling freeway sections
could be effectively, and seamlessly handled by the algorithm without any
requirement of special local loop-detector configuration (examples of such

requirements can be found in Lin, 1995).

. Similarly, virtual bottle neck situations due to loop-detector biases could
also be avoided. For instance, if the upstream loop detector consistently

reports higher occupancies than the downstream station under normal
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incident-free conditions, the bias will be reflected in the historical ATLs
file, and hence the detection algorithm will not see any deviations from
the ATLs and will not generate false alarms at this location. Only when
an incident occurs, the already existing gap between the upstream and
downstream occupancies for instance will widen further, and the
deviations from the historical ATLs will start to be of considerable
magnitude indicating the onset of an incident. Loop detectors that go bad
suddenly do not fall into this category because the ATLs file will not
reflect any consistent abnormalities. However, sudden generation of a set
of false alarms at such a location could be indicative of an “abnormal”
event. In such a case the detection algorithm will detect the

malfunctioning detector itself.

Table 6.5 shows a few hypothetical illustrative numerical examples of the
above features. The first freeway section is a homogeneous one (no geometry
changes), with equal upstream and downstream occupancies during incident-
free operation. Also the occupancy values are equal to the representative
values for the given time slot as stored in the ATL files. Hence, under normal
conditions, there are no deviations from the ATL values. However, as an
incident occurs, the upstream and downstream occupancies start to deviate
from the ATL values. The second section is also a homogeneous one, but
operating at higher incident-free occupancy levels which are also equal to the

location-specific and time-specific ATL values. Hence. under normal
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Direct Occupancies

Deviations from ATLs

Before After Before After
incident incident incident incident
Freeway ATL | ATL |us. |ds. jus. |ds. Jus. |ds. |us. |ds.
section type u.s. d.s.
Homogeneous. | 20 20 20 (20 (60 [10 JO 0 40 |-10
Homogeneous. |40 40 40 (40 (80 [30 }O 0 40 |-10
Bottleneck. 40 20 40 |20 |80 10 10 0 40 |-10
ATL:  Average Occupancy for the particular Time and Location.
u.s.: upstream
ds.: downstream

Table 6.5 Examples of the New Input Features (Occupancy Values
Example).
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conditions, there are no deviations from the ATL values as in the case of the
previous section. However, as an incident occurs, the upstream and
downstream occupancies start to deviate from the ATL values. Assuming that
the incident effect is similar to the previous case, the deviations from the
ATL values will be equal to those from the previous case as well. The last
section represents a bottle neck situation that causes the upstream
occupancies to be higher than their downstream equivalent under incident-
free conditions. However, because this is usually the case at this location
and at this time of the day, day of the week .. etc., the historical ATL values
will reflect such an incident-free occupancy difference, and hence there will
be no deviations from the ATL values. As an incident occurs, the upstream
and downstream occupancies will drift further apart and will start to deviate
from the ATL values. Assuming that the incident effect is similar to the
previous case, the deviations from the ATL values will be equal to those from
the previous two cases. It is clear that, although the above three cases have
widely varying pre-incident conditions, using the new features unifies the

pre-incident conditions and focuses on the unmasked effects of the incidents.

The above example uses hypothetical illustrative occupancy-only numbers.
Under actual operating conditions, the same logic illustrated in Table 6.5 and
associated discussions still applies. Figure 6.5 shows the upstream and
downstream occupancy values before and during two actual incidents from

the SR-91 freeway in Orange County. In the Figure, points Cl and C2



Figure 6.5 More Distinct Incident and Normal Patterns Using the
Proposed Features
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represent incident conditions for incidents 1 and 2 respectively. Points N1
and N2 represent the normal pre-incident conditions. It can be seen in the
figure that a vector such as 0-C2 for instance is the sum of the two vectors;
O-N2 which is the incident-free vector and N2-C2 which is the deviation-
from-normal that the incident causes. The same applies for the other
incident and the associated vectors. If the incident-free vectors are taken out
(subtracted), and the deviations vectors are moved to start from the origin,
the translated vectors O-C1’ and 0O-C2’ are obtained. The benefits are very
obvious; [1] the incident-free points unify and collapse on the origin, [2] the
incident points get closer to each other. and [3] the incident points become
more distant and distinct from the normal pre-incident points, simplifying
any subsequent classification attempts. The conclusion is that it is much
simpler for a detection algorithm to operate on the deviations from the ATLs

than to directly operate on observed values.

Simple shockwave analysis could be used to determine the time required for
the shockwave to reach the detector locations. However, any modeling
inaccuracies in the adopted shockwave analysis methodology (hydrodynamic
theory for instance) will be automatically embedded in the incident detection
model. To avoid such an error source, the shock wave arrival time could be
easily determined from a time plot of the upstream and downstream
occupancy values by observing the gap between the two values. The time at

which the gap starts opening is the actual time of arrival of the shock waves



117
at the detector locations after the onset of the incident. The time at which the
gap starts closing is also the time of arrival of the clearing shock wave after
the removal of the incident. Such a way of marking traffic patterns for
calibration or training purposes would mark the inputs as incident-related
only when they start deviating from the normal class which in turn was
previously “centralized” around the origin of the input feature space using

the deviations from the ATLs as inputs.

6.4.3 Implementation of the New Features

The objective in this section is to assess the potential transferability
improvement from using the proposed features. The PNN was trained twice
on the SR-91 simulation data, once using the conventional direct values of
volume and occupancy and the second time using the deviations from the
ATLs described above. The known volume and occupancy averages at each
incident location, and during normal conditions (incident-free) were
subtracted from the volume and occupancy inputs and only the deviations
were presented to the network. Training vectors were marked as incident-
related only after the arrival of the congestion shockwave to the detector
locations. The delay before the arrival of the incident effects at the upstream
and downstream loop detector stations depends on the speeds of the

congestion shockwave traveling upstream and the clearing shockwave
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traveling downstream as well as the incident location relative to the
upstream and downstream stations. Since the effect of an incident does not
necessarily reach both the upstream and downstream detector stations
simultaneously, the incident effect arrival time was considered to be the time
at which the upstream and downstream occupancies started to drift apart.
This can be safely considered as an indication of the arrival of the incident-
related shock waves either at the upstream and/or the downstream loop

detector stations.

Similarly, the I-880 and I-35W databases were prepared. The average
incident-free occupancy and volume for each incident were subtracted from

the inputs and only the deviations were presented to the network.

After training the PNN on the SR-91 database, it was tested twice, once on
the I-880 incident and incident-free databases, and another time on the I-
35W incident and incident-free databases. The purpose of this testing was to
assess the PNN’s transferability without retraining using the new input
features, and to compare the results to those previously obtained using
conventional direct volume and occupancy inputs. In all cases, the DR and
mean TTD were computed from testing on the incident data and the FAR was
computed from testing on the incident-free data. Persistence tests of up to
three intervals were used to further reduce the FAR due to random

fluctuations of traffic.
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Table 6.6 shows the testing results of the PNN on the I-880 incident and
incident free data sets using the conventional and the ATL-based features.
Figure 6.6 also shows the before and after performance envelopes. It is
obvious from the results that training on the SR-91 freeway using the
conventional features is not appropriate for the I-880 site, as waé concluded
earlier. The main reason is that the statistics of the two sites, using the
conventional features, are significantly different, and consequently any
direct transfer of trained algorithms between the two sites is not acceptable
as the performance in terms of DR and FAR is significantly inferior to the
TMC-acceptable values. Using the new features, however, tended to
standardize the feature space and the related statistics. They standardize
the pre-incident conditions, and the way an incident causes the traffic
parameters to deviate from them. As the numbers indicate, the DR of the
PNN was close to or higher than the 88% acceptable limit and the FAR was
always lower than the 1.8% acceptable limit at all persistence intervals.
Hence, using the proposed new features not only makes the direct transfer of
the algorithms from one site to another feasible, but also the performance
improvement over the conventional features was substantial. A relevant
warning, however, is due in this case. The fact that the actual performance
numbers were found to be within the acceptable limits should be interpreted
with care, because this is data-dependent. It is reasonable to stress the

importance of the relative evaluation in this case rather than the absolute



conventional feature ATL-based features
Persistence DR FAR TTD DR FAR TTD
0 31 0.4 1080 | 93.3 0.01 181
1 29 0.02 1188 | 88.9 0 283
2 29 0 1218 | 86.7 0 226
3 27 0 902 86.7 0 256
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Table 6.6. Transferability to the I-880 Site Using Conventional and New

Features.
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Figure 6.6. Performance Envelopes after Transferability to the I-880 Site
Using Conventional and New Features.
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one. Table 6.7 shows the corresponding results obtained from the I-35W site
which fully support the parallel findings from the I-880 case. Figure 6.7

shows the before and after performance envelopes for the I-35W site.

It is noticeable, however, that the improved performance is still far from
ideal. Nevertheless, the gap between the improved performance using the
ATL-based features and the desired ideal performance is much narrower
than the corresponding case using the conventional features. This brings the
role of training on-site in real-time back into the picture, the role of which
becomes much easier with the improved transferability. As the PNN is
statistically consistent and capable of improving in real time, its performance
improves in service to further close this gap as was demonstrated earlier in

this chapter.

6.5 POST-PROCESSOR INTERPRETER OF AID OUTPUT

Loop-based incident detection algorithms rely on detecting the effects of an
incident that may be reflected in the volume/occupancy-based input features.
Due to the fact that these features are not perfect, i.e. they do not guarantee
a distinct separation of incident patterns from incident-free patterns in the
input feature space, as discussed earlier. The output of such algorithms will

also be imperfect, which is not uncommon in the field of pattern recognition.



conventional feature

ATL-based features

Persistence DR FAR TTD DR FAR TTD
0 76.1 8.16 415 95.5 |5.19 154
1 40.0 2.7 348 79.1 |0.67 171
2 29.1 1.3 328 612 |0.17 458
3 246 0.9 465 56.0 |0.07 831
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Table 6.7. Transferability to the [I-35W Site Using Conventional and New
Features.
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Figure 6.7. Performance Envelopes after Transferability to the [-35W Site
Using Conventional and New Features.
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There is uncertainty involved in the binary decision of any incident detection
algorithm as a generated alarm could be a true incident, or a false alarm.
The current state of the practice in incident detection, which has been
followed in this research up till this point, is such that the traffic variables,
occupancy and volume are sampled once every certain time interval, most
commonly 30 seconds apart. An input vector composed of a few minutes
history of such data, both at the upstream and downstream loop stations is
fed into the incident detection algorithm, either directly or after some
preprocessing and transformations. The algorithm attempts to classify the
input vector into one of two states, incident or incident-free. Once. the
algorithm recognizes a single input vector to be incident-related. an incident
alarm is issued at the Traffic Management Center (TMC) to initiate a
verification/response procedure. This approach has several problems. First,
the decision is based only on the latest 30 seconds mput vector and is made
in total isolation from previous decisions at the preceding intervals. Second,
the generated alarm does not indicate the level of confidence in the presence
of an actual incident in the field. Last but not least, these isolated decisions
tend to be erratic and change from one interval to another very rapidly,
alternating between incident and incident-free states. This rapid fluctuation
could result in loosing incidents that do no produce persisting successive
incident-like vectors, and could also result in several false alarms in normal

periods, as any erratic classification of a single input vector as an incident
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would cause an alarm. For a reasonable detection rate, the number of false
alarms and the associated waste of resources in the process of verification
could outweigh the benefit from using the automated incident detection
scheme. Consequently, the “crying wolf’ algorithm may be abandoned by
TMC personnel. It is not uncommon to use a persistence test of several
intervals to cut down the false alarms. Although persistence tests increase
the confidence in the incident decision, and reduce false alarms, they do that
at the expense of missing weak incidents and delaying the detection of all
others. In addition, in a large TMC jurisdiction, the absence of a severity or
confidence measure tagging each alarm causes all alarms to be equal in
importance, a problem that hinders the prioritization of responses and
resource allocation to a set of alarms and potential incidents. Therefore, a
simple sequential updating scheme is proposed for incident probabilities
based on the well known Bayes’ theory and a graphical output that reflects
the confidence in each incident alarm. This will described in the rest of this

chapter.

6.5.1 Drawbacks of the Isolated Binary Outputs

Incident detection output usually takes a binary form of either “incident” or
“incident free”, a process that gets repeated every, say, 30 seconds. No

attempts have been made to translate these discrete binary outputs to a
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continuous estimate of the probability of an incident in the field. To
illustrate the conventional approach first, Table 6.8 shows two streams of
incident detection output for two actual incidents from the SR-91 database.
If a zero persistence interval is adopted, both incidents would be considered
detected at time mark 150 seconds. However, if a persistence test of three
intervals is used to cut down the number of false alarms, the first incident
gets detected only at time mark 450 seconds, while the second incident goes
undetected. Several drawbacks are associated with this approach which are

identified as follows:

e Using a low persistence level may result in low confidence in incident
alarms and a high false alarm rate during incident free periods due to

short-term traffic perturbations

o Using a high persistence level may delay the detection of strong incidents

and cause weaker incidents to go undetected.

o Using high persistence levels of n-intervals ignores all the information
contained in previous successful classifications that lasted for less than n-
intervals. For incident #1 in the above example for instance, and for a
persistence test of three intervals, four successful classifications of the
incoming traffic patterns were ignored prior to the time mark 360

seconds.



Incident #1

Incident #2

Time

Output

Qutput

1

1

30

60

80

120

150

180

210

240

270

300

330

360

390

420

450

480

510

540

570

600

630

660

690

720

750
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Table 6.8. Sample Incident Detection Output for Two Incidents
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e There are no means of differentiating between incident alarms related to
incidents of different strength. In the above example, and for the case of
zero persistence interval, the two incidents were declared detected at time
150, and treated equally in terms of verification/response requirements
regardless of the obvious weakness of incident #2. This weakness.
however, would be obvious only if the entire stream of outputs is
considered as a whole and not only the current output. Finally, if the
number of incident alarms exceeds the verification/response capacity of a
given TMC, a situation that is not uncommon, a prioritization scheme
would be needed that assigns higher priorities to stronger incidents. This

is obviously absent at present.

The alternative then is to attempt to link together the isolated 30-second
decisions, combine the information contained in each one them and produce
one estimate that gets updated sequentially every 30 seconds. This is
achievable through the use of a Bayesian update process of a sequence of
random tests. Each input vector is treated as a sample from the traffic
population, the testing of which produces an incident or incident-free
outcome. Knowing the prior probabilities, and as new samples are tested.
the incident and incident-free probabilities get updated accordingly as

described next.
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6.5.2 Continuous Updating of Incident Probabilities

The process of continuous generation and updating of incident probabilities

relies directly on the theory of total probability and Bayes' theorem (Ang

1975).

As the given incident detection algorithm generates an incident

alarm, the probability of existence of a true incident in the field could be

computed using Bayes’ theorem as follows:

where

P():

P@):

PAID:

P(I|4) =

P(AIL) - P(I)
P(A|I)-P(I)+ P(AIF)-P(F)

the event of an incident alarm generation by a given incident

detection algorithm.

the event of a true incident in the field.

the event of an incident-free condition in the field.

the prior probability of occurrence of an incident.

the prior probability of an incident-free condition, which is the

complement of P(I).

the conditional probability of occurrence (generation) of an
alarm given the occurrence of an incident in the field. This

could be taken as equal to the correct classification rate of
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incident related input vectors. It is algorithm-specific, and is

obtainable during the testing of the calibrated algorithm.

PAIF): the conditional probability of occurrence (gemeration) of an
alarm given an incident-free condition in the field. This could
be taken as equal to the incorrect classification rate of incident-
free input vectors. It is also algorithm-specific, and is

obtainable during the testing of the calibrated algorithm.

PdIA): the conditional probability of existence of a true incident given

the occurrence (generation) of an alarm.

Note that P(A|I) and P(A|F) are always less than unity because any incident
detection algorithm is not perfectly reliable, and misclassifications inevitably

occur.

Similarly, if the incident detection algorithm indicates an incident-free
condition, the probability of existence of an incident in the field could be
updated using the equation:

P(4]D)-P(I)

PUA) =5 P + PAIF)- P(F)

where 4 is the complement of A, i.e. the event of the algorithm is indicating
an incident-free condition at a particular time interval. P(4 | I) is also the

compliment of the P( A | I) as the conditioning component is the same.
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The prior probability of an incident could be estimated on the basis of traffic,
geometry, weather, and visibility conditions (see for instance, Madanat and
Teng 1995). Once the prior probabilities are known, the output of the
incident detection algorithm could be treated as a sequential test, every 30
seconds or so, that yields a true or false binary decision, i.e. incident alarm or
incident-free indication. This output, together with the estimated prior
probability of an incident, are plugged into the above equations in order to
improve the prior information. In the same manner, the new calculated
probability is treated as a prior probability for the next interval, together
with the new output from the incident detection algorithm, to update the
probability of an incident again, and the sequence goes on. The probability of
existence of a true incident in the field is therefore generated and updated
every 30 seconds. These probabilities could be presented to a TMC operator
in a numerical format or as a rolling horizon graph that displays the current

probability versus time.

In order to illustrate the above sequential updating process, the two incidents
previously presented in Table 6.8 are revisited. The detection algorithm used
in this example (the PNN) has a correct classification rate of incident vectors
of 85%, and an incorrect classification rate of incident-free vectors of 4%. A
starting prior probability of an incident of 5% is used in this example for the
purpose of illustration only. i.e. the following inputs to equations 1 and 2

are used:
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0.05

P@)
PF) = 0.95
PAIT)= 0.85

P(AIF) = 0.04

A minimum incident probability of 0.05 and a maximum of 0.99 are used to
avoid “locking” the computations. Table 6.9 shows the updated probabilities
for the two incidents given the outputs of the detection algorithm, i.e. P(I|A)
or PA| 4). Figures 6.8 and 6.9 illustrate the graphical display of these
probabilities versus time for the two incidents respectively, and for the entire

duration on the incidents.

It is very clear from Table 6.9 and Figures 6.8 & 6.9 that working with
incident probabilities is more appropriate than just relying on an isolated
decision based on one output at certain interval. Displaying the probability
of an incident as a function of time gives a clearer picture of the evolution of
the incident and severity of its effects on traffic. Also, it is very clear that
incident #1 in the above example should be given verification/response
priority relative to incident #2. A wuseful utilization of the resulting
probabilities is to declare an incident only if the probability exceeds a certain
limit (say 95%). In this case incident # 1 would be declared detected at time
180 seconds, and incident # 2 at time 450 seconds. This way, the rigid
adoption of a certain persistence level and its associated problems could be

completely avoided.



Incident #1 incident #2
Time Output] P(l) ] Output] P()
0 1 0.05 1 0.05
30 1 0.05 1 0.05
60 1 0.05 1 0.05
90 1 0.05 1 0.05
120 1 0.05 1 0.05
150 2 0.53 2 0.53
180 2 0.96 1 0.15
210 1 0.79 1 0.05
240 2 0.99 2 0.53
270 1 0.94 1 0.15
300 2 0.99 2 0.79
330 1 0.94 1 0.37
360 2 0.99 1 0.08
390 2 0.99 1 0.05
420 2 0.99 2 0.53
450 2 0.99 2 0.96
480 2 0.99 1 0.79
510 2 0.99 1 0.37
540 2 0.99 1 0.08
570 2 0.99 1 0.05
600 2 0.99 1 0.05
630 1 0.94 1 0.05
660 1 0.70 1 0.05
690 1 0.27 1 0.05
720 1 0.05 1 0.05
750 1 0.05 1 0.05

Table 6.9. Updated Incident Probabilities for the Two Incidents
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Figure 6.8. Updated Incident Probabilities vs. Time for Incident #1
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Figure 6.9. Updated Incident Probabilities vs. Time for Incident #2
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6.5.3 Alternative Updating Scheme of Incident Probabilities

The above scheme is applicable to the output of any incident detection
algorithm including the PNN. However, there is another updating process
that particularly fits only the PNN. The probability densities f1(X) and f2(X)
produced by the PNN after classifying an input vector X can be used in the

following equations to update the incident probabilities instead:

- f(X). P(I)
PUO = 5 (0 + £ () POE)
P(F|X) = fo(X). P(F)

FCO. P + f,(X). P(F)

It is noticeable that the above equations are useable right after the
probability densities are produced by the PNN and even before a
classification of the incoming vector is made. Therefore there is no need to
classify each incoming vector but rather update the posterior probabilities
directly. Its application, however, is limited to the PNN, and since it is not
functionally different from the general updating approach of using the binary
outputs to update the posterior probabilities, the general approach is given
preference. In cases where the PNN is the only algorithm under

consideration, both approaches would be equally usable.
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6.6 THE FULL UNIVERSAL SYSTEM

The components of the proposed universal freeway incident detection system
are now complete. The PNN-based core is high in performance. The training
process is very fast, actually instantaneous, and robust with no developer-
dependent hand crafting of any complex parameters. Accounting for prior
probabilities of incidents as well as the unequal costs of misclassification is
an inherent component of the PNN theory. Using the new ATL-based
features, the PNN transfers reasonably with non-catastrophic degradation in
performance. The on-site learning capability of the PNN in real-time
enhances the performance after transferability to fall well within TMC-
acceptable limits. The posterior probability updating process mirrors the
evolution of an incident in the field, reflecting its severity and captures the
duration of its presence and time of termination. Also. the new input
features make the framework immune to either real or virtual bottle necks or
even loop biases. In fact, the overall framework fulfills the entire set of

universality requirements as shown in Table 6.10 below.

The next chapter will explore a more complex version of the PNN presented
in this chapter. A multi-c PNN will be developed and trained using a genetic
algorithm. This only concerns the PNN-based core of the universal

framework. The rest of the framework however remains the same.



Universality Attribute PNN2
1. Highest performance. v
2. Fast. robust and automated training and retraining v
3. Reasonable TMC implementation requirements v
4. Transferable logic: v
5. Reasonably transferable training / calibration parameters v
6. Minimal initial training data requirements v
7. Account for prior probabilities of incidents v
8. Account for the unequal costs of misclassifving traffic patterns N
9. Capable of producing the posterior probability of an incident N
10. Estimate incident severity N
11. Capture incident duration N
12. Statistical and theoretical soundness and clarity v
13. [mmunity to minor traffic fluctuations effects v
14. Immunity to bottleneck effects v
15. Immunity to consistent loop detector biases v

N:
%:

absent attribute
fulfilled attribute
attribute fulfilled to some extent. but not fully.

N.A.:  Not Applicable.

Table 6.10. Universality of the PNN-based framework
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CHAPTER 7

AN IMPROVED GENETICALLY OPTIMIZED
MULTI-c PNN

7.1 INTRODUCTION

As discussed in Chapter 5, the original PNN uses a symmetric PDF
estimation kernel. This symmetric kernel is the result of using a single
smoothing parameter ¢ that applies equally to all the input dimensions, and
using Euclidean distance as a measure of nearness of the different patterns.
The use of such a symmetric kernel is inappropriate for many applications
because it doesn't account for differences in variations along the axes nor the

presence of correlation among the variables constituting the pattern vector.

A successful approach to this problem has been proposed, developed and
evaluated earlier in this study and which relies on transforming the input
variables into principal components. The major advantage of this approach is
that the instantaneous training of the PNN is not jeopardized. Several other
approaches to solving this problem however, have been proposed in the
literature. Specht (1992, 1994, and 1996) used a different smoothing
parameter for each input dimension. Traven (1991) and Streit (1990 and

1994) estimated the PDFs of the different classes as a sum of gaussian
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kernels with a full covariance matrix. All these approaches have in common
an iterative training procedure similar to that used by the MLF. Although
performance improves, the training process is no longer instantaneous and is
also prone to getting trapped in local minima as can the MLF. Very recent
training procedures using genetic algorithms overcome the local minima
problem and are faster than conventional training approaches. However, the
training is still not instantaneous. A trade off remains between the gain in
accuracy and the loss of the instantaneous training advantage. Training a

multi-c PNN using a genetic algorithm is explored in this chapter.

7.2 A MULTI-c ADAPTIVE PNN

An important improvement to the PNN, called Adaptive PNN (APNN), is
obtained by adapting a separate smoothing parameter for each input
variable/feature dimension (Specht 1996, 1994, 1992). This often greatly
improves generalization. It is known that each input contributes to the
overall knowledge content of the network differently. Some poorly selected
inputs even adversely affect the performance, or at least add complexity
without benefit. Allowing a separate o for each variable / dimension tailors

these contributions on the basis of performance improvement.
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The core of the single-c PNN is the estimation of a PDF as the sum of
gaussian kernels which all have the simple covariance matrix oI, where I is
the identity matrix. Specht (1996, 1994, 1992) found that adapting a
separate o for each dimension greatly improves generalization accuracy. He

used the two different adaptation methods described next.

7.2.1 Conventional Adaptation Methods

In the first method by Specht (1992), adaptation is accomplished by
perturbing each ¢ a small amount and accepting the one perturbation which
improves classification accuracy the most. Two criteria are used after each
perturbation. First, the classification accuracy is determined using the PNN
with the hold-one-out-method. One exemplar at a time is withheld from the
training set, and the network is tested on this exemplar. The full evaluation
is the sum over the entire training set. Second, the sum of probabilities is
calculated using Bayes theorem. Using the hold-one-out-method once again,
the probability of each held out pattern being classified into the correct
category is equal to the PDF of the correct category evaluated for the held out
pattern, divided by the sum of the PDF’s for all categories. This measure
provides a continuous measurement of classification accuracy so that
improvements smaller than integer classification counts can be detected.

The decision of which & to change is made first on the basis of classification
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accuracy. When more than one candidate yields the same classification

accuracy, the sum of probabilities measure is used for the final selection.

In the second method (Specht 1994), adaptation is accomplished by
perturbing each ¢ a small amount to find the derivative of the optimization
criterion with respect to each 5. The conjugate gradient descent is used to
find iteratively the set of o’s that maximize the optimization criterion. The
optimization criterion used emphasizes improvements in category separation
only between categories where misclassification occurs. When patterns from
category k are misclassified as members of category q, the likelihood ratios
LR = f(X)/£,X) are calculated for all category k patterns, using the hold-one-
out validation method. The mean log likelihood ratios are computed
separately, and their ratio is taken. The ratio is summed over all cross
categories where misclassifications have occurred. The following criterion is
then minimized, which provides a continuous measurement of classification
accuracy:

ZZ Mean log LR for misclassified patterns (CAT, / CAT,)
Mean log LR for correctly classified patterns (CAT, / CAT)

k q=k

The APNN not only finds a separate smoothing factor for each variable, but
also detects variables that are poorly correlated with the desired output. All
variables with a large associated ¢ have relatively small effects on the

estimation of the PDFs. After the adaptation, the resulting ¢’s can be used
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to rank the input variable based on importance or remove some of them to

reduce the dimensionality of the problem by getting rid of irrelevant inputs.

Although the above search mechanisms are more complicated than the
simpler original PNN. the performance improvement might warrant such
complexity. Itisimportant to note that it is much easier to search the small
o space than to search the huge and complex weight space of the MLF.
Besides, once the o's have been determined, the resulting network has the
real time learning ability of the PNN. Nevertheless, if a more efficient and
more robust mechanism for optimizing the choice of the smoothing
parameters can be found. the APNN would benefit from the improved
performance without the disadvantages of gradient descent search
mechanisms such as difficulty of setting an optimal step size and getting
stuck in local minima. The logical candidate alternative is to determine the
optimal o's using a Genetic Algorithm (GA). This is motivated by the
fastness, robustness, and efficiency of GA as a newly emerging optimization
tool and the absence of the problems associated with gradient descent and
similar search mechanisms. The Genetic Adaptive PNN (GAPNN) would be
similar to the APNN above in the sense that it searches for a set of separate
o's that optimize a performance criterion. The only difference however is that
it uses a GA to search for the o’s. The following sections elaborate on GA and

the GAPNN.
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7.3 GENETIC ALGORITHMS

7.3.1 Introduction

The field of Genetic Algorithms (GA) has been growing since the early 1970s,
but only recently has it been increasingly applied to real-world problems.
The field of GA is inspired by evolution in the real world, which is controlled
by the process of natural selection. Organisms most suited for their
environment tend to live long enough to reproduce, whereas less-suited
organisms often die before producing children or produce fewer and/or
weaker children with lower and lower chances of survival. Genetic
algorithms can be defined as a problem-solving method that uses genetics as
its model for problem solving, applying the rules of reproduction, gene
crossover, and mutation to a population of candidate solutions or pseudo-
organisms so those organisms can pass beneficial and survival enhancing

traits to new generations (Chambers 1996).

In the real world, an organism’s characteristics are encoded in its DNA. GA
store the characteristics of artificial organisms in electronic chromosomes. A
typical GA algorithm is linked to the real-world problem it is solving by an
encoding mechanism and an evaluation function. The former is a way of
encoding solutions to the problem on electronic chromosomes, most commonly
in the form of bit strings. The evaluation function returns the worth or

fitness of any chromosome in the context of the problem.
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Given the initial components - a problem to be solved, an encoding procedure,
and a fitness evaluation function - a GA can be used to carry out simulated

evolution on a population of solutions as follows (Davis 1991):

1. Initialize a population of chromosomes (encoded candidate solutions to the

problem).

9. Evaluate each chromosome in the population.

3. Create new chromosomes by mating current chromosomes; select two
parents at a time, and apply mutation and crossover to create two new

children. Most fit parents should have greater chance of being selected.

4. Delete members of the population to make room for the new chromosomes.

Evaluate the new chromosomes and insert them into the population.

(91}

6. Repeat till convergence is achieved or time is up.

Although the previous algorithmic description applies to most genetic
algorithms, different researchers and practitioners implement this
description in different ways. The most common or “typical” GA uses binary
encoding, random initialization, roulette-wheel-parent-selection, and a one
point cross-over and mutate operator. The following is a very brief overview

of these terms. More details can be found in (Davis 1991).
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Each solution to the problem is transformed into a binary string. At first the
GA generates a population of initial solutions or chromosomes by filling each
of these strings by randomly generated binary bits. The goodness of each of
these solutions is evaluated and stored as a fitness record. This is the initial
generation of chromosomes. The roulette-wheel-parent-selection (RWPS)
mechanism is then applied to select two parent chromosomes for further
mating and reproduction. The RWPS mechanism makes a list of available
chromosomes, their fitness, and the running total of fitness, then generates a
random number between zero and the accumulated total fitness, followed by
selecting the first chromosome at which the running total of fitness is greater
than or equal to the random number. This is analogous to the allocation of a
pie-shaped slice of a roulette-wheel to each population member, with each
slice being proportional to the member’s fitness. Although, the effect of the
RWPS mechanism is to return a randomly selected parent, each parent's
chance of being selected is directly proportional to its fitness. On balance,
over a number of generations, this will drive out the least fit members and
contribute to the spread of the genetic material of the fittest population
members. Once two parents have been selected this way, one-point crossover
is applied. Crossover recombines the genetic material in two parent
chromosomes to make two children. One-point crossover occurs when parts
of two parent chromosomes are swapped after a randomly selected point.

Extra diversity in the children is added by applying bit mutation. When bit
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mutation is applied to a bit string, it sweeps down the list of bits, replacing
each by a randomly selected bit if a probability test is passed. After a whole
new generation of children is produced, they are evaluated and their fitness
returned. Better solutions evolve as the process of reproduction and
generational replacement proceeds. The process is terminated once it
converges (does not improve further) or after a pre-specified number of

generations.

7.3.2 Genetic Algorithms: General Uses and Advantages

GAs are a very powerful new technology for searching for solutions to
difficult problems. They have been applied to a range of function
optimization, scheduling, and placement problems. From an engineering
perspective, this new paradigm is a very powerful method for searching
through a large and complex solution space featuring a large extent of local
minima. In comparison to directed random search techniques, they are able
to find optimal solutions quickly. In contrast to techniques like gradient
descent, finding the optimum solution is not adversely affected by local
minima. Therefore, it is more likely to find a global minima using a GA as
opposed to gradient descent approaches. It is obvious then that the
immunity to local minima traps and the speed advantages of GA make them

a better candidate to train the APNN to optimize the search for the os.
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7.3.3 Genetic Synthesis and Optimization of Neural Networks

Both Genetic Algorithms and Neural Networks are biologically-inspired
artificial-intelligence-based computational models. Both fields are maturing
very rapidly, and are increasingly being utilized to solve real world problems.
Since NN are known to be a very powerful pattern recognition tool, and GA
are known to be very powerful optimization tool, the marriage of the two
fields in order to optimize NN using GA is a logical step. After all, a large

extent of biological neural networks are determined genetically.

Neural networks suffer from a lack of perspicuity as their behavior is not
always explainable. Their massive parallelism, non linearity, and adaptive
characteristics all conspire and make the analytic treatment of NN very
difficult. The choice of network structure and parameters is an empirical-
artistic exercise that relies on rules of thumb derived from past development
experiences. The space of possible architectures and parameter combinations
is extremely large. As a consequence, some significant amount of trial-and-
error experimental hand-crafting is necessary before an adequate solution is
achieved. It is impractical to rely on such guesstimation and trial and error
to design networks for serious real-world problems. The empirical approach
does not always produce a near-optimal network. Besides, a good solution
might be data-dependent, and re-optimization might be necessary after every

significant change in the application environment. The search for the best
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attainable network structure and parameter-setting combination is a logical

application for the genetic algorithm.

Genetic algorithms have been applied to the problem of NN design in several
ways. For instance, Montana and Davis (1989) have explored the use of GA
in training a NN of known structure. Belew et al (1990) used GA to set the
learning and momentum rates for feed forward NN. Chang and Lippmann
(1991) used GA to preprocess data in order to reduce the inputs to a NN
without degrading performance. Harp and Samad (1991) explored using GA
to discover the size, structure and parameters of a network to be trained by a
separate NN learning algorithm. Koza and Rice (1992) looked at GA as a tool
for developing architectures and weights together. More details on the
subject of using GA for NN development can be found in Chambers (1996)
and Winter et al (1995). Very recently, Ward systems (1996) used GA to
optimize the smoothing parameters of a probabilisic NN which is very

relevant to this research and will be explored further below.

7.4 IMPROVED GAPNN-BASED INCIDENT DETECTION

In this last phase of the research, the multi-c probabilistic neural network
optimized by a GA as described above was used to develop a freeway incident

detection algorithm. A shell implementation by Ward Systems (1996) was
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used for the optimization process. The test sites and the data sets were the
same as before. The following sections describe the performance of the

GAPNN relative to the statistical distance PNN previously developed.

7.4.1 Training and Testing of the GAPNN

The objective was to test the capabilities of the multi-c GAPNN relative to
the PNN with a single smoothing parameter c. To facilitate comparative
analysis, training of the GAPNN followed the same training process of the

PNN:

o TFirst, the GAPNN was trained on the SR-91 database using the ATL-
based input features, the same features used with the PNN. Both the
GAPNN and the PNN were then tested on the I-880 database and the I-
35W database to order to assess transferability of the GAPNN relative to

the PNN.

e Second, the correctly classified incidents in the testing above were
isolated in different databases. This was done on the basis of persistence
test of three intervals in order to have high confidence in the detected
incidents. These databases represented the traffic patterns that each
network managed to detect, and hence can use to update its knowledge

content and develop local-site-related statistics.
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e These incidents were used to retrain each network. Both networks were
retrained on the correctly detected incidents from the I-880 database, then
tested on the entire I-880 database. The process was then repeated for
the I-35W database. This tested the capability of each network to
automatically update itself using incidents that it managed to detect in a
totally new freeway environment, and to determine the extent of
improvement. The statistical consistency of the PDF estimation
techniques in the PNN family of networks, together with the nature of the
associated training process, made this on-site retraining achievable in an
unattended mode. Unlike other neural network paradigms such as the
MLF. overtraining is not an expected problem. and hence once the new
site-related data becomes available. the pattern updating process can

proceed unattended.

Tables 7.1 and 7.2 show the relative performance of both the PNN and the
GAPNN for the case of training on the SR-91 simulation data and testing on
the real I-880 and I-35W databases respectively. Table 7.3 shows the two
networks’ performance on the I-880 data after retraining on the correctly
detected portions of the same database. Table 7.4 shows their performance on
the I-35W data after retraining on the correctly detected portions of the same

database.



153

PNN GAPNN
Persist | DR FAR TTD DR FAR TTD
0 93.3 0.009 181 88.9 0.02 220
1 88.9 0 283 88.9 0 256
2 86.7 0 226 88.9 0 289
3 86.7 0 256 88.9 0 319

Table 7.1 Performance of the PNN and GAPNN, trained on SR-91 data and
tested on I[-880 data.
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PNN GAPNN
Persist | DR FAR TTD DR FAR TTD
0 93.5 5.19 154 97.8 0.368 79
1 79.1 0.67 171 94.0 0.006 146
2 61.2 0.17 458 90.3 0.003 197
3 56.0 0.07 831 85.07 0.00 229

Table 7.2 Performance of the PNN and GAPNN, trained on SR-91 data and
tested on I-35W data.



PNN GAPNN
Persist | DR FAR TTD DR FAR TTD
0 100 0.5 15 100 0 0
1 98 0 79 100 0 30
2 98 0 112 100 0 60
3 98 0 142 100 0 90

Table 7.3 Performance of the PNN and GAPNN, trained on partial I-880
data and tested on I-880 data.

[W1]
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PNN GAPNN
Persist { DR FAR TTD DR FAR TTD
0 98.51 | 0.011 48 100 0.12 15
1 98.51 | 0.009 85 100 0.05 48
2 98.51 | 0.006 116 100 0.02 78
3 97.76 | 0.003 147 100 0.01 111

Table 7.4 Performance of the PNN and GAPNN, trained on partial I-35 data
and tested on [-35 data.
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7.4.2 Comparative Evaluation and Concluding Remarks

Investigation of the above results yields the following several important

observations and conclusions:

e Using the new ATL-based input features, the GAPNN yielded better
results after transferability as compared the single-c PNN. This was
particularly true for the I-35W database which contains non-lane-blocking
incidents and in which a room for improvement exists. For the [-880
database, which contains strictly lane blocking incidents, both networks

performed similarly and equally well.

o After on-site retraining, both networks approached perfect performance
on both databases. This proves the importance of such a step after

transferring an AID algorithm to a new site.

o Although the PNN did not perform as well as the GAPNN right after

transferability to the I-35W site, it did perform as well after retraining.

o Being more accurate, the GAPNN detected more incidents than the PNN
in a given time period after transferability. In other words, it detected the
same number of incidents as the PNN in less time. Hence, it would

require less time in service at a new site before an adequate performance

could be reached.
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The better before-retraining performance of the GAPNN relative to the
PNN comes at the expense of a longer training time. Although the genetic
search mechanism is fast and efficient as opposed to other gradient-
descent-like mechanisms, it is not instantaneous. This creates a trade off
between the extra performance of the GAPNN on the one hand. and the
instantaneous training capability of the PNN on the other. Since both
networks achieve similar performance after retraining, the PNN might be

more attractive for TMC-implementation.



CHAPTER 8
SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

8.1 SUMMARY

In this research, a new potentially universal freeway incident detection
framework has been proposed, developed and evaluated. The research effort
was started by defining one possible comprehensive set of requirements that
any universal incident detection algorithm or framework should fulfill. This
set of universality requirements was used as a template against which all
algorithms within the scope of this study were evaluated. Three major
incident and loop detector databases were heavily utilized: one was an
extensive simulated set of incidents using the INTRAS simulation model. the
other two databases were unprecedented real databases collected from two
major freeway sites in California and Minnesota, namely the Alameda
County’s I-880 freeway database and the Minneapolis’ I-35W database. The
universality of the most well known existing incident detection algorithms
was tested using the above databases. Serious lack of universality and
transferability in particular were detected in all existing algorithms. Prior
to the development of the new universal framework, limits on acceptable

performance were elicited from TMC surveys conducted as part of this effort.
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Preliminary investigation of two promising advanced neural networks,
namely the LOGICON and the PNN, was conducted. The PNN was more
appealing due to its universality potential. The PNN was modified using a
principal components transformation layer that resulted in performance
enhancement, and lead to the choice of the modified PNN for in-depth
development. The in-depth development stage was divided into three phases.
The first was the extraction of an improved input feature set that produced
more distinct classes in the input feature space. The new features enhanced
transferability of the PNN and made the framework more compliant with the
universality requirements. The second phase was the on-site real-time
retraining of the PNN after transferability, a phase that produced near
optimal detection performance. The third phase was the development of a
post processor interpreter that linked the isolated 30 second outputs of the
PNN and produced a sequentially updated probabilistic measure of existence
of an incident in the field. The resulting overall PNN-based framework was
found to be fully compliant with the entire set of universality requirements.
Finally a new approach for training a multi-smoothing parameters version of
the PNN was investigated. The approach utilized genetic algorithms for
optimizing the selection of the multiple smoothing parameters. Obtained
results indicated an improvement in performance over the single smoothing

parameter PNN, but at the expense of longer training time.
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8.2 CONCLUSIONS

The results of this research have demonstrated the superiority and
universality of a particular neural network model, namely the PNN, for
freeway incident detection. Adding a principal components transformation
layer to the PNN was found to enhance its performance. Obtained results
indicated the superiority of the PNN-based framework to other existing
conventional and neural-network-based freeway incident detection
algorithms. The components of the PNN-based framework were a
preprocessor feature extractor, a PNN classifier and a post processor output
interpreter, which were all found to be necessary for the overall framework to
be universal. Although the genetically optimized version of the PNN showed
better transferability, both versions showed equally good performance after
retraining. The PNN was therefore concluded to be more practical for TMC

implementation due to its instantaneous training capabilities.

8.3 RECOMMENDATIONS

Since the results obtained from the PNN-based universal framework were
found to be very encouraging, the implementation of the framework in a real
traffic management center environment seems to be the next logical step.

The thrust of the framework was based on its capability to adapt to new field
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conditions. Although this on-line promise was rigorously tested off-line in
this research, it remains untested in a real TMC. The recommended
installation of the framework within a TMC software platform would help
assess the interaction of the TMC personnel with on-line updating process,

and with the continuous probabilistic output of the system.

The developed system used volume and occupancy averages across all lanes
as an input basis. No attempt was to use lane-specific data because of the
potential limiting of the transferability of the resulting algorithm between
sites with different number of lanes. This potential needs to be investigated
further. As lane-averaged data from the upstream and downstream loop
station can capture the temporal and spatial longitudinal patterns associated
with an incident, lane specific data could make these patterns more vivid and
add to them a spatial lateral pattern as well. This is due to the fact that,
during an incident, vehicles tend to redistribute themselves across lanes and

congestion decreases laterally as we move away from the affected lanes.

Finally, a new breed of loop-detector-based systems are now becoming
available that can produce vehicle signatures and match signatures between
the upstream and downstream stations. Valuable information could be
extracted from this signature matching process that could enhance incident
detection performance. Data collection efforts as well as a feature extraction

process need to receive further attention using this new technology.



REFERENCES

Ang, A., and Tang, J. (1975), “Probability Concepts in Engineering Planning

and Design.”, Wiley and Sons, Vol. I: Basic Principles.

Arceneaux, J., Smith, J.. Dunnett, A. and Payne, H. (1989), “Calibration of
Incident Detection Algorithms for Operational Use”, in Traffic Control
Methods, Proceedings of the Engineering Foundation Conference,
edited by Yagar, S. and Rowe, E., United Engineering Trustees Inc.,

pp. 17-32.

Aultman-Hall, L., Hall, F. L., Shi, Y., and Lyall, B. (1991), “A Catastrophe
Theory Approach to Freeway Incident Detection”, Proceedings of the
Second International Conference of Applications of Advanced
Technologies in Transportation Engineering, Edited by Stephanedas,
Y. J. and Sinha, K. C., American Society of Civil Engineers, pp. 373-

3717.

Abdulhai, B., and Ritchie S. G. (1995), “Performance of Artificial Neural
Networks for Incident Detection in ITS”, ASCE Transportation

Congress, pp. 227-238.

163



164

Baudry, M., and Davis, L., (1991) “Long Term Potentiation, A Debate of

Current Issues”, A Bradford Book, MIT Press.

Belew R.. McInerney J., and Schraudolph N. (1990), “Evolving Networks:
Using the Genetic Algorithms with Connectionist Learning.”, CSE

Technical Report CS90-174, Computer Science, UCSD.

Cacoullos, T. (1966), “Estimation of Multivariate Density”, Annals of the

Institute of Statistical Mathematics (Tokyo), 18(2), pp 179-189.

Chambers, L. ( 1996), “ Practical Handbook of Genetic Algorithms.”, Vol. I &

II, CRC Press.

Chang, E.J., and Lippmann R. P. (1991), “ Using Genetic Algorithms to
Improve Pattern Classification Performance.”, In R.P. Lippmann, J.
E. Moody and D. S. Touretsky, “Advances in Neural Information

Processing 3”. pp797-803.

Cheu, R. L., and Ritchie, S. G. (1995), “Automated Detection of Lane-
Blocking Freeway Incidents using Artificial Neural Networks”,

Transportation Research, Vol. 3C, No. 6, pp371-388.

Cheu, R. L. (1994), “Neural Network Models for Automated Detection of
Lane-Blocking Incidents on Freeways.”, Ph.D. Dissertation, University

of California Irvine.



165

Cheu, R. L., Recker, W. W. and Ritchie, S. G. (1993), "Calibration of INTRAS
for Simulation of 30-Second Loop Detector Output”, Preprint No.
930592, 72nd Transportation Research Board Meeting, Washington
D.C.

Cheu, R. L., Ritchie, S. G., Recker, W. W. and Bavarian, B. (1991),
“Investigations of a Neural Network Model for Freeway Incident
Detection”, Artificial Intelligence and Civil and Structural
Engineering, edited by B. H. V. Topping, Civil-Comp Press, pp. 267-

274.

Coultrip, R., Granger. R., and Lynch, G. (1992), “A Cortical Model of Winner-
Take-All Competition Via Lateral Inhibition”, Neural Networks, Vol.

5., pp. 47-54.

Davis, L. (1991), “Handbook of Genetic Algorithms.”, Van Nostrand Reinhold,

New York.

Forbes, G. J. (1992), “Identifying Incident Congestion”, ITE Journal, Vol. 62,

No. 6, pp. 17-22.

Freeman, J. A. and Skapura, D. M. (1991), “Neural Networks: Algorithms,

Applications, and Programming Techniques”, Addison-Wesley.

Gall, A. I, and Hall, F. L. (1989), “Distinguishing between Incident

Congestion and Recurrent Congestion: A Proposed Logic’,



166

Transportation Research Record 1232, pp. 1-8.

Giuliano, G. (1989), “Incident Characteristics, Frequency, and Duration on a
High Volume Urban Freeway”, Transportation Research Vol. 23A, No.

5, pp. 387-396.

Gregg, D. W.. and Nabrik, M. (1992), “The Projection Neural Network”,
International Joint Conference on Neural Networks Vol II, IEEE, pp

358-367.

Hall, A. L., Hall, F. L., Shi. Y., and Lyall, B. (1991), “A Catastrophe Theory
Approach to Freeway Incident Detection”, Proceedings of the Second
International Conference of Applications of Advanced Technologies in
Transportation Engineering, Edited by Stephanedes, Y. J. and Sinha,

K. C.. American Society of Civil Engineers, pp. 373-377.

Harp, S. A., and Samad, T. (1991), “Genetic Synthesis of Neural Network
Architecture”, in Handbook of Genetic Algorithms, Edited by L. Davis.

pp. 202-221.

Hecht-Nielson, R., (1990), “Neurocomputing”, Addison-Wesley.

James, S., and Chris, T. (1991), “Using Stereographic Projection as a
Preprocessing Technique for Upstart”, International Joint Conference

on Neural Networks Vol II, IEEE, pp 441-446.



167
Johnson, R. A., and Wichern, D. W. (1992), “Applied Multivariate Statistical

analysis”, Prentice Hall, Inc.

Koza, J. R., and Rice, J. P. (1992), “Genetic Generation of Both the Weights
and Architecture for a Neural Network.”, International Joint

Conference on Neural Networks, Seattle 92.

Lindley, J. A. (1987), "Urban Freeway Congestion: Quantification of the
Problem and Effectiveness of Potential Solutions”, ITE Journal, Vol.
57, No. 1, pp. 27-32.

Madanat, S. and Teng, H. L. (1995), “A Sequential Hypothesis Testing

Based Decision Making System for Freeway Incident Response”, Final
Report for the IDEA Program, Transportation Research Board,

National Research Council, Washington D.C.

Montana, D. J., and Davis, L. (1989), “Training Feedforward Neural
Networks Using Genetic Algorithms.”, Proceedings of the 11th

international joint conference on artificial intelligence. pp. 762-767.

NeuralWare (1993), “NeuralWorks Professional II/Plus” Neural Networks

Software Manuals.

Parzen, E. (1962), “On Estimation of Probability Function and Mode”, Annals

of Mathematical Statistics, 33, pp 1065-1076.



168

Payne, H. J., and Thompson, S. M. (1996), “Development and Testing of
Incident Detection Algorithms: A Status Report on the Ongoing
FHWA-Sponsored Project”, Transportation Research Board 75th

Annual meeting, Preprint #961358.

Payne, H. J., Helfenbein, E. D., and Knobel, H. C. (1976), “Development and
Testing of Incident Detection Algorithms”, Vol. 2: Research
Methodology and Results, Report No. FHWA-RD-76-20, Federal

Highway Administration.

Ritchie, S. G., Abdulhai, B., Parkany, E., Sheu, J., Cheu, R., and Khan, S.
(1995), “A Comprehensive System for Incident Detection on Freeways
and Arterials”, proceedings of the Intelligent Transportation Society of

America ITS-AMERICA) conference.

Ritchie, S. G,. and Cheu, R. L. (1993), “Neural Network Models for
Automated Detection of Non-Recurring Congestion.”, PATH Research

Report, UCB-ITS-PRR-93-5, University of California Irvine.

Ritchie, S. G., and Cheu, R. L. (1993), “Simulation of Freeway Incident
Detection Using Artificial Neural Networks”, Transportation Research

C, Vol. 1, No. 3, pp 203-217.

Ritchie, S. G., and Stephanedes, Y. J. (1996), “Development, Testing, and

Evaluation of Advanced Techniques for Freeway Incident



169

Detection.”, A Draft Interim Report, California PATH.

Rumelhart, D. E., McClelland, J. L., and the PDP Research Group (1986),

“Parallel Distributed Processing”, Vol. 1, MIT Press.

Simpson, P. K. (1990), “Artificial Neural Systems”, Pergamon Press.

Specht, D. F. (1996), “Probabilistic Neural Networks And General Regression
Neural Networks”, in Fuzzy Logic and Neural Network Handbook.

Edited by C.H. Chen, McGraw-Hill inc. pp. 3.1-3.44.

Specht, D. F., and Romsdahl, H. (1994), “Experience with Adaptive
Probabilistic Neural Networks and Adaptive General Regression
Neural Networks”, @ IEEE International Conference on Neural

Networks, Vol. II, pp. 1203-1208.

Specht, D. F. (1992), “Enhancement to Probabilistic Neural Networks”,
IEEE International joint Conference on Neural Networks, Vol. I, pp.

761-768.

Specht, D. F. (1990), “Probabilistic Neural Networks”, Neural Networks, Vol.

3, pp 109-118.

Stephanedes, Y. J. and Hourdakis J., (1996), “Transferability of Freeway
Incident Detection Algorithms”, Transportation Research Board 75th

Annual meeting, Preprint #961214.



170

Stephanedes, Y. J. and Chassiakos, A. P. (1993), “Application of Filtering
Techniques for Incident Detection”, Journal of Transportation

Engineering, ASCE, Vol. 119, No. 1, pp. 13-26.

Streit, R. L., and Tod, E. L. (1994), “Maximum Likelihood Training of
Probabilistic Neural Networks.”, IEEE Transactions on Neural

Networks, Vol. 5., pp764-783.

Streit, R. L. (1990), “A Neural Network for Optimal Neyman-Pearson
Classification.”, Proceedings of Joint International Conference on

Neural Networks, Vol. 1., pp685-690.

Traven, H. G. (1991), “A Neural Network Approach to Statistical Pattern
Classification by Semi-parametric Estimation of Probability density
Functions.”, IEEE Transactions on Neural Networks, Vol.2, pp 366-

377.

Ward Systems Group (1996), NeuroShell2 manuals.

Lin, W. (1995), “Incident Detection with Data from Loop Surveillance
Systems: The Role of Wave Analysis”, Ph.D. Dissertation, UCB-ITS-

DS-95-4, University of California Berkeley.

Wicks, D. A., and Lieberman, E. B. (1980), “Development and Testing of

INTRAS, a Microscopic Freeway Simulation Model”, Vol. 1, Program



171

Design, Parameter Calibration and Freeway Dynamics Component
Development, Report No. FHWA/RD-80/106, Federal Highway

Administration.

Winter G., Periaux J., Galan M., and Cuesta P. (1995), “Genetic Algorithms
in Engineering and Computer Science.”, John Wiley & Sons

Publishing.





