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RESEARCH ARTICLE Open Access

Application of a nonrandomized stepped
wedge design to evaluate an evidence-
based quality improvement intervention: a
proof of concept using simulated data on
patient-centered medical homes
Alexis K. Huynh1*, Martin L. Lee1,4, Melissa M. Farmer1 and Lisa V. Rubenstein1,2,3

Abstract

Background: Stepped wedge designs have gained recognition as a method for rigorously assessing
implementation of evidence-based quality improvement interventions (QIIs) across multiple healthcare sites. In
theory, this design uses random assignment of sites to successive QII implementation start dates based on a
timeline determined by evaluators. However, in practice, QII timing is often controlled more by site readiness. We
propose an alternate version of the stepped wedge design that does not assume the randomized timing of
implementation while retaining the method’s analytic advantages and applying to a broader set of evaluations. To
test the feasibility of a nonrandomized stepped wedge design, we developed simulated data on patient care
experiences and on QII implementation that had the structures and features of the expected data from a planned
QII. We then applied the design in anticipation of performing an actual QII evaluation.

Methods: We used simulated data on 108,000 patients to model nonrandomized stepped wedge results from QII
implementation across nine primary care sites over 12 quarters. The outcome we simulated was change in a single
self-administered question on access to care used by Veterans Health Administration (VA), based in the United
States, as part of its quarterly patient ratings of quality of care. Our main predictors were QII exposure and time.
Based on study hypotheses, we assigned values of 4 to 11 % for improvement in access when sites were first
exposed to implementation and 1 to 3 % improvement in each ensuing time period thereafter when sites
continued with implementation. We included site-level (practice size) and respondent-level (gender, race/ethnicity)
characteristics that might account for nonrandomized timing in site implementation of the QII. We analyzed the
resulting data as a repeated cross-sectional model using HLM 7 with a three-level hierarchical data structure and an
ordinal outcome. Levels in the data structure included patient ratings, timing of adoption of the QII, and primary
care site.

Results: We were able to demonstrate a statistically significant improvement in adoption of the QII, as postulated
in our simulation. The linear time trend while sites were in the control state was not significant, also as expected in
the real life scenario of the example QII.
(Continued on next page)
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Conclusions: We concluded that the nonrandomized stepped wedge design was feasible within the parameters of
our planned QII with its data structure and content. Our statistical approach may be applicable to similar evaluations.

Keywords: Electronic measures, Evaluation of evidence-based quality improvement intervention

Background
Stepped wedge designs have gained recognition among
healthcare evaluators over the past decade as an alterna-
tive to classical cluster randomized designs for evaluating
the implementation and spread of evidence-based health-
care quality improvement interventions (QIIs). QII
process aims to translate prior efficacy and effectiveness
evidence into routine policy and practice. Ultimately, QIIs
must be implemented through local organizational im-
provement efforts and adapted to local contexts [1, 2].
Randomized stepped wedge designs enable successive im-
plementation in sites over time, and have recognized sam-
ple size [3] and logistical feasibility [4–6] advantages over
classical cluster randomized designs. However, unlike
more traditional research projects where researchers con-
trol the intervention process, the ultimate control over a
QII rests with local personnel, their leaders, and organiza-
tions. In this situation, the abilities of researchers to ran-
domly time implementation is in question, as shown in
recent systematic reviews of stepped wedge designs [5, 7].
In the work presented here, we explore application of a
nonrandomized stepped wedge design using simulated
data, in preparation for evaluation of an actual multisite
QII in the Veterans Health Administration (VA), the lar-
gest integrated health care system in the United States.
We document the statistical approach we used and iden-
tify design challenges and strengths.
The design we propose takes advantage of the compari-

son of pre- to post-implementation within sites along with
comparisons between QII implementation and usual care
sites found in the standard stepped wedge design, thus
maximizing the utilization of available data. In the non-
randomized design, however, the actual timing of imple-
mentation is incorporated into the statistical assessment
of intervention effectiveness. The design accounts for po-
tential threats to validity due to historical trends [8] by in-
corporating data from sites that have started exposure to
the intervention (are “on”) as well as data from sites that
have not yet been exposed (are “off”) at any time point.
In addition to accounting accurately for the timing of

an intervention, the nonrandomized design is particu-
larly suited to the needs of managers and policymakers
in multilevel, data rich managed care organizations.
These organizations often evaluate potential policy or
practice improvement strategies in selected sites before
crafting an organization-wide implementation approach.

The nonrandomized design we describe accounts accur-
ately for the level of QII implementation; in the case we
present, the level of implementation (and clustering) is
at the primary care practice. The design can also inte-
grate the full range of relevant data collected by the
organization through its routine activities. In the case
we discuss, we use a standard organizational survey as
an outcome, and account for context based on available
administrative data.
Evaluation models such as “difference in differences”

[9] or mixed models with repeated measures are similar
to the nonrandomized stepped wedge design presented
in this paper, and may be more appropriate if there are
relatively few implementation time frames. Our previous
work with a repeated measures model included one pre-
implementation and two post-implementation periods
[10]. The simplest form of a difference-in-differences ap-
proach involves two time frames: before and after. While
a difference-in-difference approach can accommodate
more than two time frames, it can become unwieldy as
additional time points are incorporated because it re-
quires specification of indicator variables for each time
period and their interaction with treatment groups.
Moreover, a difference-in-differences approach may lose
both precision and information if the time frames over
which sites implement the QII are lengthy (such as in
our example QII study with 12 time periods when QII
implementation may take place) because the approach
requires collapsing the time intervals to obtain pre- and
post-implementation means with a concomitant loss of
information.
Simple pre-post designs, particularly when using en-

hanced quality improvement statistical methods [11, 12],
are an alternative to randomized designs. Yet these types
of designs are unlikely to be successful when there are
strong period effects. In the example QII studied here,
we expect strong historical trends given that the QII is
being carried out within an overall change in the organi-
zation’s primary care model. Thus, successful evaluation
of the studied QII will require a rigorous comparison
group that can establish whether or not the intervention
has effects over time above those produced by the over-
all organizational changes.
As is true in randomized stepped wedge designs, we

will introduce the QII such that a site that had no inter-
vention initially, but adopted the QII later, can serve as a
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comparator to both itself and to implementation states
for other sites. This latter feature enables the fullest pos-
sible use of data from all sites by using control state and
implementation state data from each site, enhancing
validity.
In summary, to evaluate our planned QII, key design

features we considered included the need to: 1) use data
collected in an ongoing fashion before and after imple-
mentation of the intervention in all study sites; 2) ac-
count for multiple levels of observation (patient and site
across time); and 3) include accurate information on the
timing of the QII implementation so that respondents
within sites exposed to control or implementation states
can be assessed at the same time points.
While the nonrandomized stepped wedge design can be

understood intuitively, the underlying statistical model is
more complex. Through the work presented here, we
aimed to both prospectively solve analytic issues with the
design. We also aimed to test the feasibility of the design
for detecting an optimistic but realistic effect size when
applied to evaluation data simulated to reflect the charac-
teristics of actual data available for assessing the planned
QII and hope this work will encourage discussion between
investigators and statisticians.

Methods
Study Setting
The QII we simulated aims to enhance implementation
of the Patient-Centered Medical Home (PCMH), an ap-
proach to primary care in VA primary care practices.
The PCMH model, termed Patient Aligned Care Teams
(PACT) in VA’s application, began national implementa-
tion across the VA system in 2010. The QII is an add-on
to the PACT implementation within selected primary
care practice sites. It focuses on a researcher/clinical
leader partnership aimed at enhancing the rapidity and
completeness of PACT implementation. The evaluation
outcome variable we simulated is patient-assessed access
to care. This variable was simulated to reflect data from
a patient experience survey administered by VA to ran-
domly selected patients within care sites in an ongoing
sampling process over time.

QII Implementation Timing
We simulated data for a multilevel, multisite (n = 9) QII.
The roll out of the intervention was nonrandom and
nonsystematic: all sites started out at Quarter 1 in the
control state. There were three phases, where each phase
consisted of sites implementing the QII closely together,
although not simultaneously due to the logistical con-
straints sites faced. From an administrative standpoint,
we judged a phase to be one fiscal year when our team
engaged with sites to implement the QII. The three
Phase 1 sites (Sites 1, 2 and 3) implemented the QII in

Quarters 2, 3, and 4, respectively. Two of the three
Phase 2 sites (Sites 4 and 5), implemented the QII in
Quarter 5, and the other Phase 2 site (Site 6) imple-
mented the QII in Quarter 8. Among Phase 3 sites, Site
7 implemented in Quarter 9, and Sites 8 and 9 imple-
mented in Quarters 11 and 12, respectively (Fig. 1). In
this allocation scheme, we assumed that the data collec-
tion and assessment of the QII occurred in each of the
12 quarters.

Study Sample
The sample of simulated data consisted of a total of
108,000 respondents to patient experience surveys over
12 quarters at nine sites. A different cross-section of
1000 patients was sampled at each site and each quarter.
Figure 2 illustrates, for example, that respondents 1 to
1000 were surveyed in Quarter 1 at Site 1, and respon-
dents 107,001 to 108,000 were surveyed in Quarter 12 at
Site 9.

Measures
Improving access to care for enrolled patients is a key
goal for many primary care practice improvement ef-
forts, including the QII under consideration here. In
addition, the QII has goals of improving continuity and
coordination of care in PCMH implementation. We
chose to focus on access as an outcome in our simulated
data because it is a process-of-care measure that is
tracked closely and questions pertaining to access are
asked in patient surveys at VA. Moreover, we chose to
simulate access because we view it as a more proximal
process-of-care than are continuity, coordination of care,
or other measures included in the survey.
Access to care is reflected in the degree to which pa-

tients are able to, for example, call and make an appoint-
ment as soon as they need it. We used the Likert scale
access question: “How often did you receive care as soon
as you needed it during the last 12 months (access)”. Re-
spondents answered “never”, “sometimes”, “usually”, or
“always”. Since respondents are Level 1 units, we desig-
nated access as measured by this question as a Level 1
variable.
We simulated the outcome (access) as a random vari-

able with a uniform distribution for sites in the control
state. Thus, 25 % of respondents answered they “always”
got care as soon as needed in the past 12 months, 25 %
“usually”, 25 % “sometimes” and 25 % “never” had ac-
cess. Our choice of a uniform distribution reflects pre-
liminary data from observed patient surveys. For sites in
the implementation state, we simulated the outcome as
having marked improvement immediately after imple-
menting the QII so that the percentages of patients an-
swering “always” having access immediately after
implementation of the QII ranged between 30 and 36 %,
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while percentages with “usually” ranged from 29 and
33 %. The new distribution represented an improvement
of 4 to 11 % compared to control. Conversely, percent-
ages of patients with “sometimes” access after imple-
mentation decreased to 16 and 23 %, and “never”
decreased to 11 and 20 %. While sites continued to im-
plement the QII over time, we simulated continued im-
provement in the outcome, but with a slower rate of
improvement, ranging from one to three percent in each
ensuing quarter, such that that the percentages of pa-
tients with “always” ranged from 31 to 44 %, “usually”
from 30 to 42 %, “sometimes” from 7 to 22 %, and
“never” from 5 to 18 %.
The basis for the improvement when sites were ex-

posed to implementation was based on prior work,
where QIIs were implemented using the Plan-Do-Study-
Act cycles and continuous improvement was expected.
In addition to accommodating the scenario described
here, we believe the analytic strategy and statistical
model presented below are flexible enough to accommo-
date many possible trends in outcome over time (for ex-
ample, if patient-assessed access improved at a constant
rate, have slow improvement at the beginning of imple-
mentation, remained stagnant or even decreased).

One of the main predictors in the model was time
(Quarter 1 to Quarter 12). In the context of the simu-
lated data, this was the linear time trend during which
the organization was involved in an overall change in
the primary care model. The second predictor was treat-
ment status (“on” or “off”) that indicates when the sites
were exposed to the implementation state or control
state, respectively (Fig. 1). In addition, we represented
the difference in linear time trend for sites before and
after implementation of the QII as a time-by-treatment
interaction, which was included as another independent
variable.
Our main predictors thus occupy Level 2 of the hier-

archical modeling [13], because it incorporated the time
trend between pre- and post-implementation of the QII.
To ensure maximum comparability across sites in the
outcome measure, we also simulated covariates at
Level 1 (respondents) and Level 3 (sites). Specifically,
we simulated gender and race/ethnicity at Level 1,
and site size at Level 3. We simulated gender and
race/ethnicity as dichotomous random variables with
90 % of the respondents males and 75 % whites as in
the VA study sites. We simulated site size as a ran-
dom variable with values of “small”, “medium”, or

9 9
8 8 8
7 7 7 7 7
6 6 6 6 6 6
5 5 5 5 5 5 5 5 5
4 4 4 4 4 4 4 4 4
3 3 3 3 3 3 3 3 3 3
2 2 2 2 2 2 2 2 2 2 2
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Quarter 1 Quarter 2 Quarter 3 Quarter 4 Quarter 5 Quarter 6 Quarter 7 Quarter 8 Quarter 9 Quarter 10 Quarter 11 Quarter 12
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ase 2
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h
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Year 1 Year 2 Year 3

control state implementation state

Implementation and Spread of Multi-Site Multi-Level EB-QII

Fig. 1 Implementation and spread of multisite multilevel Qll

Level 2 Time  

Level 1 Respondents  

Level 3 Site
Site 1 ... Site 9

Q1 ... Q12 Q1 ... Q12...

1 ... 1,000 11,001 ... 12,000 96,001 ... 97,000 107,001 ... 108,000

Fig. 2 Multilevel structure of repeated cross-sectional design in example QII
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“large.” In our data, two sites were small, two sites
medium, and five sites large.
Respondent-level and site-characteristics were not

weighted. While we included respondent-level and
site-level characteristics in our simulated data, we did
not simulate a differential effect on patient-assessed
access for these variables in our analyses. We did not
have an a priori hypothesis that the QII would affect
women, minorities or respondents from large sites
differently than others. Our main purpose in
including race/ethnicity, gender and site size in the
analysis was to ascertain whether the nonrandomized
stepped wedge analytic design can feasibly accommo-
date patient-level and site-level characteristics that
might be associated with actual timing of QII
implementation.
Having simulated the data in one data set, we then

used the nonrandomized stepped wedge design to evalu-
ate the QII. We built into the simulation the time trend
we expected i.e., sites had 4 to 11 % improvement in
their first quarter of implementation, and 1 to 3 % in
each ensuing quarter thereafter when sites continued to
implement the QII, and no improvement based on his-
torical trends seen in PACT. We considered our analytic
approach to be successful if our nonrandomized stepped
wedge analysis confirms the trends we simulated in the
data.

Analytic Strategy
The simulated data was multilevel: while the interven-
tion was targeted at the site level (thus minimizing con-
tamination), where a site was either in the control or
implementation state, the outcome of interest was mea-
sured at the individual patient level. Moreover, time
(when the intervention was implemented) constituted
another level in the study design. In all, there were
three levels: individual patients, time of implementa-
tion, and sites.
The first analytic decision we confronted was which

levels of clustering to address. Multilevel models can-
not validly integrate more levels than the data can
support. In our case, accounting for clustering of pa-
tients within providers, sites, and time was not feas-
ible. Linkage between providers and patients was not
stable over time, and inclusion of four levels resulted
in over-specification in the model-fitting algorithm.
Furthermore, other analyses of the survey showed
that site-level clustering was stronger than provider-
level clustering. We therefore decided on a three-level
hierarchical data structure in the form of a repeated
cross-sectional design with multiple layers of cluster-
ing [14]: patients within time and within site (primary
care practice), and in turn, time clustered within site
[15–17]. In the final analysis structure, respondent

patients were the Level 1 units, the times at which
the patients were surveyed were the Level 2 units,
and sites themselves were the Level 3 units (Fig. 2).
Our analytic strategy accounted for timed outcome

assessments at the patient level, random effects on
outcomes at the site level, and the time period during
which the QII was implemented at individual sites.
The estimation method in the HLM software is
equivalent to generalized estimation equation (GEE)
because the outcome of interest was ordinal and has
been known to be more robust to misspecification of
the variance structure [18].

Statistical model for a nonrandomized stepped wedge
design
We represented our nonrandomized stepped wedge
design using a statistical model with a three-level hier-
archical data structure. The patient-assessed access was
a four category ordinal outcome (1 = always, 2 = usually,
3 = sometimes and 4 = never). The parameter patient-
assessed access (Yijk) represented the outcome deter-
mined on the ith respondent in the jth time point (quar-
ter) from the kth site. Moreover, Y.jk was the site-level
mean outcome of interest in the jth quarter and the kth

site. The site-level mean was obtained by summing ac-
cess scores from the respondents from each quarter at
each site and then dividing by the number of respon-
dents (1000 in this case).
The main model predictors were at Level 2, where

TREATjk was the indicator (1=“on”; 0=“off”) for treat-
ment status for the jth site in the jth quarter. The linear
time trend when sites were in the control state was rep-
resented by QTRjk (k

th site in jth quarter), and linear time
trend when sites were exposed to the implementation
state was represented by QTRjk * TREATjk for (k

th site in
jth quarter). This parameter represented actual time of
implementation. At the respondent level, FEMALEijk
was a covariate for gender. NONWHITEijk was a second
respondent-level covariate. At the site-level, we had two
indicator variables to represent size: MEDk (=1 if kth site
was a medium size site, 0 if not) and LGk (=1 if kth site
was a size large, 0 if not).
The response options were ordinal, and thus regres-

sions were defined as cumulative logits. Moreover, be-
cause there were four categories in the response options,
there were three cumulative splits [19], where the re-
sponse options were categorized as: 1) “always” versus
“usually”, “sometimes”, or “never”; 2) “always” or “usu-
ally” versus “sometimes” or “never”; and 3) “always”,
“usually”, or “sometimes” versus “never.”
The statistical model relating access and predictors at

all three levels were formulated as the following
expressions:
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log
∅1ijk

�

1−∅1ijk
�

� �
¼ γ000 þ γ010QTRjk

þ γ020TREATjk þ γ030QTRjk

� TREATjk þ γ100FEMALEijk

þ γ200NONWHITEijk

þ γ001MEDk þ γ002LGk þ r0jk
þ u00k ð1Þ

log
∅2ijk

�

1−∅2ijk
�

� �
¼ γ000 þ γ010QTRjk

þ γ020TREATjk þ γ030QTRjk

� TREATjk þ γ100FEMALEijk

þ γ200NONWHITEijk

þ γ001MEDk þ γ002LGk þ r0jk
þ u00k þ δ2 ð2Þ

log
∅3ijk

�

1−∅3ijk
�

� �
¼ γ000 þ γ010QTRjk

þ γ020TREATjk þ γ030QTRjk

� TREATjk þ γ100FEMALEijk

þ γ200NONWHITEijk

þ γ001MEDk þ γ002LGk þ r0jk
þ u00k þ δ3 ð3Þ

Thus, Eq. (1) was the log-odds of respondents answer-
ing “always” relative to “usually”, “sometimes” or “never”
having access, while Eq. (2) was the log-odds of respon-
dents answering “always” or “usually” relative to “some-
times” or “never” having access, and Eq. (3) was the log-
odds of respondents answering “always”, “usually”, or
“sometimes” relative to “never” having access. The pa-
rameters r0jk and u00k represented the random effects as-
sociated with time-level and site-level random effects,
respectively. The parameters δ2 and δ3 were the thresh-
olds that separated their respective cumulative logits.
Appendix 1 provides a more detailed treatment of the
statistical model of our analysis.
All data construction, simulation, and diagnostics were

conducted in SAS 9.3 (SAS Institute Inc., Cary, NC,
USA). Data analysis and modeling were performed using
the HLM 7 software (Scientific Software International
Inc., Skokie, IL, USA). The HLM software enabled us to
model a repeated cross-sectional three-level hierarchical
model with an ordinal outcome.

Results
The mean site scores for patient-assessed access over
time were shown in Fig. 3. All sites were in control state
at Quarter 1. Following Quarter 1, sites had no improve-
ment in access while in the control state. However, sites
had marked improvement immediately after implement-
ing the QII and access continued to improve thereafter,
albeit at a slower rate.

The results for the multivariate analysis of the main
predictors, and individual and site characteristics are
presented in Table 1.
In each of the models, the intercept parameter, γ000,

was the cumulative logit of “always” getting care as soon
as needed relative to “usually”, “sometimes”, and “never”,
adjusting for the predictors in the model. The sum of
γ000 and δ2 represented the cumulative logit of “always”
or “usually” relative to “sometimes” or “never” getting
care. Likewise, the sum of γ000 and δ3 was the cumula-
tive logit of “always”, “usually”, or “sometimes” relative
to “never” getting care. In the models, the value of γ000
was negative, meaning that there was a low likelihood of
“always” getting care as soon as needed. The sums of
γ000 and δ2, and γ000 and δ3 were both positive and in-
creasing, meaning that the likelihood steadily increased
across the response options (i.e., from “always” to “usu-
ally” to “sometimes” access).
Model 1 contained the timing-related predictors,

namely, status of when sites were exposed to implemen-
tation (TREATjk), linear time trends in the control state
(QTRjk), and implementation state (QTRjk * TREATjk).
The cumulative logit coefficient for treatment main ef-
fect, γ020, was 0.265. Transforming the coefficient into
(OR = e0.265 = 1.303) suggested that when sites were ex-
posed to the implementation, they had about a 30 % in-
crease in the odds of having improved access in the
previous 12 months, i.e., compared to respondents in
the control state, respondents within sites that were in
the implementation state were more likely to change
their responses from “usually” to “always”, “sometimes”
to “usually”, or “never” to “sometimes.” The treatment
main effect parameter was significant (p < 0.001).
Linear time trends in Model 1 were represented by

two fixed effects: γ010 for when sites were in the control
state, QTRjk, and γ030 for when sites were in the imple-
mentation state, QTRjk * TREATjk. The γ010 parameter
was not significant (p > 0.05): there were no changes in
respondents’ answers in getting care as soon as needed
in each ensuing quarter while sites were in the control
state. However, in each ensuing quarter when sites were
in the implementation state (γ030) was associated with
about a 5 % increase in the odds of improvement in get-
ting care as soon as needed in the previous 12 months
(p < 0.001).
Model 2 contained respondent-level predictors,

namely, FEMALEijk and NONWHITEijk. The parameter
γ100 was not statistically significant, meaning that female
respondents did not differ from their male counterparts
in their likelihood of patient-assessed access. Similarly,
γ200 was not statistically significant and thus, respon-
dents who were of non-white race/ethnicity did not dif-
fer from their white counterparts in their likelihood of
patient-assessed access.
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Fig. 3 Mean simulated patient-assessed access for sites over time

Table 1 Results for the three-level ordinal model with timing of implementation, linear time trends, respondent-level, and site-level
characteristics

Parameter Model 1 Model 2 Model 3 Model 4

Coeff (SE)/OR Coeff (SE)/OR Coeff (SE)/OR Coeff (SE)/OR

Intercept, γ000 −1.22 (0.04)/0.29** −0.821 (0.074)/0.440** −0.874 (0.144)/0.417** −1.235 (0.063)/0.291**

Threshold 2, δ2 1.294 (0.006)/3.647** 1.294 (0.006)/3.647** 1.294 (0.006)/3.647** 1.294 (0.006)/3.647**

Threshold 3, δ3 2.345 (0.009)/10.437** 2.345 (0.009)/10.437** 2.345 (0.009)/10.437** 2.345 (0.009)/10.437**

Time-level predictors

QTR, γ010 0.005 (0.005)/1.005 0.005 (0.005)/1.005

TREAT, γ020 0.265 (0.048)/1.303** 0.262 (0.048)/1.300**

QTRaTREAT, γ030 0.049 (0.007)/1.051** 0.049 (0.007)/1.051**

Respondent-level predictors

Gender (ref: MALE)

FEMALE, γ100 −0.007 (0.018)/0.993 −0.007 (0.018)/0.993

Race/ethnicity (ref: WHITE)

NONWHITE, γ200 −0.013 (0.013)/0.987 −0.013 (0.013)/0.988

Site-level predictors

Site Size (ref: SMALL)

MED, γ001 −0.085 (0.204)/0.918 −0.040 (0.083)/0.961

LG, γ002 0.122 (0.171)/1.130 0.049 (0.069)/1.050

**p < 0.001
Note: a < 0.05
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Model 3 contained site-level predictors: MEDk, an in-
dicator for medium size sites, and LGk, an indicator for
large size sites. Compared to small size sites, respon-
dents from medium size (γ001) and large size (γ002) sites
were not statistically different in their likelihood of
access.
Lastly, Model 4 was the full model, comprising of

time-level, respondent-level, and site-level predictors.
The results were similar to those found in the previous
models.

Discussion
We demonstrated the feasibility of applying a nonrando-
mized stepped wedge design to patient-level assessments
of access as an outcome of a site-level QII, using simu-
lated data as a precursor to applying the design to actual
data that will use the same variables. The results of the
nonrandomized stepped wedge design were consistent
with the effects we simulated in the data. In the control
state at Quarter 1, there was a low likelihood of having
access to care. Once sites entered their first quarter of
implementation, we simulated the data so that there was
an average of about 30 % increased odds of improve-
ment in access. As sites continued with implementation,
the results showed that our statistical approach detected
the expected approximate 5 % increased odds of im-
provement in the outcome of interest in each time quar-
ter due to the QII. Thus, the analytical model
demonstrated significant improvement in access as sites
crossed over from control to implementation states, and
also when sites remained in implementation in subse-
quent quarters. We should note that our results might
be biasing towards the null because data collection oc-
curred every quarter while the survey question asked re-
spondents about their experience in the past 12 months,
which might include time periods in which sites have
not yet implemented the QII.
Our simulation included many of the design elements

that may make evaluating QIIs a challenging exercise.
Specifically, we simulated data from a three-level hier-
archical repeated cross-sectional design whereby respon-
dents (Level 1) were clustered within time points (Level
2), which in turn were clustered within sites (Level 3).
The timing of a site’s initiation of the QII was nonran-
dom, the outcome of interest had an ordinal distribu-
tion, and the main predictors of interest were time
points, treatment status, and the interaction of time
points and treatment status.
This exploratory analysis showed that while these is-

sues might not be unique to the nonrandomized stepped
wedge design, managers and policy makers in data rich
organizations wishing to use the nonrandomized stepped
wedge design should still be cognizant that the final
evaluation of QII using routinely collected data will need

to meet a number of requirements. First, the study’s
evaluation database will need to be constructed as a
three-level database that can link patients to their sites,
and their sites to intervention time periods and timing
of the data collected. Constructing this database, there-
fore, will require accurate collection of data on the time
at which sites “turned on,” i.e. implemented the QII. It
will also require multiple cross-sectional data collection
of the outcome variable (in this case, patient-assessed ac-
cess), and inclusion of accurate dating of the outcome
variable. Finally, it will require a computer program that
can handle large amounts of multilevel data efficiently
within multivariable models. In our case, this required
shifting from SAS to HLM 7. Achieving a successful
analytic model, even with simulated data, proved chal-
lenging and required a variety of problem-solving efforts.
Thus, while nonrandomized stepped wedge designs are
appealing for evaluating QII’s, substantial care and ex-
pertise are required to actually analyze data within the
design.
To our knowledge, this paper represents the first ap-

plication of a nonrandomized stepped wedge design to
evaluate implementation of a QII. Our approach may be
helpful in improving evaluation accuracy under this cir-
cumstance. In addition, although we plan to use the de-
sign prospectively, it would be possible to apply it
retrospectively if accurate data on intervention timing
and on outcomes are available.
In the future, we plan on taking up analyses using

difference-in-differences or pre- versus post-implementation
approaches in addition to using the nonrandomized stepped
wedge design as our survey data become available.
This would allow us to compare outcomes using vari-
ous analysis techniques.
These exploratory data analyses were limited in a var-

iety of respects. We assumed each cross-section was in-
dependent; in reality, while patients were simulated to
be randomly selected to receive the survey from among
all those visiting each site, some patients may be sam-
pled more than once over time. In addition, we assumed
a fairly large effect size; yet a smaller effect size could
still have clinical significance in an actual evaluation. We
also assumed continued improvement in the outcome
over time, although at a diminishing level; this was in
line with our aim of testing a realistic “best case’ for im-
provement. Third, we made the choice of using site ran-
dom effects. Our study intervention is a quality
improvement initiative; as is often the case in quality im-
provement, the assumption that our observed effect size
represents a random sample of the possible effect sizes
that could have been observed may be most appropriate
for estimating future impacts of intervention spread.
Lastly, we made the choice of using site random effects.
Our study intervention is a quality improvement
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initiative; as is often the case in quality improvement,
the assumption that our observed effect size represents
a random sample of the possible effect sizes that could
have been observed may be most appropriate for esti-
mating future impacts of intervention spread. Lastly, we
made the choice to report the results in terms of means
and did not transform the access variable into dichotom-
ous splits because we didn’t know the meaningful separ-
ation between the response options.

Conclusion
The design features of the actual QII that were the basis
for this simulation, as well as the outcome measure
used, imposed a variety of constraints on other analytic
approaches that we could have used to evaluate the QII
such as difference-in-differences or repeated measures
approaches. These design features included nonrando-
mized timing of the QII, clustering of the outcome
within sites as sites were repeatedly measured, and suc-
cessive implementation in which sites that were origin-
ally control sites “turned on” to become implementation
sites. Our application of the nonrandomized stepped
wedge design matches well to the evaluation needs of
this complex multisite QII. It addresses issues of con-
tamination (by having the QII target sites, and aiming to
expose all respondents within sites in the implementa-
tion state to the QII) and historical threats (by having
data collected from sites in the control and implementa-
tion states at each quarter), all the while allowing for
variable and nonrandom timing in implementing the
intervention. It also allows for a wide time frame without
losing precision of information about intervention effects.
Healthcare evaluators have long struggled with the

challenges posed by the need to evaluate QIIs imple-
mented primarily by a healthcare organization, with lim-
ited researcher control. The marked increases in data
collected by these organizations for routine quality mon-
itoring or improvement provide an outstanding oppor-
tunity to apply rigorous designs such as the
nonrandomized stepped wedge that substantially avoid
the typical validity threats to simple pre-post designs.
We expect our work will encourage other QII re-
searchers to consider and further develop the nonrando-
mized stepped wedge design as they confront the
challenge of evaluating QII implementation and spread
within healthcare organizations.

Appendix 1: Three-level Hierarchical Statistical
Model of the Nonrandomized Stepped Wedge
Design
Level 1 Model: Relationship between Patient-assessed
Access and Patient-level Covariates
The statistical equations at Level 1 expressed the rela-
tionship between the outcome of interest, patient-

assessed access (Yijk) and respondent-level covariates,
namely, gender (FEMALEijk) and race/ethnicity (NON-
WHITEijk). For the variable FEMALEijk, male gender
served as the reference, and for the variable NONWHI-
TEijk, white race/ethnicity served as the reference.
Access was a four-level ordinal outcome, and thus,

was represented by three cumulative logits.
Equation (R.1) expressed the log-odds of “always” rela-

tive to “usually”, “sometimes”, or “never” having access:

log
∅1ijk

�

1−∅1ijk
�

� �
¼ π0jk þ π1jkFEMALEijk

þ π2jkNONWHITEijk ðR:1Þ
Equation (R.2) expressed the log-odds of “always” or

“usually” relative to “sometimes” or “never” having ac-
cess. The parameter δ2 was the threshold parameter that
split the cumulative logits.

log
∅2ijk

�

1−22ijk�

� �
¼ π0jk þ π1jkFEMALEijk

þ π2jkNONWHITEijk þ δ2 ðR:2Þ
Lastly, Eq. (R.3) expressed the log-odds of “always”,

“usually”, or “sometimes” having access relative to
“never” having access. Likewise, the parameter δ3 was
the threshold parameter that split the cumulative logit
(R.3) from the other cumulative logits (R.1 & R.2).

log
∅3ijk

�

1−32ijk�

� �
¼ π0jk þ π1jkFEMALEijk

þ π2jkNONWHITEijk þ δ3 ðR:3Þ

Level 2 Model: Linear Time Trend in Control versus
Implementation State
Equations at Level 2 expressed the relationships between
respondent-level covariates (which served as Level 2 out-
comes) and timing-related predictors, including treat-
ment status (TREATjk), and linear time trends when sites
were in the control state (QTRjk) and when they were in
implementation state (QTRjk * TREATjk). The parameter
r0jk was the timing-level random effects.

π0jk ¼ β00k þ β01kQTRjk þ β02kTREATjk

þ β03kQTRjk � TREATjk þ r0jk ðT:1Þ
π1jk ¼ β10k ðT:2Þ
π2jk ¼ β20k ðT:3Þ

Level 3 Model: Site-level Effects
Equations at Level 3 expressed the relationships between
timing-level variables and site-level predictors, namely,
site size (MEDk and LGk). Please note that with indicator
variables for medium and large size sites in the models,
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small size sites served as the reference. The parameter
μ00k represented the site-level random effect.

β00k ¼ γ000 þ γ001MEDk þ γ002LGk þ μ00k ðS:1Þ

β01k ¼ γ010 ðS:2Þ

β02k ¼ γ020 ðS:3Þ

β03k ¼ γ030 ðS:4Þ

β10k ¼ γ100 ðS:5Þ

β20k ¼ γ200 ðS:6Þ

Mixed Linear Models
All equations at the three-level can be combined and
expressed as the following cumulative logits:
Log-odds of respondents “always” relative to “usually”,

“sometimes”, or “never” having access -

log
∅1ijk

�

1−∅1ijk
�

� �
¼ γ000 þ γ010QTRjk

þ γ020TREATjk þ γ030QTRjk

� TREATjk þ γ100FEMALEijk

þ γ200NONWHITEijk

þ γ001MEDk þ γ002LGk þ r0jk
þ u00k ð4Þ

Log-odds of respondents “always” or “usually” relative
to “sometimes” or “never” having access -

log
∅2ijk

�

1−∅2ijk
�

� �
¼ γ000 þ γ010QTRjk

þ γ020TREATjk þ γ030QTRjk

� TREATjk þ γ100FEMALEijk

þ γ200NONWHITEijk

þ γ001MEDk þ γ001LGk þ r0jk
þ u00k þ δ2 ð5Þ

Log-odds of respondents “always”, “usually”, or “some-
times” relative to “never” having access -

log
∅3ijk

�

1−∅3ijk
�

� �
¼ γ000 þ γ010QTRjk

þ γ020TREATjk þ γ030QTRjk

� TREATjk þ γ100FEMALEijk

þ γ200NONWHITEijk

þ γ001MEDk þ γ001LGk þ r0jk
þ u00k þ δ3 ð6Þ

Note that Eqs. (4), (5), and (6) can be combined into a
single generic expression:

ηmijk ¼ log
∅�

mijk

1− ∅�
mijk

" #
¼ γ000 þ γ010QTRjk

þγ020TREATjk þ γ030QTRjk � TREATjk

þγ100FEMALEijk þγ200NONWHITEijk

þγ001MEDK þ γ002LGk þ r0jk þ u00k

þ
XM−1

m¼2

Dmijkδm
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