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The surface layer of the ocean is a critical component of the ocean-atmosphere system.

The momentum and heat transfer that occur here, as well as tidal forcing, result in energetic

currents across a wide range of length and time scales. Because the surface is observable from

land and space, it is the subject of extensive study from land-based and satellite observation

systems. Only recently, however, have spatial resolutions from satellite instruments approached

the submesoscale, which evolves at time scales comparable to or faster than repeat orbit sampling

rates. At the same time, land-based radar networks have matured such that more than a decade of

surface current observations at kilometer scale resolution are available from many regions around
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the world, unconstrained by the timing of orbits that affect satellites but are limited to coastlines.

This leads to the central motivating question that this dissertation seeks to address: what can

coastal radar data reveal about short time scale processes that could be useful to the goals of

recent and upcoming Earth observation satellite missions? This work is limited to examining

the surface expression of internal tides and diurnal wind-driven currents, as both are energetic

processes at known frequencies, lending themselves well to harmonic analysis.

In Chapter 1, a novel tidal harmonic analysis method is presented, following from previous

tidal analysis and incorporating Bayesian principles and prior statistics to inform the least squares

fitting procedure. This method is applied in Chapter 2 to high-frequency radar data from the

California Current System in order to characterize tidal currents in that region, finding a phase

structure indicative of internal tidal propagation and a complicated spatial distribution of the

fraction of tidal energy deemed to result from modulation by other processes in the ocean. Finally,

Chapter 3 uses the same method on currents and winds in order to characterize the diurnal

wind-driven current, finding the times of day that these quantities peak, their level of coherence,

and the angle between them as a function of frequency. These chapters provide a detailed view

of these processes in a well-studied coastal region, with implications for satellite oceanography.
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Introduction

The ocean is a complex system coupled to the atmosphere, cryosphere, solid Earth, and

even the Sun and Moon via mechanical forces, friction, radiation, and gravitation. The energy

budget within the ocean and between it and the other systems to which it is coupled is the subject

of much investigation (W. H. Munk & Wunsch, 1998; Wunsch, 1998; Egbert & Ray, 2001;

Watanabe & Hibiya, 2002; Alford, 2003; Scott & Xu, 2009; Trenberth et al., 2009; Yu et al.,

2018) and is perhaps the core problem of oceanography. Fluid interactions within the ocean

occur at scales spanning many orders of magnitude, from millimeter to 10,000 km scales (Ferrari

& Wunsch, 2009). The range of time scales at which these processes occur is similarly large,

from seconds to centuries, with longer time scales generally corresponding to larger length scales

and vice versa, and a cascade of energy transferring from both high to low and low to high

length and time scales (Dickey & Bidigare, 2005). A notable outlier to this scale relationship

is the barotropic tide, the length scale of which is large (hundreds of kilometers) but the time

scale of which is relatively short (12 to 24 hours for major constituents). Similarly, the diurnal

winds, which force the ocean at the surface, are known to have spatial scales up to hundreds of

kilometers (Gille et al., 2003) and by definition a time scale of 24 hours, while diurnal radiative

forcing occurs at the same frequency on a planetary scale. These high-frequency, large time

scale processes contribute significantly to the ocean’s energy budget: for example, tidal energy

dissipation is estimated to be 2.5 TW for the principal lunar semidiurnal (M2) tide, 3.2 TW for

all lunar tides, and 3.7 TW for all solar tides, of which a large majority is dissipated in the ocean

(Egbert & Ray, 2000, 2001) after cascading from barotropic tides to internal tides to turbulence

(Garrett & Kunze, 2007).
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Different observation systems are suited to different time and length scales, as indicated by

Dickey & Bidigare (2005). A high sampling rate and geographically wide coverage are therefore

necessary for the full resolution of high-frequency, large time scale processes. Satellite-mounted

instruments have been revolutionary for oceanography in recent decades, as their domain is

planetary in scale. The major constraints facing them are therefore the spatial resolution of the

instruments and the temporal sampling rate. Latest generation altimeters have begun to improve

on the first constraint, with the recently-launched Surface Water and Ocean Topography (SWOT)

mission aiming to resolve sea surface height at 15-30 km wavelengths (Morrow et al., 2019).

However, the sampling rate constraint is an immutable reality of Earth-orbiting satellites, which

renders impossible the direct resolution of high-frequency processes (here 1 cycle per day or more).

The most predictable components of the tides alias to known frequencies, and can be removed for

interpreting altimeter data (Parke et al., 1987; R. Ray, 1993). However, in addition to the regular,

so-called “phase-locked” component of the tide there is a non-phase-locked component that can

contaminate mesoscale and submesoscale signals and is difficult to remove from altimeter data,

therefore posing a challenge to high-spatial-resolution satellite missions (Chavanne & Klein,

2010; Savage, Arbic, Alford, et al., 2017; Zaron & Ray, 2018). Characterizing this component

observationally can help validate numerical studies and provide critical information needed to

assess aliased tidal variability in newer high-resolution satellite missions. Similarly, diurnal

wind-driven signals in upper ocean currents are aliased by scatterometry, the orbits of which are

usually sun-synchronous (Rodrı́guez et al., 2019), and therefore similar considerations should

be taken. Here, we consider tools that can be used to investigate high-frequency variability,

including methods and presently-available data sets, and perform regional investigations into

the high-frequency signals that need to be carefully considered for future satellite missions as

outlined above.

This dissertation is organized into three chapters. Chapter 1 develops a novel tidal

harmonic analysis package designed to extract signals with correlated noise, which we expect

to be important to the analysis of tides with a non-phase-locked component. In the tradition of
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previous tidal harmonic analysis packages like t tide (Pawlowicz et al., 2002), UTide (Codiga,

2011), and ns tide (Matte et al., 2013), this package is called “red tide” after the spectrally “red”

noise it considers, and so that it may memorably share its name with the unrelated toxic algal

bloom (e.g. Fleming et al., 2011). Evaluating synthetic and real data, we recover tidal information

by expanding conventional harmonic analysis to include prior information and assumptions about

the statistics of the background noise. This is implemented using Bayesian maximum posterior

estimation and assuming Gaussian prior distributions. When the background energy spectrum

is nearly spectrally white, red tide results replicate those from ordinary least squares (OLS)

commonly used in other tidal packages, while with red background spectra (a spectral slope of

−2 or steeper), our results represent a measurable improvement over OLS.

Chapter 2 is an investigation of the tidal surface currents off the United States West Coast

as observed by high-frequency radar (HFR) and comparing it to the FES2014 barotropic tidal

model. This data set, analyzed using red tide, is able to resolve surface currents at the kilometer

scale and provides years of hourly data, which fully captures all major tidal constituents. From

this we characterize the amplitude and phase of tidal currents in this region, with emphasis

on the prominent M2 constituent, finding regional variability in tidal amplitudes and a phase

structure suggestive of baroclinic propagation. We find that the spatial scale of the fraction

of non-phase-locked variance is comparable in size to SWOT altimeter swaths, and we also

find that the low-frequency amplitude modulation of the M2 constituent is correlated in many

places with that of the S2 constituent, indicating a physical mechanism of modulation that can be

characterized from harmonically decomposed HFR data.

Chapter 3 investigates the diurnal component of the same surface current data as well

as that of the wind, which is given by the 10-meter winds of the ERA5 reanalysis product. We

once again use red tide but now on 6-month segments of winds and currents in order to evaluate

the seasonal coherence of the two quantities. We find high coherence at the diurnal frequency,

especially between the dominant clockwise-polarized components. The deflection angle between

the wind vector and current vector is typically greater than that expected by Ekman-type models of
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wind-driven current, suggesting deviations from those models and the involvement of additional

physical processes, as has been observed previously. We also estimate the times at which currents

and winds are at their local maximum during the diurnal cycle, providing insight into potential

optimization for designing the orbit of a future scatterometer mission.

The unifying goal of these chapters is to provide a toolbox and apply it to relevant data,

with two broad, related motivations. Firstly, we wish to gain insight into processes that will be

relevant for the gathering and interpretation of data from present and future satellite missions.

Secondly, for general oceanographic understanding we wish to gain greater insight into the

surface processes in the California Current System, a highly-studied region with years of HFR

data comprising some of the most extensive coverage worldwide using this technology. Chapter

1 presents the analysis method with several test cases demonstrating its utility. Chapter 2 applies

this method to over 9 years of data in order to separate long-term phase-locked tides from their

more unpredictably modulated components. Chapter 3 applies the method to winds and currents

together on sub-annual time scales to evaluate their interaction. Together, they provide high

spatial resolution information about the energetic, high-frequency variability in the California

Current System.
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Chapter 1

Harmonic Analysis of Non-Phase-Locked
Tides with Red Noise using the red tide
Package
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Abstract

A novel tidal analysis package (red tide) has been developed to characterize low-amplitude

non-phase-locked tidal energy and dominant tidal peaks in noisy, irregularly sampled, or gap-

prone time series. We recover tidal information by expanding conventional harmonic analysis

to include prior information and assumptions about the statistics of a process, such as the

assumption of a spectrally colored background, treated as non-tidal noise. This is implemented

using Bayesian maximum posterior estimation and assuming Gaussian prior distributions. We

utilize a hierarchy of test cases, including synthetic data and observations, to evaluate this

method and its relevance to analysis of data with a tidal component and an energetic non-tidal

background. Analysis of synthetic test cases shows that the methodology provides robust tidal

estimates. When the background energy spectrum is nearly spectrally white, red tide results

replicate results from ordinary least squares (OLS) commonly used in other tidal packages. When

background spectra are red (a spectral slope of −2 or steeper), red tide’s estimates represent a

measurable improvement over OLS. The approach highlights the presence of tidal variability and

low-amplitude constituents in observations by allowing arbitrarily configurable fitted frequencies

and prior statistics that constrain solutions. These techniques have been implemented in MATLAB

in order to analyze tidal data with non-phase-locked components and an energetic background

that pose challenges to the commonly used OLS approach.
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1.1 Introduction

Tides are a major driver of oceanic variability. They are forced by the gravitational

effects of the moon and sun and have a ubiquitous presence throughout the global ocean. The

tide generating potential was described harmonically by Sir George Howard Darwin in 1883

(Doodson & Lamb, 1921) and was further developed by Doodson, with the Darwin symbols for

tidal constituents (e.g. O1 and M2) still in widespread use. The ubiquity of tides in oceanic data

has motivated the development of techniques for determining tidal parameters. Two types of

methods are frequently used to analyze tides: discrete Fourier transform-based methods and

least squares-based harmonic analysis. Discrete Fourier transform-based methods use the energy

contained in discrete frequency bands to diagnose the amplitude of tidal constituents. Least

squares harmonic analysis has been used for decades (W. Munk & Hasselman, 1964; Zetler et al.,

1965) to estimate the amplitude and phase of tidal signals at known tidal frequencies.

Tidal signals can be separated into two components: the relatively predictable barotropic

tide and the more variable baroclinic tide (R. D. Ray & Mitchum, 1996). The predictability

of the barotropic tide is a consequence of its stable phase and amplitude due to its large scale,

rapid propagation, and the regularity of the astronomical forcing. Classical harmonic analysis at

tidal constituent frequencies is effective for analyzing time series of sea surface height or bottom

pressure that are dominated by the barotropic tide and are characterized by sharp, narrow peaks

in the frequency domain at tidal constituent frequencies. The interannual lunar nodal cycle (18.61

years) and lunar perigee (8.85 years), which are not directly resolvable in typically short tidal

records, cause tidal modulations that affect the interpretation of tidal records (Haigh et al., 2011).

The t tide package, for example, accounts for these cycles using nodal corrections (Pawlowicz et

al., 2002). However, other processes can modulate the tidal peaks.

In the case of the baroclinic tide, which is more variable in amplitude and phase,

propagation through varying stratification or non-linear interaction with other waves leads to

amplitude and/or phase modulation via the transfer of energy to the internal wave continuum
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spectrum and a loss of coherence with the astronomical forcing (Chiswell, 2002; Rainville &

Pinkel, 2006). Interaction with eddy fields, background currents, and the seasonal cycle in

stratification all cause internal tides to vary in time (R. D. Ray & Zaron, 2011). This variability

spreads the tidal energy across a band of frequencies centered at the tidal forcing frequency,

forming a tidal cusp (W. H. Munk et al., 1965); the spreading of energy in the frequency domain

can pose challenges to describing the predictable tidal component. The component of tidal

energy resulting from interaction with other processes in the ocean appears has been referred

to by different names in the literature, including the incoherent tide (e.g. Eich et al., 2004), the

non-stationary tide (e.g. R. D. Ray & Zaron, 2011), and more recently the non-phase-locked tide

(Zaron, 2019). We have chosen the term ”non-phase-locked” because it is associated purely with

tides and their generating potential, whereas the other terms overlap with wave and statistics

terminology. Nevertheless, these other terms are reasonable, as this component of the tides is

incoherent with astronomical forcing and is non-stationary in time.

Throughout this paper, model refers to the series of basis functions (harmonics) at

frequencies chosen to approximate (or to model) a given time series, while the coefficients of

these harmonics are referred to as model parameters. Solving for these parameters to find the best

estimate of the underlying tidal component of the observations is the goal of least squares tidal

harmonic analysis. The choice of basis functions is central to the technique, and the designation

of these functions as a model for observations follows standard least squares terminology (e.g.

Wunsch, 1996). Conventional least squares tidal harmonic analysis models a time series as a sum

of sinusoids at tidal frequencies, with amplitudes and phases optimized to best fit observations.

This contrasts with analysis via the discrete Fourier transform in several important ways: Fourier

analysis requires evenly sampled time series and decomposes a signal into components at evenly

spaced frequencies determined by the record length and sample rate. The Fourier transform

is periodic at the record length (”fundamental”) and is band-limited at the Nyquist frequency.

Additionally, the Fourier transform does not allow for a separate component of noise. Harmonic

techniques for analyzing tidal time series overcome these limitations of Fourier analysis. They
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allow for estimates that do not exactly match all observations and that provide a unique solution

in the presence of noise and potential nonorthogonality between basis functions, for example

when the frequencies of basis sinusoids differ by less than the fundamental frequency. This is

solved as an inverse problem in which the fit is expected to differ from the observations by some

residual. Data may be irregularly spaced and fit to arbitrary basis functions, including sinusoids

of any frequency, unconstrained by periodicity over the record length and not band-limited by the

sampling rate. Additionally, harmonic analysis allows for a noise component with prior statistics,

generally mean and autocovariance. We denote the autocovariance and its matrix representation

with the standard terms ”covariance” and ”covariance matrix”, respectively, as we do not discuss

any cross-covariance quantities for which such shorthand might be confusing.

At frequencies outside the tidal bands, ocean data tend to be spectrally red, with greater

power at lower frequencies (W. H. Munk et al., 1965). When finite duration records with steep

spectra are analyzed, high-amplitude low-frequency processes with periods that do not match

the series length can alter estimated spectral power at higher frequencies. Spectral leakage is

problematic for characterizing internal tides, especially in regions where mesoscale variability

is much stronger than the internal tide (R. D. Ray & Zaron, 2016). Low-frequency variability,

tidal cusps, and high-frequency noise must all be accounted for either explicitly or as a residual

term. In other words, total signal variability is modeled as sinusoids at given frequencies added

to a residual broadband background that has power at all frequencies, which is characterized

by a residual (or noise) covariance matrix. Our approach is to choose basis functions and prior

statistical assumptions about the signal and noise components (quantified in covariance matrices)

that match the expected variability in the observations as well as computational cost allows; such

constraints bias the model parameters by reducing their variance, which is appropriate when tidal

constituents and related components are estimated from limited sampled data with noise. We

seek to avoid overfitting and we argue that this produces better results than estimators obtained

from methods that use less prior knowledge.

Least squares tidal harmonic analysis has drawbacks. Pawlowicz et al. (2002) identify
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some challenges including record length requirements for distinguishing some tidal frequencies,

the lack of distinction between true tidal lines and background energy at tidal frequencies, and the

broadening of spectral lines from estuarine tidal responses and stratification-dependent internal

tides. Nevertheless, harmonic analysis has been widely adopted for tides because it is well-suited

for signals with a weak noise component relative to the tidal signal. Pawlowicz et al. (2002),

expanding upon earlier code for tidal harmonic analysis (Foreman, 1977; Foreman & Henry,

1989; Foreman et al., 2009) and employing MATLAB, created the widely-used t tide package,

incorporating methods to mitigate known drawbacks to classical harmonic analysis. These

methods include nodal corrections and inference of unresolvable constituents to account for the

long record lengths required for resolution under classical harmonic analysis, as well as three

algorithms to provide confidence intervals to account for non-tidal energy at tidal frequencies.

Other authors have expanded the t tide procedure (Leffler & Jay, 2009; Codiga, 2011) or have

modified it for specific dynamical regimes, such as tides in the presence of river outflow (Matte

et al., 2013).

The two-fold problem of accurately estimating tidal variability with a component that

is not phase-locked to astronomical forcing in the presence of spectrally-colored noise while

minimizing spectral leakage has motivated us to develop a new tidal harmonic analysis package,

red tide, that accounts for tidal cusps and red background spectra. The appendix provides

information on the access of the package, which may be modified to accommodate individual

needs. We do not presently incorporate nodal corrections like those used in t tide in order to

emphasize features specific to our method, though these corrections may be incorporated in

a future version. The primary scientific motivation for developing the package is to support

a detailed level of tidal analysis of highly variable baroclinic tides. For example, such tides

are expected to be an important part of the signal at spatial scales of O(10) kilometers to be

measured by the upcoming Surface Water and Ocean Topography (SWOT) swath altimeter, for

which the interaction between internal tides and ocean mesoscale variability requires the most

accurate predictions possible (Chavanne & Klein, 2010; R. D. Ray & Zaron, 2011). Analysis
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related to such an application is likely to focus on in-situ data and ocean model output sampled at

smaller time intervals than semidiurnal tidal periods. Therefore relevant test cases are presented

here. Though harmonic analysis of tidal signals aliased in satellite data has been performed on

the phase-locked tide (R. D. Ray & Mitchum, 1996; Zhao et al., 2011), this is not examined

here. This method is compared with existing methods (ordinary least squares and t tide, which

implements ordinary least squares) using synthetic and observational time series to examine

performance and practical limitations. The t tide package requires fewer inputs and produces

matching results for lower computational cost when analyzing time series that do not exhibit

the complications that the red tide method seeks to address. Therefore, our method does not

supplant existing tidal analysis packages except in specific regimes where it is advantageous.

Other tidal packages, including those that are built upon t tide (e.g. Leffler & Jay, 2009; Codiga,

2011; Matte et al., 2013), are not examined in this study.

The rest of this study is divided into three sections. We begin by outlining the linear

algebraic and statistical methods that underpin our tidal analysis in Section 1.2. We then apply

these methods to synthetic time series, first by highlighting specific features of the method,

including application to a step function to demonstrate aliased signals (Section 1.31.3.1), and

then by analyzing tide-like synthetic series to show the effect of prior statistical assumptions

on model parameters (Sections 1.31.3.2-1.3.4). Two examples of observational data follow in

Section 1.4, with comparisons to t tide. Finally, summary and discussion follow in Section 1.5.

1.2 Methods

The basic framework of weighted least squares estimation used in red tide is outlined in

a number of references (e.g. Wunsch, 1996; Menke, 2018). Here we provide a review of this

framework, formulated for tidal harmonic analysis of records with arbitrarily structured noise,

with notation following that of Ide et al. (1997) with a few modifications. Note that tidally-driven

components of a time series are considered ”signal” while non-tidal processes are referred to
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as ”noise” for the purpose of distinguishing them in the context of harmonic analysis. These

so-called noise terms may include instrument error as well as non-tidal processes in the ocean,

such as submesoscale eddies and the internal wave continuum.

A zero-mean, discretely sampled ocean time series written as a column vector y of length

𝑁 is modeled as the sum of sinusoids of tidal and non-tidal frequencies

y = Hx+ r, (1.1)

where H is an 𝑁 by 2𝑀 regressor matrix (i.e. the model basis functions), x are the 2𝑀 model

parameters, and r represents the 𝑁-element residual time series. The columns of H are sines

and cosines of prescribed frequencies, 𝜔𝑚, for 𝑚 = 1,2, ... 𝑀, such that equation (1.1) can be

expressed as

y =

𝑀∑︁
𝑚=1

(
𝑎𝑚 sin(𝜔𝑚t) + 𝑏𝑚 cos(𝜔𝑚t)

)
+ r,

x = [𝑎1, 𝑏1, 𝑎2, 𝑏2, ..., 𝑎𝑀 , 𝑏𝑀]T

t = [𝑡1, 𝑡2, ..., 𝑡𝑁 ]T

(1.2)

The unknown model parameters x are estimated by x̂ such that the trace of ⟨(x̂−x) (x̂−x)T⟩, the

expected value of the sum of the squares of the model parameter errors, is minimized. This is

done by calculating x̂ as the Bayesian maximum a posteriori (MAP) estimate, by requiring that x

and r have independent Gaussian distributions which satisfy the conditions under which the MAP

estimate gives x̂ (Van Trees, 2001). By Bayes’ theorem, the posterior probability distribution of

x given observations y is proportional to the product of the prior probability distribution of x and

the likelihood of y given x:

P(x|y) = P(x)P(y|x)
P(y) . (1.3)
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Given the assumptions of Gaussian statistics and a linear model:

P(x|y) ∝ exp
(
−xTP−1x

)
exp

(
−(y−Hx)TR−1(y−Hx)

)
. (1.4)

The denominator P(y) is not a function of x and therefore can be omitted, since it is not relevant

to the optimization. The matrices R = ⟨rrT⟩ (size 𝑁 by 𝑁) and P = ⟨xxT⟩ (size 2𝑀 by 2𝑀) are

the covariance matrices of r and x respectively (P is thus a hyperparameter of the Gaussian prior

for x). This expression as well as its logarithm,

ln (P(x|y)) = −xTP−1x− (y−Hx)TR−1(y−Hx) + constant, (1.5)

are at a maximum for some value x = x̂. Since the posterior probability P(x|y) follows a Gaussian

distribution, its mean (the Bayes estimator) equals its mode (the MAP estimator) and can therefore

be solved as a maximization problem (Van Trees, 2001). At the mode, the partial derivative of

equation (1.5) with respect to x vanishes:

0 =
𝜕

𝜕x
ln (𝑃(x|y))

����
x=x̂

= −2P−1x̂+2HTR−1y−2HTR−1Hx̂. (1.6)

The vector x̂ contains the most probable model parameters given observations y, and

solving for x̂ gives the most probable solution to equation (1.1):

x̂ =

(
HTR−1H+P−1

)−1
HTR−1y. (1.7)

An equivalent expression via the matrix inversion lemma (e.g. Wunsch, 1996) is not used here

but appears in the appendix.

The posterior covariance matrix of the difference between the estimated and true model
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parameters is

⟨(x− x̂) (x− x̂)T⟩ =
(
HTR−1H+P−1

)−1
. (1.8)

In red tide, model parameters x are assumed to have a Gaussian probability distribution function

(PDF) resulting from the Gaussian distributions of the prior and likelihood function. Therefore,

the posterior PDF of 𝑥𝑚, the 𝑚-th element of x, is a Gaussian with a mean given by the 𝑚-th

element of x̂ from equation (1.7) and variance given by the 𝑚-th element of the diagonal of the

matrix in equation (1.8).

If x was not expected to have a Gaussian distribution, a different expression for x̂ would

need to be derived by similar Bayesian principles starting from equation (1.3), which is beyond the

scope of this study. Quantities defined as nonlinear functions of Gaussian-distributed quantities,

however, may have non-Gaussian distributions that can be estimated. In this paper, plotted

uncertainty bounds for derived quantities are estimated using a Monte Carlo approach, based on

an ensemble population of x with the posterior Gaussian PDF. This approach is implemented due

to its flexibility and simplicity compared with analytical solutions, which are not always in closed

form, or with more complicated approximations such as piecewise linear discretization of PDFs

(e.g. Lourens & van Geer, 2016). The tidal amplitude is one such quantity, where �̂�𝑚 =

√︃
�̂�2
𝑚 + �̂�2

𝑚

is an estimator of the true amplitude 𝐴𝑚, which follows a noncentral 𝜒 distribution when the

standard deviations of 𝑎𝑚 and 𝑏𝑚 are equal (𝜎𝑎𝑚 = 𝜎𝑏𝑚 = 𝜎𝑚). Similarly, the tidal phase 𝜙𝑚

is an estimator for the true phase shift 𝜙𝑚, defined by tan (𝜙𝑚) = −𝑏𝑚/𝑎𝑚, whose statistics

are also not Gaussian. Whenever uncertainty bounds are given for quantities derived from

the Bayesian methods outlined above or for quantities that are functions of them, we refer to

them as credible intervals in accordance with Bayesian terminology for the interval in which

an estimated parameter lies with the stated probability (Lee, 1997). These are analogous to

confidence intervals, the uncertainty bounds on quantities derived from frequentist methods.

Because Pawlowicz et al. (2002) uses the term confidence intervals, and because t tide is not

14



derived using a Bayesian framework, we refer to t tide output and other non-Bayesian quantities

as having confidence intervals when comparing it to red tide output and its credible intervals.

Because y is modeled as the sum of sinusoids and a noise component, its expected power

spectrum 𝑆yy( 𝑓 ) may be interpolated to fitted frequencies and used to construct P. This approach,

however, results in doubly counting energy, as r contributes to the variance of y at all frequencies,

including frequencies modeled by Hx. Because the energy of a tidal peak and cusp are typically

much higher than the background noise and may in fact be underestimated in 𝑆yy( 𝑓 ) due to

peak-broadening from spectral averaging, the double counting of energy will be small around

most prominent tidal peaks. For cases where tidal signals are comparable in energy to r at tidal

frequencies, P can be reduced by the appropriate amount. In sections 1.31.3.3 and 1.31.3.4, the

correct partition of energy into P versus R is possible because we have perfect knowledge of the

underlying synthetic processes. For real data for which we lack perfect knowledge, such as those

in section 1.4, the approach we use for convenience is to assume wide-sense stationary noise so

that we can obtain the residual spectrum 𝑆rr( 𝑓 ) from the Fourier transform of any column of R.

We then subtract it from 𝑆yy( 𝑓 ) to construct P in order to obtain a more accurate partition of

signal versus noise energy. We also assume throughout that y is a wide-sense stationary time

series; this means that the elements of x are assumed to be uncorrelated and therefore that P is

diagonal throughout (see Bendat & Piersol (2010) for nonstationary data analysis and double

frequency spectra, the continuous analogue to a non-diagonal P).

Values along the main diagonal of R represent the expected variance of the misfits

between fitted time series and observations. Off-diagonal elements indicate the covariance at

lagged times, with values farther off the main diagonal corresponding to larger time lags. Beyond

some time lag, the covariance may be approximated as zero if long-period energy is sufficiently

small or explicitly represented in H. This approximation is useful, as it limits the memory

requirement for large R. A diagonal R is a special case of this, with non-zero elements only

along its main diagonal. This corresponds to an assumption of zero lagged noise correlation

or equivalently an assumption of spectrally white noise. This approximation is often made for
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computational efficiency, as R = 𝜎2I can be replaced in equation (1.7) with the constant 𝜎2,

which is estimated as 𝜎2 = ⟨rTr⟩/𝑁 . In cases where the residual r may be better approximated

as non-white noise, other procedures can be used to construct a non-diagonal R, including those

described in section 1.21.2.2 and the appendix. In the examples that follow, we assume that

all residuals have the same variance. This assumption of stationarity corresponds to constant

elements along the diagonals of R, i.e. a Toeplitz matrix.

Time series with a nonstationary residual r, for example due to time-varying instrumental

noise, may have their residual covariance approximated by a non-Toeplitz matrix R in order to

reduce the impact of the affected segments on the calculation of x̂. Additionally, observational

gaps have a non-trivial effect when treating background noise as correlated. The matrix R is also

not Toeplitz in this case, though for the direct inversion of relatively small R, this does not seem

to impact performance. Computation may be reduced when analyzing multiple time series if

each time series y𝑛 can be analyzed with the same H, R, and P such that all terms in equation

(1.7) before y are evaluated once and multiplied by each y𝑛.

1.2.1 Relation to Least Squares

Ordinary least squares (OLS) has the same form as weighted least squares if R = 𝜎2I and

P−1 → 0 (Wunsch, 1996), and is used in the t tide package (Pawlowicz et al., 2002). OLS seeks

to minimize (y−Hx)T(y−Hx), the misfit between the fitted time series and observations. In

this case, the solution is

x̂OLS =

(
HTH

)−1
HTy. (1.9)

Observation error is assumed to be white noise, and OLS places no constraint on the magnitude

of the components of x̂OLS. Steep, non-constant background spectra would need to be modeled

by including more parameters within this framework, which may be impractical. Without using a

probabilistic framework, in order to constrain the magnitude of the model parameters x̂ to avoid
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overfitting, the quantity to be minimized is often written as (y−Hx)T(y−Hx) +xTWxx, where

Wx is a matrix that weights the relative importance of minimizing model parameter magnitude

over misfit. This technique is called ridge regression and reduces overfitting at the expense of

bias (Wunsch, 1996). The resulting least squares equation is said to be regularized:

x̂TLS =

(
HTH+Wx

)−1
HTy. (1.10)

Similarly, the misfit r may be weighted by the matrix Wr such that (y−Hx)TWr(y−Hx) +xTWxx

is minimized, with the corresponding weighted regularized least squares equation

x̂WTLS =

(
HTWrH+Wx

)−1
HTWry. (1.11)

This is equivalent to equation (1.7) when Wx = P−1 and Wr = R−1, though the derivation of

that solution is distinct from these least squares approaches (see section 3.6.2 of Wunsch, 1996,

for details). A weighted least squares estimate (not regularized) is used in the UTide package

(Codiga, 2011), which implements an iteratively reweighted robust fit corresponding to equation

(1.11) with Wx = 0 and Wr as a diagonal weighting matrix that de-emphasizes outliers and is

updated iteratively, the details of which are beyond the scope of this study.

1.2.2 Power Law Noise

Away from energetic processes at tidal, seasonal, and inertial frequencies, spectra 𝑆 of

ocean time series tend to follow a power law of the form 𝑆 ∝ 𝑓 𝛾, where 𝛾 ≤ 0 is the spectral

slope and the negative value indicates more energy at lower frequencies (Agnew, 1992). For

computational efficiency in problems with many observations, we can assume wide-sense

stationary noise and construct the residual covariance matrix R as a sparse, symmetric Toeplitz

matrix with the diagonals calculated from the Fourier transform of 𝑆 ∝ 𝑓 𝛾 per the Wiener-Khinchin

theorem, truncated at a user-defined time lag. Users of red tide have the option of multiplying
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the covariance by a window function in order to reduce the spectral ringing that results from an

abrupt drop to zero in the frequency domain. A low-amplitude white spectrum (spectral slope of

0) may also be added to account for observational error, such that the spectrum of r has a noise

floor at all frequencies. This residual spectrum is not altered within fitted tidal frequency bands

due to the impossibility of distinguishing tidal and non-tidal energy at the same frequency, which

results in model parameter uncertainty. For the typical case of tides that are much more energetic

than the background, this effect is small, while in cases where tidal constituents have low energy

or a broadband cusp of interest, the relatively larger uncertainty estimates on model parameters

reflect the fact that non-tidal variance is comparable to tidal variance. The approximation of the

residual time series following some modified spectral power law with 𝛾 < 0 will hereafter be

referred to as a red noise assumption, even when 𝛾 is not exactly −2. In addition to the special

cases considered above, the noise can exhibit more complicated structure that allows R to be

tractable while still representing some forms of red noise, for example noise as an autoregressive

process (see Appendix).

1.3 Application of Red Tide to Illustrative Cases

In order to compare the performance of red tide to other widely-used fitting procedures,

we lay out several illustrative examples of its application to synthetic and physical data. Before

more complicated cases are examined, it is worth reviewing a simplified case of tidal harmonic

analysis that typifies the separate treatment of signal and noise and demonstrates the consequences

of using an incomplete model. A typical ocean time series will have many tidal constituents

present, with longer records better able to differentiate nearby frequencies. Because harmonic

methods model the data using sinusoids of prescribed tidal frequencies, energy at unmodeled

frequencies will remain in the residual time series. Figure 1.1 depicts the results of modeling

a bottom pressure record (examined in greater detail in section 1.41.4.1) at only two tidal

frequencies: the principal lunar semidiurnal (M2) and the principal solar semidiurnal (S2). Figure

18



1.1A, with the interval in gray expanded in panel B, illustrates the misfit between the complicated

data and the simple model that arises due to substantial residual energy at unmodeled frequencies.

In the frequency domain (figure 1.1C), this is evident by the energetic tidal lines at frequencies

that are not included in H. For a data set with well-defined tidal lines with energy much greater

than that of the background, conventional harmonic analysis like that employed by t tide is

well-suited to addressing this issue by simply including more tidal constituents. The red tide

package is designed for more complicated cases for which single tidal constituents are insufficient

as well as cases where non-tidal variance is comparable to tidal variance.

1.3.1 Model Coefficient Covariance, the Gibbs Phenomenon, and
Periodicity

One challenge to harmonic analysis stems from the accurate representation of model

coefficient covariance matrix P = ⟨xxT⟩. Before further examining realistic cases, we start with a

familiar example that demonstrates the effect of the covariance on computed model coefficients

for a discrete step function. Modeling the step as a finite set of sinusoids leads to the Gibbs

phenomenon, the tendency of the partial sum of a Fourier series to overshoot in the neighborhood

of a discontinuity of the modeled function (Hewitt & Hewitt, 1979). This phenomenon persists

even with the addition of more terms in the partial sum, though the magnitude is reduced. While

a discretely sampled time series may be fit well at observation points, band-limited Fourier

coefficients do not adequately fit the step function between sampling times. The step function

and resulting Gibbs phenomenon serve as a simple but extreme example of a situation present in

real data: a process with variance at unmodeled frequencies has a prior that does not adequately

describe the process. The variance of a step function is distributed across all frequencies (see

equation (1.12) below), but when it is sampled coarsely and reconstructed as a band-limited

process, some variance is aliased and the true underlying process is poorly reconstructed despite

good agreement at observation times. Therefore, we incorporate assumptions and prior knowledge

of a process, including cases in which there are fewer data than parameters that are suspected to
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be worth estimating.

Another challenge stemming from the limitations of finite sampling and fitting is the

inherent periodicity of solutions when a finite record is modeled as the sum of periodic functions;

this is not a problem for tidal processes, which have periods much shorter than those of typical

observations, but it will affect estimates for explicitly modeled low-frequency processes that may

also be of interest. To demonstrate the effect of the estimator on both of these related issues

(Gibbs phenomenon and artificial periodicity), we analyze a finite, uniformly sampled record of

a step function using the method described in Section 1.2.

Because the step function, here represented continuously by the sign (signum) function, has

an analytic Fourier transform, the expected model parameter covariance matrix Pstep = ⟨xstepxT
step⟩

may be constructed from the absolute value squared of the Fourier transform:

𝑦step(𝑡) = sgn(𝑡 − 𝑡0) =


−1, 𝑡 < 𝑡0

0, 𝑡 = 𝑡0

1, 𝑡 > 𝑡0

|F {sgn(𝑡 − 𝑡0)} ( 𝑓 ) |2 =
1

𝜋2 𝑓 2 , (1.12)

where 𝑦(𝑡) is the underlying continuous time series to be analyzed after discrete sampling,

sgn(𝑡 − 𝑡0) is the sign function with jump discontinuity at 𝑡0 and F {·}( 𝑓 ) denotes the Fourier

transform operation to the frequency domain. The square of the Fourier transform of this function

is proportional to frequency−2, therefore it has a spectral slope of −2 .

In the example, a step function of record length 𝑇 is sampled symmetrically about the

jump discontinuity at 1000 evenly-spaced times such that all Fourier frequencies, from the

fundamental frequency Δ 𝑓 = 1/𝑇 to the Nyquist frequency 𝑓Ny, could be computed. Different

choices of basis functions and model parameter covariance are used to evaluate the sensitivity

of red tide output to these inputs. If the model includes only frequencies greater than or equal

to Δ 𝑓 , spaced at increments of Δ 𝑓 , then the model will have a fundamental periodicity of 𝑇 ,
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the record length, because this is the longest period represented in the model. To reduce this

effect, we incorporate frequencies less than the fundamental frequency into H, starting at Δ 𝑓 /2

and increasing by intervals of Δ 𝑓 /2. This extends the model periodicity to 2𝑇 , twice the record

length (Figure 1.2A), and also reduces Gibbs-like behavior at the beginning and end of the fitted

time series.

Separately, we examine the effects of different model parameter covariance matrices

on the behavior of the fitted time series near a jump discontinuity. Two choices for the model

parameter covariance matrix ⟨xxT⟩ are tested: (1) an assumption that the covariance is constant

at all frequencies (a spectrally white process), and (2) an assumption that its power spectrum is

proportional to 𝑓 −2 (a spectrally red process representing the true spectrum in equation (1.12)).

Two sets of basis functions are used: one that is comprised of sinusoids at the Nyquist frequency

𝑓Ny and lower, and one that is comprised of sinusoids at frequency 2 𝑓Ny and lower. Both basis

sets are spaced in frequency by Δ 𝑓 = 1/𝑇 . Discretely sampled sinusoids of frequencies greater

than 𝑓Ny are indistinguishable from sinusoids at the frequencies lower than 𝑓Ny to which they

are aliased. The larger but linearly dependent bases set is used in order to demonstrate the

effect that P in equation (1.7) has in constraining an underdetermined system; in this case,

describing the behavior of a time series near a step discontinuity at times between the sampling

interval requires that frequencies greater than 𝑓Ny be represented, constrained by the expected

spectral power of the signal. The residuals are assumed to be uncorrelated (white noise), and the

expected residual variance can be calculated from the total spectral power at frequencies above

the highest-frequency basis. The expected fraction of residual variance is calculated from the

integral of the true spectrum over frequencies not explicitly modeled:

var(r)
var(y) =

∫ ∞
𝑓high

𝑓 −2d 𝑓∫ ∞
𝑓low

𝑓 −2d 𝑓
=
𝑓low
𝑓high

, (1.13)

where 𝑓low and 𝑓high are the lowest and highest frequencies in H. Frequencies less than 𝑓low

are not included in the integral due to the singularity of 𝑓 −2 at 𝑓 = 0 and the approximation of
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very low-frequency variance as a mean and trend. The total residual variance in this case is

small, and hence the impact of the residual covariance matrix is expected to be negligible and is

not examined in this example. The effects of different assumptions of residual covariance are

examined later with data for which these effects are noticeable. Both fitted time series in figure

1.2A, periodic on 𝑇 and on 2𝑇 , incorporate a covariance matrix P constructed from a spectrum

proportional to 𝑓 −2.

Near the jump discontinuity, there are two basis choices that we will consider: distin-

guishable basis sinusoids up to the Nyquist frequency and indistinguishable sinusoids up to twice

the Nyquist frequency, which are aliased for 𝑓 > 𝑓Ny. We also consider two choices for model

parameter covariance: a constant value and a covariance proportional to the known spectral

power of the data. Together, these form four regimes that can demonstrate the effects of basis

choice and model parameter covariance on the resulting fitted approximations to the same step

data. The OLS approach models the step function as a series of sinusoids up to the Nyquist

frequency with no assumptions about the model parameter covariance. This results in the Gibbs

phenomenon near the jump discontinuity (Figure 1.2B). This result is nearly identical to the

partial sum of the Fourier series for this function (not shown), with a slight difference due to least

squares’ allowance of non-zero r. Using the same basis functions but making the assumption that

the main diagonal of the parameter covariance matrix P corresponds to a spectral slope of −2 as

does the true spectrum, the red tide procedure reduces the Gibbs phenomenon at the expense of

greater misfit in the immediate vicinity of the jump discontinuity (Figure 1.2C).

The Gibbs phenomenon may be reduced by including additional frequencies. Sinusoids

at frequencies greater than the Nyquist frequency will be aliased, however, so the effect of the

model parameter covariance is more pronounced than in the former examples. Figure 1.2D

shows the result of fitting a finite record to indistinguishable (resolved and aliased) frequencies

while naively assuming a spectrally white process. Without the regularization provided by

a sufficiently accurate P, the duplicate bases in H render it rank deficient and therefore the

interpolated fitted time series is unrealistically large in amplitude at unobserved times. Modeling
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aliased frequencies with the assumption of an accurate (spectrally red) covariance, however,

results in a fit that has further reduced the Gibbs phenomenon while also reducing the misfit at

sampled times immediately before and after the jump discontinuity (Figure 1.2E). This approach

(regularizing according to prior statistics) yields the smallest root-mean-square error of the four

regimes, both at observation times and at the interpolated higher temporal resolution (Table 1.1).

Though the solution in panel E does not pass through the observations like those in panels B

and D, it nevertheless is the best representation of the underlying sampled process due to its

reduction of the Gibbs phenomenon, despite fitting to the same data. Note that the accuracy of

these interpolations is only quantifiable here due to knowledge of the true underlying function

from which the data are perfectly drawn, which is not possible with real observations.

These refinements to the standard OLS approach demonstrate three advantages of the

methods used in red tide. First, the use of a fundamental frequency lower than that suggested

by the record length reduces the effect of periodicity imposed by the model on the solution by

lengthening the time scale of this periodicity. Second, the choice of model parameter covariance

matrix P impacts the solution: a choice of P that is more representative of the true behavior of

the data reduces the magnitude of the Gibbs phenomenon. Third, frequencies inaccessible to

a discrete Fourier transform may be included to more realistically account for variance. The

ambiguity of aliased frequencies (those exceeding the Nyquist frequency but at which variance is

present) is reduced by using an accurate P. We do not examine aliased signals elsewhere in this

study.

1.3.2 Synthetic Time Series

Real ocean time series are substantially more complicated than the idealized step function

above, with variance distributed across a range of frequencies, driven by a variety of physical

processes. In order to simulate data with tidally-driven components, we generate synthetic time

series from smooth spectra of predefined slope (the continuum), with sharp peaks in frequency

space that simulate tides. In this way, we can exactly control and separate the signal and noise

23



components. In order to simulate tidal cusps, we consider a modulation of the tidal amplitude

following the description of amplitude-modulated baroclinic tides off Hawai’i by Chiswell (2002).

By the convolution theorem, multiplying (modulating) the tidal component in the time domain

by a function is equivalent to convolving the Fourier transform of the tidal component with

that of the modulating function in the frequency domain. For example, a purely sinusoidal

high-frequency tide cos(𝜔𝑇 𝑡 +𝜙) may be multiplied by an amplitude envelope 𝐴(𝑡) such that:

[(𝑡) = 𝐴(𝑡) cos(𝜔𝑇 𝑡 +𝜙), (1.14)

the Fourier transform of which is

F {[(𝑡)}(𝜔) = F {𝐴(𝑡)}(𝜔) ⊗ F {cos(𝜔𝑇 𝑡 +𝜙)}(𝜔)

= �̃�(𝜔) ⊗
(
e−𝑖𝜙𝛿(𝜔−𝜔𝑇 ) + e𝑖𝜙𝛿(𝜔+𝜔𝑇 )

) √︂𝜋

2
,

(1.15)

where F {·}(𝜔) is the Fourier transform to angular frequency (𝜔) domain, �̃�(𝜔) is the Fourier

transform of 𝐴(𝑡), and ⊗ denotes convolution. The constant
√︁
𝜋/2 is a matter of convention such

that the inverse Fourier transform is symmetric with the forward transform.

To generate the synthetic time series used in this study, a spectrally-red modulating

function is used to simulate the cusps observed around tidal lines in the spectra of tidally-

dominated ocean time series, and a random phase is assigned at each frequency before an

inverse Fourier transform is applied to produce a synthetic time series with known spectral

power. Samples from a red background are added to the time series to simulate broadband

non-tidal ocean variability. Figure 1.3 shows an example of three synthetic spectra (upper

panel) and corresponding hourly time series computed with random phase and truncated at

500 hours (bottom panel). The top panel also shows the power spectrum of observations in

gray for comparison (these are discussed in Section 1.41.4.1). The phase at each frequency is

identical for each time series, so only the spectral power differs. All three have peaks of equal
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magnitude at the M2 frequency. The red background spectrum is proportional to 1/𝜔2 while the

modulating spectrum is proportional to 1/(𝜔2 +𝜔2
0), where 𝜔0 is a small frequency introduced

to eliminate the singularity at 𝜔 = 0. In the red-background time series, there is more variability

at low frequencies as in the real ocean, while the modulated one imitates the interaction of the

tide with low-frequency processes. The time series with the spectrally white background has

comparatively more power at super-tidal frequencies, which is evident in the time domain from

the short time-scale noise that is less noticeable in the data with a red background. The data

displayed are sampled hourly to be consistent with the choice of the Nyquist frequency, while the

length of the time series is set by the choice of the fundamental frequency.

1.3.3 Effect of Noise Covariance on Amplitude, Phase, and Uncertainty

The estimated amplitude and phase of the tidal constituents are affected by the spectrum

used to construct R, also referred to here as the noise covariance or residual covariance. At

each frequency represented in H, the data are represented twice: explicitly in the frequency

domain as model parameters (x̂) and implicitly in the residual (r̂) in the time domain, which

has energy at all frequencies in general. Here, ”explicit” versus ”implicit” refers to whether

energy is described by the model sines and cosines or by a residual time series with the fitted

tides removed. Choosing the residual covariance matrix R to approximate the true covariance of

the non-tidal component of the data improves the accuracy of the estimated coefficients. This is

important because geophysical time series generally do not have flat spectra but rather spectra

that decrease with increasing frequency. For example, if data with a red noise term (𝑆noise ∝ 𝑓 −2,

like the red and blue curves in Figure 1.3) were modeled using a spectrally white R (equivalent

to the black curve), the variance would be treated disproportionately as signal at low frequencies

(where the true noise is actually more energetic than what is given by R) and disproportionately

as noise at high frequencies (where the true noise is actually less energetic than what is given by

R). This is the case even if the spectrum corresponding to R has the same total energy as the true

background.
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Here we analyze a 1001-point synthetic record sampled hourly. If there is a low-amplitude,

high-frequency signal present in the data, a high assumed noise level at that frequency would

limit the detection of that constituent, as shown by the large blue intervals in Figure 1.4A at 𝑓 > 2

cpd. A colored spectrum that matches the frequency dependence of the true noise component is

an improvement over the simpler assumption of an uncorrelated (spectrally flat) white noise that

does not match the true noise component. The former gives a relatively constant ratio of assumed

spectrum to true spectrum across frequencies, while the latter gives a frequency-dependent ratio.

This results in the variance of Hx being overrepresented at low frequencies, because the noise

covariance is too low, and underrepresented at high frequencies, because the noise covariance is

too high. Because variance is represented twice at modeled frequencies, the covariance matrices

R and P serve as constraints on the partition of energy between Hx and r (recall that R represent

covariance in time of a wide-sense stationary noise component and therefore has power at all

frequencies, including those to which data are fitted).

Figure 1.4 shows the effects of these constraints in the frequency domain (”model space”):

as described in section 1.31.3.2 and illustrated in Figure 1.3, a synthetic time series is constructed

by adding a random background process with a spectral slope of -2 to a modulated semidiurnal

(M2) tidal process. In Figure 1.4A, the total spectrum (solid black) and its tidal component (signal,

dashed black) and background (noise, dotted black) are plotted along with red tide squared

amplitude estimates (�̂�2 + �̂�2) calculated using a spectrally white noise covariance (blue), an

approximate red noise covariance (red), and a ”true” red noise covariance that matches the spectral

power of the noise component (orange). All assume the same model parameter covariance matrix

P constructed from the true tidal spectrum, not the total spectral density. Shading indicates

90% credible intervals of amplitude. These intervals are calculated using Monte Carlo sampling

from a 10,000-member population obeying the posterior error of x̂ (equation (1.8)) to infer the

distribution of �̂�. Figure 1.4B shows again the spectrum of the non-tidal (noise) component of

the time series (dotted black line), the spectra corresponding to the noise covariance matrices

(solid lines), and the posterior spectra of the residual time series (connected dots) calculated using
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Welch’s method for spectral estimation (overlapping windowed segments of length one fifth that

of the record). For each noise covariance, the total noise energy is approximately 42% of the total

signal energy integrated from 𝑓 = Δ 𝑓 to 𝑓Ny. This matches the true noise-to-signal ratio. Both

red noise analyses (red and orange lines in Figure 1.4B), which more closely approximate the

true noise component, result in more accurate amplitude estimates at low frequencies where the

signal-to-noise ratio is low (red or orange lines vs black dashed line in Figure 1.4A at frequencies

less than 0.2 cpd), and greater precision at higher frequencies, where the signal-to-noise ratio is

high. The calculated spectra of the residual time series are lower for increasingly accurate noise

spectra, indicating that more variance is allocated to the model parameters.

Figure 1.5 compares the performance of the algorithm for both amplitude and phase under

these three noise regimes. The ratio of median estimated amplitude (�̂�2 + �̂�2) to the true signal

amplitude is displayed in Figure 1.5A, which shows that all configurations produce accurate

estimates near the tidal peak (2 cpd). At frequencies higher than about 5 cpd, the assumed

variance of noise and model parameters are similar in magnitude (Figure 1.4B). In this frequency

range, the amplitude ratios assuming red noise in Figure 1.5A show high variability with average

values closer to one, indicating that they are less biased than the white-noise assumption, which

is always greater than 1 for 𝑓 ¿0.5 cpd, but also less precise, because the amplitudes under the

red noise assumption vary more above and below 1. Amplitude uncertainty is measured by the

standard deviation of the estimated distribution of modeled amplitude, normalized by the true

amplitude of the tidal component (Fig. 1.5B). The standard deviations of the amplitudes are

smaller for the red noise assumptions than for the white noise assumption for all frequencies,

and especially near the tidal peak and its cusp. The assumption of full, unapproximated red

noise (orange dots in Fig. 1.5B) gives the lowest standard deviation. For the phase, all methods

give comparable estimates (Fig. 1.5C). At higher frequencies, both red noise results are more

precise than the white noise result. The uncertainty of the phase (Fig. 1.5D), here measured

by the standard deviation of the estimated distribution of the centered phase, is lower near the

tidal cusp and at higher frequencies for the red noise results. The standard deviation is lower for
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the white noise result at frequencies lower than 0.4 cpd, but this implies unreasonable precision,

as suggested by the inaccurate phase estimates at these frequencies in panel C resulting from

a signal-to-noise ratio of less than 1; the corresponding precision is too high to be reasonable

for such inaccurate estimates. At these low frequencies, the standard deviation of phase for

the red noise analyses approaches 𝜋/
√

3, indicated by the horizontal dotted line, which is the

standard deviation of a uniform distribution on the interval (−𝜋, 𝜋). This is expected for the

phase of a low-amplitude signal in the presence of energetic noise that renders that signal’s phase

unrecoverable. At frequencies higher than the tidal cusp, the standard deviation of phase from

the white noise analysis approaches this value because it assumes that noise is more energetic

than the signal, while the red noise assumptions give results with lower variability, with the full

red noise assumption giving the lowest variability.

The lessons learned from the idealized case of a short record with a tidal cusp and

red noise also hold for a more complicated and realistic case in which a long record with a

proportionately finer frequency resolution is modeled only at frequencies in limited bands. In

Figures 1.4 and 1.5, all resolvable frequencies are modeled to illustrate the effect of noise

representation on the partition of variance into signal and noise. In practice, however, tidal

time series may be several years long, and so the number of data, and hence the number of

resolvable frequencies, can be large enough such that modeling all frequencies explicitly is

computationally prohibitive. Furthermore, in such cases the residual covariance matrix R cannot

be practically constructed at all possible time lags, necessitating instead an approximation like

that discussed earlier (truncated, in sparse form, and windowed to reduce spectral ringing).

Figure 1.6 shows results analogous to those in Figure 1.4 for an hourly-sampled seven-year-long

synthetic time series. In this case, only limited frequency bands are modeled, with the rest of the

total variance accounted for by the residual. An accurate model parameter covariance enforces

realistic amplitudes and uncertainty on the model parameters by setting a signal-to-noise ratio

that approximates the true ratio of tidal energy to non-tidal energy as a function of frequency and

not only the total, frequency-integrated ratio. This corresponds to the red curve in Figure 1.6. The
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blue curve corresponds to an assumption of white noise: though the total frequency-integrated

signal-to-noise ratio is the same for both estimates, the white noise assumption over-represents

the variance of the non-tidal component in the semidiurnal band (around 2 cpd), giving larger

credible intervals resulting from the unnecessary uncertainty introduced by overestimating the

non-tidal variance. Though the red noise covariance is a windowed, truncated approximation

of the true non-tidal covariance, its spectrum (dotted red) closely matches the true underlying

spectrum of non-tidal variability (dashed black). With only 500 frequencies modeled out of the

over 60,000 that are fully resolvable, the reconstructed time series accounts for more than 45%

of the total variance and estimates tidal and off-tidal amplitudes within error. This shows that

modeling all resolvable frequencies directly in x̂ is not only computationally impractical but also

unnecessary, even for data with substantial non-tidal energy like those in Figure 1.4.

1.3.4 Effect of Noise Covariance and Record Length on Constituent
Estimates

In order to evaluate the impact of the choice of noise covariance and record length on

estimated tidal coefficients, we ran ten Monte Carlo experiments. These ten experiments used

varying combinations of tidal energy (two regimes) and background structure (five regimes),

which are described below. The six runs with more negative spectral slopes (𝛾 = −3,−2.5,−2,

corresponding to panels A-C and F-H in Figures 1.7 and 1.8) used 10,000 sample time series,

while the four runs with less negative spectral slopes (𝛾 = −1.5,−1, corresponding to panels D,

E, I, and J) used 50,000 sample time series to obtain stable results. Each time series had 24,000

hourly samples but was only analyzed up to 1500 hours in order to investigate the effect of record

length on estimated parameters, with the exception of the 𝛾 = −1 case, which was analyzed up to

5000 hours in order to examine convergence at longer record lengths. Three tidal constituents

typically seen in observations (K1, M2, and S2) are added onto a synthetic noise background.

Analysis for only the M2 constituent is shown, as other tidal constituents are qualitatively similar.

Only phase varies from one time series to another within a run, with signal and noise amplitude
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constant for all ensemble members. The phase is varied by randomly selecting from a uniform

distribution on the interval [0,2𝜋), and is varied separately for the noise and signal components.

Two quantities derived from model parameters are examined to determine the impact of noise

covariance and record length: the bias of tidal amplitude estimates as a measure of accuracy, and

the variance of model parameters (harmonic coefficients) about the true values as a measure of

precision.

The observed bias of estimated tidal amplitude �̂� is affected by the variance of the tide

relative to the background time series, the record length, and the choice of noise covariance.

Figure 1.7 shows the mean ratio of the estimated M2 constituent amplitude to true amplitude

across the ten Monte Carlo experiments:

Amplitude Ratio =

〈√︁
�̂�2 + �̂�2

〉
√
𝑎2 + 𝑏2

, (1.16)

where brackets indicate averaging across Monte Carlo simulations, 𝑎 and 𝑏 are respectively

the sine and cosine coefficients of the tidal constituent in question (here M2), and hats denote

estimates. Note that 𝑎 and 𝑏 vary with each Monte Carlo simulation, but the sum of their

squares does not, hence
√
𝑎2 + 𝑏2 can be pulled out of the brackets. The amplitude ratio is a

measure of the accuracy of tidal harmonic estimates in terms of a simple quantity of physical

relevance, tidal amplitude. Each panel shows this quantity as a function of the assumed noise

spectral slope and record length. The panels are organized with steep spectral slopes at the top

and successively flatter spectral slopes below. The left column (A-E) represents a strong tide

case meant to simulate bottom pressure, with tidal spectral power 100 times that of the noise

background at tidal frequencies, and the right column (F-J) shows a weak tide case meant to

simulate tidal velocities or baroclinic tides, with tidal spectral power 10 times that of the local

background. A perfect tidal amplitude estimate would have a normalized value of 1, and cases

for which the interquartile range of simulations do not include 1 are hatched in Figure 1.7, as
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they do not provide accurate estimates of the tidal amplitude. Records with steeper spectral slope

background processes (Figure 1.7 A-B, F-G) have less accurately estimated amplitudes than

those with less steep background spectral slope (Figure 1.7 D-E, I-J), while the latter required

more Monte Carlo simulations to show convergence to a record length-dependent amplitude

accuracy. Additionally, records with less spectrally-steep backgrounds are less sensitive to the

choice of noise covariance. In all cases, the use of a noise spectral background that matches the

spectral structure of the data yields a more accurate estimate of amplitude than the use of a noise

spectral background with a substantially different slope. These results are in agreement with

the expectation that a more energetic and structured background process is best described by a

residual component with a covariance matrix R constructed from an appropriate power spectrum.

Amplitude estimates also improve with increasing record length, though this effect is smaller

than the effect of the noise covariance.

Estimated amplitudes are comparably accurate and in some cases more accurate for

spectral slopes less than (steeper than) the true slope when compared to the amplitude accuracy

when using the true slope to construct R. This is, however, a small effect that appears to diminish

with increasing record length. For example, in Figure 1.7 E and J, an assumed spectral slope

of -1.5 achieves more accurate results than the true slope of -1, which gives lower amplitude

ratios, an effect that is stronger at shorter record lengths. This may be due to the bias of the

estimators �̂� and �̂�: the squared error of �̂� and �̂� are minimized in the least squares procedure

and these estimators are biased low due to regularization (Hoerl & Kennard, 1970; Wunsch,

1996). The reduction of parameter error at the expense of added bias inherent to this method is

evident in the difference between amplitudes estimated from OLS (noise slope ”None”) and the

regularized methods. In particular, the use of a white noise covariance (noise slope 0) differs

from OLS only by its inclusion of the regularizing term P (noise slope of 0 means that R is a

scaled identity matrix that can be treated as a constant and would be canceled out if P were

0). OLS overestimates tidal amplitudes consistently while the regularization of the otherwise

identical white noise approach typically underestimates tidal amplitudes except for the case of
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strong tides and a spectrally steep background (Figure 1.7 A-B) for which such a white noise

assumption is not suitable.

Model parameters x̂ = [�̂�1, �̂�1, �̂�2, �̂�2...] are estimators for the true parameters x and, like

amplitude �̂� derived from them, better estimate truth with increasing record length, a more

accurate noise covariance, and a higher signal-to-noise ratio. As a measure of precision of these

parameter estimates, we calculate their variance about the true mean, normalized by the true

amplitude:

Normalized Parameter Variance =
1

2
√
𝑎2 + 𝑏2

(〈
(�̂�− 𝑎)2〉 + 〈(�̂�− 𝑏)2〉) . (1.17)

The base-10 logarithm of this quantity is shown in Figure 1.8 in order to better compare results

across orders of magnitude. Due to the random phase, the statistics of sine and cosine coefficients

are identical, constrained by 𝑎2+𝑏2 = 𝐴2, where 𝐴 is constant across all Monte Carlo simulations.

Therefore, both �̂� and �̂� are used in calculating the normalized parameter variance, effectively

doubling the number of realizations.

As with amplitude, when the random background has a more negative spectral slope,

estimates of tidal coefficients are more sensitive to noise covariance choice (Figure 1.8 A-B,

F-G) than they are when the background has a less negative spectral slope (Figure 1.8 D-E, I-J).

Unlike amplitude, coefficients are primarily sensitive to record length when the background

noise is relatively unstructured, with increasing sensitivity to the choice of noise covariance as

the true noise spectrum becomes steeper. This can be seen in the gradient of the normalized

parameter variance in each panel: in panels A-B and F-G, where 𝛾 is more negative, the variance

decreases for more accurate noise slopes, whereas in panels D-E and I-J, where 𝛾 is less negative,

the variance decreases more strongly with increasing record length. Filled dots are placed at

elements corresponding to the lowest value (highest precision) in their respective rows. For all

simulations with a background process of spectral slope 𝛾 ≥ −2 (less steep), precision is highest

for the noise assumption that matches the true spectral slope. For 𝛾 < −2 (steeper), this is also
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the case for sufficiently long records, and for short records it is still better to match the noise

spectrum than to use OLS.

In almost all cases, using equation (1.7) (with P and R) instead of equation (1.9) (OLS

without an explicit noise assumption, labeled ”none” in the rightmost column of every panel in

Figures 1.7 and 1.8) resulted in more accurate estimates for 𝐴 (ratios closer to 1 in Figure 1.7)

and more precise estimates for x (lower parameter variance in Figure 1.8), at least for the cases

examined here in which tidal energy is 10 to 100 times greater than that of noise at the same

frequency. The OLS approach, which is widely implemented in tidal harmonic analysis, was

comparable to the red tide approach for 𝛾 = −1.5 and 𝛾 = −1, indicating that it is most suitable

for tidal analysis of data with a spectral background that is nearly white. Data with steeper

background spectra benefit from treating the residual r as a spectrally red process by way of the

covariance matrix R.

1.4 Application to Oceanographic Data

1.4.1 Bottom Pressure

The methods implemented in red tide seek to address several potential issues that can

arise when harmonically analyzing real tidal time series, each of which are presented in isolation

in section 1.3 by using synthetic data. The first demonstration of red tide on observations

uses a bottom pressure record, a data set with low background noise where record length is

sufficient and non-phase-locked energy is much weaker than the phase-locked tide. Bottom

pressure measurements from the NOAA Deep-ocean Assessment and Reporting of Tsunamis

(DART) (NOAA, 2005) are dominated by the largely coherent barotropic tide. The time series

examined here originates from site 51406 (8.48◦S, 125.03◦W) and spans 3 years and 6 months

of observations, from February 12, 2011 to September 6, 2014. Many tidal constituents of

amplitudes spanning several orders of magnitude are present in this record, as seen by tidal lines

in Figure 1.9. Pressure measurements have a significantly lower noise level than coastal surface
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height gauges and have accurate harmonic constituents even over short records (Le Provost, 2001).

Bottom pressure is therefore useful for evaluating the accuracy of harmonic decomposition in the

regime of tidally-dominated, low noise observations, which typically do not pose major problems

when calculating constituents. Hourly averaging of 15-second sampled data further suppresses

noise and instrumental artifacts, such as digitization, and does not alias major constituents.

The power spectrum of the bottom pressure time series (Figure 1.9) exhibits many

prominent peaks, of which 22 are singled out for analysis. These 22 frequency bands together

account for more than 99% of the time series’ variance; therefore both the white noise assumption

(not shown) and red noise assumption produce essentially identical results. Figure 1.10 shows

the output from red tide using only the red noise assumption for R with spectral slope 𝛾 = −3/2

alongside t tide output. Where t tide models only tidal frequencies associated with astronomical

parameters, this analysis includes those same frequencies and 30 additional frequencies per

constituent in a band of 10 year−1 centered on that tidal frequency in order to capture modulation

at annual and semiannual cycles and cusp-like spreading of peaks. These harmonic amplitudes

are spaced at Δ 𝑓 = 1/3 year−1, a frequency step smaller (and hence of higher resolution) than

that of the power spectrum, which is coarser in resolution due to segmenting. This corresponds

to a 3-year period, shorter than the record length of 3 years and 206.5 days in order to ensure the

resolution of annually periodic modulation of the main tidal constituents, regardless of the exact

record length. The amplitudes are normalized to have units of spectral power for comparison.

The results of analysis by t tide are also normalized and plotted with 90% confidence intervals

(the t tide code that defaults to 95% confidence intervals is modified).

The tidal amplitudes given by t tide largely match the red tide results for high-amplitude

constituents and fall within credible intervals at low-amplitude constituents, while providing

analysis at more frequencies. Focusing on a single cluster of constituents shows this more clearly

(Figure 1.11). The semidiurnal band, centered about the energetic M2 constituent, contains

several other well-resolved tidal constituents (Darwin symbols 2”N2, `2, N2, a2, _2, L2, S2, and

K2) that result from the complicated gravitational tidal forcing potential, many of which are
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not resolvable when using segmenting methods or are not exactly mapped by a simple Fourier

transform, which would result in spectral leakage. Additionally, the energy of the cusps is

explicitly modeled, with intervals that reflect the uncertainty associated with a realistic noise level

that is a function of frequency, which becomes important for these low amplitude components.

The characteristics of the non-phase-locked component of the tides can therefore be diagnosed

from these cusps. The high signal-to-noise ratio at energetic constituents, on the other hand,

means that the noise level is less important at these frequencies, hence the OLS approach of

t tide works well for these constituents.

1.4.2 High-Frequency Radar

Like OLS, the red tide package effectively models data with weak noise and tidal

constituents that are highly coherent with astronomical forcing. The data regime for which

red tide is designed includes higher levels of structured noise and tidal energy that cannot be

predominantly described by a small number of frequencies. Surface currents, which are driven

by wind, tides, eddies, and mean flow, fall under this category.

Observations of surface currents are obtained from a high-frequency radar network

(HFRnet, see Terrill et al., 2006). The California Current System (CCS), a region that is well-

sampled by this network (Roarty et al., 2019), is used to evaluate the harmonic decomposition

technique. Radial velocities measured by antenna stations are mapped to a Cartesian grid

of zonal and meridional velocities using a least squares fit (Ohlmann et al., 2007). Surface

currents are driven by a wide range of dynamics: direct wind forcing, near-inertial motions,

interannual variability of the local current system, and tides, including tidal currents and the

surface expression of internal tides. This contrasts with bottom pressure, which is dominated by

tides, with many more prominent tidal frequencies than appear in surface currents.

Figure 1.12 shows the averaged rotary power spectrum (spectral power partitioned by

rotational polarization) over the grid points in a region of the CCS ranging from 33.7561◦N to

38.1252◦N out to approximately 100 km from the coast (for the formulation of rotary spectra,
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see Gonella, 1972). This formulation is convenient for visualizing the spectral power of surface

currents due to the polarized flow resulting from near-inertial oscillations, which at these latitudes

occur at frequencies between 1.12 to 1.26 cycles per day. Tidal peaks in HFR surface currents are

pronounced and are comparable to or greater than the energy in the inertial and low-frequency

(¡0.4 cpd) bands. These spectra are calculated using Welch’s method, and the error bar denotes

the ratio of high to low estimates for the power spectrum for a confidence level of 95%; this

ratio is constant on logarithmic axes and does not vary with frequency. It is calculated from a

chi-squared distribution for degrees of freedom equal to twice the number of windowed segments

whose periodograms are averaged to calculate the spectrum (e.g. Bendat & Piersol, 2010), divided

by 9 from the assumption that neighboring sites are correlated.

An hourly-sampled, 9 year and 3 month-long (January 1, 2012 to April 1, 2021) HFR

surface current time series from 35.5361◦N, 121.1776◦W, roughly 7 kilometers off the coast

of San Luis Obispo County, California, is analyzed in four frequency bands: low frequency

(0.00732 cpd and less), S1 solar diurnal (1 cpd), M2 lunar semidiurnal (1.932 cpd), and S2

solar semidiurnal (2 cpd). These frequency bands, shown in Figure 1.13A, account for roughly

a fifth of the variance of the time series for both zonal velocity 𝑢 and meridional velocity 𝑣.

Therefore, 80% of the variance is included in the residual time series. Harmonic coefficients

from red tide are calculated using a model parameter covariance built from the domain-averaged

power spectrum (solid black line) from 1191 grid points at latitudes ranging from 33.7561◦N to

38.1252◦N, out to about 100 kilometers offshore. The individual power spectrum calculated from

the analyzed time series is shown in gray for comparison: smoothed peaks due to low frequency

resolution and spectral leakage due to sampling and windowing result in an individual time

series’ spectrum that does not capture features that the least squares approaches can. The noise

(residual) spectrum has a constant spectral slope of -1 and a corresponding covariance truncated

at 300 hours lag, resulting in modest spectral ringing (dashed line). Amplitudes given by red tide

are calculated as half the sum of the sine- and cosine-coefficients squared, 1
2 (𝑎

2 + 𝑏2), and are

shown in red with 90% credible intervals, while equivalent amplitudes and 90% confidence
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intervals given by t tide are shown in blue. Filled blue circles are constituents that t tide considers

”significant”, where the amplitude is greater than the amplitude error (Pawlowicz et al., 2002),

while hollow circles are not considered significant. Only results for 𝑢 are shown, as results for 𝑣

are qualitatively similar; the full 2-dimensional character of time series in this region is shown in

Figure 1.12 to illustrate the frequency-dependent polarization of surface currents, which may be

modeled with red tide. The calculation of rotary coefficients from red tide output for 𝑢 and 𝑣 is

straightforward, though results are not shown.

As with bottom pressure, harmonic decomposition reveals sharp peaks at tidal frequencies

that are not resolved in power spectra with lower frequency resolution due to averaging over

time intervals shorter than the record length. Because the choice of basis functions for red tide

is arbitrary, the fundamental frequency of the data set does not necessarily limit the spacing of

modeled frequencies, though in practice the tolerance of basis nonorthogonality and resulting

uncertainty will limit the choice of frequencies. The high noise level in these data results in

large uncertainty at frequencies around tidal peaks as in Figure 1.13B, as indicated by shaded

intervals. Despite this, annual modulation of the surface current is evident by the second and

third most energetic peaks in the M2 band appearing at 𝑓𝑀2 ± 𝑓annual, indicated by vertical dashed

lines. The output of t tide is also able to discern these modulation peaks, though it does not

examine broadband modulation.

1.5 Summary and Discussion

The methods outlined here and implemented in red tide are intended to provide best

estimates of tidal amplitudes for data with red background spectra and significant tidal cusps.

Red tide incorporates a red noise covariance and includes additional frequencies beyond those of

the astronomical forcing to accommodate data with highly energetic and correlated non-tidal

components, a weak tidal signal relative to non-tidal processes, or a modulated tidal component

with energy distributed across a band of frequencies. Short records, for which long-period
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variance appears trend-like, also benefit from these methods because variance at fitted frequencies

is allocated to model parameters according to prior statistical assumptions. The spectrally colored

noise covariance is constructed to approximate the spectral properties of the non-tidal component

of the data, and may be truncated and represented as a sparse matrix for computational efficiency

with a window function applied to off-diagonal elements to suppress spectral artifacts that result

from truncation. On the other hand, highly coherent tidal records with well-defined peaks and

small cusps, such as bottom pressure, are well described by OLS, as the background noise is

orders of magnitude lower in amplitude than the tidal signal.

These methods also address time series for which the choice of model covariance impacts

results. We demonstrate this with a step function, a simple case that exhibits an extreme mismatch

between the fit and the data when an inappropriate model parameter covariance is used, resulting

in the well-known Gibbs phenomenon. We have found that when fitting a discrete step function

across resolvable frequencies, the assumption of a realistic covariance reduces the magnitude of

the Gibbs phenomenon near the jump discontinuity when compared to an assumption of constant

covariance matrix ⟨xxT⟩ = 𝜎2
x I, and prevents dramatic overshoot when fitting to frequencies

greater than the Nyquist frequency, which would otherwise be aliased (Figure 1.2 B-E).

The accuracy and precision of model parameters, given explicitly as a posterior covariance

matrix, are impacted by the choice of residual (noise) covariance. Spectrally colored time series

may have a residual background that varies over orders of magnitude across tidal bands,

necessitating an appropriate noise covariance matrix if all constituents are to be estimated

optimally. When the user-specified residual spectral power is significantly lower than the total

spectral power of the time series, red tide allocates more variance to the model parameters. If

the energy of the non-tidal component is well understood, variance can be realistically allocated

between the estimated signal Hx̂ and noise r̂ at the same frequencies. Estimating tidal amplitudes

can be computationally expensive for long records (O(105) or more data) because of the memory

requirements for constructing and multiplying large matrices. In these cases, we have identified

strategies for approximating the covariance matrix in order to reduce computational requirements,
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including truncating and windowing the matrix in sparse form.

In summary, red tide was designed to estimate tidal coefficients while incorporating prior

assumptions that accurately account for the spectral structure of underlying noise and allow

flexibility in the choice of modeled frequencies, which is important for data with a modulated,

non-phase-locked tidal component. Longer records and less strongly correlated noise benefit

less from this flexibility. Ordinary least squares is comparatively less suited to computing tidal

harmonics from data with spectrally colored noise, especially red noise with a steep spectral

slope. The code is available for use and modification, the details of which are in the appendix.
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1.6 Appendix for Chapter 1

1.6.1 Downloading red tide

The red tide package is available for download as a GitHub repository at https://

github.com/lkach/red tide and in archived form (see Data Availability Statement). This package

is written in the MATLAB language, but translation to other programming languages is welcome

and encouraged. It has also been designed to work in the free software GNU Octave language

and Octave-specific instructions are provided with the software release. Input for red tide is

flexible, with several options and default settings.

1.6.2 Noise as an Autoregressive Process

The residual time series r̂ = y−Hx̂ will have a power spectrum that is similar to that of y,

except in the bands of modeled frequencies. With the energetic tidal components removed, a

spectrally-red residual can be modeled as an autoregressive process AR(𝑝), where order 𝑝 is the

maximum number of time steps for which the system has memory (von Storch & Zwiers, 2003):

𝑟𝑡 = 𝛼0 +
𝑝∑︁
𝑘=1

𝛼𝑘𝑟𝑡−𝑘 + 𝜖𝑡 , (1.18)

represents an order-𝑝 AR process 𝑟 at time 𝑡 with a white noise component 𝜖 . The AR parameters

𝛼𝑘 can be estimated from the Yule-Walker equations (e.g. von Storch and Zwiers, 2003). From

these, the spectral density of 𝑟 can be estimated by

𝑆rr( 𝑓 ) =
�̂�2
𝜖����1−∑𝑝

ℓ=1 �̂�ℓe−2𝜋𝑖ℓ 𝑓
����2 , (1.19)

where hats indicate estimates of a true value, 𝑓 is frequency, and 𝜎2
𝜖 is the variance of the white

noise 𝜖 . The spectrum of the AR-modeled residual time series can be used as an estimate of the

spectrum of underlying non-tidal, non-wind-driven intrinsic variability in the ocean. If 𝑆rr( 𝑓 )

40

https://github.com/lkach/red_tide
https://github.com/lkach/red_tide


accurately models the spectrum of y at frequencies outside those in H and assuming white noise

𝜖 , the coefficients {�̂�𝑘 } may be used to construct R for a second iteration of fitting using this

new estimate for the noise covariance matrix. This can be done by taking the inverse Fourier

transform of 𝑆rr( 𝑓 ), which is the covariance of r via the Wiener-Khinchin theorem. R is then

constructed from the covariance as outlined in section .

1.6.3 Alternative Form of Equation 1.7

An alternative equation that solves for x̂ can be achieved using the matrix inversion lemma

(e.g. Wunsch, 1996):

x̂ = PHT
(
HPHT +R

)−1
y. (1.20)

In practice, tidal records usually contain many more data points 𝑁 than frequencies 𝑀 that are of

interest to model. Therefore the data-space inversion (equation (1.7)) is used in red tide because

HTR−1H has lower computation and memory requirements (4𝑀2 elements) than HPHT (𝑁2

elements). The 𝑁 ×𝑁 residual covariance matrix inverse, R−1, that appears in equation (1.7)

does not need to be computed explicitly when using efficient linear system solution algorithms

for matrix inversion, which instead directly calculate HTR−1, which is 2𝑀 ×𝑁 . Further, a sparse

representation of R minimizes memory requirements in equation (1.7) compared to the more

challenging requirements of the dense 𝑁 ×𝑁 matrix in equation (1.20).

1.6.4 Non-dimensionalization

The assumption of uncorrelated noise is physically unrealistic when modeling processes

with a correlated, energetic noise component, which would be better represented by a more

complicated R. For example, Coles et al. (2011) use a non-diagonal matrix expression for R, the

efficient inversion of which is outlined here. The computational resources to directly invert a

non-diagonal R are too high to be practical: R is 𝑁 ×𝑁 , where 𝑁 is the length of y, which is
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much longer than x in practice. Though red tide uses MATLAB’s default linear equation solving

method, a Cholesky lower triangle factorization of the residual covariance matrix R = ⟨rrT⟩

may also be used. The residual covariance can be factored as R = R1/2RT/2, where R1/2 is lower

triangular with the inverse R-1/2 used as a (non-unique) whitening transform:

yw = R-1/2y, rw = R-1/2r, Hw = R-1/2H. (1.21)

Noting that RT/2R−1R1/2 = I, these can be substituted into equation (1.7), which simplifies to

x̂ =

(
Hw

THw +P−1
)−1

HT
wyw. (1.22)

The choice of R, and thus R−1/2, relies on accurately estimating the residual covariance.

This may be done by examining the calculated data covariance matrix yyT or equivalently the

power spectrum 𝑆yy and estimating ⟨rrT⟩.

Analogously, the model parameter covariance matrix P can be expressed as P = P1/2PT/2.

Define H′ = R−1/2HP1/2 such that equation (1.22) can be written as

x̂ = P1/2
(
H′TH′+ I

)−1
H′Tyw. (1.23)

This is equivalent in form to the regularized least squares problem with a left-multiplied factor of

P1/2 that allows x̂ to retain units of y.

Chapter One, in full, is a reprint of the material as it appears in the Journal of Atmospheric

and Oceanic Technology, 2022. Kachelein, L., B. D. Cornuelle, S. T. Gille, and M. R.

Mazloff (2022) Harmonic Analysis of Non-Phase-Locked Tides with Red Noise Using the

red tide Package. Journal of Atmospheric and Oceanic Technology, 39(7):1031 – 1051,

https://doi.org/10.1175/JTECH-D-21-0034.1. The dissertation author was the primary investigator

and author of this paper. © American Meteorological Society. Used with permission.
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Table 1.1. Root-mean-square error for the four step function analyses shown in Figure 1.2(B-E).
RMSE is calculated at observation times (top row) and at a set of times sampled at 100 times the
observational resolution (bottom row).

White P
𝑓max = 𝑓Ny

True P
𝑓max = 𝑓Ny

White P
𝑓max = 2 𝑓Ny

True P
𝑓max = 2 𝑓Ny

RMSE at observation times 0.0080 0.0084 0.0122 0.0038
RMSE of interpolated time series 0.0211 0.0201 0.5014 0.0171
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Figure 1.1. A simplified example of tidal harmonic analysis on bottom pressure data (3.5 year
record at 8.48◦S, 125.03◦W, DART array site 51406, further analyzed in section 1.41.4.1). (A) A
segment of the longer time series that was analyzed (black) and the resulting fit (red) to only two
tidal constituent frequencies: M2 and S2. (B) A closeup of the time series over the gray interval
in (A). (C) The power spectrum of the time series and the magnitude of the harmonic coefficients.
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Figure 1.2. Step function discretely-sampled at 1000 points. (A) Full record modeled with
orthogonal sinusoids (blue dashed) and with non-orthogonal sinusoids corresponding to a record
twice as long (red solid). The gray shaded region indicates the range of data that are fit, outside of
which the time series is extrapolated. (B) Close view of discontinuity and red tide output given
spectrally white (incorrect) model parameter covariance, P, only modeling up to the Nyquist
frequency 𝑓Ny. (C) Discontinuity and output using true P, only modeling up to 𝑓Ny. (D) Same as
panel B but including model frequencies above 𝑓Ny up to 2 𝑓Ny. (E) Same as panel C but including
model frequencies above 𝑓Ny up to 2 𝑓Ny. The residual is treated as white (uncorrelated) noise in
all panels, with minimal contribution to the total variance (0.2% for the blue dashed curve in
panel A, 0.1% for the red curve in panel A, 0.1% for panels B-C, and 0.05% for panels D-E).

44



10
-1

10
0

10
1

frequency (cpd)

10
-5

10
0

S
p

e
c
tr

a
l 
P

o
w

e
r

(a
rb

. 
v
a

ri
a

n
c
e

 /
 c

p
d

)

Tidal signal + white background

Tidal signal + red background

Modulated tidal signal + red background

Bottom pressure spectrum

0 100 200 300 400 500

time (hours)

-10

-5

0

5

10

A
m

p
lit

u
d

e
 (

a
rb

.)

Figure 1.3. (top) Example of idealized power spectra with a single constituent, here M2, with the
computed power spectrum of the bottom pressure record from Figure 1.1 included for comparison,
and (bottom) segments of corresponding time series computed from the power spectra with
random phase at each frequency (500 hourly synthetic data points). All three spectra share the
same tidal peak magnitude, and all three time series share the same phase across frequencies.
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Figure 1.4. (A) Synthetic true spectra (noise and signal) and harmonic amplitudes calculated
using red tide, and (B) assumed and calculated noise spectra. Shading indicates 90% credible
intervals of amplitude, with thick lines indicating median amplitude based on the estimated
distribution of coefficients. All quantities are scaled to spectral density units for comparison.
The true spectra are used to construct the noise and signal components of the time series (1001
hourly data points) from which harmonic amplitudes are calculated. The noise spectra in (B)
indicate the Fourier transforms of the residual covariance matrix R used in each application of
the red tide procedure. All noise spectra used to construct R have the same variance, which
approximates the 42% contribution of true noise variance to the true total variance. The residual
spectra are calculated using Welch’s method with a Hanning window and 9 overlapping segments.
The tidal peak is at the M2 frequency and is convolved with a spectrum of slope -2 in order to
simulate real tidal modulation that leads to tidal cusps.

46



0.1 1 2 3 10

Frequency (cpd)

0

1

2

3

M
e

d
ia

n
 m

o
d

e
l 
a

m
p

lit
u

d
e

d
iv

id
e

d
 b

y
 t

h
e

 t
ru

e
 v

a
lu

e

(A)

White model

Truncated red model

Full red model

0.1 1 2 3 10

Frequency (cpd)

0

1

2

3

4

S
ta

n
d

a
rd

 d
e

v
. 

o
f 

a
m

p
lit

u
d

e
(d

iv
id

e
d

 b
y
 t

ru
e

 a
m

p
.)

(B)

0.1 1 2 3 10

Frequency (cpd)

-

- /2

0

/2

T
ru

e
 -

 m
e

d
ia

n
 m

o
d

e
l

p
h

a
s
e

 (
ra

d
)

(C)

0.1 1 2 3 10

Frequency (cpd)

0

/2

S
ta

n
d

a
rd

 d
e

v
. 

o
f

p
h

a
s
e

 (
ra

d
)

(D)

Figure 1.5. For the same time series and analyses in Figure 1.4, (A) model amplitude fraction of
truth, (B) standard deviation of the normalized amplitude, (C) phase difference between the true
phase and the model estimates, and (D) standard deviation of the estimated phase after being
centered on the interval (−𝜋, 𝜋).

Figure 1.6. Synthetic spectrum, harmonic amplitudes calculated from corresponding time series
(7 years sampled hourly) using red tide (scaled to spectral density units), and spectra used to
construct R, shown (A) in the range of frequencies typically relevant to tidal harmonic analysis,
and (B) at a close view about the M2 constituent frequency. Shading indicates 90% credible
intervals of amplitude. Dashed colored lines indicate the Fourier transforms of the residual
covariance matrix R used in each estimation. Both of these noise spectra assume the same total
signal to noise variance ratio of 1.

47



Figure 1.7. Mean ratios of M2 harmonic amplitudes to true amplitudes using red tide and
ordinary least squares. Panels (A-E) correspond to time series with tidal spectral power density
100 times greater than that of the random background process at the M2 frequency. Panels
(F-J) correspond to time series with tidal spectral power density 10 times greater than that of
the random background process at M2. The random background process to which tides are
added has a spectral slope indicated by 𝛾. Time series have 24,000 hourly samples but are only
analyzed up to 1500 hours, except for 𝛾 = −1, which was also analyzed at 5000 hours. Each
plot corresponds to 𝑁 Monte Carlo simulations with constant spectra and random phase, where
𝑁 = 10,000 for 𝛾 ≤ −2 and 𝑁 = 50,000 for 𝛾 > −2. The spectral slope of the noise term used in
red tide (horizontal axis) and the length of the record (vertical axis) are varied, with noise slope
”none” corresponding to the OLS solution. Color bars are centered at unity and scale differently
across panels for clarity. Hatched cells indicate combinations of record length and assumed noise
spectral slope that resulted in the value 1 (estimated amplitude equal to true amplitude) falling
outside the interquartile range for the 10,000 or 50,000 member ensemble.
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Figure 1.8. Log10 of normalized model parameter variance for the M2 constituent calculated
from the same artificial data described in Figure 1.7 with the same figure layout. Filled dots
indicate the minimum value of its row, and color bars scale differently across panels for clarity.
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Figure 1.9. Power spectrum of bottom pressure from site 51406 (8.48◦S, 125.03◦W), part of the
DART array. Higher harmonics of the tidal frequencies are present at resolved frequencies higher
than roughly 4 cpd (not shown). Vertical dashed gray lines denote prominent tidal constituents,
which are the dominant sources of variance in bottom pressure time series. This time series of
length 3 years and 6 months (Feb. 12, 2011 to Sept. 6, 2014), sampled every 15 seconds, is
averaged over 1 hour intervals, with the power spectrum estimated using Welch’s method. The
95% confidence intervals are indicated by the error bar in the lower right, plotted at frequency
4.25 cpd. This corresponds to a ratio valid at all magnitudes of spectral density.

Figure 1.10. Diagonal of model parameter covariance matrix (linear interpolated power spectrum,
black solid line), harmonic amplitudes calculated in red tide using a red noise covariance (spectral
slope = -3/2 to empirically match observed spectrum), and results using t tide. Shading indicates
90% credible intervals. Select diurnal and semidiurnal tidal frequencies are indicated by dashed
gray vertical lines. The t tide amplitudes are from constituents automatically chosen by the
package, with amplitudes considered by t tide to be ”significant” filled in, otherwise unfilled,
and with 90% confidence bars. All values are in units of spectral density in order to compare
quantities defined on different frequency intervals.
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Figure 1.11. Results from Figure 1.10 focused on the semidiurnal band. Prominent tidal
constituent frequencies, including those not resolved in the power spectrum, are indicated by
vertical dotted lines and labeled according to their conventional Darwin symbols.
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Figure 1.12. Rotary power spectrum of surface current u from HFR stations along the central
California coast, regionally averaged over 1191 grid points. Time series of length 9 years and
3 months with at least 50% data coverage are sampled hourly. Dashed gray lines denote, in
order of increasing frequency, the O1, S1, M2, and S2 constituents, while the gray band denotes
the range of inertial frequencies across the latitudes spanned by the data. Higher harmonics
of the tidal frequencies are present at resolved frequencies higher than those shown. The 95%
confidence ratio is indicated by the error bar in the lower right, plotted at frequency 4.25 cpd.
This corresponds to a ratio valid at all magnitudes of spectral density.
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Figure 1.13. Harmonic amplitudes (normalized to units of the power spectrum) of a high-
frequency radar time series (zonal component 𝑢), with the time series power spectrum 𝑆𝑢𝑢
and domain-averaged power spectrum (used in P) shown for comparison. Model coefficient
uncertainty (90% credible interval) is represented by shaded intervals. The covariance used to
build R is truncated at 300 hours time lag and is built from a spectrum of spectral slope -1 (dotted
line). Amplitudes from t tide, both significant and non-significant, are included for comparison.
(B) Close-up of the M2 band centered at the principal lunar semidiurnal frequency. The vertical
dashed lines on either side of the central M2 line are spaced by the annual frequency

52



Chapter 2

Characterizing Tides in the California
Current System from High-Frequency
Radar
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Abstract

Over nine years of hourly surface current data from high-frequency radar (HFR) off the

US West Coast are analyzed using a Bayesian least-squares fit for tidal components. The high

spatial resolution and geographic extent of HFR data allows us to assess the spatial structure of the

non-phase-locked component of the tide, while the duration and sampling rate allow the resolution

in the frequency domain of discrete tidal lines corresponding to well-known constituents and

the broadband elevated continuum near tidal frequencies resulting from amplitude and phase

modulation of the tides, known as cusps. The FES2014 tide model is used to remove the

barotropic component of tidal surface currents in order to evaluate its contribution to the fraction

of phase-locked variance and spatial structure. The mean time scale of modulation is 243 days for

the M2 constituent and 181 days for S2, with overlap in their range of values. These constituents’

modulated amplitudes are significantly correlated in several regions, suggesting forcing by similar

processes. Within the frequency band M2 ± 5 cycles per year, an average of 48% of energy is not

at the phase-locked frequency. When we remove the barotropic model, this increases to 64%. In

both cases, there is substantial regional variability. This indicates that a large fraction of tidal

energy is not easily removable for the purposes of interpreting satellite altimetry data. The spatial

autocorrelation of the non-phase-locked variance fraction drops to zero by 150 km, comparable

to the width of the swath of the recently launched Surface Water and Ocean Topography (SWOT)

altimeter.
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2.1 Introduction

Barotropic tidal currents are known to dissipate in shallow seas via bottom boundary layer

drag and in the deep ocean via scattering over topography and subsequent conversion to internal

tides (Baines, 1982; W. H. Munk & Wunsch, 1998; Egbert & Ray, 2000; R. D. Ray & Cartwright,

2001; Garrett & Kunze, 2007). The deep ocean conversion of barotropic to baroclinic (internal)

tides accounts for 25-30% of the total barotropic energy loss and ultimately may provide roughly

half of the mixing energy required to maintain the global overturning circulation (Egbert & Ray,

2000). Thus the internal tide plays an important role in the world ocean. Surface signatures

of internal tides have long been detected from satellite altimetry (e.g. R. D. Ray & Mitchum,

1996), analysis of which using traditional tidal harmonic methods relies on years of observations

to extract highly repeatable phase-locked signals (R. D. Ray & Zaron, 2011). However, the

total energy of the internal tide has a substantial component that is not phase-locked to the

astronomical forcing terms due to modulation and scattering of propagating internal tides by

mesoscale processes (Mitchum & Chiswell, 2000; Chiswell, 2002; Rainville & Pinkel, 2006).

Tidal signals have long been known to alias to well-defined low frequencies when sampled by

satellites, the orbital periods of which are longer than tidal periods (Parke et al., 1987), and models

to account for this phenomenon have been implemented R. Ray (1993). Unlike the large-scale,

predictable barotropic tide, this non-phase-locked baroclinic component is difficult to remove

from altimeter data and therefore poses a challenge to present and future high-spatial-resolution

satellite missions, as it can contaminate mesoscale and submesoscale signals (Chavanne & Klein,

2010; Savage, Arbic, Alford, et al., 2017; Zaron & Ray, 2018). Due to its relevance to altimetry

corrections and ocean mixing, the non-phase-locked tide has recently been a widely investigated

topic, both observationally and computationally (e.g. R. D. Ray & Zaron, 2011; Ponte & Klein,

2015; Zaron, 2015; Dunphy et al., 2017; Huang et al., 2018; Savage et al., 2020), with the

non-phase-locked tide estimated and mapped at a global scale, both from satellite altimetry

(Zaron, 2017) and from output from HYCOM, a global ocean general circulation model (Shriver
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et al., 2014; Savage, Arbic, Richman, et al., 2017; Nelson et al., 2019). Although model-guided

estimation of this tidal component has been demonstrated at a regional scale (Egbert & Erofeeva,

2021), a regional study of the spatial structure of the non-phase-locked tide using observations

with high spatial and temporal resolution has not been conducted to our knowledge. Fully

characterizing this component observationally can help validate numerical studies and ultimately

provide critical information needed to assess tidal variability in newer high-resolution satellite

missions, such as the recently-launched Surface Water and Ocean Topography (SWOT) mission,

which aims to resolve sea surface height at 15-30 km wavelengths (Morrow et al., 2019).

The goals of this study are to use high-frequency radar (HFR) measurements of surface

currents to quantify the non-phase-locked tide. HFR-derived surface currents are a valuable

source of spatially high-resolution, decade-long hourly observations (Terrill et al., 2006), and

could therefore prove useful for characterizing non-phase-locked tidal variability and spatial

scale. The U.S. Integrated Ocean Observing System (IOOS) High Frequency Radar Network

(HFRNet) is one of many national networks that comprise the Global HFR Network (Roarty et

al., 2019). HFRNet differentiates observation sites by region, with the United States West Coast

(USWC) array providing over a decade of publicly available data spanning the Pacific Coast of

North America from the U.S.-Mexico border to the mouth of the Columbia River. HFR surface

currents have been used to study coastal jets, eddies, near-inertial motions, and tidal currents,

from the submesoscale to the mesoscale (e.g. Erofeeva et al., 2003; Kurapov et al., 2003; Kosro,

2005; Chavanne & Klein, 2010; Kim et al., 2010, 2011; Kim & Kosro, 2013); however, these

studies did not perform detailed analysis of the non-phase-locked tide.

In order to characterize the non-phase-locked tide in the California Current System

(CCS), we examine USWC HFR data using the red tide harmonic analysis package, which uses

a Bayesian approach that accounts for spectrally red background energy and allows for tidal

cusps (Kachelein et al., 2022). We then compare our analysis with a barotropic tidal model and

further partition the tidal signal into baroclinic and barotropic components in order to investigate

the share of non-phase-locked energy that remains after removing the barotropic component,
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which is more coherent with astronomical forcing and is typically removed when analyzing

altimeter observations (Chavanne & Klein, 2010) or when describing the non-phase-locked tide

(e.g. R. D. Ray & Zaron, 2011; J. Wang et al., 2018). We also compare the modulation of the

amplitude of M2 and S2 currents in order to evaluate the processes that lead to modulation.

This study uses USWC HFRNet observations to quantify the degree to which regional

tidal surface currents are non-phase-locked. We build upon previous studies that investigate this

problem on a global scale at lower spatial resolution. We begin with an overview of the data and

model in this region (Section 2), followed by a brief description of the tidal analysis package

and an overview of tidal modulation (Section 3). We then present the results of this analysis,

including the spatial structure and amplitude of non-phase-locked tidal currents, the time scales

of their modulation, and a comparison of the modulation of the M2 and S2 constituents (Section

4), and we end with a discussion of these results (Section 5) and conclusions in the context of

future work and the implications of our analysis for satellite altimeter and scatterometer missions

(Section 6).

2.1.1 Defining the Non-Phase-Locked Tide

Tides can be subdivided into “phase-locked” and “non-phase-locked” components. The

“phase-locked” portion of the tide is usually associated with the barotropic tide, meaning that

it depends largely on ocean depth and is highly regular such that it can be readily predicted

and removed. The non-phase-locked component of the tide has an amplitude and phase that

vary in time due to interactions of internal tides propagating through a varying medium. The

interaction of tides with non-tidal processes leads to so-called tidal cusps in the frequency domain

(W. H. Munk et al., 1965; Radok et al., 1967; Matte et al., 2013), continuous prominences of

spectral power which encompass a range of frequencies centered on tidal forcing frequencies.

This feature is common to tidal peaks and is not an artifact of spectral analysis techniques.

Though we refer to this variable tide as the non-phase-locked tide, we interpret it in the frequency

domain as a non-frequency-locked signal at near-tidal, but not exactly tidal, frequencies. This is
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because the astronomical forcing is assumed to occur at exactly the known tidal frequencies for

the purposes of this study.

The non-phase-locked tidal variance is not a standardized quantity and is often calculated

as the difference in spectral power before and after the removal of the phase-locked tide, usually

via a least squares fit (Nelson et al., 2019). For example, in their analysis of Topex/Poseidon and

Jason satellite altimeter data, R. D. Ray & Zaron (2011) calculated the non-phase-locked tidal

energy as the difference between the wavenumber spectra of sea surface height (SSH) along a

ground track before and after removal of 12 major tidal constituents via point by point harmonic

analysis, within the bands of mode-1 and mode-2 semidiurnal wavenumbers. Similarly, Savage

et al. (2020) analyzed mooring data and semi-idealized internal tide model output and calculated

the total tidal component by bandpass filtering time series around the M2 constituent frequency

𝜔M2 ±0.4 cpd, which they then separate into phase-locked and non-phase-locked components

via least squares fits to the M2 and S2 harmonics.

2.2 Data

2.2.1 High-Frequency Radar (HFR)

HFR observations of surface currents are obtained by a land-based network of antennas

that measure the radio signal backscattered off of the ocean surface. Surface velocities are

inferred using a multiple signal classification (MUSIC) algorithm (Schmidt, 1986; Barrick &

Lipa, 1997). The HFR National Network (Terrill et al., 2006; Roarty et al., 2019) provides

archived surface ocean velocities mapped to grids at 1 km, 2 km, and 6 km spacing (Fredj et al.,

2016). We examine only 6 km gridded data, which are available over nearly the entire continental

US West Coast and resolve the O(10) km mode-1 internal semidiurnal tide while providing

data from the coast out to 200 km offshore; this is farther than either the 1 km or 2 km gridded

products, which also do not provide continuous coverage along the coast.

These gridded fields are produced using an unweighted least-squares fit performed on
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radial surface current data. For information about the fitting procedure see Lipa & Barrick

(1983); Gurgel (1994). For the 6 km gridded product, the unweighted least squares fit approach is

performed on radial data within a 10 km search radius centered on the grid location (Otero, 2021,

personal communication), producing zonal and meridional current 𝑢 and 𝑣 as well as the zonal

and meridional geometric dilution of precision (DOPX and DOPY), which are measures of the

uncertainty of the current estimate due to antenna geometry (U.S. Integrated Ocean Observing

System, 2016). The horizontal dilution of precision (HDOP) is the sum of DOPX and DOPY

and is limited to HDOP ≤ 1.25 for quality control in the publicly available data set we use.

Our study region extends from 32.24◦N to 46.43◦N and is focused on the California

Current System (CCS). For quality control, we require 50% temporal coverage at each location

that we analyze. This level of coverage is typically available within 100-200 km from the coast,

as shown in Figure 2.1a. Offshore observations are limited by the locations of antennas that

comprise the observation system: gridded data quality control requires at least three radial

velocity observations from at least two antennas in order to estimate velocity u (Otero, 2021,

personal communication), as the number of radial velocity observations within a grid point’s

search radius and their bearing angles influence the dilution of precision (DOP) (Kim et al., 2008).

Hourly data are used from 1 January 2012 through 1 April 2021. Figure 2.1b shows the mean flow

of the surface current in this domain, which is characterized by a broadly equatorward surface

current and offshore advection, consistent with drifter observations of the CCS (Centurioni et al.,

2008). Figure 2.1c shows
√︁
(𝜎2

𝑢 +𝜎2
𝑣 )/2, the square root of eddy kinetic energy. Regions with

the highest values for this quantity typically fall outside our coverage threshold; it is unknown

which regions of high total energy are physical or a consequence of poor DOP due to antenna

placement, though the fact that high energy areas along the coast are generally limited to regions

with low coverage suggests an effect of the observation network, hence our threshold.
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2.2.2 FES2014 Barotropic Tidal Model

In order to distinguish the baroclinic tides from coherent barotropic signals, we use the

2014 version of the Finite Element Solution (FES2014) barotropic tidal model (F. H. Lyard et

al., 2021) as an estimate of the barotropic component of the total tidal current. This model was

designed to provide tidal elevation predictions for use with satellite altimetry data, and it also

provides tidal current maps for 34 tidal constituents. FES2014 model constituent frequencies

that we fit include the O1, S1, K1, N2, M2, S2, and K2; however, we only compare HFR and

FES2014 at the M2, as it is the most energetic constituent. The model, which assimilates both

tide gauge and satellite sea surface height data, is run on an unstructured grid. This grid improves

performance near coasts and shelves. The original model output is gridded onto a 1/16◦ (∼6.9

km) resolution regular grid; for this study, the phase and amplitude of the global model are

mapped to the 6 km grid of the HFR data in the CCS region via bilinear interpolation. The current

from FES2014 is treated as the barotropic tidal component of the total signal observed by HFR,

and is assumed to occur exactly at the tidal forcing frequency. This is justified by the apparent

lack of an underlying domain-wide phase coherence at near-tidal frequencies from harmonically

decomposed HFR data (not shown) compared to the partially spatially-coherent phase seen at

the tidal forcing frequency in HFR. The removal of the modeled barotropic component from

harmonically decomposed HFR data is outlined in the appendix.

2.3 Methods

2.3.1 Tidal Harmonic Analysis

Harmonic analysis of tides is frequently performed using ordinary least squares and

sinusoidal basis functions (Foreman, 1977; Pawlowicz et al., 2002). Several software packages use

modified procedures for the least squares fit, such as iteratively re-weighted least squares (Leffler

& Jay, 2009), directly embedding long-period signals (Foreman et al., 2009), or incorporating

non-tidal river flow (Matte et al., 2013). Some packages seek to improve and unify various

60



methods to serve as a general tool (Codiga, 2011).

Surface currents contain signals from several sources, including the tides, wind, and

low-frequency variability, and therefore are energetic across a wide range of frequencies. These

HFR time series are analyzed using harmonic analysis techniques designed for non-stationary

tides in the presence of spectrally colored noise, where the term “noise” is used to describe any

non-tidal variability that may complicate the estimation of tidal parameters. Tidal harmonic

amplitudes are given by Bayesian maximum posterior estimation assuming Gaussian linear

statistics, as described by Kachelein et al. (2022). The appendix provides a brief overview of this

method using modified notation following Ide et al. (1997).

2.3.2 Calculating the Non-Phase-Locked Tide

We define the non-phase-locked tide similarly to previous studies but limit our scope to

frequencies that are explicitly fit via equation (2.7) (see Appendix for more information). We

therefore define the phase-locked component as the harmonic fit at a tidal forcing frequency 𝑓𝑖,

the 𝑖’th element of f; and the non-phase-locked component as the sum of the other harmonic

fits within a narrow frequency band, from 𝑓𝑖−𝑁 to 𝑓𝑖+𝑁 , such that the phase-locked fraction of

variance can be defined from harmonic coefficients as

𝐹PL =
𝑎2
𝑖
+ 𝑏2

𝑖
+ 𝑐2

𝑖
+ 𝑑2

𝑖∑𝑖+𝑁
𝑗=𝑖−𝑁 (𝑎2

𝑗
+ 𝑏2

𝑗
+ 𝑐2

𝑗
+ 𝑑2

𝑗
)
, (2.1)

where 𝑎 and 𝑏 are respectively the sine and cosine harmonic coefficients that comprise x̂𝑢, 𝑐

and 𝑑 are the same for x̂𝑣, and 𝑖 is the index of the tidal frequency in question. The non-phase-

locked fraction of variance is simply 𝐹NPL = 1−𝐹PL. A similar approach for calculating both

phase-locked and non-phase-locked tidal components directly from amplitudes given by a least

squares fit has been used previously (e.g. Dushaw et al., 1995). However, energy at frequencies

that are not explicitly included in the tidal fitting process is missed in this definition. In order

to identify the full contribution of the non-phase-locked tide, the fitted harmonics should span
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enough frequencies in a band centered on the central tidal frequency such that most of each tidal

constituent’s total energy is included in the fit. The width of a cusp is related to the spectrum of

the process that non-linearly forces it (Matte et al., 2013), so fitting more nearby frequencies

(widening the band) will allow more near-tidal variance to be captured. Therefore we fit the

central frequency ±5 cpy for both M2 and S2, which captures modulation of these constituents by

processes with periods of 0.2 years and longer.

2.3.3 Tidal Modulation

Following Chiswell (2002), a tidally-driven, amplitude- and phase-modulated process

𝑎(𝑡) can be written

𝑎(𝑡) = 𝐴(𝑡) cos[2𝜋 𝑓tidal𝑡 +𝜙(𝑡)], (2.2)

where 𝑓tidal is the ordinary frequency of some tidal constituent, 𝐴(𝑡) is the time-varying amplitude,

and 𝜙(𝑡) is the time varying phase. The frequency-domain transform of a time series with a

modulated tidal component contains information about the structure of the modulation. When

phase is modeled as a first-order autoregressive process with some time scale 1/_, the power

spectrum of 𝑎(𝑡), assuming that amplitude is constant in time, i.e. 𝐴(𝑡) = 𝐴0, is modeled by a

Lorentzian (or Cauchy) distribution plus a mean (Zaron, 2022):

𝑆𝑎 ( 𝑓 ) = 𝑆0 +
𝛼

𝜋_

[
1+

(
𝑓− 𝑓tidal
_

)2
] , (2.3)

where 𝛼 and _ are parameters that can be estimated via a non-linear least squares fit. If 𝐴(𝑡) is

modeled as a first-order autoregressive process, 𝑆𝑎 ( 𝑓 ) is also of this form via the convolution of

the spectrum of a sinusoidal tide and the spectrum of 𝐴(𝑡) (von Storch & Zwiers, 2003).

We assume that all observed modulated tidal signals are baroclinic, as barotropic tides

are negligibly modulated (Colosi & Munk, 2006). Tidal energy becomes non-stationary via both

amplitude and phase modulation of tidal constituents. Mitchum & Chiswell (2000), for example,
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found that the low-frequency variability observed in both the amplitude and phase of the M2

constituent is correlated with low-frequency sea level variations, which in turn are correlated with

stratification variations, the proposed modulation mechanism. Therefore, information about the

processes that modulate tidal constituents should be recoverable from the fitted tidal harmonic

coefficients. We focus on amplitude modulation by finding the time-varying amplitude (envelope)

that modulates the higher-frequency oscillating tide (carrier wave).

Figure 2.2 shows a simplified example of tidal modulation in both the time and frequency

domains. The top panel (a) shows the apparent phase and amplitude modulation of one tidal

constituent by the addition of a different constituent of a similar frequency (here M2 and S2).

This fortnightly interference pattern simulates the well-known and ubiquitous spring-neap cycle

at the lunar synodic fortnightly frequency (Parker, 2007). The power spectrum of the total signal

(blue, right) is comprised of two peaks at 𝑓M2 and 𝑓S2 while that of the recovered non-sinusoidal

modulating envelope (red) has a fundamental frequency at 𝑓MSf = 𝑓S2 − 𝑓M2 with harmonics of

decreasing power at integer multiples of 𝑓MSf, including frequencies at which the low amplitude

peaks are not plotted. The middle panels (b) show a low-frequency sinusoidal envelope (red)

modulating the amplitude of a high-frequency sinusoidal carrier signal (blue) at the M2 frequency.

The frequency of the modulating envelope, 𝑓mod, in (b) is set to the spring-neap frequency

𝑓MSf for the sake of comparison and visual clarity (amplitude modulation as observed in HFR

data is most evident on an annual cycle). In the frequency domain, the power spectrum of the

envelope is a single peak at the modulating frequency 𝑓mod, while the modulated time series has a

power spectrum of three peaks: a higher-amplitude central peak at the carrier frequency and two

lower-amplitude peaks at 𝑓M2 ± 𝑓mod. The bottom panels (c) show the general case of amplitude

modulation by a broadband process, here an AR(1) autoregressive process with coefficient

0.95 (for more information, see Chapters 10.3 and 11.2.3 of von Storch & Zwiers, 2003). The

broadband envelope has a power spectrum that is centered around the carrier frequency in the

power spectrum of the modulated time series. The gray power spectrum is calculated from the

data as the square of the discrete Fourier transform, while the smooth blue spectrum is given
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by the convolution of the theoretical spectrum of the AR(1) process (red) with that of the tidal

carrier wave. In both cases of amplitude modulation (b-c), the power spectrum of the envelope is

centered around the line spectrum of the sinusoidal carrier wave, while in the case of adding

constituents (a), there is apparent phase and amplitude modulation that complicate the simple

frequency domain convolution of envelope and carrier.

We fit the HFR data to each prominent tidal constituent: O1, S1, N2, M2, and S2.

Frequencies are fitted in a narrow band centered on the tidal frequency, spanning ±5 cpy,

and spaced by Δ 𝑓 = 1/9 cpy. The modulated current for any of these constituents can be

viewed as a slowly-varying ellipse, whose inclination, semi-minor axis, and semi-major axis are

approximately constant across a single tidal period but evolve over time. We estimate the evolution

of the semi-major axis length of the fitted vector surface currents at the two major semidiurnal

constituents, M2 and S2, in order to compare the modulation of these two independently forced

constituents in a way that takes into account all four vector components. Within the latitudes

of the domain, these are the major propagating constituents that we expect to be modulated by

non-tidal processes, and because they are at similar frequencies, we expect them to be modulated

similarly.

The semi-major axis is a physically relevant quantity that describes the maximum tidal

current amplitude over a tidal period regardless of the orientation and eccentricity of the current

ellipse. For a single frequency component, this quantity is constant and can be calculated from

the four total harmonic coefficients of 𝑢 and 𝑣 at that frequency, but for the evolving ellipse, which

contains energy at multiple frequencies, we numerically estimate the semi-major axis length as

the maximum value of
√︃
𝑢2

band + 𝑣
2
band over each integer ceiling of the tidal period in hours (i.e.

13 hour intervals for M2 and 12 hour intervals for S2 in order to ensure that the maximum in

each cycle is sampled). The time series of this value is taken as the “semi-major axis envelope”.

In constructing the time series for each modulated tidal component (𝑢M2 , 𝑣M2 , 𝑢S2 , and 𝑣S2),

we multiply the harmonic coefficients by a Hanning window 10 cpy wide and centered on the

tidal frequency in order to reduce spectral leakage. The Pearson correlation coefficient of the

64



envelopes of these two constituents is then calculated at each location in order to estimate the

extent to which they are modulated by the same processes.

To estimate the time scale _−1 of tidal modulation related to non-annual, low-frequency

processes, whether of phase or amplitude, we fit harmonic amplitudes directly to (2.3) for M2,

S2, and O1 within windows of ± 5 cpy using the iterative Gauss-Newton algorithm (Bishop et al.,

1985). Energetic peaks are manually removed so that only the cusp is fit: tidal peaks, peaks of

the annual modulation, and amplitudes at frequencies corresponding to modulation of 3 years

or longer typically prevent the least-squares method from converging to curves with reasonable

parameters. The mean and uncertainty of the time scale is estimated from 100 cusp widths

obtained by fitting the average of harmonic amplitudes from each percentile of cusp-integrated

energy, which yields 100 values for _−1. If the fit to a percentile-averaged cusp does not converge

to a reasonable value, for example when the harmonic amplitudes do not average to a cusp shape,

that fit is discarded before estimating the mean time scale and its standard deviation.

2.4 Results

2.4.1 Spectral Properties of Tidal Currents

The rotary power spectral density for velocity, 𝑆rot, is shown in Figure 2.3, calculated at

each location and averaged within latitudinal bands of fixed width (3.2◦ ≈ 356 km). Both plots

are on a linear frequency axis and logarithmic spectral power axis. Spectra are distinguished by

latitude because the inertial frequency varies from approximately 1 cpd to 1.5 cpd over the 1500

km meridional span of the study domain. The numerical values on the vertical axis correspond

only to the spectrum of data in the 32.0◦N-35.2◦N range (blue); for clear differentiation, each

successive spectrum is scaled by a factor of ten from its lower neighbor. Away from tidal and

near-inertial frequencies, surface currents in this region have a spectral slope of approximately -1,

i.e. 𝑆 ∝ frequency−1, indicated by the black curve. This slope holds at frequencies less than about

9 cpd, above which the spectra behave like white noise with spectral power orders of magnitude
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lower than the processes of interest.

The principal tidal peaks, clustered around 1 cpd and 2 cpd and denoted by vertical dashed

lines, are prominent in all latitude bands. High-frequency, low-amplitude overtides (frequency

> 2 cpd) are also detected in surface currents, up to 7 cpd (not shown). This suggests that the

observation network has a noise floor low enough to allow for the detection of signals that are

orders of magnitude lower in power than the processes of primary interest to this study.

The center of the broad but distinct peak of the near-inertial response increases in

frequency with increasing latitude as expected (note that negative frequencies correspond to

clockwise polarization). Additionally, the near-inertial peak becomes narrower and more energetic

with increasing latitude, as evidenced in the right panel of Figure 2.3. These spectra are directly

comparable to the analysis of Kim et al. (2011), who examined HFR data in the same region

when the observational network was less than three years old and who resolved the same features

(wind-driven and tidal peaks, including overtides, and a spectral slope of -1) across different grid

resolutions.

At all latitudes, the semidiurnal tidal band exhibits a prominent cusp. The diurnal

constituents, however, are flanked by a smaller cusp than the semidiurnal peaks are: this is

most evident in the highest latitude spectrum (44.8◦N-48.0◦N), where the broad peak of the

near-inertial response has minimal overlap with the diurnal band, shown up close in Figure 2.3b.

At the latitudes considered here, semidiurnal internal waves can internally propagate but diurnal

ones cannot propagate. The difference in cusp prominence for the superinertial semidiurnal

versus subinertial diurnal signals is consistent with the internal semidiurnal wave field being

modulated by low-frequency changes in stratification that are not expected to modulate the diurnal

tide.

2.4.2 Harmonic Decomposition of Tidal Currents

Figure 2.4 shows the domain-wide average of the harmonic amplitude, defined as the sum

of the squares of the sine and cosine coefficients, at 6 frequency bands (low-frequency, O1 lunar
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diurnal, S1 solar diurnal, N2 lunar semidiurnal, M2 lunar semidiurnal, and S2 solar semidiurnal).

These amplitudes are normalized by the non-constant frequency step Δ 𝑓 in order to obtain units

of spectral power that can be compared despite differing values of Δ 𝑓 . Harmonic amplitudes at

near-inertial frequencies are not shown in this study. Low-frequency signals, in particular the

annual cycle S𝑎, are energetic, prominent, and predominantly meridional in direction (distinction

not shown), possibly due to the seasonally reversing surface flow near the coast of the CCS (Todd

et al., 2011) and other low-frequency variability of this current, which is predominantly parallel

to the coast and therefore predominantly meridional in direction. The meridional component 𝑣

similarly dominates at most higher frequencies. The prominent peak at 1 cpd is non-tidal and

apparently driven by diurnal winds, as the true S1 tide is driven primarily by diurnal atmospheric

loading and is known to be much smaller than the primary gravitational tides (R. D. Ray &

Egbert, 2004).

At semidiurnal frequencies, which are superinertial at these latitudes and therefore are

expected to have a substantial baroclinic component, the subtraction of the FES2014 model

typically reduces the total variance as observed by HFR. At M2, the median fraction of remaining

variance is 0.46, with 75.2% of locations exhibiting a decrease in variance. For S2, the median is

0.54, with 76.2% of locations exhibiting a decrease. For N2, these values are 0.52 and 70.2%. At

diurnal frequencies, which are subinertial, subtraction of the FES2014 model does not typically

reduce the total variance as observed by HFR. For O1, the median fraction after model subtraction

is 1.16, with 44.4% of locations reduced in variance, while for K1 these values are 1.38 and 31.1%.

The S1 wind-driven current is much stronger than the modeled S1 barotropic tide, and thus the

median variance fraction after model subtraction is 0.99, with a narrow range of variability (90%

of locations fall between 0.85 and 1.03).

2.4.3 Phase Structure

The phases of the M2 harmonic of both 𝑢 and 𝑣 are shown in Figure 2.5. Panels (a,d) show

the phase from harmonically decomposed HFR data, panels (b,e) show the phase of currents
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given by the FES2014 barotropic tide model, and panels (c,f) show the phase of the M2 harmonic

of HFR after removal of the barotropic model. The spatial structure of the phase of decomposed

HFR data exhibits domain-wide (∼1000 km-scale) coherence like the barotropic model, as well

as smaller 50 to 100 km-scale structure which is not present in the model. The meridional

current 𝑣 is particularly coherent across the domain (Figure 2.5d), with an angular mean of 30◦

and 80% of grid points falling within ±45◦ of this mean. At all other frequencies in the M2

band, including the frequencies corresponding to annual modulation, phases are distributed more

uniformly (not shown) and therefore lack the partial domain-wide coherence observed at exactly

the M2 frequency.

After removal of the modeled barotropic component (Figure 2.5c,f), the apparent

underlying domain-wide coherence largely disappears, leaving behind the smaller scale phase

structure that is not visible in the barotropic tidal current and is suggestive of internal propagation.

In the Southern California Bight, the phase generally varies across smaller distances than in the

topographically simpler regions north of Point Conception (approximately 34.5◦N).

2.4.4 Non-phase-locked Energy

Figure 2.6 shows the square root of the eddy kinetic energy of the M2 tidal current (2.6a,c)

and the fraction of energy that is considered phase-locked (2.6b,d). Panels 2.6a and 2.6b display

these quantities from harmonically decomposed HFR data only, while panels 2.6c and 2.6d show

these quantities after subtracting the barotropic model output. A general reduction in M2 current

energy is observed after barotropic removal, with a median variance reduction of 54%. The sites

with the most energetic M2 currents from HFR are at the mouth of the Columbia River, off Cape

Mendocino, at the mouth of San Francisco Bay, and in the Southern California Bight, especially

over the Santa Cruz Basin. These sites remain energetic after barotropic removal.

Histogram representations of the quantities in panels 2.6b and 2.6d are shown in Figure 2.7.

The median fraction of phase-locked current variance from HFR alone is 53% with an interquartile

range between 38% and 66%. After barotropic removal, the median is 33% with an interquartile
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range between 22% and 46%, indicating that the barotropic component represents a significant

fraction of the phase-locked variance.

To evaluate the dominance of the barotropic component, we define the “total variance”

as the sum of the variance of the modeled barotropic current and the variance of the difference

between observations and the model:

𝐹BT =
var(𝑢FES) +var(𝑣FES)

var(𝑢FES) +var(𝑣FES) +var(𝑢HFR −𝑢FES) +var(𝑣HFR − 𝑣FES)
. (2.4)

This is equivalent to one minus the baroclinic fraction of total variance.

Figure 2.8a shows the modeled barotropic variance as a fraction of this total variance,

with the barotropic component dominating near the Oregon Coast and at locations where the

observations are weakly energetic. Shaded regions indicate where the denominator of equation

(2.4) is below the 20th percentile (7.05×10−4 m2s−2). Figure 2.8b shows the fraction of phase-

locked current variance within the 𝑓M2 ±5 cpy band that is attributed to the barotropic model,

which is considered to be completely phase-locked. The quantity in this panel equals that

of Figure 2.6b minus that of Figure 2.6d. Alternatively, this can be viewed as the change in

non-phase-locked variance fraction after subtracting the model. Regions with negative values

have greater current variance after the removal of the barotropic component. A median of +0.17

is attributed to the model, with the 10% most affected locations attributing ≥0.45 fraction of

variance to the model. A general increase in non-phase-locked energy fraction is observed after

barotropic removal. Because observed and modeled currents are vector quantities, however, their

subtraction does not necessarily result in a reduction of tidal amplitude. For example, regions with

low observed tidal variability may have opposite-pointing barotropic and baroclinic contributions

that sum to a low-amplitude signal, with an increase in non-phase-locked energy fraction after

vector subtraction of the barotropic component. A decrease in non-phase-locked variance fraction

occurs at 25% of locations, predominantly where the angle between the observations and model

is greater than 45◦ and thus where subtraction of the barotropic model does not substantially
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reduce the magnitude of the residual (not shown). These regions of non-phase-locked fraction

decrease are also disproportionately where the observed phase-locked M2 variance (i.e. peak

only) is less than 3.63×10−4 m2s−2, the 25th percentile of that quantity (not shown).

The spatial autocorrelation of the phase-locked variance fraction is shown in Figure 2.9,

which shows the different spatial scales at which this quantity varies for each main constituent.

The correlation is averaged in 5 km-wide concentric bands except for the second bin, which

is 10 km wide in order to obtain sufficient realizations. Spatial lags extend to a maximum of

150 km separation between observation locations. The decrease in correlation as a function

of distance differs by constituent: the distance at which the correlation of this quantity drops

to 0.5 is 45 km for O1, 101 km for S1, 24 km for M2, and 29 km for S2, based on a linear

interpolation of the discrete correlation. For M2, the correlation of the fraction of phase-locked

variance after barotropic removal is plotted in red, with a distance of 15 km at which correlation

drops to 0.5. Error estimates are omitted due to reasonable convergence from averaging over

thousands of realizations, from 7270 to 1.77×105 depending on the bin. Correlation does not

meaningfully differ when averaged over 10 km-wide bins: when interpolated to 1 km intervals,

the difference in correlation between the two bin choices has a mean of zero and a standard

deviation less than 0.007 for each tidal constituent. The diurnal O1 and semidiurnal M2 and

S2 tidal constituents all exhibit autocorrelations that decrease to zero at distances less than 150

km, while the wind-driven S1 only drops to 0.5 at this distance, indicating that both propagating

(superinertial, here semidiurnal) and non-propagating (subinertial, here diurnal) tides in this

region have smaller spatial scales of non-phase-locked variability than diurnal S1 surface currents.

The autocorrelation of non-phase-locked variance fraction is reduced for M2 at every non-zero

lag after barotropic model removal; this may be due to the larger scales at which the barotropic

phase varies (see Figure 2.5), the removal of which may intensify the effect of the barotropic

residual’s smaller scale.
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2.4.5 Tidal Envelopes

The map in Figure 2.10 shows the correlation between the M2 and S2 semi-major axis

envelopes, which is mostly positive: for a 90% significance level, 38.2% of locations have a

significant positive correlation, 60.0% fall within the non-significance range, and 1.9% have a

significant negative correlation (or 8.4% of all negative values). Striped areas indicate regions

where the absolute value of the correlation coefficient (correlation at zero lag) is less than the

90% significance level (Press et al., 1988) given the estimated number of degrees of freedom at

each location based on the characteristic timescale of the M2 and S2 envelopes (for estimating

timescales, see Chapter 17, von Storch & Zwiers, 2003). The significance level is spatially

inhomogeneous, with a mean of 0.267 and standard deviation of 0.048. Regions with energetic

semidiurnal tides, as shown by Figure 2.6a, exhibit significant positive correlation between

the M2 and S2 envelopes, including the Southern California Bite, San Francisco Bay, Cape

Mendocino, and the mouth of the Columbia River. Five locations from these regions with

significant cross-correlation at zero lag are selected and labeled (1-5), with the time series of

their M2 and S2 semi-major axis envelopes plotted in Figure 2.10. The envelopes at each location

vary at different time scales. Location (1) near the mouth of the Columbia River is strongly

annually modulated: both constituents’ envelopes are consistently stronger in summer, with

currents roughly three times greater in magnitude than in winter. Location (2) is near Cape

Mendocino and the Mendocino Ridge, and the constituents at this location vary at long time

scales, with greater magnitude in the first half of the record than in the second half, though the

summer magnitude of S2 in 2018-2020 increases while that of M2 does not. Location (3) near

the entrance to the San Francisco Bay has a less heavily modulated M2 envelope, while the S2

envelope is seemingly strongly semiannually modulated. This is caused by the linear addition

of the K2 tidal constituent ( 𝑓K2 = 𝑓S2 + 𝑓Ssa), which is prominent at this location, and does not

appear to be due to amplitude modulation of the S2 constituent: the amplitudes of the harmonic

constituents in the semidiurnal band (not shown) are only energetic at 𝑓K2 and not 𝑓S2 − 𝑓Ssa .
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Location (4), between Santa Cruz Island and the mainland, also exhibits a strong K2 peak, as well

as annual modulation of both constituents. Location (5) is farther offshore, south of Santa Cruz

and Santa Rosa Islands, and has a less dominant K2 relative to S2. The correlation coefficient of

0.77 observed here is greater than those of 99% of locations evaluated. Location (5) is tidally

energetic (for M2,
√︁
(𝜎𝑢 +𝜎𝑣)/2 = 0.05913 m s−1) with high coverage (94.1%). Overall, the

variance of the K2 constituent is distributed similarly to those of M2 and S2 (not shown).

2.4.6 Modulation Time Scale

The time scale _−1 is given by fitting harmonic amplitudes to equation (2.3). Locations

were sorted into percentile bins by total energy of the tidal band of interest (including the central

peak), averaged by percentile, and fitted at non-peak frequencies to obtain a range of estimates of

_−1. Values for time scales are similar whether the non-linear parameter of the fit is _ or _−1

(values shown here were calculated from the former). The mean time scales obtained by this

method are _−1
O1

= 218 days (standard deviation 37 days, 90% falling between 172 and 275 days),

_−1
M2

= 243 days (standard deviation 31 days, 90% between 195 and 288 days), and _−1
S2

= 181

days (standard deviation 24 days, 90% between 153 and 218 days). Of the 100 percentile-sorted

fits for each of the cusps, two for O1 and one for M2 were omitted from averaging due to a lack

of convergence to reasonable values. Least squares fits to the median harmonic amplitude are

shown in red in Figure 2.4.

2.5 Discussion

In this study, we sought to partition the variability of tidally-driven surface currents

between phase-locked and non-phase-locked components. Our analysis of HFR data in the CCS

indicates an inhomogeneous distribution of both phase-locked and non-phase-locked variability

of the two prominent semidiurnal constituents M2 and S2. Most of our analysis is focused on M2

due to its prominence, while diurnal tides, which are non-propagating, are not investigated as

extensively. The FES2014 barotropic tide model is used to remove the barotropic component
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of the M2 tidal current, which accounts for a substantial share of the observed phase-locked

variance. The model appears to reasonably remove the domain-wide coherent component of M2

tidal currents, leaving behind a more uniform distribution of tidal phase suggestive of the surface

expression of baroclinic tides, the wavelengths of which are much smaller than the domain.

Before removal, a median of 53% (interquartile range between 38% and 66%) of M2 current

variance is phase-locked, compared to a median of 33% (IQR between 22% and 47%) after

removal. Overall, 75% of grid locations show a decrease in M2 phase-locked variance fraction

after model subtraction and the distance at which the phase-locked variance fraction is 50%

correlated drops from 24 km to 15 km. Our analysis yields a mean of 48% non-phase-locked

variance before removal and 64% after. These are both higher than the 44% near-global total

non-phase-locked fraction calculated by Zaron (2017) from SSH, which was considered a lower

bound due to the analysis of only mode-1 internal tides as estimated from wavenumber spectra.

The results of that study are not directly comparable to ours, as the two use a different definition

for non-phase-locked variance fraction. Further differences between our analysis and that of

Zaron (2017) include the examination of surface currents as opposed to surface height, a domain

that is limited to a single coastal region, and our distinction by constituent but not by internal

wave mode. Additionally, the high spatiotemporal resolution of HFR data may limit the value

of comparisons with analyses of global altimeter data without carefully accounting for these

differences.

The analysis in this study provides a conservative estimate of the non-phase-locked

fraction of tidal current variance, as our harmonic analysis is limited to the tidal forcing frequency

± 5 cpy (see Figure 2.4). This is a narrow band in the frequency domain relative to the width of

the total semidiurnal cusp evident from power spectra in Figure 2.3. We chose this band because

it allows for a clear distinction between energy associated with separate tidal peaks while still

fitting to near-tidal energy that corresponds to amplitude and phase modulations at time scales of

a few months.

At both diurnal and semidiurnal frequencies, tidal peaks are well-defined and are at least
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one order of magnitude more energetic than at near-tidal frequencies. All tidal bands exhibit

tidal cusps, though those of the low-amplitude O1 and N2 are less pronounced. These cusps are

similar in form for all major tidal bands at this frequency resolution and narrow bandwidth. This

contrasts with the difference in cusp size over a wider range of frequencies between diurnal and

semidiurnal bands in the power spectra. Secondary peaks rise above the cusps at ±1 cpy around

the central tidal peak. Some of these peaks are constituents of the astronomical forcing: the K1

tide, for example, is a major tidal constituent with 𝑓K1 = 𝑓S1 + 𝑓S𝑎
. For M2, there is a weak solar

gravitational effect on the moon’s orbit that results in seasonal perturbations impacting M2, but

these perturbations are very small: processes driven by solar radiation with a strong seasonal

cycle, including stratification, wind, and sea ice coverage, however, are much more important to

the modulation of M2 (Müller et al., 2014).

Regions with energetic M2 tidal signals, including known internal tide generation sites

like the Mendocino Escarpment (Althaus et al., 2003) and Santa Cruz Basin (Buijsman et al.,

2012), exhibit more strongly phase-locked signals. This is expected for locally generated internal

tides, as such waves have not propagated far from their generation sites and become more

incoherent through interaction with varying stratification and currents. Remotely generated

internal tides propagating from outside the observed region are expected to lose coherence with

forcing between their generation and observation sites and thus have a similar phase-locked energy

fraction throughout the study region. The slowly evolving envelopes of the M2 and S2 current

semi-major axes exhibit significant correlation coefficients (cross-correlation at zero lag) at

several locations in the domain, including near local generation sites (Figure 2.10). The envelopes

are assumed to contain information about external modulation, as the forcing mechanisms of

these constituents (lunar and solar, respectively) are independent and highly temporally coherent

and therefore should not impart modulation, except for long-period modulation like that of the

18.6-year lunar nodal cycle (Doodson & Lamb, 1924; Cherniawsky et al., 2010). The fact that

high cross-correlation tends to be observed near generation sites, where modulation related to

propagation through a varying medium is expected to be weakest, may be due to the higher
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signal-to-noise ratio near generation sites allowing even weak modulation to be detectable.

Signals farther from generation sites may have dropped below minimum noise levels required

for recovering envelopes or they may require more frequencies to be fitted due to extensive

modulation. Additionally, we hypothesize that stratification variability at the generation sites is

responsible for the weaker but non-zero tidal modulation observed at these locations, and is the

most easily-observed amplitude modulation that both tidal constituents exhibit.

The processes that modulate the M2 and S2 currents appear to vary throughout the

study domain, suggesting local modulation is captured in Figure 2.10. The strongly annual

modulation at the mouth of the Columbia River is likely due to the substantial seasonal change

in stratification associated with the seasonally shifting Columbia River plume (B. M. Hickey

et al., 1998; B. Hickey et al., 2005; Thomas & Weatherbee, 2006; Burla et al., 2010). The

Columbia River plume is known to be tidally pulsing and to generate internal waves, a process

separate from the topographical generation of internal tides (Nash & Moum, 2005). The summer

magnitudes of both constituents at this location are roughly three times the magnitudes in winter.

Near Cape Mendocino, the envelopes of M2 and S2 current ellipses are also highly correlated

but at longer, nonperiodic time scales, which is also typical of most locations with correlated

amplitudes. Annual modulation is also observed throughout the domain, as evidenced by peaks

at 𝑓M2 ± 𝑓S𝑎
and 𝑓S2 ± 𝑓S𝑎

in Figure 2.4, suggesting that both seasonal and interannual processes

modulate tidal currents and lead to the non-phase-locked tide. The correlation of the modulation

of the independently-forced M2 and S2 currents indicates that both respond similarly to the same

processes in the ocean.

Lorentzian fits to the cusps of O1, M2, and S2 indicate phase and/or amplitude modulation

of these constituents at time scales in the range of 180 to 240 days. Zaron (2022) performed

a similar fit for the M2 cusp and obtained latitude band averaged values for _−1 ranging from

151 days to 234 days. Our analogous value of _−1
M2

= 243 days is larger than the largest value in

that study, though our range of values overlaps that of Zaron (2022). Other differences between

the fitting procedures may explain this discrepancy: we omit tidal peaks and fit coastal surface
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current data to a Lorentzian probability density function within a band of 𝑓M2± 5 cpy and Δ 𝑓 =

1/9 cpy, while Zaron (2022) uses FES2014 to remove barotropic tides (among other corrections)

to fit global altimeter data to a Lorentzian cumulative density function within a band of 𝑓M2±

12.8 cpy and Δ 𝑓 = 1/4 cpy. The relative agreement of time scales given by a similar analysis of

different physical quantities suggests both are modulated by the same processes.

2.6 Conclusions

We use least squares harmonic analysis to characterize the tidal components of over 9

years of hourly coastal surface currents as observed by high-frequency radar. The HFR network

provides data at a spatial resolution comparable to that of recent and upcoming Earth-observing

satellite missions. The length and sampling rate of these records enable us to recover details

about the modulation of tidal processes at time scales up to a few years. The removal of the more

predictable barotropic tide using a high-resolution finite element model enables analysis of the

baroclinic component, which is expected to be much more sensitive to interaction with ocean

processes due to its slower propagation speed and dependence on stratification.

The phase structure of tides in the California Current indicates a complicated field of

internally propagating waves originating from several generation sites, with an inhomogeneous

distribution of tidal energy and non-phase-locked tides. Near these generation sites, tidal currents

are more energetic and more phase-locked, though the modulations of the amplitudes of the two

dominant semidiurnal tides (M2 and S2) are most significantly correlated in these regions. These

constituents are independently forced, suggesting that their amplitudes are modulated by the

same processes. Stratification likely drives this, with tidal currents in the vicinity of the seasonal

Columbia River plume exhibiting strongly annual modulation, while elsewhere modulation varies

at a wider range of frequencies. Fitting harmonic amplitudes (a spectral quantity) to a Lorentzian

distribution indicates that the time scales of amplitude and/or phase modulation are 243 days

for M2, 181 days for S2, and 218 days for the non-propagating O1; the range of the first of these
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values overlaps with those of the M2 analysis of Zaron (2022), who examined global satellite

altimetry data.

The length scale at which the fraction of phase-locked M2 and S2 surface current variance

varies is on the order of tens of kilometers, which is resolved by HFR and contemporary and

future satellite missions. The removal of the barotropic component via the FES2014 model

reduces the correlation length scale of this quantity in M2 (24 km before, 15 km after removal)

and eliminates the domain-wide consistency of that constituent’s phase.

With the recent launch of SWOT, incoming data will provide a global view of tidal

variability at scales presently available only near well-observed coastlines. This study provides

the share of non-phase-locked tidal surface current variance as well as the temporal and spatial

scales of this quantity, which could help inform the interpretation and assimilation of SWOT data

(e.g. Metref et al., 2020, whose methodology omits internal tides). Additionally, the specific

distribution of tidal variability off the US West Coast can help inform regional studies within

this domain, for example to target or avoid locations with strongly modulated tidal surface

currents. Combining results with stratification records, the predictability of tidal amplitude

modulation could be assessed in future work, with implications for satellite missions and a more

comprehensive understanding of the transformation of barotropic tides ultimately to turbulence.
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2.7 Appendix for Chapter 2

The appendix summarizes the methodology of Kachelein et al. (2022), which is used in

this study. It also describes how the baroclinic tidal component is estimated from the HFR data

and barotropic tide model output.

2.7.1 Overview of Harmonic Decomposition of HFR Data

A time series 𝑢(𝑡) that is discretely and possibly unevenly sampled may be modeled as

the sum of sinusoids at 𝑀 prescribed frequencies f:

u = Hx𝑢 + r𝑢, (2.5)

where u is the 𝑁-long column vector representation of 𝑢(𝑡), H is the 𝑁-by-2𝑀 regressor matrix

of sines and cosines at each frequency in f, x𝑢 are coefficients to the sines and cosines, and r𝑢 is

the residual time series that represents the unmodeled component of the time series. We use

𝑓 for ordinary frequency rather than angular frequency 𝜔 = 2𝜋 𝑓 throughout. This is not to be

confused with the common use of 𝑓 to refer to the Coriolis parameter, the frequency of inertial

oscillations, which are fitted but not investigated in this study.

The ordinary least squares approach (e.g. Draper & Smith, 1998; Foreman & Henry,

1989; Wunsch, 1996; Menke, 2018) seeks to find the x𝑢 that minimizes the sum of the squares of

r𝑢. With only this constraint, the solution is

x̂𝑢 = (HTH)−1HTu, (2.6)

where the hat indicates that this is an estimator for some unknown true quantity. Given prior

knowledge of u, additional terms can be included in this solution that account for properties of u

that equation 2.6 does not consider, including the covariance of x𝑢 and r𝑢. Assuming independent

Gaussian statistics of x𝑢 and r𝑢 and working from Bayes’ theorem (see Lee, 2012; Kachelein et
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al., 2022), x𝑢 can be estimated by

x̂𝑢 = (HTR−1
𝑢𝑢H+P−1

𝑢𝑢 )−1HTR−1
𝑢𝑢u, (2.7)

where R denotes the expected autocovariance matrix of the residual of the subscripted quantity,

here R𝑢𝑢 = ⟨r𝑢rT
𝑢 ⟩ and P denotes the expected autocovariance matrix of the model parameters

of the subscripted quantity, here P𝑢𝑢 = ⟨x𝑢xT
𝑢 ⟩. These are estimated from the power spectrum

of the data, 𝑆𝑢𝑢 ( 𝑓 ). Because the coefficients x𝑢 are the amplitudes of sines and cosines, they

also represent an estimate of the spectral power of u and therefore their autocovariance matrix

P𝑢𝑢 may be estimated from the power spectrum at frequencies in f. Similarly, the residual

autocovariance R𝑢𝑢 may be estimated from the non-tidal component of the power spectrum via

its Fourier transform.

2.7.2 Removal of Barotropic Estimate

The harmonically decomposed HFR data are given as sine and cosine amplitudes, while

the FES2014 barotropic tide model output is given by amplitude 𝐴 and Greenwich phase lag 𝐺,

which is related to tidal phase by 𝜙 = (𝑉◦+𝑢) −𝐺 (F. Lyard, 2022, personal comm.), where (V◦+𝑢)

is the equilibrium argument for some reference time (Parker, 2007), in our case 2012-01-01

00:00:00 UTC. Values for the equilibrium argument can be computed or referenced in tidal charts,

e.g. Zetler (1982). The sine amplitude 𝑎 and cosine amplitude 𝑏 can be calculated from total

amplitude and phase by:

𝑎 = −𝐴 sin𝜙, 𝑏 = 𝐴cos𝜙 (2.8)

Calculating the difference between two vector quantities that are sinusoidal in time is simpler

when written as separate sine and cosine amplitudes than when written as total amplitude times a

phase-shifted cosine:

𝑢3(𝑡) = 𝑢1(𝑡) −𝑢2(𝑡) = 𝑎3 sin(𝜔𝑡) + 𝑏3 cos(𝜔𝑡) = 𝐴3 cos(𝜔𝑡 +𝜙3), (2.9)
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where 𝑎3 = 𝑎1 − 𝑎2 and 𝑏3 = 𝑏1 − 𝑏2.

FES2014 was produced by Noveltis, Legos and CLS and distributed by Aviso+, with

support from Cnes (https://www.aviso.altimetry.fr/). Surface current data are from

the HFR National Network established by IOOS and are a component of the Global High

Frequency Radar Network (Terrill et al., 2006; Roarty et al., 2019); these data are available

for download at https://HFRNet-tds.ucsd.edu/thredds/catalog.html. This work has

been supported by a Future Investigators in NASA Earth and Space Science and Technology award

(80NSSC19K1342). In addition, Luke Kachelein, Bruce Cornuelle, Sarah Gille, and Matthew

Mazloff acknowledge support from the NASA Surface Water and Ocean Topography Science Team

(awards NNX16AH67G and 80NSSC20K1136), Luke Kachelein and Sarah Gille acknowledge

support from the NASA Ocean Vector Winds Science Team (award 80NSSC19K0059), and

Sarah Gille also acknowledges support from the NASA Ocean Surface Topography Science Team

(award 80NSSC21K1822).

Chapter Two, in part, is currently being prepared for submission for publication of the

material in the Journal of Geophysical Research: Oceans. Kachelein, L., S. T. Gille, M. R.

Mazloff, and B. D. Cornuelle. Characterizing Non-phase-locked Tidal Currents in the California

Current System using High-frequency Radar (In Preparation). The dissertation author was the

primary investigator and author of this material.
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Figure 2.1. (a) High-frequency radar (HFR) network coverage in the study domain (percent
hourly observations available). Green dots indicate locations of HFR stations. (b) Time-mean
flow of the total current u, including at locations not analyzed for tides. Colors indicate vector
magnitude |u|, uniform-length arrows indicate direction u/|u|. (c) Square root of the eddy kinetic
energy of u. Hatching in panels b and c indicates regions with less than 50% coverage, which
were not analyzed for tides.
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Figure 2.2. Constructed examples of (a) apparent modulation from linear addition of two tidal
constituents and amplitude modulation by (b) sinusoidal and (c) broadband processes. The
square of the Fourier transform of the broadband-modulated tidal signal is shown in gray in the
bottom-right panel.
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Figure 2.3. (a) Rotary power spectral density of surface current u from HFR averaged within
five latitudinal bands, plotted on a linear frequency axis and logarithmic spectral power density
axis. Spectra are vertically offset to avoid overlap. A black curve corresponding to a spectral
slope of -1 is plotted for reference. Panel (b) displays the diurnal to semidiurnal band in the
negative (clockwise) frequencies. Small colored vertical error bars indicate the 95% confidence
ratio, which corresponds to a ratio valid at all magnitudes of the correspondingly colored spectral
density.
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Figure 2.4. Domain-median total HFR current variance 1
2 (𝜎

2
𝑢 +𝜎2

𝑣 ) as given by harmonic
decomposition, divided by (variable) frequency step Δ 𝑓 ( 𝑓 ) to give power spectral density.
Shading indicates 5th and 95th percentiles. Prominent tidal constituents are labeled and all panels
span the same vertical interval. Panel (a), which shows the variance recovered from harmonic
decomposition at frequencies ≤ 1/110 cpd, is scaled horizontally to accommodate fewer fitted
frequencies, while panels (b-f) are all equally horizontally scaled. The red curves in panels
(b), (e), and (f) are the non-linear least squares fitted curves to tidal cusps plotted at the fitted
frequencies.
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Figure 2.5. Tidal phase (degrees) of harmonically decomposed surface currents at the M2
frequency. (a-c) show phase of the 𝑢-component, (d-f) show phase of the 𝑣-component. (a,d)
show results from decomposed HFR data, (b,e) show results from the FES2014 tide model, and
(c,f) show results from the difference between the data and model. Masking on panels (b,e)
indicate locations where the model is defined but HFR data were not analyzed.
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Figure 2.6. (a) Square root of eddy kinetic energy of the M2 component of harmonically
decomposed HFR data. (b) Fraction of M2-band variance considered to be phase-locked without
removal of the modeled barotropic component. (c-d) are analogous to (a-b) but with the modeled
barotropic component removed. The “total variance” of the M2 component is calculated within
the frequency band 𝑓M2 ±5 cpy. Striped regions in (b) indicate the top decile of variance, where
the total variance within the M2 band is ≥ 2.8 ·10−3 m2s−2, while striped regions in (d) indicate
the top decile after barotropic removal, where the total variance within the M2 band is ≥ 2.4 ·10−3

m2s−2.
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Figure 2.7. Histogram representation of the quantities in Figure 2.6 (b) and (d).

Figure 2.8. (a) Modeled barotropic M2 variance as a fraction of total variance (modeled
barotropic plus estimated baroclinic) and (b) the fraction of phase-locked M2 variance attributable
to the barotropic modeled component (the difference of Figure 2.6b and 2.6d). Negative values
in panel (b) indicate greater current variance after the removal of the barotropic component.
Regions with the 20% lowest total variance (the denominator in panel a) are hatched, i.e. where
modeled barotropic variance plus estimated baroclinic variance is ≤ 7.05×10−4 m2s−2.
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Figure 2.9. Isotropic correlation of phase-locked fraction of variance as a function of distance.
Correlation drops to 0.5 at 45 km for O1, 101 km for S1, 24 km for M2 (15 km for M2 after
barotropic removal), and 29 km for S2. Error estimates are not shown due to strong convergence
across O(103)-O(105) realizations.

Figure 2.10. The correlation coefficients of the recovered modulation of the M2 and S2 vector
current semi-major axes, calculated from the upper envelopes of

√︃
𝑢2

M2
+ 𝑣2

M2
and

√︃
𝑢2

S2
+ 𝑣2

S2
. The

modulating envelopes (alternatively the time-evolution of the semi-major axes) contain variance
at fitted frequencies ≤ 5 cpy (periods ≥ 73 days), with coefficients in the frequency domain
multiplied by a Hanning window in order to reduce spectral leakage. Striped regions indicate that
the absolute value of the correlation coefficient is less than the 90% significance level calculated
from the estimated number of degrees of freedom from the characteristic timescale of the M2 and
S2 envelopes at each location. (1-5) are the normalized modulating envelopes for the semi-major
axes of ®𝑢M2 and ®𝑢S2 at each location labeled on the map.
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Chapter 3

The Diurnal Cycle in the California
Current System: Currents from
High-Frequency Radar and Winds from
ERA5
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Abstract

We evaluate 9 years of hourly HFR surface current data and contemporary 10-meter

wind fields from ERA5 using harmonic analysis in order to characterize the diurnal current

in the California Current System, evaluate its coherence with diurnal winds, and examine the

frequency-dependent response of currents to wind forcing via the deflection angle, a scalar

quantity that can be used to evaluate the surface ocean response to wind forcing and compare

this to theoretical models. The time of maximum wind speed in the diurnal cycle was found

to increase with distance from the coast, whereas the time of maximum current speed is more

uniform in the winter but less uniform in summer, when current ellipses exhibit low eccentricity.

For energetic winds and currents, the optimal time of day to sample via sun-synchronous orbit in

order to maximize the amplitude of the observations is between approximately 0400 and 0500 or

1600 and 1700 local mean time. Currents and winds were found to be highly coherent at the

diurnal frequency, especially between the dominant clockwise (anticyclonic) components. The

phase difference between these quantities reasonably approximates the current deflection angle,

which is approximately 45◦ to the right of high-amplitude winds as predicted by classical Ekman

theory but which increases toward 90◦ at lower wind speeds offshore. At most other frequencies,

the deflection angle was greater than 45◦ except for frequencies below approximately 0.1 cycles

per day, which are typically between 0◦ and 45◦. This deviation from both classical and more

complicated spectral models suggests additional physical considerations for modeling air-sea

interaction.
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3.1 Introduction

The circulation of the global ocean relies upon a continual input of energy (W. Wang

& Huang, 2004), with an estimate on the order of 2 TW required to mix the abyssal ocean

(W. H. Munk & Wunsch, 1998), with winds and tides as the only sources of mechanical energy

available to drive interior mixing. Both tides (Baines, 1982; W. H. Munk & Wunsch, 1998;

Egbert & Ray, 2000; R. D. Ray & Cartwright, 2001; Garrett & Kunze, 2007) and winds are the

subjects of investigation, with the wind-driven input divided further into wind stress contribution

to the geostrophic component of surface flow, estimated at 0.85 TW to 1.0 TW (Scott & Xu,

2009); contribution to near-inertial motions, estimated at 0.5 TW to 0.7 TW (Watanabe &

Hibiya, 2002; Alford, 2003); and contribution at subinertial frequencies, estimated at 2.4 TW

(W. Wang & Huang, 2004), though recent estimates of wind work on ageostrophic currents have

been revised significantly upward (Yu et al., 2018). Additionally, surface current feedback and

thermal feedback can result in the ocean forcing the winds (Villas Bôas et al., 2019), further

complicating any simple descriptions of air-sea interactions. The diurnal frequency, a highly

energetic component of the wind (Deser & Smith, 1998; Dai & Deser, 1999), is subinertial

poleward of 30◦N/S, near-inertial in the vicinity of this critical latitude, and is the frequency

of solar radiative forcing on the oceans. Hence its contribution to the global wind work on

the oceans is expected to be prominent and complicated, as is the ocean’s diurnal response,

which includes interactions between the diurnally heated upper layer and wind-forced velocity

component, resulting in diurnal jets (Price et al., 1986; Masich et al., 2021).

The diurnal air-sea interaction is therefore relevant to understanding the broader global

ocean energy budget, and due to its ubiquity at the surface, it is important to any observation

system that aims to understand the Earth’s climate. This includes satellites at repeat orbits that

cannot resolve the diurnal frequency. Sun-synchronous missions, including most scatterometers

(Rodrı́guez et al., 2019), fall into this category; not only do such orbits not provide enough

information to resolve details of diurnal processes, but they also effectively sample the diurnal cycle
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at its Nyquist frequency (Villas Bôas et al., 2019). In order to avoid sampling (generally elliptical)

vector surface currents at a low-amplitude phase of their diurnal cycle, thus underestimating total

current variance, prior knowledge of the predominant amplitude and phase of the diurnal cycle

may be important for the planning of future sun-synchronous, vector-observing satellite missions,

such as the proposed Ocean DYnamics and Surface Exchange with the Atmosphere (ODYSEA)

mission, formerly the Winds and Currents Mission (WaCM) (Rodrı́guez et al., 2019). The

purpose of this study is to evaluate diurnal winds and currents in the California Current System

(CCS) and provide an overview of diurnal processes in this region, both to inform potential future

sun-synchronous satellite missions and to improve understanding of these processes in relation to

previous observations and theoretical models.

To achieve this, we analyze gridded surface current data from land-based high-frequency

radar stations, which use scatterometry, and a gridded reanalysis product for 10-meter winds.

Our analysis consists of a Bayesian harmonic least squares fit originally formulated for tides in

Chapter 1, published in Kachelein et al. (2022), and implemented in Chapter 2; this method

can be applied to any frequency. From 9 years of data, we calculate mean current/wind ellipses,

squared coherence of rotary components, phase difference, and the deflection angle of current

from wind as a function of frequency, with emphasis on the diurnal cycle. We begin with an

overview of the data in Section 3.2 and analysis methods in Section 3.3, which also includes

an overview of a previous Ekman-type model describing the frequency-dependent response of

the upper ocean boundary layer to wind forcing. Section 3.4 presents the results of our analysis,

followed by a discussion in Section 3.5 and concluding remarks in Section 3.6. Mathematical

formulas are included in the Appendix.

3.2 Data

The meridional and zonal components of vector winds and vector surface currents are

analyzed in this study. For notational clarity, ocean currents are written lowercase as ®𝑢 = 𝑢ı̂+ 𝑣ȷ̂,
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and winds are written uppercase as ®𝑈 =𝑈 ı̂+𝑉 ȷ̂. In the appendix where coherence and other

quantities are explained for generic vector quantities, only lowercase is used.

3.2.1 High-Frequency Radar

The high-frequency radar time series analyzed are the same as those examined in Chapter

2, with hourly time series from 1 January 2012 through 1 April 2021, gridded at 6 km spacing

in a study region extending from 32.25◦N to 46.43◦N (see Terrill et al., 2006; Roarty et al.,

2019, for more information about the Global High Frequency Radar Network). HFR velocity

measurements are generally assumed to be observed in the upper 1 meter (Kim et al., 2009; Lana

et al., 2016). A similar analysis is performed using the fitting procedure outlined in Chapter 1,

but in order to examine seasonal differences and coherence, we examine 6-month-long segments

at coarser frequency resolution as outlined in Section 3.3.1. When analyzing segments, only

those taken from years (1 April through 31 March) with at least 50% data coverage were used

from time series with at least 50% total coverage; the number of summers and winters at each

location that satisfy this criterion are displayed in Figure 3.1 alongside HFR station locations.

3.2.2 Wind Product

We use hourly 10-meter wind speeds on a ∼31 km (∼0.28◦) grid from the ERA5 reanalysis

implemented by the European Centre for Medium Range Weather Forecasts (ECMWF) (Hersbach

et al., 2018, 2020). It is the fifth generation of atmospheric reanalysis of the ECMWF and is

based on the Integrated Forecasting System (IFS) Cy41r2. Billions of atmospheric and ocean

observations are assimilated, resulting in an improvement over previous reanalyses. Currently,

ERA5 covers the time period from 1940 to the present; we use data from 2012 to 2021,

contemporary with the HFR records used in this study. Wind grid cells that contain HFR grid

cells are used for coherence analysis, while all wind grid cells over the ocean and coastline are

used to evaluate spectral properties of the wind in order to maximize the degrees of freedom,

resulting in smoother covariance estimates for the harmonic analysis described in Section 3.3.1.
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The 10-meter wind product exhibits seasonality, with a strong spectral peak at the annual

frequency (not shown) and a seasonal difference in the distribution of wind direction. Figure

3.2 shows wind roses (polar probability density functions) of ERA5 winds from 2011 to 2021

sorted by month after removal of the 11-year mean wind vector for locations approximately

co-located with HFR observations: 𝑈 (𝑡) = 2.24 m s−1, 𝑉 (𝑡) = -2.97 m s−1, angle -53.0◦ from

eastward, corresponding to wind blowing southeastward, tilted parallel to the coastline of the

study region. Bins correspond to the direction toward which the wind blows and each wind rose

is scaled to the maximum histogram bar radius in order to appear visually consistent. April

through September winds are characterized by a narrower range of directions, with most wind

vectors pointing southeastward along the coast, while winds from October through March exhibit

greater angular variability. We designate the former as “summer” and the latter as “winter” for

the purposes of this study.

A known issue with this data set is a mismatch in near-surface wind speed between

assimilation cycles, occurring from 0900 to 1000 and 2100 to 2200 UTC1. This results in small

but noticeable jumps at 1000 and 2200 UTC in both𝑈 and𝑉 , typically smaller than the amplitude

of the diurnal cycle. Assuming these jumps are consistently in one direction, this would be

equivalent to adding a Dirac comb with 12-hour spaced finite peaks to the wind time series, with

an effect in the frequency domain of adding a Dirac comb to the wind power spectrum with

peaks spaced at 2 cpd, which would not affect the power at the diurnal frequency. However, for

time series jumps that are different for morning versus evening, spectral power at the diurnal

frequency is affected. The spectral power of a discrete diurnal Dirac comb with amplitude 1 is

0.69% that of a sinusoid with amplitude 1; because the magnitude of observed jumps appears to

be less than the amplitude of the diurnal cycle of the wind, we assume that the impact of any

spectral artifacts present in ERA5 10-meter winds is negligible.

1For more information, see point 8 at
https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation#heading-Knownissues.
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3.2.3 Spectral Properties

The rotary power spectra (e.g. Gonella, 1972) of both currents and winds used in this study

are shown together in Figure 3.3. As both quantities are velocities, their spectra share the same

units of spectral power (m2 s−2 cpd−1). Wind spectra are averaged over all locations in the domain

located over the ocean or bordering an ocean grid point, while the current spectra displayed

here are averaged over observations taken between 41.6◦N and 44.8◦N in order to capture the

latitude-dependent near-inertial response centered at about 1.4 cpd. All spectra displayed are

calculated using Welch’s method on overlapping segments multiplied by a Hanning window. For

this figure, wind time series are divided into 365 days-long segments and current time series

are divided into 281.5 days-long segments. These are not the same lengths of segments that are

analyzed later for estimating coherence. Visual indications of error ratios are omitted due to the

large number of realizations leading to reasonably smooth spectra.

Wind spectra display prominent peaks at the diurnal frequency and at every one of its

resolvable harmonics. The narrow width of the peaks and lack of a discernible increase in

background spectral power at nearby frequencies indicate minimal modulation at time scales

resolvable with these segment lengths. The higher-order harmonics of the diurnal cycle may be

influenced by the twice-daily mismatches associated with the ERA5 assimilation cycle discussed

in Section 3.2.2; the assumption that these mismatches are negligible for our analysis is supported

by the fact that the amplitudes of the peaks of these higher-order harmonics are two to three

orders of magnitude smaller than those of the diurnal, semidiurnal, and low-frequency processes

examined in this study. The broadband background power of the wind is roughly proportional

to 𝜔−2 for frequencies above 0.1 cpd and below 4 cpd, and the clockwise polarized component

dominates at most frequencies.

Surface currents also display prominent peaks at the diurnal and semidiurnal frequencies,

as well as at tidal frequencies, such as O1 and M2. Unlike winds, currents are only significantly

clockwise-polarized between approximately 0.4 cpd and 3 cpd, with the strongest polarization
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observed in the near-inertial frequency band centered around 1.4 cpd due to the near-inertial

response, which is resonant in this frequency band at these latitudes. Energy at higher harmonics

of the diurnal frequency is present in current spectra, though less prominently than in wind

spectra. The broadband background power of the current is roughly proportional to 𝜔−1 at all

resolved frequencies.

3.3 Methods

3.3.1 Harmonic Analysis

In order to facilitate analysis of the coherence of wind and current, we fit to a different

set of frequencies than in Chapter 2, which examined records spanning over 9 years. Here, we

fit both wind and currents to the same set of frequencies within the same 6-month segments,

summer (defined as 1 April through 30 September) and winter (defined as 1 October through

31 March), which necessitates more widely-spaced frequencies. These two seasons are defined

such that summer corresponds to prevailing winds that are alongshore toward the south-east,

while winter corresponds to winds that display a wider range of angles, though still tending to

exhibit the same alongshore direction as in summer or its reverse, as in Figure 3.2. For currents,

the same procedures as in Chapter 2 are used (five latitude-dependent spectra to build P𝑢 and

P𝑣 and a spectral slope of -1 and a residual variance fraction of 0.6 to build R𝑢 and R𝑣), with

matrices resized for shorter segments and fewer frequencies. Seasons are not considered when

constructing covariance matrices for currents. For winds, the domain-averaged spectra 𝑆s
𝑈𝑈

, 𝑆s
𝑉𝑉

,

𝑆w
𝑈𝑈

, and 𝑆w
𝑉𝑉

of 10-meter winds over the ocean are used to construct separate P𝑈 and P𝑉 for

summer and winter, where spectra are the average of 7263 squared discrete Fourier transforms

(807 locations, 9 seasons each of summer and winter). These are different from the spectra

displayed in Figure 3.3, which combine seasons. No windowing was performed in estimating

the 4 seasonal wind spectra: data near the beginning and end of each segment were therefore

not de-emphasized and convergence to reasonably smooth spectra was achieved from the large
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number of segments. The residual covariance matrices R for both components and seasons were

estimated using these same spectra at unfitted frequencies, a residual variance fraction of 0.1,

a cutoff of 50 hours, and a triangular tapering window to reduce spectral artifacts. The 𝑀 =

157 frequencies to which both wind and current were fit include 104 low frequencies (less than

100/182 cpd), 11 frequencies centered on O1, 11 frequencies centered on the diurnal cycle (S1),

11 frequencies centered on M2, 11 frequencies centered on the semidiurnal cycle (S2), and each of

the higher-order harmonics of S1 up to 11 cpd. The frequencies in the O1, S1, M2, and S2 bands

are spaced by the fundamental frequency 2 cpy, as are those in the low-frequency band except

for the 8 lowest fitted frequencies, which are spaced by 1 cpy (lowest frequency 1 cpy) in order

to reduce the effect of enforcing 6-month periodicity on a record that is known to incompletely

resolve a strong annual cycle.

3.3.2 Coherence and Rotary Analysis

We evaluate the relationship between 10-meter winds and surface currents by estimating

squared coherence 𝛾2 (hereafter simply “coherence”). This quantity is the frequency-domain

analogue of the squared correlation coefficient (von Storch & Zwiers, 2003), and is used here

to investigate the effect of wind on current and the predictability of current from the ERA5

reanalysis product. In addition to coherence, we estimate the phase angle 𝜙 (hereafter “phase”),

which describes the fraction of a cycle by which one process leads the other. We estimate the

coherence and phase between rotary components (clockwise and counterclockwise rotating) of

both wind and current (e.g. Gonella, 1972), as both quantities are dominated by rotating processes

at the frequencies of interest and a rotationally-invariant framework is appropriate for the angled

coastline of the domain. The phase of counter-rotating components only describes their relative

angle at time 0, with all possible differences in phase visited over one cycle, hence we present

this value but do not examine it in detail and instead focus on co-rotating coherence and phase.

The estimation of coherence is outlined in the Appendix, as is the rotary framework

implemented here. The commonly-implemented method of using averaged Fourier transforms of
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two quantities to compute cross-spectra, and hence coherence, is modified to use the sine and

cosine coefficients given by harmonic analysis, which allows for fitting over gaps in HFR data

and for fitting arbitrary frequencies that are not periodic over the record length, reducing spectral

leakage. Seasonal segments are few in number (at most 9 seasons for each of summer and winter)

and cannot be overlapped, thus they are not multiplied by any windowing function.

3.3.3 Frequency-dependent Response of Upper Oceanic Boundary Layer
to Wind

Elipot & Gille (2009) evaluated several idealized Ekman-type models of wind forcing

of the oceanic boundary layer, comparing them to surface drifter observations in the Southern

Ocean from 30◦S to 60◦S. In this study, we compare observations to their “best” model, denoted

1b in that study. The theoretical frequency-dependent transfer function from Elipot & Gille

(2009), which uses a for ordinary frequency, to which we compare our result is

H1b(a, 𝑧) =
𝑒−i𝜋/4

𝜌
√︁
(2𝜋a + 𝑓Cor)𝐾0

sinh
[
(1+ i) (ℎ− 𝑧)/

√︁
2𝐾0/(2𝜋a + 𝑓Cor)

]
cosh

[
(1+ i)ℎ/

√︁
2𝐾0/(2𝜋a + 𝑓Cor)

] , (3.1)

which we evaluate at the surface (𝑧 = 0) and for Coriolis frequencies 𝑓Cor corresponding to the

latitudes of this study. We use ℎ = 35 m and 𝜌 = 1027 kg m−3, the first of which falls within the

range of values that that study found to best explain drifter behavior at Southern Hemisphere

latitudes equivalent to those we examine in the Northern Hemisphere. We test a range of values

for 𝐾0 such that the misfit between the median observed angle and model angle at each frequency

is minimized. We only examine the phase of this quantity (see equation (3.12)), as we do not

calculate wind stress ®𝜏 from ®𝑈, which are parallel and thus have the same phase relationship with

®𝑢.
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3.4 Results

3.4.1 Characteristics of Wind and Currents

Diurnal winds are intensified near the coastline and are most prominent in the Southern

California Bight as shown in Figure 3.4a, which shows the semi-major axis or peak wind speed

in the diurnal cycle for the colored background, and the diurnal wind ellipses at alternating grid

points averaged over summer (black) and winter (white). Winter diurnal ellipses are typically

smaller than and similarly elliptical to the co-located summer ellipse. A non-linear least squares

fit of peak diurnal wind speed𝑈peak
S1

was performed using the Gauss-Newton algorithm (Bishop

et al., 1985), where its functional dependence on distance to the nearest coastline, 𝐷c, is assumed

to have amplitude𝑈c at the coast and decay exponentially with length scale 𝐿 to some possibly

non-zero value in the open ocean𝑈o:

𝑈
peak
S1

(𝐷c) =𝑈c exp
(
−𝐷c
𝐿

)
+𝑈o. (3.2)

In summer, the parameters𝑈c,𝑈o, and 𝐿 were respectively 1.17 m s−1, 0.29 m s−1, and 71 km

(𝑅2 = 0.46), while in winter these parameters are 0.89 m s−1, 0.06 m s−1, and 75 km (𝑅2 = 0.41).

Figure 3.4b shows that the amplitude of the diurnal current is distributed similarly to that

of wind, with a wider range of elliptical tilts, moderate eccentricity, and intensification in the

Southern California Bight, which is magnified in panel (3.4c) for clarity without changing the

scale of the ellipses relative to those in panel (3.4b).

The fraction of total variance accounted for by the diurnal frequency for both winds and

currents is displayed in Figure 3.5, which displays the seasonal average across the 9 analyzed

summers and winters. The spatial distribution of this quantity is similar to that of the amplitude

for both vector processes, with the Southern California Bight exhibiting the greatest relative

and absolute energy at the diurnal frequency, and coastal regions generally more energetic than

offshore regions. The summer diurnal variance fraction (3.5a,c) is greater than the winter diurnal
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variance fraction (3.5b,d), while the pattern of nearshore wind (3.5c,d) appears to follow coastal

geometry, indicative of enhanced sea breeze/land breeze generation.

The local time at which diurnal wind and current vectors are aligned with the semi-major

axis is shown in Figure 3.6. This alignment occurs twice daily, hence values are shown between

00:00 and 12:00. The average time of maximum diurnal wind does not differ substantially

between summer (3.6a) and winter (3.6b): within 71 km of the coast (the exponential decay

scale of maximum current in summer) the mean hour in summer is 4:16 am/pm (𝜎 = 2.3 hr after

centering the distribution) while in winter within 75 km from shore it is 5:09 am/pm (𝜎 = 1.9

hr). A more coastally limited range of 62 km (two ERA5 grid cells) for both seasons yields 4:03

am/pm (𝜎 = 2.0 hr) and 4:50 am/pm (𝜎 = 1.7 hr) for summer and winter, respectively. The hour

of maximum diurnal wind increases with distance from the coast, indicating propagation offshore

of a signal that, according to Figure 3.4, grows weaker in this direction. Along the Central

California and Central Oregon Coasts, where the phase structure appears to conform to the coast,

the peak wind time appears to increase approximately 1-2 hours per 31 km grid cell, equating to

approximately 15-30 km h−1 ≈ 4-8 m s−1, in rough agreement with Gille et al. (2005). At a wind

buoy 220 km offshore of Southern California, Lerczak et al. (2001) found that maximum onshore

wind speed occurred 9 hours after local noon, in rough agreement with ERA5 winds.

The average time of maximum diurnal current exhibits seasonal differences: in summer

(3.6c), this time is distributed broadly across the 12 hour interval, with a circular mean at 1:15

am/pm (𝜎 = 2.6 hr after centering) while in winter (3.6d) this quantity is more uniform over the

domain, with a circular mean of 4:08 am/pm (𝜎 = 1.6 hr). However, diurnal current direction

during the summer (not shown) is narrowly distributed: at 0115 PST, the circular mean angle of

summer diurnal current vectors is 169◦ from eastward with 𝜎 = 46◦ after centering.

3.4.2 Coherence between Wind and Currents

The four coherence estimates between the two rotary components each of summer diurnal

wind and current are displayed in Figure 3.7. The greatest coherence is observed between
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clockwise wind and clockwise current (panel 3.7a), which is the dominant polarization for

both processes. South of approximately 39◦N, the coherence is very high, while north of this

latitude there are regions in which coherence drops below the 95% confidence threshold, which

may result from a more limited resolution of current angle by the HFR network; these regions

also generally have time series with fewer summers that pass the 50% coverage requirement,

resulting in fewer degrees of freedom and hence a higher 95% confidence threshold. Coherence

between counterclockwise wind and clockwise current (panel c) is also prominent, which may be

explained by the more elliptical winds comprised of a superposition of both polarizations with

stable phases. The pixelation along the coast is an artifact of the nearest-neighbor convention

of pairing current time series with wind time series and is visible in most of the maps in

this chapter that examine quantities that are calculated from both of these quantities. The

counterclockwise current is generally less coherent with the wind, except for a few locations

(panels 3.7b,d), as the diurnal current ellipses generally exhibit low eccentricity, the result of

a weak counterclockwise component. The winter coherence values (Figure 3.8) are similar to

those of summer, though with a few differences: maps of 𝛾2
winter(cw,ccw) and 𝛾2

winter(ccw,ccw)

(the coherence of both polarizations of wind with counterclockwise current, panels 3.8b,d)

exhibit greater coherence in general due to the more eccentric winter current ellipses, while

𝛾2
winter(ccw,cw) and 𝛾2

winter(ccw,ccw) (the coherence of counterclockwise wind with both

polarizations of current, panels 3.8c,d) are nearly zero north of 39◦N and more than about 50 km

offshore, regions where the diurnal winter winds are much weaker than those in summer.

The phases corresponding to these diurnal coherence estimates are displayed in Figure

3.9 (summer) and Figure 3.10 (winter). In summer, the phase 𝜙(cw,cw) (written later as 𝜙⟳⟳

for notational convenience) of the highly coherent clockwise-clockwise paring is characterized

by the current leading wind by 0 to 9 hours, with longer lead times farther offshore and shorter

ones near the coast, especially in regions of strong diurnal currents like the Southern California

Bight (Figure 3.9a). The phase associated with the counterclockwise current (panels 3.9b,d)

exhibit a wider phase distribution, with structure in phase occurring at smaller spatial scales;
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because these correspond to mostly insignificant coherence at the 95% confidence level, this

structure is not investigated further. The phase of counterclockwise wind and clockwise current

(panel 3.9c) exhibits comparable uniformity to panel (3.9a) but at a largely negative phase.

In winter (Figure 3.10), all panels display phases that tend to vary across the domain over

large scales. The dominant clockwise-clockwise pairing (panel 3.10a) is similar to its summer

analogue, but with higher phase values offshore, indicating current that leads the wind by greater

than 6 hours; in the Southern California Bight, however, the phase is largely unchanged from

summer. The greater uniformity in phase in panels (3.10b,d) is likely due to a more elliptical

current possessing a counterclockwise component that is observable above noise levels or simply

more stable in phase than during summer. The small change in panel (3.10c) relative to summer

indicates a small shift in the angle between counter-rotating components at time 0.

3.4.3 Difference in Angle between Wind and Current Vectors

The seasonally-averaged angle Δ\ (𝑡max) between the diurnal current and wind vectors at

the hour of maximum wind speed is shown in Figure 3.11, separated into summer (3.11a) and

winter (3.11b). These were obtained by stepping through 24 hours in 15-minute intervals and

calculating wind speed and direction from diurnal harmonic coefficients, recording the time 𝑡max

at which wind is aligned with its semi-major axis, and finding the angle between ®𝑈 (𝑡max) and

®𝑢(𝑡max). Near the coast in several regions, Δ\ (𝑡max) is closer to 0◦ and increases with offshore

distance. For all locations and both seasons, the circular mean deflection angle is +76.6◦ (𝜎 =

38.7◦ after centering the distribution). Less than 31 km (one wind grid cell width) from the coast,

this angle is +52.6◦ (𝜎 = 39.3◦), between 31 and 62 km it is +69.4◦ (𝜎 = 31.0◦), and farther than

62 km it is +90.3◦ (𝜎 = 35.7◦).

This pattern of offshore increase in Δ\ (𝑡max) suggests a physical mechanism related to

offshore distance, such as diurnal wind intensity, which is coastally intensified. If Δ\ (𝑡max)

were a function of the coastally intensified diurnal wind intensity, for example, it might result

in a distribution of Δ\ (𝑡max) that varies with distance from the coast. Figure 3.12 shows the
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relationship between the deflection angle and the maximum speed of wind and current, combining

summer and winter data. The bivariate histograms of Δ\ (𝑡max) versus peak diurnal wind speed

and peak diurnal current speed are displayed in panels (3.12a) and (3.12b) respectively. The peak

in both histograms around Δ\ (𝑡max) = +90◦ corresponds to low amplitude winds and currents

farther from shore, while at higher wind and current speeds, Δ\ (𝑡max) trends broadly toward

+45◦, the deflection angle predicted in the Northern Hemisphere for classical Ekman theory

(Ekman, 1905; W. Wang & Huang, 2004), plotted here as a vertical red line. Note that we define

the angle of deflection as Δ\ = \wind − \current such that deflection to the right of the current is

positive in order to be consistent with the sign of 𝜙 as we have defined it.

For peak diurnal wind speed > 1 m s−1, the circular mean deflection angle is +47.0◦ (𝜎 =

34.9◦ after centering) and for peak diurnal wind speed > 2 m s−1, +41.5◦ (𝜎 = 12.4◦). For peak

diurnal current speed > 0.05 m s−1, the circular mean deflection angle is +54.8◦ (𝜎 = 34.3◦) and

for peak diurnal current speed > 0.1 m s−1, +38.2◦ (𝜎 = 35.6◦).

Figure 3.13 shows the (top) summer and (bottom) winter deflection angles of surface

currents from wind direction across fitted frequencies. The distribution of Δ\ (𝜔, 𝑡max) is

calculated for each fitted frequency using a procedure analogous to that used for the diurnal

frequency: wind amplitude is calculated from harmonic coefficients at 100 evenly-spaced times

across the period 𝑇 = 2𝜋/𝜔 to find the time of peak wind 𝑡max, from which the angle Δ\ (𝜔, 𝑡max)

between ®𝑈 (𝜔, 𝑡max) and ®𝑢(𝜔, 𝑡max) is found. The annual frequency is not displayed, as its

inclusion served only to eliminate the partially resolved annual cycle that would otherwise be

treated as a trend in the 6-month analysis segments.

Figure 3.13 omits all locations with insignificant coherence as well as frequencies

for which greater than 90% of locations have insignificant coherence, defined as when the

average of 𝛾2
𝑢𝑢 and 𝛾2

𝑣𝑣 for the respective season is less than the 95% confidence threshold (see

equation (3.15)); parallel Cartesian coherence is chosen for this as it is agnostic toward rotational

relationships and therefore should not over-represent already dominant clockwise-clockwise

interactions. An amplitude threshold was tested as an additional criterion for inclusion but was
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not found to have a large effect except at the diurnal frequency, which was shown previously

to converge toward a +45◦ deflection angle at high wind and current speeds. The inner bar

corresponding to the interquartile range of the diurnal mean deflection angle is shaded blue in

order to distinguish it from points at nearby frequencies. Light gray shading indicates the range

of inertial frequencies in the study region, while dark gray indicates the phase prediction from

the “best” oceanic boundary layer model by Elipot & Gille (2009) within these latitudes and

evaluated at the surface, using 𝐾0(summer) = 0.007 m2 s−1 and 𝐾0(winter) = 0.0042 m2 s−1,

which were found to result in the smallest squared difference (for frequencies between 0.033 and

1.2 cpd) between the median (black) points and the “best” model phase evaluated at the mean

latitude of the domain (39.3◦N). Winter median angles were found to fit the theoretical curve

more closely than summer median angles. The other model parameter ℎ = 35 m was taken from

Elipot & Gille (2009) as the best estimate for latitudes between 30◦S and 38◦S, while 𝜌 = 1027

kg m−3. The bounding curves for model phase are vertically offset by ±2◦ for visual clarity, as

they both nearly equal ±45◦ away from the inertial band.

3.5 Discussion

The coastally-intensified diurnal sea breeze/land breeze from ERA5 agrees with theoretical

descriptions of sea breeze, which predict surface wind speeds to decrease away from the coast

(e.g. Walsh, 1974), and appears to be stable in phase over decades: Round (1993) found an

average time of maximum wind occurrence of 1400 PST for the six-month period ending 30

September 1992 at Fort Ord, California, which falls in the grid cell for which we found 1418

PST (1411 local mean time) for maximum diurnal wind speed averaging over April through

September from 2012 through 2020 (note that we use local mean time throughout this study and

only use PST here for comparison). The reduction of nearshore diurnal wind amplitude during

the winter is expected from the reduced temperature difference between the land and sea surface,

which drives the sea breeze process.
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The hour of maximum diurnal wind shifts moderately from summer to winter: within the

respective seasonal offshore decay scales, winter peak diurnal winds are shifted 53 minutes later

on average, which is within one standard deviation of maximum wind time for both seasons. The

hour of maximum diurnal current (Figure 3.6c,d), however, exhibits greater seasonal differences,

with a more complicated distribution in summer than in winter. This may be explained by the

increase in ellipse eccentricity in the winter, with 68% of locations showing an increase over

summer values. Additionally, the elliptical tilt roughly aligns across locations in winter, while

the nearly circular diurnal ellipses in summer south of 36◦N are slightly elongated in different

directions such that the elliptical tilt and hence hour of maximum current varies substantially.

Where diurnal currents are nearly circular, the importance of the overpass timing of a Sun-

synchronous satellite observing ocean currents is reduced, as the difference between maximum

and minimum current speed is small. North of 36◦N, however, summer current ellipses are more

eccentric and are aligned in a variety of directions, while in winter they tend to have alongshore

alignment. This complicates strategies for optimizing Sun-synchronous satellite overpass times,

as the seasonal rotation and distortion of current ellipses would appear as a signal at the annual

frequency. The winter peak current hour does not appear to change substantially with distance

from shore aside from a few regions (the southern Oregon Coast, near Cape Mendocino, south

of San Francisco Bay, and near San Diego); this contrasts with the offshore-propagating winter

diurnal wind, which presumably drives much of the diurnal current variability.

Diurnal currents off the US West Coast are highly coherent with 10-meter winds across

9 summers and winters, with both data sets characterized by strongly clockwise (anticyclonic)

polarization. These results are consistent with Pidgeon & Winant (2005), who found clockwise-

dominated surface currents coherent with wind stress in the coastal Santa Barbara Channel–Santa

Maria Basin region of Southern California. The observed coherence of clockwise currents with

counterclockwise winds is likely the result of the latter’s stability and more eccentric elliptical

diurnal cycle, which results in the counterclockwise component having a stable phase related to

that of the dominant clockwise component. The mean point-by-point (nearest-neighbor) ratio of

104



diurnal peak current to wind speed throughout the domain in summer is 0.063 (𝜎 = 0.024) and in

winter is 0.085 (𝜎 = 0.035). This overlaps with but is mostly higher than the 3%-5% range seen

in previous studies for steady winds (Kim et al., 2009), which is a friction velocity theoretically

described by the square root of the product of a drag coefficient and the ratio of the densities of

air and water (eq. 6.7 in Weber, 1983). This suggests that a frictional velocity alone may be

inadequate for describing the diurnal response. At frequencies less than 0.5 cpd, the peak current

to peak wind ratio is typically less than 2% except for frequencies less than ∼0.02 cpd, at which

the ratio ranges from 2% to 9% (not shown).

The coherence at the diurnal frequency does not appear to substantially decrease away

from the coast except north of 39◦N; the drop-off in that region suggests that there is some variable

offshore distance at which the two vector quantities lose coherence, as both become weaker.

However, along most of the coast, such a distance is likely greater than 200 km, the farthest

offshore HFR can resolve with at least 50% coverage. Alternatively, the observed coherence

drop-off north of 39◦N may be related to the observation network, as locations farther offshore

are more difficult to observe.

The partitioning of time series into 9 or fewer discontinuous segments for coherence

analysis appears to be sufficient to detect meaningful coherence: maps analogous to Figures

3.7-3.8 for the tidal frequencies O1 and M2 (not shown), which are powerful in currents but not

winds, exhibit low coherence as expected. At the S2 (semidiurnal) frequency there is partial

coherence with complicated spatial structure, which is expected due to the contributions of both

wind-driven and tidal currents.

The phase 𝜙⟳⟳ between clockwise winds and clockwise currents (panel (a) in Figures

3.9 and 3.10) reasonably predicts the angle Δ\ (𝑡max) between the two vectors at the hour of peak

wind speed as shown in Figure 3.11, after converting from hours to degrees. This is expected, as

the dominant polarization of both wind and current is clockwise, and in the limit of completely

clockwise motion of both processes, Δ\ (𝑡max) and 𝜙⟳⟳ will be equal. The relationship between

Δ\ (𝑡max) and 𝜙⟳⟳ is similar regardless of season: in summer, the circular mean difference
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between Δ\ (𝑡max) and 𝜙⟳⟳ is 4.4◦ (𝜎 = 23.8◦ after centering the distribution), while in winter it

is -7.9◦ (𝜎 = 22.7◦).

The inhomogeneous distribution of diurnal deflection angles suggests more complicated

physics than the simple assumptions of the steady-state Ekman model (Ekman, 1905) and related

models (e.g. Elipot & Gille, 2009). Regions where diurnal currents and/or winds are highly

energetic, especially the Southern California Bight, exhibit deflection angles approximating the

+45◦ expected from these models; however, for weaker winds and currents, +90◦ predominates

with a substantial range of angles, with 75% of locations having a deflection angle between +45◦

and +135◦. It is not clear if this positive deviation in the deflection angle is due to a difference

between offshore and nearshore depth-varying vertical eddy viscosity coefficients (Bressan &

Constantin, 2019), a previously observed diurnal cycle in the deflection angle (Krauss, 1993), or

the effect of wave-induced Coriolis–Stokes forcing, which rotates the surface Ekman current to

be greater than +45◦ from the mean wind stress direction (Polton et al., 2005). In support of

the Coriolis–Stokes forcing as a factor in this deflection angle is the relatively strong southward

Stokes drift off the US West Coast (McWilliams & Restrepo, 1999; Onink et al., 2019), with an

offshore increase in depth-integrated wave-driven transport relative to nearshore values in this

region (Polton et al., 2005). An ocean response model with a wind stress amplitude-dependent

deflection angle could also explain the pattern in Figure 3.12, but this is beyond the scope of this

study. Additionally, radiative forcing of the upper ocean at the diurnal frequency may lead to a

response that substantially deviates from the dominantly wind-driven response expected at other

frequencies and corroborated by the larger deviation from +45◦ observed at 1 cpd compared to

lower frequencies in Figure 3.13.

The deviation from Ekman theory of the response of diurnal currents to diurnal winds is

not unexpected for this high-frequency component, as Ekman theory is based on the assumption

of steady winds. Comparison of our results to the best-performing frequency domain model in

Elipot & Gille (2009) shows a frequency-dependent mismatch in deflection angle, in which the

observed low-frequency response is characterized by a small deflection angle between 0◦ and
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+45◦ that increases with frequency, matching +45◦ at approximately 0.1 cpd and continuing to

increase as the inertial frequency is approached. This contrasts with the global observations

of Rio & Hernandez (2003), who used drifting buoys, altimetry, and an earlier ECMWF wind

field and found a frequency-dependent response that more closely matches the expectations of

the theoretical curve in Figure 3.13 for observations at latitudes poleward of 30◦. However, in

the CCS region (which was more thoroughly sampled than other regions in that study), Rio &

Hernandez (2003) found a larger average deflection angle of +57.6◦ (negative by the conventions

of that study) between ageostrophic velocities and wind stress, and a “vectorial coherency” less

than 0.3; during summer, their grid cells corresponding to the CCS were in the 60◦-65◦ range,

while in winter they were in the 45◦-55◦ range. At low frequencies, we typically find coherence

equal to or greater than 0.3, and all locations contributing to Figure 3.13 exhibit coherence above

the 95% confidence threshold, which is 0.312 for 9 seasons.

Rio & Hernandez (2003) explain this tendency toward latitude- and seasonally-dependent

deflection angles by the constant depth of drifter measurements (15 m) corresponding to different

levels within the Ekman layer, the thickness of which is related to stratification. HFR should

not have this issue, as it observes the top 1 m, yet summer deflection angles are still observed

to deviate more positively from +45◦ than winter deflection angles for frequencies greater than

0.1 cpd. Though the drifter depth explanation likely accounts for much of this variability in

deflection angle globally, the > 45◦ values we observe and the similar seasonal modulation at the

surface merit additional study.

In general, surface deflection angles have been previously observed to range from 20◦ to

greater than 45◦ (Bressan & Constantin, 2019), with low-latitude regions experiencing larger

average deflection angles and high-latitude regions experiencing values closer to 45◦, albeit

with increased angles observed during the summer, up to 90◦ (Rio & Hernandez, 2003). Our

observations are in broad agreement with past studies, indicating the potential utility of HFR

for evaluating models of upper ocean response to wind forcing and estimating the vertical eddy

viscosity coefficient, which may be complex (Price & Sundermeyer, 1999; Lenn & Chereskin,
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2009).

3.5.1 Implications for Satellite Orbits

The more uniformly timed maximum diurnal current in winter and the more elliptical

diurnal current in summer suggest that if the California Current System is assumed to be globally

representative, then sun-synchronous orbital planning should take the winter phase of diurnal

currents into greater consideration than the summer phase, despite the lower amplitude of the

winter signal. Our results suggest that an overpass between 0400 and 0500 (or 1600-1700) local

mean time would best observe diurnal currents at or near their peak amplitude, at least in this

region. This time window also samples the wind at its peak magnitude in the coastal region,

where its amplitude is greatest, albeit within only 30-90 km of the coast; this is convenient for

the proposed ODYSEA mission, which would observe both winds and currents simultaneously

(Rodrı́guez et al., 2019). Though this choice of overpass time may be primarily useful in coastal

regions like those examined here, the attenuation of the sea breeze over the open ocean may justify

prioritizing sampling for coastal diurnal currents. Additionally, this domain is entirely poleward

of 30◦N, where the inertial frequency is greater than the diurnal frequency. Equatorward of 30◦,

differences in the ocean’s response as well as the characteristics of diurnal winds will likely need

to be taken into account for orbital design (linear theory of sea breeze predicts different results

for superinertial versus subinertial regions, e.g. Rotunno (1983)).

3.6 Summary and Conclusions

In this study, we described the magnitude, timing, and seasonality of diurnal winds and

currents within about 200 km of the coastlines of California and Oregon. We found that both

quantities are intensified near the coast, with typically greater amplitudes in summer compared

to winter. Diurnal winds and currents were found to be highly coherent, especially the dominant

clockwise components of each. We found that the angle between wind and current vectors

differs from the 45◦ angle expected from steady-state Ekman theory, which is not unexpected
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for a non-steady wind. The angle between wind and current vectors deviates from this value at

most frequencies, which we discussed in the context of previous studies that investigated air-sea

interaction beyond Ekman theory.

Previous studies (e.g. Paduan & Rosenfeld, 1996; Kosro, 2005; Kohut et al., 2006; Kim et

al., 2009; Cosoli et al., 2020) have examined currents from HFR and their response to winds over

shorter time periods and smaller regions than those of the present study. In our larger domain,

we discussed the implications of our findings for designing sun-synchronous orbits of satellite

scatterometers that would observe surface ocean currents and winds simultaneously and found

that an overpass at a local mean time between 0400 and 0500 or 1600-1700 would typically

sample both winds and currents at or near their maximum amplitude along their elliptical diurnal

cycles. The nearly circular summer current merits less attention toward orbital timing for that

quantity in this region, though winter currents and year-round winds follow sufficiently elliptical

paths such that orbital timing may need to consider the diurnal cycle. Winds and currents

are highly coherent at the diurnal frequency, especially for co-rotating clockwise components,

partially coherent at the semidiurnal frequency, and incoherent at tidal frequencies as expected.

Though we do not investigate the annual modulation of the wind or currents beyond

seasonal differences, this is an ongoing topic of investigation (e.g. Giglio et al., 2022) due

to its relevance to climate records from satellite wind observations and implications for the

understanding of air-sea interaction. The seasonal differences of quantities estimated in this study,

such as the peak amplitudes and hours of diurnal currents and winds, the structure of coherence,

and the deflection angle of currents, all highlight the importance of the annual cycle for air-sea

interaction, meriting further investigation.

The deflection angle of current vectors from simultaneous wind vectors was somewhat

larger than expected, though not without precedent. The complicated physics of the diurnal

cycle, which includes both wind-driven and radiative processes, may be responsible for its large

deflection angle relative to other frequencies, at which wind forcing is expected to dominate.

The spatial resolution afforded by this analysis could help inform models of wind-driven surface
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currents that are more complicated than those examined here and may refine estimates for vertical

eddy viscosity.

Acknowledgements

This work has been supported by a Future Investigators in NASA Earth and Space Science

and Technology award (80NSSC19K1342). In addition, Luke Kachelein, Bruce Cornuelle, Sarah

Gille, and Matthew Mazloff acknowledge support from the NASA Surface Water and Ocean

Topography Science Team (awards NNX16AH67G and 80NSSC20K1136), Luke Kachelein and

Sarah Gille acknowledge support from the NASA Ocean Vector Winds Science Team (award

80NSSC19K0059), and Sarah Gille also acknowledges support from the NASA Ocean Surface

Topography Science Team (award 80NSSC21K1822).

Surface current data are from the HFR National Network established by IOOS and are a

component of the Global High Frequency Radar Network (Terrill et al., 2006; Roarty et al., 2019);

these data are available for download at https://hfrnet-tds.ucsd.edu/thredds/catalog.html. The

ERA5 reanalysis product is implemented by the ECMWF and is available from the Copernicus

Climate Change Service (C3S) Climate Data Store at https://doi.org/10.24381/cds.adbb2d47

(Hersbach et al., 2018).

3.7 Appendix for Chapter 3

3.7.1 Rotary Quantities

The zonal and meridional velocity components at times t can be expressed as the sum of

weighted sinusoidal terms at 𝑀 frequencies plus some residual term:

u =

𝑀∑︁
𝑚=1

(
𝑎𝑚 cos(𝜔𝑚t) + 𝑏𝑚 sin(𝜔𝑚t)

)
+ r𝑢 (3.3)

v =

𝑀∑︁
𝑚=1

(
𝑐𝑚 cos(𝜔𝑚t) + 𝑑𝑚 sin(𝜔𝑚t)

)
+ r𝑣, (3.4)
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where boldface indicates column vectors. The coefficients of the sinusoids may be estimated

using a least squares fit and may be written as complex vectors corresponding to each velocity

component:

ũ = [𝑎1 + i𝑏1, 𝑎2 + i𝑏2, ..., 𝑎𝑀 + i𝑏𝑀]T (3.5)

ṽ = [𝑐1 + i𝑑1, 𝑐2 + i𝑑2, ..., 𝑐𝑀 + i𝑑𝑀]T. (3.6)

Vector processes that follow elliptical paths, such as wind or currents at a single

frequency, are conveniently described by rotary components with complex clockwise (⟳) and

counterclockwise (⟲) amplitudes. This formulation is therefore rotationally invariant:

u+ iv =

𝑀∑︁
𝑚=1

(
𝑅⟲,𝑚ei𝜔𝑚t +𝑅⟳,𝑚e−i𝜔𝑚t

)
+ rrot (3.7)

where rrot = r𝑢 + ir𝑣 is the complex residual. Following Gonella (1972), we can define the

clockwise and counterclockwise amplitudes in terms of the sine and cosine coefficients of 𝑢 and

𝑣:

𝑅⟳,𝑚 =
1
2
(𝑎𝑚 − 𝑑𝑚 + i[𝑐𝑚 + 𝑏𝑚]) (3.8)

𝑅⟲,𝑚 =
1
2
(𝑎𝑚 + 𝑑𝑚 + i[𝑐𝑚 − 𝑏𝑚]) , (3.9)

3.7.2 Coherence

A least squares analogue to the cross-spectrum may be defined for two time series 𝛼(𝑡)

and 𝛽(𝑡) with coefficients �̃�𝛼𝛼 and �̃�𝛽𝛽:

S𝛼𝛽 =
〈
�̃�𝛼𝛼�̃�𝛽𝛽

∗
〉
, (3.10)

where ∗ indicates complex conjugation and ⟨⟩ indicates an average over some number of

realizations of coefficients corresponding to segments of the times series. Because these segments
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are defined by seasons, they are noncontinuous and are not tapered; this is known as the “chunk”

spectral estimator with equivalent degrees of freedom equal to twice the number of segments

(von Storch & Zwiers, 2003). Spectral normalization is omitted due to the use of this quantity

only in ratios in this study. A least squares analogue to the squared coherence of one Cartesian

component of some quantity (e.g. wind) with the Cartesian component of another quantity (e.g.

current) may then be defined as (e.g. Bendat & Piersol (2010)):

𝛾𝛾𝛾2
𝛼𝛽 =

ℜ
[
S𝛼𝛽

]2 +ℑ
[
S𝛼𝛽

]2

S𝛼𝛼S𝛽𝛽
(3.11)

where 𝛾𝛾𝛾2 is 𝑀 elements long, 𝛼 is either the 𝑢 or 𝑣 component of the first quantity of interest,

and 𝛽 is either the 𝑢 or 𝑣 component of the second quantity of interest. The phase difference

between these two components is

𝜙𝜙𝜙𝛼𝛽 = arctan
(
−
ℑ
[
S𝛼𝛽

]
ℜ

[
S𝛼𝛽

] ) . (3.12)

The squared coherence and phase of one rotary component of one vector process with

that of another vector process is analogous to the Cartesian definition in equations (3.11)-(3.12)

(e.g. Mooers (1973)):

𝛾𝛾𝛾2
𝛼𝛽 =

ℜ
[
⟨R𝛼R∗

𝛽
⟩
]2
+ℑ

[
⟨R𝛼R∗

𝛽
⟩
]2

⟨R𝛼R∗
𝛼⟩⟨R𝛽

R∗
𝛽
⟩ (3.13)

𝜙𝜙𝜙𝛼𝛽 = arctan
(
−
ℑ
[
⟨R𝛼R∗

𝛽
⟩
]

ℜ
[
⟨R𝛼R∗

𝛽
⟩
] ) (3.14)

where R are 𝑀-element vectors of rotary coefficients at each frequency, 𝛼 represents a rotary

component (clockwise or counterclockwise) of the first vector and 𝛽 is a rotary component of the

second vector.
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3.7.3 Coherence Critical Values

In order to determine the significance of coherence estimates estimated from the least

squares coefficients of 𝑁 segments, we use the critical value for the 𝛼×100% significance level:

𝛾2
crit

����
𝛼

= 1−𝛼 1
𝑁−1 , (3.15)

which corresponds to the value above which 𝛼×100% of coherence values of two incoherent

processes are expected to fall.

Equation (3.15) has been used at least as early as the 1950s (Goodman, 1957), but it

is not clear in many sources why this formula is used. Following from assumptions about the

distribution of coherence, von Storch & Zwiers (2003) define the critical value for the 𝛼×100%

significance level as:

𝛾2
crit =

2𝐹𝑝
𝑟 −2+2𝐹𝑝

, (3.16)

where 𝑟 is the effective degrees of freedom, 𝑝 = 1−𝛼 (we use 𝑝 = 0.95), and 𝐹𝑝 is the 𝑝-critical

value of the 𝐹-distribution with degrees of freedom 2 and 𝑟 −2. In this study, the simple chunk

method is used and 𝑟 = 2𝑁 , thus 𝐹 (𝐹𝑝;2,2𝑁 −2) = 1− 𝑝, where 𝐹 is the cumulative distribution

function of the 𝐹-distribution [NIST, 2012]:

𝐹 (𝑥;𝑑1, 𝑑2) = 1−
∫ 𝑑1𝑥/(𝑑1𝑥+𝑑2)

0 𝑡
𝑑1
2 −1(1− 𝑡)

𝑑2
2 −1𝑑𝑡∫ 1

0 𝑡
𝑑1
2 −1(1− 𝑡)

𝑑2
2 −1𝑑𝑡

(3.17)

𝐹 (𝐹𝑝;2,2𝑁 −2) = 1−
∫ 𝐹�̃�/(𝐹�̃�+𝑁−1)

0 (1− 𝑡)𝑁−2𝑑𝑡∫ 1
0 (1− 𝑡)𝑁−2𝑑𝑡

(3.18)

=

(
𝑁 −1

𝐹𝑝 +𝑁 −1

)𝑁−1
, (3.19)

where the last step is simplified using Mathematica software. Setting this equal to 1− 𝑝 and
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solving for 𝐹𝑝:

𝐹𝑝 = (𝑁 −1)
(
(1− 𝑝) 1

1−𝑁 −1
)
. (3.20)

This may then be substituted into equation (3.16) and simplified, giving equation (3.15):

𝛾2
crit = 1− (1− 𝑝) 1

𝑁−1 (3.21)

Note that we use the term “95% confidence threshold” to refer to the coherence critical

value for the 𝛼×100% significance level for 𝛼 = 0.05 (alternatively the [1−𝛼] ×100% confidence

level), that is, the value above which we expect 𝛼×100% of coherence values for incoherent

processes to fall.

Chapter Three, in part, is currently being prepared for submission for publication of the

material. Kachelein, L., S. T. Gille, M. R. Mazloff, and B. D. Cornuelle. The Diurnal Cycle in

the California Current System: Currents from High-Frequency Radar and Winds from ERA5 (In

Preparation, Preliminary Title). The dissertation author was the primary investigator and author

of this material.

Figures
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Figure 3.1. Number of summer (April-September) and winter (October-March) segments of
high-frequency radar time series analyzed. Green circles indicate the locations of HFR network
stations.
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Figure 3.2. Wind roses displaying probability density functions of ERA5 reanalysis downwind
angle within the HFR domain (see Figure 3.1) after removal of the 11-year mean wind vector,
sorted by month, with 10◦ bin widths. Summer months, as defined for this study, range from
April through September, while winter months range from October through March.
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Figure 3.3. Rotary power spectral density of ERA5 10-meter winds over the ocean in the study
domain, including beyond the range of HFR (colored curves) and surface currents observed by
HFR between 41.6◦N and 44.8◦N (black and gray curves). The diurnal frequency and each of its
harmonic frequencies up to 12 cpd are emphasized with black dotted lines, and the approximate
spectra slopes of each data set near the diurnal frequency are indicated with black dashed lines.
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Figure 3.4. Diurnal wind and current ellipses differentiated by season. For all panels, color
bars represent summer semi-major axis length, black ellipses correspond to summer, and white
ellipses correspond to winter for comparison. (a) Diurnal winds from ERA5, (b) diurnal currents
from HFR, and (c) HFR results in the Southern California Bight (box in panel b) magnified
in order to prevent ellipse crowding while preserving scale. Displayed values of semi-major
axis length and ellipses are calculated from the seasonal average of the four diurnal coefficients
corresponding to cosine and sine of 𝑢 and 𝑣.
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Figure 3.5. Seasonally-averaged fraction of variance at the diurnal frequency calculated via
harmonic analysis for ERA5 winds (a,b) and HFR surface currents (c,d). The saturated color bar
in panel (c) accounts for 6 grid cells for which diurnal variance comprised greater than half of
total current variance, with a maximum value of 0.53.
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Figure 3.6. Average local time, twice daily, at which diurnal wind (a,b) and diurnal current (c,d)
are at maximum amplitude in summer (a,c) and winter (b,d). Hatching in (a,b) indicates where
HFR observations are absent.
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Figure 3.7. Rotary coherence 𝛾2 in summer between clockwise (cw) and counterclockwise
(ccw) components of diurnal wind and diurnal surface current. The first argument in parentheses
corresponds to wind polarization, the second argument corresponds to current polarization.
Hatching indicates values of 𝛾2 less than the 95% confidence threshold, the value below which
95% of coherence estimates of incoherent processes are expected to fall according to equation
(3.15).
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Figure 3.8. As in Figure 3.7 but for winter months.
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Figure 3.9. Phase 𝜙 of rotary coherence in summer between clockwise (cw) and counterclockwise
(ccw) components of diurnal wind and diurnal surface current. Positive values indicate that the
current is leading the wind. Hatching is the same as in Figure 3.7.
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Figure 3.10. As in Figure 3.9 but for winter months.
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Figure 3.11. Summer (a) and winter (b) deflection angle of current at the time of peak wind
speed. A positive deflection angle means the current is to the right from the perspective of the
wind direction.
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Figure 3.12. Bivariate histograms of combined summer and winter (a) diurnal wind semi-major
axis and (b) diurnal current semi-major axis (peak diurnal value) versus deflection angle of
current at the time of peak wind speed. Red lines indicate the +45◦ deflection to the right as
predicted at the surface by classical Ekman theory.
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Summary and Concluding Statements

Diurnal and semidiurnal processes are important components of the ocean’s energy

budget. Tidal forces input energy into the ocean at known frequencies in a predictable way,

but through the generation of internal tides and their interactions with other processes in the

ocean, tidal signals are modulated and distorted in their evolution toward turbulence, becoming

difficult to sample and interpret by observations with low sampling rates. By contrast, winds

input energy into the ocean via wind stress at a range of frequencies, but due to the diurnal cycle

in the wind, there is also a substantial diurnal component of surface currents which poses the

same difficulty for sampling and interpretation. With the recent, planned, and proposed launches

of high-resolution Earth observation satellites, it is more important than ever that these signals are

understood in order to aid in the interpretation and analysis of satellite data, from both altimetry

and scatterometry, and as a consequence is a topic of extensive study.

This dissertation has sought to contribute to this understanding by developing and

proposing methods that are then applied to high-frequency radar observations, an extensive

surface velocity data set that captures submesoscale processes. Additionally, we seek to add to

the corpus of the California Current System, an exceptionally well-observed region of the global

ocean. We outlined the methods in Chapter 1, applied them to characterize tides in Chapter 2,

and applied them alongside rotary coherence analysis to examine diurnal wind-driven currents in

Chapter 3. Beyond these results, there is still more that can be done with these methods and data

sets.

The methods from Chapter 1 can be improved upon for user-friendliness. Though red tide

was written with usability in mind, it requires familiarity with the mathematics of Chapter 1 and
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has several inputs that are non-trivial to specify, like the power spectrum, though the default

white noise assumption and harmonic constituent frequencies as given by NOAA are enough to

provide a cursory evaluation using red tide. Additionally, translation from MATLAB to other

programming languages, including non-proprietary ones, is desirable, and to this end, Chris

Turnadge of the Commonwealth Scientific and Industrial Research Organisation of Australia has

worked to translate red tide into Python (github.com/christurnadge/redtidepy). For Chapter 2, a

remaining question is how the correlated amplitude modulations of M2 and S2 signals arise. It is

apparently related to stratification, upon which the propagation of internal waves depends, but the

degree to which internal tidal amplitude modulation as observed by HFR can be predicted from

stratification records is unknown. Additionally, the relevance of our surface current analysis to

sea surface height needs to be fully evaluated for applications to altimetry. For Chapter 3, we only

briefly examined the response of the ocean to wind as a function of frequency. A more thorough

evaluation of this topic might help inform models of air-sea interaction, as could a time-domain

response function approach. Another topic is the transfer function for winds and currents, the

examination of which was omitted in the interest of time and focusing on characterizing the

diurnal cycle.

Additionally, the energetic near-inertial oscillations seen in power spectra and fit explicitly

in the analysis of Chapter 2 were not examined beyond confirmation that the energy within the

near-inertial band follows the latitude-frequency relationship expected from theory. Because

near-inertial oscillations were found to be most energetic at the offshore edge of our domain

of HFR measurements, we chose not to focus on them in any of the chapters, but future work

examining this process is a logical addition to the studies of Chapters 2 and 3, which examined

different energetic processes in the same diurnal-to-semidiurnal frequency band. Finally, regional

studies of HFR data at 1 km and 2 km spatial resolution could reveal processes that are not

captured by the more extensive but coarser 6 km data set we examined in Chapters 2 and 3.

The motivation of this thesis was to inform satellite missions while investigating more

fundamental oceanographic topics like the behavior of internal tides as they are modulated by
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non-tidal processes, and the response of ocean surface currents to wind forcing. The HFR

network, especially on the US West Coast, provides an extensive data set for investigating these

topics, which are likely only a small subset of the questions HFR can help answer. As more

Earth observation satellites are launched and as the HFR network continues to mature, coverage

of the ocean’s surface will improve and the energetic air-sea boundary will continue to be an

increasingly important topic of investigation.
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